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ABSTRACT 

Deformation bands are common structures in faulted porous sandstones and are interpreted to 

represent zones where petrophysical properties within the band are different from the host rock. 

Porosity within the deformation band may be enhanced or reduced depending on the band type. 

Previous studies show that porosity has a negative correlation with rock velocity. This study 

investigates the relationship between velocity and porosity of sandstones that contain zones of 

deformation bands. It aims to provide the connection between petrophysical and elastic 

properties associated with deformation bands. This work incorporates outcrop studies as well as 

field and laboratory measurements of Jurassic Entrada sandstone in north-central New Mexico. 

Thin section observations of the deformation bands from the study area show that the bands 

consist of mostly quartz grains and have the same mineralogical composition as the surrounding 

rock. The porosity within the band is reduced relative to the surrounding rock. The decrease in 

size and sorting of the grains within the band is also observed. Previous workers, who have 

described the deformation bands with similar properties, have explained the formation of these 

deformation bands through the process of cataclasis which involves grain crushing. To test this 

assumption, an investigation of the pressure required to crush a quartz grain from  published 

laboratory experiments along with the estimation of regional stresses at the time of the 

deformation bands' formation in this study area were conducted. From these estimations, it was 

concluded that the pressures generated during the formation of deformation bands in the study 

area are insufficient to cause cataclasis. Therefore, an alternative explanation of low-porosity 

deformation bands' formation under low pressure conditions is proposed in this work. Modeling 

of rock velocity variation with porosity was performed using the core samples measurements 

from the study area. The obtained models were used to estimate porosity from acquired outcrop 

velocity data. Unlike laboratory data, some of the measured outcrop velocities exhibit 
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anisotropy, meaning the velocity depends on the measurement orientation, associated with the 

dominant strike direction of deformation bands. Therefore, a correction for the anisotropy 

observed in these field measurements was applied to the above models. 
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1. INTRODUCTION 

1.1 Background and Motivation 

Deformation bands are the structures that form due to rock displacement along a zone of 

strain localization and are abundant in faulted porous sandstones. The displacement generated 

over each deformation band is millimeters to several centimeters thick (Aydin, 1978; Antonellini 

and Aydin, 1995; Du Bernard et al., 2002a). Deformation band types can be differentiated based 

on mineral composition, depth of burial, formation fluids and kinematic processes responsible 

for the formation of the band. The type of a band affects rock porosity and permeability (Fossen 

et al., 2007). Knowledge of deformation band types and their associated petrophysical properties 

in conjunction with their orientations and distribution helps determine fluid paths and 

accumulations within the formation. Such information is useful in hydrocarbon or groundwater 

exploration for guiding well placement. 

The seismic method, which relies on velocity and density contrasts between rock 

interfaces, is commonly used for subsurface mapping and inferring the rock properties away 

from wells. Rock porosity is closely associated with velocity. Numerous empirical relationships 

of linking velocity with porosity have been established in sandstones (e g., Han et al., 1986; 

Vernik, 1997). Since the porosity within a deformation band changes relative to the surrounding 

rock, the change in rock velocity associated with deformation bands is expected to be observed.  

 Seismic anisotropy attributes generated by processing wide-azimuth seismic surveys are 

used as a common practice in fracture orientation detection (e g., Rich and Ammerman, 2010; 

Wild, 2011). Anisotropy attributes allow one to visualize horizontal anisotropy (HTI) associated 

with dominant fracture orientation (Figure 1.1). Velocity decreases as a seismic wave passes 

through the fracture and is slower perpendicular to the dominant fracture strike. The same 
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samples are measured parallel and perpendicular to the bedding of the strata where some of the 

samples perpendicular to bedding show slightly higher velocities.  The field velocity 

measurements are not consistent with laboratory data, possibly due to the experimental setup.  

Two issues that are of interest to the current research are identified from the study by 

Fredericks et al. (2013): 

1) The acquired field velocities of rocks do not reflect the velocities measured in laboratory. 

How to set up an experiment to be able to obtain similar results in field and laboratory 

conditions? 

2) The difference in porosity and velocity between the samples containing deformation bands 

and the samples of undeformed rock is observed. For the samples containing deformation 

bands, is there a difference in porosity and velocity parallel and perpendicular to the 

deformation bands' strikes? 

1.3 Research Objectives 

 The focus of this thesis study is the distribution of deformation bands associated with 

faulting in the Jurassic Entrada sandstone and their effects on petrophysical properties and 

velocity of the rocks. The study area is located in Abiquiu Embayment, north-central New 

Mexico, next to the Cañones fault zone.  The study incorporates the following topics: 

1) Geologic setting in the study area is addressed in Chapter 2. This chapter reviews the tectonic 

history of Abiquiu Embayment in relation to the main structures observed in the study area, 

Cañones fault and monocline. Stratigraphy of the area is reviewed to establish the maximum 

burial depth of Entrada sandstone.  

2) Types of deformation bands and their effect on petrophysical properties are reviewed in 

Chapter 3. Deformation bands can be either barriers or conduits for fluid flow depending on 
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their type. An overview of the previously published data is used to define the types of 

deformation bands and conditions for their formation (burial depth, mineralogic composition, 

pore fluids). Thin sections of deformation bands in the study area are examined to establish 

their effect on porosity and permeability. 

3) Deformation bands’ distribution in the damage zone are discussed in Chapter 4. Fault 

architecture models where deformation band density and distribution depends on the spatial 

position relative to the fault slip are introduced. The common features of the fault zones from 

different published examples are highlighted and compared with acquired deformation band 

density from the study area. 

4) Velocities associated with deformation bands and their link with petrophysical properties 

from core samples are presented in Chapter 5. Ultrasonic velocity measurement system is 

described in Appendix A. It ensures a good coupling with formation for in-situ velocity 

measurements. Obtained velocities are analyzed to determine anisotropy associated with 

deformation bands. Velocity – porosity trends for the area are established with the help of the 

model by Vernik and Kachanov (2010). The obtained relationships are used to predict 

porosity for the in-situ velocity measurements. The relationship between porosity and 

velocity in core samples are discussed. 

Provided analysis of the above outcrop example will serve as a proxy for detection of 

deformation bands using seismic techniques and prediction of their petrophysical properties 

from core data. 
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2. GEOLOGY OF ABIQUIU EMBAYMENT 

2.1 Tectonic Setting 

 The Abiquiu Embayment is bordered by Colorado Plateau to the northwest and Española 

Basin to the southeast (Figure 2.1). The study area is located on the western margin of Abiquiu 

Embayment near the Cañones fault zone and is affected by two major tectonic events. 

 The oldest structures in the area are related to the Laramide Orogeny that initiated 80 - 75 

Ma in the Rocky Mountains and continued up to Southern Cordillera where it ended at 35 Ma 

(Magnani et al., 2005). The prominent Laramide features in the form of thrust faults, folds, and 

arches striking N-S and NW are observed in San Juan Basin and Sangre de Cristo Mountains 

north of Abiquiu Embayment (Magnani et al., 2005; Erslev and Koenig, 2009). Laramide-age 

structures observed in Abiquiu Embayment are not as large and extensive as the ones found to 

the north. However, they guided later Rio Grande extension where many of the normal faults 

were initiated along preexisting planes of weakness. Some of the normal faults in the Rio Grande 

basin area are reactivated Laramide thrust faults (Wawrzyniec et al., 2002; Ingersoll, 2001).  

 Rio Grande rifting began around 29 Ma, spanning from central Colorado to southern 

Mexico. The rift consists of N-S elongated en echelon basins where the Abiquiu Embayment is 

the shallow northwestern edge of Española Basin (Golombek et al., 1983; Biehler et al., 1991; 

Baldridge et al., 1994). The Abiquiu Embayment is separated from Española Basin by the 

Embudo transfer zone that strikes ENE. The faulting in Abiquiu Embayment is said to have been 

active between 10 and 7 Ma (Baldridge et al., 1994).  
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(Maldonado, 2008; Maldonado and Kelley, 2009). The base of El Rito unconformably overlies 

the Jurassic Morrison Formation where approximately 185 m of Cretaceous rocks consisting of 

Mancos Shale, Dakota Sandstone, and Burro Canyon Sandstone were eroded (Kelley et al., 

2005). In areas where Morrison is not present, El Rito forms an unconformity with Jurassic 

Entrada sandstone or Triassic Chinle formation (Maldonado, 2008). The unit related to Morrison 

Formation observed in the field is the Brushy Basin Member. The unit presents greenish-purple 

siltstone interbedded with white fine-grained sandstone which was deposited in a fluvial 

environment (Flesch, 1974). The Morrison overlies Jurassic Todilto limestone of the Wanakah 

