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ABSTRACT 

 

Drill string buckling has always been an important subject in a well completion 

design. Oil wells typically have multiple concentric casing strings. In common practice 

the outer string is assumed to be rigid, while in reality the outer string can displace when 

induced by contact force of inner buckled pipe. Interaction between dual strings has 

significant influence on buckling behavior. Better understanding of dual string buckling 

behavior helps to give reliable reference for completion design. 

An analytical mathematical model has been brought up to describe the post buckling 

behavior of dual string. The newly derived model has been verified with previous 

literature. Effect of contact interaction has been considered in this model and evaluated in 

analysis. Case study has been conducted to further explore the buckling mechanism of 

dual string system. The influence of different parameters on final buckling configuration 

has been investigated. 
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CHAPTER 1  

INTRODUCTION 

1.1 Overview 

Drilling operations is believed to be one of the most complex, dangerous, critical and 

costly operations in the oil and gas industry. Drilling operations accounts for a large 

portion of initial investment on reservoir development. Drilling technology has gone 

through a rapid development in the past twenty years. Drilling of super deep, highly 

deviated, horizontal and extended reach wells helps us with further access to reservoir 

that used to out of exploration. However, increased complexity of drilling programs 

always comes with new challenges and problems that have not been encountered before. 

Research on drilling design contributes to safe and efficient drilling and completion 

operations with full use of material, thus optimize the economic profits.  The stability 

analysis of downhole tubulars has always been one of the most important part in drilling 

design and the hottest topic in oil and gas industry. Knowledge of the buckling 

configuration of tubulars is important to prevent costly failures and provides references to 

solve problems in operations. 

Buckling of drilling tubulars is almost inevitable during drilling and completion 

operations. When a tubular (casing or drill string) buckles, it may cause a lot of problems, 

like breaking the string and conducting time consuming fishing operations and costly 

repairs etc. As drilling techniques and tools are getting more and more sophisticated and 

complicated, it is more significant than ever to have a safe dill tubular design to protect 

highly expensive high-tech logging equipment and directional drilling tools, because 

losing the BHA (bottom hole assembly) is literally throwing tens of thousands of dollars 
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downhole.  Although numerous study has been conducted on buckling analysis of drill 

tubulars in the past 50 years, rapid developing  drilling technology has always been bring 

up new challenges and the buckling problems have still not been thoroughly understood 

now. 

1.2 Problem Background 

During drilling operations, drilling tubulars usually can go through several stages in 

configuration when it is subject to increasing compressive buckling loads. In vertical 

wells, stability critical force of drill string is usually so small that it can buckle very 

easily and goes directly to lateral buckling stage. However, for inclined or even 

horizontal wells, due to the stabilizing effect of gravity the drill string can hold straight to 

a certain point when the buckling force on drill string reaches the critical force. The next 

stage is usually referred to as lateral buckling or sinusoidal buckling, as it assumes a two 

dimensional sine wave form along the wellbore.   

At the contact point drill string rubs against the wall of the hole, and this can cause 

cavity in certain soft formations. The rubbing effect becomes more and more severe as 

contact force increases, which may cause wellbore stability problems. When the buckled 

drill string is rotating, the compressive and tensile stress distribution over string cross 

section will reverse frequently. These reversing stresses will increase with radial 

clearance of the wellbore and may even lead to fatigue failure of drill string. 

When compressive loads are increased further, the drill string usually undergoes an 

unstable stage, during which it can either takes the sinusoidal buckling form or helical 

buckling form. After that as the buckling force reaches another certain critical force, the 

helical buckling configuration occurs. This causes the drill string rides up the wellbore as 
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a helix. In this helical buckling stage, the drill string is continuously in contact with 

wellbore, so the wall contact area increases dramatically. The induced axial drag will 

largely increase and thus a larger axial load is required to maintain a same weight on bit. 

The added axial load causes higher well contact force, which further increase drag.  

As compressive loads continue to increase, the wall contact force will eventually 

increase to such a critical value that the induced drag can’t be balanced by slacking off 

operations and the drill string can no longer be moved downward. In the sliding mode, 

this stage is usually referred to as lockup. At this point, a change in drilling string design 

or drilling program is required for drilling to continue. One option is to rotate the drill 

string, in which way the axial drag in a sliding mode will be converted to rotational drag 

thus decrease the axial drag. This is the reason why critical force for helical buckling 

mode is unchanged, while a higher weight on bit can be applied in rotary mode. 

Numerous torque and drag software has been developed nowadays. From operational 

perspective, the real time torque and drag should be always be calculated to determine 

how much weight on bit is applied and thus control the penetration rate of drill bit. From 

safety design perspective, the torque and drag analysis gives reference for determining 

tubular dimensions and grade. Drill string buckling analysis is one of the most important 

and fundamental part of torque and drag analysis.  The analysis should not only calculate 

the critical force at the onset of buckling (either sinusoidal or helical), but also calculate 

the post-buckle normal force and predict buckling space configuration. All these 

parameters are important features in predicting lock up. As the buckled drill string can 

develop a significant bending stress, the buckling analysis is also important in well 

drilling and completion safety design.  
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In common practice, oil wells typically have multiple concentric casing strings.  In 

the design of oil and gas wells, it is often necessary to consider the stability of casing and 

tubing. Previously lots of study has been conducted to determine the stability of a single 

string under complex loadings, the resulting geometry and the stresses of a pipe that 

buckled inside of rigid outer pipe. In reality the outer pipe is also elastic and when outer 

pipe is not cemented, the outer pipe can have radial displacement due to the contact force 

applied by inner buckled pipe. Another scenario is that different compressive axial force 

is applied on outer pipe and inner pipe simultaneously and both the two pipes buckle 

individually, then the buckling configurations of two pipes have to fit together due to 

contact interaction between two pipes. If the dual pipe system is constrained to wellbore, 

the dual pipe buckling configuration has to conform to the wellbore dimension. Besides, 

as long as outer pipe and inner pipe, or outer pipe and wellbore are in contact, the contact 

force should be positive to make the result reasonable. Previous study (Mitchell) showed 

that interaction between tubing and casing has a large impact on final buckling behavior.  

However, the effect of this dual string interaction on post buckling behavior, bending 

stress and length change has not been very well studied yet.  

This study aims to present a comprehensive analytical model to describe the post 

buckling behavior, including bending stress and length change when different axial loads 

are applied on dual pipes. The contact force between dual string and with wellbore can be 

explicitly calculated. It also aims to provide a better understanding of the effect of drill 

tubular dimensions on final buckling configuration to provide as a reference in drill 

tubular design and prevent undesired conditions. The proposed model should then be 

compared with other existing dual string buckling models in literature and potential 
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application in practice should be numerated. Several examples from previous research are 

collected and recalculated with newly derived model to illustrate how this model is 

applied in real case.  

1.3 Objective 

 Propose an analytical comprehensive model to predict the post buckling 

behavior, bending stress and length change of dual string system.  

 Apply previous existing models and this model to real cases to illustrate the 

advantages of new model. 

 Study the effect of drill string parameters like dimensions etc. on the dual 

string buckling configuration. Analyze the possible mechanism of how dual 

string interaction impact final dual string buckling configuration. 
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CHAPTER 2  

REVIEW OF PREVIOUS WORK 

This section will highlight on a number of papers that are most closely related to the 

subject of dual tubulars buckling inside of wellbore. Although not all available literature 

are mentioned here, the majority of those that made important contributions, in the 

author’s view, to this subject are referred in this section. 

Buckling behavior of tubulars constrained to wellbore is the major subject of many 

articles in oil and gas industry. Furthermore, drilling of highly deviated, horizontal and 

extended wells bring up new demand to understand the buckling behavior in these new 

scenarios. This section will categorize previous research by well scenarios and review 

their work in time sequence. 

2.1 Vertical Well Scenario 

Lubinski (1950) conducted the first pioneering work in developing mathematical 

approach for sinusoidal buckling behavior of drill pipes in vertical wells. He used power 

series to solve the governing differential equations and achieved very accurate 

approximation result for practical purpose. Lubinski proposed that the critical load for the 

first mode of sinusoidal buckling should be calculated as 

 𝐹 = 1.94(𝐸𝐼)1/3𝑤2/3. ( 1 ) 

Besides, the space shape of first to second mode of sinusoidal buckling is investigated. 

When the string goes very long, the power series solution may give inaccurate results 

after a certain length. The extension of this result to higher buckling orders would be of 

considerable interest. This is a static study on model in one plane, so another approach 

should be used to investigate high orders of buckling of drill strings. Lastly, the buckling 
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induced drill string bending moment, wall contact force, inclination of the bit and force 

on the bit are all calculated and presented in that research. Engineering recommendation 

methods for minimizing its effects are given. These methods are applying proper weight 

on bit or use of special drilling methods. 

Wang (1986) analytically studied the buckling on a long hanging column with a 

bottom compressive force. The buckling configuration is illustrated in Figure 1. If the 

bottom is free to move laterally, he proposed that the exact expression to produce critical 

load of buckling for an infinite pipe inside wellbore should be in the form of 

 𝐹 = 1. 018793(𝐸𝐼)1/3𝑤2/3. ( 2) 

 

Figure 1  Post-buckling of Long Hanging Column by a Bottom Load, Wang (1986) 

Lubinski (1962) made another great contribution by further developing the first 

mathematical model to describe helical buckling in vertical wells. This research first 

included the effect of fluid on buckling. Based on this model, analytical solution to drill 

( a ) ( b ) ( c ) 
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pipe length change, strain energy and bending moment are all thoroughly discussed. The 

force and pitch relationship of helical buckling in this model is derived as 

 𝐹 =
8𝜋2𝐸𝐼

𝑝2
. ( 3) 

Results of this study can be applied to many field applications. For example, this model 

addressed the problems of required seal length for packer after pressure and temperature 

are changed.   For scenarios where wireline tools are to be run through the tubing, this 

model provides methods to prevent tubing from buckling, thus allowing free passage of  

wireline tools. All such calculations fully take into account the fact that lower part of the 

drill string is subject to elastic helical buckling. 

Hammerlindl (1977), using the same basic buckling model, extended its application 

to more complicated situations, where completions with varying tubing and casing sizes 

are included. In this research, he also stated the important impact of friction to drill string 

length change. A large portion of deviation of measured buckling length change from the 

model predicted length change is attributed to friction. 

Mitchell (1982) proposed differential equilibrium equations for helically buckled 

weightless tubing based on slender beam theory. Besides, his research showed that the 

packer has a strong influence on the buckling of well tubing. Lubinski’s helical buckling 

model doesn’t agree with his model because the previous one didn’t include the influence 

of packer on buckling configuration. Mitchell’s model described the shape between the 

packer and fully developed helix, which helped to solve for problems of interaction of 

tubing, casing and packer in the near packer region. Also this model helps to determine 

stress and deformation in near packer region so tubing and packer response can be 

assessed properly. The tubing motion at packer caused by helical buckling using 
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conventional helix method and using helix with packer method is studied and shown in 

Figure 2. It concluded that the length change caused by buckling near packer is about one 

third of the length change due to conventional buckling. This model allows direct 

evaluation of the effects of friction and packer design on the buckling behavior of well 

tubing. 

 

Figure 2   Tubing Motion at the Packer Caused by Helical Buckling, Mitchell (1982) 

Cheatham and Patillo (1984), using virtual work principle, derived a different force 

pitch relationship model from Lubinski’s model for helical buckling string inside 

wellbore. The model contains a numerical coefficient that highly depends on the history 

of loading and the presence of radial constraint. Based on simple laboratory experiments 

and stability analysis, they concluded that the myriad load histories to which a tubular 

string may be subjected can influence the response of a tubular string to applied loads. It 

is important, especially in tubular designing, to outline the anticipated loading history of 

a tubular string and design the string for the worst combination of force and pitch.  

O’Brien (1984) used cases to illustrate how buckling directly or indirectly contributed 

Lb 

F 

Helix with packer 

Conventional helix 

40,000 lbf 

1.5 ft 

1.5 ft 
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to casing failures. Also discussed were important cementing considerations that helped to 

achieve casing stability and alleviate buckling problem. Also discussed were some 

suggestions on repair procedures when casing went buckling and failed. 

Mitchell (1986) derived differential equations based on slender beam theory and for 

the first time took effect of frictional forces on helical buckling behavior into account. In 

this study he didn’t give general solutions to helical buckling with friction but thoroughly 

discussed two simplified cases of interest: downward motion of tubing-e.g, during the 

landing of the tubing- and upward motion of tubing-e.g, during a slacking off operation. 

This study also confirmed that the loading history determines the final state of system 

with friction. Expressions for buckling forces along drill string were derived. It was 

shown in case study that the buckling force decreased more rapidly near the packer. This 

corresponded to the fact that friction is more important where the buckling force is large-

e.g. near the packer. This phenomenon can be clearly shown in the Figure 3. Another 

interesting finding of friction analysis was that the buckling force was coupled to the 

actual tubing force through the friction. Friction was proved to have a significant impact 

on string length change due to buckling. Mitchell also gave engineering 

recommendations for these two conditions to safely evaluate the effect of friction on 

helical buckling in design. 

Cheatham and Chen (1988) conducted lab experiments on how loading history will 

impact the helical buckling behavior. The result confirmed the previous study by 

Cheatham and Patillo (1984) that the force-pitch relationship for loading and unloading 

situations was significantly different. As is shown in Figure 4 from Cheatham and Chen’s 

paper, the helically buckled rod followed different force-pitch relationship in the loading 
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process and unloading process. During the unloading process, the coefficient of critical 

force is a half of the critical force in loading. 

