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Abstract 
 

Stepwise linear regression of a database of 177 Class III hydrocarbon prospect outcomes 

and associated descriptions of Direct Hydrocarbon Indicator (DHI) observations indicate that 

the seismic characteristics can be used to predict well outcomes with a success rate better than 

74% for out of sample tests.  The most important seismic characteristics are presence of a phase 

change at the down dip edge of the anomaly, down dip conformance of the anomaly to structure 

(fit to closure), lack of unexplained anomalies in the same stratigraphic interval in the area, 

down-dip extent of the anomaly consistent with sealing capacity, and presence of prospect 

analogues. AVO analysis and results consistent with rock physics trends are also found to be 

significant factors in success/failure analysis. As seal capacity is an often neglected factor, its 

high ranking in the stepwise regression has significant practical implications. The mean-

squared prediction error and residuals for all of the predictions are within acceptable limits. 

This shows that there is a relationship between the characteristics and quality of the interpreted 

DHI anomalies and the prospect outcome.  
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Chapter 1 - Introduction 

 

All hydrocarbon (HC) exploration projects have the common goal of finding reserves of 

oil and gas that are profitable. Companies involved in oil and gas exploration need to assess 

risk factors before drilling in potential exploration prospects using several factors. Eliminating 

the exploration risk is not possible. However, many companies greatly reduce their risk by 

implementing new principals of risk analysis and new technologies.  

One of methods used in reducing risk of drillable prospects is understanding the mechanics 

and the impact of amplitude anomalies on prospects. The presence of Direct Hydrocarbon 

Indicators (DHI) on seismic data have a significant impact on uncertainty levels in risk 

analysis. 

When evaluating DHIs, it is very important to understand the DHI anomalies correctly. To 

interpret DHIs in a correct manner, one must know the seismic data properties such as polarity 

and phase. Because the expected DHI anomalies vary depending on the rock properties, 

knowledge of the geologic setting of the area is a critical part of the DHI evaluation process. 

1.1. DHI and AVO Concepts 

Seismic DHIs are evidence of hydrocarbons directly seen on seismic data. In seismic 

exploration prior to amplitude preserving processing around 1960’s, the true amplitudes were 

not carried on and automatic gain control (AGC) was applied; thus, interpretation of the 

amplitude anomalies was not possible. When the water in the pores is replaced with 

hydrocarbons, when the rock is more porous and when net-gross ratio increases, the acoustic 
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impedance of reservoir rocks is reduced. And depending on the encasing lithology, the 

reservoirs produce amplitude anomalies in seismic sections (Brown, 2012).  

The understanding of seismic polarity, phase and frequency content of the seismic data is 

a key when amplitude anomalies are observed. Without known polarity and phase, a 

lithological change can be easily interpreted as an amplitude anomaly caused by hydrocarbons. 

Conventional direct hydrocarbon indicators are bright spots, dim spots, polarity reversals 

(Figure 1.1), flat spots, and gas chimneys. 

 Bright spots: If the acoustic impedance of a brine sand is less than the encasing 

lithology, it causes a soft (a trough in SEG Standard Polarity) reflection. When brine 

is replaced with hydrocarbons (dominantly gas), for Class IIn and III sands, the 

magnitude of the amplitude increases; thus creating a bright spot. 

 Dim Spots: As opposed to bright spots, when the acoustic impedance of the brine 

sand is larger than the encasing lithology, it causes a hard (a peak in SEG Standard 

Polarity) reflection. As hydrocarbons are added to the rock frame; the impedance 

of the previous brine sand drops to a level where it does not go lower than the 

encasing lithology’s impedance. This causes a drop in the magnitude of the 

amplitude at reservoir level, which is observed as a dim spot in the seismic section. 

 Polarity Reversals: These occur when the impedance of brine sand is slightly more 

than the encasing lithology (still a hard reflection). However, when hydrocarbons 

are substituted for brine, the impedance of the fluid-filled sand drops below the 

encasing lithology. This causes the polarity of the seismic amplitude to change from 

a peak to trough or vice-versa in different polarity concepts. 
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Figure 1.1: Variations in amplitude response due to changes in pore fluid. The impedance 

values are plotted according to SEG Standard Polarity. (Modified from AAPG Memoir 26) 

 Flat Spots: In seismic sections, the hydrocarbon-brine contact produces a flat 

reflection, unconformable with the lithological reflections from the trap boundaries. 

If they are correctly mapped, the flat spot can give the interpreter a rough idea of 

the reservoir thickness (Backus and Chen, 1975). In practice, most of the time, 

observed flat spots have the largest impedance contrast compared to other 

reflections surrounding them, therefore it is easy to pinpoint. However, the reservoir 

must be thick enough to produce a flat spot. It is also possible that, in rare cases, 

the structure and the lithology can be observed as a fake flat spot. 
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 Gas Chimneys: Gas chimneys are seen in seismic sections when over-pressured 

gas breaches the seal and migrates towards the surface. The attenuation caused by 

gas chimneys can shadow most of the structure below and in it. They are indicators 

of gas presence in the basin and is a direct hydrocarbon indicator. Due to attenuation 

caused by the gas, the area where the chimney is, either loses higher frequencies or 

gets completely attenuated in P-wave sections. Incorporating S-wave data, which 

is less sensitive to fluid changes, to the interpretation will aid in a better 

determination of the structure. However, gas chimneys are also an indicator of seal 

breaches around the reservoir. Therefore they must be interpreted carefully to avoid 

drilling low gas saturated targets. 

