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ABSTRACT

Recently a new theory of heat conduction has 

appeared in the literature. The raison d'etre of this 

theory is that in the classical theory heat propagates in 

a body with infinite speed. The present paper deals with 

the linearized form of the theory, which gives rise to an 

integro-partial differential equation.

Two problems for this equation, called history-value 

problems, are posed. It is shown that, under certain 

conditions, solutions to these history-value problems on a 

bounded region of space are unique. Next, it is shown that 

if the data of the problem have bounded support, then for 

any time the solution has bounded support. This proves the 

hypothesis of finite wave speeds. This result is then used 

to prove that solutions to the history-value problems on an 

unbounded region of space are unique.
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I. INTRODUCTION

The classical theory of heat conduction, as well 

as other theories dealing with diffusive phenomena, leads 

in the case of a homogeneous isotropic medium to the 

parabolic partial differential equation

0 = aA0. (1.1) *1

■'’Here 0 stands for the temperature, a the thermal 
diffusivity, and A the Laplace operator, while the super­
posed dot. refers to partial time differentiation.

1

It is a familiar fact that this equation, as is character­

istic of those of the parabolic type, has solutions whose 

physical interpretation implies an infinite propagation 

speed in the sense that a disturbance in any part of the 

body will be accompanied by an instantaneous change in the 

temperature throughout the body. This physically untenable 

attribute of solutions of (1.1) has stimulated recent 

researches [1,2] aimed at a theory of heat conduction that 

gives rise to finite wave speeds.

The theory presented by Gurtin and Pipkin in [1] . 

pertains to materials with memory and as a consequence 

they propose to supplant (1.1) with an integro-differential 

equation. By means of linearizations based upon the 

assumption that |0-OQ| and |V6| are small (0Q is a constant 
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temperature), they arrive at

CO

.c6(x,t) + 3(0)§(x,t) + j 6>" (s) 6 (x, t-s)ds 
o

(1.2)
CO

= a(O)A0(x,t) + / a" (s) A9 (x, t-s)ds + r(xzt) 
o

for the temperature in a homogenous isotropic material. In

(1.2),  c > 0 denotes the heat capacity, 3 and a the 

respective energy and heat flux relaxation functions, and r 

the body heating.

The authors of [1] give a twofold motivation for 

their claim to have found a mathematical model that predicts 

finite propagation speeds for thermal disturbances. First, 

they point out that, in the case of one dimensional 

temperature fields where 3 and r are identically zero, (1.2) 

reduces to the equation governing the longitudinal motion of 

a viscoelastic bar with mass density c and stress relaxation 

function a. It is well known that this equation has
i, 

associated with it the finite propagation speed [a(0)/c] 2. 

Second, they arrive at finite speeds for the propagation of 

singular surfaces, through an analysis that obviates the 

linearization used to obtain (1.2).

2 This analysis has been extended by Chen [3], who 
studied the amplitude of temperature rate waves in the one- 
dimensional case.

The objective of this thesis is to establish by 

means different from those employed in []] that the linear 

theory has the finite propagation speed property. Two 
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approaches are utilized. The first, which is primarily 

for motivation, is to compare solutions of (1.1) and (1.2) 

which are of the form of spherical waves with harmonic 

time dependence. This treatment, however, does not furnish 

a rigorous confirmation of the finiteness of propagation 

speeds with sufficient generality to suit our purposes. 

There is little doubt, however, that more general results 

can be obtained, notwithstanding some hypotheses of 

unjustifiable complexity and restrictiveness, by the use 

of Fourier integrals. The second approach is to adapt the 

method of energy integrals to (1.2). This technique is 

used to prove that certain types of problems suggested for

(1.2) are well posed from the point of view of uniqueness. 

These problems, because of the form of (1.2) are boundary- 

history-value problems, or more simply history-value 

problems, in contrast with the usual boundary-initial-value 

problems posed for (1.1). The method is then used to 

establish the finiteness of the wave speed and delivers an 

upper bound for it.

3 
.See, for example, Courant & Hilbert [4, p. 642].



II. NOTATION

We designate by En the euclidean space of ordered 

n-tuples of real numbers. The open spherical ball of radius 

r in about x will be denoted by Br(x), and its bounding 

surface by Sr(x). Hence

Br(x) = {ysEn: '|x-y| < r},

(2.1) 
Sr(x) = {yeEn: |x-y| = r}.

An open connected set in E3 will be called a region. 

If a region R has the property that for any bounded set 

SCR, there exists a bounded set R*,  with S c r* c: r, and 

the boundary of R*  consists of a finite number of "closed 

regular surfaces" (in the sense of Kellogg [5, p. 112]), then 

R will be called a regular region. For a set S 5 En, its 

interior, boundary, and closure will be written in the usual 
o 

manner, namely S, 3S, and S respectively.

Finally, we use the conventional notation to desig­

nate the degree of smoothness of a function. Thus we write 

(jis^tS) if <j) is defined and m-times continuously differenti­

able on S — En. If <{) is continuous on S we write <j)eC(S) 

instead of ^sC0 (S) . For the restriction of a function 4> 

defined on a set S to a subset T of S we write <j)|T.

4



III. COMPARISON WITH THE

CLASSICAL THEORY

The purpose of this section is to compare the classi­

cal theory of heat conduction with the linear theory 

presented by Gurtin and Pipkin in [1]. In particular it 

will be shown that:

a) In either theory if the temperature is time 

independent, then it is a harmonic function in 

its spacial coordinates, i.e., if

6=0, then A6 = 0.

b) For a certain family of solutions (with harmonic 

time dependence) there is an upper bound for the 

propagation speeds of temperature functions that 

satisfy (1.2), whereas there is no such bound for 

the propagation speeds of functions satisfying

(1.1).

The field equations of the classical heat conduction 

theory are:

e(x,t) = - V-q(x,t) + r(x,t),

q(x,t) = - kqV6 (x,t) , (3.1)

e(x,t) = b + c0(x,t). 

5
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where e is the internal energy, q the heat flux vector, r 

the body heating, k0 > 0 the thermal conductivity, c > 0 

the heat capacity, and where b is a constant pertaining to 

the zero point of the temperature scale.