 

Figure 3  Buckling Force Distribution for Loading Case, Mitchell (1986) 

Kwon (1988) conducted a semi-analytical analysis using virtual work on helical 

buckling with weight in vertical wells. The expression for helical shapes of buckled pipes 

was developer with varying pitch. In that study, equations for pipe length change, 

bending moment and lateral loads were developed. 

Mitchell (1988) determined an approximate analytic solution for helical buckling of 

tubing with weight. This solution has very good accuracy expect near the neutral point. 

This study solved differential equations for helically buckled tubing with weight and 

directly determined the applicable range of Lubinski’s helical buckling model. The 

generally accepted Lubinski’s solution is proved to be a good approximation to the new 

generalized model under certain conditions. Mitchell also investigated on the initial 

conditions at the packer and tested the effects of boundary conditions on the solution. 

Distance from Bottom 

Buckling Force 

f=0 

f=0.4 

f=0.1 

f=0.05 
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Another contribution of this study is that Lubinski’s solution was put in a technical 

context that provided a basis for further development as inclined wells and friction.  

 

Figure 4  Lab Experiment on Effect of Loading History, Cheatham and Chen (1988). 

Mitchell (1996) conducted comprehensive analysis on influence of friction on post 

buckling behavior by developing a numerical solution for helical buckling with friction. 

The stability of helical buckling is also researched and shown in Table 1. The Paslay 

Number is expressed as 

 
𝑁𝑃𝑎𝑙 = √

4𝐸𝐼𝑤𝑠𝑖𝑛𝛼/𝑟

𝐹
, 

( 4 ) 

where NPal is Paslay Number, E is the Young’s modulus, w is the weight per unit length, r 

is the radial clearance and F is the buckling force.  

 

F 

LOADING 

UNLOADING 

Rod Rotated 

1/p
2
 *1000 
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Table 1  Critical Limits for Buckling, Mitchell (1996) 

𝑁𝑃𝑎𝑙
−1 < 1 No Buckling 

1 < 𝑁𝑃𝑎𝑙
−1 < √2 Lateral Buckling 

√2 < 𝑁𝑃𝑎𝑙
−1

< 2√2 Lateral or Helical Buckling 

2√2 < 𝑁𝑃𝑎𝑙
−1

 Helical Buckling Only 

 

2.2 Inclined Well Scenario 

Paslay and Bogy (1964) analyzed the stability of a circular rod constrained to be in 

contact with an inclined circular cylinder. Energy method was used to obtain the stability 

criteria for the circular rod and determined the critical bucking conditions. Base on this 

research, Dawson and Paslay (1984) for the first time include the contribution of 

inclination angle to drill pipe stability and brought up the well- known critical force 

criteria for sinusoidal buckling of drill pipe in inclined wells, which is expressed as 

  
𝐹 = 2√

𝐸𝐼𝑤𝑠𝑖𝑛𝛼

𝑟
. 

( 5) 

Their research justified and showed that the drill string can tolerate significant levels of 

compression in small diameter high angle wells because of the support provided by the 

low side of well. The benefit of using drill string in compression is that the BHA weight 

will be reduced and kept low in high angle wells. This, in turn, helps to reduce the torque 

and drag, which are usually the critical limitations when operated in highly deviated or 

extended reach wells. Experiment data of stability loads has been attempted to 

reconstruct according to Figure 5. 
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Figure 5  Critical Buckling Loads for 5-in Drillpipe, P.R. Paslay (1984). 

Chen et al (1989) described theoretical results for predicting the buckling behavior of 

pipes in horizontal wells. They concluded that pipe buckling in horizontal wells occurs 

initially in a sinusoidal mode along the low side of the well. As the axial compression is 

increased, a helix will be formed. Equations were derived for computing the forces 

required to initiate these different buckling modes in horizontal wells. Besides, simple 

experiments were conducted to verify and confirm their theory. Results presented in this 

paper can be applied to friction modeling of buckled tubulars to predict if drill pipe can 

be further forced to move along a horizontal section. Equations for critical forces to 

initiate sinusoidal and helical buckling can be expressed by 

  
𝐹 = 2√

𝐸𝐼𝑤

𝑟
  and 

( 6) 
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𝐹 = 2√

2𝐸𝐼𝑤

𝑟
. 

( 7) 

Chen and Cheatham (1990) derived expressions for wall contact forces on helically 

buckled tubulars in vertical and inclined wells. A method of analyzing the dependency of 

the wall contact force on axial force and wellbore inclination was presented.  Also the 

research was categorized into two situations: loading and unloading respectively. The 

results of this study can be applied in friction modeling of buckled pipes in inclined or 

highly deviated wells. The post buckled configuration of pipe in a horizontal hole can be 

shown in. 

 

        Figure 6  Post Buckled Configuration of Pipe in Horizontal Hole (Sinusoidal and 

Helical Buckling), Chen and Cheatham (1990) 

 

Wu and Juvkam-Wold (1993) conducted study on helical buckling of pipes in 

horizontal wells. They concluded that the so-called helical buckling load in literature was 
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actually the average axial load in the helical buckling development process. This study 

showed that a larger bit weight or packer load may be applied to increase the drilling rate 

or ensure a proper seal before helical buckling of pipes can occur. The frictional drag for 

helically buckled pipe war analyzed. The analysis showed that the drag would become 

much larger for helically buckled pipes in horizontal wellbore than unbuckled pipes. The 

pipe could even become “locked-up” so that the WOB can’t be increased any more. The 

conditions that could result in “locked-up” were predicted in this study. Experiments 

were conducted to confirm the theoretical model. The expression for true helical buckling 

force is expressed as 

 
𝐹 = 2(2√2 − 1)√

𝐸𝐼𝑤

𝑟
. 

( 8) 

The difference between this model and Cheatham and Chen’s (1989) model is thoroughly 

discussed in this research. The major reason that leads to different critical force 

prediction is the assumption on loading process is different, as is shown in Figure 7. 

 

Figure 7  Force Application Process, Wu ( 1993) 
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McCann and Suryanarayana (1995) conducted attempt to study the helical buckling 

process experimentally. Their study described results from experiments on post-buckling 

behavior of rods laterally constrained in a cylindrical enclosure. This experiment paid 

particular emphasis on friction and curvature. Their experimental result showed that 

friction significantly delayed the onset of buckling (both sinusoidal and helical) and 

contributed to the noticeable hysteresis in post buckling behavior. They also noticed that 

for inclinations less than 15 degrees, the effects of friction were negligible for initiation 

of sinusoidal buckling, but when drill string went to helical buckling stage the friction 

had significant impact on space configuration of buckling. 

He and Kyllingstad (1995) studied specifically towards the use of coiled tubing in 

curved wells. Their study showed that well curvature had a significant effect on the 

critical buckling force of coiled tubing. A positive inclination build rate or azimuth build 

rate would increase the critical buckling force. Their theoretically predicted effects had 

been confirmed in small scale experiments. Their study also showed that the critical 

buckling force can be substantially exceeded before lock-up or pipe failure. So the lock 

up and pipe failure should be used as the operation criteria. 

Paslay (1994) conducted a study on stress analysis of drill string, in which torque was 

included in Lubinski’s model for buckling of weightless string. His study concluded that 

the torques had little influence on the Lubinski’s buckling model for most practical drill 

strings. Later Miska and Cunha (1995) presented a different solution, but their conclusion 

indicated that torque had small influence on buckling process. 

Mitchell (1997) developed numerical solutions to nonlinear buckling differential 

equations in inclined wells. He established the stability criteria for sinusoidal and helical 
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buckling. The equation is derived for critical helical buckling load in inclined wells. 

Mitchell used Galerkin technique and solved it numerically in his 1997 paper. In 1999, 

Mitchell tried to use correlation to get an approximation solution to this equation for 

practical application. In 2002, Mitchell happened to find two analytical solutions for 

above nonlinear differential equation. So it can be easily applied with spreadsheet or even 

hand calculation. 

Miska and Qiu (1996) brought up axial force transfer model for buckling pipes in 

inclined well. Besides, analytical model for contact force are derived for sinusoidal and 

helical buckling configuration in inclined wells. In that research, they presented the 

critical limits for buckling as is shown in Table 2. In their paper (2000), they further 

developed software CTS-TUDRP simulator and simulate axial force transfer numerically. 

Table 2  Critical Limits for Buckling, Miska and Qiu (1996) 

Load Configuration 

𝐹𝑝 < 2√
𝐸𝐼𝑤𝑠𝑖𝑛𝛼

𝑟
. Straight 

2√
𝐸𝐼𝑤𝑠𝑖𝑛𝛼

𝑟
< 𝐹𝑝 < 3.75√

2𝐸𝐼𝑤𝑠𝑖𝑛𝛼

𝑟
. Sinusoidal 

3.75√
𝐸𝐼𝑤𝑠𝑖𝑛𝛼

𝑟
< 𝐹𝑝 < 4√

2𝐸𝐼𝑤𝑠𝑖𝑛𝛼

𝑟
. Unstable Sinusoidal 

𝐹𝑝 > 4√
2𝐸𝐼𝑤𝑠𝑖𝑛𝛼

𝑟
. Helical 

 

Samuel and Gao (2014) brought up a new concept of Buckling Limit Factor, which 

can be in short called BLF (Samuel). This factor includes the effect of wellbore tortuosity, 

borehole quality and shape and helps to calibrate the constants used in previous buckling 
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equations. Besides, this factor helps to calibrate and use a standard value based on 

company policies. The suggested BLF with respective to the models is given in Table 3. 

Table 3  BLF Values for Different Models, Samuel and Gao (2014) 

Model BLF 

Chen and Cheatham (1990) 1 

He and Kyllingstad (1995) 1 

Lubinski and Woods (1953) 1.007 

Lubinski and Logan (1962) 0.848 

Qui, Miska and Volk (1998) 2 

Qui, Miska and Volk (1998) 1.326 

Wu and Juvkam Wold (1993) 1.295 

Wu and Juvkam Wold (1995) 1.498 

 

2.3 Dual String Buckling and Why This Study 

There are only two known solutions to dual string buckling problem until now. 

Christman (1976) developed a technique to analyze the stability behavior of a system of 

concentric pipes. He stated that loads and property of individual pipes contributed to the 

overall stability of multiple pipe system. Specifically, the buckling force of concentric 

pipes system is the arithmetic sum of individual forces, and the overall system stiffness is 

the sum of individual moments of inertia. He also assumed that the radial clearances 

between pipes are negligible. This implicit statement is that the relative radial 

displacement between tubing and casing is ignored. With these assumptions, the 

analytical solution to single string buckling problem can be easily applied to concentric 
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pipe system. The stability and post buckling elastic behavior of concentric pipes can be 

described by using the summed forces and sum of moments of inertia. The space 

configuration of Christman’s model is shown as Figure 8 and Figure 9. 

 

Figure 8  Christman’s Concentric Pipes Model, Christman (1976) 

However, inner and outer pipes of a set of concentric pipes system can be subject to 

separate axial loads in real practice, so both pipes could buckle separately until they are 

in contact. This contact interaction between pipes certainly has a large impact on the final 

buckling configuration of dual string system. Besides, the simple arithmetic sum of 

property or loads of individual pipes can’t be used to properly evaluate the effect of loads 

on an overall system. The system capacity could be overestimated by using the dual 

string system to take the load that is initially applied to individual pipe. Christman’s 

model obviously can’t adequately solve these problems. For an extreme situation where 

the forces in tubing and casing have same values but opposite signs, the Christman’s 

model will predict no buckling because the net force of cross section is zero. However, 

  

  
  

  
    

  



 

 

21 

 

the new analysis will predict a buckling, which will be discussed in later chapter.  

 

Figure 9  Christman’s Concentric Pipes Model Cross Section, Christman (1976) 

Mitchell (2012) made modifications on Christman’s model and presented a 

mathematical model for dual string buckling. He divided concentric pipes buckling into 

two contact categories by explicitly calculating the contact forces between the pipes and 

with the external wellbore. Both of this two buckling configurations are assumed to 

buckle helically. The two cases are as follows: 

1. Tubing and casing buckles together with tubing in contact with the casing and 

casing in contact with wellbore. 

2. Tubing is assumed to buckle into contact with the casing, but there is no contact 

between the casing and wellbore.  

All results are analytic and easy to be used in practical application.  The model 

developed in case 1 scenario made a great modification on Christman’s model by taking 
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the radial displacement between casing and tubing into consideration. Also, buckling 

force can be separately applied on casing and tubing instead of evenly shared by the sum 

of cross section.  

In this study, Mitchell used contact force criteria to determine to distinguish between 

case 1 and Case 2. This criterion stated that if dual string system takes a helical buckling 

form in case 1, the contact force between dual strings and between casing and wellbore 

should be positive. Otherwise the tubing and casing will fit together and buckle into 

helical shape without contact between casing and wellbore. The comparison of 

assumptions for this two models is shown in Table 4. 

The problem with above statement is that the assumed configuration doesn’t conform 

to real situation. Take loading induced buckling in vertical well for example, as buckling 

force increases the drill string typically goes from a sinusoidal buckling configuration to 

a helical buckling configuration. During this process, the contact between drill string and 

well bore will start from a point contact, which is sinusoidal buckling stage. Then as 

buckling force keeps increasing above certain critical value, drill string will form helical 

buckling configuration because the further radial displacement is constrained by wellbore. 

The assumed situation, where dual string system buckles into helical shape without 

contact with wellbore is impossible in real case. More comments will be made on 

Mitchell’s model in latter section.  Besides, dual string buckling phenomenon doesn’t 

catch a lot of attention in design or field practice. The influence of dual string buckling 

has not been well considered in tubular designing yet. Furthermore, Case studies are still 

needed on how this interaction between casing and tubing impact the final configuration 

of dual string system to better understand the dual string buckling mechanism.  
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Table 4  Comparison between Christman’s Model and Mitchell’s Model 

 Assumption Comparison 

Christman’s 

Model 

(1976) 

1. Radial clearance between dual strings should be small enough, so 

radial displacement between dual strings is negligible. 

