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ABSTPACT

If A is a nonnegative square matrix and X is a vector, then 

the Menon operator associated with A, denoted by T^, is defined by 

(TAx)i " A close relation 18 known

to exist between doubly stochastic matrices and Menon operators. 

The following problem is investigated: If each of E and F is a matrix, 

when is ET^F a Menon operator? It is conjectured, but not proven, 

that if A is a nonnegative square matrix satisfying certain criterion, 

and each of E and F is a nonnegative matrix such that ET^F is a Menon 

operator, then each of E and F is the product of a diagonal matrix 

with positive diagonal and a permutatibn matrix. This conjecture is 

supported by examples, and also by theorems which show that if A is 

doubly stochastic and ET^ = T^E then either there is a number r such 

that rE is doubly stochastic or there is a permutation matrix P such 

that PtEP can be partitijned into a certain block form. A condition 

is defined on a doubly stochastic matrix which implies that ET^ ■ T^E 

if and only if there is a number r such that rE is a permutation 

matrix
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CHAPTER I

NUMBERS. Let N be the set of all nonnegative real numbers.

It will be convenient to extend N to include » and to order and 

topologize this set in the usual way. Multiplication and addition 

in N will be extended to by the following conventions [1, pg. 34] : 

0 - oos co » o, oo + co » <x>t 0*“ = 0, and if r > 0 then r,0° ■ 00.

It is recognized that multiplication on is not continuous at 0. It is 

understood that each of 0 and « is an alternate symbol for g and it is 

also understood that 0 is not the multiplicative inverse of 0 since

O-O"1 - .0.

i and (A)y = 0 if o(j) t i 

then the corresponding permutation matrix

and n be a positive integer and let Aeach of m

i is

is the element in the i th

>> 0. A is nonnegative

and

/ 0. The transpose0 and A

A is a nonsingular

A

'matrix provided A is n x n and there is a permutation

If a is the identity

denoted by I, is the n x n identity matrix.

MATRICES. Let

be a m x n matrix. If

that (A)^ = 1 if a(j) - 

permutation on {l,...>n}

a on n} such

< ” for i in {l....,m} and

j in in whichprovided 0 < (A)^ < “ for i in {l,...,m} 

case one may write A > 0. A > 0 provided 

of A, denoted by At, is defined by

matrix then A denotes the multiplicative inverse of

in {l,...,m} and j is in {1 n] then (A)^ 

row and j th column of A. A is 0 provided

= (A)44. If

(A)^j “ 0 for i in {l,...,m} and j in {l,...>n}> in which case one may 

write A = 0. A is positive provided 0 < (A)^j 

j in {l,...,n}, in which case one may write A
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p is in {1

each

and represented in block form as

If A is represented in block form then A is said to be partitioned into

1 then A is represented

and if q = 1 then A is represented in block form as

A

A is reducible provided A is a n n nonnegative matrix and there is ax

permutation matrix P such that

and each is irreducible

provided A is a n x n nonnegative matrix and A is not reducible

proof of the following Theorem of Perron and Frobenius is provided

by Gantmacher [2,pg 65]

A pqj

A11

If A is a m x n matrix,

of A^ and A£

m}, q is in {1

fAnl

A , Pl

A1 iq

is a square nonempty matrix, A

Ax 0

8 A2

block form. If p =

n),
P

is a positive integer sequence, = m

PfcAP =

in block form as FA-,...A, IL 11 lqJ.

°f and
q J **

. E, c. = n, then A can be 
j=l 3

THEOREM 1.1.  An irreducible n x n nonnegative matrix A always 

has a positive characteristic number r, which is a simple root of the 

characteristic equation. The moduli of all the other characteristic 

numbers are at most r. A characteristic vector Z, unique to within a 

scalar factor, with positive coordinates, coresponds to the dominant 
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characteristic number r. If in addition A has precisely h characteristic 

numbers Xq ■ r, X^,..., X^ of modulus equal to r, then these 

characteristic numbers are different from each other and are roots of the 

equation X*1 - r^1 = 0, and, in general, the entire spectrum

Xq> •••> i A, when plotted as a system of points in the complex 

plane, is carried into itself when the plane is rotated by the angle

When h > 1, there is a permutation matrix P such that

0 Aq 0 ...0
0 01 A-...0 
• • w Z •

where the 0 blocks on the main diagonal are square.

A is a primitive matrix provided A is an irreducible matrix with 

only one characteristic number having modulus the modulus

of the dominant characteristic number of A. The following Theorem provides 

a useful property of primitive matrices [2,pg 97],

THEOREM 1.2.  A nonnegative n x n matrix A is primitive if and 

only if there is a positive integer p so that A? is positive.

n
A m x n matrix A is row stochastic provided A > 0 and

j=l
<A>lj ■ 1

for i in {l,...,m}. The following Theorem provides a useful property 

of n x n row stochastic matrices [2, pg 100],

THEOREM 1.3.  A nonnegative n x n matrix A is row stochastic if
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and only If the vector 

is a characteristic vector of A, with corresponding characteristic number 1.

For a row stochastic matrix. 1 is the dominant characteristic root.

A m x n matrix A is column stochastic

for j in {l,...,n}. A is doubly stochastic

n
provided A > 0 and

provided A is n x n, A is

= 1

row stochastic, and A is column stochastic. The set of all n x n doubly 

stochastic matrices is denoted by A proof of the following famous

Theorem of G. Birkhoff may be found in [3,pg 98],

THEOREM 1.4.  The set of all n x n doubly stochastic matrices forms 

a convex polyhedron with the permutation matrices as vertices.

The n x n flat matrix, denoted by J , is defined by (J ).. = - * 3 n* 3 n ij n

for i and j in {l,...,n}. A matrix A is idempotent provided A = A.

