
OPTIMIZATIONS FOR ENERGY EFFICIENCY WITHIN

DISTRIBUTED MEMORY PROGRAMMING MODELS

A Dissertation Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Siddhartha Jana

December 2016

OPTIMIZATIONS FOR ENERGY EFFICIENCY WITHIN

DISTRIBUTED MEMORY PROGRAMMING MODELS

Siddhartha Jana

APPROVED:

Dr. Edgar Gabriel,
Committee Chair, Associate Professor,
Computer Science, University of Houston

Dr. Barbara Chapman,
Research Advisor, Committee Co-chair, Professor,
AMS / IACS, Stony Brook University

Dr. Jaspal Subhlok,
Department Chair, Professor,
Computer Science, University of Houston

Dr. Weidong Shi,
Assistant Professor,
Computer Science, University of Houston

Dr. Oscar Hernandez,
R&D Research Staff,
CSMD, Oak Ridge National Laboratory, UT-Battelle

Dean, College of Natural Sciences and Mathematics

ii

“... But I have Joules to keep,

And I have FLOPS to run before I sleep ...”

– Yours Truly,

A gross corruption of an excerpt from Robert Frost’s

“Stopping by Woods on a Snowy Evening”, 1992

iii

Acknowledgements

Firstly, I would like to thank my research advisor Dr. Barbara Chapman, and

my mentors - Tony Curtis, Deepak Eachempati, and Dounia Khaldi, for taking me

under their wings, and providing me with ample guidance within my research group

- HPCTools. I couldn’t be more thankful of the opportunities I was presented to

mingle with the HPC (High Performance Computing) community and present my

progress in the form of talks, research posters, and webinars. The direct outcome of

this visibility has led to multiple internship opportunities and successful publications

with some of the top contributors to the community - Intel, Cray Inc., Techinische

Universität Dresden, and Oak Ridge Associated Universities.

This work has been an outcome of multiple successful joint research ventures and I

am very thankful for this. A major fraction of financial support has been provided by

the Computer Science department at the University of Houston. Additional funding

sources that I am grateful for include the US DOD (United States Department of

Defense), LANL (Los Alamos National Laboratory), ORNL (Oak Ridge National

Laboratory), and Total Oil&Gas.

One of the fundamental challenges of working in the field of High Performance

Computing is the ability to provide empirical evidence of ones hypotheses on large

scale distributed systems. I am obligated to the multiple organizations that have

directly or indirectly, provided me access to state-of-the-art computational resources.

These include - the OLCF (Oak Ridge Leadership Computing Facility), the HPC

iv

center at ZIH (Zentrum für Informationsdienste und Hochleistungsrechnen), and the

NSF (National Science Foundation).

I am obligated to my parents - Soumitra Kumar Jana and Kalpana Neogy Jana,

for their love and support. Their never-ending patience during my term in the

graduate school, has never ceased to amaze me.

v

OPTIMIZATIONS FOR ENERGY EFFICIENCY WITHIN

DISTRIBUTED MEMORY PROGRAMMING MODELS

An Abstract of a Dissertation

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Siddhartha Jana

December 2016

vi

Abstract

With the breakdown of Dennard Scaling and Moore’s law, power consumption

appears to be a primary challenge on the pathway to exascale computing. Extreme

Scale Research reports indicate the energy consumption during movement of data

off-chip is orders of magnitude higher than within a chip. The direct outcome of this

has been a rising concern about the energy and power consumption of large-scale ap-

plications that rely on various communication libraries and parallelism constructs for

distributed computing. While innovative designs of hardware set the upper bounds

for power consumption, there is a need for the software to adapt itself to achieve

maximum efficiency at minimal joules.

This work presents detailed analyses of multiple factors within the software stack,

that affect the energy consumption of large scale distributed memory HPC applica-

tions and programming environments. As part of this empirical analyses, we isolate

multiple constraints imposed by the communication, memory, and the execution

model that affect energy profiles of such applications. With regards to the commu-

nication model, empirical analyses in this thesis reveals significant impact due to

constraints like the size of the data payload being transferred, the number of data

fragments, the overhead of memory management, the use of additional OS threads, as

well as the hardware design of the underlying processor. Additional software design

characteristics that have been shown to have a significant impact on communication-

intensive kernels include – the design of remote data-access patterns (greater than

40% energy savings), the transport layer protocols (25X improvement in bytes/joules)

as well as the choice of the interconnect (760X improvement in bytes/joules).

This dissertation also revisits a two-decade-old programming paradigm - Active

vii

Messages, and presents empirical evidence that suggests that integrating it within

current SPMD execution models leads to significant performance and energy effi-

ciency.

It is hoped that the work presented in this literature paves the way for tak-

ing software design into consideration while designing current and future large-scale

energy-efficient systems operating within a power budget.

viii

Contents

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 4

1.3 Research Statement . 5

1.4 Scope of the Study . 6

1.5 Thesis Contribution . 7

1.6 Chapter-wise Layout . 10

2 Guide to Terminology and Plots 12

2.1 Power Versus Energy of a Data Transfer 12

2.2 Interpreting Colored Plots . 13

3 Related Work 15

3.1 Hardware-controlled Power Management 15

3.1.1 Processing Units . 15

3.1.2 Interconnect Solutions . 16

3.1.3 Dynamic Voltage Scaling Techniques 16

3.1.4 CPU Gating . 17

3.2 Software-controlled power management 17

3.2.1 Compiler-driven . 17

ix

3.2.2 Operating Systems . 19

3.2.3 DVFS Based Efforts . 19

4 Debunking the ‘Race-to-Halt’ Approach 22

4.1 Frequency scaling at job level . 22

4.2 Frequency scaling at process level . 25

4.3 Frequency scaling at phase level . 30

4.4 Chapter Summary . 32

5 Energy Costs Associated with Distributed-Memory Programming 34

5.1 Communication Costs . 36

5.2 Synchronization Costs . 36

5.3 Computation Costs . 39

5.4 Case Study: a CORAL Benchmark 39

5.4.1 LSMS . 39

5.4.2 Communication Phases . 40

5.4.3 Synchronizing Phases . 43

5.5 Chapter Summary . 44

6 Communication: Fragment Count and Payload Sizes 46

6.1 Energy-Consumption Observations 48

6.2 Power-Consumption Observations 50

6.3 Network-Card behavior . 53

6.4 Chapter Summary . 53

7 Communication: Network-Stack Design 55

7.1 Factors affecting Power and Energy profile of remote data transfers . 56

7.1.1 Choice of transport layer and the associated interconnect . . . 57

x

7.1.2 Design of data-transfer protocols 57

7.2 Empirical Observation and Analysis 59

7.2.1 Using TCP over Ethernet . 59

7.2.2 Using OpenIB/OFED stack over InfiniBand 63

7.3 Energy Efficiency of Data Transfers 64

7.4 Chapter Summary . 66

8 Communication: Access Patterns 69

8.1 Design Factors Impacting Communication-Energy Costs 70

8.1.1 Properties of the Communication Kernel 71

8.1.2 Properties of the Individual Data Transfers 72

8.2 Code Transformations that Impact Energy Consumption 74

8.2.1 Design of Data-access Patterns 74

8.2.2 Transformations of access Patterns 78

8.3 Empirical Results . 80

8.3.1 Impact of Using Pinned Buffers 83

8.3.2 Impact of Using Non-Blocking Remote Transfers 86

8.3.3 Impact of Aggregation of Buffers 86

8.4 Chapter Summary . 88

9 Synchronization: Scale and Time 90

9.1 Synchronizing Time . 90

9.2 Scale of Synchronization . 91

9.3 Chapter Summary . 93

10 State-of-the-Art: Using DVFS 95

10.1 State of the Art . 96

10.2 DVFS efforts for serial applications: 97

xi

10.3 Extending DVFS to Parallel Applications 99

10.4 Types of Scaling . 100

11 Challenges: DVFS for Eliminating Slack 101

11.1 Opportunities for eliminating slacks 101

11.2 Proactive Scaling . 102

11.2.1 Approach and Challenges . 102

11.2.2 Empirical study . 104

11.3 Reactive Scaling . 110

11.3.1 Approach and Challenges . 110

11.4 Chapter Summary . 112

12 Challenges: DVFS with Data Movement 113

12.1 Related work . 115

12.2 Constraints imposed by Hardware Design 117

12.3 Energy cost factors associated with RDMA transfers 119

12.4 Approaches for implementing RDMA PUTs 124

12.5 Experimental setup . 127

12.5.1 Method . 127

12.5.2 Test-bed Characteristics . 129

12.5.3 Power/Energy Measurement 130

12.6 Results . 130

12.6.1 No Participation by the Receiver 134

12.6.2 Active Participation by the Receiver 136

12.6.3 Additional Thread Supporting the Receiver 138

12.7 Using DVFS in a multicore environment 140

12.8 Lessons learned . 141

xii

12.9 Chapter Summary . 142

13 Proposed Solution: Reviving Active Messages 144

13.1 Introduction . 145

13.2 Overview of Active Messages . 147

13.2.1 Active Message v/s Intra-node Tasking Models 148

13.3 Proposed Extensions for Supporting Active Messages 148

13.4 Prototype Evaluation . 153

13.4.1 Implementation Design . 153

13.4.2 Experimental Setup . 154

13.4.3 Performance Study . 155

13.4.4 The Traveling Salesman Problem (TSP) 160

13.5 Related Work . 166

13.6 Chapter Summary . 167

14 Future Work 170

15 Conclusion 172

A Test Platform 174

A.1 System-A at OLCF: RAPL monitoring 174

A.2 System-B at VirginiaTech: PowerPack monitoring 178

A.3 System-C at ZIH: HDEEM monitoring 179

B Microbenchmark Design 181

Bibliography 185

xiii

List of Figures

1.1 The history of Intel chip introductions by clock speed and number
of transistors (1970-2010). [Source: Blog article “The Free Lunch Is
Over: A Fundamental Turn Toward Concurrency in Software”, URL:
http://www.gotw.ca/publications/concurrency-ddj.htm] 2

1.2 Top 500 trends - Performance and Energy efficiency [Source: Energy-
aware workshop, SuperComputing Conference, November 2015] 3

1.3 Data transfer trends (Source: “Exascale Computing Technology Chal-
lenges”, John Shalf, Sudip Dosanjh, and John Morrison[139]) 5

1.4 The software stack for a distributed memory programming model. The
shaded region highlights the scope of this thesis. 7

2.1 Power Versus Latency. Use of a 32KB data payload transferred using
MPI Send() over InfiniBand . 13

2.2 Layout of the plots in this work . 13

4.1 Percentage drop in efficiency metric with respect to lowest operating
frequency . 23

4.2 A box plot (or whisker diagram) depicting the distribution of total
polling time across all processes operating at varying CPU frequencies.
While in statistic analysis, the small circles represent outliers in a
data set, the presence of these points in the data above suggest high
variation in CPU time spent within polling-based constructs. 24

4.3 Distribution of time spent polling within MPI Waitall by every MPI
rank during the parallel execution of the BT-MZ benchmark with 360
processes . 26

xiv

4.4 Snapshot of Vampir Trace of the profile trace of the MPI version of
BT-MZ benchmark . 27

4.5 Polling time for all processes with different frequency operating modes 29

4.6 Impact of frequency scaling on the behavior of a compute intensive
kernel . 31

4.7 Impact of frequency scaling on the behavior of STREAM TRIAD, a
memory intensive kernel . 32

5.1 Factors impacting the energy and power consumption across the hard-
ware and software stack . 35

5.2 Excess slack within fast processes corresponds to energy consumption
without any application progress. 37

5.3 Two-stage communication pattern within WL-LSMS 40

5.4 Visualization of communication pattern within LSMS, as generated
by the Vampir visualizer. 41

5.5 Visualization of synchronization behavior within LSMS, as generated
by the Vampir visualizer. 42

5.6 Interaction between root, master, and worker processes 43

5.7 Load imbalance among processes lead to extra energy invested waiting
for the slower processes to catch up. 44

6.1 Line diagram for microbenchmark used to detect the impact of data
sizes and fragments . 47

6.2 Relationship between energy consumption by cores(left) and the to-
tal number of instructions executed(right). Top: Results for cases
where: Fragments ∈ [1, 2097152]. Bottom: Results for cases where:
Fragments ∈ [1, 1024] . 48

6.3 The impact on the peak achievable bandwidth with respect to: (i)
size of the total data to be transferred; (ii) number of fragments into
which the transfer is divided into . 49

xv

6.4 (I,II,IV)Power consumed by CPU, DRAM, total system (III) Total
L3 cache misses. The various distinct levels of power are represented
as: (A)Small payload sized(up to 2KB) transfers lead to less power
consumption by the cores and DRAM; (B)Medium to large message
sizes(4K and beyond) imply accesses of large memory regions and this
impacts power consumption; (C)Large payload sizes with minimum
fragmentation leads to higher power consumption by the cores. The
underlying NIC is generally responsible for chunking such large trans-
fers, the effect on which is not accounted for by the cores. 50

6.5 The number of raw Infiniband Packets transmitted / received by the
NIC during a point-to-point data transfer:(i) Number of packets trans-
mitted by the NIC servicing the sender process; (ii) Number of packets
transmitted by the NIC servicing the receiver process; (iii) number of
packets on-the-fly transmitted between the two nodes during the life-
time of the transfer . 52

7.1 Eager Protocol . 57

7.2 Sequence Diagrams for Rendezvous Protocol 58

7.3 Power consumed by the CPU cores and the DRAM while servicing
remote data transfers by the sender process 60

7.4 Power consumed by the CPU cores and the DRAM while servicing
remote data transfers by the receiver process 61

7.5 A summary of the total bytes transferred per Joule of energy con-
sumed by the sender and the receiver while participating in remote
data transfers. 65

8.1 Line Diagrams of data-access patterns 76

8.2 Different transformations of remote data-access patterns, that have
the potential of energy savings within communication-intensive appli-
cation kernels. 78

8.3 Impact of using pinned data buffers : Data-payload size = 0.5MB . . 80

8.4 Impact of use of various data-access patterns on the CPU+DRAM
energy and the achievable latency for a remote PUT operation w.r.t.
number of explicitly initiated transfers : Total Data-payload size =
0.5MB . 81

xvi

8.5 Impact of transforming multiple blocking operations to non-blocking . 84

8.6 Impact of aggregation of multiple data buffer 84

9.1 Impact of wait period within a barrier 91

9.2 Impact of number of processes participating in a barrier 93

9.3 Comparing the types of instructions executed by the CPU while wait-
ing at a barrier. The count includes (i) Total number of instructions
(ii) Number of conditional branch instructions (iii) Number of condi-
tional branch instructions that are ‘taken’ (iv) The number of condi-
tional branch instructions that are ‘not taken’ 94

11.1 Different approaches of using Proactive Scaling for energy savings.
The compute regions are represented with horizontal bold lines. The
slack regions are represented with dashed red lines. Four possible
execution timelines are represented: (A) Baseline mode: Both the
processes, PE-0 and PE-1, operate at the same operating frequency;
(B) Performance Mode: The operating frequency of PE-1 is boosted;
(C) Energy Mode: The operating frequency of PE-0 is reduced in
order to reduce the number of cycles wasted polling, which leads to
energy savings; (D) Negative Impact due to energy mode: Depicts a
case corresponding to a short slack period in which case operating in
an energy mode adds additional overhead due to P-state transition.
This affects performance. 103

11.2 DVFS over STREAM COPY kernel. Compute Intensity (CI) = 1/2
= 0.50 . 105

11.3 DVFS over STREAM SCALE kernel. Compute Intensity (CI) = 2/3
= 0.67 . 105

11.4 DVFS over STREAM ADD kernel. Compute Intensity (CI) = 2/3 =
0.67 . 106

11.5 DVFS over STREAM TRIAD kernel. Compute intensity (CI) = 3/4
= 0.75 . 106

11.6 DVFS over hand-written Compute-intensive kernel. Compute Inten-
sity (CI) ¿ 6 . 107

11.7 Line diagram for microbenchmark to evaluate the potential savings
using proactive scaling . 108

xvii

11.8 Results of the microbenchmark based study on the impact on execu-
tion time and energy consumption due to proactive frequency scaling 109

11.9 Different approaches of using Reactive Scaling for energy savings –
(A) Baseline mode: Both the processes operate at the same operating
frequency; (B) Performance Mode: The operating frequency of the
process that reaches the barrier later, is boosted at the time when the
other process enters a slack region; (C) Energy Mode: The operating
frequency of the process that enters the slack region first is reduced
in order to reduce the number of cycles wasted polling, which leads to
energy savings; (D) Negative Impact due to energy mode: Depicts a
case corresponding to a short slack period in which case operating in
an energy mode adds additional overhead due to P-state transition.
This affects performance. 111

12.1 Line Diagram for remote write implementation: Servicing PUTs with
no participation by the receiver . 119

12.2 Line Diagram for remote write implementation: Servicing PUTs with
active participation by the receiver 120

12.3 Line Diagram for remote write implementation: Servicing PUTs with
an additional thread supporting the receiver 120

12.4 Achievable RDMA PUT Bandwidth with the sender process operating
at 2.901GHz and the receiver process operating at a Turbo frequency
of 2.901GHz, and non-Turbo frequencies of 1.2GHz and 2.4GHz. The
3 subplots correspond to implementations (a) without any active par-
ticipation by the receiver (Mellanox Scalable SHMEM) (b) with ac-
tive participation by the receiver (Mellanox Scalable SHMEM), and
(c) using an additional software agent (OpenSHMEM reference imple-
mentation over GASNet - IBV conduit) 125

12.5 Impact of frequency scaling on energy and performance metrics for im-
plementations which do not require active participation by the receiver
during a one-sided point-to-point remote PUT operation. The line-
chart and the pseudo-code of this approach is depicted in Figure 12.1. 131

xviii

12.6 Impact of frequency scaling on energy and performance metrics for
implementations which depend on active participation by the receiver
in order to ensure completion of one-sided point-to-point remote PUT
operation. The line-chart and the pseudo-code of this approach is
depicted in Figure 12.2. 132

12.7 Impact of frequency scaling on energy and performance metrics for
implementations which relies on an additional asynchronous software
agent to ensure completion of one-sided point-to-point remote PUT
operation. The line-chart and the pseudo-code of this approach is
depicted in Figure 12.3. 133

12.8 Benefit of using DVFS at the granularity of individual cores 136

13.1 Execution flow of an Active Message Request 146

13.2 Incorporation of the the proposed Active Messages prototype into the
OpenSHMEM reference implementation 154

13.3 Communication line diagrams and performance results for bandwidth
and message rates . 155

13.4 Empirical study of Token Ring based communication pattern 156

13.5 Flow diagram of the master and worker processes for all three ver-
sions of the Traveling Salesman Problem (TSP): (a) Master for both
OpenSHMEM with AM and MPI, (b) Worker for all three versions,
(c) Master for OpenSHMEM without AM. 161

13.6 Performance results of a traveling salesman problem written - MPI
(in GREEN) v/s standard OpenSHMEM (in RED) v/s OpenSHMEM
with the proposed AM interface (in BLUE). The dashed line connects
all the medians of the box-plots that correspond to each of the versions.162

A.1 Experimental Setup incorporating Intel’s RAPL interface for fine-
grained power monitoring . 175

A.2 Synthetic microbenchmark used for evaluating energy and power con-
sumption by varying the total size of data payload and the number of
fragments . 179

xix

List of Tables

7.1 Symbols in Eqn. 7.1 . 64

9.1 Line charts for studying the impact of barrier on energy and power costs 92

12.1 Overview of different factors that contribute to the performance and
energy consumption. Each row lists the cost factor, the system compo-
nents involved as well as the potential impact on the CPU and DRAM
energy/performance metrics . 121

12.2 Characteristics of the Test Platform 130

A.1 Test machine and environment details 175

A.2 Test-Platform characteristics of SystemG 178

A.3 Characteristics of the power monitored node 180

xx

Chapter 1

Introduction

1.1 Background

This past decade has seen the end of two major computing laws. The first of these,

the Dennard Scaling suggested an exponential rise in performance per watt of micro-

processors with silicon transistors. Its breakdown was brought about by an increase

in power leakage within circuits that led to the inability of continuing to boosting

CPU performance by increasing the operating frequency. This led to a design switch

by hardware vendors with the architecture; hardware parallelism was introduced.

Almost a decade has passed since then and as of this writing, the second law has

undergone a similar fate. The Moore’s law, predicted an biannual exponential rise in

growth of transistors that can be packed into a silicon chip. Two factors that have

contributed to the slowdown of this law - the limits imposed by the laws of Physics

and the high power-density of the silicon transistors.

1

Figure 1.1: The history of Intel chip introductions by clock speed and number of transistors (1970-
2010). [Source: Blog article “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency
in Software”, URL: http://www.gotw.ca/publications/concurrency-ddj.htm]

It is in this backdrop of architectural transition that the field of High Perfor-

mance Computing experienced a transition from the Terascale era (213 Flop/s) to

the Petascale era (215 Flop/s). From this point, the HPC community has set a

bold time-frame of arriving at the Exascale era (218 Flops/s) by 2025. A challenge

boldly accepted by multiple national governments including the White House[145]

The challenge? Achieving this with a tight power budget of 20-25MW!

Given the urgent need for innovative (yet easy to code!) designs for the hardware

2

Figure 1.2: Top 500 trends - Performance and Energy efficiency [Source: Energy-aware workshop,
SuperComputing Conference, November 2015]

and software stack, the NSF-SRC has put forth a solicitation calling for “break-

throughs” in the field of energy efficient computing.

Some of the excerpts from the program synopsis[120] reads,

“There is a consensus across the many industries touched by our ubiquitous com-

puter infrastructure that future performance improvements across the board are now

severely limited by the amount of energy it takes to manipulate, store, and critically,

transport data ...”

and,

“Truly disruptive breakthroughs are now required, and not just from any one seg-

ment of the technology stack. Rather, due to the complexity of the challenges,

revolutionary new approaches are needed at each level in the hierarchy. Further-

more, simultaneous co-optimization across all levels is essential for the creation of

new, sustainable computing platforms ...”

3

1.2 Motivation

Recent studies on the challenges facing the Exascale era, express a need for under-

standing the various factors that affect the energy profiles of applications scaling

multiple nodes. It is well established that hardware innovations set the upper bound

on the energy efficiency achievable. However, it is the design of the software stack

that dictates the degree to which an application can reach this bound, within a

system.

This work highlights the notion that the energy cost factors can be mapped

to multiple layers across the hardware and software stack. Adopting distributed

memory programming models allows applications to run across multiple compute

nodes. In order to study the impact of porting such applications to a typical SPMD

programming environment, it becomes crucial to explore the energy costs associated

with managing the consistency of the distributed memory.

Data movement may be either local within a single processing node, or, it may

be external among multiple nodes. The external data transfer takes the form of

communication among one or more compute or storage servers. The use of data

transfers between processes running in a distributed environment is tightly depen-

dent on the programming model used to design an HPC application. For example, in

case of PGAS models like OpenSHMEM, the data movement corresponds to explicit

interfaces provided by its communication model. While the transfer routines play

an integral role in implementing the algorithm of a distributed application, the syn-

chronizing constructs help ensure memory consistency between different phases of

an application. The amount of energy consumed during such data movement poses

4

Figure 1.3: Data transfer trends (Source: “Exascale Computing Technology Challenges”, John
Shalf, Sudip Dosanjh, and John Morrison[139])

a serious threat to the usability of distributed memory models on future systems.

1.3 Research Statement

The research goals are as follows:

• Identify different design factors within the software stack that have the poten-

tial of affecting the energy consumption of a distributed memory application

• Study the impact of DVFS on the communication and synchronization model

• Identify changes within standard bulk synchronous execution model that stand

to benefit the energy efficiency of HPC applications

• Design of a prototype framework that implements the said changes

5

• Design of applications and microbenchmarks and perform empirical analyses

to evaluate the extent of impact of various code optimizations.

1.4 Scope of the Study

As discussed before, the overarching goal of this thesis is to explore different factors

within the software stack that have the potential of affecting the energy consumption

of HPC applications that employ distributed memory programming models. The

different components of this stack are summarized in Figure 1.4. The components

highlighted are discussed in detail in this text. As shown, three main components

define a distributed memory programming model:

• The Communication Model: This describes the behavior of explicitly initiated

data transfers across distributed memory. This dictates the design of different

communication patterns at the application layer. At a lower level, this also

affects the design of the middleware that enables the actual data transfer across

the interconnect.

• The Memory Model: This describes the consistency model followed in order to

maintain a coherent view of the distributed memory among multiple processes.

This gives the programmer a set of synchronizing constructs that ensure the

correctness of the outcome of parallel execution of instruction paths.

• The Execution Model: This describes the mapping of the actual algorithm

of an application to the underlying machine. At a lower level, factors like the

actual types of instructions used within the computation kernel come into play.

6

Figure 1.4: The software stack for a distributed memory programming model. The shaded region
highlights the scope of this thesis.

1.5 Thesis Contribution

Three parts: computation, communication, memory

This work explores the impact of explicitly initiated communication and synchro-

nization operations on the energy consumption within OpenSHMEM applications.

• Case Study:

– Analysis of real-world applications to identify shortcomings in distributed

memory programming models that lead to poor CPU utilization and in

turn, poor energy efficiency.

7

– Translation of a CORAL petascale application benchmark - LSMS (Lo-

cally Self-consistent Multiple Scattering) from MPI the de facto HPC pro-

gramming model to OpenSHMEM, a popular PGAS programming model.

– Exploring energy saving opportunities give the communication and mem-

ory model used by CORAL application benchmarks.

– Description of a detailed empirical study that highlights the various de-

sign decisions within distributed memory programming models that effect

energy consumption.

• Communication Model: With regards to the communication model, this work

strives to explore the different factors that effect the energy costs of a commu-

nication intensive application. This is complemented with empirical evidence

of the impact on energy savings due to proposed optimizations.

– Description of a number of factors characterizing individual data trans-

fers that have the potential of impacting the energy signatures of PGAS

applications

– Empirical evidence motivating the transformation of data-access patterns

in order to achieve energy efficiency of communication-intensive applica-

tion kernels. This is presented in terms of the reduction in CPU energy

consumption, DRAM energy consumption, communication latency, and

the Energy Delay Product (or EDP).

– Empirical evidence of the feasibility of adopting techniques for fine tuning

not only the performance but also the energy efficiency of applications.

8

• Memory Model: With regards to the memory model, this work aims at explor-

ing opportunities to reduce the energy costs associated with non-uniform work

loads.

– Description of the impact of synchronization constructs on the energy

consumption of processes in case of non-uniform work loads.

– A design and implementation of framework for dynamic management of

energy consumption of unbalanced work loads.

• Execution Model: With regards to the execution model, this work aims at

exploring opportunities that map computational units to the underlying dis-

tributed memory.

– Identification of shortcomings in current de facto programming models

that lead to poor CPU utilization.

– Revisiting the potential of Active Messages as a solution to increase CPU

utilization, and indirectly, energy efficiency.

– Design of a prototype that integrates the execution model of Active Mes-

sages within the OpenSHMEM reference implementation.

– Design of multiple versions of graph-based applications (like Traveling

Salesman Problem, Minimum Spanning Tree) using MPI, standard OpenSHMEM

and the proposed Active Message execution models.

– Empirical analysis highlighting better CPU utilization using Active Mes-

sages as compared to standard OpenSHMEM and MPI.

9

1.6 Chapter-wise Layout

This section describes the layout of this literature. There have been voluminous

amount of research efforts to manage energy efficiency across the hardware and soft-

ware stack. An overview of this is presented in Chapter 3.

We group them based on the software stack layer they correspond to. The layout

of all the empirical study is depicted in Figure 2.2. One of the common misconcep-

tions in the community is that the best approach of achieving energy efficiency is

to execute applications as fast as possible. Chapter 4 presents empirical evidence

against this commonly-held computing approach called, “Race-to-Halt”.

The following chapters present a detailed study about different design parameters

across the hardware and software stack. An overview of these factors are presented

in Chapter 5. These factors are mapped to either the communication or the memory

model imposed by the programming models. A profiling-based study of a petascale

application is discussed that lists various opportunities of mapping the observations

made in past chapters in order to achieve energy savings among its phases.

With respect to the application-initiated remote data transfers, Chapter 6 dis-

cusses the costs associated with message sizes and the count of message fragments.

In Chapter 7, we present empirical results indicating that the design of the transport

layer and the choice of the interconnect solutions, both have a significant impact on

the number of joules consumed by a system for every byte transferred. In Chapter 8,

we extend the study to highlight the notion that the energy profiles of the application

are significantly altered based on the communication patterns used while designing

10

a distributed algorithm. Chapter 9 describes how energy costs rises in proportion to

the number of CPU cycles invested by a process polling at a synchronizing costs. An-

other factor like the number of processes participating in the synchronizing point is

also discussed. Chapter 10 introduces the State-of-the-Art approach of using DVFS

or Dynamic Voltage Frequency Scaling approaches to achieve energy and power sav-

ings. The following chapters highlight some of the challenges with merging DVFS

techniques with current programming models and architectures. Issues with using

DVFS for eliminating slack is discussed in Chapter 11. Unintended consequences of

performing inter-process communication on a hardware subjected to DVFS is dis-

cussed in Chapter 12.

One of the fundamental takeaway from this work is that there is a need for

exploring alternative programming models that are better amenable to runtime ap-

proaches of achieving energy savings. As a solution, this work brings back the concept

of Active Messages into modern programming models like OpenSHEM. A prototype

implementation along with empirical results highlight the usability of this execution

model. All of these are summarized in Chapter 13.

A summary, takeaway messages, concluding remarks, and proposed future work

are discussed in Chapters 14 and 15.

Details like the experimental setup, microbenchmark designs, and energy mea-

surement approaches are discussed as auxiliary notes in the Appendices towards the

end of the book. The final segment of the book is devoted to the list of bibliography

that was referenced throughout this work.

11

Chapter 2

Guide to Terminology and Plots

This section describes a few essential terms used throughout the text.

2.1 Power Versus Energy of a Data Transfer

In this section, we hope to establish the difference between optimizing for energy

versus power, with respect to data transfers. It must be noted that one doesnt always

have to sacrifice the lowest possible latency to achieve energy efficiency. Consider

the plots shown in Figure 2.1.

The plots (a) and (b) depict the average power consumed by CPU cores (Y-axis)

and the corresponding latency (X-axis) incurred while transferring a 32KB payload

across the network (MPI Send-Recv over InfiniBand). If this payload is divided into

64 fragments, the energy consumption by the CPU cores is about 6 mJ and the

transfer takes about 370 µs to complete. The average power consumption during

this transfer is about 16.21 Watts (Figure 2.1a). If instead, we chose to split this

12

Latency (secs)

Average
 Power
 (Watts)

16.27

0.00037

E

(a) Using 64 fragments to transfer data.
Energy=6mJ

16.56

0.00002s
Latency (secs)

EAverage
 Power
 (Watts)

(b) Using 2 fragments to transfer data.
Energy=0.33mJ

Figure 2.1: Power Versus Latency. Use of a 32KB data payload transferred using MPI Send() over
InfiniBand

payload into only 2 fragments (16KB each), the energy consumption drops to 0.33

mJ (by 94.5%) and latency to 20 µs (by 94.6%). However, this comes at the cost of

a rise in power consumption to 16.565W, i.e. an increment by 1.8% (Figure 2.1b).

Thus, despite the higher power consumption, choosing the latter option enables the

CPU cores to service the transfer using lesser energy.

2.2 Interpreting Colored Plots

<Transport + Protocol> [<Metric>(Units)]

Fixed total payload-size

Constant bytes per transfer

Constant number of fragments

 1

3

2

1
0

2
4

 3

2
7

6
8

 1

0
4

8
5

7
6

Total Message Size (Bytes)[Log-scale]

 1

 32

 1024

 32768

 1048576

#
Fr

a
g

m
e
n
ts

[L
o
g
-s

ca
le

]

 50

 100

 150

 200

C
o
lo

r-sca
le

Figure 2.2: Layout of the plots in this work

We briefly discuss the method of interpreting the plots presented in the following

13

sections. Each plot illustrates empirical results in terms of an energy metric. It

corresponds to a specific transport layer and a communication protocol.

The coordinate axes (log-scale) correspond to two controllable factors that define

a communication phase in an application - the total size of data transferred during

that phase (X-axis) and the number of explicit MPI-calls (Y-axis) used to transfer

that payload. Throughout this text, we refer to the latter as the count of fragments1.

The shade of a point in this coordinate space indicates the value of monitored metric

that is represented by the color-scale to the right of each plot.

1It must be noted that each fragment may further be divided into smaller chunks by the under-
lying layers based on the middleware design, NIC hardware constraints, etc.

14

Chapter 3

Related Work

There has been a great deal of research directed towards measuring and managing the

energy and power consumption of applications. Proposals like Thrifty[150] have been

put forth to direct large-scale research towards redesigning the complete computing

stack. The goal of such efforts is directed towards building power-aware Exascale

platforms. The interested reader is directed to the survey report by Benedict[24] that

provides a detailed taxonomy of power and energy measurement techniques. These

describe the current state of the art in terms of energy saving solutions that either

hardware-based, software-based, or a combination of both.

3.1 Hardware-controlled Power Management

3.1.1 Processing Units

Some of the model-based techniques provided by chip manufacturers to dynamically

monitor and manage the power or energy consumption include: Intel’s RAPL[79],

15

AMD’s APM module[10], NVIDIA’s NVML[121].

3.1.2 Interconnect Solutions

Hoefler[67] mentions discussions by the IEEE standard on energy efficient Ethernet

specifications including - dynamic link-speed reduction, receiver modification, net-

work routing, and deep sleep states. However, initial research indicates latencies and

network jitter with these techniques.

3.1.3 Dynamic Voltage Scaling Techniques

Dynamically varying the operational voltage and frequency of a processor is com-

monly used as a technique for reducing the power and energy consumption trends of

applications[47, 71, 114]. The notion that energy efficiency can always be achieved

by sacrificing performance has been been challenged by Miyoshi et al.[114].

The authors study power/energy trends of applications by establishing the differ-

ence between energy consumed when a system is idle and when it is active. Although

the former depends on architecture and a processor’s operating frequency, the latter

is additionally dependent on the actual load of the task. The authors put forth a

metric - the Critical Power Slope. This metric, a function of power at idle mode,

the minimum operational frequency and the power at active load at that frequency,

is a deterministic factor to whether it is energy efficient to execute a load at a lower

frequency or not. Similar results can also be drawn from the roofline model (above).

Intel’s RAPL(as described) also provides interfaces to enforce power capping by al-

lowing the user to provide the hardware with power consumption limits[79] to limit

energy consumption at the cost of performance.

16

3.1.4 CPU Gating

Orthogonal to DVFS, Leverich et al.[102] make a case for per-core power gating or

PCPG. The technique aims at selectively switching off cores within a die to reduce

power consumption (or power leakage) even when cores are idle. Empirical data

indicate savings over a wide range 3% to 64%

3.2 Software-controlled power management

3.2.1 Compiler-driven

Static analysis to aid DVFS-based techniques Since the impact of DVFS

schemes on the efficiency of an application is heavily dependent on the design of

the application, many efforts are directed towards exploiting static analysis tools

like compilers, to determine the feasibility[3, 71]. One of the domains where this

approach is helpful is in case of applications designed for real-time or time-sensitive

tasks. While working with such applications, the user has the advantage of knowing

the worst case execution time of such applications. This is because of the strict

time deadlines that the applications are expected to adhere to. A compiler can thus

exploit any slack due to the difference between the time taken to execute the compute

load and the time take to meet the deadline.

