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ABSTRACT

If A 1s a nonnegative square matrix and X is a vector, then

the Menon operator associated with A, denoted by T,, is defined by

A’

T,0, = (jgl(A)ji(kgl(A)jk(X)k)-l)_l. A close relation is known

to exist between doubly stochastic métrices and Menon operators.

The following problem is investigated: If each of E and F is a matrix,
when 1is ETAF a Menon operator? It is conjectured, but not proven,

that if A is a nonnegative square matrix satisfying certain criterion,
and each of E and F is a nonnegative matrix such that ETAF is a Menon
operator, then each of E and F is the product of a diagonal matrix
with positive diagonal and a permutatidn matrix. This conjecture is
supported by examples, and also by theorems which show that if A is

doubly stochastic and ET, = TAE then either there is a number r such

A

that rE is doubly stochastic or there is a permutation matrix P such
that PtEP can be partitioned into a certain block form. A condition

is defined on a doubly stochastic matrix which implies that ETA = TAE

if and only if there is a number r such that rE is a permutation

matrix.
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CHAPTER I

NUMBERS, Let N be the set of all nonnegative real numbers,
It will be convenient to extend N to include « and to order and
topologize this set N_ in the usual way. Multiplication and addition

in N will be extended to N_ by the following conventions [1, pg. 34] :

0-1 = o ol a 0, »+ ©» = o, Qew =0, and if r > 0 then r+e = =,

It is recognized that multiplication on N_ is not continuous at 0. It is

understood that each of 0“1 and » is an alternate symbol for % and it is

also understood that 0—1 is not the multiplicative inverse of 0 since

MATRICES. Let each of m and n be a positive integer and let A

be a m x n matrix. If i is in {1,...,m} and § is in {1,...,n} then (A)ij

is the element in the i th row and j th column.of A. A is 0 provided
(A)ij =0 for i in {1,...,m} and j in {1,...,n}, in which case one may

write A = 0. A is positive provided 0 < (A),, <= for 1 in {1,..,,m} and

i3
j,in‘{l,...,n}, in which case one may write A >> 0, A is nonnegative

provided 0 < (A),, < « for i in {1,...,m} and § in {1,...,n}, in which

ij
case one may write A > 0. A > 0 provided A > 0 and A # 0, The transpose

of A, denoted by At, is defined by (At)ij = (4A) If A is a nonsingular

AES
matrix then A-l denotes the multiplicative inverse of A. A is a permutation

“matrix provided A is n x n and there is a permutation ¢ on'{l,...,n} such

that (A)ij =1 if 0(j) =1 and (4),, = 0 if o(j) # i. If o is the identity

1]

permutation onl{l,...,n} then the corresponding permutation matrix,

denoted by I, is the n x n identity matrix.




If A is a m x n matrix, p is in {1,...,m}, q is in {1,...,n},
. . P
P q . L ~
each og {ri}i=1 and {cj}j -p 1s a positive integer sequence, ,I.r, = m,

and jéi % = n, then A can be represented in block form as

o

11 L ] Alq

e e
- I N

pl Pq
If A is represented in block form then A is said to be partitioned into
block form. If p = 1 then A is represented in block form as [All"'Alq]

and if q = 1 then A is represented in block form as

-

11

U 0 e

pl
A is reducible provided A is a n x n nonnegative matrix and there is a

permutation matrix P such that

Al 0

tp =
PTAP = B

Ay
and each of A1 and A2 is a square nonempty matrix. A is irreducible
provided A is a n X n nonnegative matrix and A is not reducible.

A proof of the following Theorem of Perron and Frobenius is provided

by Gantmacher [2,pg 65].

THEOREM 1.1. An irreducible n X n nonnegative matrix A always

has a positive characteristic number r, which is a simple root of the

characteristic equation. The moduli of all the other characteristic

numbers are at most r. A characteristic vector Z, unique to within a

scalar factor, with positive coordinates, coresponds to the dominant




characteristic number r. If in addition A has precisely h characteristic

numbers Ag = T» Afseces Ah—l’ of modulus equal to r, then these

characteristic numbers are different from each other and are roots of the

equation Xh = rh = 0, and, in general, the entire spectrum

).0, )‘l""’ An—l of A, when plotted as a system of points in the complex

plane, is carried into itself when the plane is rotated by the angle 2%.

When h > 1, there is a permutation matrix P such that

0 0 .0 )
t 0 31 Az.o'o
PAP =]t ¢+ 3 .
0 0 0...5

-1
0 0...0

h : J

where the 0 blocks on the main diagonal are square.

A is a primitive matrix provided A is an irreducible matrix with
only one characteristic number having modulus the modulus
of the dominant characteristic number of A. The following Theorem provides
a useful property of primitive matrices [2,pg 97].

THEOREM 1.2. A nonnegative n X n matrix A is primitive if and

only if there is a positive integer p so that AP is positive,

n

A m x n matrix A is row stochastic provided A > 0 and ng (A)ij = 1

for 1 in {1,...,m}. The following Theorem provides a useful property

of n x n row stochastic matrices [2, pg 100].

THEOREM 1,3. A nonnegative n X n matrix A is row stochastic E




and only if the vector

=t 00 @ 3

For a row stochastic matrix, 1 is the dominant characteristic root.

n
Am x n matrix A is column stochastic provided A > 0 and igl(A)ij =1

for j in '{1,...,n}. A i3 doubly stochastic provided A is n x n, A is
row stochastic, and A is column stochastic. The set of all n x n doubly
stochastic matrices is denoted by Qn. A proof of the following famous

Theorem of G. Birkhoff may be found in [3,pg 98].

THEOREM 1l.4. The set of all n x n doubly stochastic matrices forms

& convex polyhedron with the permutation matrices as vertices.