The following useful Theorem was proven by R. Sinkhorn in [4],

THEOREM 1.5.  A e (2^ is idempotent if and only if there exist 

a permutation matrix P such thatpositive integers n^,...,ng with sum n and
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A matrix A is partly decomposable provided A > 0, A is n x n,

and there is a permutation matrix P and a permutation matrix Q such that

PAQ -
’Al 0 '

B A2

and each of A^ and A2 is a square nonempty matrix. A matrix A is fully 

indecomposable provided A > 0, A is n x n, and A is not partly decomposable.

By convention every 1x1 matrix is irreducible but a 1 x 1 matrix is

fully indecomposable only if it is positive.

If A is an n x n matrix and a is a permutation on {l,...,n} then

the sequence {(A)io(i)}i-l is the dianonal of A corresponding to o.

If o is the identity permutation then the corresponding diagonal is the 

main diagonal. A n x n matrix A is a diagonal matrix provided (A) = 0

if i + j. A is said to have total support if A > 0 and every positive 

element of A lies on a positive diagonal. In [5] R. Sinkhorn and P. Knopp 

prove the following Theorem.

THEOREM 1.6.  A necessary and sufficient condition that there 

exist a doubly stochastic matrix B of the form D^A D2 where and D2 

are diagonal matrices with positive main diagonals is that A has total 

support. If B exists then it is unique. Also, and D2 are unique up

to a scalar multiple if and only if A is fully indecomposable.

VECTORS. Let V be the set of all n x 1 matrices with elements 
00

taken from N^. X is a vector provided X is in V^. If X is a vector then

X is a 0 vector provided X is a 0 matrix, X is a positive vector

provided X is a positive matrix, and X is a nonnegative vector provided
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X is a nonnegative matrix. If X is a vector and i is in ,n} then

(X)^ - If i is in {1,... ,n}then 6^ is defined by “ 1 f°r

1=1 and (6.). = 0 for i / j. e is the vector .?n 6..
j x i'j ' J 1=1 i

OPERATORS. T is an operator provided T is a function with domain 

and range a subset of V . Let X be a vector. The inverse operator, 

denoted by U, is defined by(UX)^ = (X)^ for i in {l(«*«,n}. Let A 

be a n x n matrix such that A > 0. Note that if r is in then UrX =
-L n -1 n -1r •LUX, UU = I, (AUX) = E (A) (X) \ (UAX) = ( E (A) (X) ) ±> if A

J J J J J J

is a diagonal matrix with positive main diagonal then AU = UA , and if A 

is a permutation matrix then AU = UA. The Menon operator associated with 

A [1, pg 34], denoted by TA, is UAtUA. Note that (TAX)^ ”

n 11 —1 —1
(jE^ (A)jj/kljtA), if X is a nonnegative vector and r is a 

nonnegative number then T^rX = rT^X, if A e 0n then T^e = e, and if A is 

the product of a permutation matrix and a diagonal matrix with positive 

main diagonal then T^ = I. The following Theorem provides a motivation 

for the study of Menon operators.

THEOREM 1.7.  Let A be a n x n matrix such that A > 0. There is a 

positive vector X such that T^X = X if and only if A has total support. 

If A has m nonzero rows and if there is a positive number X and a positive 

vector X so that T.X = XX, then mX = n and hence X ■ 1 if and only if A 

has total support.

PROOF. Let m be in (1,...,n} and let A be an n x n matrix 

such that A > 0 and such that A has only m nonzero rows.
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Suppose there is a positive number A and a positive vector X so that

T^X = AX. Since T^X is positive then each column of A contains a 

positive number.

’(UAX)1 0 ... 0 (X)1 0 ...o'

Let D^ = o (uax)2 ... 0 and D^ =

o • •

C
M 

s* * 

o • •
• • • • • • •
0 0 ... (UAX)n< I o 0 ... (X)J

n n
Let i be in '{l,...,n}. Then ,E1(DnAD0).. = .E.(UAX).(A)..(X). = 

* ’ j=lx 1 2zji j=ls ji i

n n n n n n
.E. ^.(Dr). , Iq(A) .(DO.. = 2,(00. .2-(A) . .EjDO,.j=1 s=l 1 is k=l sk 2 kj s=l 1 is k=l sk j=l 2 kj

n n
(BPn kS1<Ahk<D2)kk- Si-Uarily 1 - J1<A)ik<D2)kk. Thus

(^/A) ( E (A) (X) )"n * * * 1)"1(X). = (T X)"1(X) . = A"1, and if the j—
J—J- Ji J”i JK K X A 1 1

n n
row of A is not O then ^E-CD.AD-).. = .E-(UAX).(A)..(X). = (AX). = 1. j=l' 1 2'ij j=ls i ij j 'i

n n n n
Thus . E- . E.. (D-ADn) . . = m and 1=1 j=l 1 2 ij x jh A'Wu = m. Hence mA = n so

that A = 1 only if each row of A contains a positive number. If A = 1

then T X = X so that D-AD- e fi and hence, by Theorem 1.6, A has total A 1 2 n 1 •* *

support. Now suppose A has total support. By Theorem 1.6 there is an 

n x n diagonal matrix and a n x n diagonal matrix D^, each with a

positive diagonal, such that D'AD^ e 0^. Let the vector X" be defined

by (X) . = (DO . . and let J 1 2 n

Then D^AD' is row stochastic.

'(UAX')1 0 ... 0

0 (UAX')2 ... 0

0 0 ... (UAX') n-'
n

Hence 1 = . E_ (D'ADO .. = j=l 1 2 ij
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” (DPii and D3 = Di* T^1US D3AD2 e fin and ^ence 1 =

n n n n - 
j^lC^Pji " jIl<UAX'>j (AjjiCXOi - <jI1(A)ji(kE1(A)jk(X')k)-1)-1(XOi

(TaX>)71(X')4. Therefore TAX - X.
All A

The following examples substantiste Theorem 1.7.