Using code-optimization techniques One of the ways to control energy costs

is to reduce the count of execution cycles by the application. Such optimizations

typically target loops and arrays. Rahman et al. show that code transformations

like loop parallelization using OpenMP, loop blocking, loop unroll-and-jam, array

17

copying+strength reduction, scalar replacement+strength reduction, loop unrolling

all have the potential of driving energy savings. To significantly reduce power con-

sumption,a scientific application may benefit from using fewer number of threads and

then fine-tuning the cache-blocking and loop unrolling factors to ensure that both

the CPUs and the memory hierarchy are being used in an efficient manner.

Issues: However, the time and energy efficiency for a given optimizations are of-

ten not in correlation with each other. At such times, the user is burdened with

the responsibility of assigning priorities to similar static-guided frameworks in order

to compensate for the conflict. Dependence on performance counters like L1-cache

misses makes the model-predictions dependent on the architecture. In other words,

the compiler-flags supported by the model might not be applicable for the same

application running on different systems. Also, work on roofline model for energy

suggests that the power consumption depends on the compute intensity of the appli-

cation (ratio of the count of arithmetic to memory access instructions). Bellosa[22]

arrives at similar conclusions while evaluating the power consumption of CPUs with

variable frequency/voltage. His findings indicate that the optimal configuration of

these parameters is only possible only if the memory reference characteristics are

taken into consideration.

Exploiting architectural design of microprocessors There have been past

research efforts analyzing the impact of instruction scheduling on the energy con-

sumption of applications. If a compiler is aware of the energy cost of switching

activity among instruction operands within a processor, a scheduling algorithm may

18

be designed to order the instruction to reduce the energy consumption during in-

struction execution. This leads to significant power savings[142, 100]. Similarly, this

may be extended to register allocation algorithms[15, 33, 54].

3.2.2 Operating Systems

The operating system analyzes the active and idle times of a device (e.g., CPU, hard

disk or display) and makes assumptions about the future use of the device. The

disadvantage is that an application may behave differently during different phases

and its performance and power usage are not predicted correctly. Advanced Con-

figuration and Power Interface (ACPI) in operating systems like Windows2000 use

such power management schemes[112]. In [22], the authors introduce an OS-based

power management scheme called Joule-watchers that throttles low priority thread

to maintain the average power consumption below a threshold. This is a solution

that is dependent on the OS being aware of the pre-determined priority of threads.

Moreover, the authors found that excessive throttling might lead to more energy con-

sumption due to an increase in cache misses. Such an execution-environment does

not map directly to an HPC system where the applications are usually executed on

dedicated nodes with threads of equal priority with OS-oblivious energy signatures.

3.2.3 DVFS Based Efforts

Past efforts towards understanding and managing the power consumption trends of

applications have been significant. One of the static-based approaches for manag-

ing power consumption by processes is for the compiler to evaluate a program and

determine sections within the code where the energy consumption profile changes.

19

This knowledge in the form of power management hints can then be conveyed to the

runtime to adjust the voltage/frequency scaling of applications[3]. Korthikanti and

Agha[95] study the power consumption behavior of shared memory architectures

while handling applications with different problem sizes. Li et al.[104] use DCT

and DVFS techniques to study the opportunities of reducing power consumption of

hybrid MPI-OpenMP applications.

There has been a great deal of research in managing the energy consumption of

applications. Most of these efforts target energy-based optimizations for applications

running in a shared memory environment. The maximum impact on the energy sav-

ings in such platforms are governed by the avoidance of penalty due to cache misses

and memory-intensive operations. For example, Rahman et al.[127] propose reduc-

ing power consumption in scientific applications by decreasing the number of active

threads and fine-tuning cache blocking and loop unrolling factors to achieve efficient

execution. Research efforts show that power bottlenecks are common in case of “dis-

agreements” between the application activity and the system power consumption and

quite often the source of inefficiency can be tracked down to the use of power-hungry

busy-waits[5, 6, 30].

Barreda et al.[18] discuss work on a Framework for a posteriori detection of power-

sinks in the form of discrepancies between the application activity and the CPU

C-states. Choi et al.[40] explore opportunities of using DVFS in case of memory

intensive phases of applications. Their approach relies on prediction of this intensity

by dynamically measuring the ratio of off-chip versus on-chip accesses.

The work closest to our focus are those by Kandemir et al.[88], Vishnu et al.[153],

20

and Venkatesh et al.[151]. Kandemir et al.[88] discuss static-based techniques like

traditional data flow analysis and polyhedral algebra to detect redundant communi-

cations and unwanted synchronizations in HPF-like languages. Vishnu et al.[153] ex-

ploit voltage frequency scaling and interrupt-based methods to achieve energy savings

during remote memory operations. They implement this technique in ARMCI[118].

The energy savings discussed in this work only target individual data transfer opera-

tions. Venkatesh et al.[151] discuss techniques of energy measurement of MPI-based

data transfers using Intel’s RAPL scheme. Energy readings of point-to-point and

collective operations are discussed. However, these efforts do not take into account

the impact of multiple factors across the hardware and software stack. As we discuss

in this work, the cost of an independent data transfer construct is dependent on

its semantics and the data-access pattern it participates in. The following sections

discuss a number of similar factors and present analysis of empirical results that are

significantly impacted by them.

21

Chapter 4

Debunking the ‘Race-to-Halt’

Approach

The faster you run your code, more energy efficient it gets

4.1 Frequency scaling at job level

To test whether this claim holds true, a number of benchmarks from the NAS Parallel

Test suite were selected and executed across multiple compute nodes all operating

at a same core frequency. The CPU frequency chosen was the lowest operating point

supported by the model. The execution time and total energy consumed by all the

nodes (sockets and memory combined) were monitored. The same experiment was

repeated with multiple higher frequencies including the highest operating point (also

called, the non-turbo base frequency) supported by the model. Figure 4.1 depicts

these results. As shown, the y-axes of the plots correspond to a percentage drop in

22

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12

Pe
rc

e
n
t

re
d
u
ct

io
n
 i
n
 T

im
e

P-state

SP_MZ_D-360
BT_MZ_D-360

LU_MZ_D-16
SP_D-441
CG_D-512

AMG2013-64

(a) Percentage drop in execution time

-40

-20

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12

Pe
rc

e
n
t

re
d
u
ct

io
n
 i
n
 E

n
e
rg

y

P-state

SP_MZ_D-360
BT_MZ_D-360

LU_MZ_D-16
SP_D-441
CG_D-512

AMG2013-64

(b) Percentage drop in energy consumption

-20

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12

Pe
rc

e
n
t

re
d
u
ct

io
n
 i
n
 E

D
P

P-state

SP_MZ_D-360
BT_MZ_D-360

LU_MZ_D-16
SP_D-441
CG_D-512

AMG2013-64

(c) Percentage drop in EDP

-40

-20

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12

Pe
rc

e
n
t

re
d
u
ct

io
n
 i
n
 E

2
D

P

P-state

SP_MZ_D-360
BT_MZ_D-360

LU_MZ_D-16
SP_D-441
CG_D-512

AMG2013-64

(d) Percentage drop in E2DP

Figure 4.1: Percentage drop in efficiency metric with respect to lowest operating frequency

each of the 4 efficiency metrics - execution time, total energy consumption, EDP ,

and E2DP , with respect to the lowest operating frequency.

From the plots, we observe that almost all applications reach their peak perfor-

mance by 2.2GHz. The plots corresponding to time savings reaches a plateau beyond

this point. Application benchmarks like like LU-MZ, BT-MZ, AMG-2013, and SP-

MZ attain greater than 20% reduction in execution time on increasing the frequency

from 1.2GHz to 2.6GHz (more than 2X). The time savings for other benchmarks

like 3D-FFT, CG, and SP is not greater 10% and are relatively less affected. In

23

Figure 4.2: A box plot (or whisker diagram) depicting the distribution of total polling time across
all processes operating at varying CPU frequencies. While in statistic analysis, the small circles
represent outliers in a data set, the presence of these points in the data above suggest high variation
in CPU time spent within polling-based constructs.

terms of energy savings, we observe that most applications have a negative trend in-

dicating an increase in the energy consumption. The net effect on energy efficiency,

captured by the metric EDP and E2DP , clearly indicates that applications that do

not gain much in performance due to CPU scaling have the potential of facing a sig-

nificant drop in energy efficiency. These results show that the race-to-halt strategy

is not always the best approach for attaining maximum energy efficiency in HPC

Applications.

24

CPU cycles spent polling for network events are obvious energy sinks and con-

tribute to a drop in the utilization of system in terms of time and energy budget.

Based on the observations from Figure 4.1, it is evident that beyond a certain oper-

ating point, there is no significant improvement in time and energy utilization. In

order to understand whether this lack of improvement in efficiency can be attributed

to the time spent within slack periods, the time spent within slack periods for a

subset of these benchmarks have been plotted in Figure 4.2. Due to the irregular

behavior of these applications, it was observed that there is a high variation in the

time spent by all the processes. Therefore, the metric has been represented as box

plots; one for each operating frequency at which an application was executed.

In Figure 4.2, we observe that an increase in the operating frequency does not

always lead to a drop in the execution time. For example in case of BT-MZ, an

increase in the frequency beyond 2.2GHz has very negligible effect on the value of the

median slack time. This behavior is in alignment with those depicted in Figure 4.1.

4.2 Frequency scaling at process level

Commonly used job schedulers like SLURM and ALPS provide the capability of

changing the frequency while launching a job step. However, the current design allows

the assignment of a single user-specified P-state to all the processes participating in

that job-step. To the best of our knowledge, there has been no empirical evidence

justifying a need for operating subset of processes at different frequencies than the

rest participating in the same job-step.

25

(a) Varying polling-time within MPI Waitall

(b) Assignment of CPU frequencies to clusters of processes

Figure 4.3: Distribution of time spent polling within MPI Waitall by every MPI rank during the
parallel execution of the BT-MZ benchmark with 360 processes

26

Figure 4.4: Snapshot of Vampir Trace of the profile trace of the MPI version of BT-MZ benchmark

27

This indicates a missed opportunity for applications with irregular load distribu-

tion across processes. As a case study, we inspect the Block Tridiagonal Multizone

Benchmark (BT-MZ). Figure 4.4 shows a snapshot of a Vampir trace generated by

profiling a parallel run of the benchmark, across 64 processes. The blue boxes cor-

respond to compute-intensive phases and the green ones are map to network polling

as part of the function MPI Waitall. We observe that there is a non-uniform distri-

bution of the polling time across the processes. This variation in the polling time

is plotted in Figure 4.3a using data collected by the parallel execution of the same

benchmark with 360 processes.

The research question at this point is whether there is a way to reduce the energy

consumption of the application by reducing the time spent within the “polling-

phase”. Another question is whether it is possible to achieve energy savings without

significant drop in execution time. To answer these, a visual inspection of the plot

in Figure 4.3a shows that the 360 data points can be grouped into multiple clusters

based on the relative polling time. One naive approach of tackling this question is to

alter the operating frequency of all the processes with the expectation that varying

the number of cycles spent within the polling and computation phases may affect

the energy savings. This gives us three possible frequency setting modes:

• Standard Setting: Operate all MPI ranks at the highest frequency (also called

the base frequency). This is the default setting in most HPC machines. For

this workload, this should enable a reduction in execution time of processes

with high computational workload.

28

Figure 4.5: Polling time for all processes with different frequency operating modes

• Reduced Frequency: Operate all MPI ranks at a low frequency. This enables a

reduction in the number of cycles spent polling by a give process.

• Hybrid Mode: Operate specific MPI ranks with different frequencies. This en-

ables a reduction of the operating frequencies of those MPI ranks that spend

more time polling and likewise increase the frequency for those that spend less

time in comparison. The rationale behind this hybrid approach is that pro-

cesses with higher polling time correspond to code paths that have a lesser

computation load and hence wait longer at synchronizing points. Similarly,

processes with lesser polling time have higher compute workload. This can

be observed from Figure 4.4. The assignment of CPU frequencies to different

cluster of MPI ranks is illustrated in Figure 4.3b.

29

Figure 4.5 depicts the time spent within the polling phase for all the MPI pro-

cesses, when executed using each of the operating modes listed above. We see that

using the Hybrid approach (blue dots) lead to significant drop in polling-time for

many processes. The table in the figure lists the reduction in execution time and

energy consumption for the “Reduce Frequency” and the “Hybrid” modes, with re-

spect to the “Standard Setting”. We see that using that using the Hybrid mode,

i.e., selectively choosing different operating frequencies for different processes helps

achieve high energy savings (up to 10.6% in this case) with negligible losses in execu-

tion time (about 0.6% in this case). On the other hand, setting on the processes to

the a single fixed frequency might lead to significant degradation of execution time

(up to 27% with the “Reduced Frequency” mode).

4.3 Frequency scaling at phase level

For a give application phase, energy efficient execution is not always guaranteed by

running the application at the highest possible CPU frequency. This section provides

empirical evidence that highlights this claim. As discussed before, in order to reduce

the energy consumption, the most common approach is to reduce the number of CPU

cycles that are underutilized by an application. This can typically be mapped to a

pipeline stall cycles. This is true for memory intensive applications.

Figures 4.6 and 4.7 show the impact of scaling the frequency of CPU cores ser-

vicing compute intensive and a memory intensive kernels respectively. The X-axis

plots the P-state corresponding to the operating frequency and the Y-axis plots the

execution time, energy consumption, and average power consumption.

30

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 2 4 6 8 10 12 14

T
im

e
(s

ec
)

P-state

(a) Execution Time

 370

 380

 390

 400

 410

 420

 430

 440

 450

 460

 470

 2 4 6 8 10 12 14

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

P-state

(b) Energy Consumption

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 2 4 6 8 10 12 14

P
ow

er
 C

on
su

m
pt

io
n

(W
)

P-state

(c) Power Consumption

Figure 4.6: Impact of frequency scaling on the behavior of a compute intensive kernel

From Figure 4.6a, we observe that increasing the frequency (decreasing the P-

state) of the kernel leads to a drop in the execution time. For a computation-intensive

kernel, this is expected because of the increase in the instruction per count. It can

also be observed that the energy consumption of the kernel decreases with a drop

in the P-state (rise in frequency). However, it must be noted than there isn’t a

significant difference in energy consumption when the P-state drops below P-9. In

fact, there is a rise in the energy consumption when the CPU cores switch from P-2 to

P-1 (Figure 4.6b). Another observation is that the drop in the energy consumption

is not proportional to the drop in the execution time. This is evident from the

power-curve Figure 4.6c.

31

 14

 14.5

 15

 15.5

 16

 16.5

 17

 2 4 6 8 10 12 14

T
im

e
(s

ec
)

P-state

(a) Execution Time

 2150

 2200

 2250

 2300

 2350

 2400

 2450

 2500

 2 4 6 8 10 12 14

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

P-state

(b) Energy Consumption

 135

 140

 145

 150

 155

 160

 165

 170

 175

 2 4 6 8 10 12 14

P
ow

er
 C

on
su

m
pt

io
n

(W
)

P-state

(c) Power Consumption

Figure 4.7: Impact of frequency scaling on the behavior of STREAM TRIAD, a memory intensive
kernel

From the above results, we learn that executing a given phase of an application

at the highest frequency does not always lead to the lowest energy consumption.

In fact, for memory intensive kernels, higher energy efficiency may be achieved by

executing a kernel at a lower CPU frequency.

4.4 Chapter Summary

This chapter investigates the feasibility of using “race-to-halt” approaches for exe-

cuting large scale distributed applications. Empirical results were discussed which

analyzes these applications at three different levels of granularity - job level, process

32

level, and application phase level. For each level, it was shown that executing an

application at the highest supported CPU frequency (“race-to-halt” approach) does

not always lead to an energy-efficient solution.

33

Chapter 5

Energy Costs Associated with

Distributed-Memory Programming

Shared memory models are characterized by implicit data transfers that are bounded

by the distance between the CPU and the different levels of the memory hierarchy.

Such data transfers include intra-node cache and memory accesses that consume very

low energy, typically of the order of a few hundred pico Joules[38]. In contrast, inter-

process communication patterns in PGAS models are initiated by the programmer

and bounded by a number of factors internal and external to a single compute node.

OpenSHMEM decouples the communication and synchronization operations[60].

A process may progress in its execution of code segments while being oblivious to

communication operations initiated by other processes. In other words, processes

are permitted to have an inconsistent view of the globally shared memory during a

phase of an application.

34

Figure 5.1: Factors impacting the energy and power consumption across the hardware and software
stack

In this chapter, we highlight the notion that synchronization and data movement

constructs within a distributed programming model have a potential of affecting the

total energy consumption of OpenSHMEM applications. Costs in terms of execution

time, CPU energy, and DRAM energy is presented as a motivation towards the need

for reducing their impact on energy profiles of applications.

The following sections discuss the different components of communication and

synchronization constructs in OpenSHMEM.

35

5.1 Communication Costs

The OpenSHMEM memory model permits RDMA operations. Our studies indicate

that during the progress of such operations, there is a significant impact on the power

consumed by the CPU and DRAM due to multiple factors including the design of

the data transfer patterns within an application, the design of the communication

protocols within a middleware, the architectural constraints laid by the interconnect

solutions, and also the levels of memory hierarchy within a compute node.

Figure 5.1 lists many such factors throughout the hardware and software stack.

5.2 Synchronization Costs

PGAS implementations like OpenSHMEM stand out with respect to their memory

consistency model.

To ensure sequential consistency and an ordering of remote data transfer opera-

tions, OpenSHMEM applications may use synchronizing constructs like shmem quiet(),

shmem fence(), and shmem barrier all(). The impact of such barriers on the perfor-

mance and scalability of distributed applications is well known[111].

The Issue For applications in which the work distribution among multiple pro-

cesses is non-uniform, using synchronizing constructs1 result in a subset of processes

waiting for varying intervals of time without making any progress. Applications

become bounded by the speed of the slowest process.

1In the rest of the text, we use the words ‘synchronizing construct’ and ‘barriers’ interchangeably.

36

Barrier resolution

Ensure completion of
initiated transfers

"Slack": Waiting for
other processes to
join the barrier

Time

PE 0

PE 1

Figure 5.2: Excess slack within fast processes corresponds to energy consumption without any
application progress.

The impact on scalability due to such load imbalance has been well explored in

studies like[111]. In addition to the impact on performance, the lack of progress also

leads to CPU cycles being wasted, which manifests into a rise in the total energy

consumption by the applications. The excess CPU cycles invested can be treated

as an additional slack that a fast process can exploit before meeting the deadline

imposed upon by the speed of the slowest process. This notion of a ‘slack’ is depicted

in Figure 5.2.

A Note on Implementation of Barriers In an OpenSHMEM program, the

factors contributing to the time spent executing a synchronization construct maybe

37

attributed to a number of factors governed by the communication and execution

model of the programming model. These include:

1. Ensure that all remote read/write operations have completed on the destination

process.

2. Ensure that local user buffers that were used for remote read/write operations

can be reused.

3. Ensure that all the synchronizing processes have a consistent view of the local

shared-memory.

4. Ensure that all the processes reach a synchronization point within their execu-

tion paths.

Common implementations of a barrier incorporate the use of shared semaphores

which are subjected to repeated atomic polling by each process. The purpose of this

polling is to keep track of the state of the semaphore objects. These are typically

globally shared so that they remain accessible by other processes2. The polling is

always atomic in nature to ensure that only one process can test or set it at any

point in time. Furthermore, this polling is typically performed directly over the

copy of the semaphore object within the remotely accessible memory, thus avoiding

accesses to stale cached versions. This in turn increases the pressure on the memory.

Additionally, the polling is continuous, to ensure that there is no significant delay

2If RDMA is supported by the interconnect, the overhead of the management of semaphores
reduces when they are remotely accessible

38

between the time each process signals entering the barrier and the time this event is

detected.

In this work, we focus on reducing the energy cost invested by a process that is

enforced by the execution model to wait for all the processes to reach the barrier

point before proceeding along its execution path.

5.3 Computation Costs

The energy costs associated with computational kernels correspond to execution of

the set of instructions supported by the target processor architecture. The actual

value of the energy consumption by an instruction depends on a large number of

variables including the arrangement and count of transistors servicing the transfer,

the on-chip components used to transfer the instruction, caching effects, pipeline

stalls, etc[11, 155, 101].

There have been multiple research efforts that have proposed extensions to ex-

isting Instruction Set Architectures (ISA) that enable the software stack to leverage

energy saving opportunities on a given platform[12, 65, 161, 13].

5.4 Case Study: a CORAL Benchmark

5.4.1 LSMS

LSMS or Locally Self-consistent Multiple Scattering is a chemistry-based application

and is part of the CORAL benchmark-suite. When scaled beyond two processes,

the communication pattern follows a two-stage master/worker behavior. This is

illustrated in Figure5.3. As shown, all processes, except the root, are sub-divided

39

WL-LSMS
Master

PE

Linear
Broadcast

of application
parameters

Scope of this work

Figure 5.3: Two-stage communication pattern within WL-LSMS

into smaller groups. Each group has its own master which in turn communicates

with the root process. Within a group, each master transfers a set of parameters to

the other worker processes that belong to the same group.

In order to study the opportunities of energy savings during communication and

synchronization, the application was profiled using VampirTrace and the collected

traces were analyzed using Vampir.

5.4.2 Communication Phases

Consider Figure 5.4, which depicts the communication-intensive phase of the appli-

cation between the master and the worker processes.

To communicate the parameters, a programmer may choose to design the data

movement pattern following any of the access patterns discussed in Chapter 8. The

interaction between the root, master and other worker processes is illustrated as a

line diagram in Figure 5.6.

40

Figure 5.4: Visualization of communication pattern within LSMS, as generated by the Vampir
visualizer.

41

Figure 5.5: Visualization of synchronization behavior within LSMS, as generated by the Vampir
visualizer.

42

Root
process

Master
process

Master
process

Worker Processes Worker Processes

Figure 5.6: Interaction between root, master, and worker processes

As the application is scaled to higher process counts, the number of workers

communicating with a given master increases. Also, the number of iterations of the

data transfer phase also increases. The energy costs of such communication-intensive

phases can be reduced by altering the data movement pattern.

5.4.3 Synchronizing Phases

Consider Figure 5.5 which depicts the load imbalance between the master and the

worker processes during a computation phase of the application.

As the application is scaled to higher process counts, the excess time invested

waiting for slower processes to reach the synchronization barrier corresponds to excess

energy loss. Ensuring that all the processes reach the barrier at the same time

provides opportunities to nullify this energy cost.

43

Energy consumed
without any

application progress

Global barrier

Global barrier

Load imbalance among
multiple processes

Figure 5.7: Load imbalance among processes lead to extra energy invested waiting for the slower
processes to catch up.

5.5 Chapter Summary

This chapter presents an overview of some of the cost factors that affect the energy

and power consumption behavior of processes while participating in synchronizing

global barriers and remote data transfers.

We observed that the energy and power cost is dependent on the time spent

within barriers and the number of processes participating in the barriers.

Additionally, our study indicates that the energy and power cost incurred by

a system while servicing remote data transfers are dependent on a number of fac-

tors characterizing the underlying the hardware and software stack. These include

the sizes of the memory hierarchy, design of the communication protocols, and the

capabilities of the interconnect solutions.

44

The impact of these factors depend on the size of the total data to be transferred

within a communication phase of an application. In addition, the number of data

transfers initiated to transfer this load also impact the energy and power consumption

behavior of OpenSHMEM-like PGAS applications.

45

Chapter 6

Communication: Fragment Count

and Payload Sizes

We identify two application characteristics to analyze the communication patterns

in OpenSHMEM programs:

• Total size of the data to be transferred

This factor is governed by the problem size of the application and granularity

of parallelism chosen1.

• Number of explicit calls (or fragments) used to transfer the data

This factor is dependent on the nature of the design of the application by the

programmer.

1The granularity of parallelism is typically determined by the number of processes participating
in the data/task distribution.

46

shmem_barrier_all()

shmem_putmem()

PE waiting in a barrier

PE suspended

shmem_barrier_all()

PE 0 PE 1

Figure 6.1: Line diagram for microbenchmark used to detect the impact of data sizes and fragments

The study of the effects of inter-node factors on the energy profile of remote data

transfers is outside the scope of this work. Nevertheless, in order to account for their

impact, we abstract their effects in terms of the net achievable bandwidth. Figure 6.3

illustrates this constraint with respect to the two communication-based parameters

discussed above. We observe that for any given data transfer size, maximum band-

width is achievable with minimum amount of fragmentation.

The impact of the intra-node factors on the energy and power cost incurred in

Sections 6.1 and 6.2, respectively.

This section discusses the impact of the use of explicit data transfer routines

on the energy cost of OpenSHMEM applications. While using these routines, a

programmer may decide to transfer the program data in multiple fragments based

on the design of an application. While this practice makes it easier to align the

47

Energy(J)
#Fragments: 1-2097152

 1

3

2

1

0
2

4

 3

2
7

6
8

 1

0
4

8
5

7
6

Total Message Size(Bytes) [log-scale]

 1

 32

 1024

 32768

 1048576
#

Fr
a
g
m

e
n
ts

 [
lo

g
-s

ca
le

]

 0.001

 0.01

 0.1

 1

 10

 100

E
n
e
rg

y(J)[lo
g
-sca

le
]

#Total Instructions
#Fragments: 1-2097152

 1

3

2

1

0
2

4

 3

2
7

6
8

 1

0
4

8
5

7
6

Total Message Size(Bytes) [log-scale]

 1

 32

 1024

 32768

 1048576

#
Fr

a
g
m

e
n
ts

 [
lo

g
-s

ca
le

]

 100000

 1e+06

 1e+07

 1e+08

#
To

ta
l In

stru
ctio

n
s[lo

g
-sca

le
]

Energy(J)
#Fragments: 1-1024 (detailed view)

 1

3

2

1

0
2

4

 3

2
7

6
8

 1

0
4

8
5

7
6

Total Message Size(Bytes) [log-scale]

 1

 4

 16

 64

 256

 1024

#
Fr

a
g
m

e
n
ts

 [
lo

g
-s

ca
le

]

 0.001

 0.01

 0.1

E
n
e
rg

y(J)[lo
g
-sca

le
]

#Total Instructions
#Fragments: 1-1024 (detailed view)

 1

3

2

1

0
2

4

 3

2
7

6
8

 1

0
4

8
5

7
6

Total Message Size(Bytes) [log-scale]

 1

 4

 16

 64

 256

 1024

#
Fr

a
g
m

e
n
ts

 [
lo

g
-s

ca
le

]

 10000

 100000

 1e+06

 1e+07

#
To

ta
l In

stru
ctio

n
s[lo

g
-sca

le
]

Figure 6.2: Relationship between energy consumption by cores(left) and the total number of in-
structions executed(right). Top: Results for cases where: Fragments ∈ [1, 2097152]. Bottom:
Results for cases where: Fragments ∈ [1, 1024]

semantics of an algorithm to an implementing program, our studies indicate that

such practices come at a significant cost.

6.1 Energy-Consumption Observations

Figure 6.2 illustrates the energy consumption by the CPU and the DRAM with

respect to the different message sizes of data transferred (in bytes along X-axis)

and the number of fragments used to transfer the total data (along Y-axis). The

noteworthy observations are:

• Energy consumed holds a correlation to the number of instructions executed.

Since an increase in the number of data transfers initiated implies a rise in the

48

 -5
 0

 5
 10

 15
 20

 0
 5

 10
 15

 20

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

B
a
n
d

w
id

th
 (

B
yt

e
s/

se
c)

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

B
yt

e
s/

se
c

log Fragments
(base2)

log Bytes
(base2)

B
a
n
d

w
id

th
 (

B
yt

e
s/

se
c)

Figure 6.3: The impact on the peak achievable bandwidth with respect to: (i) size of the total data
to be transferred; (ii) number of fragments into which the transfer is divided into

number of instructions executed, the energy consumption increases with rise

in fragmentation.

• For large bulk transfers with a fixed message size, the energy consumed remains

independent of the initial rise in fragmentation.

• Using a constant number of fragments, the energy consumed in servicing the

transfer of small to medium sized messages (2 to 65536 bytes) is independent

of the total size of the data transferred. This behavior can also be observed in

terms of the spectrum of the achievable bandwidth shown in Figure6.3. This

behavior can be explained by the fact that for such small-sized messages, the

cost in managing the data buffers for remote transfers overshadows the actual

movement of the data. This cost is independent of the message size and hence

leads to a steady bandwidth and energy consumption.

• For large bulk transfers (>65536 bytes), the energy consumed increases with

the size of the data to be transferred. This can be attributed to cost incurred

49

(I) Cores Power (Watts)

(A)

(B) (C)

 1

3
2

1

0
2

4

 3
2

7
6

8

 1

0
4

8
5

7
6

Total Message Size (Bytes)[Log-scale]

 1

 32

 1024

 32768

 1048576

#
Fr

a
g

m
e
n
ts

[L
o
g
-s

ca
le

]

 15.8673

 16.0707

 16.2767

 16.4854

 16.6967

Po
w

e
r(W

)[Lo
g

-sca
le

]

(II) DRAM Power (Watts)

(A)

(B) (C)

 1

3
2

1

0
2

4

 3
2

7
6

8

 1

0
4

8
5

7
6

Total Message Size (Bytes)[Log-scale]

 1

 32

 1024

 32768

 1048576

#
Fr

a
g

m
e
n
ts

[L
o
g
-s

ca
le

]

 7.40025

 8.14027

 8.9543

 9.84973

Po
w

e
r(W

)[Lo
g

-sca
le

]

(III) L3 (shared) Cache Misses

(A)

(B) (C)

 1

3
2

1

0
2

4

 3
2

7
6

8

 1

0
4

8
5

7
6

Total Message Size (Bytes)[Log-scale]

 1

 32

 1024

 32768

 1048576

#
Fr

a
g

m
e
n
ts

[L
o
g
-s

ca
le

]

 0.1

 1

 10

 100

 1000

#
C

a
ch

e
-M

isse
s[Lo

g
-sca

le
]

(IV) Total Power(Watts)

(A)

(B) (C)

 1

3
2

1

0
2

4

 3
2

7
6

8

 1

0
4

8
5

7
6

Total Message Size (Bytes)[Log-scale]

 1

 32

 1024

 32768

 1048576

#
Fr

a
g

m
e
n
ts

[L
o
g
-s

ca
le

]

 23.2252

 25.5477

Po
w

e
r(W

)[Lo
g

-sca
le

]

Figure 6.4: (I,II,IV)Power consumed by CPU, DRAM, total system (III) Total L3 cache misses.
The various distinct levels of power are represented as:
(A)Small payload sized(up to 2KB) transfers lead to less power consumption by the cores and
DRAM;
(B)Medium to large message sizes(4K and beyond) imply accesses of large memory regions and this
impacts power consumption;
(C)Large payload sizes with minimum fragmentation leads to higher power consumption by the
cores. The underlying NIC is generally responsible for chunking such large transfers, the effect on
which is not accounted for by the cores.

in handling data buffers. For large messages, this becomes dependent on the

actual size of data that is being transferred.

6.2 Power-Consumption Observations

Figures 6.4 depicts the power consumption by the CPU cores and the DRAM for

different message sizes and number of fragments.

• For small data transfer sizes, the power consumed by the CPU (16 Watts) and

the DRAM (7 Watts) is low.

50

• The power consumed by the CPU during transfer of large bulk data payloads

(16.2 Watts) is marginally more (1.25%) than that consumed during small

data transfers.

• The power consumed by the DRAM during transfer of large bulk data payloads

(9 Watts) is significantly more (22%) than that consumed during small data

transfers.

• With very low fragmentation, the CPU consumes more power than with frag-

mented data payload.

• As the message size is increased (along x-axis), the transition of the change in

the power consumption behavior by the CPU appears to hold a correlation to

the sizes of the intermediate levels of the cache hierarchy. The transition levels

correspond to the sizes of the L1 and L2 caches - 32KB and 256KB respectively.

Since the caches were flushed after every set of readings, one can speculate that

every cache miss in L1 and L2 adds on to the memory pressure on the shared

L3 cache thereby resulting in a proportional rise in cache misses. This effect

can be observed in Figure 6.4(III), which illustrates the number of L3 cache

misses.

• From Figure 6.4, the average power consumption by the system (CPU+DRAM)

while servicing large bulk message sizes (28 Watts) is 21.73% higher than that

consumed by small message sizes (23 Watts).

51

Figure 6.5: The number of raw Infiniband Packets transmitted / received by the NIC during a
point-to-point data transfer:(i) Number of packets transmitted by the NIC servicing the sender
process; (ii) Number of packets transmitted by the NIC servicing the receiver process; (iii) number
of packets on-the-fly transmitted between the two nodes during the lifetime of the transfer

52

6.3 Network-Card behavior

The energy and power consumption discussed above encompass the behavior of the

CPU and the DRAM. As of this writing, to the best of our knowledge, there exists

a lack of infrastructure that is capable of capturing the energy/power consumption

by the physical layer in general, especially the network card. To circumvent this

lack of technology, we study the behavior of the NIC used in our experiments, we

studied the number of raw packets transmitted and received by its endpoints. The

assumption behind this approach is that the number of packets transmitted holds

a direct correlation to the energy consumed by the card. The results are plotted in

Figure 6.5. It can be observed that indeed for each combination of payload size and

fragment count, the number of raw packets transmitted and received is proportional

to the execution time of the data transfer.

6.4 Chapter Summary

Parallel applications that rely on data distribution as a means of achieving paral-

lelism, are typically characterized with inter-process communication of large amount

of data. The overhead in the movement of data in distributed systems may over-

shadow any achievable performance gain due to the reduction of the problem size.

OpenSHMEM-like PGAS implementations are characterized by explicit data trans-

fers as part of the application design. The performance of such transfers in a dis-

tributed environment require the participation of not only the CPU and the memory

hierarchy but also the interconnect solutions. As a result, the contribution of such

transfers to the overall power and energy consumption of large scale OpenSHMEM

53

applications should not be ignored while evaluating the power characteristics of dis-

tributed programming models.

From the view of an OpenSHMEM programmer, the controllable factors that

affect the bandwidth of a communication kernel include the total size of data to

be transferred across the network and the number of fragments (or explicit data

transfer calls) that are used to perform this transfer. We evaluated the power and

energy consumption by the cores and the DRAM to study the effects of performing

transfers of different payload sizes and different number of fragments. We observed

that energy consumption increases for transfer of large message sizes. Additionally,

for a fixed-data payload, an increase in fragmentation leads to an increase in the

energy consumed. This motivates the need for aggregation of small-sized messages

when the data transfer size covered by the problem size is large.

For more details about the topics discussed in this Chapter, the interested reader

is directed to the literature documented by Jana et al. under [84].

54

Chapter 7

Communication: Network-Stack

Design

This work is an extension of our previous experience of studying the impact of one-

sided communication in PGAS models (OpenSHMEM) [84]. We had learned that

managing small-sized data transfers on RDMA-capable networks are more energy

efficient than handling large bulk transfers. In this work, we present empirical evi-

dence highlighting the contribution of design factors within the software stack to the

power consumption by the underlying system. Our takeaway from this study is that

the protocols used to implement such interfaces, play a significant role in impacting

its power-cost. In addition, since the design of communication libraries are tuned to

specific interconnect solutions, the choice of the transport layer adopted for servicing

data transfers plays an equally significant role.