The n x n flat matrix, denoted by Jn’ is defined by (Jn) %

13~
for 1 and j in ‘{1,...,n}. A matrix A is idempotent provided A2 = A,

The following useful Theorem was proven by R. Sinkhorn in [4].

THEOREM 1.5. A ¢ Qn is idempotent if and only if there exist

positive integers Nipesesny with sum n and a permutation matrix P _such that

J 0 eee 0 )

O s
O e
.
.
3
Cyoes

n
8)



A matrix A is partly decomposable provided A > 0, A is n X n,

and there is a permutation matrix P and a permutation matrix Q such that

pag = |M1 ©

B A2

and each of A1 and A2 is a square nonempty matrix. A matrix A is fully

indecomposable provided A > 0, A is n x n, and A 1is not partly decomposable.

By convention every 1 x 1 matrix is irreducible but a 1 x 1 matrix is
fully indecomposable only if it is positive,

If A is an n X n matrix and ¢ is a permutationon {1,...,n} then

. n .

Athe sequence {(A)io(i)}ial ig the dianonal of A corresponding to o.

If o is the identity permutation then the corresponding diagonal is the
main diagonal, A n x n matrix A is a diagonal matrix provided (A)ij =0
if i # j. A is said to have total support if A > 0 and every positive

element of A lies on a positive diagonal. In [5] R. Sinkhorn and P. Knopp

prove the following Theorem.

THEOREM 1.6, A necessary and sufficient condition that there

exist a doubly stochastic matrix B of the form D,A D, where D, and D,

are diagonal matrices with positive main diagonals is that A has total

support. If B exists then it 1s unique, Also, Dl and D, are unique up

to a scalar multiple if and only if A is fully indecomposable,

VECTORS, Let V°° be the set of all n x 1 matrices with elements

taken from N . X is a vector provided X is in V_. If X is a vector then

X is a 0 vector provided X is a 0 matrix, X is a positive vector

provided X is a positive matrix, and X is a nonnegative vector provided




X is a nonnegative matrix. If X is a vector and i is in {1,...,n} then
(X)i = (x)il' If {1 is in {1,...,n}then Gi is defined by (61)j =1 for
1i=3 and (61)j =0 for 1 # j. e is the vector 121 61.

OPERATORS. T is an operator provided T is a function with domain

and range a subset of V_. Let X be a vector. The inverse operator,

denoted by U, is defined by(UX)i = (X)I1 for 1 in '{1,.o.,n}. Let A
be a n X n matrix such that A > 0. Note that if r is in N_ then UrX =

n n
r‘lux, W =1, (AUX), = ng(A)ij(X)gl, Uax), = (F, (A)ij(x) )'1, if A

3 3
is a diagonal matrix with positive main diagonal then AU = UAfl, and if A

is a permutation matrix then AU = UA, The Menon operator associated with

A [1, pg 34], denoted by T,, is UAYUA. Note that (TAX)i =
n n 1. -1

(j£1 (A)ji(kgl(A)jk(X)k) ) °, if X 18 a nonnegative vector and r is a

nonnegative number then TArX = rTAX, if A e Qn then TAe = e, and if A is

the product of a permutation matrix and a diagonal matrix with positive
main diagonal then TA = I. The following Theorem provides a motivation

for the study of Menon operators.

THEOREM 1.7, Let A be a n x n matrix such that A > 0. There is a

positive vector X such that TAX = X if and only if A has total support.

If A has m nonzero rows and if there is a positive number A and a positive

vector X so that T,X= AX, then mA = n and hence A = 1 if and only if A

has total support.

PROOF, Let m be in {1,...,n} and let A be an n X n matrix

such that A > 0 and such that A has only m nonzero rows,



Suppose there is a positive number A and a positive vector X so that

TAX = AX. Since T,X is positive then each column of A contains a

A

positive number.

(UAx)l 0 cee O (x)1 0 ...

0
Let D 0 (WX, .ee 0O | nab 0 ®y... 0
1 . . . 2 . . .
0 0 vee (UAX)n 0 0 ... (X)n
o n n
Let i be in {1,...,n}, Then jZl(D 2)j 5L l(UAX) (A)ji(x)i =
1 n -1,-1 -1 -1
(j l(A)ji( (A)jk(x)k) ) Ty = (T,X);"(X); = A7, and if the 3=
n n ’
i 0N = =
row of A is not O then Z (D 2) j l(UAX) (A) (X)j AX)i 1.
n n n n
Thus 1 2 1(D 2)ij m and A jzl P l(D 2)ij = m, Hence mA = n so
that A = 1 only if each row of A contains a positive number, If A =1
then TAX X so that DlAD2 € Q and hence, by Theorem 1.6, A has total
suéport. Now suppose A has total support. By Theorem 1.6 there is an

n x n diagonal matrix Di

positive diagonal, such that D

and a n x n diagonal matrix Dé, each with a

€ Q Let the vector X* be defined

2
by (X) (D2) . and let
(UAX')1 0 era 0
D, = ? (Uz:\X')2 e ?
0 0 cee (UAx')
n
Then D3AD£ is row stochastic. Hence 1 = & l(DiADE =
n n n n s}
581 PPy kzl(A)sk(D‘) = 810D 16 121 War 321Dy
n n
P35 1B 3 (P » Similarily 1= (D), (2, W), DDy - gy



(D3)ii = (Di)ii and D3 = Di. Thus D3AD£ € Qn and hence 1 =
n n n n -1.-1
§E1(DAD2) ¢ = 5 (UAKT) ()4, (KD y = GE () 4 (2 () (R TH IRy =

4-1 -
(TAX )i X )i' Therefore TAX X,

The following examples substantiste Theorem 1.7.