Figure 1.2, Figure 1.3, Figure 1.4, Figure 1.5, and Figure 1.6 show examples of described 

direct hydrocarbon indicators. 

 
Figure 1.2: A vertical section from Vienna Basin, Austria. It shows a bright spot (blue), and a 

flat spot (red). The amplitudes are weak on the left side because of a gas chimney effect. 

(Brown, 2012) 
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Figure 1.3: A time slice at the flat spot level for the vertical section in Figure 1.2. (Brown, 

2012) 

 
Figure 1.4: Another example of a bright spot (red), and a flat spot (blue). Data from Nile Delta, 

Egypt. Notice the velocity sag caused by the gas reservoir. (Brown, 2012) 

peak 

trough 

 peak 

trough 



6 

 

 
Figure 1.5: A polarity reversal and a gas water contact (blue) seen in stacked data from offshore 

Sabah, Malaysia. (Brown, 2012) 

Despite the fact that the DHI anomalies help interpreters make smarter decisions on 

prospect evaluation, DHIs may also misguide exploration in several ways. It is well known 

that seismic amplitude anomalies can be caused by factors other than commercial 

hydrocarbons (Forrest et al., 2010): 

 Low-saturation gas 

 Clean blocky wet sand 

 Low-velocity shale or marl 

 Low-porosity gas sands can be interpreted as high-porosity oil sand 

After determining a DHI anomaly in stacked data, an Amplitude Variation with Offset 

(AVO) study should be done to understand and classify the possible reservoir.  

 peak 

trough 
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Zoeppritz’s equations (1919) define the seismic amplitude variation with offset for 

reflected and transmitted planar waves between the boundaries of two elastic media. Due to 

the complication of the Zoeppritz equations, approximations were made. The most widely 

known ones are the Richards and Frazier (1976), and Aki Richards three-term (1980) 

approximation. Shuey (1985) also proposed an approximation to Aki-Richards to even more 

simplify the angle dependence. 

Rutherford and Williams (1989) presented that gas-sand reservoirs can generally be 

classified as Class I, II, and III sands based on their AVO characteristics. Castagna et al. (1998) 

introduced class IV sands. Table 1 describes the character of these sands, and Figure 1.6 shows 

the typical amplitude variation with offset.  

Table 1: AVO behavior of class I, II, III, and IV sands at top of reservoir. (Castagna et al., 1998) 

Class Relative Impedance 

A 

(Intercept) 

B 

(Gradient) Remarks 

I 
Higher than 

overlying unit 
+ - 

Reflection coefficient (and 

magnitude) decrease with 

increasing offset 

II 
About the same as 

the overlying unit 

± 

(IIp/IIn) 
- 

Reflection magnitude may 

increase or decrease with offset, 

and may reverse polarity 

III 
Lower than 

overlying unit 
- - 

Reflection magnitude increases 

with offset 

IV 
Lower than 

overlying unit 
- + 

Reflection magnitude decreases 

with offset 

The Shuey three-term approximation introduced the terms Intercept (A), Gradient (B), and 

Curvature (C) for AVO studies. However, the last term C is mostly neglected for AVO cross-

plot studies.  

𝑅(𝜃) ≈ 𝐴 + 𝐵𝑠𝑖𝑛2(𝜃) + 𝐶𝑠𝑖𝑛2(𝜃)𝑡𝑎𝑛2(𝜃) (Eq. 1.1) 

 



8 

 

𝐴 =
1

2
(

∆𝑉𝑝

𝑉𝑝
+

∆𝜌

𝜌
) , 𝐵 ≈ −2

𝑉𝑠
2

𝑉𝑝
2

∆𝜌

𝜌
+

1

2

∆𝑉𝑝

𝑉𝑝
− 4

𝑉𝑠
2

𝑉𝑝
2

∆𝑉𝑠

𝑉𝑠
,

𝐶 ≈
1

2

∆𝑉𝑝

𝑉𝑝
 

 

 
Figure 1.6: P-Wave reflection coefficients for a shale-gas sand interface (modified from 

Castagna et al., 1998) 

Intercept and Gradient values are cross-plotted for further analysis of the amplitude 

variations in zones of interest. A background trend must be defined for wet formations and the 

outlying data points are grouped according to cross-plot quadrants to define the class. 

1.2. Database and Characteristics 

A database provided by the DHI Interpretation and Risk Analysis Consortium, which began 

in 2001 with the support of oil companies, was used. The software Seismic Amplitude Analysis 

Module (SAAM), developed by the DHI Consortium, is a powerful tool for DHI prospect 

evaluation. The database consists of 217 prospects all around the world with targeted reservoirs 

from the age Triassic to Pleistocene. Size of the prospects ranges from 100 to 10,000+ acres; 

and the depths range from 2000 to 20,000+ ft. Closures include structural, stratigraphic, and 

Class I 

Class II 

Class III & IV 
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combination of both (Roden et al., 2012). Out of 217 prospects, 177 complete Class III 

prospects were elected for this study. Each AVO class has a specific list of questions about DHI 

characteristics, which were correlated to the prospect outcome. The DHI characteristics are 

graded on a scale of 1 to 5 according to the observed behavior, as seen on Table 2.  