2. Stability load is the arithmetic sum of loads on individual string. 

3. The total system stiffness is the arithmetic sum of individual 

moment of inertia.  

4. Dual string system buckles into helical configuration with casing 

continuously in contact with wellbore. 

Mitchell’s 

Model 

(2012) 

1.  Radial displacement within dual string system is considered. 

2. Stability load is applied on individual string separately. 

3. The stability load of long pipe in vertical wells is zero, so the inner 

string buckles initially and be in continuous contact with casing. 

4. The dual string system buckles into helical configuration. The 

buckling configuration is further divided into two scenarios: (i) 

outer string is in contact with wellbore; (ii) there is no contact 

between outer string and wellbore.  
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CHAPTER 3  

ANALYSIS OF THE PROBLEM 

3.1 Introduction 

The rapid development of drilling technology makes many reservoirs accessible and 

brings up new challenges as well. The buckling behavior of tubulars plays an important 

role in drilling operations control and must be taken serious consideration in drilling 

design. Although a comprehensive numerical simulator is very popular nowadays, an 

analytical model will help to provide more insight to understand the mechanism behind. 

Furthermore, analytic results can serve as a reference to verify numerical result or 

provide a simple result when numerical analysis is not available. 

Oil wells typically have multiple concentric casing strings. Most of the previous 

research has shown methods to determine buckling behavior of single string under 

complex loadings. An accurate buckling analysis is important for many reasons. Buckling 

of tubulars can cause reversal bending stress along cross section, which is a major 

concern in design to avoid fatigue failure. Besides, buckling induced length change will 

apply a considerable axial load on a fixed packer or cause excessive axial displacement 

for a free packer, so it is very necessary to develop a reliable buckling model. 

This section aims to bring up an analytical mathematical model, based on minimum 

energy theory, to describe the post buckling behavior of dual string systems. It is quite 

different from buckling analysis for single string that multiple string could be in contact 

with each other and fit together to fit a final buckling configuration. So effect of this 

contact interaction should be well considered in this model and evaluated in further 

analysis. Although this model is derived based on two pre-assumed space configuration 

of dual string system, it is a good attempt to give insight into mechanism of dual string 
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buckling. Also, the newly derived model should be verified with previous literature 

before it is applied to case study. Some of the parameters that is caused by buckling are 

evaluated and compared with previous research. 

3.2 Problem Description 

For a set of concentric casing and tubing inside wellbore, Lubinski’s model only 

consider the buckling of inner tubing while assume the outer casing to be rigid. This is 

commonly true especially when the outer casing is very well supported laterally, like well 

cementing. However, none of strings are ideally rigid, and there are still some scenarios 

where casing can have free lateral displacement. These conditions allow the casing to 

displace with tubing together. It is very necessary to derive a model for dual string 

buckling. 

Lubinski (1950) first studied the buckling problem of a long pipe in a vertical 

wellbore. His conclusion is that the stability force, as Eq.( 1 ), for a long pipe is usually 

so small that it is normally ignore in calculation. So we assume the tubing will initially 

buckle in vertical well. Another important stability criteria is first developed by Paslay 

and Dawson (1984), as is shown by Eq. ( 5), which considers the stabilizing effect of 

wellbore inclination to buckling. We only use this criteria for inclined well or horizontal 

well situation. 

If an inner tubing is subject to an axial force, it will typically buckle into a sinusoidal 

or helix shape and be in contact with external casing. It is possible that the external 

casing will buckle due to the contact force from inner tubing. Another situation is that 

both casing and tubing are subject to compressive forces, they will buckle individually 

and fit together to form a final space configuration as a system. Besides, the buckling of 
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this dual string system should be constrained in the wellbore. It is noticed that in either of 

above situation, the contact force between dual strings or between casing and external 

wellbore should be positive to have physical meaning. In following section, we will use 

proper symbols to describe this situation. 

The following Figure 10 illustrates dual string system cross section configuration. 

The smaller pipe represents tubing inside and larger pipe represents casing. The external 

wellbore is assumed to be rigid in this study. The radial clearance of tubing with respect 

to casing is described as rtc, while radial clearance of casing with respect to wellbore is 

described as rcc. Expressions for rtc and rcc are given by 

                                             𝑟𝑡𝑐 = 𝑟𝑐𝑖 − 𝑟𝑡𝑒       and ( 9) 

 𝑟𝑐𝑐 = 𝑟𝑤 − 𝑟𝑐𝑒, ( 10) 

where rci is inner radius of casing, rte is external radius of tubing, rw is inner radius of 

wellbore, rce is external radius of casing. 

Christman (1976) first attempted to address this buckling problem of dual string 

system by simplifying it into a composite single pipe in context of Lubinski’s single 

string buckling analysis. Mitchell (2012) proposed that when both strings buckle together 

under compressive axial loads, the buckled configuration must fit together so that contact 

forces between the two strings or between casing and wellbore are positive and wouldn’t 

occupy the same space. Mitchell (1986) derived the contact force expression between a 

helically buckled string and wellbore. Before referring to Mitchell’s contact force 

expression, we will first introduce the cylindrical coordinate in which the geometry helix 

is described, as shown in Figure 11 .  
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Figure 10  Dual String System Configuration 

 

Figure 11  Helical Buckling Geometry and Coordinates 

The geometry of the helix is described by the following equations as 

                                             𝑥 = 𝑟 ∙ 𝑐𝑜𝑠𝛾       and ( 11) 
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 𝑦 = 𝑟 ∙ 𝑠𝑖𝑛𝛾, ( 12) 

where  is the angular coordinate, r is the string radial clearance.  

The angular coordinate g is important, because it can be related with helical pitch 

using 

 𝑦′ = 2𝜋/𝑝, ( 13) 

where the ‘ denotes d/dz, p is the pitch of helical buckling.  

In this cylindrical coordinate, Mitchell (1986) gave the expression for contact force 

between helically buckled string and wellbore as 

 𝑊𝑛 = 𝑟(𝐹 − 𝐸𝐼𝛾′2)𝛾′2, ( 14) 

where Wn is the contact force, F is buckling force, r is the radial clearance between string 

and wellbore, E is young’s modulus, I is moment of inertia of cross section. 

We will the above contact force this as criteria in this study to divide dual string 

buckling into two different categories in vertical scenario. This will be commented in 

latter section. Summary for the above two model is shown in Table 5. 

As previously mentioned in chapter two, Lubinski (1962) conducted force 

equilibrium analysis on a tubular portion and very well studied the effect of inner and 

outer fluid pressure on buckling force distribution along tubing. The final expression for 

the effect of fluid pressure on a tubing without ends is expressed by 

 F = Fa + PiAi − PoAo, ( 15) 

where F is buckling force, Fa is axial actual compressive loads, Pi is inner fluid pressure 

of tubular, Po is outer fluid pressure of tubular, Ai is area corresponding to inner radius of 

tubular, Ao is area corresponding to outer radius of tubular.  
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Table 5 Model Summary for Dual String Buckling System 

 Assumption Comparison 

Christman’s 

Model 

(1976) 

1. Radial clearance between dual strings should be small enough, so 

radial displacement between dual strings is negligible. 

2. Stability load is the arithmetic sum of loads on individual string. 

3. The total system stiffness is the arithmetic sum of individual 

moment of inertia.  

4. Dual string system buckles into helical configuration with casing 

continuously in contact with wellbore. 

Potential Problem 

1. Radial clearance between dual strings usually can be very large in 

common practice, in which scenario this model largely 

underestimate deformation of inner string due to buckling.  

2. The third assumption only holds true for small radial clearance. 

3. Only one buckling configuration is considered which is not 

sufficient for all scenarios. 

Mitchell’s 

Model 

(2012) 

Assumption Comparison 

1.  Radial displacement within dual string system is considered. 

2. Stability load is applied on individual string separately. 

3. The stability load of long pipe in vertical wells is zero, so the inner 

string buckles initially and be in continuous contact with casing. 

4. The dual string system buckles into helical configuration. The 

buckling configuration is further divided into two scenarios: (i) 

outer string is in contact with wellbore; (ii) there is no contact 

between outer string and wellbore.  

Potential Problem 

The major problem is that the second scenario in assumption 4 is not 

possible to exist in reality. It can’t consider the influence of radial 

clearance with respect to wellbore, which will result in discontinuity in 

solution. 
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3.3 Dual String Buckling Model Derivation  

In this section we consider the situation of small strain, so material of dual string 

system keeps elastic constitutive relation. Then the beam theory is applied on dual string 

system to find bending strain energy expression by curvature. The potential energy 

expression for buckled dual string system is the sum of potential energy of individual 

pipe. The equilibrium is achieved by minimizing the total potential energy of the system.  

3.3.1 Derivation Assumptions 

Major assumptions in buckling analysis are as follows, 

i. Dual string system assumes either a sinusoidal or helical buckling configuration. 

ii. Boundary condition is ignored. 

iii. Slender elastic beam theory is applied to relate bending strain energy to curvature. 

iv. Wellbore is assumed to be rigid and constant cross-sectional area. Besides, the 

undulation of wellbore is not considered. 

v. Only static fluid effect is considered in this study. 

vi. Dynamic effect and friction between casing and pipe and with wellbore are 

ignored for simplification. 

vii. Dual strings are assumed to have constant sectional area, so the effect of 

connectors is not considered. 

Clearly the contact interaction between tubing and casing directly impact the final 

configuration of dual string system. Let’s make an analogy to single string buckling 

process and consider a loading process where the axial compressive force on tubing and 

casing increases from zero. As is mentioned in Lubinski’s (1950) study, the critical 

buckling force for single string in vertical well is so small that the sinusoidal buckling of 
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tubing and casing will initiate at the very beginning. As the axial compressive force 

increases, the initially individually buckled tubing and casing may be in contact. During 

this time the configurations of tubing and casing have to fit together. This contact 

interaction makes tubing and casing behave like a dual string system. During a long 

period of time, this dual string system will take the form of sinusoidal buckling 

configuration. As the axial compressive force increases further, this dual string system 

goes through an unstable stage where the configuration can be either sinusoidal buckling 

or helical buckling. The dual string system can made the transition from sinusoidal 

buckling to helical buckling above certain critical compressive force. After that the dual 

strings ride up the wellbore and buckle helically together.  

The above analysis is an analogy to buckling process of single string. It should be 

noticed that the real buckling process of dual string should be much more complicated 

than this. The above analysis simplifies the real situation and serves as theoretical basis 

for model derivation. According to the buckling process, the tubing string and casing 

string may interact in two distinct ways: by point contact, which is sinusoidal buckling 

and by continuous contact, which is helical buckling. So in this study we will build up the 

analytical model for these two scenarios respectively. 

3.3.2 Helical Buckling of Dual String System 

When the compressive buckling force is large enough for dual string system, the dual 

string system is assumed to have the helical buckling configuration. The helically 

buckling dual string system is assumed to have continuous contact with wellbore, while 

inner tubing is continuously in contact with outer casing. Another assumption is made 
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that within the dual string system casing and tubing have the same pitch along wellbore 

direction. The condition where buckling force is constant along wellbore is considered. 

The cross section of fully buckled dual string system configuration is shown as Figure 

12, Space configuration of helical buckling of dual string system is shown as Figure 13. 

 

Figure 12  Casing in Contact with Wellbore 

 

Figure 13 Helical Buckling Configuration of Dual String System 
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In the following study, we will add a subscript 1 and 2 to previously defined 

parameters to denote tubing and casing in a dual string system respectively for 

simplification. It is noticed that in this helical buckling situation the radial displacement 

of tubing becomes the sum of tubing radial clearance and casing radial clearance. So the 

radial displacement of tubing and casing are expressed by 

 𝑟1 = 𝑟𝑡𝑐 + 𝑟𝑐𝑐    and ( 16) 

 𝑟2 = 𝑟𝑐𝑐. ( 17) 

We apply the minimum energy theory to the total potential energy of dual string 

system ( derivation details in APPENDIX A) and find the force-pitch relationship. This 

model shows that pitch is a variable along drill string that corresponds to a buckling force 

at certain depth. The expression of this model is given by  

 
𝑝 = 𝜋√

8𝐸(𝐼1𝑟1
2+𝐼2𝑟2

2)

𝐹1𝑟1
2+𝐹2𝑟2

2 , 
( 18) 

where p is the pitch of helix at certain depth with unit in inch, parameters E, I and F are 

the same as previously defined, subscripts 1 or 2 are added to these parameters to assign 

them to tubing or casing, r1 and r2 are defined in above text. It is also noticed that this dual 

string buckling model can be easily simplified into Lubinski’s (1962) single string 

buckling model as Eq. ( 3).  

Mitchell (2012) studied the helical buckling configuration by applying the virtual 

work principle. The final expression derived is given as 

 𝛽2 =
𝐹1𝑟1

2+𝐹2𝑟2
2

2𝐸(𝐼1𝑟1
2+𝐼2𝑟2

2)
, ( 19) 

where  is parameter related with helix geometry .Notice that this parameter b is related 

with helix pitch, p, by 
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 𝑝 =
2𝜋

𝛽
. ( 20) 

By substituting Eq. ( 20) into Eq. ( 19), we get the exact same expression as Eq.( 18). In 

this way the newly derived model verified Mitchell’s (2012) previous research.  

In the above model derivation process, we assume buckling force, F, to be positive 

when it is compressive force and negative if it is tensile force. So Eq. ( 18) is valid only 

for 

 𝐹1𝑟1
2 + 𝐹2𝑟2

2 > 0. ( 21) 

It is still noticed that even F1 and F2 has equal value with opposite signs, which means 

the sum of buckling forces at cross section of dual string system could be zero, there is 

still a possibility of buckling of this dual string system according to Eq. ( 18). 