L - 00 = 1 - =
.- EXAMPLE 1, Let A [1 l], X [1], and A = 2, Then TAX

AX, m = 1, n = 2 and hence Am = n, Note that A # 1 and A does not have

total support.

EXAMPLE 2., Let A ¢ Qn. Since Ae = Ate = e, then TAg = e,

n. Note that A = 1 and, by

Furthermore, since m = n = A = 1 then \m

Theorem 1.6, A must have total support.

Brualdi, Parter and Schneider -[1, pg 42] proved the following

’

useful Theoren,

THEOREM 1.8. 1If A is fully indecomposable then 1 is an eigenvalue

gg_TA with unique eigenvector X, and furthermore, X is the unique positive

eigenvector gg_TA.

Theorems 1,6 and 1.7 clearly imply that A is a fully indecomposable
matrix if and only if there is a positive vector X which is an eigenvalue

of TA and X is unique to within a scalar multiple.



OPERATORS OF THE FORM ETAF.

EXAMPLE 3, Suppose A is a n X n matrix, A > 0, and there is a
nonsingular nonnegative matrix E and a n x n nonnegative matrix B such

that E-ITA; = TB. Then TAE = ETB and hence if B has total support then

there is a positive eigenvector X of T, so that EX is a positive

B

eigenvector of TA’ and thus A also has total support.

The above observation, along with a prevaling interest in doubly

stochastic matrices, encouraged an interest in the following problem.

PROBLEM 1. Let n be a positive integer and let S be the set to which

TA belongs only if A is a n x n nonnegative matrix and '1‘A is the Menon

operator associated with A, For TA in S, under what conditions is it

possible to find a matrix E and a matrix F so that ETAF is in §?

While the solution to Problem 1 has proven to be quite elusive,

certain related questions have yielded answers,

EXAMPLE 4, Suppose A is a n X n matrix such that A > 0, Let P

be a n x n permutation matrix and let D be a diagonal matrix with
3y

positive main diagonal, Since PU = UP and DU = UD_1 then

W T, - vatua

= vat ot e Yyua = vatpeturna

= = Tppa
= vat %) (0~1p)ua = vatrtDUDPA = o
(1) ot = ppuatua = pouatuvae %) pp) =
cwep~tatuan™leSyep = T PD =T -.PD

ap~1pt A(PD)”
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(1i1) DPT, = pruatua = oruatuaeto Yo = (up~lpatuartp~lypp =
T P = T DP.
artpt A(op)~L

Hence (iv) TA = TPDA = TPA = TDA

-1
v) (PD)T, (PD) =T =T
A aen)™r  epyaceept

(vi) (OP)T,(P) ' =T =T g
A(DP) (DP)A(DP)

Consideration of (iv) above demonstrates that TA = TB may not

imply that A = B, In fact, R. Sinkhorn (unpublished papers) has proven

that 1f A e § and B e  then T
n n A

permutation matrix P such that A = PB.

= TB if and only if there is a -

EXAMPLE 5. ’
140 100 : _
If A= |2 50} and E = [0 1 0| :-then ETA = TA‘
360 111
EXAMPLE 6,
110 110
If A= |0 0 0| then '1‘A = |1 1 0 and hence if each of o and B is a
001 001 .

0
number and E = [ 0} then ETA = T E,
8

A

oR Q
o Q

EXAMPLE 7. If A is the product of a diagonal ratrix with

positive main diagonal and a permutation matrix then TA = I and

hence if E is a matrix then ETA = TAE. In particular, if E is
1

nonsingular then ETAE = IA.



11

EXAMPLE 8. 1If s is a positive integer, {m,}° . is a positive

1°i=1
integer sequence,'{Jm }:=l is a sequence of flat matrices, and
i
(3. 0 ... 0]
1
0 Jm aee O
A= 2 -
0 0 ...J
m
\ 5)

then T, = A. Hence if'{Ei}i=1 is a sequence of matrices such that

if i 1s in {1,...,s} then E;eQ and

f i
El 0 see 0
0 E ca 0
E=|. .27,
0 0 ..., E
\ L 5
then ETA = TAE' In particular, if E is nonsingular then ETAE_1 = TA'

The above examples have suggested the following unproven

conjecture,

CONJECTURE, Let A be a nonnegative n X n matrix with a positive -

number in each column, and suppose A is such that if each of D, and D

1 2
is a diagonal matrix with positive main diagonal and each of P1 and P2
is a permutation matrix then P1D1AD2P2 is not idempotent., If each of
E and F is a nonnegative matrix such that ET,F is a Menon operator,

A
then each of E and F is the product of a diagonal matrix with a positive

main diagonal and a permutation matrix.

The theorems in the following chapter provide limited support

for the conjecture.
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CHAPTER II

MATRICES WHICH COMMUTE WITH MENON OPERATORS. If A isanxn
matrix with total support then by Theorem 1.6 there is a diagonal matrix

D1 and a diagonal matrix D2, each with a positive mair diagonal, so

1 _ . .
that DlAD2 € Qn. Hence D2 TA 9 = TDlADZ and therefore if there is a

matrix E which commutes with T then D ED-1 commutes with T,. This
DlAD2 2772 A

observation, and the search for the solution to Problem 1, encouraged

an interest in the following Problem,

PROBLEM 2. If A ¢ Qn and E is a matrix such that E > 0, under

what conditions does E commute with TA?

The following theorems investigate Problem 2.