55

In Section 7.1, we discuss the impact of the above factors on the behavior of two-

sided communication interfaces within MPI, the de facto standard for distributed

memory model. This is an extension of past work on analyzing the impact of data-

transfer characteristics on one-sided communication interfaces[84]. This is followed

by a description of our observations of the impact on power consumption by CPU

cores and the DRAM while relying on Ethernet (via traditional TCP) and Infiniband

(via OFED or OpenFabrics Enterprise Distribution[122]) fabrics (Section 7.2). All of

these are discussed with respect to the implementation of two basic message-passing

schemes - the Eager and Rendezvous protocols. Finally in Section 7.2, we summarize

our findings by discussing the total power efficiency achievable for each of the above

configurations. We hope this work motivates the practice of taking power-metrics

into consideration while designing middleware solutions for Exascale-era machines.

7.1 Factors affecting Power and Energy profile of remote

data transfers

Two-sided data-transfer in distributed-memory models such as MPI, sockets, etc.,

require the active participation of both the sender and the receiver of the data. The

impact on the achievable latency and bandwidth of such transfers depend on the

design of the transport layer (and the associated interconnect) and the data transfer

protocol. As part of this work, we learned that the impact of these factors on the

energy metrics is very important.

56

Copy source buffer
to registered memory

MPI_Send() posted MPI_Recv() posted

Memory copy to
destination buffer from
registered local memory

ACK

Packets transfer

Idling, no contribution to application progress (CPU)

Memory-management, no contribution to application progress(CPU, DRAM)

Network transfer, contributes to application progress (NIC, DRAM)

Regular progress of application (CPU, DRAM)

Figure 7.1: Eager Protocol

7.1.1 Choice of transport layer and the associated interconnect

If the target platform relies on an OS-based TCP protocol for servicing data trans-

fers, CPU cores undergo multiple switches between user and supervisor operating

modes. In addition, relying on Ethernet-based fabric has the potential of degrading

the achievable efficiency both in performance and energy consumption (as discussed

later). To avoid this, a communication library may exploit kernel-bypass mechanisms

and RDMA-based capabilities of the OFED stack on top of modern interconnects

like InfiniBand, etc.

7.1.2 Design of data-transfer protocols

Data transfers within message-passing libraries are based on two well-established

paradigms - the eager and rendezvous protocols. The primary phases involved in

57

MPI_Send() posted MPI_Recv() posted

CTS

RTS

CPU Idling, no contribution to application progress (CPU)

RTS- CTS handshake signals, no contribution to application progress(CPU, NIC)

Network transfer, contributes to application progress (NIC, DRAM)

Regular progress of application (CPU, DRAM)

Transfer complete

Data transfer

Figure 7.2: Sequence Diagrams for Rendezvous Protocol

these protocols are depicted in the line diagrams in Figures 7.1 and 7.2.

Rendezvous protocols incorporate RTS-CTS1 handshaking to ensure that the

sender waits for an explicit request from the receiver before servicing the actual

transfer. Such an exchange ensures that the receiver’s buffer is ready for being over-

written with the incoming payload. This method has proven to be beneficial for

large bulk transfers since the overhead of the handshaking operation gets eclipsed by

the gain in the throughput of the end-to-end data movement[19]. For small message

sizes, however the additional round trip proves expensive.

Eager protocols help mitigate the above overhead by reducing the time and energy

spent by the sender waiting for the receiver to post the destination buffer address.

1Request-To-Send / Clear-To-Send two-sided handshake signal

58

The sender may choose to start transferring its data to a pre-allocated buffer with-

out waiting for the receiver to send a CTS signal. This is easily facilitated by an

underlying interconnect solution that supports RDMA-based transfers. Once the

receiver calls MPI Recv(), it can copy-out the data from this pre-allocated buffer.

Not surprisingly, the impact of latency of such techniques is bounded by the costs of

memory registration and the additional in-memory copies both at the sender’s and

the receiver’s end.

7.2 Empirical Observation and Analysis

In this section, we present our observations of the impact on the energy and power

consumption by the CPU cores and memory due to the factors discussed in the

previous section.

7.2.1 Using TCP over Ethernet

Using Rendezvous protocol Consider the power consumption by the CPU cores

servicing the sender process (Figure 7.3a(I)). While handling small data-payloads

(< 1KB) the CPU cores suffer a high power cost (region A). The reason for this may

be attributed to the very low latency of the operation, the frequent context switches

between the operating modes (see Section 7.1) and the high overhead incurred during

the handshake operations. This cost reduces for large bulk transfers (> 32KB) due to

a rise in the latency of the data transfer and a drop in the rate of active participation

by the CPU cores (region B). Dividing such bulk buffers into smaller fragments again

leads to a rise in the cost (region C). However, this rise in power-cost in limited due to

high latency that arises with heavy fragmentation. Due to this, the inverse relation

59

(I)TCP+RENDEZVOUS: Cores Power (W)

(A)

(B) (C)

(D)

 1

3

2

1

0
2

4

 3

2
7

6
8

 1

0
4

8
5

7
6

Total Message Size (Bytes)[Log-scale]

 1

 32

 1024

 32768

 1048576
#

Fr
a
g
m

e
n
ts

[L
o
g
-s

ca
le

]

 17.1081

 17.2503

 17.3937

 17.5383

 17.6841

 17.8311

 17.9793

Po
w

e
r(W

)[Lo
g
-sca

le
]

(II)OPENIB+RENDEZVOUS: Cores Power (Watts)

(A)

(B) (C)

 1

3

2

1

0
2

4

 3

2
7

6
8

 1

0
4

8
5

7
6

Total Message Size (Bytes)[Log-scale]

 16.0117

 16.0781

 16.1448

 16.2118

 16.279

 16.3466

 16.4144

 16.4825

Po
w

e
r(W

)[Lo
g
-sca

le
]

(III)TCP+EAGER: Cores Power (Watts)

(A)

(B) (C)

 1

3

2

1

0
2

4

 3

2
7

6
8

 1

0
4

8
5

7
6

Total Message Size (Bytes)[Log-scale]

 1

 32

 1024

 32768

 1048576

#
Fr

a
g
m

e
n
ts

[L
o
g
-s

ca
le

]

 15.7488

 15.8797

 16.0117

 16.1448

 16.279

 16.4144

 16.5508

 16.6884 Po
w

e
r(W

)[Lo
g
-sca

le
]

(IV)OPENIB+EAGER: Cores Power (Watts)

(A)

(B) (C)

 1

3

2

1

0
2

4

 3

2
7

6
8

 1

0
4

8
5

7
6

Total Message Size (Bytes)[Log-scale]

 16.0117

 16.1448

 16.279

 16.4144

 16.5508

 16.6884

 16.8271

Po
w

e
r(W

)[Lo
g
-sca

le
]

(a) Power consumed by the CPU cores

(I)TCP+RENDEZVOUS: Memory Power (W)

(A)

(B)

 1

3

2

1

0
2

4

 3

2
7

6
8

 1

0
4

8
5

7
6

Total Message Size (Bytes)[Log-scale]

 1

 32

 1024

 32768

 1048576

#
Fr

a
g
m

e
n
ts

[L
o
g
-s

ca
le

]

 75.0717

 76.5806

 78.1199

 79.6901

 81.2919

 82.9259

 84.5927

 86.293 Po
w

e
r(W

)[Lo
g
-sca

le
]

(II)OPENIB+RENDEZVOUS: Memory Power (Watts)

(A)

(B)

 1

3

2

1

0
2

4

 3

2
7

6
8

 1

0
4

8
5

7
6

Total Message Size (Bytes)[Log-scale]

 75.0717

 76.5806

 78.1199

 79.6901

 81.2919

 82.9259

 84.5927

 86.293 Po
w

e
r(W

)[Lo
g
-sca

le
]

(III)TCP+EAGER: Memory Power (Watts)

(A)

(B)

 1

3

2

1

0
2

4

 3

2
7

6
8

 1

0
4

8
5

7
6

Total Message Size (Bytes)[Log-scale]

 1

 32

 1024

 32768

 1048576

#
Fr

a
g
m

e
n
ts

[L
o
g
-s

ca
le

]

 75.0717

 76.5806

 78.1199

 79.6901

 81.2919

 82.9259

 84.5927

 86.293 Po
w

e
r(W

)[Lo
g
-sca

le
]

(IV)OPENIB+EAGER: Memory Power (Watts)

(A)

(B)

(C)

 1

3

2

1

0
2

4

 3

2
7

6
8

 1

0
4

8
5

7
6

Total Message Size (Bytes)[Log-scale]

 75.0717

 76.5806

 78.1199

 79.6901

 81.2919

 82.9259

 84.5927

 86.293 Po
w

e
r(W

)[Lo
g
-sca

le
]

(b) Power consumed by the DRAM

Figure 7.3: Power consumed by the CPU cores and the DRAM while servicing remote data transfers
by the sender process

60

(I)TCP+RENDEZVOUS: Cores Power (W)

(A)

(B)

 1

3

2

1

0
2

4

 3

2
7

6
8

 1

0
4

8
5

7
6

Total Message Size (Bytes)[Log-scale]

 1

 32

 1024

 32768

 1048576
#

Fr
a
g
m

e
n
ts

[L
o
g
-s

ca
le

]

 15.8141

 15.8797

 15.9456

 16.0117

 16.0781

 16.1448 Po
w

e
r(W

)[Lo
g
-sca

le
]

(II)OPENIB+RENDEZVOUS: Cores Power (Watts)

(A)

(B) (C)

(D)

 1

3

2

1

0
2

4

 3

2
7

6
8

 1

0
4

8
5

7
6

Total Message Size (Bytes)[Log-scale]

 16.2118

 16.279

 16.3466

 16.4144

 16.4825

 16.5508 Po
w

e
r(W

)[Lo
g
-sca

le
]

(III)TCP+EAGER: Cores Power (Watts)

(A)

(B)

 1

3

2

1

0
2

4

 3

2
7

6
8

 1

0
4

8
5

7
6

Total Message Size (Bytes)[Log-scale]

 1

 32

 1024

 32768

 1048576

#
Fr

a
g
m

e
n
ts

[L
o
g
-s

ca
le

]

 16.0117

 16.6884

 17.3937

 18.1288

 18.8949

Po
w

e
r(W

)[Lo
g
-sca

le
]

(IV)OPENIB+EAGER: Cores Power (Watts)

(A)

(B)

 1

3

2

1

0
2

4

 3

2
7

6
8

 1

0
4

8
5

7
6

Total Message Size (Bytes)[Log-scale]

 15.8797

 16.1448

 16.4144

 16.6884

 16.967

 17.2503

Po
w

e
r(W

)[Lo
g
-sca

le
]

(a) Power consumed by the CPU cores

(I)TCP+RENDEZVOUS: Memory Power (W)

(A)

(B)

 1

3

2

1

0
2

4

 3

2
7

6
8

 1

0
4

8
5

7
6

Total Message Size (Bytes)[Log-scale]

 1

 32

 1024

 32768

 1048576

#
Fr

a
g
m

e
n
ts

[L
o
g
-s

ca
le

]

 73.5925

 75.0717

 76.5806

 78.1199

 79.6901

 81.2919

 82.9259

 84.5927

Po
w

e
r(W

)[Lo
g
-sca

le
]

(II)OPENIB+RENDEZVOUS: Memory Power (Watts)

(A)

(B)

 1

3

2

1

0
2

4

 3

2
7

6
8

 1

0
4

8
5

7
6

Total Message Size (Bytes)[Log-scale]

 73.5925

 75.0717

 76.5806

 78.1199

 79.6901

 81.2919

 82.9259

 84.5927

Po
w

e
r(W

)[Lo
g
-sca

le
]

(III)TCP+EAGER: Memory Power (Watts)

(A)

(B)

 1

3

2

1

0
2

4

 3

2
7

6
8

 1

0
4

8
5

7
6

Total Message Size (Bytes)[Log-scale]

 1

 32

 1024

 32768

 1048576

#
Fr

a
g
m

e
n
ts

[L
o
g
-s

ca
le

]

 73.5925

 75.0717

 76.5806

 78.1199

 79.6901

 81.2919

 82.9259

 84.5927

Po
w

e
r(W

)[Lo
g
-sca

le
]

(IV)OPENIB+EAGER: Memory Power (Watts)

(A)

(B)

 1

3

2

1

0
2

4

 3

2
7

6
8

 1

0
4

8
5

7
6

Total Message Size (Bytes)[Log-scale]

 73.5925

 75.0717

 76.5806

 78.1199

 79.6901

 81.2919

 82.9259

 84.5927

Po
w

e
r(W

)[Lo
g
-sca

le
]

(b) Power consumed by the DRAM

Figure 7.4: Power consumed by the CPU cores and the DRAM while servicing remote data transfers
by the receiver process

61

between the increase in latency and the drop in the average power consumption can

be observed in region D. On the receiver’s end (Figure 7.4a(I)), the power consumed

primarily depends on the size of the data being transferred (regions A,B). It must

also be noted that the passive participation by the receiver (when compared to the

sender), leads to a lower range of power-consumption (15.5-16.2W as compared to 17-

18W). From the memory unit’s perspective (Figure 7.3b(I)) the power cost incurred

by the sender process while servicing small transfers (region A) is lesser than that

while servicing large transfers (region B).

Using Eager protocol Switching from a rendezvous protocol to an eager protocol

definitely reduces the operating power-cost incurred by the CPU cores while servic-

ing large data transfers by the sender and the receiver processes (Figs. 7.3a(III),

7.4a(III)(regions A-B)). The negative impact of fragmentation can be observed in

terms of the rise in the power-cost incurred by the memory modules, both by the

sender as well as the receiver (Figs. 7.3b(III), 7.4b(III)(regions A-B)). Implementing

an eager protocol using a non-RDMA based fabric like Ethernet leads to a significant

rise in power-consumption at the receiver’s end (Figure 7.4b(III)(region A)). A rise in

the number of bytes transferred per fragment leads to a rise in the energy consumed

by the memory. However, we see from region B in Figs. 7.3b(III), 7.4b(III) that the

power consumption by the memory module drops. This can be attributed to the rise

in the latency in completion of the transfer of the entire data-payload.

62

7.2.2 Using OpenIB/OFED stack over InfiniBand

Using Rendezvous protocol: At first glance, Figs. 7.3a(II), 7.4a(II) (regions

A,B,C), depict that the power consumed by the CPU cores is dependent on the total

size of the data-payload and not so much on the degree of fragmentation. However,

one must take into account that using the rendezvous protocol over the OFED stack

leads to a combination of two different types of overhead. The first is the power-

penalty of using either memory-pinning or local memcpy operations (as explained in

the next subsection). The second is the overhead due to the handshaking operations

(as explained in the previous sub-sections).

With regards to the power consumed by the memory at the sender’s side, the

cost increases monotonically with a rise in the size per fragment. As discussed in the

following bullet point below, using the OFED stack is accompanied with the power-

penalty of either memory-pinning or local memcpy operations. This cost varies with

the number of bytes transferred with each fragment (Figure7.3b(III)).

Using Eager protocol: Parallel diagonally-colored bands in Figs. 7.3a(IV),

7.3b(IV), 7.4a(IV), 7.4b(IV) show that the power consumed by the cores and the

memory unit, both depend on the number of bytes transferred within each frag-

ment. As discussed before, either the memory space containing these fragments are

dynamically pinned-down (registered) with the NIC or its contents are copied over

to some pre-registered buffer. The performance penalty of dynamic registration of

small buffers is expensive. Thus, a runtime implementation would typically perform

a local copy of the contents into a pre-registered buffer. Our experience shows that

the power cost of this memory copy increases with rise in the fragment size (i.e.

63

Table 7.1: Symbols in Eqn. 7.1

Symbols Metric
Bw Achievable bandwidth (bytes/sec)
Pnet Net average power consumed (W)

Bpayload Total number of bytes transmitted
∆Es Energy consumption by sender (J)
∆Er Energy consumption by receiver (J)
Ps,cpu Cores power consumption at sender (W)
Pr,cpu Cores power consumption at receiver (W)
Ps,mem Memory power consumption at sender (W)
Pr,mem Memory power consumption at receiver (W)

bytes/fragment). This can be observed in region C. As the size of each fragment in-

creases, an implementation would typically start dynamically registering user buffers

with the NIC. Either way, this keeps the CPU cores active. It is during this inflection

point that we observe a slight drop in the cores power consumption. Further increase

in the size of fragment again leads to a rise in this cost (region A).

Complementary to the CPU power consumption, the power-cost incurred by the

memory rises with the size per fragment (region A). It too hits a cool spot (region B)

and then rises up monotonically with a rise in the achievable bandwidth on the NIC.

7.3 Energy Efficiency of Data Transfers

To study the net impact of the choice of the communication protocols and the

transport layer, we evaluated the power efficiency using a metric tuned towards

communication-intensive kernels. The energy efficiency of a compute-intensive ap-

plication kernel is given by the total number of machine/floating-point operations

per second per watt of power consumed (MOPS/Watt or FLOPS/Watt). To evalu-

ate the cost of data transfer operations, we use a similar metric - the net bandwidth

64

TCP+RENDEZVOUS: Bytes per Joule (B/J)

(A)

(B)

Rise in Bytes/X'fer

 1

3

2

1

0
2

4

 3

2
7

6
8

 1

0
4

8
5

7
6

Total Message Size (Bytes)[Log-scale]

 1

 32

 1024

 32768

 1048576

#
Fr

a
g
m

e
n
ts

[L
o
g
-s

ca
le

]

 143.616

 752.091

 3938.57

 20625.6

 108012

 565641

 2.96216e+06

B
y
te

sp
e
r-Jo

u
le

(B
/J)[Lo

g
-sca

le
]

OPENIB+RENDEZVOUS: Bytes per Joule (B/J)

(A)

(B)

Rise in Bytes/X'fer

 1

3

2

1

0
2

4

 3

2
7

6
8

 1

0
4

8
5

7
6

Total Message Size (Bytes)[Log-scale]

 143.616

 752.091

 3938.57

 20625.6

 108012

 565641

 2.96216e+06

B
y
te

sp
e
r-Jo

u
le

(B
/J)[Lo

g
-sca

le
]

TCP+EAGER: Bytes per Joule (B/J)

(A)

(B)

Rise in Bytes/X'fer

 1

3

2

1

0
2

4

 3

2
7

6
8

 1

0
4

8
5

7
6

Total Message Size (Bytes)[Log-scale]

 1

 32

 1024

 32768

 1048576

#
Fr

a
g
m

e
n
ts

[L
o
g
-s

ca
le

]

 143.616

 752.091

 3938.57

 20625.6

 108012

 565641

 2.96216e+06

B
y
te

sp
e
r-Jo

u
le

(B
/J)[Lo

g
-sca

le
]

OPENIB+EAGER: Bytes per Joule (B/J)

(A)

(B)

Rise in Bytes/X'fer

 1

3

2

1

0
2

4

 3

2
7

6
8

 1

0
4

8
5

7
6

Total Message Size (Bytes)[Log-scale]

 143.616

 752.091

 3938.57

 20625.6

 108012

 565641

 2.96216e+06

B
y
te

sp
e
r-Jo

u
le

(B
/J)[Lo

g
-sca

le
]

Figure 7.5: A summary of the total bytes transferred per Joule of energy consumed by the sender
and the receiver while participating in remote data transfers.

achievable per watt of power consumed by the participating processes; in other words

- the number of bytes that can be transferred across the network for each joule of

energy consumed by the sender and receiver. For a point-to-point communication

model like MPI, this may be represented by the equation below:

Bw
Pnet

= Bw
(Ps,cpu+Ps,mem+Pr,cpu+Pr,mem)

=
Bpayload

∆Es+∆Er
(Bytes
Joule

)

(7.1)

The symbols used in this equation are listed in Table 7.1. The net impact on this

metric is discussed in Fig: 7.5. The primary observations are:

65

• The net bandwidth achievable using an interconnect directly impacts the max-

imum value of energy efficiency. Thus the peak bytes transmitted per joule is

an order of a magnitude higher when using the OpenIB over InfiniBand as com-

pared to TCP over Ethernet. Moreover, irrespective of the type of transport

adopted, energy-efficient communication can be achieved using an eager-based

protocol.

• Impact of number of bytes packed per transfer:

– In the figure, the arrow points towards the direction of the increase in the

number of bytes transferred per call. For TCP+Rendezvous configuration

(Figure 7.5(I)), we see that the peak energy efficiency during a data trans-

fer (about 0.565MB/Joule) may be attained only when the total message

size per transfer is higher than 128KB. With the TCP+Eager protocol

however, this peak is attained for message sizes beyond 1KB in size.

– The highest power efficiency among all the configurations is achievable

while using an eager-based protocol over the OpenIB stack - A maximum

of 3MB of data is transferred for every joule of energy consumed.

7.4 Chapter Summary

Data movement across large-scale systems has the potential of impacting not only

the performance of distributed programming models, but also the power-signatures.

In this work, we established the notion that the choice of the transport layer and

the design of communication protocols play a significant role in terms of the energy

66

and power consumption. The empirical results discussed in this work highlighted the

behavior of this impact on the CPU cores and the memory. It was observed that the

power consumption by CPU cores and the memory bandwidth is not only impacted

by the latency of the remote transfers, but also the memory bandwidth between the

CPU cores and the memory.

While using traditional TCP over Ethernet, energy savings can be obtained by

choosing an eager-based protocol over a rendezvous-based one. While using an eager

protocol, an efficiency of up to 600bytes/joule may be obtained. Despite these sav-

ings, it must be noted that mapping an eager protocol over a non-RDMA based fabric

leads to high power consumption by the memory. While using an RDMA-capable

network like InfiniBand, the use of eager-based protocol lends itself naturally to the

semantics of the transport layer (OpenFabrics OFED, in our case).

Irrespective of the type of transport and protocol, higher efficiency (bytes trans-

ferred per joule) can be achieved by aggregating user buffers into contiguous larger

fragments before servicing the transfer. In addition, the net bandwidth achievable

during a transfer impacts this efficiency. We hope that results of energy efficiency as

well as a detailed study of the impact on the various sub-components of the system

would motivate the design of “power-aware” middleware for use with HPC applica-

tions.

In the future, we plan to extend this study to evaluate the impact on large-scale

multi-node systems. It is equally essential to study the contribution of communica-

tion kernels to the energy profiles of large scale real-world HPC applications.

67

For more details about the topics discussed in this Chapter, the interested reader

is directed to the literature documented by Jana et al. under [83].

68

Chapter 8

Communication: Access Patterns

We extend this study to incorporate the impact of design of communication patterns

characterized by multiple occurrences of such transfers. In case of PGAS models,

the variation of this impact on the energy and the performance can be attributed

to the flexibility of decoupling synchronization costs from the actual transfer of the

data-payload. We discuss a number of one-sided based communication patterns

and perform an empirical analysis of the maximum possible savings that may be

obtained while choosing one access pattern over the other. These also motivate the

need for static or dynamic transformations among these communication techniques.

We evaluate some well known techniques like aggregating contents of source buffers of

multiple remote write operations, using non-blocking data transfer semantics, using

pinned-down buffers, and managing the size of data payload packed within each

transfer. We present empirical results that indicate that the savings (in terms of

performance and energy) obtained through such techniques varies significantly and

69

there is plenty of opportunity for system programmers to tune for energy-efficient

implementations of PGAS models.

In Section 8.1, we describe the various characteristics within PGAS communi-

cation kernels, that have an impact on the energy and latency cost of applications.

In Section 8.2, we identify a set of basic operations that define an RDMA access.

We then list a small subset of communication patterns that are may be built upon

these operations. This is followed by some examples of transformations from one ac-

cess pattern to another and which suggest potential energy savings. We complement

this discussion with empirical evidence that provides an optimistic estimate of the

maximum possible savings that can be practically achievable. This is presented in

Section 8.3.

8.1 Design Factors Impacting Communication-Energy

Costs

This section describes some application-level design factors that have the potential

of impacting the energy signatures of communication-intensive kernels. While these

factors are controllable at the user-level, their use directly impacts the behavior of

the underlying communication library.

At a higher level, we categorize these on the basis of -(a) properties of the com-

munication kernel, and (b) properties of individual data transfers

70

8.1.1 Properties of the Communication Kernel

The total size of the payload being transferred In case of communication-

intensive kernels, past work indicates that the total size of all the user buffers partic-

ipating in RDMA operations have a direct impact on the energy consumption[151,

153, 83]. Since this metric impacts the memory footprint of the application, it is

essential to incorporate this metric in empirical studies1.

The number of explicitly initiated data transfers While the payload size

associated with data movement is important, the overhead associated with the soft-

ware stack that services the transfer of the payload is equally significant. Therefore,

one of the crucial factors that needs to be considered while evaluating energy and

performance costs is the number of explicitly initiated data accesses to service the

transfer of a fixed payload. We refer to this metric as the number of “fragments” or

“chunks” that a payload is divided into, while issuing a transfer. The impact of this

metric affects multiple layers in the software stack:

• At the application level, this metric typically corresponds to the number of

discrete user buffers used to design a communication pattern. The exact count

of such buffers and their actual size is dependent on the application’s problem

size and the algorithm design.

• At the data transfer layer, the impact of this metric supplements the impact of

completion semantics of RDMA transfers. For example, in case of non-blocking

1 It must be noted that the significance of the impact of such a metric depends on the actual
ratio of the number of local compute-based operations to those servicing remote transfers.

71

remote write operations, this metric corresponds to the number of outstanding

in-progress PUTs. In such cases, the energy and latency costs are impacted

not only by the cost of servicing the actual transfers, but also that of managing

and polling for the status’ of multiple communication handlers.

• At the bytes transfer layer, the bandwidth and the message rate are dictated

by the constraints imposed by the underlying interconnect and physical layer.

Due to this limit, this metric also corresponds to the actual number of chunks

that the middleware divides the user buffer into, before transferring its contents

over the network.

8.1.2 Properties of the Individual Data Transfers

The data-transfer completion semantics Most modern interconnects support

non-blocking transfers of data between the local and remote memories. The latency

due to such remote transfers may therefore be overlapped by the available compu-

tation. This ensures efficient use of CPU cycles. Without support for asynchronous

transfer by the underlying hardware, these CPU cycles would instead be invested

in busy polling in order to track the completion status of the communication. The

use of non-blocking transfers however, comes with the price of: (a) having to man-

age multiple communication handlers within the runtime, and (b) the possibility of

having the count of the number of in-progress transfers exceeding the capability of

the hardware. As we discuss later, the overhead of software management of this

high count of asynchronous calls lead to an increase in the participation of the CPU,

thereby raising the potential energy consumption per byte of data transferred.

72

The contiguity of the data-buffers in memory While handling small-to-medium-

sized transfers, an application developer or the PGAS implementation itself may

exploit the peak bandwidth of the underlying interconnect by merging multiple non-

contiguous source buffers into a single contiguous chunk before sending the contents

across the network. This technique is well established among PGAS implementa-

tions that support strided, indexed, or vectorized transfers[118]. However, one has

to be wary of the latency and the energy cost associated with such mechanisms due

to (a) the impact of local memcpy()s which are CPU and DRAM intensive, and (b)

the maximum achievable bandwidth of the underlying interconnect. The benefits

therefore depend on the extent of hardware support and the amount of computation

available for overlapping the latency associated with bulk transfers.

The registration status of the source buffers with an RDMA-capable NIC

PGAS implementations built on top of OS-bypass mechanisms require the virtual-

to-physical address mapping to be pinned-down. This pinned region is registered

with the NIC to enable RDMA-based accesses. If the application programmer uses

a source buffer that is not pinned to the memory, a PGAS implementation typically

performs a local copy of the contents of the buffer to pre-registered memory loca-

tions2. As shown in further sections, such local memory copies are CPU and DRAM

intensive and their cost is proportional to the size of the copied contents.

2An alternative to performing local memory copy operations is to dynamically register memory
locations. However this is a very expensive operation [107, 156] and is used while handling only
bulk-sized buffers. The study of the impact of this metric is out of scope of this work.

73

8.2 Code Transformations that Impact Energy

Consumption

In order to evaluate the impact of the elimination of cost factors discussed in the

Section 8.1, we designed a number of microbenchmarks simulating different possible

data access patterns using one-sided constructs. We discuss these next. We then

present a list of transformations from one pattern to another. These help eliminate

the different cost factors discussed before.

The results presented in this work are intended to motivate such transformations

using either static or dynamic approaches. It must be noted that in real-world ap-

plications, the feasibility of switching such transformations would be constrained by

a number of other factors such as data dependencies, algorithm design, the memory

model, the communication model, etc. The discussions here and the empirical re-

sults in Section 8.3 are therefore aimed at aiding the reader in obtaining an optimistic

estimate of the potential energy savings.

8.2.1 Design of Data-access Patterns

In order to design multiple data-access patterns within a communication kernel, we

needed to identify a set of design elements, based on which any one-sided communication-

intensive pattern may be modeled. These “design elements” correspond to different

phases over which a remote transfer may be built upon.

Design Elements RDMA Write operations (or PUTs) in PGAS implementations

may be divided into the following basic phases:

74

P (x): This operation corresponds to the initiation of a one-sided WRITE operation,

of x bytes, from the user address space of the active, sender process to that

of the passive receiver. A call to this function does not guarantee completion

of the data transfer. For an RDMA-capable interconnect solution with kernel-

bypass capabilities, this operation can be serviced without the intervention of

the CPU. This is typically achieved by using a pinned-down memory segment

as sender and receiver buffers on either endpoint of the communication. This

pinning of memory with the OS corresponds to the registration of the memory

location with the NIC, thereby eliminating the need for CPU participation.

From the point of view of an OpenSHMEM developer, this corresponds to

a call to shmem putmem() where both the sender and the receiver addresses

correspond to a portion on the globally accessible “symmetric” memory.

Q: This phase typically corresponds to a polling operation which guarantees com-

pletion of previously posted PUT (P) operations. In terms of OpenSHMEM

terminology, this corresponds to a call to shmem quiet() that returns back the

control to the user after ensuring that the data payload of all previously posted

PUT operations have been copied over to the destination buffer at the receiver.

M : This phase corresponds to the preparation of a user buffer before initiating

an RDMA operation. This involves memory management tasks like copy-

ing the contents of user buffers to pinned-down memory buffers. In case of

OpenSHMEM, the communication model does not mandate that the source

75

Active Sender Process

Passive Receiver Process

Non-blocking Remote Write Operation

Quiet operation - guarantees remote completion

Memory copy from source buffer to pinned-down memory

PE 0

PE 1

PE 0 PE 1PE 0 PE 1 PE 0 PE 1PE 0 PE 1 PE 0 PE 1

...MPQMPQ...MPMPQ ...PQPQ...PPQ ...MMPQAMM

Atomic operation - signals passive process about transfer completion

Polling

Figure 8.1: Line Diagrams of data-access patterns

buffer to be a symmetric object. As a result, this operation is typically per-

formed by the underlying implementation. We mimic this, within our bench-

marks, using simple function calls to memcpy().

A: This phase corresponds to an atomic operation to signal the occurrence of a

particular event to the remote passive process. In terms of OpenSHMEM, a

call to shmem swap achieves such semantics.

Examples We discuss some examples of data-access patterns that were designed

as a combination of the basic elements discussed above34. Figure 8.1 illustrates these

patterns, the impact of which, are discussed later in Section 8.3:

3A note on the nomenclature used: A repetition of a substring in each pattern name corresponds
to a discrete user buffer. e.g. Each ‘MP ’ in ...MPMPQ corresponds to operations over a different
fragment at successive addresses in the heap. The actual count of this repetition i.e. the number of
fragments, corresponds to the number of disjoint user buffers over which the access pattern operates.

4A note on the design of the microbenchmarks: Obtaining steady energy readings require running
the synthetic microbenchmarks for large number of iterations. To avoid a data-access pattern from
falling prey to caching effects from past runs, it is essential to clear the contents of the cache before
the start of each iteration.

76

...PPQ : Having multiple consecutive PUTs followed by a single quiet takes into

account the overhead of maintaining multiple handlers for non-blocking PUTs,

followed by polling for their remote completion.

...MPMPQ : Having every non-blocking PUT be preceded by a memory memcpy

operation from the buffer in the user address space to a “symmetric” buffer,

takes into account the additional memory management involved while using

non-registered source buffers. After all the memory copies and the PUTs, this

pattern ends with a single quiet operation, thereby accounting for the costs of

remote completion of all the transfers.

...PQPQ : Having every PUT be immediately followed by a quiet takes into account

the impact of using multiple blocking WRITE operations.

...MPQMPQ : This benchmark represents the worst case among all patterns - a

combination of all the cost factors described above. Each PUT operation is

preceded by a memcpy() and is followed by the quiet operation.

...MMPQAMM : To study the impact of packing data contents on the sender’s

side and unpacking them on the receiver’s end, a data-access pattern may be

modeled by incorporating the costs associated with multiple memcpy()s at the

sender’s side (to copy data from the user-buffer into a pinned-down source

buffer), the actual transfer of the buffer contents to the remote process (using

a single PUT), checking for remote completion of the transfer by the sender (a

single quiet), signaling the completion of the transfer to the receiver process

(a single atomic operation), polling for the completion-signal by the receiver,

77

MPQMPQ

PQPQ MPMPQ

PPQ

MMPQAMM

Eliminating cost by using non-blocking semantics

Eliminating cost by using pre-pinned source buffers

Eliminating cost by aggregating source buffers

Eliminating cost by reduction of data payloads

Figure 8.2: Different transformations of remote data-access patterns, that have the potential of
energy savings within communication-intensive application kernels.

and, copying back the contents from the communication buffer into the final

destination buffer at the receiver’s end (using multiple memcpy()s). It must

be noted that unlike the above patterns where the number of PUTs is equal to

the number of user buffers, this pattern contains a single PUT that follows as

many memory copy operations as the number of discrete buffers that the data

payload spans across.

8.2.2 Transformations of access Patterns

Figure 8.2 illustrates the set of microbenchmarks that were evaluated and the relation

between them. The edges connecting the nodes of the graph depict different code

transformations, the impact of which, are discussed in Section 8.3. We study the

78

impact of four different OpenSHMEM code transformations that take into account

the factors discussed in Section 8.1. Using the nomenclature above, we describe these

transformations below:

Impact of using pinned source buffers: The impact of using unpinned source

buffers and additional memcpy() operations may be studied by using globally

visible or symmetric user-buffers, i.e. MPQMPQ→ PQPQ and MPMPQ→

PPQ.

Impact of using non-blocking remote transfers: The possible cost-savings as-

sociated with converting blocking remote write operations to non-blocking ones

may be studied by eliminating unnecessary calls to quiet after each PUT, i.e.,

MPQMPQ→MPMPQ and PQPQ→ PPQ.

Cost of aggregating user-buffers: The impact of using multiple memory copy

operations to aggregate data into pinned memory instead of explicitly issu-

ing multiple PUTs may be evaluated through the transformation PPQ →

MMPQAMM .

Cost of reducing the data-payload: While all the above transformations are de-

pendent on the characteristics of the data-access pattern within a communi-

cation kernel, this transformation deals with the the size of the data-payload

as dictated by the input problem size. The impact of the data-payload size

can be analyzed by studying the same test-case – MPQMPQ – with different

transfer-payload sizes.

