

Copyright © 2013

Henry I. Ibekwe

All Rights Reserved

Decision-Making for Autonomous Systems in Partially

Observable Environments

A Dissertation

Presented to

the Faculty of the Department of Industrial Engineering

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

IN INDUSTRIAL ENGINEERING

by

Henry I. Ibekwe

May 2013

Decision-Making for Autonomous Systems in Partially
Observable Environments

__

Henry I. Ibekwe

Approved: __

 Chair of the Committee

 Ali K. Kamrani, Ph.D., P.E., Associate Professor

 Industrial Engineering

Committee Members : __

 Qianmei Feng, Ph.D., Associate Professor

 Industrial Engineering

 __

 Erhun Kundakcioglu, Ph.D., Assistant Professor

 Industrial Engineering

 __

 Jagannatha R. Rao, Ph.D., Associate Professor

 Mechanical Engineering

 __

 Keh-Han Wang, Ph.D., Professor

 Civil & Environmental Engineering

__ __

Suresh K. Khator, Associate Dean, Gino J. Lim, Associate Professor

Cullen College of Engineering Chair of Department of Industrial

Engineering

v

Acknowledgements

First and foremost, I would like to thank my advisor, Dr. Ali Kamrani, for his

patience, guidance and support throughout this process. Without his constant

encouragement and insightful discussions this dissertation would not have been

successful. I would also like to thank my committee members, Dr. Feng, Dr.

Kundakcioglu, Dr. Rao and Dr. Wang for their critical review and assessment of my

work. Your support is highly appreciated as this dissertation significantly improved

with your feedback.

Secondly, I wish to also acknowledge my loving parents, Mr. Augustine A. Ibekwe

and (late) Mrs. Rebecca C. Ibekwe, for instilling in me a strong work ethic and

providing the necessary educational foundations to achieve my academic goals.

Also to my siblings Eric Ibekwe, Stella Ibekwe and Jane Ibekwe, thanks for putting

up with me during some of the stressful periods. Perhaps, I may have some time to

now relax and spend some time with you guys. I would also like to thank my good

friend, Antoinette Baptiste, for her early support in my graduate studies. Many

thanks to my colleagues, Maryam Azimi and Hazem J. Smadi for their useful

discussions and encouragement during some of the more challenging times. I also

wish to thank all other friends and family members not mentioned for their support.

Lastly, this dissertation is dedicated to my late loving mom, Mrs. Rebecca C. Ibekwe

(1954-2011), whom while alive would listen to some of the ambitious and eccentric

ideas I had for my dissertation. Thanks mom! You’ll truly be missed!

vi

Decision-Making for Autonomous Systems in Partially
Observable Environments

An Abstract

of a

Dissertation

Presented to

the Faculty of the Department of Industrial Engineering

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

IN INDUSTRIAL ENGINEERING

by

Henry I. Ibekwe

May 2013

vii

Abstract

Decision-making for autonomous systems acting in real world domains are

complex and difficult to formalize. For instance, consider the task of autonomously

navigating a mobile robot in an automated manufacturing facility. Its task is to

transport hazardous material from a collection site to a disposal site. This is a

navigation problem where the robot has to consider numerous variables such as

collision avoidance, recognition of goal locations, accurate selection of the desired

material, and knowledge of its location within the facility. The difficulty is often to

reliably model the uncertainties and dynamics of the robot-environment interaction

when the robot can only partially observe the states of the environment.

Therefore a principal problem in designing mobile robots that can efficiently

navigate indoor domains to achieve a desired task autonomously is to construct

robust models for efficient planning and motion control in stochastic domains. This

is still a difficult and open problem despite significant advances. The robot must

generate efficient policies to reliably accomplish its tasks while accounting for

uncertainties in both its action and perception. In this dissertation we model the

uncertainties in action selection and perception using a sequential decision-making

model. The mathematical formalism adopted is the Partially Observable Markov

Decision Process (POMDP), a generalization of the well-known Markov Decision

Process (MDP). Though POMDPs represent a robust formalism for the modeling of

agent-based decision making, it is still very difficult and often intractable to

compute optimal solutions for problems with large state space due to the high

viii

dimensionality of the underlying belief space. We propose a technique called Goal-

Specific Representation (GSR) that exploits domain structure and generates policies

over a subset of the state space given a map of the domain, a starting location and a

goal location. We solve the resulting POMDP model using a Point-Based Value

Iteration (PBVI) solver and apply the generated policies for navigation on an

autonomous robot. We anticipate that the results from this work can be applied in

manufacturing facilities to enhance automation and healthcare domains for assisted

care.