Table 2: List of characteristics and respective grade values (G). 1: Worst, 5: Best Observation 

# CHAR. G GRADE DESCRIPTION 

1 

Amplitude change 

(as viewed on 

stacked P wave 

seismic data) 

1 Top of zone of interest shows a strong amplitude change that is a positive reflector. 

2 Barely perceptible change relative to chosen background 

3 
Minor amplitude change relative to off closure event (water leg) OR isolated anomaly with no water 

leg event. 

4 Low to moderate (negative) amplitude change relative to off closure (strat or structure) event. 

5 
Moderate to strong (negative) amplitude change relative to off closure (strat or structure) event. 

Preferably has an observable water leg. 

2 

Consistency 

within mapped 

target area (on 

stacked data) 

1 Highly variable from background to max in no perceptible pattern within the mapped target area. 

2 Fairly variable, but predominantly higher within the mapped target area. 

3 Generally consistent within the mapped target area, but small areas show marked variations. 

4 Generally consistent within the mapped target area. 

5 No significant variation within the mapped target area. 

3 

Are unexplained 

anomalies seen on 

stacked data 

outside closure 

(within same 

stratigraphic 

sequence)? 

1 Many similar, unexplained amplitude events seen outside likely closures. 

2 Some similar, unexplained amplitude events seen outside likely closures. 

3 Similar, unexplained amplitude events only occasionally seen outside probable closures. 

4 Similar, unexplained amplitude events rarely observed outside closures and then not as distinctive. 

5 This amplitude event is unique. No similar events can be seen outside the prospect area 

4 

Down-dip 

conformance (fit 

to closure) based 

on far-offset or 

stacked data 

1 None, down-dip edge of amplitude anomaly cuts across structure. 

2 
Down-dip edge cuts across structure, but small areas may be conformable. May include tilted paleo-

contact. 

3 
Neutral. Down-dip edge shows about equal mix of conformable and non-conformable characteristics. 

OR…no water leg, i.e. reservoir not present down-dip. 

4 Down-dip edge generally conformable, within limits of velocity model 

5 Almost perfectly conformable along entire down-dip extent-nearly perfect match to depth contours. 

5 

Lateral 

conformance 

based on far-offset 

or stacked data 

1 
Highly irregular anomaly pattern is difficult to explain by simple fault or channel model or contradicts 

accepted depositional model for the area. 

2 Anomaly forms a complex pattern which may fit a geological model but not established for this area. 

3 
Anomaly largely fits a plausible depositional model, but one for which there is little direct evidence 

OR partially fits an established depositional model. 

4 Anomaly fits a simple, well-established depositional model that is known to work in the area. 

5 
Structural trap. Lateral edges are structurally controlled by faults OR 4-way dip closure (no lateral 

conformance issues). 
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6 
Flat Spots 

indicating fluid 

contacts 

1 
High confidence of having high quality, thick sand but no flat spot is present. Flat spots expected due 

to response seen in analog fields. 

2 None observed. 

3 
Slight indication along only a portion of feature OR suspect origin. For instance, layering fails to 

extend beyond flat spot suggesting channel edge origin OR low net to gross sand ratio makes 

stratigraphic origin much more likely than HC column. 

4 
Good indication, but might also be caused by stratigraphic changes. Signature typically downgraded 

due to significant lateral variation or because it is seen in only specific line orientations. 

5 
Consistent signature along entire down-dip limit. If wide enough, amplitude variation realistically 

reflects change in overlying thickness. 

7 

Phase or character 

change at the 

down-dip edge of 

the anomaly 

('tuning' or 

interference effect 

caused by a 

change in fluid 

content) 

1 No phase or character change observed. 

2 Subtle phase or character change at down-dip edge of anomaly. 

3 Fair phase or character change at down-dip edge of anomaly. 

4 
Seismic event broadens in up-dip direction. Approaching tuning thickness…but not thick enough for 

distinct flat spot. 

5 
Good broadening of seismic event with strong peak at base (bottom of gas sand). May be associated 

with edge of flat spot. 

8 

Signature match 

vs expected 

(polarity and 

shape) 

1 A well-defined response is the reverse of that predicted from modeling or pertinent analogs. 

2 Response appears significantly different from that predicted from modeling or pertinent analogs. 

3 
Complex, indeterminate signature shows some similarities but differences from that predicted from 

modeling or pertinent analogs. 

4 Response appears generally similar to that predicted from modeling or pertinent analogs. 

5 A well-defined response closely agrees with that predicted from modeling or pertinent analogs. 

13 

Change in AVO 

compared to 

model (wet vs HC 

filled) 

1 Clear mismatch with model. 

2 Poor match with model. 

3 Results are indeterminate. 

4 Fair match to model. 

5 Clear match to model. 

14 

Excluding 

possible stacked 

pays, is the AVO 

effect anomalous 

compared to 

reflectors above 

and below? 

1 
AVO response of the target is nearly identical to that of virtually all nearby reflectors. Good evidence 

for processing artifact or lithology effect, not HC's. 