As previously mentioned, this helically buckling configuration of dual string system 

only form as buckling force increase to a very large value. Under this condition the 

contact forces between dual strings and casing string with wellbore should both be 

positive. Mitchell (1986) has solved for the contact force between helically buckled string 

and wellbore using Eq. ( 14). Combine Mitchell’s result Eq.( 13) with Eq. ( 14) and 

substitute parameters in this situation, the contact forces equilibrium equations are given 

by  

 𝑟1 [𝐹1(
2𝜋

𝑝
)2 − 𝐸𝐼1(

2𝜋

𝑝
)4] = 𝑊𝑡𝑐    and ( 22) 

 𝑟2 [𝐸𝐼2(
2𝜋

𝑝
)4 + 𝐹2(

2𝜋

𝑝
)2] = −𝑊𝑤𝑐 +𝑊𝑡𝑐, ( 23) 

where Wwc is contact force between wellbore and casing, Wtc is contact force between 

casing and tubing, the parameters r1, r2, E, I1, I2, p are same as previous definition. 

Rearrange above equations and contact force Wwc is given by 
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 𝑊𝑤𝑐 = 𝑟1 [𝐹1(
2𝜋

𝑝
)2 − 𝐸𝐼1(

2𝜋

𝑝
)4] + 𝑟2 [𝐸𝐼2(

2𝜋

𝑝
)4 + 𝐹2(

2𝜋

𝑝
)2].     ( 24) 

So the prerequisite criteria for helically buckling of dual string to occur is given by 

 𝑊𝑡𝑐 > 0    and     𝑊𝑤𝑐 > 0. ( 25) 

If there is a value for pitch that can satisfy all the prerequisite conditions for helical 

buckling, including Eq.( 21) and Eq.( 25), the bending moment and bending stress can be 

given by (Crandall 1959) 

 𝑀1 = 𝐸𝐼1𝑟1(
2𝜋

𝑝
)2,  ( 26) 

 𝑀2 = 𝐸𝐼2𝑟2(
2𝜋

𝑝
)2, ( 27) 

 𝜎𝑚1 =
𝑀1𝑟𝑡𝑒

𝐼1
, and ( 28) 

 𝜎𝑚2 =
𝑀2𝑟𝑐𝑒

𝐼2
. ( 29) 

where M is the bending moment, m is the maximum stress at cross section, I, r, rte, rce 

and p are the same as previously defined, subscript 1,2 represent tubing and casing 

respectively. 

Lubinski (1962) also gave the expression for drill tubular weight per unit length in 

presence of fluid by 

 𝑤 = 𝑤𝑠 + 𝑤𝑖 −𝑤𝑜, ( 30) 

where w is weight per length with buoyancy effect, ws is weight per length in air, wo is 

weight of outside liquid displaced per unit length, wi is weight of liquid in the tubing per 

unit length.  

Then Lubinski (1962) further gave the expression for length change due to helically 

buckling by 
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 ∆𝐿𝑏1 = −
𝑟1

2𝐹1
2

8𝐸𝐼𝑤
 and ( 31) 

 ∆𝐿𝑏2 = −
𝑟2

2𝐹2
2

8𝐸𝐼𝑤
,  ( 32) 

where Lb is the length  change due to buckling, F1, F2, E, I1 ,I2 and w are the same as 

previously defined. 

3.3.3 Sinusoidal Buckling of Dual String System 

In last section we established the mathematical model for buckling force-pitch 

relationship and stated the prerequisite criteria for dual string system to form helically 

buckling configuration. Then the next question would be: what is the space configuration 

if the prerequisite criteria given by Eq.( 25) is not satisfied at certain depth? 

As the buckling of dual string system develops with increasing buckling force, the 

configuration of dual string system goes through a sinusoidal buckling stage, unstable 

transition stage and finally helically buckling stage. Although the duals string shape at 

transition stage is kind of arbitrary, the length of drill string at this unstable stage is 

usually short and using a sinusoidal shape for approximate can be acceptable. So if the 

prerequisite criterion for helical buckling is not satisfied, we will assume a sinusoidal 

buckling configuration for this dual string system.  

This section introduces how a mathematical model of force-pitch relationship is 

established for sinusoidal buckling. The assumption that dual strings have the same pitch 

still applies in this study. Sinusoidal buckling space configuration of dual string system is 

shown as Figure 14. The contact interaction between tubing and casing or between casing 

and wellbore is by point contact.  
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Figure 14 Sinusoidal Buckling Configuration of Dual String System 

Similar to previous method, the minimum energy theory is applied to the total 

potential energy of dual string system ( derivation details in APPENDIX B). This model 

also shows that pitch is a variable, which corresponds to a buckling force at certain depth. 

The expression of this model is given by  

 
𝑝 = 2𝜋√

𝜋𝐸(𝐼1𝑟1+𝐼2𝑟2)

𝐹1𝑟1
2+𝐹2𝑟2

2 , 
( 33) 

where p is the pitch of sinusoidal curve at certain depth with unit in inch, parameters r, E, 

I and F are the same as previously defined, subscripts 1 or 2 are added to these 

parameters to assign them to tubing or casing. Notice that the prerequisite condition Eq. 

( 21) should be satisfied before apply this model. 

If it is determined that a dual string system conforms to a sinusoidal buckling, the 

bending moment can be given by (derivation details can be found in APPENDIX B) 
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 𝑀1 = −
4𝜋2𝑟1𝐸𝐼1

𝑝2
sin⁡(

2𝜋𝑥

𝑝
) and ( 34) 

 𝑀2 = −
4𝜋2𝑟2𝐸𝐼2

𝑝2
sin⁡(

2𝜋𝑥

𝑝
), ( 35) 

where M is the bending moment, m is the maximum stress at cross section, I, r and p are 

the same as previously defined, subscript 1,2 represent tubing and casing respectively. 

The Eq. ( 28) and Eq. ( 29) can still be used to calculate maximum stress at cross section. 

The length change due to sinusoidal buckling can be expressed by (derivation details 

can be found in APPENDIX B) 

  ∆𝐿𝑏1 =
𝜋𝑟1

2

4𝑝
[sin (

4𝜋𝑙

𝑝
+ 2𝜑𝑖) − sin(2𝜑𝑖)] +

𝜋2𝑟1
2𝑙

𝑝2
 and ( 36) 

 ∆𝐿𝑏2 =
𝜋𝑟2

2

4𝑝
[sin (

4𝜋𝑙

𝑝
+ 2𝜑𝑖) − sin(2𝜑𝑖)] +

𝜋2𝑟2
2𝑙

𝑝2
 , ( 37) 

where i term is the phase when x1 is equal to zero. 
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CHAPTER 4  

MODEL VERIFICATION 

4.1 Introduction 

In later chapter analytical model has been proposed to describe the buckling behavior 

of dual string system. Newly derived models should be well verified before application. 

There are many techniques that can be utilized to verify a model. Including, but not 

limited to, conducting lab experiments, acquiring field data from real practice and 

comparing modeling result with widely acknowledged literature.  

Some previous studies were conducted through analysis of experiment results, e.g. 

Cheatham and Chen (1988), McCann and Suryanarayana (1995). However, seldom 

experiment was conducted to research buckling behavior of dual string system. Besides, 

the phenomenon of dual string buckling didn’t get enough attention in design or field 

practice. There are no public available field observation data to compare with. In this 

section the proposed analytical model for dual string buckling will be verified by 

comparing the example case result in widely acknowledged previous literature. 

This section will start with calculation procedure to illustrate how to use this new 

model in application. Previously the solution in helical scenarios can be verified by 

Mitchell’s (2012) solution. Then Lubinski’s (1950) exact solution for sinusoidal buckling 

of string will be used to verify the newly derived model.  

4.2 Calculation Procedure 

As previously mentioned, the tubular buckling can cause bending moment and thus 

probably a large stress at the cross section. Besides, length change due to buckling 

accounts for an important portion of length change in drill string, which is an important 
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consideration during packer design. For helical buckling scenario, the largest bending 

moment usually occurs at the bottom, thus the maximum bending stress occurs at cross 

section at bottom assuming a uniform tubular. However, the bending moment is reversely 

varying in sinusoidal buckling scenario, so it is necessary to calculate the bending 

moment along drill string to get the maximum bending moment. Besides, if the cross 

section is not uniform, it is necessary to calculate the bending moment distribution along 

drill string as design reference. 

In the later chapter the buckling model for dual string system is derived in the context 

of constant buckling force. Although the buckling force usually varies along the drill 

string in real practice, the buckling force can be assumed to be constant at certain depth 

and its nearby region. So if the drill string is discretized into numerous segments and the 

length of segments is small enough, a constant buckling force can be assumed within one 

segment while buckling force can vary between different segments. After discretization 

the newly derived model can be used to get pitch, bending moment, bending stress and 

length change due to buckling within each segment. Finally all segments can be 

assembled together and all the variables can be determined along drill string. In order to 

apply this model in practical scenario, the calculation procedure is illustrated as follows: 

i. Discretize the dual string system into numerous segments along pipe direction. 

Number the segments from bottom up, e.g. from segment interval [x1,x2] to 

segment interval [xi, x(i+1)] as shown in Figure 15.  

ii. If the dimensions of dual string system are known, a proper method or model 

should be used to determine the buckling force at the calculation starting point, 

which is x1 in this scenario. This buckling force can be determined from real field 
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data or from literature model, e.g. Lubinski’s model (1962) for buckling force at 

packer. 

 

Figure 15 Discretization of String  

iii. Assume buckling force within each segment keeps constant. This assumption is 

valid as long as the segment length is not too large. It is also noticed that the 

buckling force within each segment can be determined from previous segment. 

The relationships is expressed as 

 𝐹𝑥(𝑖+1) = 𝐹𝑥(𝑖) − 𝑤 ∗ 𝑙𝑖−(𝑖+1), ( 38) 

where w is weight per length with buoyancy effect, which is given by Eq. ( 30), 

𝐹𝑥(𝑖+1)  is buckling force at depth with coordinate of x(i+1), 𝑙𝑖−(𝑖+1) is the length of 

segment. Besides, the segment length 𝑙𝑖−(𝑖+1) can either be constant or variable. 

Usually we select segment length larger than 0.2 times pitch for high accuracy. 

x1 

x2 

xi 

xi+1 
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The reason is explained in APPENDIX C and will be further discussed in case 

studies of later chapters.   

iv. For each segment, calculation starts from node i to get the pitch for segment 

interval [xi, x(i+1)], then tubing shape for this interval is determined using this 

constant pitch with either a helical shape or sinusoidal shape. For each segment, 

we will first assume the dual string system take the helical buckling configuration 

and calculate the pitch for this segment. Then this pitch will be substituted into 

prerequisite condition for helical buckling, specifically Eq.( 21) and Eq.( 25). If 

this prerequisite condition is satisfied, then the helical buckling assumption is 

verified. Otherwise, the sinusoidal buckling configuration will be used to 

determine buckling configuration. 

v. After calculation on interval [xi, x(i+1)],  i+1 becomes a new starting point, and step 

iii and step iv is continuously repeated until neutral point is reached in vertical 

well situation. 

4.3 Model Verification 

As previously mentioned, the dual string buckling solution for helical buckling 

configuration can be simplified to the exact expression of Lubinski’s (1962) helical 

buckling model of single string. Besides, Mitchell’s (2012) model for helical buckling 

with wellbore contact is the same as this new model in nature. Thus we conclude that the 

helical buckling model for dual string system can be readily used in practical case study. 

In this chapter, we will focus on verify the sinusoidal buckling solution for dual string 

buckling using Lubinski’s (1950) widely acknowledged research on sinusoidal buckling 

of single string. 
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Lubinski (1950) conducted detailed study on sinusoidal buckling behavior of single 

string in vertical well scenario. By establishing the differential equation for force 

equilibrium and solving with power series approximation, he obtained very accurate 

solution for sinusoidal buckling with low order. When buckling order become very large, 

his solution is off the real situation. Results of first order and second order sinusoidal 

buckling are calculated with Lubinski’s model, which we will assume it is the real case. 

We will calculate and compare the string space configuration, bending moment, bending 

stress and length change due to buckling with result from new model in this section. The 

detailed geometrical information of tubular in this case study can be found in 

APPENDIX D. We will start from introduce some concepts used in Lubinski’s (1950) 

research and then conclude with a result comparison. 

The length in feet of one dimensionless unit, which is abbreviated as DU, is given by 

the following expression as 

 
𝑚 = √

𝐸𝐼

𝑤

3
, 

( 39) 

where m is length in feet of one dimensionless unit, E, I and w are the same as previously 

defined.  According to Lubinski’s (1950) study, this length doesn’t vary appreciably from 

one type of drill string to another and is usually between 40 and 65 ft.  

When weight on bit reaches critical value, the drill string deforms from straight to 

sinusoidal buckling. The buckling shape at the critical value of the first order and second 

order sinusoidal buckling were plotted in Figure 16 Shape of Buckled Curves 

ComparisonFigure 16 (a) and (b) respectively. It is obviously observed that the new 

model can describe a very close shape configuration with Lubinski’s result, which shows 

that there is very high accuracy in calculation using new model.  
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(a) 

 

(b) 

Figure 16 Shape of Buckled Curves Comparison 

Also we can notice that there is a discontinuity at 1.94 DU from bottom on first order 

sinusoidal buckling configuration and a discontinuity at 4.22 DU from bottom on second 

order sinusoidal buckling configuration. Actually this discontinuity position corresponds 

to position of the neutral point of tubular. This buckling model can only describe the 
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buckling configuration in compressive section while not applicable to the tensile section 

of tubular, so we use a straight line to connect tensile section. The result will be 

acceptable because the major deformation, bending moment and length change due to 

buckling exist in the compressive section. Also there is a small position different for 

point where drill string is in contact with wellbore. That is because in real case Lubinski 

observed a fast downward displacement of tangential point as this second order buckle 

happens. 