The field equations established by Gurtin and 

Pipkin are

e(x,t) = - V*q(x,t)  +r(x,t),

00

q(x,t) =-/ a (s) V6 (x, t-s) ds , (3.2)
o

00 

e(x,t) = b + c6 + / g(s)6(x,t-s)ds.
o

The relaxation functions g and a were mentioned in the 

introduction. As in [1] , we assume that B(s), a(s)->0 as

By taking the divergence in (3.1)2 and the time 

derivative in (3.1)3 and combining the three equations

(3.1),  assuming that r= 0, one obtains (1.1), where 

a = Kq/c. The analogous operations on (3.2) give
(3.3)

00 00

c0(x,t) + jg> (s) 6 (x, t-s) ds = / a(s) A9 (x,t-s)ds +r(x,t). 
o o

For convenience, in the remainder of this section 

we set r equal to zero. This amounts to the assumption 

that all the heat flowing between the body and the external 

world occur by conduction through its surface."*"  It is 

clear that both (1.1) and (3.3) reduce to

■'’This rules out phenomena such as heating by 
electromagnetic radiation (microwave cooking).
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AO = 0

if 0 = 0 and the equilibrium conductivity

CO 
k = / a(s) ds (3.4)

o

is not zero. Thus the two theories reduce to identical 

forms in the steady state case.

It is worth mentioning that we cannot make this 

conclusion from (1.2). Under the hypothesis that 

6=0 (1.2) becomes 

00

a(O)A0 + AO/ a^(s)ds = 0. 
o

But since a(<») = 0, this becomes merely an identity. This 

is due to the fact that (1.2) is found by time differenti­

ation in (3.3). This can be seen by putting (3.3) into the 

form
(3.5) 

. t • t
c0(xft) + / B(t-s)0(x,s)ds =/ a(t-s)A0(x,s)ds + r(x,t).

— CO —00

Differentiation in this equation and another change of 

variable give (1.2). With this in mind it is easy to 

anticipate that we could not prove that 6=0 implies 

A6 = 0. In fact by taking the time derivative in (1.1), 

we obtain

6 = aA6, 

from which no such conclusion can be reached.

We may note at this point that. (1.1) is, in a
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sense, a limiting case of (3.3) (with r = 0). If we put

8(s) = 0 and ay(s) = Kpe-^3 for s >. 0, then by a familiar

^See [6, p. 350].

2theorem about Laplace Transforms,

CO

lim / a (s)A6(x,t-s)ds
P^00 o P

= lim< KpL [p^0] (p)f
p->00 I J

-- K(pt6)(x,0) = KA0(x,t),

(3.6)

where p is the operator defined by

(Pt6) = (x,t-s).

In order to compare propagation characteristics of 

solutions of (1.1) and (3.3) in a context where time 

dependence is present, we seek solutions to these 

equations of the form

0 = u(r,w)cos (cot-kr) , (3.7)

where r = |x|. For (1.1) we find that (3.7) is a solution 

if

u(rfO)) = Ar 1exp(-kr) (3.8)

and

k = (u)/2a) 2. (3.9)

For (3.3) we find that (3.7) is a solution if
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and

(3.10)

k

(3.11)

*2

k Re
A (to)

Im ) iu) tc + B (u) ] /
I A (to) J

Ar"xexp(-k'r)

The functions A and B are defined by

00

A(co) = / a(s)e~^wsdsz 
o

00

B(to) = j g (s) e~iWSds .

o

(3.12)

Note that A is the Fourier Transform of the function

a(s) = a(s)

= 0

s >. 0

s < 0

and that B is the Fourier Transform of the function

3(s) = 3 (s)

= 0

s >. 0

s < 0.

The phase velocity associated with a solution of

the form (3.7) is defined by

V(to) = to/k. (3.13)

So the phase velocity for the solution (3.8)-(3.9) of (1.1)
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is
Vx (to) = (2ato)35, (3.14)

whereas the phase velocity corresponding to the solution

(3.10)-(3.11) of (3.3) is

Imj-itoA(to)'

We immediately note that as w-* 00, V^w)-* 00, indicat­

ing that there is no bound for the speed of propagation of 

solutions of (1.1). Taking the limit of V2 (to) as to-* ”.

V (oo) = lim V2 (to)
2 w-*- 00

(3.16)

But lim B(w) = 0 by the Riemahn-Lebesque Theorem. Also 
to-* 00

-iwA(to) = -itoF[a] = -a(0)-F[a^]. (3.17)

Using the Riemann-Lebesque Theorem again, we find

lim [-iwA(to)] = -a(0) (3.18)
to-* 00

and thus

V2 (<») 1 
Im{-C/a(Q)^

a(0)

c .
(3.19)

3 
See [7, p. 11]. We assume, for arguments1 sake, 

that a and 8 are absolutely integrable.
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We conclude that for solutions of (3.3) (or of (1.2)) of 

the form (3.7), the associated phase velocities are bounded, 

although not necessarily by [a(0)/c] 2.

It is interesting to note that if we let B(s) = 0 

for all s >. 0, (1.2) reduces to

CO

c6(x,t) = a(0)A6(x,t) + J a' (s) A0 (x, t-s) ds (3.20) 
o

which is the equation governing the one-dimensional longi­

tudinal motion of a viscoelastic bar. As mentioned in [1], 

the speed of propagation of solutions of this equation is 

[a(0)/c]'5, the value found in (3.19).

Moreover, a much wider class of solutions to (3.3) 

can be formed by taking an integral superposition of 

solutions of the form (3.7), leading to Fourier integrals.



IV. HISTORY-VALUE PROBLEMS

UNIQUENESS FOR BOUNDED REGIONS

In this section we give sufficient conditions for 

uniqueness of solutions of "history-value problems" for 

(3.3). The method of proof is based on an identity similar 

to the "energy identity" for the scalar wave equation."*"  A 

similar technique of proof has been used by Volterra [8] to 

prove uniqueness of solutions to an integro differential 

equation of a different type. 

At this stage let us state precisely what we mean 

by a solution of the first history-value problem.