:..L EXAMPLE 1. Let A - ? ? X = H-L and X - 2. Then T.X - 
L* J ”

XX, m - 1, n = 2 and hence Xm - n. Note that X/1 and A does not have 

total support.

EXAMPLE 2. Let A e $1 . Since Ae = Ate = e. then T.e = e. 
n * A

Furthermore, since m = n = X ■ 1 then Xm = n. Note that X = 1 and, by

Theorem 1.6, A must have total support.

Brualdi, Barter and Schneider [1, pg 42] proved the following 

useful Theorem.

THEOREM 1.8.  If A is fully indecomposable then 1 is an eigenvalue 

of T^ with unique eigenvector X, and furthermore. X is the unique positive 

eigenvector of T^.

Theorems 1.6 and 1.7 clearly imply that A is a fully indecomposable 

matrix if and only if there is a positive vector X which is an eigenvalue 

of T^ and X is unique to within a scalar multiple.
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OPERATORS OF THE FORM ET.F.A

EXAMPLE 3. Suppose A is a n x n matrix, A > 0, and there is a 

nonsingular nonnegative matrix E and a n x n nonnegative matrix B such 

that E ^T.E = Tn. Then T.E = ETn and hence if B has total support then 
AB AB

there is a positive eigenvector X of T_ so that EX is a positive D

eigenvector of T^, and thus A also has total support.

The above observation, along with a prevaling interest in doubly 

stochastic matrices, encouraged an interest in the following problem.

PROBLEM 1. Let n be a positive integer and let S be the set to which 

T^ belongs only if A is a n x n nonnegative matrix and T^ is the Menon 

operator associated with A. For T^ In S, under what conditions is it 

possible to find a matrix E and a matrix F so that ET^F is in S?

While the solution to Problem 1 has proven to be quite elusive, 

certain related questions have yielded answers.

EXAMPLE 4. Suppose A is a n x n matrix such that A > 0. Let P 

be a n x n permutation matrix and let D be a diagonal matrix with 

positive main diagonal. Since PU = UP and DU ■ UD then

(i) T - UA^JA
A

= UAt(DPt)(PD*1)UA = UAtDPtUPDA = TpDA

- UAt(PtD)(D~1P)UA = UAtPtDUDPA = TDpA

(ii) PDTa - PDUA UA = PDUA UA(D'*1P ) (PD) -t t t
A 

(UPD~1AtUAD-IPt)PD = T . PD - T -PD 
ad"p A(PD)
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(iii) DPT. - DPUAtUA = DPUAtUA(PtD"1)DP = (UD'^A^AP^-bDP = 
A

T -DP = T .DP.
APD A(DP)

Hence (iv) IA - IpDA - IpA - TDA

(v) (PD)T (FD)-1 - T i*T t
A A(PD)" (PD)A(PD)

(vi) (DP)T (DP)"1 - T - T
A A(DP)" (DP)A(DP)"1

Consideration of (iv) above demonstrates that T. = T_ may notA B

imply that A - B. In fact, R. Sinkhorn (unpublished papers) has proven

that if A £ 0 and B n e fl then T. ■ T_ if and only if there is a n A B J

permutation matrix P such that A = PB.

EXAMPLE 5.

1 4 O' 1 0 o'
If A = 2 5 0 and E = 0 10 • then ETa » T.

3 6 0 111 A A
* r

EXAMPLE 6.

and hence if each of a and g is a

number and E =
a a 0
a a 0 
0 0

then ET. = T.E.A A

EXAMPLE 7. If A is the product of a diagonal matrix with 

positive main diagonal and a permutation matrix then = I and 

hence if E is a matrix then ET^ = T^E. In particular, if E is 

nonsingular then ET^E = 1^.
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integer

0 0

0
A =

0 0

then is a sequence of matrices such that

(1if i is in

0
E =

0 0

then

The above examples have suggested the following unproven

conjecture

CONJECTURE. Let A be a nonnegative n x n matrix with a positive ■

number in each column, and suppose A is such that if each of

is a diagonal matrix with positive main diagonal and each of

If each of

operator.

main diagonal and a permutation matrix

The theorems in the following chapter provide limited support 

for the conjecture

mSJ

E s

TA

m2

E2

nil 

0

T^E. In particular

E and F is a nonnegative matrix such that ET^F is a Menon 

then each of E and F is the product of a diagonal matrix with a positive 

sequence of flat matrices, and

is a permutation matrix then P^D1AD2P2 is not idempotent

= A. Hence if {E.}®

P^ and P2

and

sequence, is a

if E is nonsingular then ET^EetaA

EXAMPLE g« If s is a positive integer, is a positive

s} then E^

E1
0

e fi , and 
mi 
0 ... 0
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CHAPTER II

MATRICES WHICH COMMUTE WITH MENON OPERATORS. If A is a n x n 

matrix with total support then by Theorem 1.6 there is a diagonal matrix 

and a diagonal matrix D2, each with a positive main diagonal, so

that D1ADO e fi . Hence D„^T.D_ = T_. and therefore if there is a
12 n 2 A 2 ^AD-

12 -1 
matrix E which commutes with T_ then D_ED„ commutes with T., ThisDjABg 22 A

observation, and the search for the solution to Problem 1, encouraged

an interest in the following Problem.

PROBLEM 2. If A e fi and E is a matrix such that E > 0, under n *

what conditions does E commute with T.? A

The following theorems investigate Problem 2.

LEMMA 1 TO THEOREM 2.1. If A is a fully indecomposable matrix 

then A?"A is irreducible.