2 AVO response of target is similar to essentially all other reflectors in the section. 

3 AVO response of target is shares some characteristics with other events. 

4 AVO response of the target is somewhat different from that of nearby reflectors. 

5 AVO response of the target is distinctly different from that of nearby reflectors outside likely closure. 
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15 

Is the AVO effect 

anomalous 

compared to the 

same event 

outside closure? 

1 
AVO response of the target is nearly the same as the event shows outside closure. Strong evidence 

that this is a processing artifact or lithology effect, not HC's. 

2 
AVO response of the target is generally similar to the same event outside closure. Suggests this may 

be a processing artifact or lithology effect, not HC's. 

3 
AVO response of target shares some characteristics with the same event outside closure OR can't 

compare. 

4 AVO response of the target is somewhat different from that of the same event outside closure 

5 AVO response of the target is distinctly different from that of the same event outside closure. 

19 

Multiple stacked 

indicators on the 

same trap (same 

stratigraphic 

sequence)? 

1 None 

2 Slight indication of second AA in closure at a different level. 

3 Moderate evidence for second AA, with some consistency to closure 

4 Second well-defined AA at a different level  shows similar relation to closure 

5 Three or more levels of AA's with similar signatures and similar relationship to closure 

20 
Similar indicators 

on other parts of 

closure? 

1 None 

2 Possible seismic indicator is seen in a related fault block on closure, 

3 Good evidence for a second related AA on another portion of same closure but not totally consistent. 

4 Good evidence for several related AA's on other portions of closure but not totally consistent. 

5 All separate fault blocks on this closure have similar seismic indicators. 

21 
Velocity pull-

down 

1 None 

2 Slight indication, but probably structural or stratigraphic effect 

3 Moderately strong velocity sag, likely caused by velocity, but might be due to other effects 

4 Strong indication of low velocity anomaly 

5 Strong, uniform velocity sag consistent enough to allow estimate of pay thickness 

22 

Amplitude and 

frequency shadow 

beneath anomaly 

(may be evident at 

different spectral 

decomposition 

frequencies) 

1 No shadow-zone observed 

2 Data quality not sufficient to identify shadow-zone, if present.t 

3 Slight evidence for shadow-zone under strong anomaly. 

4 Fair evidence for shadow-zone under strong anomaly. 

5 Clear shadow-zone under strong anomaly. 
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23 

Have indicators 

been proven 

nearby? (true 

positive) 

1 No known positive tests 

2 At least one geological success from a similar seismic signature in this play. 

3 Several known geological successes in this play have similar seismic signatures. 

4 
One or more known discoveries (commercial or non-commercial) in this play have similar seismic 

signatures. 

5 
Several discoveries (commercial or non-commercial) nearby or at least one on adjacent structure at 

target formation have nearly identical seismic anomalies. 

24 

Have indicators 

been disproved 

nearby? (false 

positive) 

1 
Several dry holes nearby and at least one dry hole on adjacent structure have nearly identical seismic 

anomalies. 

2 Several known dry holes in this play have nearly identical seismic anomalies. 

3 At least one dry hole in this play has a nearly identical seismic anomaly. 

4 At least one dry hole from a similar seismic anomaly in this play. 

5 No known negative tests 

25 

Sealing capacity 

for interpreted 

Column Height 

(CH) of this 

anomaly 

1 
A well-controlled Effective Stress estimate of less than 700 psi indicates likelihood of no seal. 

Caution!! In deep-water settings this situation may occur even for small columns if prospect has low 

overburden pressure. 

2 
An Effective Stress estimate or analog fields support maximum CH equal to OR less then apparent 

amplitude anomaly height 

3 No Effective Stress estimate or analog fields available - max CH unknown. 

4 
An Effective Stress estimate or analog fields support maximum CH equal to OR greater than apparent 

amplitude anomaly height 

5 
An Effective Stress estimate or analog fields support maximum CH much greater than apparent 

amplitude anomaly height. 

26 

At the anomaly 

level, how 

confident are you 

of preservation? 

(no late fault 

movement, 

breaching, tilting) 

1 Good evidence of late fault leakage or large structure tilting. 

2 Fair evidence of late fault leakage or structure tilting. 

3 Some late fault movement or tilting, but not considered significant. 

4 No late faulting or tilting observed. 

5 Good paleo-structure with no late faulting or tilting. 

 

The characteristics in Table 2 are extracted from SAAM. The characteristic numbering was 

kept the same even though some of them were discarded for this study to avoid confusion. The 

criteria in discarding characteristics were either not having enough data points or being not 

well related to the amplitude anomaly itself. Figure 1.7 shows a matrix of values plotted to see 
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the distribution of data points on determining variables to use. The variables without a 

significant distribution of values were removed from the model. Even though the stepwise 

regression approach would eliminate these statistics, it is good practice in any regression 

analysis to exclude these variables to avoid any errors or biased prediction.  

 
Figure 1.7: A matrix including all characteristics and values colored according to the grades. 
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The distribution of grade values of a variable within itself would also bias the prediction. 

Figure 1.8 shows the number of answers for grade of each characteristic. The characteristics 

without a close-to-even distribution will have negligible significance to the outcome. A mostly 

repeating grade (e.g. characteristic #11, and #21), especially zero values, are to be expected to 

be excluded with the stepwise regression routine. 