DEFINITION 4.1. A function 9: Rx (-co,co)---- ->(-*,<»)  is a

solution of the first history-value problem for the region 

R corresponding to history ip: Rx(-oo,0]----- >(-00,00)r boundary

value f: Bix[0,co)----- >(-C0,00), normal derivative

g: B2x[0,co)----- >(-00z00)z where B^ and B^ are complementary

subsets of 3RZ heat capacity c, relaxation functions 

a, (3: [0,°°)----- >(-00,00) an(j body heating function

r: RxtO,00)------>(-oo,oo) if

a) OeC2 (RX (-00,00) (RX (-00,00) ) ,

CO

b) aeC'2[O,“), ^eC^O,"), .0 < k<°°, where k = / a(s)dsz
------------------------------------- :------------------------------------------ o

1[4Z p. 440-445] .

12
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and a(s),B(s)----- >0 as s----- >«>,

c) 6 satisfies (3.3) on Rx(0,“)( and

d) 6 = ip on Rx(-oo,0],

6 = f on B1 x [0, oo) f

— = V6*n  = g on B„*x[0, co).
3n ~ . 2

Here B2* is the set of all points xeB2 at which a normal 

n(x) can be defined.

To be brief we will say that 0 is a solution to the 

first history-value problem on R corresponding to f, g,

c, a, 3, and r.

We are now in a position to prove

LEMMA 4.1. Let R be a bounded regular region, and assume 

that 6 is a solution to the first history-value problem 

on R corresponding to ip e 0, f, g, c, a, (3, and r. Then

/02 (x,t)dx + 0 (0)/^/O2 (x,a)dxda
2 R ~ o R

+ (o-s) 9 (x,o) 0 (x,s)dxdsda + / | V6 (x,t) | 2dx
o o R ~ ~ ~ 2 R

+ Y (0)|VO(x,a)|2dxda 
o R

+ (o-s) VO (x,o) *V0  (x,s)dxdsdcr
R o o

+ /t/. a^ (t-s) VO (x, t) • VO (x, s) dxds
Q R ~ ~ ~
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-t. •
= a(O)j J f(x,o)g(x,o)dxdo

0 3R

+ JtJ°J a" (o-s)f(x,a)g(x,s)dxdsda

0 0 0R

+ /t/6(x,o)r(x,a)dxda for all t 1 0, (4.1)
o R "

where

Y = -a'. (4.2)

Proof: By hypothesis, for (x,a) e Rx[0,oo)
• ,o  .O'*

c0(x,a) + J 3(s)0(x,a-s)ds = J a(s)A0(x,o-s)ds + r(x,a)
o o

or
(4.3)

* rO •c0(x,a) + J S(a-s)0(x,s)ds = / a(a-s)A0(x,s)ds + r(x,o). 
o 0

Note that by hypothesis and (4.3) r is differentiable.

By differentiation in (4.3) one obtains

c0(x,a) + B(O)0(x,a) + J B (a-s) 0 (x,s)ds
o ~ (4.4)

.a ,= a(O)A0(x,a) + / a (a-s) A0 (x,s)ds + r(x,a). 
o

This is (1.2), for a function 0 which is zero on 

rx(-°o,o]. Now multiply both sides of (4.4) by 0(x,a) 

and use the identities

0 (x,a)*0  (x,a) = - — [02(x,a)] 
2 9a
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and

6(x,a)A6(x,s) = V•[6(x,a)V6(xfs)] -V0(x,a)’70(x,s)

to find that

2" 9o" [62(x,a)] + g(0).e2(x,a) + / (a-s) 9 (x,a) 0 (x,s) ds
a

= a(0)7*[0 (x,o)70(x,o)] - a(0)70(x,a)*70 (x,o)

+ J a (a-s)7•[0(x,o)70(x,s)]ds
o

,a
- j (a-s)70(x,o)*70 (x,s)ds 

o

+ 0(x,a) r(x,a) for all (x,a) sRx [0,0°) . (4.5)

By the smoothness hypotheses,

70 (x,a)-70 (x,a) = - — I 70 (x,a) I 2
2 So

and

/ a'(a-s)70(x,o)*70 (x,s)ds = a'(0)|70(x,a)|2 
o

o
+ / a" (a, s) 70 (x,o) • 70 (x, s) ds 

o

+ / a (a-s)70(x,o)»70(x,s)ds.
o

Accordingly, (4.5) becomes
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? "Io7 [62(xro)] + 3(O).02(xra) + (a-s) 6 (x,o) 6 (x,s)ds
o

• 1.0 •= a(0)V‘[0 (x,o)V0(x,o)] + J a'(a-s)V•[0(x,a)V0(x,s)]ds
Q

^2°^ ia lV6^fa)|2 + a" (0) | V0 (x,a) | 2

+ J a (a-s)VO(x,a)»V0(xrs)ds 
o

- / a' (a-s) V0 (x,a) *70  (x,s)ds
o

+ 0(x,a)r (x,a). (4.6)

Let t 2. 0 and integrate both sides of (4.6) over 

the set Rx[0,t]. By hypothesis it can be seen that 

0(x,O) = 6(x,0) = 0 on R. Thus

£ j 02(xzt)dx + 3(0) / / 02(x,a)dxda
R 0 R

t a . .
+ j j j 3^ (o-s)0 (x,a)0(x,s)dxdsda

R ~o o

= - J [V0(x,t)|2dx - y(0)/ / | 70 (x, a) | 2dxda
2 R ~ o R

t a
- f f f y-'(a-s)70 (x,a)-70 (x,s)dxdsda

o o R

t
- / ja'(t-s)70(x,t)•70(x,s)dxds

o- R ~ ~ ~ .
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t 

+ a(0) / /?•[9(x,o)V9(x,o)]dxda 
OR

t a
+ J J a^(o-s) /V*  [9 (xra) V9 (x,s) ]dxdsda 

oo- R

t e
+ / J9(x,a) r(x,a)dxdar 

o R ~

where the substitution y =■ -a-' has been made. 
2 Now using the Divergence Theorem , we arrive at 

(4.1).