LEMMA 1 TO THEOREM 2,1, If A is a fully indecomposable matrix

then AFA{ig irreducible,

PROOF. Let A be a fully indecomposable matrix and suppose that
AtA is reducible. Then there is a permutation matrix P, a positive

integer n;, and a positive integer n, so that

All 0

3
A1 B29

ptatap =

All is n; X my, and A22 is n, x n,. Partition AP into
F11 P12
Fa1 Faz

so that Fll is nl % nl. Then
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t t t t

t t
apytar = |11 T2 [T Frz| Pt FaFar) Cufia * )
t .t t t t t :
F12 Faal [Fo1 T2 (FypFyp + FpoFgp) (FypFyy + FooFy
Since FC.F.. + FC.F.. = O then FL.F.. = 0 and F-.F.. = 0. Since A i
11712 © F21%22 11712 and %9122 - vince A 1S

fully indecomposable then AP is fully indecomposable and therefore there

# 0. Since FL F

11f12 = 0

is an integer i, and an integer jl so that (F

).

1 12 11j1
ot : :
then . 17 (Fll)ik 12)kjl = 0 for i in {1,...,n1}. Thus (F

i in'{l,...,nl} and therefore the i

(F = 0 for

t
11)ii1
is 0, Similarily, there

th row of F

I 11

# 0., Since F 0

t -—
21 Fop =
= 0 for

is an :nteger i,and an integer j, so that (F21)i2j2
2 .t .
then KE1 (F21)12k(F22)kj = 0 for j in {1,...,n2}. Thus (F

. ' 4
j in {1,...,n2} and therefore the i,th row of F,

indecomposable then there is an integer m

22)12j
2 is 0, Since A is fully

in {1,...,n,} and an integer
1 1

m, in {1,...,n2} so that there are only m, rows of F,

which contain a positive

which contain

a positive element and only m, rows of FZl

element, Since there are m; TOws of F12 which contain a positive element

then there are m1 rows of Fll which are 0. and hence there are nl - ml

rows of F.. which contain a positive element, Thus, since there are m

11 2

rows of F21 which contain a positive element then there are n, - m, + w,

17N
Fih
Fa1

which contain a positive element., Hence there is a permutation matrix

rows of

Q so that QAP can be partitioned into

B11 0
0 B22
and so that Bll is (n1 -mn 1

then nl - ml + m2 # nl. If nl - ml + m, < nlthen there is a positive

+ m2) x n,, Since A is fully indecomposable
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integer k so that n, -my + m, + k = n,, Since QAP can be partitioned into

1
B11 B2
0 B,

so that B11 is (n1 - m + m, + k) x n;, then A is not fully indecomposable.

But this contradicts the hypothesis that A is fully indeéomposable and

therefore n, - o + m, P4 n,. If n, - m, + m, >0y then n

and hence there is a positive integer k so that n

2 0y —m,y <y

2+ml"m2+k=n20

Since QAP can be partitioned into

B11 0

» »

Bo1 B2o

8o that B;z is (n2 +m -m, + k) x n,, then’A is not fully indecomposable.

1 2

But this contradicts the hypothesis that A is fully indecomposable and
. . t

.hence nl - ml + m, ¥ nl. Thus my and m, do not exist and therefore A"A

is irreducible.

Note that if

.. ' 01
£ 1)
then A is irreducible but AtA is reducible. Hence it is not true in general

that ﬂ_éfA_is irreducible whenever A is an irreducible matrix".

LEMMA 2 TO THEOREM 2.1, If A is an irreducible matrix in Qn and

.

~—E-is a matrix such that E > 0 and EA = AE then there is a positive number

v such that rE ¢ Qn.

PROOF. Let A be an irreducible matrix in Qn and suppose that there

is a matrix E > O and EA = AE, Since E > O then Ete > 0, and since EA = AE
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then AtEte = EtAte = Ete. Thus Ete is a characteristic vector of At

corresponding to the characteristic number 1, Hence by Theorems 1.1 and 1.3
there is a positive number r such that rEte = e, Therefore rE is columm

stochastic and so 121 jgl r(E) = n, Similarily AFe = EAe = Ee and thus

ij

there is a positive number r® such that r°Ee = e, Therefore r“E is row

stochastic and so % El r (E)

j 21 4% = n, Therefore r“ = r and rE ¢ Qn.

ij

THEOREM 2,1. Let E be a nonnegative matrix with a positive number

in each row. If A is a fully indecomposable matrix in Qn and ETA = TAE

then there is a real number r so that rE e Qn, EATA = AtAE, and

E'E[ata)? - Ata) = (ata)? - ata.

PROOF, Let E be a nonnegative matrix with a positive number in
each row., Suppose A is a fully indecomposable matrix in Qn and suppose

ETA = TAE. Then ETAe = TAEe and since A € Qn then TAe = e so that

TAEe = Ee. By Theorem 1.8 there is a real number r so that rE is row

stochastic. For the remainder of the proof it may be assumed, without

loss of generality, that E is row stochastic. Let i be in {1,...,n}

and let X be a vector. Since (ETAX)i (TAEX)i then

-1,-1 -1,-1
E® G W (E ®, 00™)7 = (F @y R g, F @, 0™

m=1

Let s be in {1,...,n}. Since

B(ETAX)i ~ B(TAEX)i

WX, A,
then
-1y-2, -2 =
o1 (B 5 GE ) G E ), 0™ TGE @) GE W) 0T @) ) =

. -1 3 -1
(L edw Begcon™ el ey Be opT.

jk
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3(ETAX)i

(kgl(A)jk(E)ks)). Hence evaluating ——3?27;—

at X = e gives

B(ETA_X)i - S(TAEX)i
a(x)s X ?(X)s X=e

so that

-1,-2
w1 ® g 5@ W = GE W Ew @ ™)™

t 2,.t
(jgl(A.)ji kgl(A)jk(E)ks). Hence (EA'A), = (T,Ee);(ATAE) _ so that
(EAtA)is = l-(AtAE)is and thus EAtA = AtAE. Therefore by Lemmas 1 and 2
to Theoren 2.1, E € Qn. Let u be in {1,...,n} . Then

2
il B, (L, 5@, ®)H3

-2 -2
GEL Wy 1 ® @7 CE @, @ DGR (R @, 5 e mp™

-1.=2
GEL W BT+ IGE W, (F Wy F @ ™)™
. -3
GE @y (E @, @0 E @, § e DT E o @ ).

