A Thesis
 Presented to the Faculty of the College of Arts and Sciences The University of Houston

In Partial Fulfillment
of the Requirements for the Degree
Master of Science in Mathematics

by

Gerald Edward Suchan
August 1971

ACKNOWLEDGMENTS

I wish to thank my thesis advisor, Dr. Richard Sinkhorn, for his kind assistance and guidance in the preparation of this thesis. Without his encouragment and his own interest in the subject of this work I would not have found it possible to accomplish as much as I have. I also wish to thank Mark Yedrick, whose comments concerning Theorem 2.4 shortened, by many pages, the proof of that theorem.

I am grateful to my wife, Sandra Joyce Suchan, for her undying encouragment ond faith in my abilities.

I also wish to acknowledge that I was supported financially during the preparation of this thesis by a teaching fellowship provided by the Mathematics department of the University of Houston.

Gerald E. Suchan

An Abstract of a Thesis
 Presented to the Faculty of the College of Arts and Sciences The University of Houston

In Partial Fulfillment of the Requirements for the Degree Master of Science in Mathematics
by
Gerald Edward Suchan
August 1971

If A is a nonnegative square matrix and X is a vector, then the Menon operator associated with A, denoted by T_{A}, is defined by $\left(T_{A} X\right)_{i}=\left(C_{j=1}^{\mathbb{Z}}(A)_{j i}\left(C_{k=1}^{Z_{1}}(A)_{j k}(X)_{k}\right)^{-1}\right)^{-1}$. A close relation is known to exist between doubly stochastic matrices and Menon operators. The following problem is investigated: If each of E and F is a matrix, when is $E T_{A} F$ a Menon operator? It is conjectured, but not proven, that if A is a nonnegative square matrix satisfying certain criterion, and each of E and F is a nonnegative matrix such that $E T_{A} F$ is a Menon operator, then each of E and F is the product of a diagonal matrix with positive diagonal and a permutation matrix. This conjecture is supported by examples, and also by theorems which show that if A is doubly stochastic and $E T_{A}=T_{A}$ then either there is a number r such that rE is doubly stochastic or there is a permutation matrix P such that $P^{t} E P$ can be partitisned into a certain block form. A condition is defined on a doubly stochastic matrix which implies that $E T_{A}=T_{A} E$ if and only if there is a number r such that $r E$ is a permutation matrix.

TABLE OF CONTENTS

CHAPTER I PAGE
Numbers 1
Matrices 1
Theorem 1.1 (Perron and Frobenius) 2
Theorem 1.2 3
Theorem 1.3 3
Theorem 1.4 (Birkhoff) 4
Theorem 1.5 4
Theorem 1.6 5
Vectors 5
Operators 6
Theorem 1.7 6
Theorem 1.8 7
Operators of the form $E T{ }_{A} F$ 9
CHAPTER II
Matrices which commute with Menon operators 12
Lemma 1 to Theorem 2.1 12
Lemma 2 to Theorem 2.1 14
Theorem 2.1 15
Theorem 2.2 17
Lemma 1 to Theorem 2.3 21
Theorem 2.3 23
Theorem 2.4 24
CONCLUSION 30
REFERENCES 31

CHAPTER I

NUMBERS. Let N be the set of all nonnegative real numbers. It will be convenient to extend N to include ∞ and to order and topologize this set N_{∞} in the usual way. Multiplication and addition in N will be extended to N_{∞} by the following conventions [1, pg. 34]: $0^{-1}=\infty, \infty^{-1}=0, \infty+\infty=\infty, 0 \cdot \infty=0$, and if $r>0$ then $r \times \infty=\infty$. It is recognized that multiplication on N_{∞} is not continuous at 0 . It is understood that each of 0^{-1} and ∞ is an alternate symbol for $\frac{1}{0}$ and it is also understood that 0^{-1} is not the multiplicative inverse of 0 since $0 \cdot 0^{-1}=0$.

MATRICES. Let each of m and n be a positive integer and let A be a $m \times n$ matrix. If i is in $\{1, \ldots, m\}$ and j is in $\{1, \ldots, n\}$ then (A) ij is the element in the i th row and j th column of A. A is 0 provided (A) $_{i j}=0$ for i in $\{1, \ldots, m\}$ and f in $\{1, \ldots, n\}$, in which case one may write $A=0$. A is positive provided $0<(A)_{i j}<\infty$ for i in $\{1, \ldots, m\}$ and j in $\{1, \ldots, n\}$, in which case one may write $A \gg 0$. A is nonnegative provided $0 \leq(A)_{i j}<\infty$ for i in $\{1, \ldots, m\}$ and j in $\{1, \ldots, n\}$, in which case one may write $A \geq 0$. $A>0$ provided $A \geq 0$ and $A \neq 0$. The transpose of A, denoted by A^{t}, is defined by $\left(A^{t}\right)_{i j}=(A)_{j 1}$. If A is a nonsingular matrix then A^{-1} denotes the multiplicative inverse of A. A is a permutation matrix provided A is $n \times n$ and there is a permutation σ on $\{1, \ldots, n\}$ such that $(A)_{i j}=1$ if $\sigma(j)=i$ and $(A)_{i j}=0$ if $\sigma(j) \neq i$. If σ is the identity permutation on $\{1, \ldots, n\}$ then the corresponding permutation matrix, denoted by I, is the $n \times n$ identity matrix.

If A is a $m \times n$ matrix, p is in $\{1, \ldots, m\}, q$ is in $\{1, \ldots, n\}$, each of $\left\{r_{i}\right\}_{i=1}^{p}$ and $\left\{c_{j}\right\}_{j=1}^{q}$ is a positive integer sequence, ${ }_{i=1}^{p} r_{i}=m$, and ${ }_{j} \sum_{i} c_{j}=n$, then A can be represented in block form as

$$
\left(\begin{array}{lll}
A_{11} & \cdots & A_{1 q} \\
\vdots & & \vdots \\
A_{p 1} & \cdots & A_{p q}
\end{array}\right)
$$

If A is represented in block form then A is said to be partitioned into block form. If $p=1$ then A is represented in block form as [A $A_{11} \ldots A_{1 q}$]. and if $q=1$ then A is represented in block form as

$$
\left(\begin{array}{l}
A_{11} \\
\vdots \\
A_{p 1}
\end{array}\right)
$$

A is reducible provided A is a $n \times n$ nonnegative matrix and there is a permutation matrix P such that

$$
\mathrm{P}^{\mathrm{t}} \mathrm{AP}=\left(\begin{array}{ll}
\mathrm{A}_{1} & 0 \\
\mathrm{~B} & \mathrm{~A}_{2}
\end{array}\right)
$$

and each of A_{1} and A_{2} is a square nonempty matrix. A is irreducible provided A is a $n \times n$ nonnegative matrix and A is not reducible.

A proof of the following Theorem of Perron and Frobenius is provided by Gantmacher [2,pg 65].

THEOREM 1.1. An irreducible $n \times n$ nonnegative matrix A always has a positive characteristic number r, which is a simple root of the characteristic equation. The moduli of all the other characteristic numbers are at most r. A characteristic vector Z, unique to within a scalar factor, with positive coordinates, coresponds to the dominant
characteristic number r. If in addition A has precisely h characteristic numbers $\lambda_{0}=r, \lambda_{1}, \ldots, \lambda_{h-1}$, of modulus equal to r, then these characteristic numbers are different from each other and are roots of the equation $\lambda^{h}-r^{h}=0$, and, in general, the entire spectrum $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n-1}$ of A, when plotted as a system of points in the complex plane, is carried into itself when the plane is rotated by the angle $\frac{2 \pi}{\mathrm{~h}}$. When $h>1$, there is a permutation matrix P such that

$$
P^{t_{A P}}=\left(\begin{array}{ccccc}
0 & A_{1} & 0 & \cdots & 0 \\
0 & 0 & A_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \cdots & A_{h} \\
A_{h} & 0 & 0 & \cdots & 0^{h-1}
\end{array}\right)
$$

where the 0 blocks on the main diagonal are square.
A is a primitive matrix provided A is an irreducible matrix with only one characteristic number having modulus the modulus of the dominant characteristic number of A. The following Theorem provides a useful property of primitive matrices [2,pg 97].

THEOREM 1.2. A nonnegative $n \times n$ matrix A is primitive if and only if there is a positive integer p so that A^{P} is positive.