With the help of this lemma we are able to prove 

uniqueness of solutions to the first problem for a bounded 

region. But first we make the following

DEFINITION 4.2. If 9 is a solution to the first history­

value problem on a region R corresponding to xp, f, g, c, a, 

6, and x, where i|i = 0, f, g, and r are zero on R x [0,T] for 

some T >. 0, then we say that 9 is a solution to the first 

history-value problem on R with null data up to time T, 

corresponding to c, a, and ft. If 9 is a solution with null 

data up to time T for every T >. 0, we say that 9 is a 

solution to the first history-value problem on R with null 

data, corresponding to c, a, and

THEOREM 4.1. Let R be a bounded regular region, and suppose 

that 9 is a solution to the first history-value problem on 

R with null data up to time T > 0, corresponding to c, a,

2 
See [5, p. 113].



18

and 8. Suppose further that c, a(0), .8(0), and 

y(0)= -a^(0) are positive. Then

9=0 on Rx[0,T].

Proof: By Lemma 4.1 and by hypothesis 
. t .

y /02(x,t)dx +8(0) / /.92 (x,a) dxda
R o R

t a
+ / / (a-s)6(x,a)6(x,s)dxdsda

o o R

a (n \ t

+ ------- /|V0(x,t)|2dx + y(0) J J|V9 (x,a)|2dxda
2 R ~ o R

t a
+ / / Jy(a-s)V0(x,a)•V6(x,s)dxdsda

o o R 

t
+ / /a'(t-s)V0(x,t)•V0(x,s)dxds = 0 (4.8)

OR

for all te[0,T]. Define four functions on [0,T];

f (t) = fe (x,t)dx,
1 R

t
f (t) = J f (s)ds, (4.9)

2 o 1

f (t) = /|V0(x,t)|2dx
3 R

t
f (t) = f f (s)ds.

It ' 3
0

Note that each of these functions is nonnegative.

Let

d = min{c/2, 8(0), a(0)/2, y (0) } (4.10)
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and

4
4> (t) = d E f . (t) . 

i=l 1
(4.11)

By hypothesis, d is positive and therefore 4> is non­

negative on [O,TJ.

By our continuity hypotheses there exists a positive 

number K such that

|a'(t)|, |B'(t)|, |Y'(t)| < K on [0,T].

From (4.8) one can conclude that

t a
<t> (t) <_ K J J J | 6 (x,o) 6 (x,s) [dxdsda

o o R

t a
+ K / / /|V0(x,a)*76 (x,s)[dxdsda

o o R

t
+ K/ J |70(x,t) -76 (x,s) |dxds. (4.12)

Since each f is continuous on [0,T], there exists a 
i.

positive number such that for each i=l,...,4

f (t) <_ a for all te[0,T]. (4.13)
r o

OQ

Define the sequence ioi^} by
n=0
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a : from (4.13) o

2K I 2T ' I
■— I —ZTT + —7 a i n=0,l,2 d I (n+2)2 n+2 n (4.14)

Note that

(n+2)2 n+2

oo n
Therefore, by the Ratio Test, V at 

n=0 n
converges for

all ts[0,T], which implies that

llm a tn = 0 for all ts[O,T]. 
n-* 00 n ’

In order to show that each f is zero on [0,T] it is .
i

sufficient to show that for each i=l,...,4 and 

n=0,1,2,...

f. (t) <_ a tn on [0,T] (4.15)
i n

This assertion can be proved by induction. The first 

step, for n = 0, is already shown in (4.13). The 

inductive hypothesis is that (4.15) holds for n = j.

By the Schwarz inequality
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f I 6 (x, o) 6 (x, s) I dx <_ 
R

/62(xf o)dx 
R

2(x,s)dx
X, "2

= [f (a)f (s) ] 2, 
i i

so that the inductive hypothesis implies

t a e t a . /9 . /9
/ / / | 9 (xza) 6 (xzs) [ dxdsda <_ a.J j a-1' s-1' asda 
doR~ ~ ~ 3 o o

j+2
2a.t 2a.T . ,

= _2____ < 3 t3+1 (4
(j+2)2 “ (j+2)2

Similarly

t o 2a ,T -;+1
/ / / | V9 (x,a) *79  (x,s) |dxdsda <_ —2------ tJ e (4
0 0 R ~ ~ (j+2)2

Also, since

/ [s^/2 | 79 (x, t) | - t^/2 | 79 (x, s) | ] 2dx >. 0
R

one finds that

/ | 79 (x, t) *79  (x, s) | dx _< j | 79 (x, t) | | 79 (x, s) | dx
R R ~ ~

£ 7 / (g.) ] 79 (x,t) | 2dx + 7 / (1)^ 179 (x,s) |
2 r t . ~ 2 R s

1 s j/2
. = 2 <t> f3 (t) + (s).

2 s 3 (4

16)

17)

dx

.18)
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Again by the inductive hypothesis

j/2 i/2 /|V0(x,t)’V0(x,s) | dx <_ a . t sJ
R J

and hence

t t j/2 j/2
/ /|V0(x,t)*V0(x zs)| dxds <_ a . / t s ds
a R ~ ~

2aj+1
= . (4.19)

By (4.12), (4.16), (4.17), and (4.19)

4KTa. , 2Ka.
(f) (t) <_ ---------- 1. (4.20)

(j+2)2 j+2

It follows that for i=l,...,4

2K "2T 1 j+1 j+1f (t) < — —- ----r+ -±~ a.tJ = a. tJ . (4.21)
i - d (j+2)2 j+2j 3 3+1

Therefore, f = f = 0 on [0,T], which by (4.9) and 
1 2

the smoothness hypotheses implies that

0=0 and V0 = 0

on RxfO,!]. Therefore 0 is a constant on Rx[0,T], and

since 9(*,0)  = 0 on R, one concludes that

0 = 0 on Rx [0,1] ,
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the desired result.

COROLLARY 1. Let R be an unbounded regular region, and 

suppose that 9 is a solution to the first history-value 

problem on R with null data, corresponding to c, a, and 

3. Suppose further that c, a(0), 3(0), and y(0) are 

positive. Then

6 = 0 on Rx [0 ,co) .