 
Figure 1.8: Distribution of grade values for every DHI characteristic. 
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The chosen input characteristics were: 

[1] Amplitude change (as viewed on stacked P wave seismic data) 

[2] Consistency within mapped target area (on stacked data) 

[3] Are unexplained anomalies seen on stacked data outside closure (within same 

stratigraphic sequence)? 

[4] Down-dip conformance (fit to closure) based on far-offset or stacked data 

[5] Lateral conformance based on far-offset or stacked data 

[6] Flat Spots indicating fluid contacts 

[7] Phase or character change at the down-dip edge of the anomaly ('tuning' or interference 

effect caused by a change in fluid content) 

[8] Signature match vs expected (polarity and shape) 

[13] Change in AVO compared to model (wet vs HC filled) 

[14] Excluding possible stacked pays, is the AVO effect anomalous compared to reflectors 

above and below? 

[15] Is the AVO effect anomalous compared to the same event outside closure? 

[19] Multiple stacked indicators on the same trap (same stratigraphic sequence)? 

[20] Similar indicators on other parts of closure? 

[21] Velocity pull-down 

[22] Amplitude and frequency shadow beneath anomaly (may be evident at different 

spectral decomposition frequencies) 

[23] Have indicators been proven nearby? (true positive) 

[24] Have indicators been disproved nearby? (false positive) 

[25] Sealing capacity for interpreted Column Height (CH) of this anomaly 



16 

 

[26] At the anomaly level, how confident are you of preservation? (no late fault movement, 

breaching, tilting) 

Chapter 2 - Method 

2.1. Problem and Analysis 

This study was designed to investigate the relationships between several DHI characteristic 

observations and prospect outcomes. To analyze these relationships, a simple multiple linear 

regression was applied to all the characteristics. After determining which single characteristic 

has the most influence out of all available options, a step-wise approach to update the starting 

model was applied. The criterion in picking the next characteristic was to look at the total 

mean-squared-error of the prediction (MSPE) while it is being added. Figure 2.1 shows the 

algorithm used to pick characteristics that uses the following steps: 

 Start with empty model 

 Test for each character by itself 

 Pick the one with the lowest MSPE 

 Add the picked variable to the model 

 Keeping the previously selected variable(s), test adding the remaining variables 

 Pick the next variable with the lowest MSPE 

 Add the picked variable to the previous model 

 REPEAT until a pre-determined number of iterations is reached 
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Figure 2.1: Flow Chart for the algorithm used 

 

2.2. Multiple Linear Regression 

A linear model of multiple variables was used to approximate the drilling outcomes. Many 

of the regression problems involve using multiple variables. Regression is a supervised 

learning technique. The goal of multiple linear regression is to predict the value of one or more 

target dependent variables given the value of multiple independent variables (characteristics in 
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this study). The form of regression worked in this study was to use a linear model function to 

fit to the data. A possible multiple regression model is:  

𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 (Eq. 2.1) 

where 𝑌 is the binary outcome, 𝛽𝑘 are the regression coefficients for the independent variables 

including the 𝛽0 intercept term, and 𝑥𝑘 (k = 1, 2, …, 26) are the independent variables. Least-

squares minimization could be used to solve for the regression coefficients for this model. 

Assuming there are more observations 𝑛 (𝑛 = 177) than number of variables, a regression 

table can be written as Table 3. 

Table 3: Regression table (𝑥). 

𝒀 𝒙𝟏 𝒙𝟐 … 𝒙𝒌 

𝒀𝟏 𝑥11 𝑥12 … 𝑥1𝑘 

𝒀𝟐 𝑥21 𝑥22 … 𝑥2𝑘 

⋮ ⋮ ⋮  ⋮ 
𝒀𝒏 𝑥𝑛1 𝑥𝑛2 … 𝑥𝑛𝑘 

 

The least-squares function would be given by 

𝐿 = ∑ 𝜖𝑖
2

𝑛

𝑖=1

= ∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘

𝑗=1

)

2
𝑛

𝑖=1

 (Eq. 2.2) 

The estimates must satisfy equations 2.3 and 2.4. 

𝜕𝐿

𝜕𝛽0
|

𝛽̂0,𝛽̂1,…,𝛽̂𝑘

= −2 ∑ (𝑦𝑖 − 𝛽̂0 − ∑ 𝛽̂𝑗𝑥𝑖𝑗

𝑘

𝑗=1

) = 0

𝑛

𝑖=1

 
(Eq. 2.3) 

𝜕𝐿

𝜕𝛽𝑗
|

𝛽̂0,𝛽̂1,…,𝛽̂𝑘

= −2 ∑ (𝑦𝑖 − 𝛽̂0 − ∑ 𝛽̂𝑗𝑥𝑖𝑗

𝑘

𝑗=1

) 𝑥𝑖𝑗 = 0, 𝑗 = 1,2, … , 𝑘

𝑛

𝑖=1

 (Eq. 2.4) 
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Solving these equations, the least-square normal equations can be derived. 