PROOF. Let A be a fully indecomposable matrix and suppose that 

A^A is reducible. Then there is a permutation matrix P, a positive 

integer n^, and a positive integer ng so that

pVap = ° ,

a21 22

A^^ is n^ x n^, and Agg is ng x rig. Partition AP into

F11 F12

F21 F22

so that F^i is n^ x n^. Then
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= 0. Since A isSince

fully indecomposable then AP is fully and therefore thereindecomposable

is an

= 0 for

indecomposable then

contain a positive element

then rows of are 0 and

element.contain a positiverows

contain a positiverows

ofrows

which contain a positive element. Hence there is a permutation matrix

Q so that QAP can be partitioned into

0

F11

41
f

11 12

B11 
0

F21

r22

there are m^

Thus, since there are m2

B22j

= 0 and F^1F22

a positive element and only m2 rows

0. Since

(AP)^ =

integer i^ and an integer so

of F2i which

that there are only m^ rows of F^2 which contain

F^2 which

F F*21 *22

F F*11 *12

element. Since there are m^ rows of

of F^^ which

F^ which

F21F22 ~ ° then F11F12

t" t" t*
<F11F11 + F21F21> <F11F12 + F21F22>

t* f t t*
^F12F11 + F22F2p (F12F12 + F22F22)

of F^ which contain a positive

F*11
F21

Similarily, there

/ 0. Since F21 F22 = 0

F*" F = 0
*11*12

m2 in {l,...,n2l so

therefore the i2th row of F22 is 0. Since A is fully 

there is an integer m^in {l,...,n^} and an integer

element then there are n^ - + m2

that (F )
I3!

{l,...,n^}. Thus

and so that is (n^ - m^ + m2) x n^. Since A is fully indecomposable 

then n1 - m. + m_ / n.. If n - m. + m? < n.then there is a positive
JL JL JL

hence there are n^ - m^

nl t
then kh (Fn)ik(Fi2>kj1 ’ 0£or 1 In

i in {l,...,n^} and therefore the i^th row of 0.

is an integer i„and an integer so that (F91). .
n2 . 1232

then E ^F2pi k^F22^ki = 0 for J in ...........n2^* Thus ^F22\ 1 = 0 for
2 3 23

3 in {1,...,n2} and
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Integer k so that + k ■ n.p Since QAP can be partitioned into

B11 B12

.° B22.

so that is (n^ - + k) x n^, then A is not fully indecomposable.

But this contradicts the hypothesis that A is fully indecomposable and

therefore n^ - m^ + m^ X n^. If n, - m + m„ > n, then n„ + hl - m„ < n9 X A 2» * Zi X.

and hence there is a positive integer k so that n^ + + k =

Since QAP can be partitioned into

B21 B22

=11°

so that B£2 is + m^ - m2 + k) * n2» then‘A is not fully indecomposable. 

But this contradicts the hypothesis that A is fully indecomposable and 

hence n^ - m^ + m2 X n^. Thus m^ and m2 do not exist and therefore A^A 

is irreducible.

Note that if

then A is irreducible but AfcA is reducible. Hence it is not true in general 

that M A*A is irreducible whenever A is an irreducible matrix11.

LEMMA 2 TO THEOREM 2.1. If A is an irreducible matrix in 0 and —----------------------------------------- n---------

—E—is a matrix such that E > 0 and EA = AE then there is a positive number

r such that rE e 0 .- -------- n

PROOF. Let A be an irreducible matrix in 0^ and suppose that there

is a matrix E > 0 and EA = AE. Since E > 0 then Ete > 0, and since EA = AE
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then AtEte = EtAte = Ete. Thus Ete is a characteristic vector of A*"

corresponding to the characteristic number 1. Hence by Theorems 1.1 and 1.3 

there is a positive number r such that rEte = e. Therefore rE is column 

stochastic and so .L r(E)..
i=l j=l 'ij = n. Similarily AEe = EAe = Ee and thus

there is a positive number r" such that r^Ee = e. Therefore r^E is row

stochastic and so r'(E).. = n. Therefore r' = r and rE £ R .
j=l i=l ij n

THEOREM 2.1. Let E be a nonnegative matrix with a positive number 

in each row. If A is a fully indecomposable matrix in and ET^ = T^E 

then there is a real number r so that rE e R , EAtA = A^AE. and 

E^KA^)2 - A^] = (A^)2 - AfcA.

PROOF. Let E be a nonnegative matrix with a positive number in

each row. Suppose A is a fully indecomposable matrix in and suppose

ET. = T.E. Then ET.e = T.Ee and since A e R then T.e = e so thatA A A A nA

T.Ee = Ee. By Theorem 1.8 there is a real number r so that rE is row A

stochastic. For the remainder of the proof it may be assumed, without

loss of generality, that E is row stochastic. Let i be in {1 n}

and let X be a vector. Since (ET.X). = (T.EX). then A i A i

J/E). (J/A). Gt(A).. (X).)"1)"1 = (.S1(A)..C?1(A).. ?.(E) (X) I-1)"1. 
m=l im j=l jm k=l jk k j=l ji k=l jk m-1 km m

Let s be in {l,...,n}. Since

3 (ET.X). 3 (TEX).
A i A 1 

3(X) " 3(X)
s s

then
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3(ET X)
^k»l  ̂jk^ks^ * Hence evaluating —— at X - e gives

aCE^x)^

3<X>fl s x=e

a(TAEX)i

3(X><, Y-as JX=e

so that

?.(E). .^(A). (A). = (.?1(A)..(.?1(A).. ?.(E). )-1)"2- 
m-1 im j-1 jm js J=1 Ji k=l Jk m=l km