ix

Table of Contents

Acknowledgements .. v

Abstract .. vii

Table of Contents ... ix

List of Figures .. xiv

List of Tables .. xvi

Chapter 1 – Introduction .. 1

1.1 Overview of Agent-Based Decision Making .. 1

1.1.1 Agents ... 3

1.1.2 Environments .. 4

1.1.3 Rewards ... 6

1.1.4 Policies .. 7

1.2 Decision-Making for Autonomous Robots ... 8

1.2.1 Robot-Environment Model .. 8

1.2.2 Sensory Observations ... 11

1.2.3 Acting in the Environment .. 11

1.2.4 Planning in Partially Observable Environments ... 12

1.2.5 The Autonomous Robot Navigation Problem ... 13

1.3 Related Work ... 15

1.3.1 POMDP in Robotics .. 16

1.4 Contributions ... 18

x

Chapter 2 – Markov Decision Processes .. 19

2.1 Overview.. 19

2.2 The Markov Process ... 20

2.3 The MDP Model .. 21

2.3.1 Objective of an MDP ... 23

2.3.2 MDP Solution Approach ... 25

2.3.3 Policies ... 26

2.3.4 Decision Steps .. 27

2.4 Algorithms for Solving MDPs .. 29

2.4.1 Value Functions ... 29

2.4.2 Value Function for Finite Horizon Models ... 30

2.4.3 Value Function for Infinite Horizon Models .. 31

2.4.4 Optimal Value Functions and Policies ... 32

2.4.5 Value Iteration Algorithm ... 34

2.4.6 Policy Iteration Algorithm .. 34

2.5 Summary ... 37

Chapter 3 – Partially Observable Markov Decision Processes 38

3.1 Overview.. 38

3.2 The POMDP Model .. 38

3.2.1 Objective of the POMDP ... 40

3.2.2 Belief Computation .. 41

3.2.3 POMDPs as Belief State MDPs ... 43

3.2.4 POMDP Value Functions .. 45

xi

3.3 Optimal POMDP Value Function ... 47

3.4 Algorithms for Solving POMDPs .. 49

3.4.1 Point-Based Value Iteration Algorithms ... 51

3.5 Summary ... 56

Chapter 4 – Decision-Making for Autonomous Robots using POMDPs 57

4.1 Overview.. 57

4.2 The Autonomous Robot Navigation Problem .. 58

4.2.1 Mobile Robot Kinematics .. 59

4.2.2 Probabilistic Kinematic Model .. 61

4.2.3 Sensory Model .. 62

4.2.4 Recursive State Estimation ... 63

4.3 Autonomous Robot Navigation using POMDPs .. 66

4.3.1 Robot Navigation with POMDPs in Literature ... 67

4.3.2 Sampling-Based Motion Planning for Mobile Robots 69

4.4 Summary ... 71

Chapter 5 – A Methodology for Goal-Specific Representation of POMDP

Model Parameters .. 73

5.1 Overview.. 73

5.2 The GSR Methodology .. 75

5.2.1 Goal-Specific Representation... 76

5.3 A Sample Problem ... 81

5.3.1 Problem Scenario .. 82

5.3.2 Problem Description ... 82

xii

5.3.3 The GSR POMDP Model .. 83

5.4 Empirical Analysis ... 88

5.4.1 POMDP Model for the Automation Problem ... 88

5.4.2 The GSR Maps of the Automation Problem ... 90

5.4.3 Solving the GSR POMDP ... 93

5.4.4 Turtlebot 2 Robot ... 94

5.5 Results and Discussion .. 98

5.5.1 Data Analysis .. 99

5.6 Summary .. 103

Chapter 6 – Summary and Future Work ... 104

6.1 Overview... 104

6.2 Limitations ... 105

6.3 Future Work .. 106

References ... 108

Appendix ... 122

A. Data Syntax .. 122

A.1 Input Data for GSR map Task 2 .. 123

B. Generated Policies for the Robot Tasks ... 131

B.1 Output Data for Domain Map Task 1 ... 132

B.2 Output Data for GSR Map Task 1 ... 133

B.3 Output Data for Domain Map Task 2 ... 134

B.4 Output Data for GSR Map Task 2 ... 135

B.5 Output Data for Domain Map Task 3 ... 136

xiii

B.6 Output Data for GSR Map Task 3 ... 137

B.7 Output Data for Domain Map Task 4 ... 138

B.8 Output Data for GSR Map Task 4 ... 139

xiv

List of Figures

Figure 1.1 – Robot-Environment Model .. 10

Figure 2.1 – An MDP Model of the Agent-Environment Interaction 20

Figure 2.2 – An Abstract Representation of an MDP model .. 22

Figure 2.3 – Timeline for Discrete Decision Points ... 28

Figure 3.1 – An Abstract POMDP Model .. 40

Figure 3.2 – A 2D Simplex in 3D Space Representing the Belief Space 45

Figure 3.3 – A Sample Value Function for a 2 State POMDP ... 49

Figure 4.1 – Global and Local Coordinate Systems of the Robot Pose in 2D 60

Figure 4.2 – The Open Motion Planning Library on ROS (Courtesy of ROS.org) 70

Figure 5.1 – (a) A Map of a Task Environment Depicting the Initial and Goal State

(b) A GSR-Map of the Task Environment in Red Outline. .. 77

Figure 5.2 – A Sample Map Generated by a Turtlebot (Courtesy of ROS.org) 79

Figure 5.3 – A Sample Map Generated by a Turtlebot with a Grid Overlay 80

Figure 5.4 – A GSR-Map Generated by a Turtlebot with a Grid Overlay Depicting

the Initial Location and Goal Location ... 81

Figure 5.5 – A Grid Map of a Task Environment Depicting the Initial Location of

the Robot ... 82

Figure 5.6 – Sample GSR Maps of the Domain Map .. 87

Figure 5.7 – Domain Map for the Automation Problem (Layout Adapted from

Littman et al., 1995) ... 88

Figure 5.8 – State Labels for the Automation Domain Map ... 91

xv

Figure 5.9 – GSR Map for Drop Location A ... 91

Figure 5.10 – GSR Map for Drop Location B .. 92

Figure 5.11 – GSR Map for Drop Location C ... 92

Figure 5.12 – GSR Map for Drop Location D .. 93

Figure 5.13 – A Turtlebot 2 Robot .. 95

Figure 5.14 – An Autonomous Navigation Task on the Turtlebot 96

Figure 5.15 – Domain Map with Labels in the filename.pomdp syntax 99

Figure 5.16 – Chart Comparing the Number of -vectors Generated 101

Figure 5.17 – Chart Comparing the Number of Belief Generated 101

Figure 5.18 – Chart Comparing the Number of Backups Computed 102

Figure 5.19 – Chart Comparing the Expected Rewards from the Policy

Evaluation ... 102

xvi

List of Tables

Table 2.1 – Value Iteration Algorithm .. 35

Table 2.2 – Policy Iteration Algorithm ... 36

Table 3.1 – A Point-Based Value Iteration Algorithm .. 55

Table 4.1 – Bayes Filter Algorithm ... 65

Table 5.1 – A Goal-Specific Representation (GSR) Algorithm .. 78

Table 5.2 – Observation Probabilities .. 85

Table 5.3 – States of the Domain Map and GSR Map .. 86

Table 5.4 – Websites for POMDP Solvers .. 94

Table 5.5 – Turtlebot Specifications .. 97

Table 5.6 – Results of GSR-Model Implementation .. 98

Table 5.7 – Results from POMDP Solver with Expected Cost .. 100

1

Chapter 1

Introduction

1.1 Overview of Agent-Based Decision Making

Autonomous agents typically interact in non-trivial domains that are dynamic

and relatively unpredictable. In the case of biological agents, they actively gather

information about their environment to generate perceptual models for use in

achieving high-level goals or simply as a primitive low-level mechanism without any

directed use of the internal models. Mechanical agents, such as robots can be

designed to perform similar functions where the designer has a set of basic

requirements for the robot to achieve. The robot could be designed to

autonomously transport objects from an initial location to a predefined destination

or could be designed to actively gather information and explore unknown terrain.