 

𝑛𝛽̂0 + 𝛽̂1 ∑ 𝑥𝑖1

𝑛

𝑖=1

+ 𝛽̂2 ∑ 𝑥𝑖2

𝑛

𝑖=1

+ ⋯ + 𝛽̂𝑘 ∑ 𝑥𝑖𝑘

𝑛

𝑖=1

= ∑ 𝑌𝑖

𝑛

𝑖=1

𝛽̂0 ∑ 𝑥𝑖1

𝑛

𝑖=1

+ 𝛽̂1 ∑ 𝑥𝑖1
2

𝑛

𝑖=1

+ 𝛽̂2 ∑ 𝑥𝑖1𝑥𝑖2

𝑛

𝑖=1

+ ⋯ + 𝛽̂𝑘 ∑ 𝑥𝑖1𝑥𝑖𝑘

𝑛

𝑖=1

= ∑ 𝑥𝑖1𝑌𝑖

𝑛

𝑖=1

⋮

𝛽̂0 ∑ 𝑥𝑖𝑘

𝑛

𝑖=1

+ 𝛽̂1 ∑ 𝑥𝑖𝑘𝑥𝑖1

𝑛

𝑖=1

+ 𝛽̂2 ∑ 𝑥𝑖𝑘𝑥𝑖2

𝑛

𝑖=1

+ ⋯ + 𝛽̂𝑘 ∑ 𝑥𝑖𝑘
2

𝑛

𝑖=1

= ∑ 𝑥𝑖𝑘𝑌𝑖

𝑛

𝑖=1

 (Eq. 2.4) 

The solution of the normal equations (2.4) lead to the least-square estimations of the 

regression coefficients 𝛽𝑘. 

After generating the model the mean-squared-error for prediction (2.5) and F value (2.6) is 

calculated for the analysis of the results.  

𝑀𝑆𝑃𝐸 = (∑(𝑌𝑖 − 𝑌̂𝑖)
2

𝑛

𝑖=1

) 𝑛⁄  
(Eq. 2.5) 

𝐹 =
𝑅2 𝑘⁄

[(1 − 𝑅2) (𝑛 − 𝑘 − 1)⁄ ]
 

(Eq. 2.6) 

Where 𝑌𝑖 is the observed outcome, 𝑌̂𝑖 is the predicted outcome, and 𝑅2 is the ratio of 

explained variation to total variation, also known as the coefficient of determination. 

The MSPE and F Value were used in the regression routine to figure out which 

characteristics to add and when to stop adding more to the model. 
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Chapter 3 - Results 

3.1. In-Sample Calibration 

To begin, the first 89 samples of the Class III database were chosen to generate the model 

weights. Figure 3.1 shows the MSPE while adding characteristics. Figure 3.2 shows the F 

values for the same process.  

 
Figure 3.1: Mean-squared-error for model prediction on every iteration. 

On the MSPE graph, it can be clearly seen that there is a big drop when adding the 

significant characteristics in the first iterations. As the number of iterations is increased, the 

decrease in MSPE becomes smaller, because the less significant characteristics start to 

influence the model. The F value also keeps dropping as the degrees of freedom are increased 

when adding new characteristics.  
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By looking at these results, it is a safe assumption to say that the characteristics added after 

the 10th iteration can be excluded from calibration. The characteristics that were chosen to be 

excluded from the models in this way still keep to drop the F value while keeping the MSPE 

almost the same, which means they are not contributing any positive information to the 

prediction. 

 
Figure 3.2: F Statistic for model prediction on every iteration. 

The predictions for the in-sample prospects are calculated at each step and plotted with the 

corresponding observed drilling outcomes. Figure 3.3 shows the predictions for a model 

generated by 10 iterations. From left to right, it is seen that the prediction results get better. To 

look at the deviation from the observed outcomes, the residuals must be plotted. Figure 3.4 

shows the residuals distribution for the calculated model. The results show a distribution which 

has a minimal number of large errors (flanks) and a big number of very close predictions. 
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Figure 3.3: In-sample predictions vs. observations for 10 iterations. 

According to the stepwise regression routine, the order of importance of added 

characteristics is: 7, 4, 3, 25, 23, 20, 2, 15, 26, and 5, which will be discussed in the conclusions 

chapter. 
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Figure 3.4: Residuals for the in-sample calibration. 

The predicted outcomes are rounded to the nearest valid answer (0 for values smaller than 

0.5, and 1 for values bigger than 0.5). After this calculation, the percentage of correct 

predictions was calculated. The accuracy of the prediction in the calibration dataset is 88.5% 

for successful wells, and 83.8% for failure wells.  

3.2. Out-Sample Predictions 

For the remaining 88 cases, the results were predicted using the in-sample calibrated model. 

This test is intended to ensure that the prediction is reliable. The residuals and the amount of 

error are expected to be higher than the in-sample data, but should still be in acceptable limits. 

The accuracy of out-sample tests are calculated to be 84% for successful wells, and 74% for 

failure wells. Figure 3.5 shows the results displayed in Figure 3.3 with the addition of out-

sample predictions. By only using the first picked characteristic, the prediction is biased 
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towards “success”. Addition of extra variables centers the prediction and generates more 

accurate results. 

 
Figure 3.5: Out sample (red) and in sample (blue) predictions vs. observations for 10 iterations. 
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The residual values for the out-sample tests shown on Figure 3.6 shows a good distribution 

with possible outliers. The last samples from 170 to 177 seem to have poor prediction 

compared to other cases. This could be due to data quality, lack of data, or ambiguous DHI 

characteristics.  