^(A) kCE)^). Hence (EAtA)lg - (T^e) ^(A^)^ so that 

(EA^A), ■ le(AtAE). and thus EAtA = A^AE. Therefore by Lemmas 1 and 2 
is is

to Theorem 2.1, E e $2^. Let u be in {l,...,n} . Then 
2

3 (T EX)
^7vV - [(-2)(.?1(A)..(J1(A)..J1(E),(X) )"1)-J( § (A),.(-1)- 

j=l Ji k=l jk m=l km m j=l Ji

(. ?. (A) ? <E)Vin<x)m)"2(vi1 (A) .. (E), )) ( .?. (A) .. (.?. (A) .. ?. (E). (X) )"2-
k=l jk df*! km m k=l jk ku j=l ji k=l jk m=l km m

(A(A)1i<A(A)1k(E>k<1><-2><A(A)lk m5l(E)lnn<X>ra>'’3<kSl(A)l1t(E)kn»l- 
j—1 jl k=L jk ks k=l jk m=l km m k=L jk ku

a (ET.X), -
tad a(x)ua(x)g* 1

<k$l<A> jk<X>k>"2<A> ju> (jSlW j„<A> js<kil<A> jk<X>J>"2> +

<jSl<A) j„< Jl<A)Jk(X)k)"1)'2<^l(A)j„(A>Js<-2) < Jl<A)jk<X)j)"3(A,ju) 1 •

Hence evaluating

2 
r(ET.X) 

A 1 flt- y 
a(x) a(x) 

u s
e gives

2 a^ET^i

a(x) a(x)au s^ X=e

2a (taex)1
a(x) a(x) v u s]X=e

so that ?.(£).[(.?. (A). (A). )(.?.(A). (A). )-(,?.(A). (A). (A).)] - 
m=l im j-1 jm ju j-1 jm js j=l jm js ju
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k=l(A)jk(E\u)(j=l^A)ji k=l^A)jk(E)ks) “ (j=l(A) ji/k=L(A) jk^ki? ’

(Jl^jk^ks^- Hence (AtAE)lu(AtAE)ig - j?1(A)jl(AE)Ju(AE)js -

?,(E). [(A^) (AtA) - .?1(A). (A). (A). ]. Since 
m=l im mu ms j=l jm js ju

J, 
1=1

2 9Z(ET.X).
A 1 =J1 

X=e 1 x

2 
d'XT .EX),

A 1

X=e
3(X) d(x) u s 3<X)U8(X)S

then ((AtAE)t(AtAE))us - ( (AE)t (AE) ) ug - ( (AtA)t (AtA) ) ug - (AtA)ug 

t f *1 f f 2 fso that E [(A A) - (AtA)]E = (A A) - (A^A). Therefore 

E^KA^)2 - (A^)] - (A^)2 - (A^).

THEOREM 2.2. Let E be a nonnegative matrix with a positive number 

in each row. If A is a partly decomposable matrix in 0^ which is not a 

permutation matrix and ET^ = T^E then there is an integer s in {2,...,n-l}, 

a positive integer sequence such that ?^m^ = n, a, permutation 

matrix P such that

[Eu E12 - Els'

ptfip =
E?1 E22 E2s

A a •
• • •

Es2 '** Ess

and E.. is m. 
------ ij — i x m^ a s x s matrix R and a s x s matrix C such that each

2X. an(* (c)<4 is a positive number such that (R) . .m. = (C) ..m. and 
ij ij — r ■ ij i 1 j J -------

- such that if E
ij

/ 0 then <8)^5^ is row stochastic and (C) E is

column stochastic.

PROOF. Let A be a partly decomposable matrix in which is not 

a permutation matrix. Then there is a permutation matrix Q, a permutation 

matrix P, a positive integer sequence such that
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QAP =

'Al°

Esl Es2 ••• Ess

0 A2

0 6

0 ’

0

As

e and A^ is fully indecomposable,Since A is partly decomposable 

then s > 1. If s = n and A e then A is a permutation matrix and thus, 

since A is not a permutation matrix, then s < n. Therefore s is in 

{2,..,,n-l} and n _> 3. Let E be a matrix such that E > 0, each row of 

E contains a positive number, and such that ET^ = T^E. Then 

PtEPUPtAtQtUQAP = UPtAtQtUQAPPtEP and so PtEPTQAp = T P^P. Partition 

P^P into

E12 -• Els

E21 E22 E2s

Esl Es2 Ess.

so that E., is m. x m. 
ij i j

Let the vector X be partitioned into

X s

so that X^ is m^x

E11 E12 Els

E21 E22 E2s

1. Then PtEPT^AT1X = 
QAP

E11 E12
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and T-.-P^X = U 
QAP

'aJ 0 ...0* 

0 ... 0

6 6 ... A*2
SJ

Ax 0

0 A.

6 6

'Al°

0 A2

6 6

- °HJiEikxkl

TA2k-lE2kXk

TA kMsA

s '

Let i be in {l,...,s}. Then JAkX^ • X kli'iA- Let Xbe the

then is positive. Since A^ is fully indecomposable then by

e - vector of length m, . Since A, e (1 then T. e ■ e and thus 
k K m,_ A,, m,. hl

i? nE.,e « T, . ?,E., e . Since each row of E contains a positive number 
k*1 iknx A^ k=l ik m^ r

Theorem 1.8 there is a positive number r. so that r. . ?,E., e = e
r • i i k=l ik m, i

Therefore there is a positive number sequence so that

r^fEj^^ ... EisJ is row stochastic. Let g be in {1, ,m^}. Then

.(jAkX^g * Jl u^(Ejk>gu<v^(Ak)vu<qK(Ak)vq<Xk)q)'1>"1- Let be

in {1, ,s} and let w be in {1, nij }. Then

3<kZiEikXVg

3«?«
Jl Jj(E3k’gu<-1> <Ji<Vvu(q^<Ak)vq<Vq)‘1)'2-

UiA’vu'-1’ (qS<Ak’vq<Vq>’2<q^'Ak>vq^ »' 