Am $m \mathrm{n}$ matrix A is row stochastic provided $A \geq 0$ and ${ }_{j} \sum_{i}^{n}(A)_{i f}=1$ __ for 1 in $\{1, \ldots, m\}$. The following Theorem provides a useful property of $n \times n$ row stochastic matrices [2, pg 100].

THEOREM 1.3. A nonnegative $n \times n$ matrix A is row stochastic if
and only if the vector
is a characteristic vector of A, with corresponding characteristic number 1. For a row stochastic matrix, 1 is the dominant characteristic root.

Am $\times \mathrm{n}$ matrix A is column stochastic provided $A \geq 0$ and ${ }_{1=1}^{n}(A)_{1 j}=1$ for j in $\{1, \ldots, n\}$. A is doubly stochastic provided A is $n \times n$, A is row stochastic, and A is column stochastic. The set of all $n \times n$ doubly stochastic matrices is denoted by Ω_{n}. A proof of the following famous Theorem of G. Birkhoff may be found in [3, pg 98].

THEOREM 1.4. The set of all $n \times n$ doubly stochastic matrices forms a convex polyhedron with the permutation matrices as vertices.

The $n \times n$ flat matrix, denoted by J_{n}, is defined by $\left(J_{n}\right)_{i j}=\frac{1}{n}$ for i and j in $\{1, \ldots, n\}$. A matrix A is idempotent provided $A^{2}=A$. The following useful Theorem was proven by R. Sinkhorn in [4].

THEOREM 1.5. A $\varepsilon \Omega_{n}$ is idempotent if and only if there exist positive integers n_{1}, \ldots, n_{s} with sum n and a permutation matrix P such that

$$
A=P\left(\begin{array}{llll}
J_{n_{1}} & 0 & \ldots & 0 \\
0 & J_{n_{2}} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & J_{n_{s}}
\end{array}\right\} P^{t}
$$

A matrix A is partly decomposable provided $A>0$, A is $n \times n$, and there is a permutation matrix P and a permutation matrix Q such that

$$
P A Q=\left(\begin{array}{ll}
A_{1} & 0 \\
B & A_{2}
\end{array}\right)
$$

and each of A_{1} and A_{2} is a square nonempty matrix. A matrix A is fully Indecomposable provided $A>0, A$ is $n \times n$, and A is not partly decomposable. By convention every 1×1 matrix is irreducible but a 1×1 matrix is fully indecomposable only if it is positive.

If A is an $n \times n$ matrix and σ is a permutation on $\{1, \ldots, n\}$ then the sequence $\left\{(A){ }_{i \sigma(i)}\right\}_{i=1}^{n}$ is the dianonal of A corresponding to σ. If σ is the identity permutation then the corresponding diagonal is the main diagonal. A $n \times n$ matrix A is a diagonal matrix provided (A) ${ }_{i j}=0$ if i $\neq j$. A is said to have total support if $A>0$ and every positive element of A lies on a positive diagonal. In [5] R. Sinkhorn and P. Knopp prove the following Theorem.

THEOREM 1.6. A necessary and sufficient condition that there exist a doubly stochastic matrix B of the form $D_{1} A D_{2}$ where D_{1} and D_{2} are diagonal matrices with positive main diagonals is that A has total support. If B exists then it is unique. Also, D_{1} and D_{2} are unique up to a scalar multiple if and only if A is fully indecomposable.

VECTORS. Let ∇_{∞} be the set of all $n \times 1$ matrices with elements taken from N_{∞}. X is a vector provided X is in V_{∞}. If X is a vector then X is a 0 vector provided X is a 0 matrix, X is a positive vector provided X is a positive matrix, and X is a nonnegative vector provided
X is a nonnegative matrix. If X is a vector and i is in $\{1, \ldots, n\}$ then $(X)_{i}=(X)_{i 1}$ If i is in $\{1, \ldots, n\}$ then δ_{i} is defined by $\left(\delta_{i}\right)_{j}=1$ for $i=j$ and $\left(\delta_{i}\right)_{j}=0$ for $i \neq j$, e is the vector $\sum_{i=1}^{N} \delta_{i}$.

OPERATORS. T is an operator provided T is a function with domain and range a subset of V_{∞}. Let X be a vector. The inverse operator, denoted by U, is defined by $(U X)_{i}=(X)_{i}^{-1}$ for i in $\{1, \ldots, n\}$. Let A be a $n \times n$ matrix such that $A>0$. Note that if r is in N_{∞} then $\operatorname{UrX}=$ $r^{-1} U X, U U=I,(A U X)_{i}=j_{j=1}^{n}(A)_{i j}(X)_{j}^{-1},(U A X)_{i}=\left(\sum_{j=1}^{n}(A)_{i j}(X)_{j}\right)^{-1}$, if A is a diagonal matrix with positive main diagonal then $A U=U A^{-1}$, and if A is a permutation matrix then $A U=U A$. The Menon operator associated with A $[1, p g 34]$, denoted by T_{A}, is UA ${ }^{t}$ UA. Note that $\left(T_{A} X\right)_{1}=$ $\left({ }_{j} \underline{E}_{1}(A){ }_{j i}\left(\sum_{k} \sum_{1}^{n}(A)_{j k}(X)_{k}\right)^{-1}\right)^{-1}$, if X is a nonnegative vector and r is a nonnegative number then $T_{A} r X=r T X$, if $A \varepsilon \Omega_{n}$ then $T_{A}=e$, and if A is the product of a permutation matrix and a diagonal matrix with positive main diagonal then $T_{A}=I$. The following Theorem provides a motivation for the study of Menon operators.

THEOREM 1.7. Let A be a $n \times n$ matrix such that $A>0$. There is a positive vector X such that $T_{A} X=X$ if and only if A has total support. If A has m nonzero rows and if there is a positive number λ and a positive vector X so that $T_{A} X=\lambda X$, then $m \lambda=n$ and hence $\lambda=1$ if and only if A has total support.

PROOF. Let m be in $\{1, \ldots, n\}$ and let A be an $n \times n$ matrix such that $A>0$ and such that A has only monzero rows.

Suppose there is a positive number λ and a positive vector X so that $T_{A} X=\lambda X$. Since $T_{A} X$ is positive then each column of A contains a positive number.

$$
\text { Let } D_{1}=\left(\begin{array}{cccc}
(U A X)_{1} & 0 & \cdots & 0 \\
0 & (U A X)_{2} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & (U A X)_{n}
\end{array}\right) \text { and } D_{2}=\left(\begin{array}{cccc}
(X)_{1} & 0 & \cdots & 0 \\
0 & (X)_{2} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & (X)_{n}
\end{array}\right) \text {. }
$$

Let i be in $\{1, \ldots, n\}$. Then ${ }_{j=1}^{n}\left(D_{1} A D_{2}\right)_{j i}={ }_{j=1}^{n}(U A X)_{j}(A)_{j i}(X)_{i}=$
 row of A is not \cap then ${ }_{j}^{n} \underline{\underline{E}}_{1}^{n}\left(D_{1} A D_{2}\right)_{i j}=\sum_{j=1}^{n}(U A X)_{i}(A)_{i j}(X)_{j}=(A X)_{i}=1$. Thus $\sum_{i=1}^{n} \sum_{j}^{n} \sum_{1}\left(D_{1} A D_{2}\right)_{i j}=m$ and $\lambda \sum_{j}^{n} \sum_{i=1}^{n}\left(D_{1} A D_{2}\right)_{i j}=m$. Hence $m \lambda=n$ so that $\lambda=1$ only if each row of A contains a positive number. If $\lambda=1$ then $T_{A} X=X$ so that $D_{1} A D_{2} \varepsilon \Omega_{n}$ and hence, by Theorem 1.6, A has total support. Now suppose A has total support. By Theorem 1.6 there is an $n \times n$ diagonal matrix D_{1}^{-}and a $n \times n$ diagonal matrix D_{2}^{\sim}, each with a positive diagonal, such that $D_{1}^{\sim} A D_{2}^{\prime} \in \Omega_{n^{\prime}}$. Let the vector X^{-}be defined by $(X)_{i}=\left(D_{2}^{\prime}\right)_{i i}$ and let

$$
D_{3}=\left(\begin{array}{cccc}
\left(\mathrm{UAX}^{\circ}\right)_{1} & 0 & \cdots & 0 \\
0 & \left(\mathrm{UAX}^{\circ}\right)_{2} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & \left(\mathrm{UAX}^{-}\right)_{n}
\end{array}\right)
$$