 
Figure 3.6: Residuals for the out sample predictions. 

Chapter 4 - Conclusions 

4.1. Limitations 

The results of multiple linear regression in a complex scenario discussed in this study 

mostly rely on initial estimates of the interpreters, which can be subjective or biased. It seems 

likely that constraining or calibrating the regression models increases the chance of getting the 
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best model. Furthermore, the possibility of having inter-correlations of DHI characteristics will 

also affect the final result.  

Not all prospects carry the same kind of DHIs. Some of the characteristics used to define 

prospects may or may not be evident for one, whereas another prospect may show highly 

descriptive DHIs. However, grouping of prospects with similar DHIs would reduce the number 

of data points to regress and may lead to incorrect or biased results. 

Theoretically, using as many as possible data points play a key role in achieving the best 

models. With the increasing number of prospects in SAAM database, it will be possible to 

separate the data into smaller and more detailed groups to analyze the characteristics in depth.  

4.2. Resulting Characteristics 

 
Figure 4.1: MPSE comparison for all used characteristics by iteration. 
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Calculation of predicted values for in-sample and out sample tests should allow one to 

generate MPSE values for both with each iteration. Figure 4.1 shows that there is a mutual 

decrease of MPSE in both tests until the 11th iteration. The out-sample tests’ MPSE starts to 

increase after iteration 11. This supports the previous decision of discarding parameters after 

iteration 10. 

The order of characteristics selected by the algorithm gives an insight to the importance of 

the characteristics. The order and the description of the results is shown in Table 4. 

Table 4: Order of selected characteristics using multiple linear regression, and descriptions. 

Order Char # Description 

1 7 
Phase or character change at the down-dip edge of the anomaly ('tuning' or 

interference effect caused by a change in fluid content) 

2 4 Down-dip conformance (fit to closure) based on far-offset or stacked data 

3 3 
Are unexplained anomalies seen on stacked data outside closure (within same 

stratigraphic sequence) ? 

4 25 Sealing capacity for interpreted Column Height (CH) of this anomaly 

5 23 Have indicators been proven nearby? (true positive) 

6 20 Similar indicators on other parts of closure? 

7 2 Consistency within mapped target area (on stacked data) 

8 15 Is the AVO effect anomalous compared to the same event outside closure? 

9 26 
At the anomaly level, how confident are you of preservation? (no late fault 

movement, breaching, tilting) 

10 5 Lateral conformance based on far-offset or stacked data 

11 13 Change in AVO compared to model (wet vs HC filled) 

12 24 Have indicators been disproved nearby? (false positive) 

13 21 Velocity pull-down 

14 22 
Amplitude and frequency shadow beneath anomaly (may be evident at different 

spectral decomposition frequencies) 
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15 8 Signature match vs expected (polarity and shape) 

16 1 Amplitude change (as viewed on stacked P wave seismic data) 

17 6 Flat Spots indicating fluid contacts 

18 19 Multiple stacked indicators on the same trap (same stratigraphic sequence)? 

19 24 Have indicators been disproved nearby? (false positive) 

 

The results clearly show that the presence and correct interpretation of DHIs are correlated 

to the DHI prospect success/failure. This study shows that the importance of structurally 

conformant and continuous amplitude anomalies, and its seismic phase behavior, as well as, 

presence of proven-to-be-successful DHI analogs have strong correlation with the outcome.  

4.3. Discussion and Recommendations 

It is important to note that these results are isolated to the samples used in this study. When 

using different inputs as the calibration (i.e. picking different or random in-sample cases), the 

order of the output characteristics may change due to the sensitivity of the method to the kinds 

of observed DHIs. However, the first 10 picked characteristics seem not to be significantly 

affected for the majority of the tests, with very little number of exceptions.  

By looking at the results, the seal capacity is in the Top 5 characteristics. This is an 

unexpected result. However, as seal capacity is an often neglected factor, its high ranking in 

the stepwise regression may have significant practical implications.   

One important discarded characteristic, that is not included in the Top 10, is the presence 

of flat spots. It is well known that presence of flat spots is a highly trusted DHI in real world 

exploration. The reason it is not included in the significant characteristics list is the very low 
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statistical variation of the input. Characteristic #6 on Figure 1.8 shows that most of the 

prospects do not have a flat spot present. The number of remaining prospects with observed 

flat spots are not statistically significant for regression analysis. 

In this study it is chosen to linearly represent the relationship. It is challenging to represent 

DHI properties with fixed values, due to the complexities and non-uniqueness of real world 

conditions. The very likely nature of the problem is to be non-linear and must be studied in 

more detail. By analyzing all characteristics individually and then all-together to come up with 

a basis function to be used in the regression routine is highly recommended and might improve 

the results. 