79

 -20

 -15

 -10

 -5

 0

 5

 10

 15

 20

 25

 1

 4

1

6

6

4

 2

5
6

1

0
2

4

4

0
9

6

 1

6
3

8
4

 6

5
5

3
6

2

6
2

1
4

4

E
n
e
rg

y
 R

e
d
u
ct

io
n
 (

%
)

Total number of fragments [Log-scale]

(I) CPU Energy Reduction (%)

Blocking PUTs : MPQMPQ->PQPQ

Non-Blocking PUTs : MPMPQ->PPQ

 -20

 -10

 0

 10

 20

 30

 40

 50

 1

 4

1

6

6

4

 2

5
6

1

0
2

4

4

0
9

6

 1

6
3

8
4

 6

5
5

3
6

2

6
2

1
4

4

E
n
e
rg

y
 R

e
d
u
ct

io
n
 (

%
)

Total number of fragments [Log-scale]

(II) DRAM Energy Reduction (%)

Blocking PUTs : MPQMPQ->PQPQ

Non-Blocking PUTs : MPMPQ->PPQ

 -20

 -10

 0

 10

 20

 30

 40

 1

 4

1

6

6

4

 2

5
6

1

0
2

4

4

0
9

6

 1

6
3

8
4

 6

5
5

3
6

2

6
2

1
4

4

La
te

n
cy

 R
e
d
u
ct

io
n
 (

%
)

Total number of fragments [Log-scale]

(III) Reduction in Latency (%)

Blocking PUTs : MPQMPQ->PQPQ

Non-Blocking PUTs : MPMPQ->PPQ

 -20

 -10

 0

 10

 20

 30

 40

 1

 4

1

6

6

4

 2

5
6

1

0
2

4

4

0
9

6

 1

6
3

8
4

 6

5
5

3
6

2

6
2

1
4

4

E
n
e
rg

y-
D

e
la

y
 P

ro
d
u
ct

 R
e
d
u
ct

io
n
 (

%
)

Total number of fragments [Log-scale]

(IV) Reduction in Energy-Delay Product (%)

Blocking PUTs : MPQMPQ->PQPQ

Non-Blocking PUTs : MPMPQ->PPQ

Figure 8.3: Impact of using pinned data buffers : Data-payload size = 0.5MB

It must be noted that many other transformations and their combinations such

as MPQMPQ→MMPQAMM are also possible. However, since our scope lies on

studying each of transformations independently, we do not discuss such cases here

which account for multiple cost factors. Their impact may be compounded over the

affect of multiple transformations listed above.

8.3 Empirical Results

While one of the primary purposes of this work is to discuss the potential savings

achievable by transformation of a certain data-access pattern to another, it is es-

sential to understand the behavior of independent patterns themselves. This can

be achieved by analyzing the energy costs, latency, message rate, and bandwidth

80

0.018
 0.05
 0.14
 0.37

 1
 2.7
 7.4
 20
 55

 1

 4

1

6

6

4

 2

5
6

1

0
2

4

4

0
9

6

 1
6

3
8

4

 6
5

5
3

6

2
6

2
1

4
4

Jo
u
le

s

Total number of fragments [Log-scale]

(I) Total CPU+DRAM Energy (J)

MPQMPQ
PQPQ

MPMPQ
PPQ

MMPQAMM

0.00091
0.0025
0.0067

0.018
 0.05
 0.14
 0.37

 1

 1

 4

1

6

6

4

 2

5
6

1

0
2

4

4

0
9

6

 1
6

3
8

4

 6
5

5
3

6

2
6

2
1

4
4

se
cs

Total number of fragments [Log-scale]

(II) Latency (secs)

MPQMPQ
PQPQ

MPMPQ
PPQ

MMPQAMM

4e+02

3e+03

2.2e+04

1.6e+05

1.2e+06

8.9e+06

6.6e+07

4.9e+08

 1

 4

1

6

6

4

 2

5
6

1

0
2

4

4

0
9

6

 1
6

3
8

4

 6
5

5
3

6

2
6

2
1

4
4

P
U

Ts
/s

e
c

Total number of fragments [Log-scale]

(III) Message Rate (PUTs/sec)

MPQMPQ
PQPQ

MPMPQ
PPQ

MMPQAMM

4.4e+05

1.2e+06

3.3e+06

8.9e+06

2.4e+07

6.6e+07

1.8e+08

4.9e+08

 1

 4

1

6

6

4

 2

5
6

1

0
2

4

4

0
9

6

 1
6

3
8

4

 6
5

5
3

6

2
6

2
1

4
4

B
y
te

s/
se

c

Total number of fragments [Log-scale]

(IV) Bandwidth (bytes/sec)

MPQMPQ
PQPQ

MPMPQ
PPQ

MMPQAMM

Figure 8.4: Impact of use of various data-access patterns on the CPU+DRAM energy and the
achievable latency for a remote PUT operation w.r.t. number of explicitly initiated transfers :
Total Data-payload size = 0.5MB

of each of these patterns. Figure 8.4 illustrates these transfer characteristics of the

communication patterns while servicing a 0.5MB remote write operation using dif-

ferent number of PUT operations (represented as “#Fragments” on the x-axis).

We observe that access-patterns with different blocking semantics have significant

change in energy and performance traits beyond 256 PUTs (<2KB/PUT). Commu-

nication using blocking semantics (MPQMPQ and PQPQ) have the highest energy

and latency cost. This is accompanied with a lower bandwidth and message rate.

This trend can be attributed to the penalty associated with polling-based operations

and additional memory management necessary to ensure remote completion of the

transfers. This impact on the energy and performance is reduced due to the use of

non-blocking semantics (MPMPQ and PPQ). With the number of PUTs greater

81

than 256 (<2KB/PUT), aggregation of data buffers (MMPQAMM) lead to min-

imal energy consumption and latency, and a sharp rise in the bandwidth and the

message rate5.

Moreover, for all data-access patterns except MMPQAMM , the message-rate

becomes limited beyond 64 PUTs (<8KB/PUT) and is accompanied with a steady

drop in the bandwidth of the transfer. This corresponds to the software overhead

due to multiple explicitly initiated PUTs.

While these raw values provide an overview of the behavior of the data patterns,

they do not present a fine-grained insight into the impact on the CPU and the DRAM.

Moreover, they do not present a clear indication of the potential savings due to the

factors discussed in Section 8.1. To address this, we present a detailed study using

the transformations discussed in Section 8.2. These are shown in Figures 8.3, 8.5,

and 8.6. These figures illustrate the impact of the transformations on various cost

metrics.

In our case, the cost “metrics” studied are:

• Energy consumption by the CPU

• Energy consumption by the DRAM

• Latency of the transfer

• EDP or Energy Delay Product6

5In case of MMPQAMM , all the buffers are serviced by a single PUT operation, irrespective
of the number of user buffers. Thus the metric - message rate corresponds to #User-buffers/sec.

6While CMOS circuits have the ability to trade performance for energy savings, it becomes

82

The “impact” of each cost metric is calculated in terms of the percent reduction in

one of the above metrics. If a transformation T is applied on a data-access pattern

Cinitial such that: T (Cinitial) → Cfinal, then the impact of T in terms of percent

reduction in a cost-metric M may be calculated as:

I =
M(Cinitial)−M(Cfinal)

M(Cinitial)
∗ 100

For all of these experiments, the graphs depict the values of various metrics

as measured at the compute node servicing the active sender processes responsible

for initiating the remote write operations. We restrict our discussion to study the

behavior of this process and not the passive receiver process.

It must be noted that the energy consumption of a passive process that’s polling at

a barrier, waiting for the completion of a transfer, cannot be ignored while performing

large scale studies of distributed applications. In fact, our past study[83] indicates

that the energy consumption increases proportionally with the time and its scale

is very high. However, since the polling activity corresponds to a constant power

consumption, it can be safely ignored in the following discussions that focus on the

impact due to the remote data-access patterns.

8.3.1 Impact of Using Pinned Buffers

From Figure 8.3, we observe that the impact on (or, the percent of reduction in)

the CPU energy consumption and the latency is as high as 20% in case of bulk

challenging to optimize for both simultaneously. The EDP, first proposed by Horowitz[57, 69], takes
into account both the energy and the time costs in an implementation-neutral manner. For cases,
where energy and performance have equal importance, this metric can be calculated as a product
of the energy consumed and the time taken. For more complicated cases, where performance is
given a higher priority, the weight of the “delay” factor is increased by squaring or cubing it[99].

83

 0

 20

 40

 60

 80

 100

 1

 4

1

6

6

4

 2

5
6

1

0
2

4

4

0
9

6

 1

6
3

8
4

 6

5
5

3
6

2

6
2

1
4

4

E
n
e
rg

y
 R

e
d
u
ct

io
n
 (

%
)

Total number of fragments [Log-scale]

(I) CPU Energy Reduction (%)

Unpinned Source : MPQMPQ->MPMPQ

Pinned Source : PQPQ->PPQ

 -40

 -20

 0

 20

 40

 60

 80

 100

 1

 4

1

6

6

4

 2

5
6

1

0
2

4

4

0
9

6

 1

6
3

8
4

 6

5
5

3
6

2

6
2

1
4

4

E
n
e
rg

y
 R

e
d
u
ct

io
n
 (

%
)

Total number of fragments [Log-scale]

(II) DRAM Energy Reduction (%)

Unpinned Source : MPQMPQ->MPMPQ

Pinned Source : PQPQ->PPQ

 0

 20

 40

 60

 80

 100

 1

 4

1

6

6

4

 2

5
6

1

0
2

4

4

0
9

6

 1

6
3

8
4

 6

5
5

3
6

2

6
2

1
4

4

La
te

n
cy

 R
e
d
u
ct

io
n
 (

%
)

Total number of fragments [Log-scale]

(III) Reduction in Latency (%)

Unpinned Source : MPQMPQ->MPMPQ

Pinned Source : PQPQ->PPQ

 0

 20

 40

 60

 80

 100

 1

 4

1

6

6

4

 2

5
6

1

0
2

4

4

0
9

6

 1

6
3

8
4

 6

5
5

3
6

2

6
2

1
4

4

E
n
e
rg

y-
D

e
la

y
 P

ro
d
u
ct

 R
e
d
u
ct

io
n
 (

%
)

Total number of fragments [Log-scale]

(IV) Reduction in Energy-Delay Product (%)

Unpinned Source : MPQMPQ->MPMPQ

Pinned Source : PQPQ->PPQ

Figure 8.5: Impact of transforming multiple blocking operations to non-blocking

 -100

 -50

 0

 50

 100

 1

 4

1

6

6

4

 2

5
6

1

0
2

4

4

0
9

6

 1

6
3

8
4

 6

5
5

3
6

2

6
2

1
4

4

E
n
e
rg

y
 R

e
d
u
ct

io
n
 (

%
)

Total number of fragments [Log-scale]

(I) CPU Energy Reduction (%)

Pinned Source : PPQ->MMPQAMM

 -150

 -100

 -50

 0

 50

 100

 150

 1

 4

1

6

6

4

 2

5
6

1

0
2

4

4

0
9

6

 1

6
3

8
4

 6

5
5

3
6

2

6
2

1
4

4

E
n
e
rg

y
 R

e
d
u
ct

io
n
 (

%
)

Total number of fragments [Log-scale]

(II) DRAM Energy Reduction (%)

Pinned Source : PPQ->MMPQAMM

 -100

 -50

 0

 50

 100

 1

 4

1

6

6

4

 2

5
6

1

0
2

4

4

0
9

6

 1

6
3

8
4

 6

5
5

3
6

2

6
2

1
4

4

La
te

n
cy

 R
e
d
u
ct

io
n
 (

%
)

Total number of fragments [Log-scale]

(III) Reduction in Latency (%)

Pinned Source : PPQ->MMPQAMM
 -100

 -50

 0

 50

 100

 1

 4

1

6

6

4

 2

5
6

1

0
2

4

4

0
9

6

 1

6
3

8
4

 6

5
5

3
6

2

6
2

1
4

4

E
n
e
rg

y-
D

e
la

y
 P

ro
d
u
ct

 R
e
d
u
ct

io
n
 (

%
)

Total number of fragments [Log-scale]

(IV) Reduction in Energy-Delay Product (%)

Pinned Source : PPQ->MMPQAMM

Figure 8.6: Impact of aggregation of multiple data buffer

84

transfers. This is not surprising, as this type of transformation results in elimination

of unwanted memory copy operations of bulk buffers, which directly benefit the

energy cost and the latency. This elimination of bulk memory copy operations leads

to DRAM energy savings as high as 40%. The impact of this transformation however

drops to less than 5% in terms of CPU energy and almost zero in case of latency.

This downward trend is observable especially when the number of PUTs increases

beyond 512 (i.e., buffer size < 1KB per PUT). This condition corresponds to the

case where the CPU energy cost of small memory copy is negligible and the message

rate reaches its threshold (see Figure 8.4).

Influence of other cost factors: We see that there exists a variation in the impact

based on the blocking semantics of the PUT operations. The plots in the figure

depict these two possible outcomes as “Blocking PUTs: MPQMPQ → PQPQ”

and “Non-Blocking PUTs: MPMPQ → PPQ”. The primary observation with

regards to the DRAM energy consumption is that there is an overall lesser impact

of this transformation on blocking PUTs when compared with non-blocking PUTs.

An interesting observation is the oscillating trend in DRAM energy savings in case

of using non-blocking PUTs. This was surprising because the total size of the data

payload being handled across all the data points remains constant (0.5MB) and the

primary source of DRAM energy savings in this transformation is the elimination

of local memory copy operations. We are currently investigating the reason for this

trend.

85

8.3.2 Impact of Using Non-Blocking Remote Transfers

From Figure 8.5, we observe that the impact of replacing blocking transfers by non-

blocking versions is significant in terms of reduction in CPU energy, latency, and

the energy-delay product. As shown, the positive impact on the energy and the

latency rises with an increase in the number of discrete PUTs and hits a limit (80%)

when this count rises beyond 256. This can be attributed to the fact that the

benefits of launching multiple non-blocking transfers is overshadowed by the cost of

ensuring completion of these transfers (during the quiet operation). The benefits

on the energy-delay product is significant. The 80% reduction in CPU energy and

latency corresponds to an improvement in energy delay product by almost 95%.

Influence of other cost factors: We see that there is very little difference be-

tween the cases corresponding to using pre-registered and non-registered data buffers.

The plots in the figure depict these two possible outcomes as “Unpinned Source:

MPQMPQ→MPMPQ” and “Pinned Source: PQPQ→ PPQ”.

8.3.3 Impact of Aggregation of Buffers

Unlike other data-access patterns discussed in the text, an access pattern similar

to MMPQAMM corresponds to an active participation by both the sender and

the receiver. Moreover the RDMA-based data transfer is limited to a single PUT

operation. The cost associated with handling multiple user buffers is dependent

solely on the cost of local memory copy operations.

Figure 8.6 depicts the impact of converting a pattern like PPQ to MMPQAMM .

86

The observations are described below.

For bulk transfers (#Fragments≤1024): For this case, a pattern like PPQ is

characterized by few bulk PUTs directly from the source buffer to that target.

The transformed pattern MMPQAMM is characterized by bulk local memory

copy operations first, by the sender, and then, by the receiver. The latter pat-

tern significantly raises the CPU and DRAM energy consumption. Moreover,

this phase corresponds to the peak bandwidth achievable using PPQ. Thus,

we see a negative impact on the energy metrics (about -25% on CPU and -

125% on DRAM) and the latency (-25%). This negative impact amortizes any

potential energy savings achievable through the use of a single bulk blocking

PUT.

For small transfers (#Fragments>1024): We observe that the overall CPU and

DRAM energy savings achieved using this transformation increases with the

count of discrete source data buffers (fragmentation). The high energy savings

in PPQ may be attributes to not only the obvious elimination of the software

overhead (associated with servicing multiple PUTs and in-progress transfers)

but also its limiting message-rate and dropping bandwidth (Figure 8.4).

To summarize, we learn that with no sufficient overlap for transfers of bulk-sized

buffers, initiating a non-blocking RDMA operation does not yield much benefit.

Additionally, we observed that despite data-access patterns like aggregation having

a positive impact on energy and performance based metrics for large number of small-

sized user buffers, its adoption for bulk-sized messages becomes inefficient. Similarly,

87

enforcing the use of pinned-down memory for small-sized user buffers is not beneficial.

8.4 Chapter Summary

In this work, we established the notion that the design of data-access patterns play

a critical role in impacting the energy profiles of communication-intensive PGAS

applications. We investigated a number of factors that affect the energy cost of a

process initiating a remote data transfer. These include – the contiguity of the data

buffers in the memory, the total size of the payload being transferred, the registration

status of the source buffers, the completion semantics of the data transfer operations,

etc. For a fixed size of data-payload that is transferred to a remote process, the extent

of impact of these factors depends on the number of explicitly initiated data transfers.

We investigated the impact of different pattern transformation techniques on the

energy and performance characteristics of communication intensive kernels, using:

registered memory buffers (up to 40% EDP savings), non-blocking operations (up to

97% EDP savings), and aggregation of source buffers (-70% to +98% EDP savings).

Some of the lessons learned include -(a) Energy savings achieved by using pinned-

down source buffers reduces with a rise in the number of explicitly initiated PUT

operations, (b) Energy savings due to the use of non-blocking semantics is higher

for smaller sized transfers; such savings hit a limit due to additional overhead of

management of multiple outstanding remote transfers, (c) Aggregating bulk-sized

buffers into contiguous memory locations has a negative impact on the energy savings,

the latency and the energy-delay product. Using multiple smaller transfers tend to

benefit significantly in terms of such savings.

88

For more details about the topics discussed in this Chapter, the interested reader

is directed to the literature documented by Jana et al. under [85].

89

Chapter 9

Synchronization: Scale and Time

This chapter presents an empirical analysis highlighting the effect that unbalanced

workloads have on the energy consumption by processes using synchronization con-

structs. We study this impact on the energy costs in terms of two factors - the cost

incurred by processes waiting for different time periods within a barrier, and the cost

incurred by the entire system with a rise in the number of processes participating in

a barrier.

9.1 Synchronizing Time

The line chart and the code snippet of the microbenchmark used to verify this is

presented in the first row of Table 9.1.

Figure9.1 illustrates that a linear growth in the time spent by a process within a

barrier leads to a linear rise in total energy consumed by the system (cores and the

90

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

0

5

10

15

20

25

30

Energy and Power Consumption [Cores + DRAM]

w.r.t. varying time intervals spent in global barriers

Energy
Power

Time interval within barriers (seconds)

E
n

e
rg

y
in

 n
a

n
o

 J
o

u
le

s
(

n
J

)

P
o

w
e

r
in

na

n
o

 W
a

tts
 (

 n
W

)

Figure 9.1: Impact of wait period within a barrier

DRAM)1. In addition, we also observe that the power consumption or the rate of

change in energy, is independent of the time spent by a process waiting at a barriers.

9.2 Scale of Synchronization

The line chart and the code snippet of the microbenchmark used to verify this is

presented in the second row of Table 9.1

The results depicted in Figure 9.2 verify the claim that an increase in the number

of processes waiting at a barrier leads to a linear rise in the energy consumed over the

entire system which, in turn implies a linear rise in the average power consumption.

It is only when a semaphore signals the end of the barrier, that the CPU executes

a code fragment that prepares the process to exit the barrier region. In accordance

with this design, Figure 9.3 depicts the change in the energy and power consumption

pattern with respect to the types of instructions executed by the CPU. The waste in

1For our experiments, the linear relationship between the energy (E) consumed and the time
(T) spent within a barrier was: E = (33.1446*T)-1.88467. Unsurprisingly, the model had a high
Coefficient of determination (r2=0.999027)

91

Table 9.1: Line charts for studying the impact of barrier on energy and power costs

Varying time spent in barrier Varying number of processes

PE waiting in a barrier

PE suspended

PE0 PE1

Incremental wait
periods within

shmem_barrier_all()

PE waiting in a barrier

PE suspended

1 PE waiting at barrier

2 PEs waiting at barrier

K PEs waiting at barrier

PE0 PE1 PE2 PEk PEk+1

0 PEs waiting at barrier

CPU cycles can be observed by the linear rise in the difference between the number

of conditional-branch instructions that are ‘taken’ and ‘not taken’.

Also, the high correlation between the total number of instructions executed

and the total number of conditional-branch instructions hint at the execution of

the same set of instructions, irrespective of the time spent in the barrier. This

homogeneity in the instruction types result in a constant power consumption by the

system (Figure 9.1).

It is in case of the latter, that a process can be characterized as consuming energy

92

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

0

50

100

150

200

250

300

350

Energy and Power consumption [by Cores]

w.r.t. number of processes waiting at the barrier [on the same socket]

Energy
Power

Number of processes at the barrier

P
o

w
e

r
co

n
s u

m
e

d
 (

W
a

tts
)

E
n

e
rg

y
C

o
n

su
m

e
d

 (
Jo

u
le

s)

Figure 9.2: Impact of number of processes participating in a barrier

(wasting CPU cycles) without making any progress in the application execution. We

focus on applications with unbalanced load, wherein the difference between the time

to reach a barrier point may be attributed to processes following different control flow

paths during their execution. It must be noted that the time taken by the processes

to reach a barrier-point may be different despite following the same execution path.

However, this observation may be attributed to a number of non-application specific

factors like irrelevant system noise, the topological mapping of the processes on a

large scale system, etc.

9.3 Chapter Summary

This chapter introduces the basic notion that the use of synchronization constructs

is one of the most common factors that lead to a reduction of CPU utilization and

waste of energy consumed by the system.

93

0 5 10 15 20 25 30 35 40 45 50
0

5000000000

10000000000

15000000000

20000000000

25000000000

30000000000

35000000000

0

50000000000

100000000000

150000000000

200000000000

250000000000

300000000000

Total and Branch Instruction types

w.r.t. varying time intervals spent in global barriers

Conditional
branch
instructions 'not
taken'

Conditional
branch
instructions
'taken'

Total conditional
branch
instructions

Total Instructions

Time Interval within barriers (seconds)

C

o
n

d
iti

o
n

a
l

b
ra

n
ch

 In
st

ru
ct

io
n

s

T
o

ta
l In

stru
ctio

n
s

Figure 9.3: Comparing the types of instructions executed by the CPU while waiting at a barrier.
The count includes (i) Total number of instructions (ii) Number of conditional branch instructions
(iii) Number of conditional branch instructions that are ‘taken’ (iv) The number of conditional
branch instructions that are ‘not taken’

94

Chapter 10

State-of-the-Art: Using DVFS

From the past chapters, we learned that communication and synchronization con-

structs contribute to the energy consumption of applications that run on distributed

systems. We also learned that the extent of impact of such parallelism constructs

depend on the data-access pattern and distribution of work load among processes.

In the following chapters, we introduce energy saving opportunities in case of ap-

plications with unbalanced workloads. More specifically, we target OpenSHMEM

applications that heavily rely on extensive use of synchronization constructs in order

to maintain a consistent view of the global memory.

The implementation of synchronization constructs, as dictated by the execution

model, results in processes having to wait for significant time periods without making

any apparent progress within the application. While this is essential to establish a

consistent view of the distributed global memory, this leads to waste of computational

resources, thereby contributing to a rise in the energy consumption by an application.

95

This wait period can be treated as excess slack within a process.

In this chapter, we present an overview of the past attempts at reducing the energy

costs associated with slacks and the challenges that arise while using such approaches.

10.1 State of the Art

Reduction of Slack: There exists a vast breadth of the work tackling energy

concerns with slacks in processes. The notion of ‘slack’ across all approaches have

been the same - short time-bursts within the application where the processor wastes

multiple cycles without making any progress into the application which, in turn

leads to energy hot-spots. Based on the design of the application, the duration for

the occurrence of these ‘phases’ may range from anywhere from a few nanoseconds

to as high as seconds.

Examples of such slack include the delay in application progress due to pipeline

stalls and cache misses. Such slack typically appears around loops and branches.

There have been many research efforts in alleviating such slack and significant energy

savings have been achieved on simpler architectures.

Past efforts using DVFS techniques have focused on the application phase that is

responsible for managing the operating frequency of the underlying platform. Such

a phase is typically called a Power Management Point or PMP. On reaching a

PMP, the software stack triggers a change in the operating state of the underlying

hardware during the course of its energy-aware execution. This trigger may be

initiated directly by the user process or indirectly via operating system interfaces.

In past research efforts, a naive technique for controlling the frequency has been

96

to statically insert a PMP at the start of every basic block. The challenge in altering

the operating frequency of code regions is to avoid penalizing the total execution time

of that regions, and by extension, the entire application. The code region that is a

candidate for frequency scaling is commonly referred to as a Power Management

Region or PMR.

The rationale behind this approach is to enable programmers and tools to control

frequency settings at a finer granularity. This is especially important when trying

to tune the hardware to map the application semantics to the hardware. This is not

easy to analyze solely by the hardware. This method comprise of two main phases:

• Determine the frequency setting for a particular code-region. This phase in-

cludes accumulating all the information required to represent the dynamic be-

havior of the application. We refer to this as Power Hint Points or PHPs.

• Configure the hardware to make the actual transition to the new operating

frequency. This is based on the information conveyed by the PHP. We refer to

this as Power Control Points or PCPs.

10.2 DVFS efforts for serial applications:

To reduce energy consumption due to slack arising from CPUs stalling for comple-

tion of memory transfers, some have attempted to scale down CPU frequencies in

order to reduce the number of cycles invested in waiting for completion of memory

operations[74]. This translates to energy savings. However, the opportunities of

97

such savings on modern day processors with architectural features like a superscalar

design, multi-issue pipelines, VLIW support, etc. is minimal.

In case of real-time or time-sensitive applications, slacks occur for cases where

processes complete their tasks before the known deadline. This results in applica-

tions stalling without making any execution progress. Aboughazaleh et al.[3] target

such types of applications and describe techniques that rely on an OS thread to pe-

riodically monitor the progress of the application and dynamically change the CPU

frequency settings.

An alternative approach is to empirically model the execution time of an appli-

cation in terms of CPU cycles and place a PMP every so many cycles and have an

additional phase responsible for collecting application status with low overhead[2].

This method involves altering the voltage-frequency characteristics of the target pro-

cessor while executing different code regions within an application. As discussed be-

fore, incorporating such DVFS techniques leads to significant overheads due to the

calculation and the setting of new speeds. Aboughazaleh et al.[3] incorporate these

into their model to determine the optimal speed of each code region. This model,

however, assumed the knowledge of the worst execution time of each code region.

While this can be determined for periodic real-time applications, its application to

irregular applications remains a challenge. Nevertheless, where applicable, this ap-

proach ensures constant application progress with a significant reduction in energy

consumption.

Alternatively, statistical approaches like Moose et al.[115] may be used to evalu-

ate the feasibility of investing time in altering the voltage-frequency characteristics.

98

Aboughazaleh et al.[2] have provided a theoretical solution for calculating this over-

head and inserting the power-management hints in a manner that minimizes its

effect. The drawback, however, is that their approach assumes that the execution

time of the application, when running at the maximum frequency, is known apriori.

10.3 Extending DVFS to Parallel Applications

One such effort that closely maps to this approach is that by Kappiah et al.[90]. Their

work focuses on reducing the impact of slacks generated by MPI communication and

barrier interfaces. However, their scope of power management is the main outer loop.

Their approach relies on summing the slack time associated with every MPI function

within an iteration and then calculating the ratio of this sum to the total iteration

time. This slack is compared against a certain threshold to determine whether the

frequency needs to be decreased for future iterations or not.

The drawbacks of this approach is as follows:

• Since the calculation of the slack and the adjustment of the operating frequency

is performed once per iteration, the scope of exploiting slack over finer code

regions is lost.

• The calculation of the ‘gross’ slack in essence spreads the effect of the slack

period over the entire iteration. Thus, for cases where the slack is concentrated

over only a specific region, distributing the slack across the entire iteration leads

to a more inaccurate analysis.

• Moreover, after every iteration, this approach compares the slacks across all

99

the processes. It doesn’t take into account cases of irregular workloads where

only a group of processes cooperate with each other to perform a certain set of

tasks.

Besides these shortcomings, past efforts remain oblivious to the semantics of vari-

ous parallelism constructs. We address these shortcomings in the following chapters.

10.4 Types of Scaling

With regards to the location of a PCP, there are two main types of frequency scaling.

One of the approaches is to place a PCP at the start of a PMR. In other words,

choosing an operating frequency at the start of execution of a code region. Such

an approach is called Proactive Scaling. This approach is primarily applicable for

applications with PMRs that are characterized by a deterministic slack periods.

Examples of such regions include body of iterative constructs like for loops. The

advantage of this approach is that the impact of the change in the operating frequency

affects not only the slacks but also the compute kernel surrounding them.

An alternative approach is to place a PCP at the start of a slack region. In order

words, a change in the operating frequency is initiated only just before the CPU

enters a slack. Such an approach is called Reactive Scaling. The goal behind this

approach is typically to reduce the energy consumption of the system during a slack

period. The advantage of this approach is that the runtime environment does not

require a deterministic occurrence of slacks. This is specially applicable for irregular

applications with unpredictable occurrences of slacks. The disadvantage is that any

savings achievable through frequency scaling is distributed over a short time-frame.

100

Chapter 11

Challenges: DVFS for Eliminating

Slack

11.1 Opportunities for eliminating slacks

As discussed before, a slack corresponds to an application phase that is serviced by

system resources without making sufficient progress into the application. The extent

to which the energy consumed during such phases is dependent on multiple factors

listed below:

• Compute Ratio (CR): The ratio of the number of compute instructions executed

by PEs reaching the barrier later to that executed by PEs waiting at the barrier.

A higher value of this metric implies more load imbalance. A value of 1 implies

uniform load distribution.

101

• Early Core Count (EC): The count of the number of PEs polling at the barrier

at any given time

• Compute Intensity (CI): The ratio of the number of compute operations (arith-

metic instructions) to memory operations (data-access instructions like loads

and stores)

11.2 Proactive Scaling

11.2.1 Approach and Challenges

Proactive scaling techniques strive to use DVFS techniques over a code region with

the goal of reducing the energy invested servicing ‘slacks’ contained in that region.

With this scaling technique, the scope of a PMR 1 extends beyond the duration of

slack phases. Figure 11.1 illustrates four cases of execution timelines of a pair of

synchronizing PMRs with unbalanced workloads2.

The first three cases in the figure highlight the opportunities of altering frequency

settings to achieve a reduction in the slack within each process. The last case high-

lights a case where a poor choice of P-state may lead to a negative impact on the

performance. We see that PE-0 on operating at a lower frequency might delay the

termination of a global barrier. All four cases are described below.

• Case A: Baseline Mode: This corresponds to the initial condition where PE-0

enters a synchronizing barrier - slack period, before PE-1. As a result, it spends

1for definition of PMR, see Chapter 10.
2For simplicity, all the PMRs in the figure are assumed to start at the same timestamp and the

slack phases are assumed to be aggregated at the end of the regions. This allows for a one-to-one
comparison of the impact on computation and slacks during proactive scaling.

102

PE0

PE1

PE0

PE1

PE0

PE1

Increase in frequency leads to
faster resolution of the barrier

Decrease in frequency leads to slower
execution of PE0 and therefore

less cycles invested at the barrier

Fi

Fi

Fi

Fi + df

Fi - df

Fi

Case A: Baseline Mode

Case B: Performance Mode

Case C: Energy Mode

PE0

PE1

Poor choice of frequency may leads to
additional slow down and energy consumption
due to slag introduced during P-state transition

Fi - df

Fi

Case D: Negative Impact

Figure 11.1: Different approaches of using Proactive Scaling for energy savings. The compute
regions are represented with horizontal bold lines. The slack regions are represented with dashed
red lines. Four possible execution timelines are represented: (A) Baseline mode: Both the processes,
PE-0 and PE-1, operate at the same operating frequency; (B) Performance Mode: The operating
frequency of PE-1 is boosted; (C) Energy Mode: The operating frequency of PE-0 is reduced in order
to reduce the number of cycles wasted polling, which leads to energy savings; (D) Negative Impact
due to energy mode: Depicts a case corresponding to a short slack period in which case operating
in an energy mode adds additional overhead due to P-state transition. This affects performance.

103

considerable number of CPU cycles polling at a barrier, waiting for PE-1 to

signal its entry.

• Case B: Performance Mode: This case corresponds to the approach where the

speed (CPU frequency) of PE-1 is increased at the start of the PMR region.

The hypothesis is that running the process with high compute load (in this

case, PE-1) leads to an earlier resolution of the barrier. This in turn results

in less wait time for the process with low compute load (in this case, PE-0),

thereby reducing the energy invested polling at the barrier3.

• Case C: Energy Mode:, if the frequency of the CPU servicing PE-0 is decreased

at the start of the PMR, the number of cycles invested within the slack region

decreases. This is also accompanied by a drop in energy consumed.

• Case D: Negative Impact of operating in Energy Mode: If the time-period of the

slack region is too small or the compute intensity too high, a drop in operating

frequency of the process with low compute load (in this case, PE-0) might lead

to a later resolution of the barrier. This may introduce additional slack as

shown thereby leading to a negative impact on execution time and energy.

11.2.2 Empirical study

Compute Intensity Over the past two decade, there have been multiple re-

search efforts within the field of embedded processors, multi-core systems, and real-

time memory-intensive applications that exploit DVFS approaches to achieve energy

3The extent of reduction in execution time is dependent on how compute-intensive the applica-
tion is. If the execution segment is memory-bound, the speed of execution remains bounded by the
speed of the memory hierarchy, which is unaffected by the CPU frequency.

104

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

2

4

6

8

10

12

14

16

P-state

E
xe

cu
tio

n
 T

im
e

 (
s)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1650

1700

1750

1800

1850

1900

1950

P-state

E
n

e
rg

y
(J

)

Figure 11.2: DVFS over STREAM COPY kernel. Compute Intensity (CI) = 1/2 = 0.50

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

2

4

6

8

10

12

14

16

P-state

E
xe

cu
tio

n
 T

im
e

 (
s)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1700

1750

1800

1850

1900

1950

P-state

E
n

e
rg

y
(J

)

Figure 11.3: DVFS over STREAM SCALE kernel. Compute Intensity (CI) = 2/3 = 0.67

savings[2, 71, 41, 42, 92, 39, 86]. The primary hypothesis is to reduce the energy con-

sumption during pipeline stalls that arise due to the differences in operating speed be-

tween the CPU and the memory hierarchy. This section discusses a microbenchmark-

based study that evaluates the optimum CPU operating frequency for different mem-

ory and compute-intensive kernels.

Figures 11.2 through 11.6 depict the difference in behavior of different kernels op-

erated at multiple CPU operating frequencies (X-axis). This “difference in behavior”

is represented in terms of the coordinates of the minima of the curves representing

105

1 2 3 4 5 6 7 8 9 10 11 12 13 14
13

13.5

14

14.5

15

15.5

16

16.5

17

P-state

E
xe

cu
tio

n
 T

im
e

 (
s)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
2000
2050
2100
2150
2200
2250
2300
2350
2400
2450
2500

P-state

E
n

e
rg

y
(J

)

Figure 11.4: DVFS over STREAM ADD kernel. Compute Intensity (CI) = 2/3 = 0.67

1 2 3 4 5 6 7 8 9 10 11 12 13 14
13

13.5

14

14.5

15

15.5

16

16.5

17

P-state

E
xe

cu
tio

n
 T

im
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14
2000

2100

2200

2300

2400

2500

2600

P-state

E
n

e
rg

y
(J

)

Figure 11.5: DVFS over STREAM TRIAD kernel. Compute intensity (CI) = 3/4 = 0.75

the execution time and CPU energy consumption. Figures 11.2 through 11.5 corre-

spond to different kernels within the STREAM benchmark. Figure 11.6 corresponds

to a hand-written compute-intensive kernel characterized with FMA operations using

double-precision floating point data objects.