Lubinski also define the bending moment coefficient i by the following expression as 

 𝑖 =
𝑑2𝑦

𝑑𝑥2
𝑚2

𝑟
 and ( 40) 

 𝑀 = 𝑖𝑤𝑚𝑟. ( 41) 

where all parameters are previously defined. For any given size of drill pipe or drill 

collars, the weight per unit length, w, and the length of one dimensionless unit are all 

constant. So the bending moment M will increase in proportional to the radial clearance 

and bending moment coefficient i. This coefficient i is unique to a certain buckling 

configuration. We compare the coefficient result with Lubinski’s model in second order 

sinusoidal buckling condition, as shown in Figure 17. 

As we can see from Figure 17, this coefficient i is varying along the drill string, 

which indicates that bending moment in sinusoidal buckled tubular varies along the string. 

Lubinski’s model predicts the maximum bending moment occurs around 0.84 DU from 

the bottom, while this model predicts the maximum bending moment around 1.5 DU 

from the bottom. As is previously discussed, Lubinski observed a fast downward 

displacement of tangential point as this second order buckle happens, while the pitch in 

this model can only gradually changes.  
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Figure 17 Bending Moment Coefficient Comparison 

Besides, there is a linear approximation in derivation of this model (derivation details 

are explained in APPENDIX C). The influence of this process is like make an average 

distribution of bending energy over the pitch. The bending energy seems to smoothly 

distribute along the string instead of increasing or dropping suddenly like Lubinski’s 

model. So this explains why the maximum bending moment coefficient from Lubinski’s 

model is 1.84, while coefficient from this model is 1.02. However, the predicted result 

with new model still follow a very close trend with results from Lubinski’s model.  
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Then we will calculate the magnitude of maximum stresses generated by the bending 

moment due to buckling. The following study considers the condition at which the 

second order buckling contact the wellbore. The maximum coefficient value i is directly 

determined by previous study as 1.84 in Lubinski’s study and 1.02 from newly derived 

model. The maximum stresses have been calculated with 6 ¼ inch. Drill collar in a12 

lb/gal mud, the detailed geometrical information can be found in Table 12 in APPENDIX 

D.  

As is shown in Figure 18, the maximum bending stress from Lubinski’s model is 

about 40% higher than that from the newly derived model. As previously discussed, this 

new model tend to average the energy over the pitch, so the maximum moment predicted 

is less than Lubinsk’s result accordingly. So it should always bear in mind in practical 

application that this new model could possibly underestimate the maximum bending 

stress. Besides, field data in real case is also needed to determine which model better fits 

the real situation. 

 

Figure 18 Maximum Bending Stress Comparison 
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It is also noticed in above figure that once buckling configuration is determined, the 

bending moment will be in proportional to wellbore diameter. In real cases, if the drill 

string is rotating and continuously in contact with formation, it could potentially generate 

a large cavity in certain formations. Large cavities will directly increase the hole diameter, 

and if the maximum bending moment happens to be close to this region, this can cause 

very large bending stress at cross section, which also needs to be considered in practice. 

Lubinski (1950) introduced another kelly displacement coefficient, q, to describe the 

displacement due to buckling by the expression as 

 ∆𝐿𝑏 = 𝑞
𝑟2

𝑚
, ( 42) 

where Lb, r and m are previously defined. The coefficient q depends on the distance 

between the bit and the neutral point, which is proportional to the weight on bit. For a 

given size of drill collar or drill pipe in a wellbore and a given density, the unit length, m, 

and radial clearance is constant, this length change due to buckling only depends on q. 

 

Figure 19 Comparison of Displacement Coefficient  
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As is shown in Figure 19, the buckling induced displacement coefficient from new 

model is very close to the result from Lubinski’s model. The abscissa of curve start point 

is around 1.94 DU, which corresponds to the critical buckling force of first order 

buckling. The abscissa of curve end point is around 4.22 DU, which corresponds to the 

critical buckling force of second order buckling that contacts the wellbore. So this plot 

corresponds to the length change due to buckling from first order sinusoidal buckling to 

second order sinusoidal buckling. 

In summary, this chapter first illustrates the calculation procedure of applying the 

newly derived model in real case study. After that the proposed analytical model for 

predicting buckling behavior of dual string system has been verified by a case study using 

widely acknowledged Lubinski’s model. The study shows that the newly derived model 

can accurately describe the real situation. Attention should be paid to maximum moment 

and stress prediction, because the new model potentially may underestimate the 

maximum bending moment. 
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CHAPTER 5  

 EXAMPLE CALCULATION AND DISCUSSION 

5.1 Introduction 

In previous chapter we developed analytical model for helical and sinusoidal buckling 

of dual string system. Furthermore, the widely acknowledged Lubinski’s model (1950) 

and Mitchell’s model (2012) have been used and successfully verified the prediction 

accuracy of the newly derived model.  

Currently the post buckling behavior of single string has been under extensive 

research and numerous case studies have been conducted on this subject. The assumption 

of these studies that the casing should be rigid can be invalid at certain conditions. There 

are only a few studies on this subject. Christman (1976) brought up a composite pipe 

model with arithmetic summed property of dual string system, which was based on 

unreasonable assumptions at certain condition. Mitchell (2012) made improvement on 

Christman’s model but didn’t conduct enough case studies and explore the mechanism 

for dual string buckling behavior. 

This section aims to contribute to better understanding the buckling mechanism of 

dual string system by conducting several case studies on different parameters. We will 

start with Lubinski’s (1962) example, which will be the base example. Then different 

parameters are varied to evaluate its effect on buckling behavior of dual string system. 

Finally Christman’s model and Mitchell’s model are applied in case study and 

comparison between these three models is conducted. The mechanism of dual string 

buckling system will be explored. 
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5.2 Model Application for Case Study 

For comparison convenience, an example has been chosen from Lubinski’s (1962) 

research on helical buckling. This example is for a high pressure squeeze-cementing 

operation. The geometrical information for casing and tubing is included in Table 13 and 

Table 14 in APPENDIX D. In the Lubinski’s example, the wellbore for 7 in. casing was 

not specified, so we are assuming a typical bore diameter of 8 ½ in. There is a packer 

(Ap=8.30 sq in.) at the depth of 10,000 ft. 

Both the tubing and annulus are full of 30 degree API crude oil at the same time the 

tubing is initially sealed in the packer. Thereafter, the crude oil in tubing is displaced by 

15 ppg cement slurry, as in a squeeze cementing operation. Assume the fluid between 

wellbore and casing is brine with 10ppg weight. Finally the pressure pi =5,000 psi and po 

=1,000 psi are applied at surface to the tubing and annulus respectively. 

Bottomhole pressure is calculated without considering the effect of flow. This 

corresponds to the most severe condition during a cementing operation that there is little 

or no flow. It is already proven in Lubinski’s research that in the presence of both the 

inside pressure, Pi , and outside pressure, Po, the tubing behaves as if it is subjected to a 

buckling force as 

 𝐹 = 𝐴𝑝(𝑃𝑖 − 𝑃𝑜), ( 43) 

where Ap is the area of packer bore, Pi is the inner pressure of tubing at certain depth and 

Po is the outer pressure of tubing at certain depth. This formula is chosen to determine the 

buckling force at bottom of tubing. Eq. ( 30) and Eq. ( 38) will be used in this study to 

determine the buckling force at any depth along the tubing and casing. By substituting the 

above numerical values, we can get that buckling force at bottom of tubing is 66,400 lbf. 
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There are five scenarios which are specifically designed to study the buckling 

behavior of a dual string system, as is shown in Table 6, where F1 is the buckling force on 

tubing at packer depth, F2 is the buckling force on casing at packer depth, .and rw is the 

wellbore radius. 

Table 6  Buckling Force Conditions for Case Study 

Case No. F1 (lbf) F2 (lbf) rw (inch) 

1 66,400 0 4.25 

2 66,400 66,400 4.25 

3 132,800 0 4.25 

4 66,400(single string) 0 4.25 

5 66,400 0 5 

 

There are usually two general field practice scenarios where buckling of dual string 

system occurs. The first situation is that the inner string buckles into contact with the 

outer casing and the casing buckles subsequently due to the contact load generated by the 

inner pipe, which is designed as case 1. The second situation is that both strings have 

compressive axial buckling forces and buckles together. The final resultant configuration 

should make the buckling behavior of dual string fit together, which is designed as case 2. 

Case 3 and case 5 are designed to explore the how the buckling force and radial clearance 

impact the post buckling behavior of dual string system. Case 4 is designed to compare 

the difference of buckling behavior between single string and dual string system. Post 

buckling parameters, including pitch variation, bending moment, bending stress and 

length change due to buckling, are studied in this section. 
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5.2.1 Field Case 1-Results and Analysis 

The case 1 is specifically designed to study the buckling behavior of dual string 

system that is induced by the initial buckling of inner string. The influence of casing 

weight is not considered for Case 1. In this scenario the dual string system is predicted to 

form a sinusoidal buckling configuration.  

The buckling pitch along tubing is plotted in Figure 20. The expanded figure is shown 

in Figure 21. The pitch of sinusoidal shape is 54 ft. at bottom hole and increases very 

slowly from bottom up until it reaches around 7,500 ~ 8,000 ft. The neutral point of 

tubing is at 8,637 ft. It is observed that the buckling pitch increases very rapidly at the 

near neutral point region. This is because buckling force at the near neutral point region is 

very close to the critical stability of sinusoidal buckling, which is a very small value. In 

other word, this region is actually a transition region between sinusoidal shape and 

straight shape. As the distance from bottom keeps increasing above the neutral point, the 

tubing is in tensile zone and behaves more like a straight shape. 

 

Figure 20  Pitch along Tubing in Case 1 
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Figure 21  Pitch along Tubing in Case 1(Expanded Plot) 

It is also noticed that the buckling pitch varies slowly from 54 ft to 120 ft in a large 

portion of buckling section (around 7,000 ft. of tubing). As is stated during model 

derivation ( details in APPENDIX B and APPENDIX C), the length segment during 

calculation is preferred to be larger than 0.2 times pitch for an accurate approximation. 

The segment length selected in this study is 20 ft, which ensures that the prediction from 

this model gives a very accurate prediction. Furthermore, the maximum bending moment, 

maximum bending stress and length change due to buckling mainly occurs at the bottom 

portion of tubing, where the newly derived model can ensure a very high accuracy. 

The bending moment in tubing along tubing is shown in Figure 22. For simplicity and 

clearness in demonstration, we only plot the bending moment from bottom to 2,000 ft. up 

along the tubing. This reversal sign of bending moment indicates that the dual string 

system conforms to the sinusoidal buckling configuration. It should also be noticed that 

the amplitude of bending moment is supposed to be symmetrical about the x axis while 

the plot is not. The reason is because calculation within every segment is based on the 
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starting and ending point of the interval, when the segment length is very close to 

buckling pitch, calculation probably skips the maximum point which is within this 

segment. To verify this explanation, we reduce the segment length to 10 ft. and generate 

the bending moment in tubing plot as Figure 23. It is obvious that as the segment length 

decreases, the bending moment becomes symmetrical about the x axis. 

However, we only care about the outer contour of this bending moment plot to 

determine the maximum bending moment, as shown by dash line in Figure 22 and Figure 

23. Calculation with different length segment both predict a descending trend of bending 

moment from bottom up and a maximum bending moment around 865 lbf-ft near the 

bottom of tubing. Although using the segment length 20 ft. may potentially make the plot 

miss some peak value point, it is very unlikely that all the maximum point is skipped. In 

this case study we keep using the 20 ft length segment, which can also predict an accurate 

maximum bending moment.  

 

Figure 22   Bending Moment in Tubing with Segment Length = 20 ft. 
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The bending moment in casing can be calculated in similar way and results are 

plotted in Figure 24. The maximum bending moment in casing is 8,680 lbf-ft at the same 

depth of maximum bending moment point in tubing near the bottom. The dashed line 

represents the maximum bending moment contour. So the bending stress in tubing and 

casing can be plotted accordingly in Figure 25. The dashed line represents the maximum 

bending stress contour. The descending dash line shows that the bending moment 

amplitude are decreasing from bottom up and will become very small near neutral point. 

 

Figure 23   Bending Moment in Tubing with Segment Length = 10 ft. 

Notice that if the buckling of dual string system occurs, the casing helps to take a 
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system. The bending moment in tubing only accounts for a small portion. It can also be 

read from Figure 25 that the maximum bending stress in tubing is 783 psi and maximum 

bending stress in casing is 606 psi. So the final resultant maximum stress at cross section 

of tubing is close to the maximum stress at cross section of casing.  
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Figure 24   Bending Moment in Casing in Case 1 

 

Figure 25   Bending Stress in Casing and Tubing in Case 1 
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5.2.2 Field Case 2-Results and Analysis 

The case 2 is specifically designed to study the buckling behavior of dual string 

system that the inner tubing and outer casing buckles simultaneously and fit together to 

the final configuration. In this scenario the dual string system is predicted to form a 

sinusoidal buckling configuration. In this case the buckling force at bottom of tubing and 

casing are both designed to be 66,400 lbf. Another difference from case 1 is that the 

influence of casing weight on buckling force in casing is considered. Although the 

buckling forces at the bottom of casing and tubing are designed to be same, the buckling 

forces along casing and along tubing are decreasing at different rate from bottom up. The 

neutral points of casing and tubing are calculated to be different depth, with casing at 

4,080 ft. and tubing at 8,637 ft. from bottom up. 