Another recommended approach would be to partition the prospects with similar DHIs for 

each class. Different DHIs are expected to have different properties that may not be applicable 

to others. The partitioning process would eliminate these errors. Unfortunately, with the 

number of data points in the current database, partitioning would greatly reduce the number of 

variables for each segment. This may cause the regression to be rank-deficient (not enough 

prospects for the number of characteristics). With increasing number of prospects in the 

database, it will be possible to do this in the future. 
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Appendix A: DHI Consortium & SAAM Information 
 

The DHI Interpretation and Risk Analysis Consortium began in 2001 with the support of 

Rose & Associates and contributions of 41 oil companies. The software SAAM developed 

under this consortium provides interpreters with a powerful tool for resource evaluations. The 

conventional approach to determine the chances of finding flowable hydrocarbons, which is 

Pg, is to risk five main independent risk factors source, timing/migration, reservoir, closure, 

and containment (Table A.1) accordingly and multiplying the percentages. If there is a seismic 

amplitude anomaly related with the prospect, the analysis of such anomaly can decrease the 

uncertainty of analysis (Forrest et al., 2010; Roden et al., 2005).  

The goals of the DHI Consortium have been and continue to be (Roden et al., 2012): 

1) Gain a better understanding of how DHI anomalies impact predrill chance of 

geological success. 

2) Characterize DHI anomalies observed using previous prospect reviews and 

discussions about risk analysis. 

3) Create and archive a database of drilled prospect results. 

4) Use the archived prospect database for improving the prediction ability of Pg and 

reducing the uncertainty. 

5) To be a checklist and an educational tool for DHI interpreters in the analysis process 

to help risk seismic amplitude anomalies. 

6) To discuss technologies for amplitude interpretation. 
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Table A.1: Conventional geologic chance factors for determining Initial Pg independent of 

seismic amplitude anomaly (Modified from Forrest et al., 2010; Roden et al., 2005) 

Risk Element Confidence of… 

Source Rock  Area and thickness 

 Richness 

 Thermal maturity 

 Kerogen type 

Timing/Migration  Closure timing (before/during migration) 

 Migration distance and pathways 

Reservoir Rock  Facies and Extent 

 Minimal Thickness 

 Reservoir Quality 

Closure  Depth/Shape of closure 

 Structural or stratigraphic 

 Confidence in mapping 

Containment  Sealing capacity 

 Preservation 

 

The SAAM software includes 217 Class I, II, III, and IV prospects from all around the 

world with an approximately equal number of successful wells and dry. Closure types include 

structural, stratigraphic, and combinations of the both. Figure A.2 shows that the database is 

dominated by exploration wells with only 14% coming from development or extension wells 

(Roden et al., 2012). 

Figure A.2: Prospect types of well in the database (Modified from Roden et al., 2012) 
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The DHI prospects in the database are categorized and risked as AVO classes I – IV (Figure 

1.6). 76% of the prospects are class 3, 22% are class II sands. Only a small number of class I 

and class IV prospects are present. 

SAAM software uses the following input information: 

 Geologic context of the prospect 

 Initial Pg, which is the product of geologic chance factors independent of the 

anomaly 

 Seismic data quality 

 Rock physics and data quality 

 DHI characteristics for each relevant class 

By this information, the DHI characteristics are graded on a scale of 1 – 5 by the 

estimator(s) based upon a series of objective criteria, with 1 being the worst and 5 being the 

best case scenario. Then, each grade is converted into a “Grade Value” ranging from -10 to 10, 

which describes how favorable is the characteristic to the prospect. Then a weight is applied to 

each characteristic and the values are summed to come up with an overall score for that 

prospect. This score is then normalized to a range from 0 to 100 out of all possible outcomes. 

Then a similar process is applied to seismic data quality information and this gives a data 

quality score ranging from 0 (little or no data reliability) to 100 (highest possible reliability). 

The prospect score is then multiplied by this value to achieve the final DHI Index. For example, 

in a perfect world scenario, if all characteristics are graded as 5, the prospect score would be 

100. If the data quality operator is 50%, the DHI Index will be the half of the DHI Index if data 
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quality was neglected. Finally, the Initial Pg value is modified by the DHI index to get the 

Revised Pg. 

After calculating prospect specific Revised Pg values, using the prospect library, the 

outputs of SAAM can be calibrated (Figure A.3) and recalculated for all the prospects to have 

a better correlation with the drilling outcome. Figure A.4 shows a simplified version of the 

SAAM workflow. 

 
Figure A.3: On the left: uncalibrated Revised Pg values (a) which overestimate risk on the high 

end and underestimate risk on the low end; on the right: calibrated Pg estimate (b) which takes 

advantage of the prospect library. A well calibrated value should be a 45 degrees line on this 

chart (SAAM User’s Guide) 
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Figure A.4: DHI Interpretation and workflow concept (Modified from Roden et al., 2012) 

 

 Currently SAAM offers three different calibration methods. The first method is 

“Calibration from Revised Pg (Initial Pg + DHI Quality Index” and it starts with Initial Pg + 

DHI Index and applies a calibration from known drilling outcomes from the database. 

However, the disadvantage of this method is that, it includes the Initial Pg in the calculation. 

The estimator must be very careful in making an Initial Pg estimate. The second method is 

“Calibration from DHI Index” which is the same method as the previous, but excludes the 

Initial Pg and only starts with the DHI Index. It only takes into account the strength of the DHI 

characteristics and the data quality which some may consider highly subjective. The third 

calibration option is “Binary Bayesian Conditioning”, which is an experimental approach. 

Further research on this method may produce additional enhancements. 

 

 