Then $D_{3} A D_{2}^{\prime}$ is row stochastic. Hence $1=\sum_{j=1}^{n}\left(D_{1}^{\prime} A D_{2}^{\prime}\right)_{i j}=$ $\sum_{j=1}^{n} \sum_{s=1}^{n}\left(D_{1}^{\prime}\right)_{\text {is }} \sum_{k=1}^{n}(A)_{s k}\left(D_{2}^{\prime}\right)_{k j}=\sum_{s=1}^{n}\left(D_{1}^{\prime}\right)_{\text {is }} \sum_{k=1}^{\sum}(A)_{s k} \sum_{j=1}^{n}\left(D_{2}^{\prime}\right)_{k j}=$ $\left(D_{1}^{\prime}\right)_{i i} \sum_{k=1}^{n}(A){ }_{i k}\left(D_{2}^{\prime}\right)_{k k}$. Similarily $1=\left(D_{3}\right)_{i i} \sum_{k=1}^{n}(A){ }_{i k}\left(D_{2}^{\prime}\right)_{k k}$. Thus
$\left(D_{3}\right)_{1 i}=\left(D_{1}^{-}\right)_{i i}$ and $D_{3}=D_{1}^{-}$. Thus $D_{3} A D_{2}^{-} \varepsilon \Omega_{n}$ and hence $1=$ $\sum_{j=1}^{n}\left(D_{3} A D_{2}^{\prime}\right)_{j i}=\sum_{j=1}^{n}\left(U A X^{\prime}\right)_{j}(A)_{j i}\left(X^{\prime}\right)_{i}=\left(\sum_{j=1}^{n}(A)_{j i}\left(\sum_{k=1}^{n}(A)_{j k}\left(X^{\prime}\right)_{k}\right)^{-1}\right)^{-1}\left(X^{\prime}\right)_{i}=$ $\left(T_{A} X^{\wedge}\right)_{i}^{-1}\left(X^{\wedge}\right)_{i}$. Therefore $T_{A} X=X$.

The following examples substantiste Theorem 1.7.
$\therefore \therefore$ EXAMPLE 1. Let $A=\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right), X=\binom{1}{1}$, and $\lambda=2$. Then $T_{A} X=$ $\lambda \mathrm{X}, \mathrm{m}=1, \mathrm{n}=2$ and hence $\lambda \mathrm{m}=\mathrm{n}$. Note that $\lambda \neq 1$ and A does not have total support.

EXAMPLE 2. Let $A \varepsilon \Omega_{n}$. Since $A e=A^{t} e=e$, then $T_{A} e=e$. Furthermore, since $m=n=\lambda=1$ then $\lambda m=n$. Note that $\lambda=1$ and, by Theorem 1.6, A must have total support.

Brualdi, Parter and Schneider [1, pg 42] proved the following useful Theorem.

THEOREM 1.8. If A is fully indecomposable then 1 is an eigenvalue of T_{A} with unique eigenvector X, and furthermore, X is the unique positive eigenvector of T_{A}.

Theorems 1.6 and 1.7 clearly imply that A is a fully indecomposable matrix if and only if there is a positive vector X which is an eigenvalue of T_{A} and X is unique to within a scalar multiple.

OPERATORS OF THE FORM ETA ${ }^{\text {F }}$.

EXAMPLE 3. Suppose A is a $n \times n$ matrix, $A>0$, and there is a nonsingular nonnegative matrix E and $a n \times n$ nonnegative matrix B such that $E^{-1} T_{A} E=T_{B}$. Then $T_{A} E=E T_{B}$ and hence if B has total support then there is a positive eigenvector X of T_{B} so that $E X$ is a positive eigenvector of T_{A}, and thus A also has total support.

The above observation, along with a prevaling interest in doubly stochastic matrices, encouraged an interest in the following problem.

PROBLEM 1. Let n be a positive integer and let S be the set to which T_{A} belongs only if A is a $n \times n$ nonnegative matrix and T_{A} is the Menon operator associated with A. For T_{A} in S, under what conditions is it possible to find a matrix E and a matrix F so that $E T F$ is in S ?

While the solution to Problem 1 has proven to be quite elusive, certain related questions have yielded answers.

EXAMPLE 4. Suppose A is a $n \times n$ matrix such that $A>0$. Let P be a $n \times n$ permutation matrix and let D be a diagonal matrix with positive main diagonal. Since $P U=U P$ and $D U=U D^{-1}$ then
(i) $T_{A}=U A^{t} U A$

$$
\begin{aligned}
& =U A^{t}\left(D P^{t}\right)\left(P D^{-1}\right) U A=U A^{t} D P^{t} U P D A=T_{P D A} \\
& =U A^{t}\left(P^{t} D\right)\left(D^{-1} P\right) U A=U A^{t} P^{t} D U D P A=T_{D P A}
\end{aligned}
$$

(ii) $P_{A D}=P_{A D U A}{ }^{t} A_{A}=P D D A^{t} U A\left(D^{-1} P^{t}\right)(P D)=$

$$
\left(U P D^{-1} A^{t} U A D^{-1} P^{t}\right) P D=T A^{-1} P^{t^{-}} \quad T_{A(P D)^{-1}}
$$

$$
\mathrm{T}_{\mathrm{AP}} \mathrm{t}_{\mathrm{D}} \mathrm{D}^{\mathrm{DP}=\mathrm{T}} \underset{\mathrm{~A}(\mathrm{DP})^{-1} \mathrm{DP} .}{ }
$$

Hence (iv) $T_{A}=T_{P D A}=T_{P A}=T_{D A}$
(v) (PD) $T_{A}(P D)^{-1}=T_{A(P D)^{-1}}=T_{(P D) A(P D)^{-1}}$
(vi) (DP) $T_{A}(D P)^{-1}=T_{A(D P)^{-1}}=T(D P) A(D P)^{-1}$

Consideration of (iv) above demonstrates that $T_{A}=T_{B}$ may not imply that $A=B$. In fact, R. Sinkhorn (unpublished papers) has proven that if $A \varepsilon \Omega_{n}$ and $B \varepsilon \Omega_{n}$ then $T_{A}=T_{B}$ if and only if there is a permutation matrix P such that $A=P B$.

EXAMPLE 5.

If $A=\left(\begin{array}{lll}1 & 4 & 0 \\ 2 & 5 & 0 \\ 3 & 6 & 0\end{array}\right)$ and $E=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)$ then $E T_{A}=T_{A}$.

EXAMPLE 6.
If $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$ then $T_{A}=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ and hence if each of α and β is a number and $E=\left(\begin{array}{lll}\alpha & \alpha & 0 \\ \alpha & \alpha & 0 \\ 0 & 0 & \beta\end{array}\right)$ then $E T_{A}=T_{A} E$.

EXAMPLE 7. If A is the product of a diagonal patrix with positive main diagonal and a permutation matrix then $T_{A}=I$ and hence if E is a matrix then $E T_{A}=T_{A} E$. In particular, if E is nonsingular then $E T_{A} E^{-1}=T_{A}$.

EXAMPLE 8. If s is a positive integer, $\left\{m_{i}\right\}_{i=1}^{s}$ is a positive integer sequence, $\left\{J_{m_{i}}\right\}_{i=1}^{s}$ is a sequence of flat matrices, and

$$
A=\left(\begin{array}{cccc}
J_{m_{1}} & 0 & \ldots & 0 \\
0 & J_{m_{2}} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & J_{m_{s}}
\end{array}\right)
$$

then $T_{A}=A$. Hence if $\left\{E_{i}\right\}_{i=1}^{s}$ is a sequence of matrices such that if i is in $\{1, \ldots, s\}$ then $E_{i} \varepsilon \Omega_{m_{i}}$, and

$$
E=\left(\begin{array}{llll}
E_{1} & 0 & \ldots & 0 \\
0 & E_{2} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & E_{s}
\end{array}\right)
$$

then $E T_{A}=T_{A} E$. In particular, if E is nonsingular then $E T_{A} E^{-1}=T_{A}$.

The above examples have suggested the following unproven conjecture.

CONJECTURE. Let A be a nonnegative $n \times n$ matrix with a positive \cdot number in each column, and suppose A is such that if each of D_{1} and D_{2} is a diagonal matrix with positive main diagonal and each of P_{1} and P_{2} is a permutation matrix then $P_{1} D_{1} A D_{2} P_{2}$ is not idempotent. If each of E and F is a nonnegative matrix such that $\mathrm{ET}_{A} F$ is a Menon operator, then each of E and F is the product of a diagonal matrix with a positive main diagonal and a permutation matrix.