Formation that is presented as massive to basal laminated lacustrine limestone containing 

kerogen. The Todilto was deposited in a large saline lake overlying the dune field (Vincelette 

and Chittum, 1981).The base of Todilto is in contact with Jurassic Entrada sandstone which is a 

cliff-forming massive aeolian sandstone. The Todilto is rich in organic matter and serves as a 

source rock for the Entrada sandstone in San Juan basin located on the Colorado - New Mexico 

border (Vincelette and Chittum, 1981). The Entrada sandstone is composed of well-sorted porous 

quartz sandstone. Entrada gradationally changes colors from red at the base, to white in the 

middle, and yellow at the top.  (Kelley et al., 2005; Maldonado, 2008) . The maximum burial 

depth of Entrada is approximated to be 1 km in the study area (Figure 2.5). Triassic Chinle 

Formation underlies Entrada. In Red Wash Canyon, Upper and Middle members of Chinle 

Formation are observed. Petrified Forest Member presents the Upper Chinle and is composed of 

brown-red siltstone and shale containing wood fragments. Poleo is the Middle Member which is 

a massive quartzose sandstone (Kelley et al., 2005). Arroyo del Aqua Formation of Permian 

Cutler Group is the oldest unit that outcrops in the study area (Maldonado, 2008). The formation 

is presented by dark purple siltstone and shale interbedded with sandstone. 
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2.3 Geologic Cross-Sections 

A cross-section in the vicinity of the study area passing through the Cañones fault and the 

monocline is shown in Figure 2.6. An unconformity where Oligocene (Tr) rocks are deposited on 

top of Jurassic (Jm) is captured in the section. Two other unconformities, Permian-Triassic 

(between Pcu and Trcp) and Triassic-Jurassic (between Trcu and Je-r) are also present. 

The throw of the fault in this area is 450 m in the southern part of the map (Figure 2.6 

(a)); it is reduced to 240 m towards the north (Figure 2.6 (b)). A similar deformation trend is 

observed in the monocline where its curvature is much smaller in the northern part compared to 

the southern (O’Keeffe, 2014). The strikes of both structures (N40E for the fault and N10E for 

the monocline) mentioned in Section 2.1 are subparallel. East-west Rio Grande extension in this 

area is coincident with earlier Laramide compaction direction. 
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3. FORMATION OF DEFORMATION BANDS 

 Deformation bands are the structures typically associated with faulting in porous 

sandstones. They are zones of strain localization along which a fault may develop. Different 

types of deformation bands may be found in the damage zone depending on depth of burial, 

mineral composition, and fluids present in the formation. The type of deformation band 

encountered in the damage zone has an effect on porosity and permeability of the rock. Also, it 

has an influence on elastic properties as changes in rock properties occur during deformation. 

3.1 Types of Deformation Bands 

 Deformation bands present gouge-filled fractures where material within the fracture has 

different physical properties from the undeformed, or host, rock. Deformation bands are 

differentiated based on the rock kinematics where shear, compaction and dilation bands are the 

end members (Figure 3.1).  Combination of shearing with compaction or dilation produces 

compactional shear or dilational shear bands, respectively (Fossen et al., 2007). 

 

Figure 3.1: Types of deformation bands based on kinematic processes occurring during deformation (Fossen et al., 2007). 
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 Another classification of deformation bands is based on rock texture, chemical 

composition of fluid, and overburden stress. Four types of bands are distinguished from the 

above characteristics. The first type is disaggregation band where grains are reorganized by grain 

rolling (Figure 3.2 (a)) (Du Bernard et al., 2002a). Disaggregation bands form in shallow 

conditions where depth of burial is less than 1 km (Fossen and Bale, 2007). Three subgroups 

(compactional, dilational, and shear) of disaggregation bands can be observed depending on their 

orientation relative to the maximum principal stress ( ) (Figure 3.3). Dilational bands develop 

parallel to , compactional bands are perpendicular to , and shear bands form at an acute 

(~30°)  angle to . Grain rolling and reorganization in compactional and shear subgroups of 

disaggregation bands leads to porosity reduction and causes decrease in permeability 

perpendicular to the band. Dilational bands, in contrast, result in pore space increase and become 

conduits for fluid flow (Du Bernard et al., 2002a).  

 The second type, a phyllosilicate band, forms by the same mechanism of grain rolling as 

a disaggregation band, but contains  more than 10% clay minerals which get preferentially 

aligned along the band (Figure 3.2 (b)) (Torabi, 2007). Such bands are visible in outcrop due to 

the contrast in mineral composition from the host rock. In lithologies with more than 40% clays 

present, the bands form clay smears where the deformation band is composed entirely of clay 

minerals. Clays enhance grain sliding within the band and cause phyllosilicate bands to have 

greater offsets compared to the other types of deformation bands. Significant decrease in porosity 

and permeability is observed within a band due to pore space collapse and infiltration with 

phyllosilicates (Fossen et al., 2007).  

 Cataclastic bands present the third type and are characterized by grain fracturing and 

crushing during rotation (Figure 3.2 (c)). The band is characterized by a low-porosity and low-
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permeability gouge that stands out as a more resistant feature compared to the host rock in the 

outcrop. During cataclasis, the rock initially undergoes compaction and fracturing without major 

reduction in grain size. As cataclasis progresses, the grains rotate and crush forming a zone of 

finer grained poorly sorted sand surrounded by fractured grains (Engelder, 1974).  

 Dissolution bands comprise the last type of deformation bands which are formed during 

dissolution of the existing minerals along the deformed rock and their later precipitation (Figure 

3.2 (d)). Stress magnitude, temperature and grain size of the rock affect the rate of mineral 

solution and precipitation.  The process of these bands' formation consists of three steps that 

involve 1) dissolution along grain contacts, 2) mixing of dissolved minerals with water and 3) 

and precipitation of solution on grain edges (Renard et al., 2000). 
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Figure 3.3: Schematic orientations of three subgroups (compressional, dilational, and shear) of disaggregation bands relative to 

the maximum principal stress (Du Bernard et al, 2002a). 

  

Figure 3.2: a) Disaggregation band composed of mostly 

quartz grains that is formed by grain rotation and sliding; 

b) phyllosilicate band that is formed from a host rock 

consisting of more than 10% of clay minerals; clays 

enhance grain sliding during deformation; c) cataclastic 

band that develops from disaggregation bands with an 

increase of applied pressure; smaller grain size as a result 

of grain crushing can be observed; d) dissolution band 

where pore space is filled with dissolved and repricipitated 

minerals (Fossen et al., 2007). 
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3.2 Mechanism of Deformation Bands' Development 

 Burial history and tectonic forces facilitate deformation band development and 

transformation from one type to another (Figure 3.4). Disaggregation bands are the first features 

to form due to gravitational forces. Compaction promotes pore collapse and clay, if present, 

intrusion into the remaining pore space forming phyllosilicate bands. As the confining pressure 

due to burial or tectonism increases, the grains undergo cataclasis, and cataclastic bands develop. 

When the gravitational unloading occurs, the open fractures develop (Fossen et al., 2007). 

 

Figure 3.4: Evolution of deformation bands with increasing depths of burial and later exhumation (Fossen et al., 2007). 

 Deformation bands precede faulting and create a zone along which a fault breaks. The 

model of cataclastic deformation bands' development is described by Antonellini and Aydin 

(1995). Initially, a single deformation band of about 1 mm in width with an offset on a 

millimeter scale develops (Figure 3.5 (a)). In the next stage, more deformation bands form as a 

result of strain accommodation producing a deformation band zone of several centimeters thick 
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with decimeter-scale cumulative offset (Figure 3.5 (b)). Finally, the rock breaks along a plane 

adjacent to the deformation band zone creating a slip plane (Figure 3.5 (c)). 

 

Figure 3.5: Generation of a fault slip as a result of deformation bands development, where a) a single deformation band forms as 

a result of strain localization, b) multiple deformation bands develop into a zone of deformation bands as deformation progresses, 

and c) slip plane initiates on the edge of deformation band cluster (Antonellini and Aydin, 1995). 

 Laboratory experiments to understand the development of deformation bands were 

conducted by Engelder (1974) and Mair et al (2000) on clean sandstones. Engelder (1974) 

concentrated on producing a single deformation band at various confining pressures and 

changing shear displacement. Thin sections of produced deformation bands were then analyzed 

to relate their properties back to observed shear displacement and confining pressure. Grain 

cataclasis was observed within the band where fractured large grains were surrounded by smaller 

crushed grains. While cataclastic deformation was observed within the band, no inference about 

the differential pressure required to produce such band was made.  

 Next, Mair et al. (2000) tested the progression from an individual deformation band to a 

zone of deformation bands in a laboratory conditions. The experiment was conducted on a 

porous aeolian Lochabriggs sandstone 100 mm in diameter and 230 mm in length at a confining 

pressure of 34 MPa. During the experiment, formation of cataclastic deformation band zones 
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within the core samples were observed. The thickness of deformation band zone increased 

progressively with applied strain. Differential pressure ( ) at which rock failed were 

recorded between 120 and 140 MPa. Considering Antonellini and Aydin (1995) model, first and 

second stage of the deformation band development were reproduced in the above laboratory 

experiment. Slip surface generation was not observed during the experiment which the authors 

attributed to insufficient stress applied to the samples. 