) _
37 (ET,X)
AL | 1,-3,
Al ST ® " 221 B 1o (DGR ) (F Wy, 0™

h|

-2 -2
GE @ DGR @, 00T @ ) (R @ ) (F @), 07 +

3

-1,-2 ] -3
G F @, mp ™ @, @ @k mpT @ o

22 (ET,X), 22 (ET, %), 22(T,EX)
Hence evaluating —rov——<T at X = e gives =725 - e
a(x)ua(X)s a(x)ua(x)s X=e 3(X)u8(x)s X=e

so thar B, (B) TGE @ ), ) GE @ @, 0-GE @ », @) =



= Gh@,, Fw,® 0k e

2

ji k1

@ 1 B ) =

¥

RO HOIONRE
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t t
G2 W, B ). Hence (A°aE); (A°AE) - B, (&), (AR), (AE),

1.

t t
w1 ® @D % = F @, @), @), 1. since

22(ET,X), r 22(1,ER),
151 [3() () |y, 151 [3(R) 3D, Xee

then ((A%AE)“(A%AE)) _ - ((aB)®(aE)) _ = (A*m ") _ - @)

go that Et[(AtA)2 - (AtA)]E = (AtA.)2 - (AtA). Therefore

efefata)? - (atn)] = a2 - ata).

THEQREM 2,2, Let E be a nonnegative matrix with a positive number

"'in each row. If A is a partly decomposable matrix in Qn which is not a

A" TAE'then there ic an integer s _iil_. {2,...,n41},

' a positive integer sequence {mi}i=l

‘'permutation matrix and ET

such that iglmi = n, a pernmutation

::ﬁatrix P such that

phep = [ 21 22

and Eij lg_mi x B, a8 X8 matrix R and a s x s matrix C such that each

--of (R d ; = and
of ( )ij an (C)ij is a positivg number such that (R)ijmi (C)ijmj and
- h th
such that if Eij # 0 then (R)ijEij is row stochastic and (C)ijEij is

column stochastic. -

PROOF, Let A be a partly decompousable matrix in Qn which is not
a permutation matrix. Tt{en there is a permutation matrix Q, a permutation

matrix P, a positive integer sequence. {mi}:ﬁl such that
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A, 0 ... 0
QAP‘= ? ?2 ces ? ’
o bk
Ai é Qmi’ and Ai is fully indecomposable.Since A is partly decomposable

then s > 1, If s

n and A ¢ Qn then A 1Is a permutation matrix and thus,
since A is not a permutation matrix, then s < n., Therefore s is in
'{2,...,n-1} and n > 3, Let E be a matrix such that E > 0,

each row of

=T E. Then

E contains a positive number, and such that ETA
t, t. .t t .t .t t .
P EPUP A Q UQAP = UP A Q UQAPP EP and so P EPT P EP, Partition
QAP = Tqap
PYEP into
r 3
Eyg Eyg o0 Eyg
E21.E2 P E2
LEsl ESZ ere EssJ
so that Eij is m, X mj. Let the vector X be partitioned into
fv )
X
X2
X
. SJ
t
so that Xi is mix 1, Then P EPTQAPX
( \ n ) ( Y(x )
Ell E12 L N ] Els Al 0t o0 e 0 Al o L N ] 0 Xl
E E ees E 0 A, ... 0 A, ... 0 X
.21 L] .28 U L ] .2 ® U L] .2 L ] .2
E . E. e0s E 0 0 ... A 0 0 ...A|[X
| sl “s2 ss| { s { sj{ s
(E,. E E, ){uatua x (€., E E, ) (T, X X )
11 712 *** “1s 1711 11 712 *** T1s A1 1 k l lk Ak
t
Fa1 Fag oor Fas||UA2%2%a| _ (B Pz oor Fasf|Ta % kzlEZkTAkxk
L 3 [ ] L] t. L] L] L] . L d
Esl EsZ cer Ess UASUA XsJ Esl ESZ b Ess TASXS k-l sk Akxk
L FARN \ FARN P




n \ ( \r Y (v )
Alo ‘..0 Alo ...O Ell Elz L I ) Els xl
t
t,. 2 2 21 S22 28| (2| _
and T, pP APX = T 1. . 3 B EO sl sl "
0 0 ...aAt 00 ...alE.E....E [Ix
{ 8} { s)| s1 82 ss) | s
r Lt 3 ( \f 3 ‘
A]0 .0 a0 ...0)(EE X TAlkglnlkka
0 Al 0 0 A ol %k T, . §E
U 2 °e° U yJRALIR | PRLOTR SN AjkEL 2%k | .
P :t . . . . .
0 0 ... AsJ kO 0 ...ASJLkzlESRXRJ LTASkzlEskka

Let i be in {1,...,s}. Then kglEikTAkxk = TAi kzlnik . Let emk be the

e = vector of length m . Since e thenT, e = e and thus
b m

™k

éilziﬁhk" TA kZlEikemk. Since each row of E contains a positive number
i

then kglEikemk is positive. Since A1 is fully indecomposable then by

Theorem 1.8 there is a positive number r, so that T, kZlEikemk = emk.
Therefore there is a positive number sequence‘{ri}:=1 so that

ri[Eil ces Eis] is row stochastic. Let g be in {1,...,mi}. Then

I* o x -1,-1
-(kzlEikTAkxk)g = E1 W) g (B ) (B (A L () )T T et § be

in {1,...,8} and let w be in'{l,...,mj}. Then

a(kglEikTAkxk)g . m,

i M -1,-2
a(xj)w L uél(Ejk)gu(—l)(v___l(Ak)vu(q__Z_l(Ak)vq(Xk)q) ) e

™ Tk -2, T (X))
GEL A o D (I (R OTICE () a();k)g ».
1w



20
ax,) 3.3 E, T X)