The theorems in the following chapter provide limited support for the conjecture.

CHAPTER II

MATRICES WHICH COMRUTE WITH RENON OPERATORS. If A is a $\mathbf{n} \times \mathbf{n}$ matrix with total support then by Theorem 1.6 there is a diagonal matrix D_{1} and a diagonal matrix D_{2}, each with a positive mair diagonal, so that $D_{1} A D_{2} \varepsilon \Omega_{n}$. Hence $D_{2}^{-1} T_{A} D_{2}=T_{D_{1} A D_{2}}$ and therefore if there is a matrix E which commutes with $T_{D_{1}} A D_{2}$ then $D_{2} \mathrm{ED}_{2}^{-1}$ commutes with T_{A}. This observation, and the search for the solution to Problem 1, encouraged an interest in the following Problem.

PROBLEM 2. If $A \varepsilon \Omega_{n}$ and E is a matrix such that $E>0$, under what conditions does E commute with T_{A} ?

The following theorems investigate Problem 2.

LEMMA 1 TO THEOREM 2.1. If A is a fully indecomposable matrix then $A^{t} A$ is irreducible.

PROOF. Let A be a fully indecomposable matrix and suppose that $A^{t} A$ is reducible. Then there is a permutation matrix P, a positive integer n_{1}, and a positive integer n_{2} so that

$$
P^{t} A^{t} A P=\left(\begin{array}{ll}
A_{11} & 0 \\
A_{21} & A_{22}
\end{array}\right),
$$

A_{11} is $n_{1} \times n_{1}$, and A_{22} is $n_{2} \times n_{2}$. Partition $A P$ into

$$
\left(\begin{array}{ll}
\mathrm{F}_{11} & \mathrm{~F}_{12} \\
\mathrm{~F}_{21} & \mathrm{~F}_{22}
\end{array}\right)
$$

so that F_{11} is $\mathrm{n}_{1} \times \mathrm{n}_{1}$. Then
(AP) ${ }^{\mathrm{t}} \mathrm{AP}=\left(\begin{array}{ll}\mathrm{F}_{11}^{\mathrm{t}} & \mathrm{F}_{21}^{\mathrm{t}} \\ \mathrm{F}_{12}^{\mathrm{t}} & \mathrm{F}_{22}^{\mathrm{t}}\end{array}\right)\left(\begin{array}{ll}\mathrm{F}_{11} & \mathrm{~F}_{12} \\ \mathrm{~F}_{21} & \mathrm{~F}_{22}\end{array}\right)=\left(\begin{array}{ll}\left(\mathrm{F}_{11}^{\mathrm{t}} \mathrm{F}_{11}+\mathrm{F}_{21}^{\mathrm{t}} \mathrm{F}_{21}\right) & \left(\mathrm{F}_{11}^{\mathrm{t}} \mathrm{F}_{12}+\mathrm{F}_{21}^{\mathrm{t}} \mathrm{F}_{22}\right) \\ \left(\mathrm{F}_{12}^{\mathrm{t}} \mathrm{F}_{11}+\mathrm{F}_{22}^{\mathrm{t}} \mathrm{F}_{21}\right) & \left(\mathrm{F}_{12}^{\mathrm{t}} \mathrm{F}_{12}+\mathrm{F}_{22}^{\mathrm{t}} \mathrm{F}_{22}\right)\end{array}\right)$.
Since $F_{11}^{t} F_{12}+F_{21}^{t} F_{22}=0$ then $F_{11}^{t} F_{12}=0$ and $F_{21}^{t} F_{22}=0$. Since A is fully indecomposable then AP is fully indecomposable and therefore there is an integer i_{1} and an integer j_{1} so that $\left(F_{12}\right)_{i_{1} j_{1}} \neq 0$. Since $F_{11}^{t} F_{12}=0$ then ${ }_{k} \sum_{1}^{n}\left(F_{11}^{t}\right)_{i k}\left(F_{12}\right)_{k j}=0$ for i in $\left\{1, \ldots, n_{1}\right\}$. Thus $\left(F_{11}^{t}\right)_{i i_{1}}=0$ for i in $\left\{1, \ldots, n_{1}\right\}$ and therefore the i_{1} th row of F_{11} is 0 . Similarily, there is an integer i_{2} and an integer j_{2} so that $\left(F_{21}\right)_{i_{2} j_{2}} \neq 0$. Since $F_{21}^{t} F_{22}=0$ then ${ }_{k}{\underset{=}{=}}_{2}^{n_{1}}\left(F_{21}^{t}\right)_{i_{2} k}\left(F_{22}\right)_{k j}=0$ for j in $\left\{1, \ldots, n_{2}\right\}$. Thus $\left(F_{22}\right)_{i_{2} j}=0$ for j in $\left\{1, \ldots, n_{2}\right\}$ and therefore the ${ }_{2}$ th row of F_{22} is 0 . Since A is fully indecomposable then there is an integer m_{1} in $\left\{1, \ldots, n_{1}\right\}$ and an integer m_{2} in $\left\{1, \ldots, n_{2}\right\}$ so that there are only m_{1} rows of F_{12} which contain a positive element and only m_{2} rows of F_{21} which contain a positive element. Since there are m_{1} rows of F_{12} which contain a positive element then there are m_{1} rows of F_{11} which are 0 and hence there are $n_{1}-m_{1}$ rows of F_{11} which contain a positive element. Thus, since there are m_{2} rows of F_{21} which contain a positive element then there are $n_{1}-m_{1}+m_{2}$ rows of

$$
\binom{F_{11}}{F_{21}}
$$

which contain a positive element. Hence there is a permutation matrix Q so that QAP can be partitioned into

$$
\left(\begin{array}{ll}
\mathrm{B}_{11} & 0 \\
0 & \mathrm{~B}_{22}
\end{array}\right)
$$

and so that B_{11} is $\left(n_{1}-m_{1}+m_{2}\right) \times n_{1}$. Since A is fully indecomposable then $n_{1}-m_{1}+m_{2} \neq n_{1}$. If $n_{1}-m_{1}+m_{2}<n_{1}$ then there is a positive
integer k so that $n_{1}-m_{1}+m_{2}+k=n_{1}$. Since QAP can be partitioned into

$$
\left(\begin{array}{ll}
B_{11}^{-} & B_{12}^{\prime} \\
0 & B_{22}^{\prime}
\end{array}\right)
$$

so that B_{11}^{\prime} is ($\left.n_{1}-m_{1}+m_{2}+k\right) \times n_{1}$, then A is not fully indecomposable. But this contradicts the hypothesis that A is fully indecomposable and therefore $n_{1}-m_{1}+m_{2} \nless n_{1}$. If $n_{1}-m_{1}+m_{2}>n_{1}$ then $n_{2}+m_{1}-m_{2}<n_{2}$ and hence there is a positive integer k so that $n_{2}+m_{1}-m_{2}+k=n_{2}$. Since QAP can be partitioned into

$$
\left(\begin{array}{ll}
B_{11}^{\prime} & 0 \\
B_{21}^{\prime} & B_{22}^{\prime}
\end{array}\right)
$$

so that B_{22}^{\prime} is ($\left.n_{2}+m_{1}-m_{2}+k\right) \times n_{2}$, then'A is not fully indecomposable. But this contradicts the hypothesis that A is fully indecomposable and hence $n_{1}-m_{1}+m_{2} \not f n_{1}$. Thus \dot{m}_{1} and m_{2} do not exist and therefore $A^{t} A$ is irreducible.

Note that if

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

then A is irreducible but $A^{t} A$ is reducible. Hence it is not true in general that " $A^{t} A$ is irreducible whenever A is an irreducible matrix".

IEMMA 2 TO THEOREM 2.1. If A is an irreducible matrix in Ω_{n} and
E-is a matrix such that $E>0$ and $E A=A E$ then there is a positive number r such that $r E \in \Omega_{n}$.

PROOF. Let A be an irreducible matrix in Ω_{n} and suppose that there is a matrix $E>0$ and $E A=A E$. Since $E>0$ then $E^{t} e>0$, and since $E A=A E$
then $A^{t} E^{t} e=E^{t} A^{t} e=E^{t} e$. Thus $E^{t} e$ is a characteristic vector of A^{t} corresponding to the characteristic number 1. Hence by Theorems 1.1 and 1.3 there is a positive number r such that $r E^{t} e=e$. Therefore $r E$ is column stochastic and so $\sum_{i=1}^{\eta} \sum_{j=1}^{\eta} r(E)_{i j}=n$. Similarily AEe $=E A e=E e$ and thus there is a positive number r^{\prime} such that $r^{\prime} E e=e$. Therefore $r^{\prime} E$ is row stochastic and so $\sum_{j=1} \sum_{i=1}^{n} r^{\prime}(E)_{i j}=n$. Therefore $r^{\prime}=r$ and $r E \varepsilon \Omega_{n}$.