The fact that the CPU frequency corresponding to the minima for any kernel

is different from the others, suggest that the optimum energy efficiency on a given

processor is not always achieved at the highest operating frequency. Also, the ob-

servation that the energy and time curves are not proportional for all the kernels,

106

1 2 3 4 5 6 7 8 9 10 11 12 13
0

1

2

3

4

5

6

7

8

9

10

P-state

E
xe

cu
tio

n
 T

im
e

 (
s)

1 2 3 4 5 6 7 8 9 10 11 12 13
0

50

100

150

200

250

300

350

400

450

500

P-state

E
n

e
rg

y
(J

)

Figure 11.6: DVFS over hand-written Compute-intensive kernel. Compute Intensity (CI) ¿ 6

suggests that the trend in execution time and energy is not always proportional for

all the kernels.

Compute Ratio and Early Core Count This section describes a microbench-

mark based study that analyzes the potential savings in energy, time, and average

power using proactive scaling. The line diagram of the microbenchmark is depicted

in Figure 11.7. The vertical blocks corresponds to the progress of PEs all converging

at a barrier. The blue-shaded portions corresponds to a computationally intensive

region whereas the yellow-colored portions depict the time spent polling at a syn-

chronizing construct like a global barrier. Two different variables are used to plot

the energy metrics against - the compute ratio (CR) and the early core count (EC).

From Figure 11.8a, we observe that for high compute ratio (large load imbalance,

CR > 1) while using proactive scaling, operating in performance mode or hybrid

mode leads to savings in time (as compared to baseline mode). The extent of savings

depends on the actual operating frequencies used to execute the PEs. For CR = 1

107

Figure 11.7: Line diagram for microbenchmark to evaluate the potential savings using proactive
scaling

(zero load imbalance), we see that running in hybrid or energy mode leads to a

drop in performance. This is because, attempting to reduce the frequency of even

a single PE introduces an unwanted delay in the critical path, thereby hampering

performance. With regards to energy consumption (Figure 11.8b), we observe that

operating at performance and hybrid mode is more beneficial than energy mode

for unbalanced load distribution (CR > 1). This gap increases further for higher

compute ratio. Another major observation is that for a fixed CR, the impact of

DVFS increases with the number of cores polling at the barrier (EC). This impact

is reversed for CR=1.

To summarize, for cases with high load imbalance, the extent of energy savings

using proactive scaling by boosting the frequency (performance/hybrid mode) is

higher than simply reducing the frequency (energy mode).

108

(a) Execution Time

(b) Energy Consumption

Figure 11.8: Results of the microbenchmark based study on the impact on execution time and
energy consumption due to proactive frequency scaling

109

11.3 Reactive Scaling

11.3.1 Approach and Challenges

Reactive scaling techniques strive to use DVFS on detecting a ‘slack’ phase within

an application. In other words, for reactive scaling, the PMR region4 corresponds

to the ‘slack’ region within an application kernel. Figure 11.9 illustrates four cases

of execution timelines of a pair of synchronizing PMRs with unbalanced workloads.

They highlight the opportunities of altering frequency settings to achieve a reduction

in the slack within each process. For simplicity, all the PMRs are assumed to start at

the same timestamp. This allows for a one-to-one comparison of the different slacks

accumulating at the end of each PMR. However, it must be noted that synchronizing

PMRs may have different start timestamps.

• Case A: Baseline Mode: This corresponds to the initial condition where PE-0

enters a synchronizing barrier - slack period, before PE-1. As a result, it spends

considerable number of CPU cycles polling at a barrier, waiting for PE-1 to

signal its entry.

• Case B: Performance Mode: This case corresponds to the approach where the

speed (CPU frequency) of PE-1 is increased at the same moment that PE-0

enters a barrier, thereby leading to a reduction in the time spent by the latter

within the slack period 5. This leads to energy savings.

4for definition of PMR, see Chapter 10
5The extent of reduction in execution time is dependent on how compute-intensive the applica-

tion is. If the execution segment is memory-bound, the speed of execution remains bounded by the
speed of the memory hierarchy, which is unaffected by the CPU frequency.

110

PE0

PE1

PE0

PE1

PE0

PE1

Increase in frequency leads to
faster resolution of the barrier

Decrease in frequency leads to slower
execution of PE0 and a reduction in its

slack time.

Fi

Fi

Fi

Fi + df

Fi - df

Fi

Case A: Baseline Mode

Case B: Performance Mode

Case C: Energy Mode

PE0

PE1

Poor choice of frequency may leads to
additional slow down and energy consumption
due to slag induced during P-state transition

Fi - df

Fi

Case D: Negative Impact

Figure 11.9: Different approaches of using Reactive Scaling for energy savings – (A) Baseline mode:
Both the processes operate at the same operating frequency; (B) Performance Mode: The operating
frequency of the process that reaches the barrier later, is boosted at the time when the other process
enters a slack region; (C) Energy Mode: The operating frequency of the process that enters the
slack region first is reduced in order to reduce the number of cycles wasted polling, which leads to
energy savings; (D) Negative Impact due to energy mode: Depicts a case corresponding to a short
slack period in which case operating in an energy mode adds additional overhead due to P-state
transition. This affects performance.

111

• Case C: Energy Mode:, if the frequency of the CPU servicing PE-0 is decreased

the moment it enters the barrier, the number of cycles invested within the slack

region decreases. This is also accompanied by a drop in the power and energy

consumed by the PE.

• Case D: Negative Impact of operating in Energy Mode: If the time-period of the

slack region is too small, the time and energy costs associated with switching

between the frequencies overshadows any potential savings achievable. As de-

picted in the Figure, this may lead to a slight delay in the barrier being resolved,

thereby leading to performance degradation.

11.4 Chapter Summary

From the barrier experiments, we conclude that any interval of time spent by a pro-

cess within a barrier not only impacts the performance but also the energy signature

of distributed applications. With rise in the number of processes participating in the

barrier, the total power consumed by the system increases as well. This motivates the

need for exploitation opportunities of overlapping asynchronous communication op-

erations with computation thereby delaying a process from entering a synchronizing

construct.

While the observation is not surprising, it hints at the need to avoid global barriers

whenever possible. Instead the use of point-to-point barriers should be practiced,

especially when there is a likelihood of load imbalance among processes.

112

Chapter 12

Challenges: DVFS with Data

Movement

As power consumption continues to be a major concern for exascale systems, research

efforts have been directed towards using hardware and software codesign principles

to achieve energy efficiency. In accordance to this, one common approach is to use

frequency scaling capabilities of modern processors to achieve energy savings. This is

commonly referred to as Dynamic Voltage Frequency Scaling (DVFS). Reducing the

frequency allows the processors to operate at a lower voltage level thereby leading

to energy savings.

In a one-sided point-to-point communication model, a single software agent (like

an OS process) is responsible for managing the data transfer between itself and a

passive agent (process). A common scenario in the design of PGAS kernels is for

the passive process to rely on the completion of this data transfer in order to make

113

further progress into the application. The CPU servicing this process is therefore

subjected to polling for a certain semaphore-based event that signals the completion

of the transfer. At such a point, theoretically, energy savings may be achieved by

scaling down the frequency of a CPU core that services the passive process. This

time-frame is commonly referred to as ‘slack period’ and there have been multiple

research efforts directed towards using DVFS techniques to reduce the energy con-

sumption without significant performance impact[117, 52, 104, 106]. This chapter

highlights the claim that this lack of “significant performance impact” during data

movement in a distributed environment is heavily dependent on the underlying im-

plementation. It presents empirical evidence that the extent of these savings depends

on the implementation approach of one-sided communication interfaces. This analy-

sis is presented with respect to the use of one-sided remote write (PUT) operations in

OpenSHMEM[34], an SPMD-based PGAS model. This chapter discusses the poten-

tial impact on the energy and latency costs incurred by the sender and the receiver

process1 in an environment where the latter is serviced at a reduced CPU frequency.

This chapter covers the following:

• Discussion of the challenges of using DVFS in a distributed environment (Sec-

tion 12.2)

• Description of different cost factors within the software stack that affect the

energy consumption and the performance of remote data transfers (Section 12.3)

• Discussion on common approaches of implementing remote PUT operations

that have the potential of being affected by DVFS (Section 12.4)

1or in OpenSHMEM terminology, ‘processing element (PE)’

114

• An empirical analysis that presents the impact of using DVFS on the above

approaches (Section 12.6)

The empirical analysis incorporates a fine-grained study of the energy consump-

tion by the CPU and the DRAM servicing the sender and receiver processes. These

readings were obtained using computational resources described in Section 13.4.2.

The results presented in this work should be useful to system programmers in-

corporating DVFS techniques in a distributed environment.

Note: In this chapter, the term ‘Sender’ refers to an SPMD process that initiates

an RDMA operation to access a remote data object, and the term ‘Receiver’ refers

to the process that owns the remote data object. No additional meaning is implied

in terms of the extent of participation while servicing the data movement.

12.1 Related work

There have been multiple research efforts directed towards exploring energy savings

using DVFS during blocking data transfer and synchronization operations. Some

examples include work by Newsom et al.[117], Gamell et al.[52], Li et al.[104], and

Lim et al.[106].

Newsom et al.[117] use locality-aware of PGAS data transfers to determine the

feasibility of using DVFS for energy savings. Their analysis takes into account the

energy savings achievable using hardware-controlled as well as application (user/-

compiler) driven DVFS techniques. They highlight the potential energy savings

achievable at the application layer, by discussing the impact of applying frequency

115

scaling while prefetching remote data objects within stencil-based kernels.

Gamell et al.[52] explore the feasibility of using DVFS during different UPC

operations. Their experiments are limited to communication among multiple cores

within a single node. They conclude that energy savings using DVFS is achievable

during UPC memget and wait operations.

Li et al.[104] explore opportunities for energy savings using DVFS and DCT

within Hybrid MPI+OpenMP applications. In their work, they introduce a power-

aware performance prediction model which aid in determining the frequency and

concurrency (number of threads) settings for different OpenMP phases in hybrid

applications.

Lim et al.[106] use DVFS techniques within the MPI runtime library. Their ap-

proach is geared towards controlling the frequency at the granularity of individual

MPI calls. For cases where the overhead of frequency scaling is too high, the granu-

larity is increased to control frequency switch across multiple MPI function calls.

All the above efforts focus on using frequency scaling as a means to reduce the

energy consumption during slack-periods during data movement in a distributed-

memory environment. One of the major questions that remain unanswered is the

performance impact on the data movement due to (a) the actual value of the CPU

frequency and, (b) the data-access pattern adopted by PGAS communication phases.

This chapter addresses these questions by comparing different implementation ap-

proaches of point-to-point communication interfaces within PGAS models.

116

12.2 Constraints imposed by Hardware Design

• Choosing the correct frequency level: CPU cores in modern processors are ca-

pable of operating at multiple different frequencies. While operating a CPU at

a lower frequency leads to power savings, running it at a higher frequency leads

to increased throughput. It has been well established that the choice of this

operating frequency depends on the design of the application kernel. Recent

study by Gotz et al.[58] present empirical evidence that shows that applica-

tions with varying computational demands attain energy efficiency at different

CPU clock speeds. This observation is in alignment with the Roofline Model

of Energy[37], which relates these ‘computational demands’ to the ratio of the

number of compute operations to memory accesses within application kernels.

This article focuses on only RDMA transfers. More specifically, it describes

how operating a receiver at different frequencies during a point-to-point data

transfer, leads to varying performance and energy consumption.

• Sibling cores with contradicting frequency demands: While designing an energy

efficient software, one must be aware of the impact of frequency scaling of a

single CPU core on the performance of other cores. The extent of this impact

varies with the architectural design of the target processor. For example, in case

of the Sandy Bridge architecture, all the CPU cores lie on the same frequency

plane[131]. This means that a single CPU core cannot operate at a different

frequency than others2. In such an environment where all the cores share the

2A hardware logic unit, called the Power Control Unit, is responsible for ensuring that the
internal clock of all the cores are maintained at a frequency that meets the core with the highest
performance demand.

117

same clock-speeds, conflicting demands by a single CPU core may affect the

performance of the rest of the cores. In case of PGAS applications targeting a

multi-core environment, using DVFS has the potential of severe performance

degradation.

• DVFS dependent Memory/Cache bandwidth: DVFS also affects the local cache

and memory bandwidths within a processor. Schöene et al.[134], in their study,

present empirical evidence suggesting that this impact varies among different

x86 64 processors. For a Sandy Bridge-EP processor, they show that the mem-

ory bandwidth can drop by as much as 44% depending on the operating fre-

quencies and the number of cores in use. The L3 cache bandwidth also gets

affected and follows an almost linear relationship with the drop in the CPU

frequency3. In case of PGAS applications, this impact on the bandwidth of

the internal memory hierarchy leads to an impact on the performance of data

transfers - both remote or local to a process.

3This is because in a Sandy Bridge architecture, the interconnecting ring-bus runs on the same
frequency as the CPU cores. Also, the cores, the bus, and the last-level shared L3 cache, all lie on
the same power plane[131].

118

Phase [A]
Initiating multiple

PUTs

Phase [B]
Polling for completion

of all PUTs

Phase [D]
Polling by Receiver for
TRANSFER COMPLETE

synchronization

Active Sender
[CPU Frequency constant]

Passive Receiver
[CPU Frequency scaled down]

TRANSFER
COMPLETE

PUTs

[A] Servicing PUTs with no active participation by the Receiver

Figure 12.1: Line Diagram for remote write implementation: Servicing PUTs with no participation
by the receiver

12.3 Energy cost factors associated with RDMA transfers

In this section, we identify multiple energy and performance factors within the soft-

ware stack which have the potential of affecting the energy consumption of PGAS

implementations of point-to-point interfaces. These cost factors are mapped to vari-

ous phases of implementation approaches illustrated in Figures 12.1, 12.2, and 12.3.

This section describes the cost factors with respect to remote write (PUT) opera-

tions. However, it must be noted they are also applicable for implementations of

remote read (GET) operations.

To complement this discussion, Table 12.1 maps these costs to the CPU and the

DRAM servicing the sender and the receiver processes.

• Initiating Asynchronous PUTs (Phase A): This phase, executed by the sender,

corresponds to the initiation of a one-sided PUT operation of x bytes, from its

119

Phase [F]
Packing user buffers

Phase [E]
Unpacking user buffers

Phase [B]
Polling for completion

of single PUT

TRANSFER COMPLETE
Signal

Phase [D]
Polling for

TRANSFER COMPLETE
signal

Phase [C]
Polling for

UNPACK COMPLETE
signal

UNPACK COMPLETE
Signal

Active Sender
[CPU Frequency constant]

Active Receiver
[CPU Frequency scaled down]

Time spent in this region is dictated by the frequency-scaled Phase [E]

PUT

Phase [A]
Initiating single PUT

[B] Servicing PUTs with Active Participation by the Receiver

Figure 12.2: Line Diagram for remote write implementation: Servicing PUTs with active partici-
pation by the receiver

Phase [A]
Initiating multiple

PUTs

Phase [B]
Polling for completion

of all PUTs

Phase [D]
Polling for
TRANSFER
COMPLETE

signal

Active Sender
[CPU Frequency

constant]

Support thread for
Passive Receiver
[CPU Frequency

scaled down]

Time spent in this region depends on the frequency-scaled Phase [G]

Phase [G]:
Copying data to
 final destination

Passive Receiver
[CPU Frequency

scaled down]

Synchronization

[C] Servicing PUTs Using an Additional Software Agent supporting the Receiver

Figure 12.3: Line Diagram for remote write implementation: Servicing PUTs with an additional
thread supporting the receiver

120

Table 12.1: Overview of different factors that contribute to the performance and energy consumption. Each row lists the cost factor,
the system components involved as well as the potential impact on the CPU and DRAM energy/performance metrics

(I)
Phase

(II)
Components

affected

Impact of scaling down frequency of Receiver CPU
(III)

Time spent
within this

phase

(IV)
Activity of
components

affected

(V)
Sender
CPU

Energy

(VI)
Sender
DRAM
Energy

(VII)
Receiver

CPU
Energy

(VIII)
Receiver
DRAM
Energy

A: Initiating
async PUTs

Sender CPU,
Sender DRAM

No impact No Constant Constant – –

B: Polling for
completion

Sender CPU,
Sender DRAM

(DMA)
No impact No Constant Constant – –

C: Polling for
UNPACK

COMPLETE
Sender CPU

Increased
time

period
No

Energy rise
proportional to
the time spent

– – –

D: Polling for
TRANSFER
COMPLETE

Receiver CPU,
Receiver DRAM

(DMA)
No impact Yes – –

Reduction of
energy

Reduction of
energy

E: Unpacking
user buffers

Receiver CPU,
Receiver DRAM

Increased
time

period
Yes – –

Trade off between
time spent
idling v/s
initiating

local memory
copy operations

Depends on the
impact on

memory access
rate

F: Packing
user buffers

Sender CPU,
Sender DRAM

No impact No Constant Constant – –

G: Polling for
incoming packets

+ Copying data to
destination buffers

Receiver CPU,
Receiver DRAM

Increased
time

period
Yes – –

Trade off between
energy saved

while polling v/s
initiating

local memory
copy operations

Depends on the
impact on

memory access
rate + rate of

incoming buffers

121

85].

• Polling for completion (Phase B) This phase, executed by the sender, corre-

sponds to a polling operation which, on completion, guarantees completion of

all previously initiated PUTs during Phase A. In terms of OpenSHMEM, this

corresponds to a shmem quiet operation.

• Polling for UNPACK COMPLETE (Phase C) This

phase is applicable for implementations that require unpacking of received data

packets and distribution of its contents to discrete user buffers. In such cases,

this phase is an additional overhead borne by the sender after Phase B. It

corresponds to a polling operation by the sender to receive an acknowledgment

by the receiver that the unpacking phase is complete. The completion of phase

C indicates that the remote memory locations have been updated with the

corresponding data contents and are available for future local/remote accesses.

• Polling for TRANSFER COMPLETE (Phase D) This phase, executed by the

receiver, corresponds to polling for a signal sent by the sender to flag the arrival

of data packets at the receiver. This is a crucial factor in case of implementa-

tions that rely on the receiver to participate in the data transfer operations.

• Unpacking user buffers (Phase E) It must be noted that the completion of

Phase D does not guarantee that the incoming data contents have arrived

at the final destination buffers. It might be the case that the contents need to

be copied from a temporary storage buffer to the final destination. This phase

corresponds to this software overhead borne by the receiver while transferring

122

the contents to its final intended destination address. It must be noted that

this Phase E is identical to Phase C; the only major difference being the actual

process servicing it.

• Packing user buffers (Phase F) This phase, executed by the sender, corresponds

to the preparation of a user buffer before initiating an RDMA operation.

This involves memory management tasks like copying the contents of user

buffers from user address space to pinned-down memory buffers. In case of

OpenSHMEM, the communication model does not require the source buffer of

a remote PUT operation to be remotely accessible (‘symmetric’ in SHMEM

terminology) itself. In such a case, this operation is typically performed by the

underlying implementation.

• Memory management by a support thread (Phase G) Unlike phase E where the

receiver bears the overhead of managing the contents at the intended destina-

tion addresses, an implementation may choose to use a dedicated software

agent to handle this operation. Depending on the implementation, this asyn-

chronous agent may be launched during the initialization phase of an applica-

tion (shmem init, in case of OpenSHMEM) and remain active throughout the

lifetime of a process. The use of computational resources to service this agent

is an additional cost factor that needs to be accounted for.

12.4 Approaches for implementing RDMA PUTs

This section highlights some common approaches for implementing remote PUT op-

erations in a PGAS library. As described below, these approaches may be divided

123

 0

.0
e
+

0
0

 1

.0
e
+

0
8

 2

.0
e
+

0
8

 3

.0
e
+

0
8

 4

.0
e
+

0
8

 5

.0
e
+

0
8

 6

.0
e
+

0
8

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

Bytes/sec

#
Fr

a
g

m
e
n
ts

 [
Lo

g
-s

ca
le

]

(a
)

N
o
 P

a
rt

ic
ip

a
ti

o
n
 b

y
 R

e
ce

iv
e
r

B
a
n
d

w
id

th
 a

t
2

.4
G

H
z

B
a
n
d

w
id

th
 a

t
1

.2
G

H
z

B
a
n
d

w
id

th
 a

t
2

.9
0

1
G

H
z

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

#
Fr

a
g

m
e
n
ts

 [
Lo

g
-s

ca
le

]

(b
)

W
it

h
 A

ct
iv

e
 P

a
rt

ic
ip

a
ti

o
n
 b

y
 R

e
ce

iv
e
r

B
a
n
d
w

id
th

 a
t

2
.4

G
H

z
B

a
n
d
w

id
th

 a
t

1
.2

G
H

z
B

a
n
d

w
id

th
 a

t
2

.9
0

1
G

H
z

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

#
Fr

a
g
m

e
n
ts

 [
Lo

g
-s

ca
le

]

(c
)

W
it

h
 a

n
 A

d
d
it

io
n
a
l
S
o
ft

w
a
re

 A
g

e
n
t

B
a
n
d
w

id
th

 a
t

2
.4

G
H

z
B

a
n
d
w

id
th

 a
t

1
.2

G
H

z
B

a
n
d
w

id
th

 a
t

2
.9

0
1

G
H

z

F
ig

u
re

12
.4

:
A

ch
ie

va
b

le
R

D
M

A
P

U
T

B
an

d
w

id
th

w
it

h
th

e
se

n
d

er
p

ro
ce

ss
o
p

er
a
ti

n
g

a
t

2
.9

0
1
G

H
z

a
n

d
th

e
re

ce
iv

er
p

ro
ce

ss
op

er
at

in
g

at
a

T
u

rb
o

fr
eq

u
en

cy
of

2
.9

0
1
G

H
z,

a
n

d
n

o
n

-T
u

rb
o

fr
eq

u
en

ci
es

o
f

1
.2

G
H

z
a
n

d
2
.4

G
H

z.
T

h
e

3
su

b
p

lo
ts

co
rr

es
p

on
d

to
im

p
le

m
en

ta
ti

on
s

(a
)

w
it

h
o
u

t
a
n
y

a
ct

iv
e

p
a
rt

ic
ip

a
ti

o
n

b
y

th
e

re
ce

iv
er

(M
el

la
n

ox
S

ca
la

b
le

S
H

M
E

M
)

(b
)

w
it

h
ac

ti
ve

p
ar

ti
ci

p
at

io
n

b
y

th
e

re
ce

iv
er

(M
el

la
n
ox

S
ca

la
b

le
S

H
M

E
M

),
a
n

d
(c

)
u
si

n
g

a
n

a
d

d
it

io
n

a
l

so
ft

w
ar

e
ag

en
t

(O
p

en
S

H
M

E
M

re
fe

re
n

ce
im

p
le

m
en

ta
ti

o
n

ov
er

G
A

S
N

et
-

IB
V

co
n

d
u

it
)

124

into a number of different phases listed in Section 12.3. The data flow within these

approaches are illustrated as line charts in Figures 12.1, 12.2, and 12.3. The corre-

sponding pseudocodes are listed in Appendix-B. The achievable bandwidth for each

of these patterns at different CPU (receiver) frequencies is depicted in Figure 12.4.

Clearly, changing the frequency of the receiver leads to an impact in the performance

of the data transfer. This is discussed later in Section 12.6.

1. Servicing PUTs with No Active Participation by the Receiver

(Refer Figure 12.1)

This case corresponds to the ideal scenario with minimal CPU intervention

and software overhead during a remote write operation (PUT). Low latency of

such transfers is typically achieved using RDMA support provided by modern

interconnects like InfiniBand. Such operations do not require the active par-

ticipation of the remote CPU and bypass the OS on the remote node.

2. Servicing PUTs with Active Participation by the Receiver

(Refer Figure 12.2)

This corresponds to cases where additional software overhead is added by the

communication library to implement data access patterns that are not directly

supported by the underlying hardware. In order to handle the transfer of

discrete user buffers across the network, an implementation may choose to ag-

gregate or pack multiple discrete memory fragments into a single contiguous

memory chunk. This operation is performed locally before transferring the

contents to the remote host. On detecting the arrival of the incoming packets

125

(which typically involves a handshaking signal), the receiver is responsible for

unpacking the contents of the buffer and copying them to their intended des-

tination buffers. One such use case is implementation of strided-data commu-

nication interfaces, which are common among PGAS models. These interfaces

allow the user to initiate transfer of multiple data objects that are not aligned

contiguously in memory.

3. Servicing PUTs Using an Additional Software Agent Supporting

the Receiver (Refer Figure 12.3)

In order to ensure progress of asynchronous PUT operations without interrupt-

ing the receiver’s CPU, an additional thread may be launched at the receiver’s

end for polling the network for incoming transfers. Once this thread detects an

incoming packet, it aids the completion of the data transfer operation by copy-

ing the data contents to the final destination buffers. This leaves the receiver

free to perform a different set of operations, thereby leading to communication-

computation overlap. A use case for such an approach is ensuring the progress

of asynchronous communication on platforms that lack network support for

RDMA-based transfers.

126

12.5 Experimental setup

12.5.1 Method

In order to conduct the study with respect to different approaches of implementing

RDMA patterns, we designed synthetic microbenchmarks based on data-access pat-

terns in communication libraries. The pseudo codes for each of these benchmarks

are listed in Appendix-B.

The patterns were evaluated using two OpenSHMEM processes (PEs), each

launched on a separate but identical compute node and bound to their respective

CPU cores. Each PE played the role of either the sender or the receiver, but not

both. This isolation ensured a comparative study between the two processes. The

patterns depicted in Figures 12.1 and 12.2 were evaluated using the Mellanox Scalable

SHMEM ver-2.2 (over OpenFabrics Byte Transport Layer). For the third pattern,

the OpenSHMEM reference implementation was used (over GASNet with IBV con-

duit)6.

As discussed before, the purpose of the study is to analyze the impact of a receiver

operating at a scaled-down CPU frequency. In our experiments, the CPU frequency

of the sender was held constant at 2.901GHz (turbo-frequency). To study the impact

of frequency scaling of the compute node servicing the receiver, the experiment was

repeated multiple times with the node operating initially at 2.901GHz and later at

2.4GHz and 1.2GHz.

6The reference implementation spawns an additional thread that uses the GASNet Active Mes-
sage framework to detect and handle incoming PUT requests targeting destination buffers that are
declared (i) as global or static (in C), or (ii) as save or within common blocks (in Fortran).

127

The results of the microbenchmarks are depicted in Figures 12.5,12.6, and 12.7.

Every data point in the figure corresponds to a transfer of a fixed data payload of

512KiB. The x-axis indicates the number of fragments used to transfer the fixed

payload. In this work, the term ‘fragments’ corresponds to the number of explicitly

initiated OpenSHMEM PUT operations - a user controllable parameter. It must be

noted, however, that the data payload may be further split into smaller packets by

the underlying software and hardware stack.

The effect of frequency scaling was studied in terms of the impact on 6 different

metrics:

1. The energy consumed by the CPU servicing the sender process

2. The energy consumed by the CPU servicing the receiver process

3. The energy consumed by the DRAM servicing the sender process

4. The energy consumed by the DRAM servicing the receiver process

5. The unidirectional point-to-point latency (as measured at the sender’s side)

6. The Energy Delay Product (EDP)7

The impact I may be represented as the percent reduction in the above metrics

M due to application of a DVFS technique T that scales down the frequency of the

7While CMOS circuits have the ability to trade performance for energy savings, it becomes
challenging to optimize for both simultaneously. The EDP, first proposed by Horowitz[57, 69], takes
into account both the energy and the time costs in an implementation-neutral manner. For cases,
where energy and performance have equal importance, this metric can be calculated as a product
of the energy consumed and the time taken. For more complicated cases, where performance is
given a higher priority, the weight of the “delay” factor is increased by squaring or cubing it.

128

receiver from an operating frequency Finitial to a reduced frequency, Ffinal. It can be

calculated as follows:

I =
M(Finitial)−M(Ffinal)

F (Cinitial)
∗ 100

From the expression above, it must be noted that a negative or positive impact

value of I suggests a corresponding rise or drop in a metric M due to application

of T . A zero value indicates an absence of any impact on M . The impact on each

metric is illustrated in Figures 12.5, 12.6, and 12.7.

12.5.2 Test-bed Characteristics

Our test platform comprised of two Sandy Bridge nodes connected via InfiniBand.

The characteristics of these nodes are listed in Table 12.2.

12.5.3 Power/Energy Measurement

Each node contains power monitoring support and reports energy/power readings at

the CPU, DRAM, and the node level. Each node has instrumented voltage regulators

(VRs) that are sampled at a frequency of 1 KHz for both sockets and the four voltage

lanes of the DIMMs (Dual In-line Memory Modules) on board. With the help of

an FPGA, a digital filter is applied to smooth the samples. Furthermore, a linear

correction is applied to the measurement data coming from the VRs in order to

ensure an error margin not exceeding 3%. Our study was aimed at performing a

fine-grained analysis of the impact on two main components that dictate the energy

and power consumption of a system - the CPU and the DRAM8.

8More information about the High Definition Energy Efficiency Monitoring (HDEEM)
project is available at http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/

forschung/projekte/hdeem

129

http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/projekte/hdeem
http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/projekte/hdeem

 -100

 -50

 0

 50

 100

1

4

 1
6

 6
4

 2
56

10
24

40
96

 1

63
84

 6

55
36

 2

62
14

4

Im
pa

ct
 o

f s
ca

lin
g

(%
 r

ed
uc

tio
n)

Total number of fragments [Log-scale]

(a) Sender: Impact on CPU Energy

Impact:2.901GHz->2.4GHz
Impact:2.901GHz->1.2GHz

 -100

 -50

 0

 50

 100

1

4

 1
6

 6
4

 2
56

10
24

40
96

 1

63
84

 6

55
36

 2

62
14

4

Im
pa

ct
 o

f s
ca

lin
g

(%
 r

ed
uc

tio
n)

Total number of fragments [Log-scale]

(b) Sender: Impact on DRAM Energy

Impact:2.901GHz->2.4GHz
Impact:2.901GHz->1.2GHz

 -100

 -50

 0

 50

 100

1

4

 1
6

 6
4

 2
56

10
24

40
96

 1

63
84

 6

55
36

 2

62
14

4

Im
pa

ct
 o

f s
ca

lin
g

(%
 r

ed
uc

tio
n)

Total number of fragments [Log-scale]

(c) Receiver: Impact on CPU Energy

Impact:2.901GHz->2.4GHz
Impact:2.901GHz->1.2GHz

 -100

 -50

 0

 50

 100

1

4

 1
6

 6
4

 2
56

10
24

40
96

 1

63
84

 6

55
36

 2

62
14

4

Im
pa

ct
 o

f s
ca

lin
g

(%
 r

ed
uc

tio
n)

Total number of fragments [Log-scale]

(d) Receiver: Impact on DRAM Energy

Impact:2.901GHz->2.4GHz
Impact:2.901GHz->1.2GHz

 -100

 -50

 0

 50

 100

1

4

 1
6

 6
4

 2
56

10
24

40
96

 1

63
84

 6

55
36

 2

62
14

4

Im
pa

ct
 o

f s
ca

lin
g

(%
 r

ed
uc

tio
n)

Total number of fragments [Log-scale]

(e) Impact on Unidirectional Latency

Impact:2.901GHz->2.4GHz
Impact:2.901GHz->1.2GHz

 -100

 -50

 0

 50

 100

1

4

 1
6

 6
4

 2
56

10
24

40
96

 1

63
84

 6

55
36

 2

62
14

4

Im
pa

ct
 o

f s
ca

lin
g

(%
 r

ed
uc

tio
n)

Total number of fragments [Log-scale]

(f) Impact on EDP

Impact:2.901GHz->2.4GHz
Impact:2.901GHz->1.2GHz

Figure 12.5: Impact of frequency scaling on energy and performance metrics for implementations
which do not require active participation by the receiver during a one-sided point-to-point remote
PUT operation. The line-chart and the pseudo-code of this approach is depicted in Figure 12.1.

130

 -100

 -50

 0

 50

 100

1

4

 1
6

 6
4

 2
56

10
24

40
96

 1

63
84

 6

55
36

 2

62
14

4

Im
pa

ct
 o

f s
ca

lin
g

(%
 r

ed
uc

tio
n)

Total number of fragments [Log-scale]

(a) Sender: Impact on CPU Energy

Impact:2.901GHz->2.4GHz
Impact:2.901GHz->1.2GHz

 -100

 -50

 0

 50

 100

1

4

 1
6

 6
4

 2
56

10
24

40
96

 1

63
84

 6

55
36

 2

62
14

4

Im
pa

ct
 o

f s
ca

lin
g

(%
 r

ed
uc

tio
n)

Total number of fragments [Log-scale]

(b) Sender: Impact on DRAM Energy

Impact:2.901GHz->2.4GHz
Impact:2.901GHz->1.2GHz

 -100

 -50

 0

 50

 100

1

4

 1
6

 6
4

 2
56

10
24

40
96

 1

63
84

 6

55
36

 2

62
14

4

Im
pa

ct
 o

f s
ca

lin
g

(%
 r

ed
uc

tio
n)

Total number of fragments [Log-scale]

(c) Receiver: Impact on CPU Energy

Impact:2.901GHz->2.4GHz
Impact:2.901GHz->1.2GHz

 -100

 -50

 0

 50

 100

1

4

 1
6

 6
4

 2
56

10
24

40
96

 1

63
84

 6

55
36

 2

62
14

4

Im
pa

ct
 o

f s
ca

lin
g

(%
 r

ed
uc

tio
n)

Total number of fragments [Log-scale]

(d) Receiver: Impact on DRAM Energy

Impact:2.901GHz->2.4GHz
Impact:2.901GHz->1.2GHz

 -100

 -50

 0

 50

 100

1

4

 1
6

 6
4

 2
56

10
24

40
96

 1

63
84

 6

55
36

 2

62
14

4

Im
pa

ct
 o

f s
ca

lin
g

(%
 r

ed
uc

tio
n)

Total number of fragments [Log-scale]

(e) Impact on Unidirectional Latency

Impact:2.901GHz->2.4GHz
Impact:2.901GHz->1.2GHz

 -150

 -100

 -50

 0

 50

 100

 150

1

4

 1
6

 6
4

 2
56

10
24

40
96

 1

63
84

 6

55
36

 2

62
14

4

Im
pa

ct
 o

f s
ca

lin
g

(%
 r

ed
uc

tio
n)

Total number of fragments [Log-scale]

(f) Impact on EDP

Impact:2.901GHz->2.4GHz
Impact:2.901GHz->1.2GHz

Figure 12.6: Impact of frequency scaling on energy and performance metrics for implementations
which depend on active participation by the receiver in order to ensure completion of one-sided
point-to-point remote PUT operation. The line-chart and the pseudo-code of this approach is
depicted in Figure 12.2.