3.3 Deformation Bands in Entrada Sandstone  

 Thin sections of Entrada sandstone (Figures 3.6, 3.7 and 3.8) were made to determine 

internal structure and mineralogical composition of deformation bands in the study area. Red 

outline defines the edge of a deformation band in Figures 3.6 and 3.7.  Figure 3.6 shows grain 

size and sorting of deformation bands and host rock. The bands are surrounded by high porosity 

rock that consists of sub-rounded to sub-angular grains. Porosity within the bands is significantly 

reduced by the presence of finer irregularly-shaped grains that fill up the space between larger 

grains.  

 Higher magnification (Figure 3.7) reveals the mineral composition of the band and the 

host rock. The higher porosity host rock consists of quartz grains where some of the pore space is 

filled with calcite cement.  The band consists of 100 µm in diameter quartz grains floating in 

much smaller angular quartz grains. Calcite is not visible in the band. Some of the larger grains 

within the deformation band and host rock are fractured. 
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Figure 3.6: Plane-polarized thin section of Entrada sandstone from the study area on a 1000 μm scale in the direction parallel to 

the bedding. Deformation bands are the zones of low porosity outlined in red. Grains within the band and matrix rock are sub-

angular to sub-rounded. Fracture are visible in some large grains. Smaller grains within the band are angular. 
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a)   

b)  

Figure 3.7: Deformation band in the  Entrada sandstone on a 500 μm scale in a) plane-polarized light and b) cross-polarized light 

in the direction parallel to the bedding. Quartz grains are outlined in green, and calcite cement is outlined in blue. Microfractures 

are observed within some of the quartz grains. Finer grains are more angular than larger grains. 
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 Figure 3.8 shows magnified quartz grains within a deformation band on a 100 μm scale. 

As noted previously, microfractures and high angularity of smaller grains are observed in the 

band. Also, some of the grains exhibit conchoidal fractures which are characteristic of quartz 

deformation  (Klein and Dutrow, 2007).

 

Figure 3.8: Magnified image of a deformation band in Entrada sandstone on a 100 μm scale. The thin section orientation is 

parallel to bedding. Some of the quartz grains exhibit microfractures. Conchoidal fractures at the edges of some grains are also 

observed. 
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3.4 Depth of Burial and Inferred Stress Magnitudes in  Entrada Sandstone  

 Depth of burial of Entrada sandstone in the study area along with the graphs derived by 

Zoback (2010) from Mohr-Coloumb failure criterion were used to infer stress magnitudes at 

which  these deformation bands formed (Figure 3.9). Magnitudes of principal stresses and  

a)  

b)  

Figure 3.9: Graphs showing the magnitudes of principal stresses based on the depth of burial in a) normal faulting regime at 

hydrostatic pore pressure (left) and overpressure (right) and b) reverse faulting regime at hydrostatic pore pressure (left) and 

overpressure (right). The red dashed lines indicate stress magnitudes for Entrada sandstone (modified from Zoback, 2010). 
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differential pressure for both extensional (normal faulting related to Rio Grande rifting) and 

compressional (reverse faulting related to Laramide Orogeny) regimes were estimated. In the 

study area, the maximum depth of burial of Entrada sandstone is around 1 km (Figure 2.5, page 

12). Since pore pressure at the time of folding and faulting is unknown, both cases for normal 

hydrostatic pressure and overpressure were taken into account for the estimation. In extensional 

regime,  is 23 MPa and  is 13 MPa at hydrostatic pore pressure which gives the differential 

pressure of 10 MPa. In case of overpressure,  is 21 MPa  and  is 12 MPa that produces 9 

MPa differential pressure (Figure 3.9 (a)). In compressional regime at hydrostatic pressure,  is 

47 MPa  is 23 MPa which produces differential pressure of  24 MPa. Overpressured formation 

in compressional regime gives   and  magnitudes of 50 MPA and 23 MPa, respectively; 

differential pressure in this case is equal to 27 MPa (Figure 3.9 (b)). 

3.5 Outcrop of Deformation Bands in Entrada Sandstone 

 Outcrop pattern of deformation band in the study area is shown in Figure 3.10. Single 

deformation bands, some of which join into deformation band clusters are observed which 

resemble the first and second stages of deformation band development described by Antonellinin 

and Aydin (1995). The examples of the final stage where the slip surface develops is the 

Cañones fault itself and smaller faults observed in the area.  
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Figure 3.10: Single deformation bands and deformation band clusters  in Entrada sandstone, Red Wash Canyon, New Mexico. 

These features are lighter in color and more resistant compared to the surrounding rock.   
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4. DISTRIBUTION OF DEFORMATION BANDS IN THE FAULT DAMAGE ZONE 

4.1 Literature Overview of Deformation Bands’ Distribution Models 

The structural elements of a fault include fault core and a fault damage zone (Figure 4.1). 

The fault core is a zone of the largest offset along deformed rock that incorporates fault surfaces, 

parts of the host rock, gouge material, etc. The damage zone is the area adjacent to the fault core 

that is less deformed than the fault core and contains deformation bands, fractures, smaller faults 

and other structures (Berg and Skar, 2005; Torabi et al., 2013). 

 

Figure 4.1: Schematic representation of fault damage zone elements. The maximum deformation is seen adjacent to the fault 

core. Deformation bands in the damage zone are clustered (Torabi et al., 2013). 

 Deformation band density in the fault damage zone is affected by rock strength, 

mineralogy, texture, cementation, and tectonic history of the region (Nelson, 2001; Fossen et al., 

2007). Many authors have described deformation band density in outcrops across the damage 

zones of the faults (e. g. Berg and Skar, 2005; Du Bernard et al., 2002b; Shipton and Cowie, 

2003; Kolyukhin et al., 2010; Saillet and Wibberley, 2010). Several models of deformation 

bands’ distribution based on the outcrop data exist in the literature. One example is the study 

conducted by Kolyukhin et al. (2010) on multiple faults in Utah and Sinai where the gradual 
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decrease in deformation band density with increasing distance from the fault core was observed 

for the majority of the faults. A few outliers in the form of localized slip surfaces surrounded by 

high deformation-band concentration were seen within the damage zone in some of the faults. 

However, the decrease in deformation band density could be modeled by using an exponential fit 

(Figure 4.2).  

  

Figure 4.2: The deformation band density from the fault core to the end of the damage zone can be fitted with negative 

exponential curve; data from the CIPR database for the faults from Utah and Sinai (Kolyukhin et al., 2010). 

Another model suggests that the damage zone is clustered into deformation band zones 

and slip surfaces with high deformation band density. The deformation band density drops 

between the clusters (Figure 4.3). The end of the damage zone is defined where deformation 

band density drops to some background levels, and no clusters are observed (Du Bernard et al., 

2002b; Shipton and Cowie, 2003). Some variations of this model show that the density of the 

deformation bands stays constant in between the clusters. When mapping fault-related 

deformation in Navajo sandstone in Utah, Shipton and Cowie (2003) have observed the peaks of 

deformation band density adjacent to slip planes. The areas in between the slip planes had a 

constant low deformation band density. The other studies show gradual decay in deformation 
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band density away from the clusters as observed by Saillet and Wibberley (2010) in Bassin du 

Sud-Est, France. They define such decay in deformation band density as a “ladder pattern.” 

 

Figure 4.3: Clustering of deformation bands observed in Bédoin region, Bassin du Sud-Est (Saillet and Wibberley, 2010). 

Based on reviewed literature, variation in deformation band distribution is seen in fault 

outcrops for different study areas, and the models of deformation bands' distribution have to be 

fitted individually for a specific example. However, several common trends can be recognized. 

First, the increase of deformation band density is observed in direct proximity to the main fault 

slip and around minor slip planes and deformation band clusters within the fault damage zone. 

As shown in examples from Du Bernard et al. (2002), Shipton and Cowie (2003), and Figure 4.3, 

clustering of deformation bands into zones of high deformation band density is evident. Also, the 

fault data analyzed by Kolyukhin et al. (2010) (Figure 4.2), despite being fitted exponentially, 

shows occasional peaks in deformation band density away from the fault.  
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Figure 4.4: Comparison of the damage zone widths in normal faults with different throws, Suez Rift. Dashed vertical lines 

represent damage zone cutoffs. The faults with larger throw have a wider damage zone.  Hanging wall damage zone is wider than 

the footwall damage zone (Du Bernard et al., 2002b). 
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Second, the damage zone width is proportional to the fault throw (Du Bernard et al., 

2002b; Shipton and Cowie, 2003). The study conducted by Du Bernard et al. (2002b) in Suez 

Rift compared the damage zones of normal faults with throws varying between 3 and 2500 m 

and observed the increase in damage zone width in faults with larger throw (Figure 4.4). This 

relationship can also be observed on a smaller scale in thin sections (Engelder, 1974)  and cores 

(Mair et al., 2000) where the thickness of individual deformation bands and zones of deformation 

bands increases due to larger volumes of rock incorporated into damage zone as displacement 

progresses.  