THEOREM 2.1. Let E be a nonnegative matrix with a positive number in each row. If A is a fully indecomposable matrix in Ω_{n} and $E T A=T_{A} E$ then there is a real number r so that $r E \in \Omega_{n}, E A^{t} A=A^{t} A E$, and $E E\left[\left(A^{t} A\right)^{2}-A^{t} A\right]=\left(A^{t} A\right)^{2}-A^{t} A$.

PROOF. Let E be a nonnegative matrix with a positive number in each row. Suppose A is a fully indecomposable matrix in Ω_{n} and suppose. $E T_{A}=T_{A} E$. Then $E T_{A} e=T_{A}$ Ee and since $A \varepsilon \Omega_{n}$ then $T_{A} e=e$ so that $T_{A} E e=E e$. By Theorem 1.8 there is a real number r so that $r E$ is row stochastic. For the remainder of the proof it may be assumed, without loss of generality, that E is row stochastic. Let i be in $\{1, \ldots, n\}$ and let X be a vector. Since $\left(E T_{A} X\right)_{i}=\left(T_{A} E X\right)_{i}$ then
$\sum_{m=1}^{n}(E)_{i m}\left(\sum_{j=1}^{n}(A)_{j m}\left(\sum_{k=1}^{n}(A)_{j k}(X)_{k}\right)^{-1}\right)^{-1}=\left(\sum_{j=1}^{n}(A)_{j i}\left({ }_{k} \sum_{=1}^{n}(A)_{j k m} \sum_{m}^{p}(E)_{k m}(X)_{m}\right)^{-1}\right)^{-1}$. Let s be in $\{1, \ldots, n\}$. Since

$$
\frac{\partial\left(E T_{A} X\right)_{i}}{\partial(X)_{s}}=\frac{\partial\left(T_{A} E X\right)_{i}}{\partial(X)_{s}}
$$

then
$\left.\left(\sum_{k=1}^{p}(A)_{j k}(E)_{k s}\right)\right)$. Hence evaluating $\frac{\partial\left(E T_{A} X\right)_{i}}{\partial(X)_{s}}$ at $X=$ e gives

$$
\left.\frac{\partial\left(E T_{A} X\right)_{i}}{\partial(X)_{s}}\right)_{X=e}=\left.\frac{\partial\left(T_{A} E X\right)_{i}}{\partial(X)_{s}}\right|_{X=e}
$$

so that

 $\left(E A^{t} A\right)_{\text {is }}=1 \cdot\left(A^{t} A E\right)_{\text {is }}$ and thus $E A^{t} A=A^{t} A E$. Therefore by Lemmas 1 and 2 to Theorem 2.1, $E \in \Omega_{n}$. Let u be in $\{1, \ldots, n\}$. Then

$\left.\left(\sum_{k=1}^{n}(A)_{j k m^{m}=1}^{n}(E)_{k m}(X)_{m}\right)^{-2}\left(\sum_{k=1}^{n}(A)_{j k}(E)_{k u}\right)\right)\left(\sum_{j=1}^{n}(A)_{j i}\left(\sum_{k=1}^{p}(A)_{\left.j k m_{m} \sum_{1}(E)_{k m}(X)_{m}\right)^{-2} .}\right.\right.$

 And $\frac{\partial^{2}\left(E T_{A} X\right)_{1}}{\partial(X)_{u}^{\partial(X)}}=\sum_{m}^{n} \sum_{i=1}(E)_{i m}^{[(-2)}\left(\sum_{j=1}^{n}(A)_{j m}\left(\sum_{k=1}^{n}(A)_{j k}(X)_{k}\right)^{-1,-3}\right.$.
$\left(\sum_{j=1}^{p}(A)_{j m}(-1)\left(\sum_{k=1}^{p}(A)_{j k}(X)_{k}\right)^{-2}(A)_{j u}\right)\left(\sum_{j=1}^{n}(A)_{j m}(A)_{j s}\left({ }_{k} \underline{=}_{1}(A)_{j k}(X)_{j}\right)^{-2}\right)+$ $\left.\left(\sum_{j=1}^{p}(A)_{j m}\left(\sum_{k=1}^{p}(A)_{j k}(X)_{k}\right)^{-1}\right)^{-2}\left(\sum_{j=1}^{\underline{=}(A)}{ }_{j m}(A)_{j s}(-2)\left({ }_{k=1}^{p}(A)_{j k}(X)_{j}\right)^{-3}(A)_{j u}\right)\right]$. Hence evaluating $\frac{\partial^{2}\left(E T_{A} X\right)_{i}}{\partial(X)_{u}{ }^{\partial(X)}}$ at $X=e$ gives $\left.\left.\left.\frac{\partial^{2}\left(E T_{A} X\right)_{i}}{\partial(X)_{u}{ }^{\partial(X)}}\right)_{X=e}=\frac{\partial^{2}\left(T_{A} E X\right)_{i}}{\partial(X)_{u}{ }^{\partial(X)}}\right)_{S}\right)_{X=e}$

$$
\sum_{i=1}^{p}\left(\frac{\partial^{2}\left(E T_{A} X\right)_{i}}{\partial(X)_{u} \partial(X)_{s}}\right)_{X=e}=\sum_{i=1}^{p}\left(\frac{\partial^{2}\left(T_{A} E X\right)_{i}}{\partial(X)_{u} \partial(X)_{s}}\right)_{X=e}
$$

then $\left(\left(A^{t} A E\right)^{t}\left(A^{t} A E\right)\right)_{u s}-\left((A E)^{t}(A E)\right)_{u s}=\left(\left(A^{t} A\right)^{t}\left(A^{t} A\right)\right)_{u s}-\left(A^{t} A\right)_{u s}$ so that $E^{t}\left[\left(A^{t} A\right)^{2}-\left(A^{t} A\right)\right] E=\left(A^{t} A\right)^{2}-\left(A^{t} A\right)$. Therefore $E^{t} E\left[\left(A^{t} A\right)^{2}-\left(A^{t} A\right)\right]=\left(A^{t} A\right)^{2}-\left(A^{t} A\right)$.

THEOREM 2.2. Let E be a nonnegative matrix with a positive number In each row. If A is a partly decomposable matrix in Ω_{n} which is not a permutation matrix and $\mathrm{ET}_{\mathrm{A}}=\mathrm{T}_{\mathrm{A}} \mathrm{E}$ then there is an integer s in $\{2, \ldots, \mathrm{n}-1\}$, a positive integer sequence $\left\{m_{i}\right\}_{i=1}^{\mathbf{s}}$ such that ${ }_{i=1}^{\sum_{1} m_{i}=n \text {, a permutation }, ~}$ matrix P such that

$$
P^{t} E P=\left(\begin{array}{cccc}
E_{11} & E_{12} & \cdots & E_{1 s} \\
E_{21} & E_{22} & \cdots & E_{2 s} \\
\vdots & \vdots & & \vdots \\
E_{s 1} & E_{s 2} & \cdots & E_{s s}
\end{array}\right)
$$

and $E_{i j}$ is $m_{i} \times m_{j}$, a $s \times s$ matrix R and $\underline{a} s \times s$ matrix C such that each of $\left.{ }^{(R)}\right)_{i j}$ and ${ }^{(C)}{ }_{i j}$ is a positive number such that ${ }^{(R)}{ }_{i j} m_{i}=(C)_{i j} m_{j}$ and - such that if $E_{i j} \neq 0$ then ${ }^{(R)}{ }_{i j} E_{i j}$ is row stochastic and ${ }^{(C)}{ }_{i j} E_{i j}$ is column stochastic.