We may also consider decision-making from a more abstract perspective where

the agent is an abstraction that can be clearly distinguished from an environment

and has the ability to modify the state of the environment to meet a desired goal.

The decision-maker or agent in this case need not be physical. For instance, it could

be software designed to control and adapt to complex operations in a manufacturing

facility (Bhatnagar et al., 1999). It can also be applied in healthcare for medical

diagnosis or medical decision making (Alagoz et al., 2010). For this reason it is

important to establish the context in which we wish to model the agent-

environment interaction as the notion of an agent is commonly confused. We freely

2

use the term agent or system to denote the decision-maker and the environment or

domain to denote the structure in which the agent is embedded and acts upon.

Agent-based decision making models can be modeled with a minimal set of

constructs namely: (1) the agent or decision maker, (2) the environment, and (3)

goals/rewards. We discuss the details of these constructs in subsequent

subsections. For now their intuitive notion will suffice. An agent acting in an

environment generally does so to meet certain goals. Interactions of practical

interest are typical non-deterministic in that the system dynamics behave

stochastically. By stochastic we mean that the effect of actions on the state of the

environment is uncertain and sensory models of the environment are noisy and

incomplete at best, resulting in uncertain state representation of the environment.

This is an important characteristic as it serves as the basis of formulating a

theoretical framework that models agent-based decision-making. In this work we

are interested in investigating and formulating efficient policies for decision-making

when the environment is partially observable and the action effects are stochastic.

A policy is a description of how the agent should behave when it maintains a belief of

the environment at a decision point.

Sequential decision-making problems can be modeled as an agent-environment

interaction where the goal of the agent is to optimize some reward function over

time. There are numerous approaches to modeling this problem as presented in

Howard (1960), Bertsekas & Tsitsiklis (1996), Sutton & Barto (1998), Hunt (2005),

Barto, Bradtke & Singh (1995) and Puterman (1994). The minimal set of constructs

required to model the sequential decision-making problem are the agent(s),

3

environment and rewards. In the following subsection we discuss these

components in more detail and explore how various authors have modeled the

problem. It is important to emphasize that we are primarily interested in finding

optimal or efficient policies that guide the agent’s behavior. This dissertation is

broken down as follows: chapter 1 introduces a general overview of sequential

decision-making for autonomous systems while chapter 2 discusses Markov

Decision Processes (MDPs). We proceed to discuss Partially Observable Markov

Decision Processes (POMDPs) in chapter 3. In chapter 4 we outline applications of

POMDPs for decision-making in autonomous robots while in chapter 5 we present

the proposed methodology. We conclude in chapter 6 to discuss lessons learned

and the future work we wish to investigate.

1.1.1 Agents

When one thinks of an agent, we my may tend to imagine physical entities such

as humans, animals or robots. However, this may not be the case as agents can be

highly abstract concepts which may take the form of immaterial constructs such as

software programs. Simply put, an agent is a decision-maker that receives sensory

information, dynamically updates its beliefs and acts based on its beliefs (Gordon,

1999). Its beliefs may be able to perfectly represent the states of the environment in

ideal cases. In many decision-making applications the context in which the agent is

formalized will indicate how the agent is modeled. This can be quite challenging but

taking a synthetic view can provide a more intuitive conception of an agent as

discussed in Pfiefer & Scheier (1999) and Pfiefer & Bongard (2007).

4

At the agent-environment interface, the agent receives perceptual signals z.

Along with a selected action a, it updates its belief b which it then uses to decide

which action to take in order to optimize some reward function R over a definite or

indefinite time period. This time period are commonly called finite or infinite

planning horizon which is discussed later. The agent makes observations (or

measurements) from a possible set Z. If this set of observations Z maps identically

to a set of states S, then the described environment is fully observable. That is, if an

observation probability function O accurately maps what is observed to the true

state, then the state of the environment is known with certainty.

Russell & Norvig (2003) classify agents into five categories namely: (1) simple

reflex agents; (2) model-based reflex agents; (3) goal-based agents; (4) utility-based

agents; and (5) learning agents. Of these five we are most interested is goal-based

agents. In goal-based agents there is a desired state which the agent wishes to

achieve. This state generates the maximum reward for the agent. Therefore the

agents actively chooses actions that will likely lead to observing the state. The

reader may refer to the literature for details on the other types of agents.

1.1.2 Environments

The environment is part of the system that does not include the agent or

decision maker. In some cases the agent itself may be considered as part of the

environment—such as when multiple agent interactions are being considered. In

autonomous robots for instance, the environment could be that domain where the

robot has to navigate as well as the physical part of the robot itself. It may seem

5

counter-intuitive but recall that the agent need not be the physical. The boundary

between agent and environment is more of an abstraction as discussed in the

previous section. In the robot example the agent could be the computer controller

that receives information from the environment including sensors attached to the

robot itself (wheel encoders, joint sensors etc).

Sutton & Barto (1998) describes the environment as the thing the agent

interacts with. It is instructive to restate that the agent-environment model is an

abstraction that can be applied to diverse range of problem domains. The

environment can be modeled as continuous spaces such as three-dimensional

physical spaces or discrete spaces that can be n-dimensional such as the states of a

manufacturing machine. This description can either take the form of high-level

feature or its complementary low-level properties. For instance in robotics vision a

high-level description of the state of the environment could be objects located in a

room—such as a desk, computer, chair, telephone, lab coat etc. Conversely a low-

level description of the state could be the pixilated image data expected from the

sensory reading with no direct reference the object observed.

We assume in this work that the environment is indifferent. That is, the

environment responds passively to the actions of the agent without any intent to

subvert the actions effects of the agent. If this were not the case then the

environment can be modeled as another agent with its own set of rules for decision-

making which can possibly be competitive—or worse—combative to the primary

agent. Multi-agent systems are common in Game Theory and Markov Games. If we

accept that the environment is indifferent to the actions of the agent, this does not

6

necessarily imply that the environment does not change. In fact, the environment

can be considered a static or dynamic system. In the static case, the states of the

environment don’t change and are intrinsically time-invariant systems whereas in

the dynamic case the states of the environment may change at slow or rapid rate. If

this change is slow enough then we can approximate the environment as a static

system. As one might deduce, it is conceptually more challenging to formalize

environments that are dynamic.