Proof: See Definition 4.2.

COROLLARY 2. Let R be a bounded regular region and suppose 

that are solutions of the first history-value problem

on R, corresponding to ip,f ,g , c, a, 3r r , and xp, f , g , 
11 1 2 2

c, a, 3, r respectively. If c, a(0), 3(0), and y(0) are 
2

positive and if f = f , g = g , and r = r on [0,T], 12-12 12

then 6 =6 on R x[0,T]. If, under the same hypotheses 
1 2

f = f , g = g , and r = r on [0,=°), then 6 = 6 on 12 12 12 12

Rx[0,“).

Proof: Let 6=6-6. By hypothesis and the linearity 
------------- 1 2

of (3.3), 6 is a solution to the first history-value 

problem on R with null data on [0 ,T] (or on (O,00)), 

corresponding to c, a, and 3*  Using Theorem 4.1 or 

Corollary 1, the proof is immediate.
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Physically it would perhaps be more meaningful to 

pose history-value problems for (3.3) giving the normal 

component of the heat flux vector, instead of the normal 

derivative of 9 (these differ only by the multiplicative 

constant -k in the classical theory), on B . By (3.2) 
0 2

these are related by

co

q (x,t) = q(x,t)*n(x)  = - / a (s) —(x, t-s) ds . (4.22)n ~ ~ ~ ~ ~ Q an ~

DEFINITION 4.3. A function 9: Rx (-<»,<»)-> (-00,c°) is a 

solution of the second history-value problem for the region 

R corresponding to history ip: Rx (-<»,0]-*-(-<», °o) , boundary 

value f: B^x [0 ,”)-*  (-<»,°o) , normal component of heat flux

h: B x [0 ,oo)-> (-00,00) , where B and B are complementary 
2 12

parts of 9R, heat capacity c, relaxation functions 

a, g: [0 ,«>)-> (-00,00) , and body heating function 

r: Rx [0 ,<»)-> (-<»,=d) if

(a) 9 E C2 (Rx (-oof oo) ) /q C1 (Rx (-oo, oo) ) z

(b) a e C'2[0,o°), g £ C'1[0,°o), 0 < k < 00, and 

a(s), 3(s)-> 0 as s 0°,

(c) . 9 satisfies (3.3) on Rx(0,c°), and

(d) 9 = ip on Rx(-oo,0],

6 = f on B x [0 ,oo) ,
i

. q = h on B *x [0,oo) .n 2
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Here is given by (4.22) and is the set of points

x e B at which a normal n(x) can be defined.

To be brief we will say that 0 is a solution to the 

second history-value problem on R corresponding to f, h, 

c, a, f3, and r. If ipz f, h, and r are identically zero on 

[0,T]z we will say that 0 is a solution to the second 

history-value problem on R with null data up to Tz corre­

sponding to c, a, and £3.

The first two terms on the right-hand side of (4.1) 

can be put into the form

/ / 0(x,a) [a(0) —(x,a) + / a' (a-s) — (x,s)ds]dxda. (4.23)
0 3R ~ 3n ~ o 9n ~

If, as in the case of Theorem 4.1, we assume that

0(xzt) = 0 for all t <_ 0, then (4.22), after a substi­

tution, yields

t de

Qn^ft) = ~ / a (t-s) —(x,s) ds. (4.24)
o

From (4.24) we find by differentiation that

. 3 0 3 0q (x,t) = -a(0)~ (x,t) - J a (t-s)-r-(x,s) ds. (4.25)
n dn * dH

0

Therefore we recognize the expression in (4.23) to be

t ,
~ f J 6 (x,a)qn(x,a)dxdcr. (4.26)
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Using this fact, a uniqueness theorem for the second 

history-value problem, on a bounded regular region, can be 

proved.

THEOREM 4.2. Let R be a bounded regular region and suppose 

that 6 ,6 are solutions to the second history-value 
1 2

problem on R corresponding to ip, f , h , c, a, 3, r^ and

ip, f , h , c, a, B, r respectively. If c, a(0), 3(0), and 
2 2 2

y(0) are positive and f = f , h = h , and y = y on 12 12 12

[0 ,T] (on [0,°°)), then 6 = 0 on [0 ,T] (on [O,00)) .
* 1.2

Proof: Let 0=6 - 6 . Then 6 is a solution to the
------------- 1 2

second history-value problem with null data. By 

replacing the first two terms on the right-hand side of 

(4.1) with (4.26), we see that (4.8) holds. As in 

Theorem 4.1, then, 6=0.

Remark: Theorem 4.2 could also have been proved by noting 

that (4.24), the hypothesis that a is not identically zero 
3 

(k > 0), and Titchmarsh’s Theorem on convolutions, imply 

that if

q = 0 on B x[O,^),
n 2

then 

36
— = 0 on B x [ 0, oo) .
dn 2

3See [9, p. 22]. 



That is, a solution to the second history-value problem 

with null data is a solution to the first history-value 

problem with null data.
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V. FINITE PROPAGATION SPEEDS

UNIQUENESS FOR UNBOUNDED REGIONS

The method used here to prove the finite propagation 

speed hypothesis depends upon a lemma which is a generali­

zation of Lemma 4.1. This lemma has a counterpart in a 

result given by Zaremba [10], and discussed by Fritz John 

in [11].

LEMMA 5.1. Let R be a regular region in E^ (not necessarily 

bounded) and assume that 9 is a solution to the first 

history-value problem on R corresponding to ip, f, g, c, a, 

8, and r. Also suppose that teC1(R) is a given function 

such that the set

P(t) = {xer|t(x) > 0} (5.1)

is bounded, and that ip | (P (t) x (-co, 0]) = 0. Then

• T ( X) •
y / 92(x,T(x))dx + 3(0) / j 02 (x, o) dudx

R Ro

t (x) a
+ / / / 3' (a-s)0(x,a)9(x,s)dsdadx

R o o ~ ~

+ a(0) Je (X,T (x) ) VQ (X,T (x) ) -vt (x)dx 
R ~ ~ ~ ~ ~

28
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T (x)
+ J f " (t (x)-s) 6 (x, t (x)) V6 (x, s) • Vt (x) dsdx

R Q ~ ~ ~ ~

+ .a I J [ V6 (xf t (x)) | 2dx + y (0) /. / ~ | V6 (x,a) | 2dadx
2 R Ro

t (x) a
+ j J / y (a-s) V6 (x,a) • V9 (xr s) dsdadx

R o o

r ,+ J J a (t(x)-s)V6(x,t(x))•V6(x,s)dsdx
R o ~ ~

T (X) .