PROOF. Let A be a partly decomposable matrix in Ω_{n} which is not a permutation matrix. Then there is a permutation matrix Q, a permutation matrix P, a positive integer sequence $\left\{m_{i}\right\}_{i=1}^{s}$ such that

$$
\mathrm{QAP}=\left(\begin{array}{cccc}
A_{1} & 0 & \ldots & 0 \\
0 & A_{2} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & A_{s}
\end{array}\right),
$$

$A_{i} \varepsilon \Omega_{m_{i}}$, and A_{i} is fully indecomposable. Since \dot{A} is partly decomposable then $s>1$. If $s=n$ and $A \varepsilon \Omega_{n}$ then A is a permutation matrix and thus, since A is not a permutation matrix, then $s<n$. Therefore s is in $\{2, \ldots, n-1\}$ and $n \geq 3$. Let E be a matrix such that $E>0$, each row of E contains a positive number, and such that $E T_{A}=T_{A} E$. Then $P^{t} E_{E P U P}{ }^{t} A^{t} Q^{t} U Q A P=U P{ }^{t} A^{t} Q^{t}$ UQAPP $^{t} E P$ and so $P^{t} E P T_{Q A P}=T_{Q A P} P^{t} E P$. Partition $P^{t} E P$ into

$$
\left(\begin{array}{llll}
E_{11} & E_{12} & \ldots & E_{1 s} \\
E_{21} & E_{22} & \ldots & E_{2 s} \\
\vdots & \vdots & & \vdots \\
E_{s 1} & E_{s 2} & \ldots & E_{s s}
\end{array}\right)
$$

so that $E_{i j}$ is $m_{i} \times m_{j}$. Let the vector X be partitioned into

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
\vdots \\
x_{s}
\end{array}\right)
$$

so that X_{i} is $m_{i} \times 1$. Then $P^{t} E P T_{Q A P} X=$

$$
\left(\begin{array}{llll}
E_{11} & E_{12} & \ldots & E_{1 s} \\
E_{21} & E_{22} & \ldots & E_{2 s} \\
\vdots & \vdots & & \vdots \\
E_{s 1} & E_{s 2} & \ldots & E_{s s}
\end{array}\right) \cup\left(\begin{array}{llll}
A_{1}^{t} & 0 & \ldots & 0 \\
0 & A_{2}^{t} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & A_{s}^{t}
\end{array}\right) \cup\left(\begin{array}{cccc}
A_{1} & 0 & \ldots & 0 \\
0 & A_{2} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & A_{s}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
X_{s}
\end{array}\right)=
$$

and $T_{Q A P} P^{t} A_{A P X}=U\left(\begin{array}{cccc}A_{1}^{t} & 0 & \ldots & 0 \\ 0 & A_{2}^{t} & \ldots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \ldots & A_{s}^{t}\end{array}\right) U\left(\begin{array}{llll}A_{1} & 0 & \ldots & 0 \\ 0 & A_{2} & \ldots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \ldots & A_{s}\end{array}\right)\left(\begin{array}{llll}E_{11} & E_{12} & \ldots & E_{1 s} \\ E_{21} & E_{22} & \ldots & E_{2 s} \\ \vdots & \vdots & & \vdots \\ E_{s 1} & E_{s 2} & \ldots & E_{s s}\end{array}\right)\left(\begin{array}{l}X_{1} \\ X_{2} \\ \vdots \\ X_{s}\end{array}\right)=$

Let i be $\operatorname{in}\{1, \ldots, s\}$. Then ${ }_{k=1}^{\sum_{1} E_{i k}} T_{A_{k}} X_{k}=T_{A_{i}} \sum_{\underline{=} \sum_{1} E_{i k}} X_{k}$. Let $e_{m_{k}}$ be the e - vector of length m_{k}. Since $A_{k} \varepsilon \Omega_{m_{k}}$ then $T_{A_{k}} e_{m_{k}}=e_{m_{k}}$ and thus
 then ${ }_{k=1}^{\sum_{1} E_{i k} e_{k}}$ is positive. Since A_{i} is fully indecomposable then by Theorem 1.8 there is a positive number r_{i} so that $r_{i}{ }_{k=1}^{\sum_{1}} E_{i k} e_{m_{k}}=e_{m_{k}}$. Therefore there is a positive number sequence $\left\{x_{i}\right\}_{i=1}^{s}$ so that
$r_{i}\left[E_{i 1} \ldots E_{i s}\right]$ is row stochastic. Let g be in $\left\{1, \ldots, m_{i}\right\}$. Then
 in $\{1, \ldots, s\}$ and let w be $\operatorname{in}\left\{1, \ldots, m_{j}\right\}$. Then

$$
\begin{aligned}
& \left(\sum _ { v = 1 } ^ { m } (A _ { k }) _ { v u } (- 1) (\sum _ { q } ^ { \sum _ { = 1 } ^ { k } } (A _ { k }) _ { v q } (X _ { k }) _ { q }) ^ { - 2 } \left(\sum_{q}^{\sum_{k}^{k}}\left(A_{k}\right) v q \frac{\left.\left.\partial\left(X_{k}\right)_{q}\right)\right) .}{\partial\left(X_{j}\right)_{w}}\right.\right.
\end{aligned}
$$

$$
\sum_{u=1}^{m}\left(E_{i j}\right)_{g u}\left(\sum_{v=1}^{m}\left(A_{j}\right)_{v u}\left(\sum_{q}^{m} \sum_{1}^{j}\left(A_{j}\right)_{v q}\left(X_{j}\right)_{q}\right)^{-1}\right)^{-2}\left(\sum_{v=1}^{m}\left(A_{j}\right)_{v u}\left(\sum_{q}^{m} \sum_{1}^{j}\left(A_{j}\right)_{v q}\left(X_{j}\right)_{q}\right)^{-2}\left(A_{j}\right)_{v w}\right)
$$

Lemma 1 to Theorem $2.1 A_{i} A_{i}^{t}$ is irreducible, and since $E_{i j} e_{j}=A_{i}^{t} A_{i} E_{i j} e_{j}$
then by Theorems 1.1 and 1.3 there is a positive number $(R)_{i j}$ so that
(R) ${ }_{i j} E_{i j}$ is row stochastic. Furthermore, since $A_{j}^{t} A_{j} E_{i j}^{t}=E_{i j}^{t} A_{i}^{t} A_{i}$ then
$A_{j}^{t} A_{j} E_{i j}^{t} e_{m_{i}}=E_{i j}^{t} e_{m_{i}}$ and so there is a positive number (C) ${ }_{i j}$ so that

$$
\begin{aligned}
& \left(\sum_{v=1}^{m}\left(A_{i}\right)_{v g}\left(\sum_{q=1}^{m}\left(r_{i}\right)^{-1}\left(A_{i}\right)_{v q}\right)^{-2}\left(\sum_{q=1}^{m}\left(A_{i}\right)_{v q}\left(E_{i j}\right)_{q w}\right)\right)=\sum_{v=1}^{\sum_{1}^{i}}\left(A_{i}\right)_{v g}{ }_{q}^{\sum_{1}^{i}}\left(A_{i}\right)_{v q}\left(E_{i j}\right) q_{q}= \\
& \left(A_{i}^{t} A_{i} E_{i j}\right) \text { gw . Therefore } E_{i j} A_{j}^{t} A_{j}=A_{i}^{t} A_{i} E_{i j} \text {. Now suppose } E_{i j} \neq 0 \text {. By }
\end{aligned}
$$

 and ${ }_{v=1}^{\sum_{i}^{i}}{ }_{q}^{\sum_{i}^{j}}{ }_{1}^{(C)_{i j}}\left(E_{i j}\right)_{v q}=m_{i}$ then (R) ${ }_{i j} m_{i}=(C)_{i j} m_{j}$. Hence there is a $s \times s$ matrix R and a $s \times s$ matrix C such that if each of i and j is in $\{1, \ldots, s\}$ then each of $(R)_{i j}$ and $(C)_{i j}$ is a positive number. ${ }^{(R)}{ }_{i j} m_{i}=(C)_{i j} m_{j}$, and if $E_{i j} \neq 0$ then (R) ${ }_{i j} E_{i j}$ is row stochastic and (C) ${ }_{i j} E_{i j}$ is column stochastic.

LEMMA 1 TO THEOREM 2.3. If A is a matrix in Ω_{n} such that $A^{t} A$ is idempotent then there is a permutation matrix Q so that QA is idempotent.

PROOF. Let A be a matrix in Ω_{n} and be such that $A{ }^{t} A$ is idempotent. By Theorem 1.5 there is a positive integer s, a positive integer sequence $\left\{m_{i}\right\}_{i=1}^{S}$ such that $\sum_{i=1}^{\{ } m_{i}=n$, and a permutation matrix P such that

$$
P^{t} A^{t} A P=\left(\begin{array}{cccc}
J_{m_{1}} & 0 & \ldots & 0 \\
0 & J_{m_{2}} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & J_{m_{s}}
\end{array}\right)
$$

Partition AP into

$$
\left(\begin{array}{cccc}
B_{11} & B_{12} & \cdots & B_{1 s} \\
B_{21} & B_{22} & \cdots & B_{2 s} \\
\vdots & \vdots & & \vdots \\
B_{s 1} & B_{s 2} & \cdots & B_{s s}
\end{array}\right)
$$

so that $B_{i j}$ is $m_{i} \times m_{j}$. Let each of i and j be in $\{1, \ldots, s\}$.