Third, the deformation band density increases with the curvature of the strata (Antonellini 

and Aydin, 1995; Berg and Skar, 2005). Figure 4.5 shows a diagram of Bartlett fault in Utah 

from the field study by conducted Berg and Skar (2005). As seen in the diagram, the downward 

movement of the hanging wall relative to the footwall of the fault results in bending of the 

hanging wall strata while the footwall rock remains flat. Lateral extent of deformation in the 

hanging wall of the fault is three times greater than the footwall. Generation of the wider hanging 

wall damage zone was also observed by Du Bernard et al. (2002b) in faults of Suez rift (Figure 

4.4) which, as Bartlett fault, exhibit normal sense of motion. 
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Figure 4.5: Field observations of deformation in hanging wall and footwall of Bartlett fault, Utah. The hanging wall damage zone 

is three times wider than the footwall damage zone. The bending of the rock units in the hanging wall is clearly observed while 

the footwall rock remains flat (Berg and Skar, 2005). 

4.2 Field Observations of Deformation Bands’ Distribution in the Study Area 

An approach of determining deformation band density described in literature ( e. g. 

Antonellini and Aydin, 1995; Du Bernard et al., 2002b; Shipton and Cowie, 2003) is to pick a 

continuous traverse, where possible, perpendicular to the strike of the structure. Next, the 

traverse is subdivided into equal intervals, and the number of deformation bands within each 

interval is recorded. In order to be consistent with previously published data and be able to 

compare the results, the similar approach of taking a traverse perpendicular to Cañones fault 

strike and dividing it into 1 m intervals was adopted. This method turned out to be challenging 

due to the lack of continuous outcrop that ran perpendicular to the fault strike. Figure 4.6 shows 

the geologic map of the study area where the outcrop of the yellow member of Entrada sandstone 

for which the data were collected is shown in dark green color and marked as Je-y.  
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Since the outcrop was not continuous, smaller traverses up to 10 m long were used in this study. 

Traverse locations are shown with black dots in Figure 4.6. 
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Figure 4.7: Example of a traverse layout (traverse 4) for deformation band density measurement. Traverse orientation is S45E 

which is indicated by a black arrow. Deformation bands' measurement points are separated with solid black lines. The distance 

between each line is 1 m. Deformation band density is counted within each area between the black lines. 

 Each traverse was aligned subperpendicular to the Cañones fault strike. Figure 4.7 

presents traverse 4 as a layout example. The black lines indicate separations between each 

measurement point where deformation bands were counted. The GPS location of starting point 

for each traverse was recorded. Then, the distance between the fault and traverse starting point 

was calculated using Pythagorean theorem as shown in Figure 4.8. Further, all of the traverse 

points were sorted relative to the distance to the Cañones fault. Table 4.1 summarizes the 

locations of traverses and the distances from the fault. The red dashed line from A to A' in Figure 

4.6 connects the traverses. 
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Figure 4.8: A diagram showing the method of computing traverse distances relative to Cañones fault. The starting point of 

traverse is indicated with red dot.   

 

Table 4.1: Locations of traverses in order of decreasing distance from  the fault. 

UTM Location 
(x1, y1) 

Traverse # Bearing Traverse length 
(m) 

Distance from the 
fault (m) 

376383, 4012061 1 S45E 3 16 
End of traverse 1 2 S45E 3 19 
End of traverse 2 3 S40E 3 22 
376430, 4011992 4 S45E 4 91 
376641, 4012112 5 S45E 8 195 
376676, 4012167 6 S45E 7 205 
376502, 4011508 7 S45E 4 438 
376518, 4011457 8 S50E 5 473 

 

A plot of deformation band density versus distance from the fault is shown in Figure 4.9. 

The number of deformation bands per meter within the first 24 m from the fault is high reaching 

up to 84 bands/m at the points closer to the fault and dropping down to 26 bands/m at the 24th 

meter. The second interval is located 91 m away from the fault and shows significantly lower 

deformation band density of less than 20 bands/m. The next cluster of measurements is located in 

the northern part of the map on the western side of the monocline. A slight increase in 
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deformation band density up to 30 bands/m 195 m away from the fault is attributed to the 

influence of monocline. The last two intervals are located in the southern portion of the map to 

the east of the monocline hinge. The points located closer to the monocline (~438 m away from 

the fault) show significant increase in deformation band density up to 79 bands/m after which a 

sharp decrease in deformation density is observed. The influence of the monocline on 

deformation band density is strong to the south and is not so prominent to the north of the study 

area. Such change is associated with decrease in bending of the monocline in the northern part of 

the area (see Chapter 2).  

The peaks in deformation band density correlate with the major structures, fault and 

monocline. Also, the higher curvature of the monocline in the south has lead to an increase of 

deformation band density relative to its northern part where the curvature is not so steep. 
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5.  FIELD VELOCITY ACQUISITION AND RESULTS  

5.1 Spatial Analysis of Deformation Bands 

 In this study, I expect to observe the velocity anisotropy associated with the dominant 

strike of deformation bands, where the fast velocity is oriented parallel to the strike of 

deformation bands, and the slow velocity is orthogonal to the fast velocity (Chapter 1).  In order 

to align velocity measurements to capture anisotropy, their orientations in the study area were 

analyzed. 

  Deformation band orientations were acquired for the yellow member of Entrada 

sandstone (Figure 4.6 in Chapter 4) along the traverses and plotted using Stereonet software 

(Allmendinger et al., 2012).  Orientations of deformation bands' separated by traverses are 

shown in Figure 5.1 (a). Traverses 1 and 2 located near Cañones fault, the attitude of which is 

N40E/70SE, show strikes of deformation bands subparallel to the fault strike around N-S to 

N40E. 

Traverses 5 and 6 in the northern part of the study area to the west of the monocline axis show 

variation in deformation band orientations with two main strike directions at N-S and E-W. The 

attitude of the bedding in this area is N50W/14SW. Traverses 7 and 8 on the southern end of the 

monocline where the attitude of the bedding is N19E/27NW also show a scatter in deformation 

band orientations with dominant strike direction around E-W. 
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a)               

b)                                      

Figure 5.1: a) Deformation band orientation by traverse and b) overall strikes of deformation bands in the study area. The letter N 

indicates north direction. 

 Overall strikes  of deformation bands in the study area including the points around the 

traverses is shown on a rose diagram in Figure 5.1 (b) where the numbers are shown in 

percentages. The variability in deformation bands' strikes is observed; however, a dominant 

strike direction can be defined around E-W. The minor axis of deformation bands' strikes is 
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around N30E. Velocity measurements are expected to reflect anisotropy at the locations where 

E-W deformation bands' strike directions are prominent. Near the fault, velocities are expected to 

be faster in N-S direction since more deformation bands strike subparallel to the fault. At the 

locations near the monocline, it is unclear whether anisotropy can be observed since there is no 

preferred orientation of deformation bands' strikes. 

5.2 Velocity Acquisition 

5.2.1 Layout for Velocity Measurements 

 Ultrasonic velocity measurements were collected across eight traverses that coincide with 

the traverses for deformation band density acquisition.  An ultrasonic velocity measurement 

system that consists of portable transducer gun, controller, and oscilloscope was used in data 

acquisition. The system's description can be found in Appendix A. The transducer gun 

constitutes a set of one receiver and two transmitters arranged in line (Figures A.1 and A.3). The 

distance between each sensor is 2.54 cm. One of the receivers adjusts vertically with the use of a 

spring to ensure a good three-point contact with an uneven surface. 

 A photo of a velocity measurement station on Traverse 4 is shown as an example in 

Figure 5.2. Both Vp and Vs velocity measurements were obtained in N-S and E-W directions. 

Two sets of Vp and Vs are recorded at each meter of the traverse. The location of each 

measurement is marked with two orthogonal black lines that indicate measurement direction. 

Photographs of each of measurement station can be found in Appendix B.  
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Figure 5.2: An example of layout for velocity acquisition. Orthogonal black lines represent the points oriented N-S and E-W 

where velocity was measured.   

5.2.2 Error Analysis in Field Velocity Acquisition 

 Several sources of uncertainty in velocity measurement associated with the accuracy of 

recorded results are identified: 

1) An uncertainty in the distance between the receivers (2.54 cm apart) accounts to +/- 0.01cm. 

Since the design of the transducer gun does not allow for a change in the receiver separation, 

this uncertainty leads to a systematic error in all of the measurements. 