The pitch and distance from bottom relationship of buckling configuration in case 2 

are plotted in Figure 26 and the expanded plot of the same figure is shown in Figure 27. It 

is noticed that the calculation is conducted from bottom hole to 7,500 ft. from bottom, 

above which position the prerequisite condition, Eq. ( 21), for this model is not satisfied 

any more. It is also noticed that the buckling pitch of the region near 7,500 ft is 

increasing very rapidly. It is very likely that the dual string system undergoes a transition 

from sinusoidal buckling shape to straight shape. The buckling pitch of dual string system 

at bottom is 51.3 ft, which is less than buckling pitch at bottom in case 1 due to buckling 

force on casing. 

It deserves attention that although the axial force in casing transit from compressive 

to tensile force above 4,080 ft. in casing, this model can still predict a sinusoidal buckling 

configuration for dual string system. The outer casing buckles under the large contact 
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force between buckled tubing and casing. However, this section of casing in tensile force 

can largely constrain the buckling of dual string system. As is shown in Figure 26, the 

buckling pitch of dual string system increase rapidly above 7,000 ft. from bottom, where 

the buckling force in casing is considered to be zero. It can also be inferred that when the 

prerequisite condition, Eq. ( 21), is not satisfied any more, the duals string system transit 

into straight shape. 

 

Figure 26  Buckling Pitch along Tubing in Case 2 

 

Figure 27  Buckling Pitch along Tubing in Case 2 (Expanded Plot) 
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The bending moment in tubing and casing along wellbore are plotted in Figure 28 and 

Figure 29, respectively. For simplicity and clearness in demonstration, we only plot the 

bending moment from bottom to 2,000 ft. above bottom. The outer contour of bending 

moment is represented by dash line in Figure 28 and Figure 29, which predict a 

descending trend as it goes from bottom up. This conforms to our understanding that 

large bending moment occurs at region where buckling force is the highest. The bending 

moment becomes very small value at near the neutral point region, as the dual string 

system behaves more like a straight shape. By reading from Figure 28 and Figure 29, we 

can find that the maximum bending moment in tubing is 980 lbf-ft and the maximum 

bending moment in casing is 9,706 lbf-ft. The maximum bending stress at cross section in 

casing and tubing can be plotted accordingly in Figure 30. It can also be read from Figure 

30 that the maximum bending stress in tubing is 876 psi and maximum bending stress in 

casing is 678 psi. 

 

Figure 28  Bending Moment in Tubing in Case 2 
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Figure 29  Bending Moment in Casing in Case 2 

 

Figure 30   Bending Stress in Casing and Tubing in Case 2 
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5.2.3 Field Case 3-Results and Analysis 

The case 3 is specifically designed to study the influence of buckling force on 

buckling behavior of dual string system. The influence of casing weight is not considered 

for Case 3. In this scenario the dual string system is predicted to form a sinusoidal 

buckling configuration.  

In Case 3 the buckling force at bottom of tubing is increased to 132,800 lbf. Actually 

there are many operations that could potentially increase the buckling force by a large 

scale, e.g. applying very high surface pressure inside of tubing or conducting operation 

on mud or cement with heavy weight. However, in this case it should be stated that the 

Case 3 is specifically designed only for research purpose, so it probably seldom happen 

in real practice. 

The relationship between buckling pitch and distance from bottom is plotted in Figure 

31. As is shown in Figure 31, the buckling pitch of dual string system is 38 ft.at bottom 

of tubing and gradually increases to 58 ft. at surface. In this case the buckling force at 

bottom of dual string system is so high that it buckles all the way to the surface. The 

neutral point is actually above the tubing surface point. Compared with Case 1, the 

buckling pitch of dual string decreased significantly as two times of initial buckling force 

is applied. 

The bending moment in tubing and casing along wellbore are plotted in Figure 32 and 

Figure 33, respectively. For simplicity and clearness in demonstration, we still only plot 

the bending moment from bottom to 2,000 ft. above. Reading from Figure 32 and Figure 

33, we can find that the maximum bending moment in tubing is 1,764 lbf-ft and the 

maximum bending moment in casing is 17,466 lbf-ft. Maximum bending moment in Case 
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3 increases almost twice as the buckling force doubles. Based above bending moment 

calculation, the maximum bending stress in casing and tubing can be plotted accordingly 

in Figure 34. Reading from Figure 34, we can find that the maximum bending stress in 

tubing is 1,576 psi and maximum bending stress in casing is 1,218 psi. 

 

Figure 31  Buckling Pitch along Tubing in Case 3 

 

Figure 32  Bending Moment in Tubing in Case 3 
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Figure 33  Bending Moment in Casing in Case 3 

 

Figure 34   Bending Stress in Casing and Tubing in Case 3 
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One interesting finding is that there is less number of waves in Figure 32, Figure 33 

and Figure 34 compared with previous case study. This is also determined by the ratio of 

buckling pitch and the length of selected segment. As the length of segment is at the 

similar magnitude of buckling curve, it is possible that the end point of a segment can 

skip the nearby region of point with maximum bending moment, but it is very unlikely 

that all end point fall out of that nearby region. The outer contour of bending moment has 

to be plotted to indicate maximum value. Since buckling pitch varies along tubing, the 

ratio of pitch and length of segment is changing, so this is why the curve is symmetrical 

in certain length section and changes in other section. Fixing this problem needs skills in 

properly selecting segment length and the outer contour line should always be used to 

help to predict an accurate value.   

5.2.4 Field Case 4-Results and Analysis 

The case 4 is specifically designed to study the difference between buckling behavior 

of a single string and dual string system under the same buckling force. In this scenario 

the single string is predicted to form a helical buckling configuration. Calculation for a 

single string buckling can be conducted by using Lubinski’s (1962) model. 

The buckling force applied at bottom of tubing is 66,400 lbf , which is the same as 

Case 1. The relationship between buckling pitch and distance from bottom is plotted in 

Figure 35 and an expanded plot of the same figure is shown in Figure 36. The neutral 

point is at 8,640 ft from bottom up. The buckling pitch starts from 20 ft at bottom and 

increases very slowly until around 7,300 ft. Then the buckling pitch increases very 

rapidly in the near neutral point region. 
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The bending moment and bending stress of cross section at different depth is plotted 

against distance from bottom in Figure 37 and Figure 38. It should be noticed that the 

bending moment in tubing of helical buckling has the same positive sign, which is 

different from the reversal bending moment in sinusoidal buckling. It is easily observed 

that the bending moment has a linear relationship with distance from bottom. The 

maximum bending moment and bending stress always occur at the bottom of tubing, 

where the buckling force is the largest and pitch is the smallest. Reading from Figure 37 

and Figure 38, we can find the maximum bending moment in tubing is 4,454 lbf-ft and 

the maximum bending stress in tubing is 47,742 psi. 

5.2.5 Field Case 5-Results and Analysis 

The case 5 is specifically designed to study the influence of radial clearance on the 

final buckling behavior of dual string system. The loading condition and geometrical 

dimension are the same as Case 1 except for the wellbore dimension.  In this scenario the 

dual string system is predicted to form a helical buckling configuration.  

 

Figure 35  Pitch along Tubing in Case 4 
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Figure 36  Pitch along Tubing in Case 4 (Expanded Plot) 

 

 

Figure 37  Bending Moment in Tubing in Case 4 
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Figure 38  Bending Stress in Tubing in Case 4 

The relationship between buckling pitch and distance from bottom is plotted in Figure 

39 and an expanded plot of the same figure is shown in Figure 40. The buckling pitch of 

dual string system at bottom is 57.4 ft. The buckling pitch increases very gradually as it 

goes up until around 6,500ft. As is mentioned in previous case study, the rapid increase in 

buckling pitch corresponds to a transition stage to straight shape.  

The bending moment of tubing and casing cross section at different depth is plotted 

against distance from bottom in Figure 41 and Figure 42. It is easily observed that the 

bending moment has a linear relationship with distance from bottom in case 5. The 

maximum bending moment and bending stress always occur at the bottom of tubing, 

where the buckling force is the largest and pitch is the smallest. Reading Figure 41 and 

Figure 42, we can find the maximum bending moment in tubing is 1,043 lbf-ft and the 

maximum bending moment in casing is 15,677 lbf-ft. 
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Figure 39  Pitch along Tubing in Case 5 

 

Figure 40  Pitch along Tubing in Case 5 (Expanded Plot) 
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Figure 41  Bending Moment in Tubing in Case 5 

 

Figure 42  Bending Moment in Casing in Case 5 
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Based on the bending moment result, the bending stress in casing and tubing can also 

be accordingly determined, as is shown in Figure 43. The maximum bending stress in 

casing is 13,127 psi and the maximum bending stress in tubing is 11,182 psi at bottom.  

 

Figure 43  Bending Stress in Casing and Tubing in Case 5 
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bending stress in tubing, c is the maximum bending stress in casing and Lb is the length 

change due to buckling. The length change due to buckling is an important parameter in 

design, which will be commented in this section 

Table 7  Case Study Result Summary 

Case No. Pitch (ft.) Mt (lbf-ft.) Mc (lbf-ft.) t (psi) c (psi) Lb (in.) 

1 53.4 877 8,680 7,268 9,396 6.86 

2 51.3 980 9,706 10,507 8,127 6.62 

3 38.1 1,764 17,466 18,907 14,625 22.60 

4 20.0 4,454 NA 47,742 NA 46.09 

5 57.4 1,043 15,677 11,182 13,126 21.94 

 

Case 1 is designed as the base scenario for comparison, where the buckling force is 

only applied on inner tubing. Case 2 keeps all the conditions the same except that apply 

buckling force on casing and take the effect of weight into consideration. The final dual 

string buckling configuration in Case 2 show that there is only a small decrease in 

buckling pitch. Besides, there is a slight increase in maximum bending moment and 

maximum bending stress in Case 2. So the increase of buckling force in casing doesn’t 

significantly impact the buckling configuration of dual string system. 

It deserves attention that the change of length due to buckling in Case 2 is less than 

case 1. The reason is because the influence of casing weight is considered in Case 2. With 

the distance from bottom increasing, the neutral point in casing is first reached at 4,080 ft. 

In the region from 4,080 ft to 7,500 ft, the axial force in casing is in tension, which tends 

to suppress the buckling of inner tubing. It is obviously noticed in Figure 44 that the 
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buckling pitch in Case 2 increases rapidly above 4,080 ft. As the dual string system 

behaves more like a straight line shape, the change of length decreases. Besides, the 

length of compressive section in Case 2 is less than that of case 1. This can also reduce 

the change of length due to buckling.  

It is also noticed that the Eq. ( 21) can be used to predict the transition region of dual 

string system from sinusoidal buckling to straight shape. Thus the neutral point of a dual 

string system can be defined as the point in dual string where the expression is satisfied 

as 

  𝐹1𝑟1
2 + 𝐹2𝑟2

2 = 0, ( 44) 

where F1 is the buckling force in tubing, F2 is the buckling force in casing, r1 is the radial 

clearance of tubing and r2 is the radial clearance of casing. This can be further verified by 

Figure 44. 

 

Figure 44  Buckling Pitch along Tubing in Case 1 and Case 2 
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When Case 3 is compared with Case 1, Case 3 keeps all the conditions the same 

except that the buckling force at bottom of tubing is increased twice. It is observed that 

the increase of buckling force on tubing significantly reduces the buckling pitch at 

bottom and increases the maximum bending moment and stress in tubing and casing. 

Since the buckling pitch is much smaller and deformation due to buckling is more severe, 

the change of length due to buckling is significantly increased. So the change of buckling 

force in tubing has more influence final buckling behavior than change of buckling force 

in casing. The mechanism is that the casing has a much higher stiffness capacity than 

tubing. 

When Case 4 is compared with Case 1, Case 4 describes a scenario where a single 

string buckles inside a casing at the same condition as Case 1 except that the casing is 

assumed to be rigid in Case 1. The buckling shape of a long pipe in vertical wells can 

typically be assumed to be a helically buckling configuration. It is observed that the 

buckling deformation of a single string is much more severe than that of a dual string 

system. The much more bending moment, bending stress and change of length due to 

buckling can develop for single string buckling under the same buckling load. This is 

because the buckling loads on dual string system turn out to be shared by casing and 

inner string. Casing usually accounts for a large portion of buckling loads due to much 

higher stiffness capacity. So the prerequisite condition should be carefully checked before 

application of dual string model in design. Application of this dual string model in 

tubular design may properly save cost but could potentially cause tubular failure by 

overestimating the contribution of outer casing in buckling.  



 

 

75 

 

Besides, it should be noticed that the change of length due to buckling in Case 4 is 

much larger than previous cases. Another reason is that the buckling of a single long pipe 

in Case 4 is assumed to be a helical configuration, which is a spatial shape, while the 

buckling of dual string in previous three cases is in sinusoidal configuration, which is a 

plane shape, the change of length due to buckling is larger for spatial configuration even 

at the same pitch. So if the sinusoidal buckling of dual string system is verified to be the 

real case, the change of length due to buckling could be much smaller. 

When Case 5 is compared with Case 1, Case 5 keeps all the conditions the same 

except that the dual string system is buckled in a larger wellbore, where the radial 

clearance for tubing and casing is even larger. As the radial clearance increases, the dual 

string system buckles into a helical shape in space. So in real practice, a large radial 

clearance could possibly change the buckling configuration from sinusoidal buckling to 

helical buckling. For example, if there is a large cavity on the wellbore at certain soft 

formation, the buckling shape of tubular changes from sinusoidal buckling to helical 

buckling, which will further increase the contact force, this increased contact could 

possibly further increase the cavity on the wellbore. 