Then $\sum_{k=1}^{S} B_{k i} B_{k j}=\left\{\begin{array}{l}0 \text { matrix of size } m_{i} \times m_{j} \text { if } i \neq j \\ J_{m_{i}} \text { if } i=j\end{array}\right.$
Let k be in $\{1, \ldots, s\}$ and suppose that $i \neq j$. Then $B_{k i}^{t} B_{k j}=0$. Let v be in $\left\{1, \ldots, m_{k}\right\}$, let w be in $\left\{1, \ldots, m_{j}\right\}$, and suppose that $\left(B_{k j}\right)_{v w} \neq 0$. Let g be in $\left\{1, \ldots, m_{i}\right\}$. Since ${ }_{u} \sum_{i=1}^{k}\left(B_{k i}^{t}\right)_{g u}\left(B_{k j}\right)_{u w}=0$ then $\left(B_{k i}^{t}\right)_{g v}=0$ and thus the v th row of $B_{k i}$ is 0 . Since $\sum_{k=1}^{S} B_{k i}^{t} B_{k i}=J_{m_{i}}$ then

$$
\left(\begin{array}{l}
B_{1 i} \\
B_{2 i} \\
\vdots \\
B_{s i}
\end{array}\right)>0
$$

and thus there is a permutation matrix R such that RAP can be partitioned into

$$
\left(\begin{array}{llll}
c_{1} & 0 & \ldots & 0 \\
0 & c_{2} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & c_{s}
\end{array}\right)
$$

so that $C_{i}>0$ and C_{i} contains on $1 y m_{i}$ columns. Suppose C_{i} has
 ${\underset{V}{\sum}}_{m_{i}}^{\sum_{w}} \underset{1}{f_{1}}\left(C_{i}\right) V_{w}=m_{i}$ so that $f_{i}=m_{i}$. Since the rank of $P^{t} A^{t} A P$ is the rank of A then the rank of A is s. Since $C_{i}>0$ then the rank of C_{i} is greater than or equal to 1 . Therefore since the rank of RAP is s then the rank of C_{i} is 1 and thus $C_{i}=J_{m_{i}}$. Hence RAP
is idempotent and therefore $P(R A P) P^{t}=P R A$ so that (PR)A is idempotent.

THEOREM 2.3. If E is a primitive matrix in $\Omega_{n}, A \varepsilon \Omega_{n}$, and $E T A=T A$ then $A^{t} A$ is idempotent and so there is a permutation matrix Q so that $Q A$ is idempotent.
'PROOF. Let $A \varepsilon \Omega_{n}$, let E be a primitive matrix in Ω_{n}, and suppose that $E T_{A}=T_{A} E$. Let m be a positive integer and suppose that $E E^{m-1} T_{A}=T_{A} E^{m-1}$. Then $E E^{m-1} T_{A}=E T_{A} E^{m-1}=T_{A} E E^{m-1}$ and thus $E T_{A}=T_{A} E^{m}$. Since E is a primitive matrix in Ω_{n} then 1 is a simple characteristic root of E and is the dominant root of E. Thus if λ is a characteristic root of E, not 1 , then $|\lambda|<1$, and therefore $\lim _{\mathfrak{m} \rightarrow \infty} \mathrm{E}^{\mathrm{m}}$ exists and has rank 1 . Let α be a positive number and let i be in $\{1, \ldots, \mathrm{n}\}$. Then there is a positive integer q such that $\left|{ }_{j=1}^{n}\left(E^{q}\right)_{i j}-\sum_{j=1}^{n}\left(\lim _{m \rightarrow \infty} E^{m}\right)_{i j}\right|<\alpha$ and
 therefore $\lim _{m \rightarrow \infty} E^{m}=J_{n}$. Since $\lim _{m \rightarrow \infty} E^{m} T_{A}=\lim _{m \rightarrow \infty} T_{A} E^{\text {mI }}$ then $J_{n} T_{A}=T_{A} J_{n}$. Let X be a vector and let each of u and v be in $\{1, \ldots, n\}$. Then

$\left.\frac{\partial^{2}\left(\left(_{W=1}^{\sum}(X)_{W}\right)\right.}{\partial(X)_{v} \partial(X)_{u}}\right)_{X=e}$. Thus

$\left.\frac{\partial(1)}{\partial(X)_{v}}\right)_{X=e}$. Thus $\left(\sum_{w=1}^{p}(-2)\left(\sum_{j=1}^{p}(A)_{j w}\left(\sum_{k}^{p}(A){ }_{j k}(X)_{k}\right)^{-1}\right)^{-3}\right.$.

Thus $\sum_{w=1}^{M}\left(\sum_{j=1}^{M}(A){ }_{j w}(A){ }_{j v}\right)\left(\sum_{j=1}^{\eta}(A)_{j w}(A){ }_{j u}\right)=\sum_{w=1}^{M} \sum_{j=1}^{M}(A){ }_{j w}{ }^{(A)}{ }_{j u}{ }^{(A)}{ }_{j v}$. Thus

$\left(A^{t} A\right)^{2}=A^{t} A$ and therefore by Lemma 1 to Theorem 2.3 there is a permutation
matrix Q so that $Q A$ is idempotent.

Theorems 2.1, 2.2, and 2.3 investigate Problem 2 under somewhat general conditions. The following theorem considers Problem 2 for a case in which A is more specifically defined than in previous theorems. Since it is well known, i.e. Birkhoff's Theorem, that if $A \varepsilon \Omega_{n}$ then A is a convex combination of permutation matrices, then the theorem to follow may point the way to the total solution of Problem 2.

THEOREM 2.4. Let Q be a $n \times n$ permutation matrix, let each of α and β be a nonnegative number, and let $A=\beta J_{n}+\left(\alpha-\frac{1}{n} \beta\right) Q$ be a matrix in Ω_{n} which is not a permutation matrix or J_{n}. If E is a nonnegative matrix such that each row of E contains a positive number, then $E T_{A}=T_{A} E$ if and only if there is a number r so that $r E$ is a permutation matrix.

PROOF. Let Q be a $n \times n$ permutation matrix, let each of a and β be a nonnegative number, and let $A=\beta J_{n}+\left(\alpha-\frac{1}{n} \beta\right) Q$ be a matrix in Ω_{n} which is not a permutation matrix or J_{n}. Since $A \varepsilon \Omega_{n}$ and A is not a permutation matrix then $n>1, \beta>0$, and if $n=2$ then $\alpha \neq 0$. Since $T\left(\beta J_{\mathbf{n}}+\left(\alpha-\frac{1}{\mathbf{n}} \beta\right) I\right)=U\left(\beta J_{\mathbf{n}}+\left(\alpha-\frac{1}{\mathbf{n}} \beta\right) I\right) Q \mathrm{t}_{Q U\left(\beta J_{\mathbf{n}}+\left(\alpha-\frac{1}{\mathbf{n}} \beta\right) I\right)=}=$ $U\left(\beta J_{n}+\left(\alpha-\frac{1}{n} \beta\right) Q\right){ }^{t} U\left(\beta J_{n}+\left(\alpha-\frac{1}{n} \beta\right) Q\right)=T_{A}$ then it is sufficent to prove the theorem for $Q=I$.If there is a number r and $a n \times n$ matrix E so that $\mathbf{r E}$ is a permutation matrix then clearly $E T_{A}=T_{A} E$.

Now suppose there is a nonnegative matrix E such that each row of E contains a positive number and such that $E T_{A}=T_{A} E$. Since $\beta \neq 0$ then A is fully indecomposable and therefore by Theorem 2.1 there is a number r so that $r E \in \Omega_{n}$. For the remainder of the proof it may be assumed, without loss of generality, that $r=1$ and thus E $\varepsilon \Omega_{n^{\prime}}$. By Theorem 1.4 (Birkhoff's Theorem) there is a positive integer s, a positive number sequence $\left\{r_{m}\right\}_{m=1}^{s}$, and a reversible sequence of permutation matrices $\left\{P_{m}\right\}_{m=1}^{\dot{s}}$ so that ${ }_{m} \underline{\underline{I}} 1 I_{m}=1$ and $\underset{m}{\mathbb{R}}{ }_{1} \mathbf{r}_{m} P_{m}=E$. Since permutation matrices commute with T_{A} then

 - the permutation on $\{1, \ldots, n\}$ which defines P_{m}.