2) An uncertainty associated with resolution of acquired signal is related to the frequency of a 

signal. In ultrasonic measurements, typical frequency is 20 – 200 kHz (Li et al., 2011). The 

sample rate of the measurement is defined by the concept of Nyquist frequency: 
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݁ݐܽݎ	݈݁݌݉ܽܵ ൌ ଵ

ଶ∗௙೙೤೜
ൌ ଵ

ସ∗௙೘ೌೣ
         (5.1), 

where fnyq – Nyquist frequency and fmax is the highest signal frequency (Liner, 2004).  

From the equation (5.1), the sample rate for ultrasonic frequency measurements is 1.25 µs, so 

the uncertainty in the measurement is +/- 1.25 µs. 

 The major source of error is associated with the uncertainty (2) since it is random. Time 

difference between the signal arrivals on both receivers varied between 7.0 – 13.8 µs for P-wave 

measurements and 10.6 – 18.8 µs for S-wave measurements. The percent uncertainty in the 

measurement is, thus, 9 – 18% for Vp and 7 – 12 % for Vs where the uncertainty in faster 

velocity drifts towards the higher percentage value. 

5.3 Results of the Measurements 

 Acquired measurements were examined to clean out erroneous data points and plotted as 

velocity versus distance from the fault (Figure 5.3).  Five clusters of data points are observed 

around 16 m, 91 m, 195 m, 438 m, and 473 m. The cluster within the first 16 m located next to 

the fault core has the lowest velocities across the traverse for both P- and S-waves. P- and S- 

velocities also slightly drop towards the southern end of the monocline where the curvature of 

the monocline is higher.  

 In order to quantify the amount of anisotropy between N-S and E-W direction, the 
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obtained velocity measurements at each location were averaged. Then, the average values of the 

velocity in N-S and E-W directions were used to find a ratio of fast to slow velocity as shown 

below: 

௏௙௔௦௧ି௏௦௟௢௪

௏௙௔௦௧
           (5.2), 

(Treadgold et al., 2011). 

Fraction difference in velocity measurements for N-S and E-W directions averaged at each 

location described above is summarized in Table 5.2. Out of five locations, the largest value of 

anisotropy is observed 16 m away from the fault where the difference between Vp measurements 

in N-S direction is 13% larger than in E-W direction. Since the P-wave velocity in this area is the 

lowest, the percent of uncertainty in measurement is the smallest. Thus, the measurement points 

near the fault are potentially exhibiting a weak anisotropy. The difference in Vs measurements is 

also larger in N-S direction and amounts to 7% which is smaller than the percent uncertainty, so 

the S-wave anisotropy is not detectable. At the location near the fault, the largest amount of 

deformation bands is observed (Figure 4.9 in Chapter 4), and the deformation bands have a 

preferred orientation around N-S (Figure 5.2(a)). For the remaining locations, the velocity 

difference is between 1 – 3 % for both Vp and Vs measurements and is smaller than the percent 

uncertainty. Thus, it was concluded that the difference between E-W and N-S orientation are due 

to the measurement error, and no velocity anisotropy is observed. 

Table 5.2: Fraction difference in velocity measurements averaged at different points along the traverse. 

Distance from the 
fault (m) 

Vp fraction difference Vs fraction 
difference 

Fast direction 

16  0.13 0.07 N-S for both Vp and Vs 
91 0.03 0.01 E-W for Vp and N-S for Vs 
195 0.03 0.03 E-W for Vp and N-S for Vs 
438 0.03 0.01 E-W for both Vp and Vs 
473 0.01 0.02 N-S for Vp and E-W for Vs 
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6. LINKING VELOCITY WITH PETROPHYSICAL PROPERTIES 

6.1 Laboratory Measurements and Their Comparison to the Field Results 

 Seven samples from different parts of the study area were acquired for petrophysical 

properties determination and calibration with field velocity data (Figure 6.1). It was only 

possible to produce cores out of samples 1, 2, 3, 6 and 7. Samples 4 and 5 crushed during coring 

as the rock surrounding deformation bands was too soft. Porosity, permeability, and Vp and Vs 

velocities were obtained from the cores of the remaining samples.  Porosity was measured with a 

gas-porosimetry method using helium gas. Permeability was determined with gas permeability 

method where nitrogen gas was used. Ultrasonic velocities were acquired under 10 MPa 

confining pressure. The description of methods and equipment can be found in Appendix A. The 

results are summarized in Table 6.1. 

 

Figure 6.1: Samples collected for coring; locations of the samples are indicated with red asterisks in Figures 2.2 and 4.6. 
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Table 6.1: Rock properties measured for each sample. The first digit indicates the number of the sample from which the core was 

extracted. Velocities are measured at 10 MPa confining pressure. 

Sample # Distance 
from fault 

(m) 

Porosity 
(%) 

Permeability 
(md) 

Vp (m/s) Vs (m/s) 

1-1 837 33  2820 1720 
1-4 837 34 2730   
2-1 16 25  3250 2020 
2-2 16 29 75.6 2800 1700 
3-1 91 26 308 3140 1950 

3-2-1 91 27 607 2723 1667 
3-2-2 91 27  3210 2040 
3-3 91 26 274 2674  
3-4 91 27 492 2639  
6-1 195 26 659 2048  
7-3 205 25 927 2374  
7-4 205 24 887 2467 1695 
7-5 205 23 459 2732 1385 

 

 Comparison of field and lab velocities is shown in Figure 6.2. Laboratory velocity 

measurements are consistent with field data, except for the points near the fault where lab 

velocities are slightly higher. The velocity difference between field and lab samples can be 

attributed to the higher rock disturbance near the fault which lead to formation of microfractures 

that closed under applied pressure in the lab experiments resulting in higher rock velocities. 
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a)  

b)  

Figure 6.2: Comparison of laboratory and in-situ velocity measurements.  

6.2 Sources of Error in Lab Velocity Measurements 

 Sources of error in the measured lab velocities similar to the one outlined in Section 5.2.2 

of Chapter  5 are identified where 1) an uncertainty in measured length of the core and 2) signal 

resolution are assessed.  Unlike field velocity data, lab samples had a variable length ranging 

from 4.030 – 5.426 +/- 0.001 cm. The same uncertainty of  +/-1.25 µs associated with picking 

the first break for signal arrival.  
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6.3 Velocity – Porosity Relationship in the Laboratory Samples 

6.3.1 Vernik and Kachanov (2010) Sand Diagenesis Model 

 Vernik and Kachanov (2010) empirical model for sand diagenesis is used to establish 

velocity-porosity relationship (Figure 6.3). The model recognizes two different mechanisms of 

diagenesis based on porosity. The first part of the model is constructed for consolidated rocks 

with porosity values up to 0.3 or less where the change in velocity with porosity is controlled by 

the density of microfractures and pore geometries which are determined from empirical data 

(Vernik and Kachanov, 2010). The parameter defining density of microfractures is expressed as: 

ሻߪሺߟ ൌ  ,ሻ          (6.1)ߪሺെ݀	଴expߟ

where ߟ଴ ൌ 0.3 ൅ 1.6߶ - density of microfractures at zero stress, 

 ݀ ൌ 0.02 ൅          compaction coefficient (MPa) - ߪ0.003

߶ - porosity                      (Vernik and Kachanov, 2010). 

The empirical constants p and q defining pore geometries are: 

݌ ≅ ݍ ൌ 3.6 ൅ ܾ߶                       (6.2), 

where b can vary between 8 and 12                (Vernik and Kachanov, 2010). 

 An equation for the consolidated sands model is in the form: 

ௗܯ ൌ ௠ሺ1ܯ ൅ ݌
߶

1 െ ߶
൅ 1.94

ሻߪሺെ݀	଴expߟ
1 െ ߶

ሻିଵ 

ௗܩ ൌ ௠ሺ1ܩ ൅ ݍ
߶

1 െ ߶
൅ 1.59

ሻߪሺെ݀	଴expߟ
1 െ ߶

ሻିଵ 

                                                           (6.3), 

where  Md - P-wave modulus of a dry rock, 

 Mm - P-wave modulus of rock matrix, 

 Gd - S-wave modulus of a dry rock, 
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 Gm - P-wave modulus of rock matrix       (Vernik and Kachanov, 2010). 