In machine learning, dynamic environments are often termed non-stationary

environments whereas static environments are referred to as stationary

environments. Sugiyama & Kawanabe (2012) provide some the latest theoretical

approaches to handling non-stationary domains. However, we restrict this work to

approximate stationary environments with stable dynamics or that which can be

modeled as such.

1.1.3 Rewards

For any decision-making process to be meaningful it requires motivation or

goals. Without motivation, the agent’s behavior cannot be effectively evaluated. A

way of generating goal-based behavior for an agent is by assigning rewards for the

actions that lead to desirable states of the environment. Conversely, an agent may

induce negative rewards or costs if it takes actions that do not lead its goals. An

example of negative rewards could be the depletion of battery life of an autonomous

robot roaming an environment without achieving its goal.

7

A rewards function is a part of the decision-making process that is distinct from

the agent-environment interaction. It provides an objective means to evaluate the

agent’s performance (Littman, 1996). It is essentially the designer’s task to model

the reward function for which on occasion is an art rather than a science. From a

theoretical perspective it is always desired to maximize the reward function while

minimizing agent resources. As such, most agent-based decision-making problems

are modeled algorithmically where the designed algorithm maximizes a reward

function with minimal computational and execution time.

1.1.4 Policies

A policy is a full description of how the agent should behave in every state of the

environment. Policies are different from plans in that plans specify how to behave

in only a subset of states in state space. We discuss policies in the context of Markov

Decision Processes in chapter 2. For now we should note that the purpose of a

policy is for goal directed behavior of the agent. Our objective is to find an optimal

policy for the agent.

Policy can be stationary or non-stationary. Stationary policies have a fixed state-

action sequence for every decision or time step whereas in non-stationary policies

the decision made in a time step may taken from a set of different policies. Consider

this illustrative example: An environment has 3 states (1 2 3, ,s s s) and the agent has 2

actions (
1, 2a a) to choose from. If there are three decision (time) steps in which the

agent has to make its decision, then a sample stationary policy for each of the

decision step 1 2 3, ,t t t is:

8

1 2 2 1 3 1 1 1 2 2 1 3 1 2 1 2 2 1 3 1 3{[(,),(,),(,)] ,[(,),(,),(,)] ,[(,),(,),(,)] }t t ts a s a s a s a s a s a s a s a s a   .

This policy states that for every decision step if the agent is in state 1s it chooses

action 2a ; state 2s the choice is action 1a ; and in state 3s the selected action is 1a . In

a non-stationary policy such as:

1 1 2 21 2 2 1 3 1 1 3 1 2 2 2 32 21 3{[(,),(,),(,)] ,[, , (,)] ,[(,),(,) (,) (,],) (},)t t ts a s a s a s as a s a s a s a s a   ,

if the agent is in state 1s at decision step 2t  rather than use the same policy and

choose action 2a , it chooses an action based on a different policy and selects action

1a . The policy differences are highlighted in red.

1.2 Decision-Making for Autonomous Robots

We have briefly discussed the essential constituents of agent-based decision

making. Our goal in this work is to apply it by formulating an approach to facilitate

solving open problems in autonomous robot navigation in partially observable,

uncertain and potentially dynamic environments. This is a challenging problem that

has received considerable research attention. The approach is to model the decision

making problem as a Partially Observable Markov Decision Processes (POMDPs) and

to compute practical efficient policies to control the robot motion during a given

task.

1.2.1 Robot-Environment Model

The robot-environment dynamics can be modeled as a coupled dynamical

system as shown in figure 1.1. The robot observes the state of the environment as

9

well as its internal state. It then maintains a belief according to some rule and acts

on the belief to achieve a goal. The environment and robot are always in a certain

state. A complete description of state variables is a complex and impracticable task

as physical environments are continuous both spatially and temporally. The

continuous nature of the real-world ensure that it is impossible to have perfect

models of the environment as there are infinite set of possibilities. Most practical

approaches simply use a suitable approximation. The environment is also highly

contextual as the descriptions in say, a factory environment will significantly differ

from descriptions in an outdoor environment. However, for practical purposes we

consider the state to be the set of all structures of the robot-environment system

that can be modeled in the appropriate operating context. In this case continuous

states are discretized in addition to other discrete state variables such as the binary

operation of a bumper sensor.

Continuous states variables may include the location of the robot with respect to

some global reference frame, it’s heading or direction, both rigid and non-rigid

physical structures in the environment, the robot’s present joint angle readings etc.

As stated the possibilities are infinite and its representation is largely an art which

depends on the designer’s ability to abstract the features of the environment.

10

Figure 1.1 – Robot-Environment Model

The state variables of the system can be considered static or dynamic (Thrun,

Burgard & Fox, 2006). In the environment, static state variables are the locations of

rigid fixed objects and relevant features which may also be modeled as landmarks

for navigation purposes. The location and orientation of the robot are considered

static state variables. There are three variables for the location which represent the

(, ,)X Y Z 3-dimensional Cartesian space and three variables for the orientation

namely the (pitch, roll, yaw). Conversely, objects in motion in the environment are

considered dynamic state variables. Also the robot velocities as well as the joint and

actuator velocities are considered to be the robot’s dynamic state variables.

Environment

Observation, tz

Action at

Belief, tb

State, ts

11

1.2.2 Sensory Observations

One of the primary ways the robot interacts with the environment is by making

observations of the current state of the environment. This is achieved by using

sensors such as laser range finder, cameras, ultrasonic sensor etc. to take

measurements. The sensory data is used by the robot to maintain state estimates

which are then used by the controller to choose appropriate actions. Typically,

numerous observations can be made simultaneously and processed in parallel but

this approach has its own challenges and drawbacks. In this work we consider only

sequential processes where the observation data is acquired in discrete time steps.