= a(O)J J " f (x, o) g (x, o) dadx 
9R o

t (x) a
+ J j / a^(a-s)f(x,a)g(x,s)dsdodx

9R o o ~

t(x).
+ j j ~ 6(x,a)r(xra)dadx (5.2)

Ro ~

where again

-a' • (5.3)

Remark: Lemma 4.1 is a special case of this result, when

R is bounded and t(x) has the constant value T.

Proof: As in the proof of Lemma 4.1, for xeP(t)

2 To + 3 (0) 62 (x,a) + / 3'(a-s) 0 (x,a) 6 (x,s)ds
o

• a
= a(0)V* *[6(x,a)V9(x,a)] + j a" (a-s)V•[9(x,a)V9(x,s)]ds

o
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1_ |V6(x,a).|2 - y(0) |ve (x,a). | 2
2 da " ~

a
- / (a-s)V6(x,a)•V6(x,s)ds

o

g a , .
- — / (a-s)V0(xza)V6(x,s)ds  + 0(xza)r(x ,a). (4.6)*

da a ~ ~ ~

Now integrate with respect to a from 0 to t (x). The 

smoothness hypotheses imply that

T(x) . t(x).
/ ~ V-[0(x,a)V0(x,a)]da = ?•/ " 0(x,a)V0(x,a)da

0 0

- 0 (x, T (x) ) V0 (x, T (x) ) • Vt (x) a# "v

and that

t (x) a
/ / a' (a-s)V* [0(x,a)V6(x,s)Jdsda
o o

t(x) ae
= j ~ V•/ 0(xza)V0(x,s)dsda

o o
t (x) a

= V*  / / a-'(a-s) 0 (x,a) V0 (xzs) dsda
o o

t (x)
- j ~ a' (t (x) —s) 0 (x, t (x) ) V0 (x,s) • Vt (x) ds 

o

and that q(x,0) = 0(x,O) = 0 for all xeP(t).

Accordingly,
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. T (x) .
.62(x,t(x)) + 6(0) J ~ .e2(x,o)da

o

t (x) a
+ / J (cy-s) 6 (x,a) 6 (xzs)dsda

o o

T (X) .
= a(0)V‘J ~ 0 (x,a)V0 (x,a)da

o

- a (0) 6 (x, t (x)) V0 (x,t (x)) • Vt (x)

t (x) a
+ V*/  ~ / a'(a-s)6(x,a)V6(x,s)dsda

o 0
t (x)

- / a-'(t (x)-s) 6 (x,t (x)) V9 (x,s) V t (x)ds*
0

- ——— | V0 (x, t (x)) | 2 - y(0)/ ~ |V0(x,a)|2da
2 o

t (x) a
- / / (a-s)V0(x,a)•V0(x,s)dsda

o o

T (x)
- / a' (t (x) —s) V0 (xr t (x)) • V0 (x, s) ds

o

t(x).
+ / ~ 0(x,a)r(xza)da (5.4)

o

Now since each of the terms in (5.4) has bounded 

support, integration over R can be performed. Using the 

divergence theorem the result follows at once.

By Lemma 5.1 we can show that a perturbation in the

data that occurs on a bounded part of the region propagates 

at a finite speed. More precisely, we can prove the
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following:

THEOREM 5.1. Suppose that R is an unbounded regular 

region in E , and that 0 is a solution to the first . 

history-value problem on R, corresponding to xp, f, g, c, 

a, and r, with c, a(0), B(0), and y (0)= -a^(0) positive. 

Suppose further that for any t > 0 there exists a bounded.

set A G r such that
t

= 0 on (R-A^Jx (-=0,0] ,

f = 0 on (B "At)x [0,t] ,

. g = 0 on (B*-A  )x [0,t],

and r = 0 on (R-At)x[0,t] .

Then there exists a bounded set fi G R such that 
t

6=0 on (R-Q )x[0,t]. (5.5)

Proof: Let t > 0. By assumption a"*  , B> , and

(y defined in (5.2)) are continuous on [O,tJ. Hence

there exists K > 0 such that

|a"(s)|, |B^(s)|, [y" (s)| £K on [0,t] (5.6)

Let
_ r -> K + a (0) I , c \u > max {1, -----------—. (5.7)

0 C

Now choose 6 > 0 such that

3R U A S Bx(0) if 3R is bounded
(5.8)

Af - Bg (0) if 3R is unbounded.
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Consider the set

= ROB (0) . (5.9)
t 6+u t ~

Since Q is closed, R-fi is contained in the closure t t

of R-fi^.. In order to show that (5.5) holds, we let

xeR-fif For each XE[0,t] define

T^(y) =. x-u01 |y-x| •

Clearly t e (71 (R-{x}) nA
T^(y) <_ X < t

and IVt (y)I = u-1
X - 0

C(R) ,

for all ysR, 

for all y£R-{x}.

Also, recalling (5.1),

P (t ) = R n B (x)
;X uox ~

for all Xe[0,t).

Since B (0) A B (x) = 0 for all XE[0,t], 
6 ~ uox ~

it follows that

P(t ) ^ R- (Ax. U 3R) if 3R is bounded
X u

P(T ) S R-At if 3R is unbounded.