131

 -100

 -50

 0

 50

 100

1

4

 1
6

 6
4

 2
56

10
24

40
96

 1

63
84

 6

55
36

 2

62
14

4

Im
pa

ct
 o

f s
ca

lin
g

(%
 r

ed
uc

tio
n)

Total number of fragments [Log-scale]

(a) Sender: Impact on CPU Energy

Impact:2.901GHz->2.4GHz
Impact:2.901GHz->1.2GHz

 -100

 -50

 0

 50

 100

1

4

 1
6

 6
4

 2
56

10
24

40
96

 1

63
84

 6

55
36

 2

62
14

4

Im
pa

ct
 o

f s
ca

lin
g

(%
 r

ed
uc

tio
n)

Total number of fragments [Log-scale]

(b) Sender: Impact on DRAM Energy

Impact:2.901GHz->2.4GHz
Impact:2.901GHz->1.2GHz

 -100

 -50

 0

 50

 100

1

4

 1
6

 6
4

 2
56

10
24

40
96

 1

63
84

 6

55
36

 2

62
14

4

Im
pa

ct
 o

f s
ca

lin
g

(%
 r

ed
uc

tio
n)

Total number of fragments [Log-scale]

(c) Receiver: Impact on CPU Energy

Impact:2.901GHz->2.4GHz
Impact:2.901GHz->1.2GHz

 -300

 -250

 -200

 -150

 -100

 -50

 0

 50

 100

1

4

 1
6

 6
4

 2
56

10
24

40
96

 1

63
84

 6

55
36

 2

62
14

4

Im
pa

ct
 o

f s
ca

lin
g

(%
 r

ed
uc

tio
n)

Total number of fragments [Log-scale]

(d) Receiver: Impact on DRAM Energy

Impact:2.901GHz->2.4GHz
Impact:2.901GHz->1.2GHz

 -100

 -50

 0

 50

 100

1

4

 1
6

 6
4

 2
56

10
24

40
96

 1

63
84

 6

55
36

 2

62
14

4

Im
pa

ct
 o

f s
ca

lin
g

(%
 r

ed
uc

tio
n)

Total number of fragments [Log-scale]

(e) Impact on Unidirectional Latency

Impact:2.901GHz->2.4GHz
Impact:2.901GHz->1.2GHz

 -100

 -50

 0

 50

 100

1

4

 1
6

 6
4

 2
56

10
24

40
96

 1

63
84

 6

55
36

 2

62
14

4

Im
pa

ct
 o

f s
ca

lin
g

(%
 r

ed
uc

tio
n)

Total number of fragments [Log-scale]

(f) Impact on EDP

Impact:2.901GHz->2.4GHz
Impact:2.901GHz->1.2GHz

Figure 12.7: Impact of frequency scaling on energy and performance metrics for implementations
which relies on an additional asynchronous software agent to ensure completion of one-sided point-
to-point remote PUT operation. The line-chart and the pseudo-code of this approach is depicted
in Figure 12.3.

132

Table 12.2: Characteristics of the Test Platform

Processor Intel Xeon CPU E5-2670
Microarchitecture Intel’s Sandy Bridge
L3 cache per die 20MiB
Cores 2x 8
Main Memory 32GiB
Infiniband card Mellanox MT27500, ConnectX-3
Linux kernel version 2.6.32 x86 64

12.6 Results

This section discusses the empirical results obtained on scaling down the operating

frequency of the CPU servicing the receiver process. The impact is discussed for

each of the implementation approaches depicted in Figures 12.1, 12.2, and 12.3.

12.6.1 No Participation by the Receiver

• For the sender process, Figures 12.5-a/b suggest that there is no significant

impact (≈ 0%) of frequency scaling on the energy consumption by the CPU

and DRAM. This is true regardless of the extent of fragmentation (number of

discrete buffers) used for transferring the data payload (Phase A) and ensuring

its completion (Phase B). This may be attributed to the fact that the latency

of the transfer is dictated by the bandwidth of the network interconnect (In-

finiBand, in this case) which is orders of magnitude smaller than that of the

I/O interconnect between the network adapter and the last-level (L3) cache on

the receiver’s side. Since scaling down the frequency of the receiver CPU does

not affect the bandwidth of the network interconnect, there is no significant

impact during the actual RDMA-based transfers (Phases A and B).

133

• For the receiver CPU, Figure 12.5-c indicates that definite energy savings can

be achieved due to scaling down of the operating frequency. Also, these savings

are higher with a greater drop in the frequency (≈ 50% versus 68% when the

frequency is scaled down from 2.901GHz to 2.4GHz and 1.2GHz respectively).

This holds true regardless of the number of discrete fragments being transferred.

This is not surprising because the CPU at the receiver’s end does not contribute

to the data transfer operation and therefore the savings can be attributed to

the reduced rate of polling at the synchronization point (Phase D).

• Figure 12.5-d shows that the energy savings for the receiver DRAM is almost

constant (≈ 50%) regardless of the frequency level to which the CPU is scaled

down to. It must be noted that due to Intel’s direct-I/O technology[78], there

is almost no participation by the receiver DRAM during this transfer; the

contents of the data transfer is directed to the L3-cache without the need for

accessing the DRAM. Nevertheless we see significant savings in its energy con-

sumption when the CPU frequency is scaled down. The fact that the savings is

non-zero and independent of the final frequency suggests that the energy con-

sumed by the DRAM is higher when the CPU operates at the turbo-frequency

(2.901GHz) and is almost constant at other lower non-turbo frequency levels.

Another observation is that for high fragmentation count (number of PUTs

> 32K), there is a drop in energy savings. This suggests a rise in memory

accesses for higher fragmentation. This is because, despite the use of the L3-

cache described above, Intel’s chipsets limits the use of this cache up to 10%

134

of its size - which, on our platform is about 2MB. With a rise in fragmenta-

tion (and hence, smaller sized PUTs), the relative overhead per network packet

increases. This may be the potential cause for the L3-cache limit getting ex-

hausted thereby leading to direct-I/O operations that target the DRAM.

• Figure 12.5-e highlights one of the major observations of this experiment. It

affirms the fact that reducing the CPU frequency of the receiver in case of a

one-sided transfer with no participation by the receiver CPU leads to no impact

on the latency of the data transfer pattern.

• In terms of the net impact on the two-node system, we see that the energy sav-

ings at the CPU servicing the receiver dominates the savings in Energy Delay

Product (EDP) (Figure 12.5-f).

12.6.2 Active Participation by the Receiver

Figure 12.6 depicts the impact of frequency scaling on a remote PUT operation that

involves aggregation of discrete user buffers by the sender and the corresponding

unpacking by the receiver. It can be observed that the impact of this pattern is

significantly different from that discussed in Figure 12.5.

• From Figure 12.2, we see that the time spent by the sender CPU within Phase C

is dependent on the performance of the receiver in Phase E. From Figure 12.6-a,

we observe that the energy consumption by the sender CPU is dependent on

the frequency to which the receiver CPU is scaled down to. During Phase C,

the sender CPU is primarily involved in a polling operation. As a result, the

135

S/w Agent Receiver S/w Agent Receiver S/w Agent Receiver

Core 1
Freq F1

Initial Frequency F1 > Scaled Down Frequency F2

Reduced power
consumption with

no significant
impact on

performance

No Change in
frequency ensures

no performance
degradation

during data transfer

Reduced power
consumption

but rise in
execution time

Prolonged exection
time due to

frequency drop
from F1 to F2

Without frequency scaling
both the processes

operate at the
same frequency F1

RDMA
PUTs

RDMA
PUTs

RDMA
PUTs

Platform with all cores
on same voltage plane

Platform with each core
on a separate voltage plane

(a) Initial state: all cores
operating at equal and highest
voltage/frequency setting

(b) All cores scaled down to
the same voltage/frequency
setting

(c) Each core operating at a
volage/frequency setting which
is independent of other sibling
cores.

Phase executed with scaled down CPU frequency F2

Core 2
Freq F1

Core 1
Freq F2

Core 2
Freq F2

Core 1
Freq F1

Core 2
Freq F2Timeline

Figure 12.8: Benefit of using DVFS at the granularity of individual cores

energy consumption is directly proportional to the time spent in this phase,

which in turn is dependent on the frequency of the receiver. This explains the

relatively higher (negative) impact on the receiver CPU energy during Phase C

(≈ 0 to (−20)% versus (−75) to (−98)% when the frequency is scaled down

from 2.901GHz to 2.4GHz and 1.2GHz respectively).

• Figure 12.6-b suggests that there is a negative impact on the sender’s DRAM

(rise in the energy consumption) when the receiver is operated at 1.2GHz. In

this communication pattern, the two phases during which the sender’s DRAM

participates are phases F and B. From Table 12.1, neither of these phases have

the potential of being affected by scaling down the frequency of the receiver.

Therefore, we do not completely understand the cause for the rise in energy. We

136

are currently performing additional experiments to understand this behavior.

It must be noted that this does not affect further analyses of this pattern

simply because the magnitude of the DRAM energy here, is of the order of

tens of milliseconds, which is negligible in comparison to that of the CPU

(with energy consumption that is higher by two orders of magnitude).

• Figure 12.6-c shows that there is a definite rise in the energy savings of the

receiver’s CPU, due to scaling down its frequency. It is important to note

that regardless of the frequency down to which the CPU is scaled, the impact

remains almost equal. This suggests that as long as the CPU is not operating

in turbo frequency (2.901GHz), consistent energy savings (≈ 50%) can be

expected.

• Figure 12.6-d shows that the impact of energy consumption by the receiver

DRAM is dependent on the CPU frequency scaling. We observe that reduc-

ing the frequency from turbo (2.901GHz) to 2.4GHz has a positive impact on

memory access rate. This leads to energy savings for the DRAM (≈ 25%).

However, dropping the frequency to 1.2GHz drops the memory access rate to

a point that leads to an energy inefficient transfer of the same size of data

payload (≈ (−30)%).

• The unidirectional latency of this approach appears to follow a similar trend

to that of the sender’s CPU energy: From Figure 12.6-e, the extent of impact

on the latency is dependent on the frequency to which the (≈ 0 to (−20)%

versus (−75) to (−98)% when the frequency is scaled down from 2.901GHz to

137

2.4GHz and 1.2GHz respectively).

• In terms of impact on the Energy Delay Product (EDP) due to frequency

scaling, Figure 12.6-f shows that the behavior is dictated by the impact on

the receiver’s DRAM. We see that reducing the receiver CPU frequency from

2.901GHz to 2.4GHz leads to positive savings (≈ 10%). However, reducing the

frequency to 1.2GHz leads to negative impact as high as 90%.

12.6.3 Additional Thread Supporting the Receiver

Figure 12.7 depicts the impact of frequency scaling on a remote PUT operation that

is completed with the assistance of an additional thread coupled with the receiver.

This implementation approach suffers from the design of CPUs with compute cores

sharing the same voltage plane. In this study, this architecture characteristic was

true for the target SandyBridge processors.

• In order to decrease the frequency of the SandyBridge core servicing the receiver

process, all the cores on the same voltage plane have to be scaled down. As seen

in Figure 12.7-e, this impacts the unidirectional latency of the transfer process.

More specifically, when the frequency of the receiver CPU is scaled down from

2.901GHz to 1.2GHz, the latency increases by up to 50% (negative impact).

However, the impact is different when the CPU is scaled to 2.4GHz instead.

In fact, it is observed that there is either zero or up to 20% drop (positive

impact) in the latency. The variability in the impact may be attributed to

the fact that there is a trade-off between the energy costs associated with

138

two different phases at the receiver’s end - (a) The polling operation by the

receiver process (Phase D) (b) The memory management by the support thread

(Phase G). On reducing the frequency to 2.4GHz, the energy savings during

Phase D dictates that of the entire CPU. However, reducing the frequency

to 1.2GHz significantly impacts the performance of the support thread which

makes Phase G contribute strongly to a rise in the latency (negative impact).

• Similar to the latency, the energy consumption by the sender’s CPU also varies

based on the operating frequency of the receiver CPU (Figure 12.7-a). Since the

frequency of this CPU is not altered, the similarity in the energy and latency

characteristics may be attributed to the CPU time invested to synchronize with

the receiver (Phase B).

• Figure 12.6-f summarizes the net impact of frequency scaling in terms of the

achievable Energy Delay Product (EDP). Up to 64 PUTs, the EDP of the data

transfer at 2.4GHz is higher by 50% than at 2.901GHz. Beyond 256 PUTs,

the impact is almost negligible. However, while on dropping the frequency to

1.2GHz, there is a significant performance degradation or 50% or higher.

12.7 Using DVFS in a multicore environment

The scope of this chapter is limited to evaluating the performance/energy metrics

of RDMA operations between two processes, each bound to a single CPU core on

different nodes. For the first two implementation approaches, the study was restricted

to studying the impact of only these two cores participating in the data transfer

operation. However, in real-world multicore HPC environment, it is almost always

139

the case that a process running on one core is accompanied by additional software

agents (OS processes / threads) running on sibling cores. In such an environment,

using DVFS on a single core has a potential of affecting the activity of other cores.

The feasibility of using DVFS in a multicore environment is heavily dependent

on its design and architecture of the target processor. Consider the case of Sandy

Bridge processors. In this case, all the CPU cores lie on the same voltage/frequency

plane[131]. In other words, all the cores operate at the same frequency level. Thus,

a naive energy efficient solution of operating all the frequencies at a lower frequency

in order to favor a single core might lead to significant performance degradation

of software agents operating on other cores. This is illustrated in Figure 12.8(b).

This issue may be alleviated in case of processors like the Haswell series where each

core can be operated at a voltage/frequency setting that is independent of other

cores[64]. This approach has the potential of alleviating the performance impact of

implementations which rely on using an additional thread to handle data transfers.

This is shown in Figure 12.8(c).

12.8 Lessons learned

The main lessons learned using empirical analysis of each of the above approaches

are listed below:

• High energy savings with negligible performance impact may be achieved when

the target process of a remote PUT operation does not participate in servicing

the data transfer. This is applicable for implementation approaches that rely

on RDMA-based capabilities of the underlying interconnect.

140

• For an implementation where the target process does participate in a data

transfer operation, scaling down the frequency of that process not only affects

the unidirectional latency but also the energy consumption, which worsens with

a drop in the CPU operating frequency.

• For an implementation using an additional software agent for servicing a trans-

fer, the extent of impact depends on: (a) The number of explicit PUT opera-

tions used to transfer the data payload, (b) The actual operating frequency of

the CPU servicing the receiver, and (c) Architectural design of the target CPU

in terms of whether multiple cores on a CPU share the same voltage plane or

not.

12.9 Chapter Summary

This work details the impact of CPU frequency scaling on the performance and energy

consumption of remote data transfers. The empirical results presented are instruc-

tional for system developers of energy efficient solutions for distributed memory pro-

gramming models, especially PGAS. The focus was to analyze the impact of using DVFS

(Dynamic Voltage Frequency Scaling) on the performance and energy metrics of

system components servicing one-sided RDMA operations. Multiple cost factors

that affect the energy and performance during DVFS-based techniques were iden-

tified. These factors are dependent on not only software stack but also various

microarchitectural design factors. Their impact was analyzed with respect to three

common implementation approaches of PGAS point-to-point communication - (a)

Using RDMA capable underlying software and hardware stack to service transfers

141

without the active participation of a target process, (b) Relying on the receiver pro-

cess to participate in the data transfer to ensure its completion, and (c) Using an

additional software agent (e.g., OS thread) at the receiver’s side to assist in comple-

tion of the operation.

The main lessons learned using empirical analysis of each of the above approaches

are listed below:

• High energy savings with negligible performance impact may be achieved when

the target process of a remote PUT operation does not participate in servicing

the data transfer. This is applicable for implementation approaches that rely

on RDMA-based capabilities of the underlying interconnect.

• For an implementation where the target process does participate in a data

transfer operation, scaling down the frequency of that process not only affects

the unidirectional latency but also the energy consumption, which worsens with

a drop in the CPU operating frequency.

• For an implementation using an additional software agent for servicing a trans-

fer, the extent of impact depends on: (a) The number of explicit PUT opera-

tions used to transfer the data payload, (b) The actual operating frequency of

the CPU servicing the receiver, and (c) Architectural design of the target CPU

in terms of whether multiple cores on a CPU share the same voltage plane or

not.

For more details about the topics discussed in this Chapter, the interested reader

is directed to the literature documented by Jana et al. under [81].

142

Chapter 13

Proposed Solution: Reviving

Active Messages

Recent reports on challenges of programming models at extreme scale suggest a shift

from traditional block synchronous execution models to those that support more

asynchronous behavior. The OpenSHMEM programming model enables HPC pro-

grammers to exploit underlying network capabilities while designing asynchronous

communication patterns. The strength of its communication model is fully real-

ized when these patterns are characterized with small low-latency data transfers.

However, for cases with large data payloads coupled with insufficient computation

overlap, OpenSHMEM programs suffer from underutilized CPU cycles.

143

In order to tackle the above challenges, this chapter explores the feasibility of in-

troducing Active Messages in the OpenSHMEM model. Active Messages is a well es-

tablished programming paradigm that enables a process to trigger execution of com-

putation units on remote processes. Using empirical analyses, we show that this ap-

proach of moving computation closer to data provides a mechanism for OpenSHMEM

applications to avoid the latency costs associated with bulk data transfers. In ad-

dition, this programming pattern helps reduce the need for unwanted synchroniza-

tion among processes, thereby exploiting more asynchrony within an algorithm. As

part of this preliminary work, we propose an API that supports the use of Active

Messages within the OpenSHMEM execution model. We present a microbenchmark-

based performance evaluation of our prototype implementation. We also compare

the execution of a Traveling-Salesman Problem designed with and without Active

Messages. Our experiments indicate promising benefits at scale.

13.1 Introduction

In recent years, research surveys that highlight the challenges faced by current pro-

gramming models at extreme scale, have indicated a shift from the de facto SPMD

style message passing models. With regards to the need for asynchrony within pro-

gramming models, the report on ASCR Programming Challenges for Exascale Com-

puting [8] states that, “The increased variation on execution speed of various com-

ponents, due to error recovery and power management, will require codes that are

more tolerant to noise, hence, more asynchronous”. In accordance with this, multi-

ple research efforts are being directed towards adopting programming languages and

144

libraries that support task-based algorithm design.

In this chapter, we explore the feasibility of introducing support for Active Mes-

sages to OpenSHMEM1, a one-sided SPMD-based PGAS programming model. Ac-

tive messages (AM) provide a means of triggering a user-specified unit of computation

at a different process (or Processing Element or PE). The main motivation is to en-

able asynchronous execution of small compute paths and overlap of communication,

with very little synchronization overhead incurred at the source and the target PE.

The user-specified function (called a ‘handler’) has access to the user address space

at the target PE. Thus, Active Messages (or AM) let PEs inject computation on

remote destinations that host memory objects that are either remotely inaccessible

due to the memory model or too costly for data movement.

 SOURCE
PROCESS

A

TARGET
PROCESS

B

 REPLY
HANDLER

REQUEST
HANDLER

AM REQUEST

AM REPLY
(optional)

optional

Time
t

Figure 13.1: Execution flow of an Active Message

Request

The contribution of this work and

the chapter layout is as follows: (i) De-

scription of a point-to-point interaction

between a pair of processes using Active

Messages (Section 13.2) and comparison

of the AM handler with a task. (ii) Pro-

posal of an API that introduces Active

Messages within the OpenSHMEM pro-

gramming model (Section 13.3) (iii) A

prototype implementation of AM within

1OpenSHMEM is a trademark of Silicon Graphics International Corp.

145

the OpenSHMEM reference implemen-

tation over GASNet (iv) Empirical study using synthetic microbenchmarks and a

miniapp that evaluates the performance of the prototype (Section 13.4) (v) List of

different research efforts in the field of task management in a distributed environ-

ment (Section 13.5). (vi) A summary of the lessons learned and potential future

work (Section 13.6).

13.2 Overview of Active Messages

Figure 13.1 depicts the flow diagram of two processes communicating using Active

Messages. The progress of the communication between the source process A and the

target process B is described below:

1. Both A and B register the function handlers with the AM library.

2. Source process A sends an AM request to remote process B. This AM request

mainly comprises (1) the identity of B, (2) the identity of the handler to be

executed at B, and (3) optionally, contents of the data buffer to be passed as

input to the handler.

3. On receiving the AM request, process B chooses to asynchronously execute the

requested function handler. At the start of the execution, it gains access to

any data buffer that was transferred. This function that is executed at process

B is called the ‘request handler’.

4. During the execution of the request handler, process B may optionally choose

to post a reply AM back to A. Similar to the AM sent by A, this reply AM

146

contains the identity of the handler to be executed at A along with an optional

data payload.

5. At some point in time, on detecting the arrival of the above reply AM, A exe-

cutes the handler corresponding to the identity listed in the incoming message.

The handler which is executed as a response to this AM is called the ‘reply

handler’.

13.2.1 Active Message v/s Intra-node Tasking Models

Active Messages can be viewed as a mechanism to launch a unit of task on a user-

specified process that may be located on a remote or a local node. This is unlike

common intra-node tasking models where one has to rely on a scheduler to assign

resources for execution, the AM model allows the programmer to explicitly specifying

the destination for the execution. Another difference is that while the computation

associated with an intra-node task is expected to return a specific result to a ‘par-

ent‘ unit, computation of AM handlers are usually intended to update local data

structures. Another point to note is that while intra-node tasking models allow es-

tablishing dependence among multiple tasks, inter-node tasking supported by AM

models focus on asynchronous execution of independent handlers.

13.3 Proposed Extensions for Supporting Active Messages

This section describes the proposed interface of AM handlers and the related AM

management functions 2 related to: (1) design of an AM handler, (2) registration of

2Note: As a norm in the OpenSHMEM community, all the AM related functions in this chapter
have been prefixed with ‘shmemx ’ instead of ‘shmem ’ to indicate that they are proposed extensions

147

AM handlers, (3) initiating AMs, (4) the completion of AMs, and (5) handler-safe

locking. The set of the proposed interfaces for C is shown in Listing13.1.

Design of an AM Handler

The actual body of an AM handler is enclosed within a user-defined function.

The purpose of active messages is to enable injection of code paths that contain a

small set of computation that remains independent of the progress of other PEs. The

design of an AM handler should therefore adhere to the following set of constraints:

• The handler body should not call other function routines from the OpenSHMEM

library, that have the potential to trigger an inter-PE communication. This in-

cludes point-to-point communication, synchronization constructs, atomic op-

erations, and other AM related functions (excluding those related to mutual

exclusion).

• The execution of an AM handler can progress in an OS thread that runs concur-

rent to the one servicing the critical path of a PE. It becomes the responsibility

of the programmer to ensure that no race conditions occur when a data object

is made accessible to both an AM handler as well as the execution path of a

PE. If one of the accesses is a write operation, handler-safe locks can be used

to ensure mutual exclusion.

• If a data object is a target of a write operation during the execution of the

handler routine, handler-safe locks should be used to avoid race conditions.

to the standard and not part of the current specification.

148

/∗∗ Function Handler S ignature ∗∗/

void user funct ion name (void∗ data bu f f e r , s i z e t b u f f e r s i z e , int

c a l l i n g p e i d , shmemx am token t token)

/∗∗ (De) R e g i s t r a t i o n o f Act ive Message h a n d l e r s ∗∗/

typedef void (∗ shmemx am handler) (void ∗buf , s i z e t nbytes , int

req pe , shmemx am token t token)

void shmemx am attach (int hand le r id , shmemx am handler hand l e r p t r)

void shmemx am detach (int h an d l e r i d)

/∗∗ I n i t i a t i n g Act ive Messages ∗∗/

void shmemx am request (int dest , int hand le r id , void∗ source addr ,

s i z e t nbytes)

void shmemx am reply (int hand le r id , void∗ source addr , s i z e t

nbytes , shmemx am token t temp token)

/∗∗ Progress and Completion ∗∗/

void shmemx am quiet ()

void shmemx am poll ()

/∗∗ Handler−Safe Locking ∗∗/

void shmemx am mutex init (shmemx am mutex∗ t)

void shmemx am mutex destroy (shmemx am mutex∗ t)

void shmemx am mutex lock (shmemx am mutex∗ t)

void shmemx am mutex unlock (shmemx am mutex∗ t)

int shmemx am mutex trylock (shmemx am mutex∗ t)

Listing 13.1: Proposed API routines for Active Messages in OpenSHMEM

149

Registration of AM Handlers This features the following two collective API

routines:

• shmemx am attach: Enables the calling PE to register the function pointed to

by the function pointer. The user passes a handler-id that is used to map the

handler to the corresponding function. On return from this function, a PE can

use the handler id to launch an AM until its association to the handler function

is removed using shmemx am detach. It must be noted that the remote PE

itself need not register the handler if it does not intend to execute it during

its lifetime. Since a function being registered can only be used as an AM

handler after it has been registered, some type of synchronization between the

two PEs may be necessary to ensure that the function registration is complete

on the target PE. Different PEs can register the same function with different

handler-ids.

• shmemx am detach: This removes the mapping between a handler-id and the

function mapped to the id. Once detached, it is illegal for any other PE to

reuse the same handler id to launch an AM unless it is explicitly remapped

using shmemx am attach by the current PE.

Initiating Active Messages

• shmemx am request: This function is used to launch an AM on a remote PE

destination. The contents of the user buffer is transferred to the target PE along

with the id of the function. On receiving this request, the target PE executes

the corresponding handler. On return from this request function, there is no

150

guarantee of the completion of execution of the handler by the target PE. This

asynchrony reduces the overhead at the source PE. To enable the source PE

to reuse the data buffer, it is essential that this function copies the contents to

a temporary buffer internally before returning to the user address space.

• shmemx am reply: In a two-sided request-reply communication model, this

function is used by the request AM handler to launch a reply AM handler

at the source PE that had issued the AM.

The Completion of Active Messages

• shmemx am quiet: This function enables the calling PE to ensure that the re-

quest handlers of all previously posted Active Messages and their corresponding

response handlers (if any) have completed their execution.

• shmemx am poll: This polls the network for any outstanding AM requests. It

must be noted that while this function can be used by a programmer to wait

for a certain event to occur, it is not necessary for an OpenSHMEM implemen-

tation to rely on this function to make progress. An implementation should

be free to exploit interrupt driven mechanisms or asynchronous notification

capabilities of the underlying operating system or the hardware platform, re-

spectively.

Handler-Safe Locking

Since the critical path of the PE and the AM handler may run concurrently, it

becomes necessary to ensure mutually exclusive accesses to shared data structures.

151

For this, we propose a new data type called shmemx am mutex. It becomes the

responsibility of the programmer to ensure that an object of this data type be visible

to both the AM function handler as well as the main PE thread. An object of this

type represents a mutex variable that can be passed to the following functions to

avoid overlapping access of shared memory.

• shmemx am mutex init: Initializes the mutex variable. Typically, the purpose

is to ensure that the initial state of the variable becomes visible to both the

critical path of the PE as well as the AM handler.

• shmemx am mutex destroy: Ensures that the variable is no longer usable by

the critical path of the PE or the calling thread. This provides an opportunity

for an implementation to clean up memory associated with the variable.

• shmemx am mutex lock: Attempts to acquire the mutex variable exclusively. If

unsuccessful, the calling PE remains blocked until it gains access to the mutex.

• shmemx am mutex unlock: Releases the ownership of the mutex variable.

• shmemx am mutex trylock: Attempts to acquire the mutex variable exclusively.

If unsuccessful, it returns 0 to the callee and its execution continues with block-

ing. If successful, it returns a non-zero number.

13.4 Prototype Evaluation

13.4.1 Implementation Design

152

Shared Memory, Ethernet, IB, Myrinet GM,
IBM LAPI, Cray Gemini & Aries...

OpenSHMEM reference
implementation (p2p,

AMO, synchronizations,
collectives)

Active Message
Prototype

Implementation

OpenSHMEM Program

Active
Messages

Core API AMO Barriers

GASNet Library

Figure 13.2: Incorporation of the the proposed

Active Messages prototype into the OpenSHMEM

reference implementation

The prototype implementation3 was de-

signed as part of the OpenSHMEM

reference implementation[34] which, in

turn uses GASNet[27] for inter-process

communication. Our prototype is built

on top of the existing support of Ac-

tive Messages that is offered by GAS-

Net. The incorporation of the pro-

totype within the OpenSHMEM refer-

ence implementation is illustrated in

Figure 13.2. It must be noted that fine-tuned implementations of Active Messages in

OpenSHMEM should take advantage of network hardware capabilities (if any) and

the exploration of different design approaches is out-of-scope of this chapter.

13.4.2 Experimental Setup

The experimental results presented in the following sections were obtained using

a cluster with AMD Opteron processors (model 6174) and Infiniband interconnect

(Mellanox MT26418). Each compute node comprises of a total of 48 cores (4 socket-

s/node, 12 cores/socket) with approximately 5MB shared L3 cache and 16GB main

memory. The OS distribution on each compute node is OpenSUSE Linux (ver. 3.11).

Process Layout The results from the bandwidth and message rate tests, mi-

crobenchmarks were obtained by binding each process (PE) to a specific core on

3The Active Message prototype implementation is available as a fork of the OpenSHMEM refer-
ence implementation and is available as a git repository at https://github.com/openshmem-org/
openshmem-am

153

https://github.com/openshmem-org/openshmem-am
https://github.com/openshmem-org/openshmem-am

0.0e+00

5.0e+07

1.0e+08

1.5e+08

2.0e+08

2.5e+08

3.0e+08

3.5e+08

4.0e+08

4.5e+08

 1 4 1
6

 6
4

25
6

10
24

B
an

dw
id

th
 (

B
yt

es
/s

ec
)

Payload size [Bytes]

Active Messages
RDMA PUTs

(a) Inter-node Unidirectional Bandwidth
(bytes/sec)

0.0e+00

5.0e+07

1.0e+08

1.5e+08

2.0e+08

2.5e+08

3.0e+08

3.5e+08

 1 4 1
6

 6
4

25
6

10
24

B
an

dw
id

th
 (

B
yt

es
/s

ec
)

Payload size [Bytes]

Active Messages
RDMA PUTs

(b) Inter-node Bidirectional Bandwidth
(bytes/sec)

0.0e+00

5.0e+05

1.0e+06

1.5e+06

2.0e+06

2.5e+06

3.0e+06

 1 3
2

10
24

32
76

8

10
48

57
6

M
es

sa
ge

 R
at

e
(#

m
sg

/s
ec

)

Number of messages/PUTs

Active Messages
RDMA PUTs

(c) Inter-node Unidirectional Message Rate
(msg/sec)

0.0e+00

5.0e+05

1.0e+06

1.5e+06

2.0e+06

2.5e+06

 1 3
2

10
24

32
76

8

10
48

57
6

M
es

sa
ge

 R
at

e
(#

m
sg

/s
ec

)

Number of messages/PUTs

Active Messages
RDMA PUTs

(d) Inter-node Bidirectional Message Rate
(msg/sec)

Figure 13.3: Communication line diagrams and performance results for bandwidth and message
rates

different compute nodes. The results for the token-ring based tests and the miniapp

(Traveling Salesman Problem) were obtained by launching multiple number of PEs

- 2 through 512 and 256 respectively, each bound to a specific core across multiple

nodes.

13.4.3 Performance Study

This section presents a performance analysis of the prototype implementation. As

noted in previous sections, the proposed AM interface enables transfer of data buffers

154

shmem_barrier_all()

 Total
Roundtrip
 Time

PE-0 PE-1 PE (N-1)

AM Request handler
or PE critical path

 => SET FLAG

shmemx_am_request()
or shmem_int_put

shmem_int_wait_until

KEY:

(a) Communication Line Diagram using Ac-
tive Messages and standard OpenSHMEM
PUTs

1.53e-05

6.10e-05

2.44e-04

9.77e-04

3.91e-03

1.56e-02

6.25e-02

2.50e-01

1.00e+00

 4 8 1
6

 3
2

 6
4

12
8

25
6

51
2

R
ou

nd
 tr

ip
 ti

m
e

(s
ec

s)
 [L

og
sc

al
e

ba
se

-2
]

Number of PEs (hops) [Logscale base-2]

Active Messages
PUTs

(b) Round Trip Latency (seconds)

Figure 13.4: Empirical study of Token Ring based communication pattern

in addition to the invocation of remote handlers. This section investigates the fea-

sibility of using Active Messages instead of OpenSHMEM point-to-point operations

to transfer data among PEs. It must be noted that the results presented as part of

this study correspond to the prototype implementation of Active Messages and is

meant to highlight the difference in behavior between the prototype and one-sided

operations. The reader must bear in mind that fine-tuned implementations of Active

Messages can exploit additional features of the underlying hardware stack to achieve

better performance.

As part of this study, a microbenchmark test suite was designed to measure

the achievable unidirectional and bidirectional bandwidth and message rate during

data transfers using both the mechanisms4. The communication patterns within the

microbenchmark suite use multiple PEs that communicate using either the proposed

4The microbenchmark test suite for OpenSHMEM AM is hosted as a git repository at https:

//github.com/sidjana/shmem_am_testsuite

155

https://github.com/sidjana/shmem_am_testsuite
https://github.com/sidjana/shmem_am_testsuite

AM interface (shmemx am request() /shmemx am quiet()) or point-to-point PUT

operations (shmem putmem() / shmem quiet()). These benchmarks evaluate the

unidirectional and bidirectional bandwidth and message rates. In addition they also

measure the round-trip latency of a token-ring topology.

Bandwidth:

Test Design: The execution time of the communication pattern was monitored

for different payload sizes from 1B through 2KB. We do not measure transfers beyond

the 2KB size because we learned that Active Messages are not a good data transport

mechanism for bulk payloads.

Test Results: The unidirectional and bidirectional bandwidth using the pro-

posed AM interface and the standard OpenSHMEM point-to-point PUT operations

are depicted in Figure 13.3a and 13.3b, respectively. The x-axis corresponds to the

size of the data payload transferred (in log2 scale) across the network. The value

of the achievable bandwidth (in bytes/second) is plotted on the y-axis. From the

figures, we observe that a higher bandwidth is achievable while using point-to-point

PUT operations as compared to using the prototype implementation. This is not

surprising since the AM request mechanism is associated with multiple cost factors.

At the source, the PE is responsible for copying the contents of the data payload from

the user’s address space to a temporary buffer that gets packed along with additional

information necessary for the target PE to respond. At the destination, the PE is

responsible for detecting an incoming AM request, launching the corresponding AM

handler and then notifying the source about the completion of the handler execution.

It can be observed that the impact of these factors increases with the size of the data

156

payload being transferred. This leads to an important conclusion that the purpose

of using an AM is not to transfer data payloads, but rather to trigger computation

at the same location as the transferred payload.

Message Rate:

Test Design: The execution time of the pattern was monitored for different

number of messages initiated consecutively with minimal payload (4 bytes).

Test Results: The unidirectional and bidirectional message rate using the pro-

posed AM interface and standard OpenSHMEM point-to-point PUT operations are

depicted in Figure 13.3c and 13.3d, respectively. The x-axis corresponds to the

number of messages (PUT operations / AM requests) initiated before waiting for

completion (in logscale, base 2)5. The value of the achievable message rate (in mes-

sages/second) is plotted on the y-axis. Similar to the bandwidth tests above, we

observe that there is a negative impact on the message rate of the transfers. There is

a significant impact when the number of consecutive AM requests increases beyond

32. The drop in message rate while using the AM interface is about 3X in case of

unidirectional tests and 5X in case of bidirectional.

Token-ring Communication Pattern:

Launching an AM is similar to triggering an event on a remote destination.

Therefore, incorporating the support for AM into a programming model enables

5Completion of a PUT operation / AM request is ensured by calling the functions -
shmem quiet() / shmemx am quiet(), respectively

157

applications to be built using communication patterns that rely on sending and re-

sponding to asynchronous events. It enables the design of patterns wherein a single

AM request can be used to propagate a signal across other remote PEs. In order

to ensure high performance, it is essential that implementations invest as few CPU

cycles as possible between detecting an AM request and executing the AM han-

dler. In order to study the impact on latency of an AM request as it hops across

multiple PEs, two synthetic microbenchmarks were designed to mimic a token-ring

based communication topology. The benchmark was designed such that the token

was propagated using either standard OpenSHMEM point-to-point synchronization

or the proposed AM interface.

Test Design: The line diagrams of these patterns are depicted in Figure 13.4a.

As shown, the transfer of the token is achieved by transferring a single integer across

consecutive pairs of PE in the ring topology. In an N-PE system, a PE k sends a

signal (either via an AM or a PUT) to PE ((k+1)%N) which then propagates the

same to the PE ((k+2)%N), and so on. PE (N-1) sends the signal back to PE-

0 thereby completing a single round-trip. The motivation for such a design is to

measure the total round-trip latency for different ring sizes.