1.2.3 Acting in the Environment

The objective of designing any mobile robot controller is for it to choose

appropriate actions based on sensory information the robot receives from its

environment. Classical approach to planning and navigation were idealized and

assumed that the robot had perfect knowledge of the state of the environment. Its

actions were fully deterministic (Nilsson, 1973; Shue and Xue, 1993). This approach

is only sufficient for a very small subset of interesting real world problems where

uncertainty can be ignored. However since uncertainty cannot be ignored in most

real world problems and the robot-environment interaction is a coupled dynamical

system we must account for the stochastic nature of this interaction. We are

interested in applying decision-making models for autonomous robot navigation

that models the uncertainty in action selection and perception. Therefore

unmodeled stochastic interactions will result in poor performance of the controller.

12

For this reason the action effects are modeled using Markovian decision-making

processes discussed in more detail in chapter 2 and its generalization discussed in

chapter 3. At every time step the robot takes an action based on its belief resulting

in a probabilistic transition to a new state and thus a new belief after observation

are taken. Details of this process will be further elucidated in subsequent chapters.

Nevertheless, a belief can be understood as a model of the environment with respect

to the true state of the environment maintained by the robot.

1.2.4 Planning in Partially Observable Environments

We briefly mentioned that it was impractical to describe and list the complete

state variables of the environment. Due to this only a contextual subset of relevant

state variables are used to model the robot environment-interaction. The next

issue is for the robot to the decide how to act in order to achieve its designed goals.

Since we are interested in the navigation problem, the goal for the robot is thus to

select appropriate control actions to effectively move from an initial location to a

target location autonomously while avoiding obstacle. This is done by generating

control policies or plans that describe the actions the robot should take at every state

of the environment. A policy in this case is a complete specification of the actions

the robot should take at every belief state in contrast to plans that only consider a

subset of belief states from belief space.

Policies are implemented over a time horizon. Though time is naturally a

continuous variable, for practical purposes we model it as a discrete variable of

equally spaced intervals. Actions of the robot, which can also be referred as controls

13

or decisions, are taken sequentially. The robot starts off in some state 0s at time 0t

but cannot directly observe this state. Thus it has to generate an initial belief 0b of

the starting state. A belief b can be modeled as a probability distribution over all the

states. The robot then takes action 1a and probabilistically transitions to a

subsequent state s at time 1t . It generates a posterior belief bof the subsequent

state by probabilistically observing z from a set of possible observations which are

noisy projections of the true state of the system. Hence the updated belief is a

posterior probability conditioned on the subsequent state, observation and action.

It is sometimes referred to as the state estimate.

Thus the problem of planning in partially observable environments is to find

optimal (or near-optimal) decision policies that the robot can execute during its

navigation task. The planning algorithms discussed in this work produce action

policies that are computed offline. Online algorithms such those considered in Ross

et al. (2008) are not within the scope of this research. They however provide very

interesting methods for solving the hard problems of planning in partially

observable domains. Also extensive literature on other planning algorithms and

techniques can be found in LaValle (2006).

1.2.5 The Autonomous Robot Navigation Problem

Simply stated, the autonomous navigation problem is as follows: Given a map of

an environment find a collision free path that a mobile robot can efficiently navigate

given an initial location and goal location with minimal external intervention while

avoiding obstacles. This navigation can be applied in 2-dimensional environments

14

where the variables of interest are (, ,).x y  Here (,)x y is the planner location of the

robot depicted as a point in 2D Euclidean space and  the heading. Navigation in 3-

dimensional environments are naturally more challenging to model and have

received more research attention (Hornung et al., 2012).

To solve the navigation problem, path planning techniques such as those

discussed in LaValle (2006) can be employed. Path planning involves finding a path

or trajectory in the physical or configuration space that the robot should traverse to

reach its destination location efficiently. Configuration space is the space of all

possible representations of the robot’s configuration. There are numerous path

planning algorithms that have been proposed to solve the navigation problem.

These plans generally fall into two categories: 1) Graph Search and 2) Potential Field

Planning (Siegwart, Nourbakhsh & Scaramuzza, 2011). In graph search, the

environment is represented as free space and occupied space then subsequently

decomposed in some type of graph where various algorithms can be applied to

calculating a collision free path. The most common types of graph search

techniques are the Voronoi Diagram (Aurenhammer, 1991), Visibility Graphs, Exact

and Approximate Cell Decomposition. Also A*, D* algorithms and Rapidly Exploring

Random Trees (RRTs) are also popular methods used for path planning. Potential

field planning in contrast plans over a gradient field map of the environment. The

goal location is modeled as an attractive force while the obstacles are modeled as

repulsive forces. The objective is for the attractive forces to “pull” the robot towards

the goal location while the obstacle “pushes” the robot away from its location.

15

As will be extensively discussed Markovian decision processes and its partially

observable variant have been applied in early literature to tackle the robot

navigation problem due to the need to better handle uncertainty (Cassandra, 1996).

1.3 Related Work

Sequential decision-making in stochastic partially observable environments has

received significant research attention both theoretically and practically. We are

focusing our attention in applications for autonomous robotics—specifically in the

area of motion control and planning. The primary issues in these areas are to

formulate optimal plans or policies for efficient execution by the robot with minimal

external intervention. The robot has to select appropriate actions that result in

robust goal-directed behavior.

We tackle this problem by focusing on domain-specific model parameters of the

POMDP formalism and implement it as a controller of the robot’s actions. A closely

related work is that of Kaplow, Atrash & Pineau (2010). One significant challenge

and disadvantage of implementing POMDPs is that they are computationally

intractable for problems with large state space so it suffices that most methods

focus on its approximation. Also planning horizons and problem structure affects

computability. Recently diverse algorithms using point-based methods have been

proposed to solve POMDPs with large state space such as in Smith & Simmons

(2004); Spaan & Vlassis (2005); Kurniawati, Hsu & Lee (2008); Poupart, Kim & Kim

(2011). We use a state-of-the-art point-based solver to solve our problem.

16

1.3.1 POMDP in Robotics

Most applications of POMDPs in robotics are in navigation for mobile robots.

However, some application in manipulation tasks does exist. Research for POMDPs

in robotics originates from difficulties with hierarchical planners and behavior-

based models in handling uncertainty. Probabilistic Robotics (Thrun, Burgard & Fox

2006)—a relatively new robotics paradigm—focuses on using probability theory to

model the robot’s behavior in the real world.