CASE I. Suppose that E is a primitive matrix. Then by Theorem 2.3 there is a permutation matrix R such that $R A$ is idempotent and hence, by Theorem 1.5, $A=J_{n}$. However, $A=J_{n}$ contradicts the hypothesis that $A \neq J_{n}$ and hence there is no primitive matrix which commutes with T_{A}. CASE II. Suppose E is not a primitive matrix. Then by Theorem 1.2
there is an integer i_{0} and an integer j_{0} so that $(E)_{i_{0} j_{0}}=0$. By
Theorem 1.4 , if m is in $\{1, \ldots, s\}$ then $\sigma_{m}\left(j_{0}\right) \neq i_{o}$. Let ϕ be the set
to which m belongs only if m is the least number in $\{1, \ldots, s\}$ such
that if q is in $\{1, \ldots, s\}$ then $\sigma_{q}\left(j_{0}\right)=\sigma_{m}\left(j_{0}\right)$. Let $|\Phi|$ be the
cardinality of Φ. For m in Φ let θ_{m} be the set to which q belongs
only if q is in $\{1, \ldots, s\}$ and $\sigma_{q}\left(j_{0}\right)=\sigma_{m}\left(j_{0}\right)$. For m in Φ let

$$
q_{q}^{\varepsilon} \Theta_{m} r_{q}=R_{m} \cdot \text { Clearly } \sum_{m \in \Phi}^{\sum_{m}} R_{m}=1 . T_{A}^{E} \delta_{j_{0}}=T_{A} \sum_{m=1}^{S} r_{m} P_{m} \delta_{j_{0}}=T_{A m} \sum_{m} r_{m} \delta_{\sigma_{m}}\left(j_{0}\right)=
$$

belongs only if j is in $\{1, \ldots, n\}$ and there is a number m in Φ such
that $\sigma_{m}\left(j_{0}\right)=j$. Let $|\Lambda|$ be the cardinality of Λ. If j is in Λ then
there is only one number m in Φ so that $\sigma_{m}\left(j_{0}\right)=j$, and if m is in Φ
then there is only one number j in Λ such that $\sigma_{m}\left(j_{0}\right)=j$. Therefore

$$
\begin{aligned}
& j \neq 1 \text { 。 } \\
& \text { j\& }
\end{aligned}
$$

$$
\begin{aligned}
& j \neq \sigma_{m}\left(j_{0}\right)
\end{aligned}
$$

$\left.{ }^{(A)} i_{i_{0} i_{0}}{ }^{(A)}\right)_{i_{0} \sigma_{m}}^{-1}\left(j_{0}\right)+(A) \sigma_{m}\left(j_{0}\right) i_{0}{ }^{(A)_{\sigma_{m}}^{-1}\left(j_{0}\right) \sigma_{m}\left(j_{0}\right)^{-1}}=$

If $\alpha=0$ then ${ }_{j \in \Lambda}^{\sum} \Lambda_{m \in \Phi} \sum_{m} R_{m}\left(A \sigma_{m}\left(j_{0}\right)\right)=\infty$ and hence there is

then $(A)_{j-\sigma_{m}}^{\prime}\left(j_{0}\right)=0$ and therefore $\sigma_{m}\left(j_{0}\right)=j^{\prime}$. Hence $|\phi|=1$
and $(E)_{j^{-} j_{0}}>0$. If there is an integer j^{-1} in Λ so that $\sigma_{m}\left(j_{0}\right)=j^{-1}$ then $j^{\prime \prime}=j^{\prime \prime}$ and hence the j orth column of E is δ_{j}. . Since $E \varepsilon \Omega_{n}$
then the j^{\prime} th row of E is δ_{j} and hence every column of E contains a 0 entry. Hence every column of E is a δ-vector and therefore E is a permutation matrix.

$$
\begin{aligned}
& n-2+n \frac{\alpha}{\beta}+\frac{1}{n} \frac{\beta}{\alpha} \text {. Hence } 0=|\Lambda|-1+\frac{1}{n} \frac{\beta}{\alpha}-\frac{\beta}{n} \int_{\varepsilon_{\Lambda}}^{\sum_{m}\left(\sum_{\varepsilon} \sum_{m} R_{m}(A)\right.}{ }_{j \sigma_{m}}\left(j_{0}\right)^{-1}=
\end{aligned}
$$

$$
(|A|-1)(x+1)+1-(x+1) \int_{f_{\varepsilon}^{\sum} A}\left(1+x_{m \in \Phi}^{\Sigma} R_{\mathrm{m}}^{R_{m}}\right)^{-1} .
$$

$$
\sigma_{\mathrm{m}}\left(\mathrm{y}_{0}\right)=\mathrm{j}
$$

For $z>-1$ let f be the function defined by

Now, since $\alpha \neq 0$ and $f(x)=f\left(n \frac{\alpha}{\beta}-1\right)$ then $f(x)=0$ only if
$\left(\mathrm{T}_{\mathrm{A}} \mathrm{E} \mathrm{\delta}_{j_{0}}\right)_{i_{0}}=\left(E T_{A} \delta_{j_{0}}\right)_{1_{0}}$. Furthermore, $s=1$ only if E is a permutation matrix. If E is a permutation matrix then $\mathrm{s}=|\Lambda|=|\phi|=1$ and
so $f=0$. If E is not a permutation matrix then $s>1$ and hence
$f(0)=0, f^{\prime}(0)=0$, and $f^{\prime \prime}>0$. Therefore if $s>1$ then
$\left(T_{A} E \delta_{j_{0}}\right)_{i_{0}}=\left(E T \delta_{A}\right)_{i_{0}}$ only if $x=0$ and hence only if $A=J_{n}$. However,
$A=J_{n}$ sontradicts the hypothesis that $A \neq J_{n}$ and therefore if
E is not a primitive matrix then $s=1$ and E is a permutation
matrix.

CONCLUSION

For A a nonnegative $n \times n$ matrix, nontrivial examples are given. to demonstrate the existence of a nonnegative matrix E and a nonnegative matrix F so that if T_{A} is the Menon operator associated with A, then $E T_{A} F$ is also a Menon operator. It is conjectured, but not proven, that if A is a $n . \times n$ nonnegative matrix with a positive number in each column, there are not permutation matrices P_{1} and P_{2} and diagonal matrices D_{1} and D_{2} with positive diagonals such that $P_{1} D_{1} A P_{2} D_{2}$ is idempotent, and if E and F are nonnegative matrices such that $E T A$ is a Menon operator, then each of E and F is the product of a diagonal matrix with positive diagonal and a permutation matrix. Theorems supporting this conjecture are proven which show that if A is $a \cdot$ doubly stochastic matrix and E is a nonnegative matrix which commutes with T_{A} then there is a permutation matrix P such that $P{ }^{t} E P$ can be partitioned into a certain block form, and if A is fully indecomposable then there is a positive number r such that $r E$ is a doubly stochastic matrix. It is further shown that if E is a primitive doubly stochastic matrix, A is a doubly stochastic matrix, and E commutes with T_{A}, then there is a permutation martix Q such that $Q A$ is idempotent. Finally it is proven that if A assumes a certain doubly stochastic form, then the only nonnegative matrix E which commutes with T_{A} is a constant multiple of a permutation matrix. It is also suggested that the technique used in the proof of this last result might be applied profitably to a more general case in which A is suitably defined.

REFERENCES

[1] R. A. Brualdi, S. V. Parter, and H. Schneider, The diagonal equivalence of a nonnegative matrix to a stochastic matrix, J. Math. Anal. App1. 16 (1966), 31 - 50.
[2] F. R. Gantmacher, Applications of the theory of matrices, Interscience Publishers, New York, 1959.
[3] M. Marcus and H. Minc, A survey of matrix theory and matrix inequalities, Allyn and Bacon, Boston, Mass., 1964.
[4] R. Sinkhorn, Two results concerning doubly stochastic matrices, Amer. Math. Month. 75 (1968), 632-634.
[5] R. Sinkhorn and P. Knopp, Concerning nonnegative matrices and doubly stochastic matrices, Pacific J. Math. 21 (1967), 343 - 348.