Although the buckling pitch at bottom in case 5 is a little larger than the pitch in Case 

1. The maximum bending moment, maximum bending stress and change of length due to 

buckling of dual string system in Case 5 is the larger than that in Case 1 under the same 

buckling load. So the radial clearance of dual string system has a very significant 

influence on final buckling configuration. 
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5.4 Model Comparison with Previous Solutions 

In this section we aim to exam the calculation accuracy of different prediction model 

for dual string buckling by applying .Christman’s (1976) model and Mitchell’s (2012) 

model on the same Lubinski’s example. 

 Christman’s model takes dual string system as a composite pipe with summed 

properties of individual pipe. He also assumes that the buckling load on cross section of 

composite pipe is the sum of buckling load on individual pipes. In this way the buckling 

problem of dual string system is simplified into a single string buckling problem. Then 

the previous model of force pitch relationship for single string can be applied on this 

situation. Christman’s model can be expressed as 

 
𝑝 = 𝜋√

8𝐸𝐼̅

𝐹̅
, 

( 45) 

where 𝐼 ̅is the sum of individual moment inertia, and 𝐹̅ is the sum of individual buckling 

force. 

Mitchell (2012) studied the helical buckling configuration by applying the virtual 

work principle. The final expression derived is given as Eq. ( 19). This expression is only 

for the situation where tubing buckles into casing while casing is in contact with wellbore. 

The prerequisite condition for above helically buckling of dual string to occur is 

given by Eq. ( 25). Otherwise, the dual string system buckles into the second scenario. 

Tubing is assumed to buckle into contact with the casing, but there is no contact between 

the casing and wellbore. The space configuration is as shown in Figure 50. The buckling 

pitch can be given by 

 𝛽2 =
𝐹1(𝑣+𝑟1)

2+𝐹2𝑣
2

2𝐸(𝐼1(𝑣+𝑟1)
2+𝐼2𝑟2

2)
, ( 46) 
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where v is the radial displacement of casing and v can be solved by the following 

equations as 

 𝑣3 + 𝑎𝑣2 + 𝑏𝑣 + 𝑐 = 0, ( 47) 

where 

 𝑎 = 3𝜀𝑟, ( 48) 

 𝑏 = [4𝜀 − 1 + 𝜑(2𝜀 − 1)𝑟2], ( 49) 

 𝑐 = 𝜀(1 + 𝜑)𝑟3, ( 50) 

 𝜀 =
𝐼𝑡

𝐼𝑡+𝐼𝑐
,  and ( 51) 

 𝜑 =
𝐹1

𝐹1+𝐹2
. ( 52) 

5.4.1 Comparison between Christman’s Model and New Model 

As previously stated in chapter 2, the major assumption for Christman’s model is that 

radial clearance between dual strings is small enough so radial displacement with dual 

strings can be neglected. This section we will evaluate the influence of radial 

displacement with dual strings on the final buckling behavior of dual string system. Three 

cases are specifically designed for this purpose. The following Table 8 shows the 

comparison between these three cases. All the other conditions including loads and 

casing parameters are same with Case 1except that larger inner tubing is used for Case 

7and Case 8. Furthermore, different solution models are used to compare the prediction 

difference. The geometrical information for 4-1/2” casing is listed in Table 15 in 

APPENDIX D. 
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Table 8  Case Study for Influence of Radial Displacement 

Case No. Inner Tubing Diameter (in.) Model Used for Solution 

1 2-7/8” New Model 

6 2-7/8” Christman’s Model 

7 4-1/2” New Model 

8 4-1/2” Christman’s Model 

 

Christman’s model derived expressions for pitch, bending stress and length change 

due to buckling, which will be used for comparison in this research. The pitch along 

tubing relationship is plotted in Figure 45 and expanded plot is Figure 46. For the same 

scenario, Christman’s model predicts a helical buckling configuration with a much higher 

pitch. The maximum bending stress in tubing and casing is shown in Figure 47. The 

maximum stress occurs at bottom with 691 psi in tubing and 1,684 psi in casing.  

 

Figure 45  Comparison of Pitch between Case 1 and Case 6 
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Figure 46  Pitch Comparison between Case 1 and Case 6 (Expanded Plot) 

 

 

Figure 47  Bending Stress in Tubing and Casing in Case 6 
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7 and Case 8 is shown in Figure 48 and the expanded plot is show in Figure 49. The final 

results in these four cases are summarized and compared in Table 9, where the pitch 

refers to the pitch at bottom. 

 

Figure 48 Comparison of Pitch in Case 7 and Case 8 

 

Figure 49 Pitch Comparison in Case 7 and Case 8 (Expanded Plot) 
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Table 9  Summary of Case Study Result 

Case No. Pitch (ft.) t (psi) c (psi) Lb (in.) Buckling Configuration 

1 53.4 7,268 9,396 6.86 Sinusoidal buckling 

6 113.3 692 1,683 0.31 Helical buckling 

7 70.2 5,815 4,386 1.64 Helical buckling 

8 120.1 962 1,496 0.13 Helical buckling 

 

In Case 1 and Case 6, the radial clearance between casing and tubing is very large. 

The Christman’s model gives quite different prediction of buckling configuration with 

new model, because the prerequisite of small radial clearance for Christman’s model is 

not satisfied in this situation. The assumed radial displacement of inner tubing is much 

less than real case, thus largely underestimates the deformation of tubing due to buckling. 

So the bending stress and length change due to buckling in Case 6 are much less than the 

result from Case 1. Then the inner 2-7/8” tubing is replaced by a 4-1/2” tubing, so the 

radial clearance is largely reduced in Case 7 and Case 8. For these two cases, both 

Christman’s model and new model predict a helical buckling configuration with pitch of 

120.1ft and 70.2 ft, respectively. As the radial clearance between dual strings decrease, 

the prediction result from Christman’s model is more close to result from new model. 

However, the Christman’s model still underestimates the bending stress and length 

change due to buckling by a large scale.  
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5.4.2 Comparison between Mitchell’s Model 

The major problem with Mitchell’s model is that it assumes an unrealistic 

configuration for buckling of dual string system, which is shown in Figure 50. As is 

previously mentioned, the Eq. ( 46) ( 47) gives the solution for buckling of dual string 

system without wellbore contact. It is observed that that solution is independent of 

wellbore radius. This section will specifically design Case 9 to illustrate the influence of 

radial clearance with respect to wellbore. For Case 9, all the conditions are kept the same 

except that the wellbore radius is increased from 8 ½” to 9 ½”. The calculation result is 

shown in Table 10. The subscript (a) indicates that it is the result from Mitchell’s model, 

while subscript (b) indicates that it is result from newly derived model. Clearly the result 

shows that as wellbore radius increases from 8-1/2” to 10”, Mitchell’s model predicts a 

solution with discontinuity. However, the result from newly derived model shows that the 

bending stress and length change due to buckling increase gradually as wellbore radius 

increases, which is more close to real situation. 

 

Figure 50  Helical Buckling without Wellbore Contact, Mitchell 2012 
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Table 10  Case Study with Mitchell’s Model and New Model 

Case No. Wellbore Radius (in.) Pitch (ft.) t (psi) c (psi) Lb (in.) 

1(a) 8-1/2 20.4 47,620 3997 NA 

9(a) 9-1/2 20.4 47,620 3997 NA 

1(b) 8-1/2 53.4 7,268 9,396 6.86 

9(b) 9-1/2 56.6 10,451 11,117 9.09 

5 10 57.4 11,182 13,126 21.94 

 

In a brief summary, clearly Christman’s model is an unrealistic one because it 

assumes the axial load is shared by two separate pipes. So it overestimates the stiffness 

capacity of dual string systems and may give an unsafe reference for design. That is the 

reason why the buckling pitch predicted tends to be larger than other models. In reality 

the concentric pipes interact with each other by contact force. Mitchell’s model correctly 

analyzes this interaction mechanism and gives correct prediction for fully helical 

buckling configuration with wellbore contact, which can be verified by this new model. 

However, the scenario where helical buckling forms without wellbore contact is far from 

reality, because helical buckling usually evolves from sinusoidal buckling with wellbore 

constrain. It is very difficult to for dual string system to form helical buckling without 

wellbore contact. The pitch predicted from new model gives a more reasonable pitch than 

Mitchell’s model in this case.  
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CHAPTER 6  

CONCLUSION 

6.1 Summary 

 An analytical mathematical model has been brought up to describe the post 

buckling behavior of dual string systems based on minimum energy theory. 

Effect of contact interaction has been considered in this model and evaluated 

in analysis.  

 Calculation procedure has been designed to apply this new model in 

application. Lubinski’s (1950) exact solution for sinusoidal buckling of string 

has been used to verify the newly derived model. 

 Case study has been conducted to further explore and better understand the 

buckling mechanism of dual string system. The influence of different 

parameters on final buckling configuration has been investigated. 

 Case study has been designed for comparison between previous models with 

newly derived model. Results show that new model gives a more reliable 

prediction in many scenarios. 

6.2 Conclusion and Engineering Suggestions 

 Although this model is derived based on two pre-assumed space configuration 

of dual string system, it is a good attempt to give insight into mechanism of 

dual string buckling. 

 Compared with the change of buckling force in outer casing, the change of 

buckling force in inner tubing has much larger impact on final buckling 

configuration of dual string. 
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 Tension in outer casing tends to suppress the buckling deformation of inner 

tubing.  

 The neutral point position and near neutral point region of dual string system 

can be determined using Eq. ( 44). 

 In dual string system, outer string tends to stand more moments due to higher 

stiffness compared with inner string. 

 Application of this dual string model in tubular design may properly save cost 

but could potentially cause tubular failure by overestimating the contribution 

of outer casing in buckling. the prerequisite condition should be carefully 

checked before application of dual string model in design. 

 An increase in the radial clearance of dual string system can significantly 

change the final buckling configuration  

 By model comparison, it is found that Christman’s model tends to 

overestimate the stiffness of dual string system because of neglecting the 

radial clearance between dual strings.  

 Mitchell’s model assumes an unrealistic scenario where dual string system is 

self-balanced and independent of wellbore. The solution in this scenario can’t 

properly explain the influence of clearance with respect to wellbore on dual 

string buckling system. 

 This newly derived model properly solves the problems in Christman and 

Mitchell’s model and is able to give a more reliable prediction for practical 

use. 
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APPENDIX A 

The force pitch relationship for helically buckling of dual string system will be 

derived in this section, based on a long, weightless string of pipe or rods subject to 

compression. Based on the geometry of helically buckled pipe, as is shown in Figure 51, 

the following equation is derived as 

 sinθ =
p

√p2+4π2r2
        and ( A- 1) 

 𝐹𝑃 = 𝐹𝑎/𝑠𝑖𝑛𝜗, ( A- 2) 

where FP is force load along the pipe axis, Fa is force load along axis of helix. 

 

 

Figure 51  Geometry of Helically buckled pipe 
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In this study, we used the definition rule for simplification that subscript 1 represents 

for tubing, while subscript 2 represents for casing. The total potential energy includes 

contributions from: 

i. Compressive strain energy of dual string is expressed by 

 𝑈𝑐 =
𝐹𝑃1

2𝐿1

2𝐴1𝐸
+

𝐹𝑃2
2𝐿2

2𝐴2𝐸
        and ( A- 3) 

 Uc =
Fa1

2L1

2A1E
(
p2+4πr1

2

p2
) +

Fa2
2L2

2A2E
(
p2+4πr1

2

p2
), ( A- 4) 

where A is cross section area, so A1 is cross section area of tubing, A2 is cross section 

area of casing; L is length of pipe subject to compression, E is Young’s modulus, p is 

pitch of helix; r is radial clearance, so r1 is radial displacement of tubing, r2 is radial 

displacement of casing, r1 and r2 can be expressed as 

 𝑟1 = 𝑟𝑡𝑐 + 𝑟𝑐𝑐    and ( A- 5) 

 𝑟2 = 𝑟𝑐𝑐. ( A- 6) 

ii.  Bending strain energy of a helix can be expressed by 

 𝑈𝑏 =
𝐿1𝐸𝐼1𝐶1

2

2
+

𝐿2𝐸𝐼2𝐶2
2

2
    and 

( A- 7) 

 𝐶 =
4𝜋2𝑟

𝑝2+4𝜋2𝑟2
. ( A- 8) 

where C is curvature of helix. The curvature expression is discussed in Lubinski’s (1962) 

paper. 

Substitute ( A- 8) into ( A- 7) to get 

 Ub =
8π4r1

2EI1L1

(p2+4π2r1
2)2

+
8π4r2

2EI2L2

(p2+4π2r2
2)2

. ( A- 9) 

iii. Potential energy due to external forces is given by 
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 Uf = Lh1(Fa1 + Pi1Ai1 − Po1Ao1) + Lh2(Fa2 + Pi2Ai2 − Po2Ao2). ( A- 10) 

  

The above expression is thoroughly discussed in Lubinski’s (1962) paper. We directly 

take the result expression.  

Length of buckled pipe system along the helix axis is expressed by 

 𝐿ℎ =
𝑝

√𝑝2+4𝜋2𝑟2
𝐿(1 −

𝐹𝑎

𝐸𝐴𝑠𝑖𝑛𝜃
). ( A- 11) 

The total potential energy of single string can be expressed by 

 𝑈 = Uc + Ub + Uf. ( A- 12) 

The minimum energy method requires that the first variation with respect to p is zero 

when the buckling configuration reaches equilibrium. Above equations can be combined 

and substituted into the following expression 

 ∂U

∂p
= 0. ( A- 13) 

In real practice, p is usually several magnitudes above radial clearance, r. Consider 

𝑝 ≫ 2𝜋𝑟, the following expression exists as 

 𝑝2 + 4𝜋2𝑟2 ≈ 𝑝2. ( A- 14) 

By rearrangement, the formula for p is expressed as 

 
p = √

8π2E(I1r1
2L1+I2r2

2L2)

r1
2L1(F1−

Fa1
2

EA1
)+r2

2L2(F2−
Fa2

2

EA2
)
. 