Early work by Cassandra (1996) use heuristics to solve the POMDP model for

robot navigation while Koenig & Simmons (1998) propose a robot navigation

architecture called Xavier. The robot in the latter performs delivery tasks in office

environments and demonstrated reliability in uncertain sensory data and action

effects. Pineau & Thrun (2002) introduced the application of a POMDP controller

with uncertain sensory information for high-level control of the robot’s behavior.

Their model was applied in an assisted care facility. Also, Lopez et al. (2007) apply

POMDP in assistant robots for robust navigation in a hospital environment by

representing it as topological structures. They show their model to be robust to

dynamic objects such as people in motion giving more credence to its potential

application.

Other research efforts focus more on theoretical formulations that approximate

solutions of the POMDP model. Roy, Gordon and Thrun (2005) apply Exponential

Principal Component Analysis (EPCA) to reduce the belief space in order improve

speed of computation. Pineau & Gordon (2005) also present a POMDP algorithm

called PEMA and apply it in a nursebot. Their algorithm selects salient states of the

17

environment to improve its scalability. Ong et al. (2009) present a method using

mixed observability to solve POMDPs. They suggest that parts of the environment

may be fully observable thus reducing the dimensionality of the belief space. They

also demonstrate that their algorithm significantly improved in performance over

Pineau, Gordon & Thrun (2003).

Recent research in POMDPs for robot decision-making and navigation has

witnessed positive results. That notwithstanding there is still significant progress

to be made. Candido & Hutchinson (2011) propose a method to the solve navigation

problem using Continuous POMDPs to find policies for minimizing collisions and

successfully reaching its desired location in minimal time. Kaplow, Atrash & Pineau

(2010) present a framework for decomposing the environment into non-uniform

grids or variable resolution to exploit the facts that nearby states without obstacles

can be merged in larger states thus reducing the computational demands of solving

the POMDP. Ong, Png, Hsu and Lee (2010) discuss their approach of robot motion

planning and navigation in uncertain environments by proposing a factored

representation to model the fact that certain aspects of the environment may be

fully observable as well as partially observable. They derive a reduced

representation of the belief space of the POMDP.

These approaches and numerous others provided valuable contributions to

decision-making and planning for mobile robotic systems. We complement these

approaches by contributing a practical method to reducing the planning state space

for the robot in order to achieve the desired tasks.

18

1.4 Contributions

Our main contribution in this dissertation is to present a methodology called

Goal-Specific Representation (GSR) that exploits the intrinsic contextual properties

of a task environment. Given a map of the domain decomposed into uniform cells,

an initial location and a goal location, the proposed method selects only a subset of

states relevant for task completion based on the domains structural properties and

ignores other states. We show that there is not a significant difference in task

completion between a complete state representation and a GSR state

representation. The result is that the methodology can be applied to very complex

domains were planning is only conducted over a precise region of the task domain.

We apply this to the robot navigation problem then proceed to formulate action

policies using a POMDP model parameterized by a GSR algorithm. We solve the

POMDP model using a point-based POMDP solver and perform empirical evaluation

accordingly. The decision policies are tested on a real robot in an indoor

environment that simulated an automated manufacturing facility layout. Our

primary goal of this work is to advance research in decision-making for autonomous

systems and formulate methods for autonomous robot navigation that can be utilize

in applications such as automated material handling in a manufacturing domain or

assisted care in healthcare domains.

19

Chapter 2

Markov Decision Processes

2.1 Overview

A Markov Decision Process (MDP) is a framework for decision-making under

uncertainty that follows the Markov property. By Markov property, we mean a

memoryless stochastic process where future states of the system depend only on the

current state and not the history of previous states of the system. A stochastic

process is a process whose time-based evolution has probabilistic elements, thus

the sequence of states of the stochastic process is non-deterministic where the state

transition is guided by a probability distribution over all states.

In MDPs the outcome of an action is partly under the control of the decision

maker and partly random. The objective is to find the best policy to guide the

decision-maker’s actions. They are solved using dynamic programming or linear

programming. Dynamic programming algorithms developed by Bellman (1957a,

1957b) and its variants are the preferred in literature. A detailed treatment of

Markov Decision Processes can be found in Bellman (1957b) and Howard (1960),

Puterman (1994). Bertsekas and Shreve (1996) also provide a mathematically

rigorous analysis of solving discrete-time stochastic processes using dynamic

programming.

20

2.2 The Markov Process

Let S be a sequence of random state variables 1 2, ,..., tS S S and let there be only

one action available at each state. If 1 1 2 1(, ,...,) ()t t t tp s s s s p s s  then the sequence

is said to have the Markov property where the next future state variable of the

sequence, 1ts  , only depends on the current state variable ts and not the previous

state variables 1 2 1, ,..., ts s s  . Any stochastic process that has the Markov property is

called a Markov process. This process is also described as memoryless. In agent-

based decision-making however, there are usually multiple actions available for the

agent at any given state. Thus the Markov property can be written as:

 1 1 1 0 0 1{ , , , ,..., , } { , }.t t t t t t t tp s s s s a a s a s a p s s s s a a   
        (2.1)

Figure 2.1 – An MDP Model of the Agent-Environment Interaction

Environment

Agent

State 1ts 

st+1

Action at
reward tr

Policy t

1t 

21

This property is of significance because the behavior of the system modeled as an

MDP may deviate from expectation if all the previous states and actions have to be

accounted for in making our current decision. Also conditioning our present

decision on all past decision will quickly result in computational intractability as the

number of states and actions sequences increases exponentially resulting in the

curse of history.

2.3 The MDP Model

When an agent or mobile robot operating in an environment has the ability to

directly observe the state of the environment and perform actions to change the

state of the environment, this behavior can be modeled as an MDP if the state space

and action space are well-defined. An abstract model is shown in figure 2.1 and 2.2.

In practice however, agents cannot directly observe the state of the environment

and can only infer it from sensory information. This is called partial observability

and we discuss this generalization in chapter 3. In this section we assume that the

state of the environment is directly observable in order to develop an appropriate

MDP model.