 A change in the model occurs when it reaches consolidation porosity (~0.2 - 0.3) after 

which the rock is considered unconsolidated. Transition from consolidated to unconsolidated 

sands is characterized by a sharp bend at the consolidation porosity value due to faster rate of 

change of velocity with porosity in unconsolidated rock (Vernik, 1997). The following equations 

are used to construct the model: 

ௗܯ ൌ ௖௢௡ሺ1ܯ െ
߶ െ ߶௖௢௡
߶௖ െ ߶௖௢௡

ሻଶ 

ௗܩ ൌ ௖௢௡ሺ1ܩ െ
߶ െ ߶௖௢௡
߶௖ െ ߶௖௢௡

ሻଶ.଴ହ 

            (6.4), 

where Mcon and Gcon are the dry moduli calculated for consolidated model (Equation 6.3), 

 ߶௖௢௡ - consolidation porosity at which the switch between consolidated and 

 unconsolidated models occurs, 

 ߶௖ - critical porosity at which the grains are in suspension (40%) (Vernik and Kachanov, 

 2010). 
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Figure 6.3: Sand diagenesis models from core Vp and Vs data. The change from consolidated to unconsolidated model occurs at 

consolidation porosity (30 % for this example)  at the point where the slope of the line becomes steeper (Vernik and Kachanov, 

2010). 

While the consolidated model is affected by both pore shapes and microfractures, the 

unconsolidated model mostly depends on the pore shapes that indicate the degree of compaction 

(Vernik and Kachanov, 2010).  To assess the degree of compaction, the modeling with varying 

empirical coefficients of pore shapes (p and q) to fit the observed data is performed with the 

following equations: 

ௗܯ ൌ ௠ሺ1ܯ ൅ ݌
߶

1 െ ߶
ሻିଵ 

ௗܩ ൌ ௠ሺ1ܩ ൅ ݍ
߶

1 െ ߶
ሻିଵ 

                                                           (6.5) 



54 
 

where   p = q - empirical parameters that represent the degree of compaction;  larger values of p 

 and q are associated with higher porosity (Vernik and Kachanov, 2010). 

6.3.2 Construction of Diagenesis Models for the Core Samples  

 Dry rock moduli in equation 6.5 were computed by varying p and q parameters for a 

porosity range of 0.01 - 0.4. These values along with Gassmann's fluid substitution equations 

were used to determine air-saturated P- and S-wave moduli (Msat and Gsat) from which rock 

velocities were calculated. Figure 6.4 shows modeled curves for pore shape factors of 10, 14, 18 

and 24 overlain by measured lab velocity versus porosity data. It is interesting to note that shape 

factors for the samples 2 and 3 located near Cañones fault are higher than the pore shape factors 

for samples 6 and 7 near the monocline for both Vp and Vs.  

a)  
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b)  

Figure 6.4: Distribution of a) P-wave velocity and b) S-wave velocity versus porosity by pore shape factors. The data points for 

samples 2 and 3 located near Cañones fault have higher p and q parameters than the data points for samples 6 and 7 near 

monocline. Two distinct compaction groups based on pore shape factors are observed. 

Two distinct compaction groups associated with the fault and the monocline can be recognized, 

for which separate sand diagenesis models were constructed (Figure 6.5). Sand diagenesis 

models were built to establish Vp and Vs velocity- porosity relationship (Figure 6.5) at 0.2 

consolidation porosity (points near the monocline) and 0.25 consolidation porosity (points near 

the fault). The equations for the porosity estimations for these two groups are provided below: 

1) Group 1 (near the monocline; consolidation porosity = 0.2): 

݌ܸ ൌ െ4538 ∗ lnሺ߶ሻ െ 3929 

ݏܸ ൌ െ3203 ∗ lnሺ߶ሻ െ 2923.7                                                                                                (6.6). 

The porosity from these equations is estimated as: 

߶ ൌ exp ቀ௏௣ାଷଽଶଽ
ିସହଷ଼

ቁ ൌ exp ቀ௏௦ାଶଽଶଷ.଻
ିଷଶ଴ଷ

ቁ          (6.7). 

2) Group 2 (near the fault; consolidation porosity = 0.25): 

݌ܸ ൌ െ6263 ∗ lnሺ߶ሻ െ 5564.6 
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ݏܸ ൌ െ4394 ∗ lnሺ߶ሻ െ 4037.4                                                                                                (6.8). 

The porosity is then: 

߶ ൌ exp ቀ௏௣ାହହ଺ସ.଺
ି଺ଶ଺ଷ

ቁ ൌ exp	ቀ௏௦ାସ଴ଷ଻.ସ
ିସଷଽସ

ቁ                                                                                   (6.9). 

From the equations (6.7) and (6.9), it is apparent that knowing one of parameters (Vp, Vs 

or porosity) one can estimate the two remaining parameters. 
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a)  

b)  

Figure 6.5: Diagenesis models for the group of points near the fault (samples 2 and 3) and near the monocline (samples 6 and 7). 

The trends are used to estimate a) porosity from Vp and b) porosity from Vs data. 

6.3.3 Porosity Prediction of Field Velocity Data Based on Established Correlations 

The relationships between porosity and velocity established in equations (5.4) and (5.6) 

are applied to the in-situ measured velocities for porosity prediction. Estimated porosity values 

for the field data are found in Table C.2 of Appendix C where estimations with both Vp and Vs 
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models were made. The porosity estimations with Vp were crossplotted against the porosity 

estimations with Vs to verify that both models produce the same result. Figure 6.6 shows the 

results of the comparison where the black line at 45⁰ to the horizontal and vertical axes marks 

one-to-one match between the approximations.  If a good match between the approximation with 

Vp and approximation with Vs is achieved, the point should fall on this line or close to it which 

is seen for the most of the data points. The exception to this trend is a set of E-W-oriented 

measurement points that form another linear trend where the porosity estimation with Vs is 

higher than the porosity estimation with Vp. The Table C.2 shows that the locations of the points 

where this discrepancy is observed are near the fault. These measurement points also exhibit the 

highest amount of anisotropy (Table 5.2) where the E-W direction is associated with slow P- and 

S-wave propagation. 

 The equation obtained from the slope of the line where the outliers fall corrects the 

mismatch in estimated porosity due to anisotropy as shown below: 

߶ሺܸݏሻ ൌ 0.75߶ሺܸ݌ሻ ൅ 0.105                                                                                              (6.10) 
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Figure 6.6: Quality check of estimated porosity with Vp versus estimated porosity with Vs for the in-situ velocities. Expected 

one-to-one relationship for both estimations is observed for most of the data. A deviation from the trend is observed for the data 

points near the fault.  

6.4 Permeability Versus Porosity in Lab Samples 

 Permeability measured in core samples is highly variable. Permeability data measured in 

the lab samples were plotted against porosity to determine whether correlation between these two 

properties exist (Figure 6.7). The data points are scattered, and no evident correlation is present. 

Therefore, it was concluded that porosity is not related to permeability for the collected samples. 

The lack of correlation could be due to insufficient number of permeability measurements 

available. 



60 
 

 

Figure 6.7: Plot of core porosity versus permeability. Correlation between these properties is not observed possibly due to a small 

number of sample points. 
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7. DISCUSSION 

7.1 Mechanism of Deformation Bands' Development in the Study Area 

Overview of the deformation types and their petrophysical properties along with thin 

sections from the study area was done in Chapter 3.  Porosity within the band and geometry of 

the grains within Entrada sandstone resembles cataclastic band type similar to the examples from  

Aydin and Johnson, 1978; Antonellini et al., 1994; Mair et al., 2000; etc. Microfractures and 

conchoidal fractures are observed within the deformation bands Estimated differential pressure 

based on the depth of burial of Entrada sandstone at the time of deformation bands' formation is 

between 9 and 27 MPa.  Such pressure is too low compared to the experimental results of 

cataclastic bands' generation by Mair et al. (2000) where these features developed at 120 - 140 

MPa differential pressure. The question is then how could these bands having the same 

appearance as cataclastic bands have been generated under low differential pressure conditions? 

 The preferred explanation is that the deformation bands observed in the area were the 

zones of high porosity due to dilational component of motion. The fractured grains have already 

been in place before deformation occurred. Instead of pore space collapse and cataclasis, the 

increase of pore space took place. Higher porosity within the band created the path for migration 

of fluids and finer grained material (Figure 6.1) until the band got truncated. The zones of 

deformation bands were created by repetitive small-offset sliding events along the weakness 

plane where generated fractures got filled in with smaller grained sediments until the major 

rupture event that created Cañones fault occurred.  
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Figure 7.1: Formation of dilational disaggregation bands and their infill with finer grained material. 

7.2 Effect of Laramide Structure on Cañones Fault  

 A noticeable feature that the study area exhibits is that the strike of the Cañones fault is 

coincident with the strike of the Laramide monocline (Chapters 2 and 4). Also, the larger throw 

is in the southern part of the fault where the monocline exhibits the largest amplitude. Both of the 

structures show less deformation towards the south. The fault is positioned to the west of the 

monocline where the curvature of monocline strata occurs. This observation leads to a 

conclusion that Cañones fault, if not reactivated Laramide structure, was initiated along the 

weakness plane defined by the monocline. 

7.3 Correction of Porosity Estimation for In-situ Velocity Anisotropy  

 Velocity anisotropy detected near Cañones fault produced inconsistent porosity 

estimations from Vp and Vs velocities using Vernik and Kachanov (2010) model (Chapter 6). 