I yw
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-2

3<yq n , 4 v „ 3(JiEikTAtVg
Since - = 0 unless j = k and q = w then k =

3(Xj)w d(Xj)w

„£l<Elj>eu<J1l(Aj)vu<q^l<Aj)vq<X?q)"1)"2(vIl<Aj)vu<qZJL<Aj)vq<Xj)q)"'<Aj)vw)

Thus

3(.?.E.,T. X.) 
k=l ik A, k g

9(X.) X-e j w J j

Simllarlly dA k§IElkXk>g -

Ei(Aj (A.) - (E, .AX)
u==l ij gu v=l j vu j vw ij j j gw

( eJ(AJ ( E*(A.) . 2. E^(E.. ) (X, )
v=l i vg q=l i vq k=l u=l ik qu k u

3CIA.k-lElkVg m m a wk -1 -2
--------hij---------------Jl ujl^lk’qu^? > '

J w

<^(Al>vg<-1)<qri<Al)vq kll uK<Eik)qu<Xk)u> <q£i<Ai>vq Jl Jl^lk’qu

3(Xk)u mi mi a “k -1 -2
»(^;» " <^<Al)vg(q^(Al’vq kll uS(Elk>qu<Vu> > '

mi a “k -2 mi( lt(A.) ( E;(A.) .2, E?(E,,) (X.) ) Z( E,(A.) (E._) )).
'v=l i vg q=l' i'vq k=l u=l ik qu k u q=l i vq ij qw

3(TA1k!lElkXk)8
m4 . inj _1 .1 -2Mi(Al)vg(q=4(rP (APvq> ’

in. m. . » m, b. m.
<vll<Ai>Vg‘q5i<rP “i’vq’ <q^<Al>vq<El?qw» * V^i^l’vg q£l<Al>vq<Elj>qw

then by Theorems 1.1 and 1.3 there is a positive number (R)^j so that 

(R)..E.. is row stochastic. Furthermore, since A^A.E^. = E^.A^A^ then

(AjA.E,.) . Therefore E..AaA. ■ A^A.E... Now suppose E.. / 0. By
i i ij gw ij j j i i ij ij

Lemma 1 to Theorem 2.1 A.A^ is irreducible, and since E,.e ■ A^A.E.4e
i i ■ ij m^ 1 1 ij Bj

A^A.E4.e = E4.e and so there is a positive number (C).. so that 
j j ij “i 1J “i ij
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(c)ljElj is column stochastic.
m m

Since I, q=l v=l (R),.(E, .) = m.
ij 1J vq j

m. m
and Ei E, (C)..(E..) = m. then (R).,m. = (C)..m,. Hence there isv=l q=l ij ij vq i ij i ij j

a s x s matrix R and a s x s matrix C such that if each of i and j is

in {1, ,s} then each of (R)^ and (C)^ is a positive number ,

and if E., 0 then (R)..E..
ij ij ij

is row stochastic and

(cVij is column stochastic.

LEMMA 1 TO THEOREM 2.3. If A is a matrix in fi such that —-----------------------------n-----------------

AfcA is idempotent then there is a permutation matrix Q so that

QA is idempotent.

PROOF. Let A be a matrix in fin and be such that AfcA is idempotent

By Theorem 1.5 there is a positive integer s, a positive integer

sequence such that m^ = n and a permutation matrix P such

that

J 0 ... 0
ml

P^AP - 0 J ... 0
”2

0 0 ... JmSJ

Partition AP into

ed
 

tri
 

to
*

01
 

• •
 • 

M
 

H
to

 
to

 
to

to
 

. .
 . 

NJ
 

H
N

J 
N

J 
N

J

W
 

to
 

to
to

 
• •

 • 
N>

 
H

to
 

to
 

to

so that B.. is m^ x m 
ij i j Let each of i and j be in {1, ,s}.
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Let k be in {1

let w be in {1Let v be in {1

and thus there is a permutation matrix R such that RAP can be 

partitioned into

0 0

0

00

C. contains only

the rank of A then the rank of

to 1. Therefore since the rank ofgreater than or equal

RAP is s

m.e

cs

C2

B , si

so that f^

m^ columns. Suppose has

of is

s} and suppose that i / j. Then . = 0.ki kj 

and suppose that

so that > 0 and

E,(C) = m.=1 i vw i

then (B^ ) = 0 and thus the v th row of B is 0. Since
ki gv — ki

A is s. Since > 0 then the rank

Then , ?_B, .B, . 
k=l ki kj

»li

B2i

then the rank of C. is 1 and thus C. = J . Hence RAP 1 i

Since the rank of PtAtAP is

, §_b5,B. . = J then 
k=l ki ki m.

f m
e 0 then S, E.(C.) = f. andn w=l v=l i vw i

0 matrix of size m. x m. if i 1
i j J

0

J if i = j 
mi

f^ rows. Since RAP

^kj’vw + °- Let 8 be ln ..........."l1- S1Me u$l<Bkl)gu<Bkj>u„ ■ 0

cC1
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is idempotent and therefore P(RAP)Pt = PRA so that (PR)A is idempotent.

THEOREM 2.3. If E is a primitive matrix in A e 0^, and ET^ = T^E 

then A1"A is idempotent and so there is a permutation matrix Q so that QA is 

idempotent.