Since 3?§E$S-= 0 unless j = k and q = w then k=1"1k Akxk g =

W

3 3K,
-1,-2

mj mj mj mj mj -
L1E P Gl @ xp 0™ R B (HG) &)

2
Ay )

a(kglEikTAkxk>g mj m.._l ¢
3(X,) xme " uBlCEi1pgu VE1 AP v A v = Baghyhy g

J'w 3 4
§ K

mi mi ~1.-1
Simtlarily (TAikglEikxk)g = GE1AD (B A vq id1 B1 B u W) ) -

Thus

a(T, ,%.E. x,)
A k=1"ik k'g m m
1 _ i 1 e -1,-2
Thus b, = CDGE B G (B A K1 BB ) )

g pk § gk

-2,
vq k21 uE1 B0 qu®dw) (1B vq k1 w1 Eid qu”

B(Xk)u m, m, m -1 -2
B(Xj)w)) = (vgl(Ai)vg(qgl(Ai)vq kzl ugl(Eik)qu(xk)u) ) e

m, m
¥ $ ok

i -2, Y
(vél(Ai)vg(q= vq k=1 ugl(Eik)qu(xk)u) (qgl(Ai)vq(Eij)qw))°

(TAikZlEikxk)g o om 12
Thus 3a(X,) X,=e (vél(Ai)vg(qgl(ri) (Ai)vq) )
J'w k| mj

oy oy
(I (A, (D) (27 (AD)

i
1A

(ol Crteptap 02 Ea) @0 ) = THa). Ty @) -
velti'vgq=1t 1 i’vq q=1""1i"vq" 1 qw v21""1"vg q=1""1"'vq 1ij'qw

(AtA E,.,) . Therefore E AtA = At

1717137 gw 15848 = A4AE

. Now suppose E, # 0. By

1] 3

e =A%AE e

Lemma ¢ A i
1l to Theorem 2.1 A Ai ig irreducible, and since Eij mj 181513 mj

i

then by Theorems 1,1 and 1.3 there is a positive number (R)ij so that

t, .t _ .t ,t
(R)ijEij is row stochastic. Furthermore, since AjAjEij = EiinAi then

t, .t _ gt
AjAjEijemi Eijemi and so there is a positive number (C)ij so that
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m
. 1 i -
(C)ijEij is column stochastic. Since X §1 (R)ij(Eij)vq mj

m,

i j - -
and vgl Z (C)lj( 14 )Vq ™, then (R)ijmi (C)ijmj' Hence there is

a s X s matrix R and a s x s matrix C such that 1f each of 1 and j is
in {1,...,s} then each of (R)ij and (C)ij is a positive number ,
(R)ijmi = (C)ijmj’ and if Eij # 0 then (R)ijEij is row stochastic and

(c)

is column stochastic,

13813

LEMMA 1 TO THEOREM 2.3. If A is a matrix in e such that

AtA_lg idempotent then there is a permutation matrix Q so that

QA is idempotent.,

PROOF, Let A be a matrix in Qn and be such that AtA is idempotent.
By Theorem 1.5 there is a positive integer s, a positive integer

sequence {mi}:=1 such that 121 m, = n, and a permutation matrix P such

i
that
(3, 0 .0 ]
1
PtAtAP - 0 sz LR J O .
0 0 ... J
m
\ SJ

Partition AP into

.
11 12 **° "1s
21 Bag ++- Byg
sl "s2 **° Bss

so that Bij is m, X m, . Let each of i1 and j be in {1,...,s}.



0 matrix of sizem, x m, if i # j

i 3

Then klekinj =

Jmi if 1 = j
Let k be in {1,...,s} and suppose that i # j. Then Biinj = 0.
Let v be in'{l,...,mk}, let w be in {1,...,mj}, and suppose that
(B,.) #0, Let g be in {1,...,m,}. Since ?kkBt Y (B,.) =20
kj’vw ’ | =l ki‘gu ki uw
t =
then (Bki)gv = 0 and thus the v th row of Bki is 0. Since
t
1B Tn, then
: [
By,
BZi >0
\BsiJ

and thus there is a permutation matrix R such that RAP can be

partitioned into

c. o 1
C; 0 ... 0
0 C2 LN ] 0
0 0 ...cC

so that C, > 0 and Ci contains only m., columns. Suppose C, has

i i i
™
fi rows. Since RAP ¢ ﬂn then w£1 vgl(Ci)vw = fi and
gi gi(C ) =m, so that £, = m,, Since the rank of PtAtAP is
v=1 w=1""1"vw i i i*

the rank of A then the rank of A is s. Since Ci > 0 then the rank
of Ci is greater than or equal to 1, Therefore since the rank of

RAP is s then the rank of Ci is 1 and thus Ci = Jm . Hence RAP
i

22
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is idempotent and therefore P(RAP)Pt = PRA so that (PR)A is idempotent.

THEOREM 2.3. If E is a primitive matrix in @, AecQ, and ET, =

A
then AtA_ig idempotent and so there is a permutation matrix Q so that QA is

idempotent.