Estimated porosity for E-W-oriented measurements near the fault shows lower values from Vp 

model than from Vs model. This discrepancy in porosity estimation shows a linear trend (Figure 

5.10). In order to determine which approximation is more reliable, the following observations 

were taken into consideration: 
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1) Porosity is defined as the ratio of pore volume (Vpore) to the bulk volume of the rock (Vb) 

such that: 

            (7.1), 

(Cone and Kersey, 1992). As seen from the above equation, porosity is the volume property 

and is not dependent on the sample orientation.  

2) Weak P-wave anisotropy (13%) for the field data in this area was observed.  

3) Porosity estimations from both Vp and Vs models show similar results in this area that are 

independent of measurement orientation (Table C.2), except for the porosity estimated from 

Vp for E-W-oriented measurements. 

 Based on these observations, porosity from Vs for E-W oriented measurements near the 

fault was considered a better approximation. The equation (6.10) shows a correction that 

accounts for anisotropy when estimating porosity from Vp.  

 Validation of the constructed models for porosity estimation is based on the consistency 

of the results. No porosity data were acquired in situ to compare with the estimated values which 

opens up the opportunity for further research. Another potential point of interest is the statistical 

significance of the available data used to construct the models, i. e. whether these models would 

show similar results on larger datasets. Furthermore, this study shows that anisotropy associated 

with the preferred strike orientations of deformation bands is detected with ultrasonic velocity 

measurements; this finding can be tested on a larger scale, such as seismic dataset. 
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8.  CONCLUSIONS 

 During the course of this research, the following issues associated with deformation 

bands in the study area have been addressed:  

1) Structures observed in the study area in relation to each other: A monocline of 

Laramide age and Cañones fault related to Rio Grande extension are the two major 

structures in the study area that are subparallel to each other. Their orientation relative to 

each other is not coincidental. It suggests that Cañones fault ruptured along the zone of 

weakness created by the monocline. 

2) Type of deformation bands and their effect on petrophysical properties in the 

study area: Entrada thin sections were analyzed to determine the effect of deformation 

bands on porosity. Porosity within the deformation band is significantly reduced. The 

proposed mechanism of their formation involves pore space increase within the band and 

migration of smaller particles carried with fluids into open pore space. 

3) Deformation bands' density and orientations, and their relation to the main 

structures: Deformation band density strongly correlates with the proximity to the fault 

and monocline. Near these structures, high deformation band density is observed. 

Deformation band density drops away from the fault and monocline. Deformation bands 

near the fault are aligned preferentially subparallel to the strike of the fault. Near the 

monocline, a variation in deformation bands' orientation is observed due to multiple 

deformation band sets generation associated with bending in different parts of the 

monocline. 

4) Porosity versus velocity relationship in the study area: Core samples from 

different parts of the study area were used for velocity-porosity calibration. Established 
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trend was applied to in-situ velocity measurements for porosity estimation. Porosity trend 

established from Vp predicted the same porosity values as he trend established from Vs 

for most of the samples which provided confidence in constructed models. The samples 

near the fault that exhibited anisotropy produced a linear error in porosity estimation 

from Vp versus porosity estimation  from Vs. A correction equation that scaled the 

porosity from Vp estimations to porosity from Vs estimation was established.   
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A . MEASUREMENT EQUIPMENT AND METHODS 

A.1 Portable Ultrasonic Velocity Measurement System 

 The equipment used in field velocity measurements consists of portable transducer gun, 

controller box, and oscilloscope (Figure A.1). Transducer gun has one transmitter and two 

receivers, 1 inch (2.54 cm) apart from each other. The first receiver, positioned in the middle, has 

a spring that adjusts its vertical position in order to ensure a good coupling with formation. The 

gun is connected to controller by four wires, three of which send the signal from transmitter and 

each receiver to the controller box, and the fourth wire sends the pulse from the controller box to 

the transmitter. The transmitter converts the pulse into a sound wave that propagates through the 

rock and gets picked up by two receivers. Transmitted and received signal is then sent to and 

digitized by controller. Digitized output signal from transmitter and both receivers can then be 

displayed on oscilloscope which is also connected to the controller. 

 Display output from two receivers presents sinusoidal waveforms, from which first 

arrival times are determined. Since receivers are separated by the distance of 2.54 cm, the first 

arrival on the second receiver shows later in time. Velocity is later computed from the receiver 

separation distance over the difference in time arrivals. 
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Figure A.1: Equipment connected for velocity measurement. A is a portable transducer gun with labels Red for transmitter, and 

Yellow and Blue for two receivers. B is a controller box that sends the electric pulse and receives the signal from the transducer 

gun. C is the oscilloscope where the digitized signal from the controller is displayed; two waveforms shown on the display are the 

signals obtained from the first (yellow) and second (blue) receivers. 

 

a)  b)  

Figure A.2: A diagram of receiver and transmitter plates for measuring a) P-wave velocity where particle motion is parallel to 

wave propagation and b) S-wave velocity where particle motion is perpendicular to wave propagation.  

A

B

C
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 Portable transducer gun is capable of measuring both P- and S-wave velocities. Figure 

A.2 shows schematic configurations of plate orientations in transmitter and receivers for 

obtaining these measurements. Rotation of the plates in parallel or perpendicular orientation to 

the wave propagation direction allows to measure P-wave or shear wave, respectively.  

Figure A.3a shows transducer gun plate orientations in P-wave acquisition mode. The arrow 

points to a dot circled in red that indicates the plate position. These plate position indicators are 

present on transmitter and each receiver. When the dots for all components of the transducer gun 

are aligned with letter P, it is ready to measure P-wave velocity. In order to change acquisition 

mode from P- to S-wave, the screws of the transducer gun shown  in Figure A.3b need to be 

loosened.  Then, the dots for all of the transducer components need to be rotated 90° clockwise 

and aligned with the caps of the screws. A reference position for S-wave acquisition mode is 

marked with letter S on one of the receivers. After rotation is complete, the screws need to be 

tightened again to start the measurement. 

 

a)  
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b)  

Figure A.3: a) Orientation of the plates in P-wave acquisition mode. The arrow points to the dot that indicates the position of 

receiver/transmitter plates that need to be aligned with letter P to start the acquisition. b) A view of transducer gun rotated 90°; 

for S-wave acquisition, all the dots indicating the plate position need to be aligned with the tops of the screws. 

A.2 Cobberly-Stevens Porosimeter 

 Porosity measurement with the gas expansion method is based on the Boyle's law where, 

for a constant temperature, the product of pressure and volume remains constant. Cobberly-

Stevens porosimeter is used for porosity measurement with gas expansion. The diagram of the 

porosimeter is provided in Figure A.4. This instrument (Figure A.5) consists of the sample cell 

with volume ஼ܸ  and the reference section with volume ோܸ. The connection between the two 

sections is controlled by external valve. The pressure indicator is connected to the reference 

section. When the valve is closed, the reference section is filled with helium gas, and the gauge 

pressure, P₀, is displayed on the pressure indicator. The absolute pressure in the reference section 
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is the sum of the gauge (P₀) and atmospheric (A) pressures. The pressure - volume product in the 

reference section is ோܸሺ ଴ܲ ൅  ሻ. The sample cell section contains the core sample with grainܣ

volume ܸீ  which makes the total volume of the section equal to ሺ ஼ܸ െ ܸீ ሻ.The pressure in the 

sample cell is the atmospheric pressure (A). The product of pressure and volume in the reference 

cell is ܣሺ ஼ܸ െ ܸீ ሻ (Porosimeter Theory). 

 

Figure A.4: Cobberly-Stevens porosimeter diagram. ଴ܲ is the initial pressure in the reference cell when the valve is closed, P is 

the pressure after the valve is opened, A is the atmospheric pressure, ோܸ is the volume of the reference cell, ஼ܸ  is the volume of 

the sample cell, and ܸீ  is the grain volume (Porosimeter Theory). 

 

Figure A.5: Cobberly-Stevens porosimeter (left) and the pressure indicatoor for the reference section (right). 
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 After valve that separates the two cells is opened, the gas starts flowing into the sample 

cell until it reaches equilibrium. The equilibrium gauge pressure, P, is displayed on the pressure 

indicator. The combined pressure - volume in both cells is now equal to  ሺܲ ൅ ሻሺܣ ோܸ ൅ ஼ܸ െ

ܸீ ሻ. Since the product of pressure and volume is constant, the sum of pressure - volume products 

in the beginning of the experiment is equal to the pressure - volume product after the valve is 

opened, or 

ሺܣ ஼ܸ െ ܸீ ሻ ൅ ோܸሺ ଴ܲ ൅ ሻܣ ൌ ሺܲ ൅ ሻሺܣ ோܸ ൅ ஼ܸ െ ܸீ ሻ     (A.1). 