/
PROOF. Let A e let E be a primitive matrix in £1^, and suppose 

that ET^ = T^E. Let m be a positive integer and suppose that Em ^T^ = T^Em 

Then EEm-1T = ET.e”-1 = T.Ee”1""1 and thus E^T. = T.E™. Since E is a 
AAA A A

primitive matrix in then 1 is a simple characteristic root of E and

is the dominant root of E. Thus if X is a characteristic root of E, not 1, 

then lx I < 1, and therefore Em exists and has rank 1. Let a be a
* m 60

positive number and let i be in {l,...,n}. Then there is a positive integer

q such that E™)^! < a and

I < “• Hence Em e fi and
j-1 ij j-1 m ■* 00 ij 1 m 00 n

therefore 1^in Em = J . Since llm e'V = 11In T.Em then J T = T.J . 
m ->■ ” n m -> » A m -*■ 00 A nA An

Let X be a vector and let each of u and v be in {l,...,n}. Then

W - V 5 - < 1 Ji<»kTAe - ( s Ji<x>k>e-Slnce

32(JnTAX>l] 82<IAJnX)l) 32<Jl<^l<A>1„<Jl<A)1kWk)"l>"l>

a<X>v8(X)Jx-e " 3<X)v8(X>uJx=e »U)v3<X)u Jx.e

32<^i<x>w>
d(x) d(x) v v u ]X=e

Thus
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3(v?l<-»(1?l(A)1w(k?l<A)1k<X)k)-l)-2(1?l(A)1w(-l)(k?l(A)1k(X)k)-2(A)1u)) 

a(x)v

= <«;)x.= ‘ ThUS Ul("2)(J-l<A)jw(kSl<A)jk<X>k)"1>73-

•(J?l<A)jw<-l)(k?1(A).k(X)k)-2(A)jv)(j$1(A)jw(kSl(A)jk(X)k)-2(A)ju) +

Jl<Jll(A)j„<J1<A)Jk<«k)’1>’2<3ll<A>j„(A)ju<-2)(kSl(A>Jk(X)k)’3(A>JvJx.e-°-

Thus ju(A)jv. Thus

? (AtA) (A^) = (A^) so that ((AtA)AtA) = (AfcA) . Hence
w=l wv wu vu vu vu

t 2 t(A A) = A A and therefore by Lemma 1 to Theorem 2.3 there is a permutation

matrix Q so that QA is idempotent.

Theorems 2.1, 2.2, and 2.3 investigate Problem 2 under somewhat 

general conditions. The following theorem considers Problem 2 for a 

case in which A is more specifically defined than in previous theorems. 

Since it is well known, i.e. Birkhoff’s Theorem, that if A £ fi then 

A is a convex combination of permutation matrices, then the theorem 

to follow may point the way to the total solution of Problem 2,

THEOREM 2,4. Let Q be a n x n permutation matrix, let each of 

a and B be a nonnegative number, and let A = BJn + (a ~ ~ B)Q be a 

matrix in 0 which is not a permutation matrix or Jn» If E is a 

nonnegative matrix such that each row of E contains a positive number, 

then ET^ = T^E if and only if there is a number r so that rE is a 

permutation matrix.
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PROOF. Let Q be a n x n permutation matrix, let each of a and 

0 be a nonnegative number, and let A « + (a - be a matrix

in which is not a permutation matrix or Jq. Since A e 0^ and A 

is not a permutation matrix then n > 1, 0 > 0, and if n = 2 then a 4 0. 

Slnce T(W +(«-1b)I) ■ ”<8V(“-l6)I)(it,iD<6Jn+(a-l6)I) - 
n n

U(0J +(a--0)Q)tU(0J +(a--0)Q) = T. then it is sufficent to prove the 
n n n n A

theorem for Q » I.If there is a number r and a n x n matrix E so that 

rE is a permutation matrix then clearly ET^ = T^E.

Now suppose there is a nonnegative matrix E such that each 

row of E contains a positive number and such that ET^ = T^E. Since 

0^0 then A is fully indecomposable and therefore by Theorem 2.1 

there is a number r so that rE e For the remainder of the proof

it may be assumed, without loss of generality, that r = 1 and thus 

E £ By Theorem 1.4 ( Birkhoff’s Theorem ) there is a positive 

integer s, a positive number sequence an<^ a revers^le

sequence of permutation matrices so that 5^ r^ = 1 and

2, r P = E. Since permutation matrices commute with T. then 
m=l mm .A

2. r P T. ■ 2- T.r P and therefore since ET. = T.E then
m=l m m A m=l A m m A A

2- T.r P « T. 2_ r P . For m an integer in {l,...,s} let o be 
m=l A m m A m=l mm ’ m

the permutation on {l,...,n} which defines P^.

CASE I. Suppose that E is a primitive matrix. Then by Theorem 2.3 

there is a permutation matrix R such that RA is idempotent and hence, 

by Theorem 1.5, A = Jn. However, A = contradicts the hypothesis 

that A + and hence there is no primitive matrix which commutes with T^.

CASE II. Suppose E is not a primitive matrix. Then by Theorem 1.2
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there Is an integer i0 and an integer j0 so that (E) = 0. By
i©J o

Theorem 1.4, if m is in then a^Cjo) io. Let <1> be the set

to which m belongs only if m is the least number, in {l,...,s} such

that if q is in {1, s} then a (jo) = G (jo). Let q m
14* | be the

cardinality of For m in $ let 0m be the set to which q belongs

only if q is in {l,...,s} and a^Cjo) = am(jo). For m in 4> let

En r = R . Clearly EA R = 1. 1^6, = T. Lr P 6, = T. Lr 6 .
qe0 q . m j me$ m A 1O A m=l m m j0 A m=l mo (j0)m m

T, E, EA r 6 z. x = T, E.R 6 ,. x. Let A be the set to which jA me$ qe0m q Oq(jo) A me$ m o^j,)

belongs only if j is in {l,...,n} and there is a number m in $ such

that am(jo) = j. Let |A| be the cardinality of A. If j is in A then

there is only one number m in $ so that a (j 0) = j, and if m is in 4> 
m

then there is only one number j in A such that am(jo) = Therefore

|A| = |$|. (T.E6. ). = (4L(A).. CSjA)., E.R (6 .)1)~1)~1 =
11 1 1 A jo'io J=lv /jioxk=lx 'jk mc4> mx a^jo) k'