(5.10)

(5.11)

(5.12)

By hypothesis, (5.12) and (5.11) it is clear that 
2

/ / A f (y,a)g(y,o)dady = 0,
3R o ~

f rTx(y)rag Q (cf-s) f (y,a)g(y ,s)dsdady = 0, (5.13)
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and

J J- 6 (y, o) r (Yr o) dady = 0.
R o "

At this point, let p > 0 be small enough so that o
B (x) Cl R. Then consider the one parameter family of 

Po ~
regular regions

Rp = R-Bp(x) 0 < p < po (5.14)

The hypotheses of Lemma 5.1 are satisfied on each Rp 

with the functions 0 | (Rpx (-00,00) ) and t | RD . Using 

Lemma 5.1 on Rp and passing to the limit as p+0, using 

(5.13), one obtains

• l ; .
J 02(y,T (y))dy + 3(0)/ / A 02(y,o)dady
R ~ . X ~ ~ Ro

t.(y) a
+ / / / 3" (cr-s) 6 (y,a) 0 (y,s) dsdody

K o o

+ a(0)/ 0 (y,T (y)) V0 (y,T (y))-Vt (y)dy R X ~ A * X ~

• • . A ~ *•* A ** ** **

+ / / A a" (t (y)-s) 0 (y,T (y) )V0 (y,s)‘VT (y)dsdy
Ro A ~ ~ • A ~ ~ A ~

a ten Ti to)
+ —— /|V0(y,T (y))|2dy + y (0)/ / A ~ |V0(y,a)|2dady

2 R ~ A ~ ~ R 0

T (y) a
+ / / A ~ / y^ (a-s)V0(y,a)•V0(y,s)dsdady

R o o ~ (5.15)

f rTx(y)
+ J J ~ a'(t (y)-s)V0 (y,T (y)) *70  (y,s)dsdy = 0.
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Now let

a (X) = /.62 (y,T (y)dy, 1 R ~ A ~ ~

t (y) •
a (X) = / / A .62 (yf a)dody,
. 2' R q 

a (X) = /|ve (y,T (y)) |2dy, 

a (X) = / J ~ |V6(y,o)|2dady.
‘‘Ro

Note that each is nonnegative. In order to show that 

each (X) is zero for all Xe[0,t], let

4 
t*  = sup{sE[0,t]: a =0 on [0,s]}r (5.17)1

■*"Note that t* exists, i.e. the set in (5.17) is 
nonempty,, since a^(0) = 0, i=l,...,4.

i=l i

and assume for contradiction that

0 < t*  < t. (5.18)

By (5.15), (5.16), and (5.6)

1 c a (X) + 8(0)a (X) + 1 a(0)a (X) + y(0)a (X)
2 1 2 2 3 t

T,(y) a • •
< K f /■ ~ / | 9 (y ,a) | • | 0 (y ,s) [dsdady

Ro o

+ a(0) J | 9*  (y,T (y)) | • | V0 (y, tx (y)) | • | Vt (y) |dy 
R ~ . A ~ ~ . A ~
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t, (y) .
+ K / /■ ~ | 6 (y,T (y) ) | • | V6 (y,s) | • | Vt (y) |dsdy

ro - ~ X ~ ~ - A ~

, a+ K / / "J |V9 (y,a) |•|V6(y,s) jdsdady
R o o

t. (y)
+ K / / ~ |V6(yzTx(y))|•|VO(y,s)|dsdy (5.19)

ro "

For the moment, concentrate on the second and third 

terms on the right-hand side of (5.19). Since

/ [ Ie (y,T. (y))I - |ve(y,T (y))I]2dy 0, 
r ~ . A - ~ X ~

it follows from (5.16) that
(5.20)

/I 0 (y,T. (y)) | • | V0 (y,T (y)) |dy < a (X) + 1 a (X)

for all X£[0,t]. Also, as mentioned in (5.11),

|Vt. (y)| = u 1. ConsequentlyX ~ o

a(0)/|9(y,T. (y)) |•|V9(y,T (y) ) |•|Vt (y)|dy R ~ a ~ ~ A ~ A ~

a(0)
< - ------ [a (X) + a (X)] . (5.21)— 2u 1 3

0

Similarly,

• t (y)
/ [ I 6 (y,T (y)) | - J. x ~ | V9 (y,s) |ds] 2dy > 0
R ~ A ~ o

implies that

/ I 6 (Yr (y) ) I / ■" | V9 (y, s) | dsdy <
R ■ A ~ q ~ ~ " 2

T, (y)
+ /[/ " |V9 (y,s) |ds]2dy (5.22)

•Ro
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But, for <_ X the Schwarz inequality implies that

x2 X
[J |f|ds]2• £ (X -X ) J 2|f.|2ds, (5.23)
X . 2 1 X

i i

so that if Xe[t*,t]

,T (y) t. (y)
[f ~ Ive (y,s) |ds]2 = [/ Ive (y,s)[ds]2

o t*

5 (t (y)-t*)  / ~ |V6(yzs)|2dsA ~ t* ■ ~

< (X-t*)/ A ~ |V0(y,s)I2ds. (5.24)
o

Accordingly, by (5.22)

T}(y) .
/ / A | 9 (y,T (y) ) | • | V6 (y,s) [dsdy 
Ro ~ • X ~

< y a (X) + - (X-t*)a  (X)-2i 2 **

I Ik V
< - a (X) + - t2a (X) (X-t*)  2. (5.25)
— 21 2 *»

Again since |Vt^(y)] = u"1/

Tx(y) •
K / / " | 9 (y) t (y)) | • | V6 (y,s) | • | Vt. (y) [dsdy
Ro ~ A ~ ~ . ~

Ka^jX) Kt^a (x)

< ----------- + --------------- (X-t*)' 1. (5.26)
— . 2u 2u

o o
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Therefore, by (5.19), (5.21), and (5.26)

~ 1^" " a (X) + P(0)a (X) + " T^-] a (X)
2 2uo 2u0 i . 2 2 2u0 3

t. (y) o .
+ y (0) a (X) <_ Kj / ~ / | 6 (y ,o) | • | 0 (y, s) [ dsdady

**' R o o

Ti(y) o
+ K J / / |V6(y,a)|•|V9(y,s)|dsdady

R o o "

T>+ K / / ~ |V6(y,T (y))| •|V6 (y,s) |dsdy
Ro ~ . A ~

Kt^a^(X)

+ --------- (X-t*)  (5.27)

for all [t*,t].  By (5.7) the coefficients of the

in (5.27) are positive. If d is the minimum of

these coefficients, the left-hand side of (5.27) can

4
be replaced by d a,. 

i=l i

Consider how the first term on the right-hand side

of (5.27). Define the function W by

a .
W(y,a) = / |e(y,s)|ds, (5.28)

o

with" which is possible to conclude that

t, (y) o . . tx (y) g
/■ ~ j I e (y,o) I • I 6 (yfs) |dsda = / W(y,a) 3a W(y,a)da
oo 0

t (y) t (y) 
W2 (y, a) |: A ~  j X ~ d_ [w (y, a) ] W (y, a) da

o o da
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(y) • t, (y) a .
= [/• | 6 (y,s) |ds] 2 - /■ j | 0 (y,a) | • | 6 (y,s) |dsda.