Test Results: As part of this study, we study the impact on the time taken

to complete a single round trip as a function of the number of hops (PEs) within

the ring. In an implementation with minimal software overhead during AM handler

management, the expectation is that the total round-trip time scales almost linearly

with the number of hops. Figure 13.4b shows the empirical results for this test. The

x-axis represents the number of hops (the number of PEs) in a single round-trip.

158

The y-axis corresponds to the total time taken for the token initiated by PE-0 (in

the form of an AM request or a PUT) to pass through all the PEs before returning

to PE-0. From the graph we observe that the latency for the round-trip latency for

both the approaches is almost the same. This can be attributed to the fact that the

difference between the latencies of transferring data payloads using AM and standard

PUT is more tangible for large data payloads. Since this pattern used a single 4-byte

integer to represent the token, the performance is similar.

Summary:

From the bandwidth and message rate plots, we learn that the purpose of us-

ing Active Messages is not to transfer data payloads. To achieve closer-to-metal

bandwidth and message rates for data transfers, the OpenSHMEM programmer is

better off using traditional point-to-point operations that are currently provided by

the standard. From the token-ring experiment, it can be seen that Active Messages

are better suited for triggering specific events on remote PEs with the added benefit

of providing a means for productivity (due to its coding style) and no significant loss

in performance.

13.4.4 The Traveling Salesman Problem (TSP)

In order to study the impact of the proposed AM interface, the Traveling Salesman

Problem (TSP) miniapp was chosen as the target benchmark because the algorithm

can be divided into multiple independent tasks. This gives an opportunity to exploit

asynchronous computation within the algorithm.

159

New
Path?

Find subpaths
If any, send to

master

Determine if
local shortest path.
If yes, notify master

Exit?

shmemx_am_poll()
 or check MPI_Tag

Send new
path to requesting

worker

Add new subpaths
to local work queue

Check if local shortest
path is globally shortest.
If yes, send new shortest
distance to all workers

Subscribe for
new path

NO

New path
Request

Local shortest
path

New
subpaths

found

Use of handler
safe locks for

OpenSHMEM w/ AM

New path
Request

New
subpaths

found

Check if new subpaths
received from worker-k. If yes,
add paths in local work queue

Check if new path request
received from worker-k. If yes,

send new path to k

Local shortest
path

Check if local shortest path
reveived from worker-k. If yes,

check if that is globally shortest.
If yes, send new shortest
distance to all workers.

Repeat:
for all workers

k=1 to N

Repeat:
for all workers

k=1 to N

Repeat:
for all workers

k=1 to N

(a) Master Process
(OpenSHMEM w/ AM & MPI w/ tagging)

(c) Master Process
(OpenSHMEM w/o AM)

(b) Worker Process
(all 3 versions)

Figure 13.5: Flow diagram of the master and worker processes for all three versions of the Traveling
Salesman Problem (TSP): (a) Master for both OpenSHMEM with AM and MPI, (b) Worker for
all three versions, (c) Master for OpenSHMEM without AM.

Miniapp Versions The TSP miniapp uses a master-worker communication pat-

tern. The master PE is responsible for reading an input cost matrix and for assigning

different paths to the worker PEs. The worker PEs in turn are responsible for either

breaking down a path into smaller subpaths, determining the shortest distance for

a given path, or requesting a new path from the master PE. As part of the experi-

ment, the performance of three different versions of the miniapp were evaluated. The

difference between the three is in the deign of the master process. Active Messages

provide a mechanism to map a function handler to an identifier. We noted that

160

2 4 8 16 32 64 128 256

0.
00

0.
01

0.
02

0.
03

0.
04

Number of Processes

T
im

e
(s

ec
s)

MPI
OpenSHMEM w/o AM
OpenSHMEM w/ AM

(a) Data size: 04 cities. Problem size:
16(4x4)

2 4 8 16 32 64 128 256

15
0

20
0

25
0

30
0

Number of Processes
T

im
e

(s
ec

s)

MPI
OpenSHMEM w/o AM
OpenSHMEM w/ AM

(b) Data size: 14 cities. Problem size:
196(14x14)

2 4 8 16 32 64 128 256

60
0

70
0

80
0

90
0

10
00

11
00

12
00

Number of Processes

T
im

e
(s

ec
s)

MPI
OpenSHMEM w/o AM
OpenSHMEM w/ AM

(c) Data size: 15 cities. Problem size: 255 (15x15)

Figure 13.6: Performance results of a traveling salesman problem written - MPI (in GREEN) v/s
standard OpenSHMEM (in RED) v/s OpenSHMEM with the proposed AM interface (in BLUE).
The dashed line connects all the medians of the box-plots that correspond to each of the versions.

161

this is similar to the message-tagging mechanism provided by MPI. Not surprisingly,

the logical flow of the algorithms that used MPI tag-matching algorithm and the

OpenSHMEM with AM was similar. This is depicted in Figure 13.5(a) and 13.5(b).

The flow of the algorithm used to design the miniapp using standard OpenSHMEM

without any AM interface is illustrated in Figure 13.5(b) and 13.5(c). The design

details are described below:

(i) With AM interface / MPI Tag-matching: In the OpenSHMEM version

that uses the AM interface, the worker PE communicates with the master PE using

Active Messages6. Each request contains the id of the function handler which on

detection is triggered by the master PE. Since the handler function is presented with

a pointer to the contents of the message, it is not responsible for costs associated with

memory management. The MPI implementation7 exploits the availability of message

tags to differentiate between different messages sent by the worker ranks. In this case,

the worker rank communicates with the master by appending MPI messages with

with tag-ids that correspond to different tasks. Because of this feature, the design

of the master rank is similar to the master PE that uses the OpenSHMEM AM

interface. One of the challenges in designing the OpenSHMEM version with AM is

the need to share multiple data structures among different AM handlers. To ensure

correctness and avoid race conditions, it becomes essential to use handler-safe locks

to ensure exclusive access to these data structures. This in turn leads to a potential

rise in lock contention, and hence performance degradation for small data sets.

6The version of the TSP miniapp using the proposed AM interface is hosted at
https://github.com/sidjana/traveling salesman shmem am/tree/master/shmem MMPQ

7The version of the TSP miniapp using MPI-tagging approach is hosted at
http://www.eecg.toronto.edu/ amza/ece1747h/homeworks/examples/MPI

162

(ii) Without AM interface: In this case, each worker PE remotely updates

an assigned bucket stored on the master PE, using point-to-point communication

operations8. The master PE is in charge of maintaining the remotely accessible

buckets. Since the communication pattern relies on a single master and multiple

workers, there is a need to assign a different bucket for each worker PE. This helps

avoid network congestion at the master PE due to repeated use of the distributed

locking interfaces or atomic operations provided by OpenSHMEM. The disadvantage

of this approach though is that the master PE has to repeatedly scan through all the

buckets to check for any updates by the PEs. The cost of this access takes a toll on

the performance for large count of buckets / worker PEs. Here the cost associated

with accessing the buckets increases linearly with the number of worker PEs, this

design has the potential for severe performance degradation at large PE count.

Experiment Methodology Three different implementations of the TSP were

chosen for the comparative study - two of which were designed using OpenSHMEM

(as explained above) and the third, using the MPI two-sided model. Three different

problem sizes were chosen (number of cities = 4, 14, 15). The results are shown in

Figure 13.6(a), (b), and (c) respectively. Due to the highly irregular and dynamic

nature of this miniapp, the execution time is prone to high variation. The results are

therefore presented as a box plot distribution, where each plot for a given problem

size and PE count corresponds to a distribution of 20 runs of the miniapp version.

The X-axis plots the number of PEs used for execution. The Y-axis corresponds to

the time taken (in seconds) to arrive at the solution (shortest path).

8The version of the TSP miniapp using standard OpenSHMEM interface is hosted at
https://github.com/sidjana/traveling salesman shmem am/tree/master/shmem pure

163

Empirical Results The major observations are as follows:

• With a small input data set (Figure 13.6a), we see a severe performance degra-

dation with the MPI version. This can be attributed to the fact that the

implementation heavily relies on the traditional two-sided blocking communi-

cation to transfer data among the master and multiple worker processes. The

use of either the proposed AM interface or the standard non-blocking one-sided

communication both alleviate this penalty.

• With large data sets (Figure 13.6b and 13.6c), we see that the OpenSHMEM

version that uses the standard interface suffers a significant performance loss

when scaled beyond one node (number of PEs > 32). Since this version main-

tains a separate bucket for each worker, the master suffers a slowdown due to

the cost associated with scanning multiple buckets iteratively. This cost is com-

pletely eliminated in case of the AM version where no CPU cycles are invested

in determining the status of worker processes. Instead, the unordered incoming

requests initiated by the worker processes are are asynchronously executed at

the master process.

• The plots also show that for large data sets and higher process count, the

performance between the MPI and the OpenSHMEM with AM versions are

close to each other. This is because the MPI implementation relies on tag

matching to detect the task to be executed. Functionally, this is similar to

the underlying AM implementation where the handler functions are invoked

by matching the handler-id embedded within the incoming AM request.

164

• There is an interesting behavior by the OpenSHMEM version that uses AM

interfaces for the input data set with 15 cities (Figure 13.6c). We see a very

high variation among execution time for small PE count. This high variation

can be attributed to use of handler-safe locks among the AM request handlers,

thereby leading to heavy lock contention. This variation reduces for higher PE

count which can be explained by greater overlap of the computation at the

worker with that of the AM handler at the master. Since the MPI version in

synchronous, it does not rely on any locking mechanism thereby avoiding the

high variation in execution time for this data set. The lesson learned here is that

in order to exploit asynchronous execution of AM handlers, the use of shared

data structures, and hence the use of handler-safe locks should be limited.

Despite this, we observe that using Active Messages gives a high performance

gain at scale over the version that uses the standard OpenSHMEM interfaces.

13.5 Related Work

Active Messages were first introduced by Eicken et al.[49]. The original motivation

was to enable communication/computation overlap and shift the responsibility of

tolerating latency from the underlying hardware to the programmers/compilers. The

authors described a programming model called Split-C that enables remote one-sided

communication to be executed using Active Messages.

Multiple low-level communication libraries that support Active Messages include

GASNet[27], UCX[123], LAPI[138], and PAMI[97].

At a higher level in the software stack, the execution model of Active Messages

165

can be compared to programming models that enable explicit launching of tasks

among processes in a distributed environment. These include ParalleX[87] (parcels),

UPC++[163] (function shipping), Charm++[4] (entry methods), Chapel[61] (begin-

at), CAF 2.0[133] (spawn), and GASPI[7] (passive communication).

Research efforts have been made to also introduce Active Messages within MPI[154,

26, 162, 36, 68]. Some of these approaches like AM++[154] and AMMPI[26] are de-

signed on top of existing MPI libraries. Alternative approaches like Zhao et al.[162]

describe techniques for incorporating Active Messages directly within the MPI run-

time (e.g. by extension the semantics of MPI Accumulate within MPICH).

Unlike Active Messages that enable inter-process parallelism using explicitly spec-

ified computation units, some programming models offer constructs that help ex-

ploit dynamic parallelism within a process. Programming models like X10[35],

Titanium[158], Chapel[61], and those based on the Habanero framework (which

in turn is based on X10’s finish-async constructs) - Habanero Java[31], Habanero

C[130], Habanero UPC[129], Habanero-C MPI[36], and Habanero-UPC++[98], all

provide tasking mechanisms that incorporate dynamic load-balancing strategies by

scheduling work across a dedicated pool of workers.

13.6 Chapter Summary

This chapter explores the feasibility of introducing Active Messages (AM) within the

OpenSHMEM programming model. As part of this work, an API was proposed along

with an empirical study of a prototype implementation within the OpenSHMEM

reference implementation.

166

Synthetic microbenchmarks were used to compare the performance of data move-

ment using the proposed AM interface and the existing standard OpenSHMEM re-

mote write operations. The results show that the primary intent of using Active

Messages should not be to transfer data to remote locations. Instead, the purpose

is to facilitate the transfer of computation to a destination that hosts the data that

needs to be computed upon. Nevertheless, a simple interface has been proposed

that allows a process to attach a user buffer to the Active Message request. One

potential approach to avoid the poor bandwidth costs of appending data payloads

to an AM request maybe to instead perform a standard PUT operation followed by

shmem quiet and then the AM request with zero bytes of payload. This may help

applications exploit the RDMA capabilities of underlying network.

Another noteworthy point in the proposed semantics is the lack of restriction on

the size of the data payload that is appended to an AM request. One possible mod-

ification to this approach could be where the interface provides multiple variations

for different sized data payloads while initiating Active Message. While this provides

greater flexibility to the end user, there is also an increase of burden on the user to

choose the right interface to achieve the expected performance. Examples of low-level

communication libraries that do provide such interfaces include GASNet[27] (using

medium, long, and longasync AM requests) and UCX[123] (using short, buffered, and

zero-copy AM requests).

On comparing the performance of different implementations of a miniapp (the

Traveling Salesman Problem), it was learned that while using Active Messages, shar-

ing of data structures among different handlers of the same PE should be avoided,

167

otherwise there is a potential for performance loss due to contention among handler-

safe locks. However, it was observed that despite such a design of the algorithm, the

miniapp was able to achieve significant performance improvement over the version

that solely relied on using the standard OpenSHMEM interfaces.

For more details about the topics discussed in this Chapter, the interested reader

is directed to the literature documented by Jana et al. under [82].

168

Chapter 14

Future Work

There have been a handful of recent research efforts towards integrating hardware

power management techniques with the software stack. As an initial step, the focus

has been more on power monitoring infrastructure.

Three different software frameworks are undergoing development that cater to

this need. The HPC Power API[77] led by Sandia National Laboratory is a proposed

de facto standard that attempts to provide a power-management interface for all

HPC software - from job schedulers, to operating systems, to user applications. The

Global Extensible Open Power Manager (GEOPM)[48] led by Intel, is an open source

framework that attempts to dynamically control the power consumption of MPI jobs

launched in a distributed environment. It provides a plug-in architecture using which

multiple power-control algorithms can be implemented. Redfish[14] led by DMTF

Scalable Platforms Management Forum is an attempt to develop an open industry

standard specification that provides interfaces to monitor various “IPMI-class” data

169

from different components of the system.

As a follow up for the work described in this thesis, it is crucial to leverage

the lessons learned to the future development of the Power API and GEO-PM.

Currently, these interfaces provide limited “gateways” for application and middleware

developers to monitor and control the behavior of the application. The number of

application design factors discussed in Chapters 5 through 9 can be incorporated

within these frameworks to achieve power management at finer granularity.

170

Chapter 15

Conclusion

This dissertation presents an in-depth analysis of different factors that affect the

energy consumption of distributed memory HPC applications. The factors discussed

were broadly divided into three different categories on the basis of whether they

relate to the communication model, memory model, execution model.

A great emphasis was put on the inter-process communication stack.

As part of this thesis, at first, empirical evidence was discussed that highlighted

the fact that adopting a race-to-halt approach (i.e. running your application at the

fastest speed possible), is not always the right approach. This was followed by an

overview of multiple variables within the HPC runtime that have the potential to im-

pact the energy costs of a distributed memory application. Factors corresponding to

the memory model, communication model, and the execution model were discussed.

A number of factors within an application design were shown to impact energy

171

profiles of communication-intensive kernels. These include - the total size of the

data payload being transferred, the number of explicit IPC calls, even the data-access

patterns used within the kernels. It was shown that choosing the right access pattern

can lead to 40% savings in Energy Delay Product of the kernel. Design factors within

the transport layer were discussed. It was shown that using OpenIB over Infiniband

can give up to 760x improvement in bytes/joules over TCP over Ethernet. Up to 25x

improvement in bytes/joule can be achieved by choosing an eager communication

protocol over rendezvous. In addition, design details of the middleware like the

overhead of memory copy operations, use of pinned-down memory and the impact

of using an additional service thread.

The common approach of using DVFS as a means to achieving energy efficiency

was introduced. This was complemented with a discussion of how the extent of im-

pact of using DVFS depend on factors like the hardware organization of the under-

lying processor. Negative impact of using DVFS within a communication intensive

kernel was discussed.

As a solution of the above challenges, one proposed approach was to adopt ex-

ecution models that deviate from the common distributed memory programming

models like MPI and OpenSHMEM. We revisit a parallel programming construct

from early 90’s - Active Messages and incorporate it within the execution model of

OpenSHMEM. We discuss a prototype implementations along with empirical results

showing significant performance benefits at scale.

The work presented in this thesis is intended to act as a guidance to application

programmers and system developers of current and future systems alike.

172

Appendix A

Test Platform

A.1 System-A at OLCF: RAPL monitoring

In order to monitor energy consumption by different components of a compute node

(cores, socket, memory), we used Intel’s Running Average Power Limiting (RAPL)

interface[79]. Figure A.1 illustrates our experimental setup which incorporates this

interface by monitoring the thermal and power management values of the model-

specific registers (MSRs) exposed by the Intel Sandy Bridge processor, E5-2670.

In order to read the RAPL counters in MSRs from the device file system (/de-

v/cpu/*/msr on devfs), we used the RAPL component provided by PAPI v5.1[116].

In addition, we used Vampir Trace[94] for fine-grained instrumentation of our syn-

thetic microbenchmarks.

Verifications by David et al.[44], Hackenberg et al.[62], and Dongarra et al.[45]

provide empirical evidence of a high correlation between the energy consumption

173

Table A.1: Test machine and environment details

Processor Intel Xeon CPU E5-2670
Microarchitecture Intel’s Sandy Bridge
Maximum Thermal Design Power (TDP) 115 Watts
Hyperthreading support Disabled
Sockets 2
Cores/socket 8
L1 cache size (per core) 32KB
L2 cache size (per core) 256KB
L3 cache size (shared - 1/socket) 20MB
Infiniband card Mellanox MT26428 [ConnectX PCIe2.0 5GT/s]
Infiniband switch InfiniScale 36-Port QSFP 40Gb/s, MTS3600
Compiler gcc version 4.4.6
Compiler flags used -O3
OpenSHMEM version Mellanox OpenSHMEM ver. 2.2-23513

Intel Sandy Bridge Processor

Xeon CPU E5-2670

(cores + private L1&L2 caches)

Control

Registers

Model Specific Registers

/dev/cpu/*/msr

Device File System

devfs

PAPI RAPL Component

Vampir Trace API

Mellanox Infiniband card

MT26428

DRAM

Shared L3 cache

*.otf, *.def, *.events

otfprofile

tool

Vampir Visualizer

tool

Infiniband Switch

MTS3600

remote

compute

node

Figure A.1: Experimental Setup incorporating Intel’s RAPL interface for fine-grained power mon-
itoring

174

readings provided by the RAPL interface and direct power measurements. However,

readings provided by this interface have certain shortcomings due to its model-based

approach for estimating the metrics[62]. The fact that energy values of DRAM as

reported by RAPL only take into account the memory accesses initiated by the CPU

and not other I/O devices (e.g. the network card), was a major obstacle in this study.

Nevertheless, these DRAM-specific values are a good estimation of the impact of the

energy consumption due to data transfers between the CPU and the memory. Any

direct memory accesses by the interconnect (without the participation of the CPU)

would only lead to further increase in the impact of the power/energy consumption.

Due to space constraints, we do not present these in this work.

Statistical evidence[44] indicates that the estimated energy consumption1 by the

cores and sockets, are sufficient to understand the impact of an application.

On our system the time-window for the RAPL interface was 0.046 seconds. We

found this configuration acceptable for studying the behavior of the energy and power

consumption patterns by different OpenSHMEM interfaces.

A discussion on the power management capabilities of Intel’s Sandy Bridge pro-

cessors by Rotem et al.[131], indicates that these modern architectures expose energy

estimation and power capping ability by exposing the RAPL interface. The authors

acknowledge that power conservation techniques like frequently triggering sleep states

of processors affect performance of applications and in some cases leads to an increase

in energy consumption. Using a demotion algorithm, these processors can override

1It must be noted that Intel’s RAPL does not provide power readings. It estimates energy
values, that need to be averaged over multiple updates in order to obtain a reliable measure.

175

the operating systems decision to enter into a low power state. Such fine grained esti-

mation which incorporates the low powered C-states of processors indicate a reliable

metric.

It is crucial to note some of the observations as outlined by Hackenberg et al.[62]

while using RAPL on 1P and 2P Sandy bridge processors:

• RAPL readings add an overhead of about 1.4 microseconds for reading all the

domains

• RAPL underestimates the effect of power consumption due to hyperthreading

• While RAPL provides estimates for energy consumption by the DRAM, it

does so based on memory accesses about which the processor die is aware of.

As a result, energy consumption due to memory accesses through the DMA

controllers initiated via the NICs are remain unaccounted for.

Despite these, empirical studies indicate that the readings exposed via this inter-

face have a high correlation with those obtained by external monitoring devices.

Dongarra et al.[45] underline the importance of RAPL in analyzing the power con-

sumption profile of applications, at a high sampling rate (this is in the light of

about 1.4 microseconds overhead for monitoring the counter readings). This is re-

flected in experiments by Hackenberg et al.[62] who include in their work, empirical

verification of RAPL by incorporating readings from external power monitoring in-

struments - ZES, iDRAC and PDUs. Additionally, RAPL provides energy readings

on a per-component basis including Thus for the purpose of understanding the power

176

Table A.2: Test-Platform characteristics of SystemG

Processor Intel Xeon CPU E5462
Microarchitecture Intel’s Sandy Bridge
Operating Frequency 2.8 GHz
Maximum Thermal Design Power (TDP) 80 Watts
Hyperthreading support Disabled
Infiniband card Mellanox MT26428, fw-ver:2.5.9
Linux kernel version 2.6.32 x86 64
Compiler gcc version 4.4.4
Compiler flags used -O3
Power Sampling rate 10ms

consumption signature during the entire run of an application, RAPL appears to be

a good candidate.

Reducing Background Noise in Energy Readings To reduce OS noise and

avoid other processes from being scheduled on the monitored socket, we used Linux

CPU shielding [91]. This ensured that all unrelated processes/threads (including most

OS service threads) were scheduled on the extra unmonitored socket on the compute

node (refer to Table A.1 for the machine details). We verified this approach by

observing a steady power consumption of 3.786 Watts when none of our experimental

processes were scheduled on the monitored socket.

A.2 System-B at VirginiaTech: PowerPack monitoring

Our study was aimed at performing a fine-grained analysis of the impact on differ-

ent components of a distributed system, namely, the cores, the socket, the moth-

erboard, the memory unit, and the entire compute-node as a whole. The exper-

iments were performed for two different implementations of MPI - Open MPI[51]

177

MPI_Barrier(...)

MPI_Send()
(1 byte)

Rank 0 Rank 1

MPI_Barrier(...)

MPI_Recv()
(1 byte)

MPI_Recv()
(2 bytes)

MPI_Send()
(2 bytes)

MPI_Recv()
(4 bytes)

MPI_Send()
(4 bytes)

MPI_Recv()
(2 MB)

MPI_Send()
(2 MB)

Figure A.2: Synthetic microbenchmark used for evaluating energy and power consumption by
varying the total size of data payload and the number of fragments

and MVAPICH2[108]. We observed similar behavior between the two MPI imple-

mentations. Due to space constraints, we discuss the impact of only OpenMPI’s

implementation of data transfers on two major components that contribute to the

total power consumption of a system, viz. the CPU cores and the memory. While the

network card forms an important component of a distributed system, past study in-

dicates that its impact on the total power consumption by a system is about 1%[50].

We therefore omit any further discussion on the impact of NIC from the rest of the

text.

A.3 System-C at ZIH: HDEEM monitoring

The details of the experimental setup are listed in Table A.3. All experiments were

conducted using two OpenSHMEM processes (PEs) where each process was launched

and bound to one of the cores of an Intel Sandy Bridge processor on a separate node.

178

Table A.3: Characteristics of the power monitored node

Processor Intel Xeon CPU E5-2690
Microarchitecture Intel’s Sandy Bridge
Hyperthreading support Disabled
Main Memory 32 GB
Infiniband card Mellanox MT27500, ConnectX-3
Linux kernel version 2.6.32 x86 64

These two nodes are prototypes for an upcoming installation at the University of

Technology Dresden, which are instrumented for fine-grained accurate power mea-

surement2. Each node has instrumented voltage regulators (VRs) that are sampled

with a sampling frequency of 1 KHz for both sockets and the four voltage lanes of

the DIMMs on board. With the help of an FPGA, a digital filter is applied to

smooth the samples. Furthermore, a linear correction is applied to the measurement

data coming from the VRs in order to ensure an error margin not exceeding 3 %.

Our study was aimed at performing a fine-grained analysis of the impact on two

main components that dictate the energy and power consumption of a system - the

CPU and the DRAM. For studies on large scale systems, the contribution of the

interconnect and the network topologies becomes crucial, as highlighted by recent

study[99].

2More information about the High Definition Energy Efficiency Monitoring (HDEEM)
project is available at http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/

forschung/projekte/hdeem

179

http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/projekte/hdeem
http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/projekte/hdeem

Appendix B

Microbenchmark Design

This section lists the pseudo-codes for various synthetic microbenchmarks used through-

out the experiments described in this work. The line diagrams corresponding to these

snippets are depicted within the main text.

shmem bar r i e r a l l ()

i f (myid == sender)

c l f l u s h (. . .)

f o r each (s r c b u f f e r [i])

do

shmem put (s r c b u f f e r [i] , d e s t b u f f e r [i])

done

shmem quiet ()

e n d i f

shmem bar r i e r a l l ()

Listing B.1: ”Code Snippet: Remote write implementation: Servicing PUTs with no participation

by the receiver”

180

index = 0 ; c l f l u s h (. . .)

shmem bar r i e r a l l ()

i f (myid == sender)

f o r each (s r c b u f f e r [i])

do

/∗ Pack a l l b u f f e r s i n t o s t e m p b u f f ∗/

s temp buf f [index] <− s r c b u f f e r [i]

s i z e = s izeof (s r c b u f f e r [i])

index = index + s i z e

done

shmem put (stemp buff , dtemp buff)

shmem quiet ()

shmem int swap (f l a g . . .)

shmem quiet ()

else /∗ myid == r e c e i v e r ∗/

shmem int wa i t unt i l (f l a g . . .)

f o r each (d e s t b u f f e r [i])

do

/∗ Unpack a l l b u f f e r s from dtemp bu f f ∗/

d e s t b u f f e r [i] <− dtemp buff [index]

s i z e = s izeof (d e s t b u f f e r [i])

index = index + s i z e

done

e n d i f

Listing B.2: ”Code snippet: Remote write implementation: Servicing PUTs with active

participation by the receiver”

shmem bar r i e r a l l ()

181

i f (myid == sender)

c l f l u s h (. . .)

f o r each (s r c b u f f e r [i])

do

shmem put (s r c b u f f e r [i] , dtemp buf fer [i])

done

shmem quiet ()

e n d i f

. . . .

/∗∗∗∗∗∗ s o f t w a r e agent ∗∗∗∗∗∗∗/

while (t rue)

do

i f (new packet ar r ived () == true)

/∗ Unpack a l l b u f f e r s from dtemp bu f f ∗/

d e s t b u f f e r [i] <− dtemp buff [index]

s i z e = s izeof (d e s t b u f f e r [i])

index = index + s i z e

e n d i f

done

Listing B.3: ”Code snippet: Remote write implementation: Servicing PUTs with an additional

thread supporting the receiver”

/∗MAX WRK SIZE: i s the maximum data

pay load to be t r a n s f e r r e d

w i t h i n a communication k e r n e l

∗/

MPI Comm rank(MPI COMM WORLD, &rank) ;

182

for (j =1; j<=MAX WRK SIZE; j ∗=2)

{

for (f r a g c n t =1; f r ag cn t<=j ; f r a g c n t ∗=2)

{

bytes per msg = j / f r a g c n t ;

MPI Barrier () ;

// START monitoring

for (i t =0; i t<f r a g c n t ; i t ++)

i f (rank==0)

MPI Send (. . . , bytes per msg ,MPI BYTE, 1 , . .) ;

else

MPI Recv (. . . , bytes per msg ,MPI BYTE, 0 , . .) ;

// STOP monitoring

}

}

Listing B.4: ”Code snippet for the synthetic microbenchmark used for evaluating energy and power

consumption by varying the total size of data payload and the number of fragments”

183

Bibliography

[1] N. Aboughazaleh, B. Childers, R. Melhem, and M. Craven. Collaborative
compiler-os power management for time-sensitive applications. Technical re-
port, Department of Computer Science, University of Pittsburgh, Department
of Computer Science, University of Pittsburgh, 2002.

[2] N. AbouGhazaleh, D. Mossé, B. Childers, and R. Melhem. In L. Benini,
M. Kandemir, and J. Ramanujam, editors, Compilers and Operating Systems
for Low Power, chapter Toward the Placement of Power Management Points
in Real-time Applications, pages 37–52. Kluwer Academic Publishers, Norwell,
MA, USA, 2003.

[3] N. AbouGhazaleh, D. Mossé, B. R. Childers, and R. Melhem. Collaborative
operating system and compiler power management for real-time applications.
ACM Transactions on Embedded Computing Systems (TECS), 5(1):82–115,
2006.

[4] B. Acun, A. Gupta, N. Jain, A. Langer, H. Menon, E. Mikida, X. Ni, M. Rob-
son, Y. Sun, E. Totoni, L. Wesolowski, and L. Kale. Parallel programming
with migratable objects: Charm++ in practice. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’14, pages 647–658, Piscataway, NJ, USA, 2014. IEEE Press.

[5] J. Aliaga, M. Dolz, A. Martin, R. Mayo, and E. Quintana-Orti. Leverag-
ing task-parallelism in energy-efficient ILU preconditioners. In A. Auweter,
D. Kranzlmueller, A. Tahamtan, and A. Tjoa, editors, ICT as Key Technology
against Global Warming, volume 7453 of Lecture Notes in Computer Science,
pages 55–63. Springer Berlin Heidelberg, 2012.

[6] P. Alonso, M. Dolz, F. Igual, R. Mayo, and E. Quintana-Orti. Reducing energy
consumption of dense linear algebra operations on hybrid cpu-gpu platforms.
In Parallel and Distributed Processing with Applications (ISPA), 2012 IEEE
10th International Symposium on, pages 56–62, July 2012.

184

[7] T. Alrutz, J. Backhaus, T. Brandes, V. End, T. Gerhold, A. Geiger,
D. Grünewald, V. Heuveline, J. Jägersküpper, A. Knüpfer, O. Krzikalla,
E. Kügeler, C. Lojewski, G. Lonsdale, R. Müller-Pfefferkorn, W. Nagel,
L. Oden, F.-J. Pfreundt, M. Rahn, M. Sattler, M. Schmidtobreick, A. Schiller,
C. Simmendinger, T. Soddemann, G. Sutmann, H. Weber, and J.-P. Weiss.
GASPI – A Partitioned Global Address Space Programming Interface, pages
135–136. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[8] S. Amarasinghe, M. Hall, R. Lathin, K. Pingarli, D. Quinlan, V. Sarkar,
J. Shalf, R. Lucas, and K. Yelick. ASCR Programming Challenges for Ex-
asacle Computing. 2011.

[9] AMD. ACP The Truth About Power Consumption Starts Here.

[10] AMD. Linux tuning guide, amd opteron 6200 series processors. April 2012.

[11] M. Annavaram. Energy per instruction trends in. intel microprocessors. Tech-
nology Intel Magazine, 2006.

[12] K. Asanovic. Energy-exposed instruction set architectures. In In Progress
Session, Sixth International Symposium on High Performance Computer Ar-
chitecture, 2000.

[13] K. Asanović, M. Hampton, R. Krashinsky, and E. Witchel. Energy-Exposed
Instruction Sets, pages 79–98. Springer US, Boston, MA, 2002.

[14] J. Autor. Introduction to Redfish. November 2015.

[15] A. Azevedo, R. Cornea, I. Issenin, R. Gupta, N. Dutt, A. Nicolau, and A. Vei-
denbaum. Architectural and compiler strategies for dynamic power manage-
ment in the copper project. In in the COPPER project. International Workshop
on Innovative Architecture, 2001.

[16] P. Balaprakash, L. A. B. Gomez, M.-S. Bouguerra, S. M. Wild, F. Cappello,
and P. D. Hovland. Energy-performance tradeoffs in multilevel checkpoint
strategies. 2014.

[17] S. Barrachina, M. Barreda, S. Catal, M. F. Dolz, R. Mayo, and E. S. Quintana-
ort. An Integrated Framework for Power-Performance Analysis of Parallel Sci-
entific Workloads. In The Third International Conference on Smart Grids,
Green Communications and IT Energy-aware Technologies, pages 114–119,
2013.

185

[18] M. Barreda, S. Cataln, M. Dolz, R. Mayo, and E. Quintana-Ort. Automatic
detection of power bottlenecks in parallel scientific applications. Computer
Science - Research and Development, 29(3-4):1–9, 2013.

[19] B. Barrett. OpenMPI Data Transfer, December 2012. Detailed overview of the
OpenMPI data transfer system.

[20] B. Barrett. OpenMPI Data Transfer. http://www.open-
mpi.org/video/internals/Sandia BrianBarrett-1up.pdf, December 2012.
Detailed overview of the OpenMPI data transfer system.

[21] J. M. Bearfield. Power Control Design Key to Realizing InfiniBand Benefits,
Texas Instruments Inc. November 2001.

[22] F. Bellosa. The case for event-driven energy accounting. Technical report.

[23] Y. Ben-Itzhak, I. Cidon, and A. Kolodny. Performance and power aware cmp
thread allocation modeling. In Proceedings of the 5th international conference
on High Performance Embedded Architectures and Compilers, HiPEAC’10,
pages 232–246, Berlin, Heidelberg, 2010. Springer-Verlag.

[24] S. Benedict. Review: Energy-aware performance analysis methodologies for
hpc architectures-an exploratory study. J. Netw. Comput. Appl., 35(6):1709–
1719, Nov. 2012.

[25] L. Benini, M. Kandemir, and J. Ramanujam, editors. Compilers and Operating
Systems for Low Power. Kluwer Academic Publishers, Norwell, MA, USA,
2003.

[26] D. Bonachea. AMMPI: Active Messages over MPI - Quick Overview.

[27] D. Bonachea. Gasnet specification, v1.1. Technical report, Berkeley, CA, USA,
2002.

[28] D. Bonachea. Active Messages - Extract from GASNET spec, 2006.

[29] T. Carlson, W. Heirman, and L. Eeckhout. Sniper: Exploring the level of
abstraction for scalable and accurate parallel multi-core simulation. In High
Performance Computing, Networking, Storage and Analysis (SC), 2011 Inter-
national Conference for, pages 1–12, 2011.

[30] M. Castillo, J. Fernandez, R. Mayo, E. Quintana-Orti, and V. Roca. Analysis
of strategies to save energy for message-passing dense linear algebra kernels.
In Parallel, Distributed and Network-Based Processing (PDP), 2012 20th Eu-
romicro International Conference on, pages 346–352, Feb 2012.

186

[31] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar. Habanero-java: The new ad-
ventures of old x10. In Proceedings of the 9th International Conference on
Principles and Practice of Programming in Java, PPPJ ’11, pages 51–61, New
York, NY, USA, 2011. ACM.

[32] J.-C. Chang, C.-Y. Lee, C.-J. Chen, and R.-G. Chang. Low power compiler
optimization for pipelining scaling. In J.-S. Pan, C.-N. Yang, and C.-C. Lin, ed-
itors, Advances in Intelligent Systems and Applications - Volume 2, volume 21
of Smart Innovation, Systems and Technologies, pages 637–646. Springer Berlin
Heidelberg, 2013.