(.^(A),. ( E R ,?1(A).1(6 /4 J.)"1)"1 = (4?1(A).. ( EaR (A). 0"1)"1
xj=lx /ji<»xme4 m k=lx /jkx ^(jo) ky xj=lx 'ji, me<t> mx jc^Cjo)

(.21(A)4. ( E.R (A)4 ,, x)-14-(A). . ( E.R (A). .. J-1 +
J=1 jio m j^Cjo) ioio m ioam(j0)
j/io
j M

4E.(A)4. ( E.R (A). x)"1)"1 = (n-l-|A|+n|+- .E.( E.R (A). x)"1)"1,
jeAx yjioxme$ mx jam(jo) 1 1 B n j'eA'meG mx 3^(30) *

and ET.6. = ?_T.r P 6 = Ll.r 6 ,4 x = E. E_ T.r 6 ,. x =
A 30 m=l A m m jo m=l Ama (jo) mE4> qe0 A q a (30) m m q

e*TaR 5 z. x so that (ET.6. ). = !.(.?. (A).. (.?. (A).,R 6 x)"1)"1
m£» A m om(jo) A 30,i0 mE»x3=lx z3io k=lx '3k m am(3o)
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= E.R (.SjA).. (A)?1 J"1 = E.C.^ (A)., (A)"1 x +
me«> m j=l jio Jam(jo) met j=l ji0 .ja^jo)

am(je)/j am(jo)=j

j^io

(A), . (A)7\ x + (A)^ x . (A)"1,, x a"1 =

E R ( ? -2 +n - + - - )“1 = ( n - 2 + n - )“1.
ni£$ m j=l ng g n a g n a

j^io 
j^Cjo)

If a = 0 then .E.( I. R (A). x) = 00 and hence there is jeA\nE<I> tnx 'jo (jo)

an integer I" in A such that E. R (A)., = 0. If m is in $6 J me<i> nT j o^j.)

then (A) = 0 and therefore o^Cjo) = j'« Hence |*| = 1

and (E) , > 0.
j Jo

If there is an integer j'"’ in A so that am(jo) = j"*^

then j" = j""* and hence the jo th column of E is 6 Since E e fi n

hence every column of E containsthen the jx th row of E is 6. and 
j o 

a 0 entry. Hence every column of E is a 6-vector and therefore E is 

a permutation matrix.

If a 4 0 then n-l-lAl+n^ + ^g 4E.( E. R (A) . J-1 =
1 1 g n jeA me$ m jom(jo)

n-2 + n2 + H, Hence 0 = I Al - 1 + i - - - .E. ( E. R (A) . ,. a"1
g n a 11 nan jeA meG m jom(jo)

lAl - 1 + R ! - ! VA>ja (j.) +mi» VA)j= (j.)1"1 ■

-VJ-W "

| A | - 1 + i - - - .E.( - E. R + E. R )"1 =
11 nan jeA n mev m me1? m

|a| - 1 + - - - .E.( E. R + n E R )“1 =
h a jeA me4> m g me4> m



28

^(jo)^ Om<je)a,d

|a| -14-15- r ( 1 4- ( n 2 - 1 ) r r )-1. Let x = n - - 1.
11 n a jeA B met m B

Then 0 - |A| - 1 + (x + 1) - ^A< l + .J, R^"1 -

om(J.) - j

( ,|A| - 1 )( x +1 ) + 1 - ( x + 1 ) j?A( 1 + x mZt Rm )-1. 

am(Je)«j

For z > -1 let f be the function defined by

f(z) - (|A| - l)(z + 1) + 1 - (z + 1) .SA(1 + z V"1- Ihen

f-(z). (|A| -1) yat.j, y"2 and

V-loM

—3
f "(z) - 2 jiA(l - J, Rm) (1 + z Rm) nh Rm.

Now, since a / 0 and f(x) = f(n 2 - 1) then f(x) = 0 only if 
p

(ET 6. ) . Furthermore, s = 1 only if E is a permutation
A jo io

matrix. If E is a permutation matrix then s ■ |a| = |<t>| ■ 1 and 

so f = 0. If E is not a permutation matrix then s > 1 and hence 

f(0) = 0, f'’(0) = 0, and £" > 0. Therefore if s > 1 then

^21. - (ET 6 ), only if x * 0 and hence only if A = J . However 
A J o io



A ■ Jn sontradicts the hypothesis that A and therefore if

E is not a primitive matrix then s = 1 and E is a permutation 

matrix.
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CONCLUSION

For A a nonnegative n x n matrix, nontrivial examples are given- 

to demonstrate the existence of a nonnegative matrix E and a nonnegative

matrix F so that if T.
A

is the Menon operator associated with A, then

ET^F is also a Menon operator. It is conjectured, but not proven, that

if A is a n x n nonnegative matrix with a positive number in each 

column, there are not permutation matrices and P^ and diagonal 

matrices and with positive diagonals such that P^D^AP2D2 is 

idempotent, and if E and F are nonnegative matrices such that ET^F is 

a Menon operator, then each of E and F is the product of a diagonal 

matrix with positive diagonal and a permutation matrix. Theorems 

supporting this conjecture are proven which show that if A is a • 

doubly stochastic matrix and E is a nonnegative matrix which commutes 

with then there is a permutation matrix P such that P^P can be 

partitioned into a certain block form, and if A is fully indecomposable 

then there is a positive number r such that rE is a doubly stochastic 

matrix. It is further shown that if E is a primitive doubly stochastic 

matrix, A is a doubly stochastic matrix, and E commutes with T^, then 

there is a permutation martix Q such that QA is idempotent. Finally it 

is proven that if A assumes a certain doubly stochastic form, then the 

only nonnegative matrix E which commutes with is a constant multiple 

of a permutation matrix. It is also suggested that the technique 

used in the proof of this last result might be applied profitably to 

a more general case in which A is suitably defined.
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