Thus 

t. (y) a . . , t (y) .
J- ~ J | 0 (y,o) | • | 0 (y,s) |dsda = - [J. x ~ | 6 (y,s) |ds] 2

~ ~ 2 ~
0 0 0

T1(v)•< (X-t*)  j A ~ |0(y,s)|2ds, (5.30)

as in (5.24). Therefore, as in (5.25),

t, (y) o •
j /- ~ j |0 (y,o)|•|0(y,s) |dsdady
Ro o

13- k< 5- a (X) (X-t*)  2. (5.31)— 2 2

Similarly

t (y) o
/ /■ ~ / I V0 (y,o) | • | V0 (y,s) [dsdady
Ro o

13- v< £ t2 a (X) (X-t*)' 5. (5.32)
- 2 *

By the Schwarz inequality, (5.24), and (5.16)

t (y)
/IV0 (y,T (y))|/ A ~ |V0(y,s)|dsdyR ~ X ~ ~ ~

V T (y) i
<'{/|V0(y,T (y)) 12dy} {/[/ A ~ |V0 (y,s) |ds]2dy}2

R ~ A ~ R fl

< a (X)35 a (X)15 (X-t*) 32 (5.33)
— 3 4

Therefore, by (5.27), (5.31), (5.32), and (5.33),
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r! V 1 V 1 V
d Y a. (X) < K(X-t*)  2{ t2 a (X) + i t2 a (X) 
ill 1 - I2 .2 2 '.

■ • I V 
+ [a (X)a (X) ] + — t2 a (X) L

3 2u0 V J
(5.34)

Each a is continuous on [0,t], so there exists a 
i

positive number Lo such that

a. < Lo on [0ft], i=lz...,4 (5.35)
i —

CO

Now define the sequence {L } by
n=0

n=0,1,2,...

(5.36)

or

where

It will be shown by induction that Xe[t*,t]  implies

a (X) < L (X-t*) n/2 n=0,l,2,... (5.38)
i — n

for each i=l,...,4. For n=0, the

assertation is clear. For n=j, (5.34) gives

4 1+1 2 . .1
d J d.(X) < KL (X-t*)  2 [1+t35- (1+ -----  )] (5.39)
i=l 1 - j 2u0
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Consequently, for each i=l,...,4

2

By (5.37)

n/2 x, n
L S = L (nS2) n o

and hence

(5.40)

(5.41)

lim LnSn/2 =o if s < 0 2• (5.42)
n-froo

Therefore, by (5.38), a^(A) = 0 if X-t*  < n-2. Hence

a,(X) = 0 for all X such that t*  < X < t*  + n-2,
(5.43)

which contradicts the definition of t*,  (5.17).

Therefore t*  = t and for i=l,...,4

a±(X) = 0 for all Xs[0,t] (5.44)

By (5.16), then.

Finally, letting y = x,

ysR.. Furthermore, if ysR-P(T^), its value is zero.

0 (y,Tx (y)) = o,

Ve(y»Tx<y)) = 0 for all yeR, 

which proves that o(y,T^(y)) is a constant for all
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0(x,X) = 0 for all Xe[0,t].

COROLLARY. Suppose that R is an unbounded regular region 

and that 0 ,9 are solutions to. the first history-value 
1 2

problem on R, corresponding to f , g^, c, a, r t and 

ip , f , g , c, a, 0, r respectively, with c, a(0), 3(0),
2 2 2 2

and y(0) positive. If, for any t > 0, there exists a 

bounded set c R such that

ip = <p on (R - A ) x (-oo,0] , 
1 2 t

f = f on (B-A.)x[0,t],
12 it

(5.45)
g = g on (B - A ) x [0, t],
12 2 r

and
r = r on (R - A.)x[0,t], 12 t

then there exists a bounded set R such that 0 =9
t 1 2

on (R - fi^) x[0 , t] .

Proof: The function 9=0 -9 satisfies the 
------------- 1 2

hypotheses of Theorem 5.1. The rest follows at once.

THEOREM 5.2. Let R be a regular region and suppose that 

0^,0^ are solutions to the first history-value problem on 

R, corresponding to ip, f, g, c, a, 0, and r. If c, a(0), 

3(0), and y(0) are positive, then

• 0 = 0 on Rx [0,oo) .
1 2



43

Proof: The proposition has already been proved in the

case that R is bounded (Ch. 4). So assume that R is 

unbounded. Let t > 0. The hypotheses of the Corollary 

to Theorem 5.1 are satisfied with A = . Therefore
 t

there exists a bounded set Q C. R such that 
t

9=9 on (R-fi )x[0ft].
1 2 t

(5.46)

Since R is a regular region, there exists a bounded set 

R*  with fitC.R*<2R,  and the boundary of R*  consists of 

a finite number of "closed regular surfaces" (Kellogg). 

That is, R*  is a bounded regular region. Since 9^ and 

9^ satisfy the hypotheses of Corollary 2 to Theorem 4.1 

on R*x[0,t]

9=9 on R*x[0,t] . (5.47)
1 2

Since R-R*  (5.46) and (5.47) imply that

9=9 Rx [0,t] .
1 2

Finally, since t is arbitrary, the conclusion follows.

Remark: Clearly Lemma 5.1, Theorem 5.1, its corollary, 

and Theorem 5.2 have counterparts for the second history­

value problem, the proof being along the lines of 

Theorem 4.2.
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