[33] J.-M. Chang and M. Pedram. Register allocation and binding for low power. In
Proceedings of the 32Nd Annual ACM/IEEE Design Automation Conference,
DAC ’95, pages 29–35, New York, NY, USA, 1995. ACM.

[34] B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn, C. Koelbel, and
L. Smith. Introducing openshmem: Shmem for the pgas community. In Pro-
ceedings of the Fourth Conference on Partitioned Global Address Space Pro-
gramming Model, PGAS ’10, pages 2:1–2:3, New York, NY, USA, 2010. ACM.

[35] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,
C. von Praun, and V. Sarkar. X10: An object-oriented approach to non-
uniform cluster computing. SIGPLAN Not., 40(10):519–538, Oct. 2005.

[36] S. Chatterjee, S. Tasirlar, Z. Budimlic, V. Cav, M. Chabbi, M. Grossman,
V. Sarkar, and Y. Yan. Integrating asynchronous task parallelism with mpi. In
Parallel Distributed Processing (IPDPS), 2013 IEEE 27th International Sym-
posium on, pages 712–725, May 2013.

[37] J. W. Choi, D. Bedard, R. Fowler, and R. Vuduc. A roofline model of energy. In
Parallel Distributed Processing (IPDPS), 2013 IEEE 27th International Sym-
posium on, pages 661–672, May 2013.

[38] J. W. Choi, D. Bedard, R. Fowler, and R. Vuduc. A theoretical framework for
algorithm-architecture co-design. In Proc. IEEE Int’l. Parallel and Distributed
Processing Symp. (IPDPS), Boston, MA, USA, May 2013.

[39] K. Choi, R. Soma, and M. Pedram. Dynamic voltage and frequency scaling
based on workload decomposition. In Proceedings of the 2004 International
Symposium on Low Power Electronics and Design, ISLPED ’04, pages 174–
179, New York, NY, USA, 2004. ACM.

187

[40] K. Choi, R. Soma, and M. Pedram. Fine-grained dynamic voltage and
frequency scaling for precise energy and performance tradeoff based on the
ratio of off-chip access to on-chip computation times. Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, 24(1):18–28, Jan
2005.

[41] P. Cicotti, A. Tiwari, and L. Carrington. Efficient speed (ES): adaptive DVFS
and clock modulation for energy efficiency. In 2014 IEEE International Con-
ference on Cluster Computing, CLUSTER 2014, Madrid, Spain, September
22-26, 2014, 2014.

[42] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda. Identifying the optimal
energy-efficient operating points of parallel workloads. In 2011 IEEE/ACM
International Conference on Computer-Aided Design, ICCAD 2011, San Jose,
California, USA, November 7-10, 2011, pages 608–615, 2011.

[43] D. Culler, K. Keeton, C. Krumbein, L. T. Liu, A. Mainwaring, R. Martin,
S. Rodrigues, K. Wright, and C. Yoshikawa. Generic Active Message Interface
Specification, 1994.

[44] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le. RAPL:
Memory power estimation and capping. In Low-Power Electronics and De-
sign (ISLPED), 2010 ACM/IEEE International Symposium on, pages 189–194,
2010.

[45] J. Dongarra, H. Ltaief, P. Luszczek, and V. Weaver. Energy footprint of ad-
vanced dense numerical linear algebra using tile algorithms on multicore archi-
tectures. In Cloud and Green Computing (CGC), 2012 Second International
Conference on, pages 274–281, 2012.

[46] J. Dongarra, H. Ltaief, P. Luszczek, and V. M. Weaver. Energy Footprint of
Advanced Dense Numerical Linear Algebra Using Tile Algorithms on Multi-
core Architectures. 2012 Second International Conference on Cloud and Green
Computing, pages 274–281, 2012.

[47] Z. Du, H. Sun, Y. He, Y. He, D. A. Bader, and H. Zhang. Energy-efficient
scheduling for best-effort interactive services to achieve high response quality.
Parallel and Distributed Processing Symposium, International, 0:637–648, 2013.

[48] J. Eastep. An Overview of GEO (Global Extensible Open Power Manager).

[49] T. Eicken, D. Culler, S. Goldstein, and K. Schauser. Active Messages: A Mech-
anism for Integrated Communication and Computation. [1992] Proceedings the

188

19th Annual International Symposium on Computer Architecture, (May):256–
266, 1992.

[50] X. Feng, R. Ge, and K. Cameron. Power and energy profiling of scientific
applications on distributed systems. In Parallel and Distributed Processing
Symposium, 2005. Proceedings. 19th IEEE International, pages 34–34, April
2005.

[51] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres,
V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J.
Daniel, R. L. Graham, and T. S. Woodall. Open MPI: Goals, concept, and
design of a next generation MPI implementation. In Proceedings, 11th Eu-
ropean PVM/MPI Users’ Group Meeting, pages 97–104, Budapest, Hungary,
September 2004.

[52] M. Gamell, I. Rodero, M. Parashar, and R. Muralidhar. Exploring cross-layer
power management for pgas applications on the scc platform. In Proceedings
of the 21st International Symposium on High-Performance Parallel and Dis-
tributed Computing, HPDC ’12, pages 235–246, New York, NY, USA, 2012.
ACM.

[53] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. W. Cameron. Powerpack:
Energy profiling and analysis of high-performance systems and applications.
IEEE Transactions on Parallel and Distributed Systems, 21(5):658–671, 2010.

[54] C. H. Gebotys. Low energy memory and register allocation using network flow.
In Proceedings of the 34th Annual Design Automation Conference, DAC ’97,
pages 435–440, New York, NY, USA, 1997. ACM.

[55] Y. Georgiou, T. Cadeau, D. Glesser, D. Auble, M. Jette, and M. Hautreux.
Energy accounting and control with slurm resource and job management sys-
tem. In M. Chatterjee, J.-n. Cao, K. Kothapalli, and S. Rajsbaum, editors,
Distributed Computing and Networking, volume 8314 of Lecture Notes in Com-
puter Science, pages 96–118. Springer Berlin Heidelberg, 2014.

[56] S. Ghosh, S. Chandrasekaran, and B. Chapman. Poster: Statistical power
and energy modeling of multi-gpu kernels. In High Performance Computing,
Networking, Storage and Analysis (SCC), 2012 SC Companion:, pages 1516–
1516, 2012.

[57] R. Gonzalez and M. Horowitz. Energy dissipation in general purpose micro-
processors. Solid-State Circuits, IEEE Journal of, 31(9):1277–1284, Sep 1996.

189

[58] S. Gotz, T. Ilsche, J. Cardoso, J. Spillner, T. Kissinger, U. Assmann,
W. Lehner, S. Götz, T. Ilsche, J. Cardoso, and J. Spillner. Software Energy-
Efficiency with Sweet Spot Frequencies. 2014.

[59] R. L. Graham, P. Shamis, J. A. Kuehn, and S. W. Poole. Communication
middleware overview. Tech Report ORNL/TM-2012/120, Oak Ridge National
Laboratory (ORNL), 2012.

[60] H. P. C. T. group and E. S. S. C. a. O. at UH. Openshmem application
programming interface, version 1.0. Technical report, University of Houston
(UH), Oak Ridge National Laboratory (ORNL), 2012.

[61] B. Gu, W. Yu, and Y. Kwak. Communication and Computation Overlap
through Task Synchronization in Multi-locale Chapel Environment, pages 285–
292. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[62] D. Hackenberg, T. Ilsche, R. Schone, D. Molka, M. Schmidt, and W. Nagel.
Power measurement techniques on standard compute nodes: A quantitative
comparison. In Performance Analysis of Systems and Software (ISPASS), 2013
IEEE International Symposium on, pages 194–204, 2013.

[63] M. Hähnel, B. Döbel, M. Völp, and H. Härtig. Measuring energy consump-
tion for short code paths using RAPL. SIGMETRICS Perform. Eval. Rev.,
40(3):13–17, Jan. 2012.

[64] P. Hammarlund. 4th Generation Intel Core Processor , codenamed Haswell,
2013.

[65] M. Hampton. Exposing Datapath Elements to Reduce Microprocessor Energy
Consumption. Massachusetts Institute of Technology, Department of Electrical
Engineering and Computer Science, 2001.

[66] W. Heirman, S. Sarkar, T. E. Carlson, I. Hur, and L. Eeckhout. Power-aware
multi-core simulation for early design stage hardware/software co-optimization.
In Proceedings of the 21st international conference on Parallel architectures and
compilation techniques, PACT ’12, pages 3–12, New York, NY, USA, 2012.
ACM.

[67] T. Hoefler. Software and hardware techniques for power-efficient hpc network-
ing. Computing in Science Engineering, 12(6):30–37, 2010.

[68] T. Hoefler and J. Willcock. Active Messages for MPI. 2009.

190

[69] M. Horowitz, T. Indermaur, and R. Gonzalez. Low-power digital design. In
Low Power Electronics, 1994. Digest of Technical Papers., IEEE Symposium,
pages 8–11, Oct 1994.

[70] C. hsing Hsu and U. Kremer. Compiler-directed dynamic voltage scaling for
memory-bound applications, 2002.

[71] C.-h. Hsu and W.-c. Feng. A power-aware run-time system for high-
performance computing. In Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing, SC ’05, pages 1–, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[72] C.-H. Hsu and U. Kremer. The design, implementation, and evaluation of
a compiler algorithm for cpu energy reduction. In Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and Implemen-
tation, PLDI ’03, pages 38–48, New York, NY, USA, 2003. ACM.

[73] C.-H. Hsu and U. Kremer. Single region vs. multiple regions: A comparison of
different compiler-directed dynamic voltage scheduling approaches. In Proceed-
ings of the 2Nd International Conference on Power-aware Computer Systems,
PACS’02, pages 197–211, Berlin, Heidelberg, 2003. Springer-Verlag.

[74] C.-H. Hsu, U. Kremer, and M. Hsiao. Compiler-directed dynamic voltage/fre-
quency scheduling for energy reduction in microprocessors. In Proceedings
of the 2001 International Symposium on Low Power Electronics and Design,
ISLPED ’01, pages 275–278, New York, NY, USA, 2001. ACM.

[75] S. Huang, Y. Luo, and W. Feng. Modeling and analysis of power in multicore
network processors. In Parallel and Distributed Processing, 2008. IPDPS 2008.
IEEE International Symposium on, pages 1–8, 2008.

[76] M. E. a. Ibrahim, M. Rupp, and H. S. E.-D. Compiler-based optimizations
impact on embedded software power consumption. In Circuits and Systems
and TAISA Conference, 2009. NEWCAS-TAISA ’09. Joint IEEE North-East
Workshop on, pages 1–4, June 2009.

[77] J. H. L. III. An Overview of Sandia National Laboratorys High Performance
Computing Power Application Programming Interface (API) Specification.

[78] Intel. Intel R© Data Direct I/O Technology (Intel R© DDIO): A Primer, Revision
1.0. February 2012.

191

[79] Intel Corporation. Intel(R) 64 and IA-32 Architectures Software Developer’s
Manual Vol. 3B: System Programming Guide, Part-2. February 2014.

[80] C. Isci and M. Martonosi. Runtime power monitoring in high-end processors:
Methodology and empirical data. In Proceedings of the 36th annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 36, pages 93–, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

[81] S. Jana and B. Chapman. Impact of Frequency Scaling on One Sided Re-
mote Memory Accesses. In 9th International Conference on Partitioned Global
Address Space Programming Models (PGAS 2015), September 2015.

[82] S. Jana, T. Curtis, D. Khaldi, and B. Chapman. Increasing Computational
Asynchrony in OpenSHMEM with Active Messages. In OpenSHMEM 2016:
Third workshop on OpenSHMEM and Related Technologies, August 2016.

[83] S. Jana, O. Hernandez, S. Poole, and B. Chapman. Power consumption due
to data movement in distributed programming models. In F. Silva, I. Dutra,
and V. Santos Costa, editors, Euro-Par 2014 Parallel Processing, volume 8632
of Lecture Notes in Computer Science, pages 366–378. Springer International
Publishing, 2014.

[84] S. Jana, O. Hernandez, S. Poole, C.-H. Hsu, and B. Chapman. Analyzing the
energy and power consumption of remote memory accesses in the openshmem
model. In S. Poole, O. Hernandez, and P. Shamis, editors, OpenSHMEM and
Related Technologies. Experiences, Implementations, and Tools, volume 8356
of Lecture Notes in Computer Science, pages 59–73. Springer International
Publishing, 2014.

[85] S. Jana, J. Schuchart, and B. Chapman. Analysis of energy and performance
of pgas-based data access patterns. In Proceedings of the 8th International
Conference on Partitioned Global Address Space Programming Models, PGAS
’14, pages 15:1–15:10, New York, NY, USA, 2014. ACM.

[86] A. Jimborean, K. Koukos, V. Spiliopoulos, D. Black-Schaffer, and S. Kaxi-
ras. Fix the code. don’t tweak the hardware: A new compiler approach to
voltage-frequency scaling. In Proceedings of Annual IEEE/ACM International
Symposium on Code Generation and Optimization, CGO ’14, pages 262:262–
262:272, New York, NY, USA, 2014. ACM.

[87] H. Kaiser, M. Brodowicz, and T. Sterling. ParalleX An Advanced Parallel
Execution Model for Scaling-Impaired Applications. In Proceedings of the 2009

192

International Conference on Parallel Processing Workshops, ICPPW ’09, pages
394–401, Washington, DC, USA, 2009. IEEE Computer Society.

[88] M. Kandemir, A. Choudhary, P. Banerjee, J. Ramanujam, and N. Shenoy.
Minimizing data and synchronization costs in one-way communication. Parallel
and Distributed Systems, IEEE Transactions on, 11(12):1232–1251, Dec 2000.

[89] M. Kandemir, N. Vijaykrishnan, and M. J. Irwin. Power aware comput-
ing. chapter Compiler Optimizations for Low Power Systems, pages 191–210.
Kluwer Academic Publishers, Norwell, MA, USA, 2002.

[90] N. Kappiah, V. W. Freeh, and D. K. Lowenthal. Just in time dynamic volt-
age scaling: Exploiting inter-node slack to save energy in mpi programs. In
Proceedings of the 2005 ACM/IEEE conference on Supercomputing, page 33.
IEEE Computer Society, 2005.

[91] M. Kerrisk. Linux programmer’s manual. 2012.

[92] J. Kim, S. Yoo, and C. Kyung. Program phase-aware dynamic voltage scaling
under variable computational workload and memory stall environment. IEEE
Trans. on CAD of Integrated Circuits and Systems, 30(1):110–123, 2011.

[93] M. Knobloch, M. Foszczynski, W. Homberg, D. Pleiter, and H. Bttiger. Map-
ping fine-grained power measurements to hpc application runtime character-
istics on ibm power7. Computer Science - Research and Development, pages
1–9, 2013.

[94] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler,
M. Mller, and W. Nagel. The vampir performance analysis tool-set. In
M. Resch, R. Keller, V. Himmler, B. Krammer, and A. Schulz, editors, Tools
for High Performance Computing, pages 139–155. Springer Berlin Heidelberg,
2008.

[95] V. A. Korthikanti and G. Agha. Towards optimizing energy costs of algorithms
for shared memory architectures. In Proceedings of the 22nd ACM symposium
on Parallelism in algorithms and architectures, SPAA ’10, pages 157–165, New
York, NY, USA, 2010. ACM.

[96] V. A. Korthikanti and G. Agha. Towards optimizing energy costs of algorithms
for shared memory architectures. Proceedings of the 22nd ACM symposium on
Parallelism in algorithms and architectures - SPAA ’10, page 157, 2010.

193

[97] S. Kumar, A. R. Mamidala, D. A. Faraj, B. Smith, M. Blocksome, B. Cer-
nohous, D. Miller, J. Parker, J. Ratterman, P. Heidelberger, D. Chen, and
B. Steinmacher-Burrow. PAMI: A Parallel Active Message Interface for the
Blue Gene/Q Supercomputer. In Parallel Distributed Processing Symposium
(IPDPS), 2012 IEEE 26th International, pages 763–773, May 2012.

[98] V. Kumar, Y. Zheng, V. Cavé, Z. Budimlić, and V. Sarkar. Habaneroupc++:
A compiler-free pgas library. In Proceedings of the 8th International Conference
on Partitioned Global Address Space Programming Models, PGAS ’14, pages
5:1–5:10, New York, NY, USA, 2014. ACM.

[99] J. Laros, K. Pedretti, S. M. Kelly, W. Shu, K. Ferreira, J. Dyke, and
C. Vaughan. Energy-efficient high performance computing. London: Springer,
2013.

[100] M. T.-C. Lee, M. Fujita, V. Tiwari, and S. Malik. Power analysis and mini-
mization techniques for embedded dsp software. IEEE Trans. Very Large Scale
Integr. Syst., 5(1):123–135, Mar. 1997.

[101] S. Lee, A. Ermedahl, S. L. Min, and N. Chang. An accurate instruction-
level energy consumption model for embedded risc processors. SIGPLAN Not.,
36(8):1–10, Aug. 2001.

[102] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and C. Kozyrakis.
Power management of datacenter workloads using per-core power gating. IEEE
Comput. Archit. Lett., 8(2):48–51, July 2009.

[103] D. Li, B. De Supinski, M. Schulz, K. Cameron, and D. Nikolopoulos. Hy-
brid mpi/openmp power-aware computing. In Parallel Distributed Processing
(IPDPS), 2010 IEEE International Symposium on, pages 1–12, 2010.

[104] D. Li, B. R. de Supinski, M. Schulz, K. Cameron, and D. S. Nikolopoulos. Hy-
brid MPI/OpenMP power-aware computing. 2010 IEEE International Sympo-
sium on Parallel & Distributed Processing (IPDPS), pages 1–12, 2010.

[105] D. Li, J. S. Vetter, G. Marin, C. McCurdy, C. Cira, Z. Liu, and W. Yu. Identify-
ing Opportunities for Byte-Addressable Non-Volatile Memory in Extreme-Scale
Scientific Applications. In Proceedings of the 2012 IEEE 26th International
Parallel and Distributed Processing Symposium, IPDPS ’12, pages 945–956,
Washington, DC, USA, 2012. IEEE Computer Society.

194

[106] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal. Adaptive, Transparent
Frequency and Voltage Scaling of Communication Phases in MPI Programs.
ACM/IEEE SC 2006 Conference (SC’06), 2006.

[107] J. Liu, W. Huang, B. Abali, and D. K. Panda. High performance vmm-bypass
i/o in virtual machines. In Proceedings of the Annual Conference on USENIX
’06 Annual Technical Conference, ATEC ’06, pages 3–3, Berkeley, CA, USA,
2006. USENIX Association.

[108] J. Liu, J. Wu, and D. Panda. High performance rdma-based mpi implementa-
tion over infiniband. International Journal of Parallel Programming, 32(3):167–
198, 2004.

[109] C. Lively, V. Taylor, X. Wu, H.-C. Chang, C.-Y. Su, K. Cameron, S. Moore, and
D. Terpstra. E-amom: an energy-aware modeling and optimization methodol-
ogy for scientific applications. Computer Science - Research and Development,
pages 1–14, 2013.

[110] A. Mainwaring and D. Culler. Active Message Applications Programming
Interface and Communication Subsystem Organization. 1995.

[111] E. Markatos, M. Crovella, P. Das, C. Dubnicki, and T. LeBlanc. The effects
of multiprogramming on barrier synchronization. In Parallel and Distributed
Processing, 1991. Proceedings of the Third IEEE Symposium on, pages 662–
669, 1991.

[112] Microsoft. Windows Power Management: Instant PC Availability and Energy
Savings.

[113] T. M. Mintz and J. P. Davis. Low-power tradeoffs for mobile computing appli-
cations: embedded processors versus custom computing kernels. In Proceedings
of the 45th annual southeast regional conference, ACM-SE 45, pages 144–149,
New York, NY, USA, 2007. ACM.

[114] A. Miyoshi, C. Lefurgy, E. Van Hensbergen, R. Rajamony, and R. Rajkumar.
Critical power slope: understanding the runtime effects of frequency scaling. In
Proceedings of the 16th international conference on Supercomputing, ICS ’02,
pages 35–44, New York, NY, USA, 2002. ACM.

[115] D. Mosse, H. Aydin, B. Childers, and R. Melhem. Compiler-assisted dynamic
power-aware scheduling for real-time applications. In In Workshop on Com-
pilers and Operating Systems for Low Power, 2000.

195

[116] P. J. Mucci, S. Browne, C. Deane, and G. Ho. PAPI: A portable interface
to hardware performance counters. In In Proceedings of the Department of
Defense HPCMP Users Group Conference, pages 7–10, 1999.

[117] D. K. Newsom, S. F. Azari, A. Anbar, and T. El-Ghazawi. Locality-aware
power optimization and measurement methodology for pgas workloads on smp
clusters. In Green Computing Conference (IGCC), 2013 International, pages
1–10. IEEE, 2013.

[118] J. Nieplocha and B. Carpenter. Armci: A portable remote memory copy library
for distributed array libraries and compiler run-time systems. In J. Rolim,
F. Mueller, A. Zomaya, F. Ercal, S. Olariu, B. Ravindran, J. Gustafsson,
H. Takada, R. Olsson, L. Kale, P. Beckman, M. Haines, H. ElGindy, D. Car-
omel, S. Chaumette, G. Fox, Y. Pan, K. Li, T. Yang, G. Chiola, G. Conte,
L. Mancini, D. Mry, B. Sanders, D. Bhatt, and V. Prasanna, editors, Parallel
and Distributed Processing, volume 1586 of Lecture Notes in Computer Science,
pages 533–546. Springer Berlin Heidelberg, 1999.

[119] J. Nieplocha and B. Carpenter. Armci: A portable remote memory copy libray
for ditributed array libraries and compiler run-time systems. In Proceedings
of the 11 IPPS/SPDP’99 Workshops Held in Conjunction with the 13th In-
ternational Parallel Processing Symposium and 10th Symposium on Parallel
and Distributed Processing, pages 533–546, London, UK, UK, 1999. Springer-
Verlag.

[120] NSF, SRC. Energy-Efficient Computing: from Devices to Architectures
(E2CDA). March 2016.

[121] NVIDIA. Nvml api reference manual, ver.5.319.43. August 2013.

[122] OpenFabrics Alliance. The Case for Open Source - RDMA. August 2011.

[123] OpenUCX. Unified Communication X (UCX) API Documentation.

[124] J. Pallister, S. J. Hollis, and J. Bennett. Identifying compiler options to min-
imise energy consumption for embedded platforms. CoRR, abs/1303.6485,
2013.

[125] J. Pan. Rapl (running average power limit) driver.

[126] A. Parikh, S. Kim, M. Kandemir, N. Vijaykrishnan, and M. Irwin. Instruction
scheduling for low power. Journal of VLSI signal processing systems for signal,
image and video technology, 37(1):129–149, 2004.

196

[127] S. F. Rahman, J. Guo, and Q. Yi. Automated empirical tuning of scientific
codes for performance and power consumption. In Proceedings of the 6th In-
ternational Conference on High Performance and Embedded Architectures and
Compilers, HiPEAC ’11, pages 107–116, New York, NY, USA, 2011. ACM.

[128] T. Rauber and G. Rünger. Modeling the energy consumption for concurrent
executions of parallel tasks. In Proceedings of the 14th Communications and
Networking Symposium, CNS ’11, pages 11–18, San Diego, CA, USA, 2011.
Society for Computer Simulation International.

[129] Rice University. Habanero UPC. https://github.com/habanero-rice/habanero-
upc.

[130] Rice University. Habanero-C Overview. 2013.

[131] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and E. Weissmann.
Power-management architecture of the intel microarchitecture code-named
sandy bridge. Micro, IEEE, 32(2):20–27, 2012.

[132] B. Rountree, D. H. Ahn, B. R. de Supinski, D. K. Lowenthal, and M. Schulz.
Beyond dvfs: A first look at performance under a hardware-enforced power
bound. In Proceedings of the 2012 IEEE 26th International Parallel and Dis-
tributed Processing Symposium Workshops & PhD Forum, IPDPSW ’12, pages
947–953, Washington, DC, USA, 2012. IEEE Computer Society.

[133] W. N. Scherer, III, L. Adhianto, G. Jin, J. Mellor-Crummey, and C. Yang.
Hiding latency in coarray fortran 2.0. In Proceedings of the Fourth Conference
on Partitioned Global Address Space Programming Model, PGAS ’10, pages
14:1–14:9, New York, NY, USA, 2010. ACM.

[134] R. Schöne, D. Hackenberg, and D. Molka. Memory performance at reduced
CPU clock speeds: an analysis of current x86 64 processors. Proceedings of
the USENIX Workshop on Power-Aware Computing and Systems (HotPower),
2012.

[135] R. Schne and D. Molka. Integrating performance analysis and energy efficiency
optimizations in a unified environment. Computer Science - Research and
Development, pages 1–9, 2013.

[136] R. Schne, R. Tschter, T. Ilsche, and D. Hackenberg. The vampirtrace plugin
counter interface: Introduction and examples. In M. Guarracino, F. Vivien,
J. Trff, M. Cannatoro, M. Danelutto, A. Hast, F. Perla, A. Knpfer, B. Mar-
tino, and M. Alexander, editors, Euro-Par 2010 Parallel Processing Workshops,

197

volume 6586 of Lecture Notes in Computer Science, pages 501–511. Springer
Berlin Heidelberg, 2011.

[137] J. S. Seng and D. M. Tullsen. The effect of compiler optimizations on pentium
4 power consumption. In Proceedings of the Seventh Workshop on Interaction
Between Compilers and Computer Architectures, INTERACT ’03, pages 51–,
Washington, DC, USA, 2003. IEEE Computer Society.

[138] G. Shah and C. Bender. Performance and experience with lapi – a new high-
performance communication library for the ibm rs/6000 sp. In Proceedings of
the 12th. International Parallel Processing Symposium on International Paral-
lel Processing Symposium, IPPS ’98, pages 260–, Washington, DC, USA, 1998.
IEEE Computer Society.

[139] J. Shalf, S. Dosanjh, and J. Morrison. Exascale Computing Technology Chal-
lenges. pages 1–25, 2011.

[140] P. Shamis, M. G. Venkata, J. A. Kuehn, S. W. Poole, and R. L. Graham.
Universal common communication substrate (uccs) specification. version 0.1.
Tech Report ORNL/TM-2012/339, Oak Ridge National Laboratory (ORNL),
2012.

[141] R. Sohan, A. Rice, A. W. Moore, and K. Mansley. Characterizing 10 gbps
network interface energy consumption. In LCN, pages 268–271. IEEE, 2010.

[142] C.-L. Su, C.-Y. Tsui, and A. M. Despain. Saving power in the control path of
embedded processors. IEEE Des. Test, 11(4):24–30, Oct. 1994.

[143] C.-Y. Su, D. Li, D. S. Nikolopoulos, K. W. Cameron, B. R. de Supinski, and
E. A. Leon. Model-based, memory-centric performance and power optimiza-
tion on numa multiprocessors. In Proceedings of the 2012 IEEE International
Symposium on Workload Characterization (IISWC), pages 164–173, San Diego,
CA, Nov. 2012.

[144] V. Taylor, X. Wu, C. W. Lee, K. Cameron, H.-C. Chang, D. Terpstra, and
S. Moore. Combined Performance and Power Consumption Modeling and Op-
timization with MuMMI 1. pages 1–23.

[145] The White House, Office of the Press Secretary. Executive Order – Creating
a National Strategic Computing Initiative. July 2015.

[146] A. Tiwari, M. Laurenzano, L. Carrington, and A. Snavely. Modeling power and
energy usage of hpc kernels. In Parallel and Distributed Processing Symposium

198

Workshops PhD Forum (IPDPSW), 2012 IEEE 26th International, pages 990–
998, 2012.

[147] V. Tiwari, S. Malik, A. Wolfe, and M.-C. Lee. Instruction level power analy-
sis and optimization of software. In VLSI Design, 1996. Proceedings., Ninth
International Conference on, pages 326–328, 1996.

[148] V. Tiwari, S. Malik, A. Wolfe, and M. Tien-Chien Lee. Instruction level power
analysis and optimization of software. In VLSI Design, 1996. Proceedings.,
Ninth International Conference on, pages 326–328, Jan 1996.

[149] TOP500.org. TOP500. The List.

[150] J. Torrellas, D. Quinlan, A. snavely, and W. Pinfold. Thrifty: An exascale
architecture for energy-proportional computing.

[151] A. Venkatesh, K. Kandalla, and D. Panda. Evaluation of energy characteris-
tics of mpi communication primitives with rapl. In Parallel and Distributed
Processing Symposium Workshops PhD Forum (IPDPSW), 2013 IEEE 27th
International, pages 938–945, May 2013.

[152] A. Vishnu, S. Song, A. Marquez, K. Barker, D. Kerbyson, K. Cameron,
and P. Balaji. Designing energy efficient communication runtime systems for
data centric programming models. In Green Computing and Communications
(GreenCom), 2010 IEEE/ACM Int’l Conference on Int’l Conference on Cyber,
Physical and Social Computing (CPSCom), pages 229–236, 2010.

[153] A. Vishnu, S. Song, A. Marquez, K. Barker, D. Kerbyson, K. Cameron, and
P. Balaji. Designing energy efficient communication runtime systems: a view
from pgas models. The Journal of Supercomputing, 63(3):691–709, 2013.

[154] J. J. Willcock, S. W. Ave, N. G. Edmonds, and A. Lumsdaine. AM ++ : A
Generalized Active Message Framework. 2010.

[155] E. Witchel, S. Larsen, C. S. Ananian, and K. Asanović. Direct addressed
caches for reduced power consumption. In Proceedings of the 34th Annual
ACM/IEEE International Symposium on Microarchitecture, MICRO 34, pages
124–133, Washington, DC, USA, 2001. IEEE Computer Society.

[156] J. Wu, P. Wyckoff, and D. K. Panda. PVFS over infiniband: Design and
performance evaluation. In IN THE 2003 INTERNATIONAL CONFERENCE
ON PARALLEL PROCESSING (ICPP) 03, pages 125–132, 2003.

199

[157] X. Wu, H.-C. Chang, S. Moore, V. Taylor, C.-Y. Su, D. Terpstra, C. Lively,
K. Cameron, and C. W. Lee. Mummi: multiple metrics modeling infrastructure
for exploring performance and power modeling. In Proceedings of the Confer-
ence on Extreme Science and Engineering Discovery Environment: Gateway
to Discovery, XSEDE ’13, pages 36:1–36:8, New York, NY, USA, 2013. ACM.

[158] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy,
P. Hilfinger, S. Graham, D. Gay, P. Colella, and A. Aiken. Titanium: A high-
performance java dialect. In In ACM, pages 10–11, 1998.

[159] J. Zambreno, M. T. Kandemir, and A. N. Choudhary. Enhancing compiler
techniques for memory energy optimizations. In Proceedings of the Second
International Conference on Embedded Software, EMSOFT ’02, pages 364–381,
London, UK, UK, 2002. Springer-Verlag.

[160] T. Zhang, W. Shi, and S. Pande. Static techniques to improve power efficiency
of branch predictors. In Proceedings of the 11th International Conference on
High Performance Computing, HiPC’04, pages 274–285, Berlin, Heidelberg,
2004. Springer-Verlag.

[161] W. Zhang, J. S. Hu, V. Degalahal, M. Kandemir, N. Vijaykrishnan, and M. J.
Irwin. Reducing instruction cache energy consumption using a compiler-based
strategy. ACM Trans. Archit. Code Optim., 1(1):3–33, Mar. 2004.

[162] X. Zhao, D. Buntinas, J. Zounmevo, J. Dinan, D. Goodell, P. Balaji,
R. Thakur, A. Afsahi, and W. Gropp. Toward asynchronous and MPI-
interoperable active messages. Proceedings - 13th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing, CCGrid 2013, pages 87–
94, 2013.

[163] Y. Zheng, A. Kamil, M. B. Driscoll, H. Shan, and K. Yelick. UPC++: A
PGAS Extension for C++. In Parallel and Distributed Processing Symposium,
2014 IEEE 28th International, pages 1105–1114, May 2014.

200

	Introduction
	Background
	Motivation
	Research Statement
	Scope of the Study
	Thesis Contribution
	Chapter-wise Layout

	Guide to Terminology and Plots
	Power Versus Energy of a Data Transfer
	Interpreting Colored Plots

	Related Work
	Hardware-controlled Power Management
	Processing Units
	Interconnect Solutions
	Dynamic Voltage Scaling Techniques
	CPU Gating

	Software-controlled power management
	Compiler-driven
	Operating Systems
	DVFS Based Efforts

	Debunking the `Race-to-Halt' Approach
	Frequency scaling at job level
	Frequency scaling at process level
	Frequency scaling at phase level
	Chapter Summary

	Energy Costs Associated with Distributed-Memory Programming
	Communication Costs
	Synchronization Costs
	Computation Costs
	Case Study: a CORAL Benchmark
	LSMS
	Communication Phases
	Synchronizing Phases

	Chapter Summary

	Communication: Fragment Count and Payload Sizes
	Energy-Consumption Observations
	Power-Consumption Observations
	Network-Card behavior
	Chapter Summary

	Communication: Network-Stack Design
	Factors affecting Power and Energy profile of remote data transfers
	Choice of transport layer and the associated interconnect
	Design of data-transfer protocols

	Empirical Observation and Analysis
	Using TCP over Ethernet
	Using OpenIB/OFED stack over InfiniBand

	Energy Efficiency of Data Transfers
	Chapter Summary

	Communication: Access Patterns
	Design Factors Impacting Communication-Energy Costs
	Properties of the Communication Kernel
	Properties of the Individual Data Transfers

	Code Transformations that Impact Energy Consumption
	Design of Data-access Patterns
	Transformations of access Patterns

	Empirical Results
	Impact of Using Pinned Buffers
	Impact of Using Non-Blocking Remote Transfers
	Impact of Aggregation of Buffers

	Chapter Summary

	Synchronization: Scale and Time
	Synchronizing Time
	Scale of Synchronization
	Chapter Summary

	State-of-the-Art: Using DVFS
	State of the Art
	DVFS efforts for serial applications:
	Extending DVFS to Parallel Applications
	Types of Scaling

	Challenges: DVFS for Eliminating Slack
	Opportunities for eliminating slacks
	Proactive Scaling
	Approach and Challenges
	Empirical study

	Reactive Scaling
	Approach and Challenges

	Chapter Summary

	Challenges: DVFS with Data Movement
	Related work
	Constraints imposed by Hardware Design
	Energy cost factors associated with RDMA transfers
	Approaches for implementing RDMA PUTs
	Experimental setup
	Method
	Test-bed Characteristics
	Power/Energy Measurement

	Results
	No Participation by the Receiver
	Active Participation by the Receiver
	Additional Thread Supporting the Receiver

	Using DVFS in a multicore environment
	Lessons learned
	Chapter Summary

	Proposed Solution: Reviving Active Messages
	Introduction
	Overview of Active Messages
	Active Message v/s Intra-node Tasking Models

	Proposed Extensions for Supporting Active Messages
	Prototype Evaluation
	Implementation Design
	Experimental Setup
	Performance Study
	The Traveling Salesman Problem (TSP)

	Related Work
	Chapter Summary

	Future Work
	Conclusion
	Test Platform
	System-A at OLCF: RAPL monitoring
	System-B at VirginiaTech: PowerPack monitoring
	System-C at ZIH: HDEEM monitoring

	Microbenchmark Design
	Bibliography