An MDP can be modeled as a set of states, a set of actions, a state transition

probability function and a state transition reward function. It is the tuple

, , ,S A T R where:

 States: s S is a discrete and finite set of states of the environment,

1 2{ , ,..., }.nS s s s The environment is assumed to always be in some state s at

time t and initialized at state 0s .

22

 Actions: a A is a discrete and finite set of actions: 1 2{ , ,..., }mA a a a . This

describes the actions the agent takes that can potentially alter the state of the

environment.

Figure 2.2 – An Abstract Representation of an MDP model

 State transition probability function: :T S A S   is the function that

assigns a value in the interval [0,1] to the triplet (, ,)s a s . It can also be described

as 1(, ,) (,)t t tT s a s p s s s s a a
     which is the set of transition probabilities

from state s to s over time t to 1t  under action a. Furthermore the sum

(, ,) 1, (,).
s S

T s a s s a


  

 Reward Function: :  R S A is the function that assigns a real number for

every state-action pair. We define (,)R s a as the set of expected immediate

rewards the agent receives from selecting action a in state s. The reward

function can also be defined as :r S A S   which is the state-action-state

23

triple that assigns an immediate reward for every subsequent state in state

space given the current state and action. However it is usually convenient to

represent the reward function in terms of the expected immediate reward

(,)R s a . We express the relationship between the expected immediate and the

immediate reward as:

 (,) (, ,) (, ,).
s S

R s a T s a s r s a s


  (2.2)

In summary, an MDP model is define by the tuple , , ,S A T R  where S is the set of

states, A is the set of actions, T is the transition probability function and R the

reward function. The process starts at time t = 0 in state 0s S and takes action

a A specified by some arbitrary policy or decision rule. It transitions to the next

state according to (, ,)T s a s and receives an expected reward (,)R s a . We discuss

the objective of the model and how it is solved in the next sections.

2.3.1 Objective of an MDP

The objective of an MDP is to find a policy—a complete mapping of state to

action—that maximizes the cumulative sum of the expected discounted reward R

over a finite or infinite time horizon. A policy can be stationary or non-stationary. A

stationary policy : S A  is a fixed policy independent of the decision step. The

action taken under the policy  is given by ()sa s . This means that the policy is

dependent only on the state of the system. In contrast, if a policy specifies an action

to take at a certain state that is dependent on the decision or time step of selection

24

then the policy is non-stationary as the action selected at time t is taken from the

policy set 1 2{ , ,..., }    T where i is the policy selected at time i for 1,2,...,i T .

For finite-horizon problems the reward function for a given policy  is denoted

as:

1

,
T

t

t

t

R E r 


 
  

 
 (2.3)

where T is the horizon length, t is the time step and 0 1  is the discount factor

which allows us to model the fact that future rewards are potentially less beneficial

than present rewards and are thus geometrically discounted over the time horizon.

If 0  then the rewards are not considered whereas if the  = 1 then we assign

equal value of future rewards to the present reward. For finite horizon models we

can sometimes assign 1  since the problem is solvable within finite time.

There are challenges in solving finite-horizon problems optimally since it is

typically not known when the decisionprocess will terminate. To overcome this

difficulty infinite-horizon models with a discount factor are preferred. The

cumulative expected reward for a given policy  is given by:

1

t

t

t

R E r 




 
  

 
 , (2.4)

where 0 1  is the discount factor. Note that for infinite horizon problems 1 

or else R will have infinite value. The policy that maximizes the expected

cumulative discounted reward R is denoted as * and is given by:

 *

1

max |t

t

t

R E r
 

 




 
  

 
 . (2.5)

25

MDPs can be modeled as discrete-time or continuous-time processes. Discrete-

time MDPs are used when actions are made in discrete time intervals whereas in

continuous-time MDPs, actions are executed at any point in time. Puterman (1994)

and Guo & Hernández-Lerma (2009) extensively discuss continuous-time MDPs.

Continuous-time models pose its unique challenges in finding optimal solutions and

are not within the scope of this work. We are primarily interested in discrete-time

over discounted finite or infinite horizons. There are other interesting MDP

formulations such as Decentralized MDPs formulated by Allen, Petrik & Zilberstein

(2008).

2.3.2 MDP Solution Approach

A naïve approach to finding a solution for an MDP is to select the action that

results in largest expected immediate reward for a given state. This might seem

rather intuitive but since the decision process has probabilistic transitions and a

planning horizon, choosing an action with a lower immediate reward may result in

larger long term cumulative reward in the future. This adds to the complexity of

computing optimal policies for the MDP. Thus, as equations (2.3) and (2.4) suggests

it is preferable to compute the cumulative reward over the desired time horizon

rather than simply considering the expected immediate reward. The notion of value

or utility of a state that measures the expected cumulative reward from any decision

step to the terminal step from that state is a consistent method to compute the

optimal policy.

26

Howard (1960), Puterman (1994) and Bertsekas (2007) provide extensive

theoretical analysis of methods and algorithms for solving MDPs. We discuss

established algorithms for solving MDPs such as value iteration and policy iteration.

A variant of the value iteration algorithm will be used to solve the generalized case

of MDPs where the states are partially observable. We shall apply solutions to the

robot motion planning and navigation.

2.3.3 Policies

We briefly discussed policies in section 2.3.1. As stated a policy, : S A  is a

mapping of state to action for every state in the state space. Consider a decision

process with five states 1 5{ ,..., }s s , three actions 1 2 3{ , , }a a a and finite time horizon of

10T  time steps. For this case we have a total of 53 243
S

A   possible policies.

This is the number of possible action combinations for every state. We may also be

interested in the histories of the process. A history is the sequence of state-action

pairs selected during the process. In this example there are

 
1 9 10(5 3) 3.8443 10

T

S A


     possible state-action sequences for the 10 time

steps. Note that the last decision step is the terminal step and is not included in the

possible histories of the process.

Policies can be deterministic or probabilistic. In a deterministic policy the action

selected at each state is fully determined whereas in probabilistic policies, the action

selected for each state of the process come from a probability distribution over the

all actions. In this work we only consider deterministic policies. That is, policies

27

that the agent must chose to during its decision-making process. The decision

process can also be considered as a control problem. The difference being with the

time scales under consideration. Policies could also be stationary or non-stationary.