( A- 15) 

For stress less than 100,000 psi, 
𝐹𝑎

𝐴𝐸
< 0.0034; at the same time, casing length is equal 

to tubing length approximately, 𝐿1 ≈ 𝐿2. So the final pitch force relationship is expressed 

as 
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𝑝 = 𝜋√

8𝐸(𝐼1𝑟1
2+𝐼2𝑟2

2)

𝐹1𝑟1
2+𝐹2𝑟2

2 . 
( A- 16) 

For a weightless string without fluid pressure effect, the corresponding pitch, p, will 

be constant along wellbore. On the other hand, if the string is not weightless, that means 

the buckling force,F1 and F2, and thus the pitch, p, will vary along the string. It is noticed 

that this model can also predicts variable pitch along wellbore. This was also discussed in 

Lunbinski’s (1962) paper. 
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APPENDIX B 

 

The force pitch relationship for sinusoidal buckling of dual string system will be 

derived in this section, based on a long, weightless string of pipe or rods subject to 

compression. 

The buckling shape of casing or tubing can be described by a centerline that connects 

the center of every cross section of casing or tubing. Since the sinusoidal buckling 

configuration lies within a two dimensional plane, we build a Cartesian coordinate on the 

plane where sinusoidal buckling forms,  Set the origin at the center of down hole and x,y 

axis direction as is shown in Figure 52. So the largest lateral displacement of tubulars 

should be radial clearance with respect wellbore. The lateral displacement expression is 

the same as Eq.( 16) and Eq.( 17). 

 

Figure 52 Sinusoidal Buckling Configuration of tubular center line 
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 𝑦1 = 𝑟1sin⁡(2𝜋
𝑥

𝑝
+ 𝜑𝑖)    and  ( B- 1 ) 

 𝑦2 = 𝑟2sin⁡(2𝜋
𝑥

𝑝
+ 𝜑𝑖).  ( B- 2 ) 

where parameters r1, r2, p are the same as previously defined, represents initial phase 

and it is zero in this situation if string end is at the down hole center. 

In derivation of analytical solution below, we make an approximation that the axial 

and bending strain energy is evenly distributed along a sinusoidal wave, which will be 

commented in APPENDIX C. We still follow the definition rule for simplification that 

subscript 1 represents for tubing, while subscript 2 represents for casing. We will start 

from deriving potential energy expression for a single string. This expression will be the 

same for tubing and casing except that the specific value to substitute is different, e.g. 

different value of r1 and r2 are substituted into parameter of radial displacement, r. The 

total potential energy includes contributions from: 

i. Compressive strain energy of one string is expressed by 

 
𝑈𝑐 =

𝐹𝑎
2

2𝐴𝑠𝐸
∫ [1 + (

𝑑𝑦

𝑑𝑥
)
2
] 𝑑𝑥

𝐿

0
. 

 ( B- 3 ) 

The derivative of y can be expressed as 

 𝑦′ =
2𝜋𝑟

𝑝
cos⁡(

2𝜋𝑥

𝑝
).  ( B- 4 ) 

Substitute ( B- 4 ) into ( B- 3 ) and we get 

 𝑈𝑐 =
𝐹𝑎

2

2𝐴𝑠𝐸
∫ [1 +

4𝜋2𝑟2

𝑝2
𝑐𝑜𝑠2(

2𝜋𝑥

𝑝
)] 𝑑𝑥 =

4𝐹𝑎
2𝐿

𝐴𝐸
[
1

8
+ (

1

4
𝜋2 +

1

2
𝜋)

𝑟2

𝑝2
]

𝐿

0
, 

 ( B- 5 ) 

where A is the cross section area, Fa is the actual axial compressive load, L is the length 

of unstressed pipe, all the other parameters are previously defined. Notice that there is a 

linear approximation for integral in above equation to make it analytically solvable. This 

approximation accuracy will be commented in APPENDIX C.  
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ii. Bending strain energy of one string is expressed by 

 
𝑈𝑏 =

𝐿𝐸𝐼𝐶2

2
=

𝐸𝐼

2
∫ [(

𝑦′′

1+𝑦′
2)

3

2
]2

𝐿

0
𝑑𝑥. 

 ( B- 6 ) 

The second derivative of y can be expressed as 

 𝑦′′ = −
4𝜋2𝑟

𝑝2
sin⁡(

2𝜋𝑥

𝑝
).  ( B- 7 ) 

Substitute ( B- 7 ) into ( B- 6 ) and we get 

 
𝑈𝑏 =

𝐸𝐼

2
(
4𝜋2𝑟

𝑝2
)
3

∫
−

𝑝

2𝜋
𝑠𝑖𝑛2(

2𝜋𝑥

𝑝
)

[1+
4𝜋2𝑟2

𝑝2
𝑐𝑜𝑠2(

2𝜋𝑥

𝑝
)]
3

𝐿

0
𝑑𝑐𝑜𝑠(

2𝜋𝑥

𝑝
). 

 ( B- 8 ) 

For a common practice, usually we have p>10ft, radial clearance r is at magnitude of 

1 inch, so the term 
2𝜋2𝑟2

𝑝2
≈ 0. By rearranging above equations, the final form of bending 

energy is solved and expressed by 

 𝑈𝑏 =
16𝜋3𝐸𝐼𝑟𝐿

𝑝4
,  ( B- 9 ) 

where all the parameters are previously defined. Notice that there is another linear 

approximation for integral in above equation to make it analytically solvable. This 

approximation accuracy will also be commented in APPENDIX C.  

iii. From Figure 52, Potential energy for external force of one string is expressed by 

 
𝑈𝑓 =

𝐹𝐿∗
1

2
𝑝

√
1

4
𝑝2+4𝑟2

=
𝐹𝐿𝑝

√𝑝2+16𝑟2
. 

 ( B- 10 ) 

The total potential energy for dual string system is the sum of individual potential 

energy and can be expressed by 

 U = Uc1 + Ub1 + Uf1 + Uc2 + Ub2 + Uc2.  ( B- 11 ) 
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The minimum energy method requires that the first variation with respect to p is zero 

when the buckling configuration reaches equilibrium. Above equations can be combined 

and substituted into the following expression 

 ∂U

∂p
= 0. ( B- 12 ) 

In real practice, p is usually several magnitudes above radial clearance, r. so we have 

𝑝 ≫ 2𝜋𝑟 . For stress less than 100,000 psi, 
𝐹𝑎

𝐴𝐸
< 0.0034  holds true. Besides, casing 

length is equal to tubing length approximately, 𝐿1 ≈ 𝐿2. By rearrangement, the final pitch 

force relationship is expressed as 

 
𝑝 = 2𝜋√

𝜋𝐸(𝐼1𝑟1+𝐼2𝑟2)

𝐹1𝑟1
2+𝐹2𝑟2

2 . 
( B- 13 ) 

It is noticed that if the dual string system is determined, the only variable in above 

equation will be buckling force. For a weightless string without fluid pressure effect, the 

corresponding pitch, p, will be constant along wellbore. On the other hand, this model 

can also predicts variable pitch along wellbore, if the buckling force F1 and F2 are varying 

from bottom to top, thus the pitch, p, will vary along the string correspondingly. 

Let us define the bending moment by the following equation as 

 𝑀 = 𝐸𝐼
𝑑2𝑦

𝑑𝑥2
. ( B- 14 ) 

where M is the bending moment. By substituting Eq. ( B- 7 ) into Eq.( B- 14 ), we can get 

the bending moment expression for each string as 

 𝑀1 = −
4𝜋2𝑟1𝐸𝐼1

𝑝2
sin⁡(

2𝜋𝑥

𝑝
) and  ( B- 15 ) 

 𝑀2 = −
4𝜋2𝑟2𝐸𝐼2

𝑝2
sin⁡(

2𝜋𝑥

𝑝
). ( B- 16 ) 
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The length L of a curve between two points of abscissas equal to x1 and x2 can be 

expressed by 

 
𝐿 = ∫ √1 + (

𝑑𝑦

𝑑𝑥
)2𝑑𝑥

𝑥2
𝑥1

. 
( B- 17 ) 

In the drilling operations, y, which corresponds to the radial clearance, is very small 

compared with drill string length x. Therefore, after expanding the square root term into 

series, all the terms except for the first two can be neglected. Thus we obtain the 

expression as 

 𝐿 = (𝑥2 − 𝑥1) +
1

2
∫ (

𝑑𝑦

𝑑𝑥
)2𝑑𝑥

𝑥2
𝑥1

. ( B- 18 ) 

Since the ( x2-x1 ) term is the projection length of the drill string on the axis of the hole, 

the length change due to buckling is equal to 

 ∆𝐿𝑏 =
1

2
∫ (

𝑑𝑦

𝑑𝑥
)2𝑑𝑥

𝑥2
𝑥1

. ( B- 19 ) 

where Lb is the length change due to buckling. By substituting Eq. ( B- 4 ) into Eq. ( B- 

19 ) and setting the [x1, x2 ] interval to [0, l], the final expression is as 

  ∆𝐿𝑏1 =
𝜋𝑟1

2

4𝑝
[sin (

4𝜋𝑙

𝑝
+ 2𝜑𝑖) − sin(2𝜑𝑖)] +

𝜋2𝑟1
2𝑙

𝑝2
 and ( B- 20 ) 

 ∆𝐿𝑏2 =
𝜋𝑟2

2

4𝑝
[sin (

4𝜋𝑙

𝑝
+ 2𝜑𝑖) − sin(2𝜑𝑖)] +

𝜋2𝑟2
2𝑙

𝑝2
 , ( B- 21 ) 

where i term is the phase when x1 is equal to zero. During the pitch derivation process 

ignoring the initial phase i doesn’t have much influence on the final expression, because 

it is removed when linear approximation is applied. However, for length change due to 

buckling, its influence has to be considered. 
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APPENDIX C 

This section is designed to illustrate the linear approximation we use in model 

derivation of APPENDIX A and APPENDIX B. After that we will evaluate how much 

influence it has on the final result.  

The Figure 53 shows a simple sine wave in a Cartesian coordinate. The expression of 

this sine wave function is given by 

 𝑦 = sin⁡(
4𝜋𝑥

𝑝
), ( C- 1 ) 

where 0.5p is the pitch of sine wave. 

 

Figure 53 Integration of Sine wave 

If we would like to obtain the shadowed area, we can directly integrate the sine wave 

function over interval [x0, x1], the expression is given by 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒⁡𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 = ∫ |sin⁡(
4𝜋𝑥

𝑝
)|𝑑𝑥

𝑥1
𝑥0

. ( C- 2 ) 

However, we would like to derive a simple analytical solution without the 

trigonometric functions in order to be applied easily in practice. So a linear 

approximation is used to replace this integral, as is shown in Figure 54. This approximate 
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line is determined in the way that the covered area under this line is the same as the area 

covered by sine wave on a quarter pitch. The approximation can be expressed by 

 
𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑛 =

𝑥1−𝑥0
1

8
𝑝

∫ sin⁡(
4𝜋𝑥

𝑝
)𝑑𝑥

𝑝

8
0

. 
( C- 3 ) 

 

Figure 54 Linear Integration of Sine wave 

Then the accuracy of approximation is evaluated. We will obtain the shaded area 

using approximation method and accurate integration method on interval [x0, x1] 

respectively. Set x0 to zero and make x1 increase from 0 to p. Assume p equals to 1 and 

Figure 55 is plotted to show the integration result with two methods as x coordinate 

increases. It is noticed that the accurate integration is varying around the approximation 

value. Then we use approximation value to divide accurate integration value as y axis. In 

this way, both axis are independent of pitch value. As is shown in Figure 56, when 

coordinate x is larger than 0.2 times pitch, the error is already within 10%. As x 

coordinate keeps increasing, the error by using linear approximation drops rapidly. Since 

the accurate value keeps varying above and below the approximation, this undulation 

helps offset some error. 
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Figure 55  Approximation result and accurate integration result comparison 

 

Figure 56  Ratio of approximation result and accurate integration result comparison 
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APPENDIX D 

Geometrical Information: 

Table 11  Tubular Dimension Data in Lubinski’ Example Verification 

rw 4.250 in. 

rce 3.500 in. 

rci 3.047 in. 

E 2.9×10^7 psi 

I 50.16 in.^4 

rcc 0.75 in. 

wc 2.371 lbf/in. 

 

Table 12  Drill Collar Dimension Data in Lubinski’ Example Verification 

Mud Weight 12ppg. 

rce 3.125 in. 

rci 1.125 in. 

E 2.9×10^7 psi 

I 50.16 in.^4 

w 7.556 lbf/in. 
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Table 13  Casing Data in Lubinski’ Example 

rce 3.500 in. 

rci 3.047 in. 

E 3×10^7 psi 

I2 50.16 in.^4 

rcc 0.75 in. 

wc 2.371 lbf/in. 

 

Table 14  Tubing Data in Lubinski’ Example 

rte 1.438 in. 

rti 1.221 in. 

E 3×10^7 psi 

I1 1.61 in.^4 

rtc 1.61 in. 

wt 0.542 lbf/in. 
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Table 15  Tubing Data in Case 7 and Case 8 

rte 2.25 in. 

rti 1.979 in. 

E 3×10^7 psi 

I1 8.08 in.^4 

rtc 0.797 in. 

wt 1.0625 lbf/in. 

 



 

 

 

 

 

 