The grain volume is then can be written as 

ܸீ ൌ ோܸ ൅ ஼ܸ െ ோܸሺ ଴ܲ ܲ⁄ ሻ         (A.2). 

 In order to find the term ோܸ, the instrument is calibrated by using the set of billets of 

known volume. First, the measurement with all the billets in the sample cell is taken, and the 

equation (2) for this system is 

ଵܤ ൅ ଶܤ ൅ ଷܤ ൅ ସܤ ൌ ோܸ ൅ ஼ܸ െ ோܸ൫ ଴ܲ௙ ௙ܲ⁄ ൯      (A.3), 

where ܤଵ, ܤଶ, ܤଷ, and ܤସ are the volumes of the billets, ଴ܲ௙ is the initial gauge pressure, and ௙ܲ 

is the final gauge pressure with all of the billets present. Then, one of the billets, ܤଶ, is removed, 

and the equation becomes 

ଵܤ ൅ ଷܤ ൅ ସܤ ൌ ோܸ ൅ ஼ܸ െ ோܸሺ ଴ܲ௕ ௕ܲ⁄ ሻ       (A.4), 

where ଴ܲ௕is the initial gauge pressure and ௕ܲ is the final gauge pressure with ܤଶ removed. 

By subtracting (4) from (3), the following equations are obtained  

ଶܤ ൌ ோܸሺ ଴ܲ௕ ௕ܲ െ ଴ܲ௙ ௙ܲ⁄⁄ )         (A.5), 

and 

ோܸ ൌ ଶܤ ሺ ଴ܲ௕ ௕ܲ െ ଴ܲ௙ ௙ܲ⁄⁄⁄ ሻ         (A.6) 

(Porosimeter Theory). 
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 After calibration is performed, some of the billets are removed from the sample cell to be 

replaced by the core sample. For example, if the first three billets are removed, then the equation 

(2) takes a form 

ܸீ ൅ ସܤ ൌ ோܸ ൅ ஼ܸ െ ோܸሺ ଴ܲ௦ ௦ܲ⁄ ሻ         (A.7), 

where  ଴ܲ௦ is the initial gauge volume reading, and ௦ܲ is the final gauge volume reading. ܸீ  is 

obtained by subtracting (7) from (3), so that 

ܸீ ൌ ଵܤ ൅ ଶܤ ൅ ଷܤ ൅ ோܸሺ ଴ܲ௙ ௙ܲ െ ଴ܲ௦ ௦ܲ⁄⁄ ሻ        (A.8). 

Porosity is then can be determined from the equation below: 

߶ ൌ ௏ಸି௏್
௏್

            (A.9), 

where ௕ܸ is the bulk volume of the sample (Porosimeter Theory). 

A.3 Permeability Measurements 

 Gas permeability method with Ni gas using Core Petrophysical software and equipment 

was applied to the samples for measuring permeability. Permeability determination with gas flow 

method uses Darcy's law that is valid for the laminar flow. Therefore, the laminar flow condition 

needs to be maintained during the experiment. The flow equation is shown below: 

ܳ ൌ ௞∗஺∗ሺ௉భି௉మሻ

ఓ∗௅
           (10), 

where Q is the flow rate, k is the permeability, A is the surface area, ଵܲ and ଶܲ are initial and 

final pressures, respectively, μ is the viscosity, and L is the length of the sample (Figure A.6).  
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Figure A.6: An illustration of the laminar flow through the sample. Q is the flow rate, k is the permeability, A is the surface area, 

ଵܲ െ ଶܲ  is the pressure difference, μ is the viscosity, and L is the length of the sample (Crain's Petrophysical Handbook). 

 



79 
 

B. APPENDIX: PICTURES OF VELOCITY MEASUREMENT STATIONS 

 

Figure B.1: Traverse 1, Station 1, Measurement 1. 

 

Figure B.2: Traverse 1, Station 1, Measurement 2. 
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Figure B.3: Traverse 1, Station 2, Measurement 1. 

 

Figure B.4: Traverse 1, Station 2, Measurement 2. 
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Figure B.5: Traverse 1, Station 3, Measurement 1. 

. 

Figure B.6: Traverse 1, Station 3, Measurement 2. 
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Figure B.7: Traverse 2, Station 1, Measurement 1. 

. 

Figure B.8: Traverse 2, Station 1, Measurement 2. 
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Figure B.9: Traverse 2, Station 2, Measurement 1. 

 

Figure B.10: Traverse 2, Station 2, Measurement 2. 
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Figure B.11: Traverse 2, Station 3, Measurement 1. 

 

Figure B.12: Traverse 2, Station 3, Measurement 2. 
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Figure B.13: Traverse 3, Station 1, Measurement 1. 

 

Figure B.14: Traverse 3, Station 1, Measurement 2. 
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Figure B.15: Traverse 4, Station 1, Measurement 1. 

 

Figure B.16: Traverse 4, Station 1, Measurement 2. 
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. 

Figure B.17: Traverse 4, Station 2, Measurement 1. 

 

Figure B.18: Traverse 4, Station 2, Measurement 2. 
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Figure B.19: Traverse 4, Station 3, Measurement 1. 

 

Figure B.20: Traverse 4, Station 3, Measurement 2. 
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Figure B.21: Traverse 4, Station 4, Measurement 1. 

 

Figure B.22: Traverse 4, Station 4, Measurement 2. 
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Figure B.23: Traverse 5, Station 1, Measurement 1. 

 

Figure B.24: Traverse 5, Station 1, Measurement 2. 
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Figure B.25: Traverse 5, Station 2, Measurement 1. 

 

Figure B.26: Traverse 5, Station 2, Measurement 2. 
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Figure B.27: Traverse 5, Station 3, Measurement 1. 

 

Figure B.28: Traverse 5, Station 3, Measurement 2. 
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Figure B.29: Traverse 5, Station 4, Measurement 1. 

 

Figure B.30: Traverse 5, Station 4, Measurement 2. 
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Figure B.31: Traverse 5, Station 5, Measurement 1. 

 

Figure B.32: Traverse 5, Station 5, Measurement 2. 
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Figure B.33: Traverse 5, Station 6, Measurement 1. 

 

Figure B.34: Traverse 5, Station 6, Measurement 2. 
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Figure B.35: Traverse 5, Station 7, Measurement 1. 

 

Figure B.36: Traverse 5, Station 7, Measurement 2. 
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Figure B.37: Traverse 5, Station 8, Measurement 1. 

 

Figure B.38: Traverse 5, Station 8, Measurement 2. 
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Figure B.39: Traverse 6, Station 1, Measurement 1. 

 

Figure B.40: Traverse 6, Station 1, Measurement 2. 
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Figure B.41: Traverse 6, Station 2, Measurement 1. 

 

Figure B.42: Traverse 6, Station 2, Measurement 2. 
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Figure B.43: Traverse 6, Station 3, Measurement 1. 

 

Figure B.44: Traverse 6, Station 3, Measurement 2 
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Figure B.45: Traverse 6, Station 4, Measurement 1. 

. 

Figure B.46: Traverse 6, Station 4, Measurement 2. 
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Figure B.47: Traverse 6, Station 5, Measurement 1.

 

Figure B.48: Traverse 6, Station 5, Measurement 2. 
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Figure B.49: Traverse 6, Station 6, Measurement 1. 

 

Figure B.50: Traverse 6, Station 6, Measurement 2. 
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Figure B.51: Traverse 6, Station 7, Measurement 1. 

 

Figure B.52: Traverse 6, Station 7, Measurement 2. 
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Figure B.53: Traverse 7, Station 1, Measurement 1. 

 

Figure B.54: Traverse 7, Station 1, Measurement 2. 
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Figure B.55: Traverse 7, Station 2, Measurement 1. 

 

Figure B.56: Traverse 7, Station 2, Measurement 2. 
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Figure B.57: Traverse 7, Station 3, Measurement 1. 

 

Figure B.58: Traverse 7, Station 3, Measurement 2. 
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Figure B.59: Traverse 7, Station 4, Measurement 1. 

 

Figure B.60: Traverse 7, Station 4, Measurement 2. 

 



109 
 

 

Figure B.61: Traverse 8, Station 1, Measurement 1. 

 

Figure B.62: Traverse 8, Station 1, Measurement 2. 
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Figure B.63: Traverse 8, Station 2, Measurement 1. 

 

Figure B.64: Traverse 8, Station 2, Measurement 2. 
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Figure B.65: Traverse 8, Station 3, Measurement 1. 

 

Figure B.66: Traverse 8, Station 3, Measurement 2. 
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Figure B.67: Traverse 8, Station 4, Measurement 1. 

 

Figure B.68: Traverse 8, Station 4, Measurement 2. 
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Figure B.69: Traverse 8, Station 5, Measurement 1. 

 

Figure B.70: Traverse 8, Station 5, Measurement 2. 
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C. APPENDIX: FIELD VELOCITIES AND POROSITY ESTIMATION RESULTS 
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