N
PROOF. Let A € Qn’ let E be a primitive matrix in Qn’ and suppose

that E’I‘A = TAE' Let m be a positive integer and supposeé that Em-lTA = TAEm-l.
m-1_ m-1 _ m—-1 N m o .
Then EE" T, = ET,E" = = TEE" = and thus E"‘TA = T,E", Since E is a

primitive matrix in Qn then 1 is a simple characteristic root of E and

is the dominant root of E. Thus if A is a characteristic root of E, not 1,

then IAI < 1, and therefore mliﬁm E" exists and has rank 1. Let a be a

positive number and let i be in {1,...,n}. Then there is a positive integer

q _ lim _m
q such that Ijgl(E )ij jgl( m @ E )ijl < a and
q.t lim g™ t lim _m
| j21((E ) )ij JBl(( o > o E") )ijl f a. Hence.m s o E E Qn and
lim _m _ . lim _ lim -
therefore n > o E" = Jn' Since m o o EmTA = p oo TAE then J TA TAJn.

Let X be a vector and let each of u and v be in {1,...,n}. Then

T I X=T1,(5 Bye= (2 B wre=(l 3 ®e since
223 1,0, 22(1,3 X, azg,glggl(m WG @ L0 p™H™
- 3(X)v8(X)u X=e i 3(X)v3(X)u X=e hen - B(X)VB(X)U X=e
22
? (w=l(x)w)

TTEY AT + Thus
a(X)va(x)u X=e
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_1 -2 -2
(2 DR @, (E @, 0p™TCE @ GDE W, 0070, )

B(X)v

ju

a(x)v]x_e'.Th“S oy ¢ 2)(j’§1(A)j (.2 1A 4 (07

-2
<321<A>jw<-1)(kgl(A)jkcx)k) ®, ) GE @

-2
0 G (2 W) [ DY W) +

jw k=1

(W (&0, 00D 2R W, @, DG w7 e ] - o

:l

Thus B (B @ @ DGR @, @, = B F 3 0 3. Thus

wgl h| v

t t t t t - t
L (AR (aTA) = (ATA)_ so that ((ATA)ATA) = (A"A)_ . Hence
(AtA)2 = A%A and therefore by Lemma 1 to Theorem 2,3 there is a permutation

matrix Q so that QA is idempotent,

Theorems 2.1, 2.2, and 2.3 investigate Problem 2 under somewhat
general con&itions. The following theorem considers Problem 2 for a
case in which A is more specifically defined than in previous theorems.
Since it is well known, i.e. Birkhoff's Theorem, that if A ¢ Qn then
A is a convex combination of permutation matrices, then the theorem

to follow may point the way to the total solution of Problem 2,

THEOREM 2.4. Let Q be a n X n permutation matrix, let each of

a and B be a nonnegative number, and let A = BJn + (a - % B)Q be a

matrix in Qn which is not a permutation matrix or Jn. If E is a

nonnegative matrix such that each row of E contains a positive number,

then ETA = T E if and only if there is a number r so that rE is a

permutation matrix,
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PROOF. Let Q be a n x n permutation matrix, let each of a and
8 be a nonnegative number, and let A = BJn + (o0 - %B)Q be a matrix
in Qn which is not a permutation matrix or Jn. Since A € Qn and A
is not a permutation matrix then n >‘1, B >0, and i1f n = 2 then a # O,

1 t 1
Since T = U(an+(a-ﬁs)I)_Q QU(BJn+(a-‘EB)I) =

1
(BJn+(a-aB)I)

U(BJn+(a-%B)Q)tU(BJn+(a—%B)Q) = TA then it is sufficent to prove the

theorem for Q = I,If there is a number r and a n x n matrix E so that
TE 1s a permutation matrix then clearly ETA = TAE.

Now suppose there is a nonnegative matrix E such that each
row of E contains a positive number and such that'ETA = TAE. Since
B # 0 then A is fully indecomposable and theféfore by Theorem 2.1
there is a number r so that rE ¢ ﬂn. For the remainder of the proof
it may be assumed, without loss of generality, that r = 1 and thus
E ¢ Qn. By Theorem 1.4 ( Birkhoff's Theorem ) there is a positive
integer s, a positive number sequence'{rm}ial, and a reversible

sequence of permutation matrices {P }° . so that 2 r =1 and
n m= m=l m

1

rum = E, Since permutation matrices commute with T, then

m=1 A

mgl rum?A = mzl TArum and therefore since ETA = TAE then

mgl T,r P =T, mgl r P . For m an integer in {1,...,8} let o be

the permutation on {1,...,0n} which defines P .
CASE I, Suppose that E is a primitive matrix, Then by Theorem 2,3
there is a permutation matrix R such that RA is idempotent and hence,
by Theorem 1.5, A = Jn. However, A = Jn contradiéts the hypothesis
that A # Jn and hence there is no primitive matrix which commutes with T,.

A
CASE II. Suppose E is not a primitive matrix. Then by Theorem 1,2
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there is an integer i, and an integer j, so that (E) = 0, By
-]

1o]e
Theorem 1.4, if m is in {1,...,s} then om(jo) # i,. Let ¢ be the set

to which m belongs only if m is the least number in {1,...,s} such

that if q is in'{l,...,s} then oq(jo) = om(j°)f Let |¢| be the

cardinaliéy of ¢. For m in ¢ let Om be the set to which q belongs

only if q is in {1,...,s} and cq(jo) = om(jo). For m iﬁ ¢ let

qéemrq = Ry. Clearly 1, R =1.TJE6, =T, mglrmpmajo =T, mzlrmsom(jo) =
TA m§¢ qéemquCq(jo) = TA mé@Rmaom(jo)' Let A be the set to which j

belongs only if j is in {1,...,n} and there is a number m in ¢ such

that Om(j°) = j. Let |A| be the cardinality of A. If j is in A then

there is only one number m in ¢ so that cm(j°) = j, and if m is in ¢

then there is only one number j in A such that cm(jo) = j. Therefore

Al = _ -1,-1 _
Al = lol. (B8, ), = (@ (F @y ER(6 g% )
~1.-1 -1,-1 _
GEL) g QIR (E @), (8 o g ) " (j‘L‘l(A)Jlo(mem(A)Jo Gy )

-1 -1
GEL ;) QIR )THB), § (ER W), o (5e))

jom 1oi, mEd m
j#ie
JEA
RO (A) ) H T = (e a ]+ xR (A) ™
¥ s § me@ m jom(jo) B'n jEA'mES m jom(jo)
and ET 8, = mleArumGjo = 21TArmao (32) = I, qee TAquO Go) =
SEJT,R 8 () so that (ETcho)io = me¢( b (A) % NOP

k m o (Jo))- )
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B m§¢Rm(jgl(A)jio(A)qu(jo)) - m§¢(jgl (A)jio(A)
' j#io
3t (30)

-1
j Gm(j o) +

W, ; W7 + (4)

-1 -
1,0_(30) Om(jo)io(A)om(jo)om(jo){

R (jEl g B +n ylea(n-2+n
j#ie
J#Um(jo)

@, 18
me¢ g no

If « = 0 then jEA(mgé Rm(A)jOm(jo)) = » and henFe there is

an integer j* in A such that 2 R 1,. =0, If m is in ¢

ARG PY)

then (A):,],c G~ 0 and therefore om(j,) = j“. Hence |¢| =1
mJe

and (E)

34 > 0, If there is an integer j°” in A so that om(jo) = j°-
o

then J© = j°° and hence the j, th column of E is & .« Since E ¢ Qn

J

then the j” th row of E is §, and hence every column of E contains

Jo

a 0 entry. Hence every column of E is a é~vector and therefore E is

a permutation matrix,

a , 1 -
IfafOthenn-1-|[Al+ng+28 2 (5 Rm(A)jcm(jo))
a. 18 . 18 8 -l
n-2+n 'é + a -&. Hence 0 = IAI -1+ n a n jEA(mEQ R (A)Jcm(jo))
18 B
-1+ 280 shaGle B®yo o *als  Ba®yo g, 7
o, (Jo)#] o (3=
18 8 B -l
-1t -ashlaade  Ratale %)
gm(jo)fj Om(jo)=j
18 o -1 _
A}l -1+ =S - ng(m§¢ Ryt ng s Rpd o =

om(j o)?éj Om(jo)'-‘j
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18 ] -1
-~|Al -1+ na jEA( 1- mgé Rm to B mgé Rm ) "=
om(jo)#j om(Jo)=j
18 a -1 __a
IAI-1+EE-jEA(1+(n§-1)m§¢ Rm) .Letx-ng-l.
Um(jo)-j
Then 0 = |A] = 1 4+ (x+ 1) - jEA( l+x ole . R.m)-1 =
o, (Je) = 3
(,|A|-1)(x+1)+1-(x+1)ng(1+me¢ Rm)‘l.
Om(jo)=j
For 2z > -1 let f be the function defined by
£z) = (JA| ~ DG+ 1) +1-(z+1) ERCEP R )L, Then
am(Jo)=j
£7¢2) = (|A] - 1) - jgA(l - ofs Rm)(l tz I, R.m)-2 and
o (3e)=3 o (3-)=3
P . - -3
£2°(2) = 2 jEA(l - mg¢ Rm)(1 +2 m§¢ Rm) mé¢ Rm'
Gm(j o) =3 Um(j o) =j Om(j o)'_'j

Now, since a # d and £f(x) = f(n % - 1) then f(x) = 0 only if

-(TAEG °)i° = (ETAGjo)io. Furthermore, s = 1 only if E is a permutation
matrix, If E is a permutation matrix then s = |[A| = |¢| = 1 and

so £ = 0, If E is not a permutation matrix then s > 1 and ?ence

£(0) = 0, £°(0) = 0, and £°° > 0., Therefore if s > 1 then

(TAFGjo)io = (ETAGJO)i° only if x = 0 and hence only if A = I However,



A=J sontradicts the hypothesis that A # Jn and therefore if
E 1s not a primitive matrix then s = 1 and E is a permutation

matrix,

29
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CONCLUSION

For A a nonnegative n X n matrix, nontrivial examples are given-
to demonstrate the existence of a nonnegative matrix E and a nonnegative

matrix F so that if TA is the Menon operator associated with A, then

ETAF is also a Menon operator. It is conjectured, but not proven, that

if A is a n_Xx n nonnegative matrix with a positive number in each

column, there are not permutation matrices P, and P, and diagonal

1 2
matrices D1 and D2 with positive diagonals such that PIDIAPZDZ is
idempotent, and if E and F are nonnegative matrices such that ETAF is

a Menon operator, then each of E and F is the product of a diagonal
matrix with positive diagonal and a permutation matrix. Theorems
supporting this conjecture are proven which show that if A is a-
doubly stochasgic matrix and E is a nonnegative matrix which commutes
with TA then there is a permutation matrix P such that P EP can be
partitioned into a certain block form, and if A is fully-&ndecomposable
then there is a positive number r such that rE is a doubly stochastic
matrix. It i; further shown that if E is a primitive doubly sfochastic

matrix, A is a doubly stochastic matrix, and E commutes with T,, then

A’
there 1s a permutation martix Q such that QA is idempotent. Finally it
is proven that if A assumes a certain doubly stoch;stic form, then the
only nonnegative matrix E which commutes with TA is a constant multiple
of a permutation matrix, It is also suggested that the technique

used in the proof of this last result might be applied profitably to

a more general case in which A is suitably defined.
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