We also mentioned that a stationary policy is that which applies the same policy at

every decision step while non-stationary policies select from a set of policies at

various decision steps. The type of policy executed is important for selecting

optimal decisions because when the time horizon is finite it may not be satisfactory

to select from the same policy at the last decision point since this may not result in

optimal agent behavior.

2.3.4 Decision Steps

An agent acting in an environment must make decisions at some point in time.

Even the act of doing nothing may be considered a decision or action. Decisions are

made in time steps which are sometimes called decision steps, decision periods or

action steps. They are modeled as a discrete or continuous sets K of positive real

numbers. K may either be finite or infinite. For the discrete finite horizon case K =

{1, 2, 3, … , T} where T  . That is, T is a set of finite positive integers whereas for

the discrete infinite horizon K = {1, 2, 3,…}, the set of all positive integers. If the

decision steps were continuous and the time horizon is finite then [0,]K T is the

interval of positive real numbers where decisions can be made at any point in time.

28

Figure 2.3 – Timeline for Discrete Decision Points

Note that there are an infinite number of possible decision points in a finite interval.

For continuous and infinite time horizons the decisions are made in the interval

[0,)K   . Figure 2.3 illustrates the division of the time line into discrete decision

steps or periods and decision points. As noted, decisions are made at each decision

point except the last point T.

The mathematical theory and practical applications of continuous time problems

still pose significant challenges. We restrict our focus to discrete time horizons

where decisions are made sequentially at equally spaced intervals. We also assume

the last action is taken in time step 1T  . By convention we adopt T to denote the

length of the time horizon and t, the tht decision step of the process. We replace the

horizon length and decision step with N and n, respectively when discussing the

problem in terms of the backup update using a dynamic programming algorithm.

29

2.4 Algorithms for Solving MDPs

In this section we discuss the Value Iteration and Policy Iteration algorithms for

solving MDPs. Other methods such as linear programming exist for computing

optimal policies. However we focus more on the value iteration algorithm as this is

the most widely used in research and practice. Some other recent interesting

algorithms and techniques for solving variants of the MDP model are discussed in

Guo & Zhu (2002) and Melo & Veloso (2011). Before we present the value iteration

algorithm, we define the value function and how it can be used to compute optimal

policies.

2.4.1 Value Functions

When an agent acts in an environment its motivation is modeled as a reward

function. The reward function assigns a real value to the actions the agent performs

for a given state. Since policies are a complete description of the agent’s behavior

for a given time or decision horizon we need a way to evaluate how desirable a

policy would be if implemented. This is done by calculating the value as a function

of state for a given policy. The value function at a time step t is the cumulative

expected reward of starting at state s and executing the policy  for the remaining

T t decision steps of the time horizon. If the time horizon were finite then the

value function is computable. However, if the time horizon were infinite then the

value function will have infinite value and also poses theoretical issues when

attempting to compute it using dynamic programming methods. In order to

mitigate this we add a discount factor [0,1)  allowing for a unique solution. Also

30

for algorithmic reasons a stopping criteria 1t tV V    is included where  is some

arbitrary small value.

We solve the MDP by computing an optimal value function. There can be

multiple policies associated with the optimal value function. The agent simply

selects an optimal policy arbitrarily. If the agent is a mobile robot and the policies

are utilized for navigation then optimal policies associated with an optimal value

function is selected based on the structure of the environments maps. This is

discussed more extensively in subsequent chapters. For now, we present the value

function for finite and infinite time horizons and discuss how to use them to solve

MDPs using value iteration algorithm. White (1993) and Puterman (1994) discuss

in greater mathematical detail these approaches along with proofs.

2.4.2 Value Function for Finite Horizon Models

A decision process has a finite horizon when there is a well-defined number of a

decision steps that the process has to run. We consider these time steps to be

discrete and the number of time steps the process runs is represented by T. As

noted, optimal policies for finite horizon models are typically non-stationary since

the policy selected at the early stages of the process may differ from the later stages

in order to have optimal behavior. Thus for a given policy the long-term value the

agent accumulates for a finite horizon is denoted by
, ()nV s which is the expected

sum of rewards accumulated from starting in state s and implementing the non-

stationary policy  for n decision steps. As mentioned, we avoid ambiguity between

policy execution and the dynamic programming backup operation by using n to

31

represent the number of decision step-to-go. The notation n relates to t through the

equation n T t  . This value function is given by:

 , , 1

'

() (,) (, ,) ().n n n n

s S

V s R s a T s a s V s  



    (2.6)

This is the sum of the immediate expected reward for selecting action a with n-steps

to go in state s and the expected discounted value for the 1n remaining decision

steps. Notice that the 1n value function is multiplied by the transition function

(, ,).T s a s The value function for the last step when 1n  in the finite horizon

problem is given by:

,1 1() (,).V s R s a  (2.7)

The value of the last step in the decision process is simply the expected reward of

selecting action a at time step 1n  in state s and we can safely assume that

,0 (') 0V s  . This implies that there is no decision made at the last decision point.

Equation (2.5) can be solved via dynamic programming using the principle of

optimality (Bellman, 1957b).

2.4.3 Value Function for Infinite Horizon Models

When the decision-making process does not have a time limit it is described

using infinite-horizon models. At first glance the reader may observe that infinite

time will result in infinite rewards the agent accumulates. However since the

discount factor is 0 1  , convergence and thus an optimal value function is

guaranteed. The value function for infinite-horizon models is given by:

32

 () (,) (, ,) ().
s S

V s R s a T s a s V s 


    (2.8)

Equation (2.7) is recursive and the decision step n is omitted since the horizon is

infinite. Also notice that equation (2.7) results in a value function, V , whose values

for each state can be computed from the set of |S| simultaneous equations with |S|

unknowns variables where the unknowns variables are ()V s .

2.4.4 Optimal Value Functions and Policies

The purpose of solving an MDP is to find an optimal policy (a mapping of states

to actions) that guides the agent’s behavior. Infinite-horizon discounted models are

more convenient to solve since the desired finite-horizon length is rarely known in

practice. Details on deriving optimal finite-horizon value functions and policies are

discussed in White (1993), Puterman (1994) and Kaelbling, Littman & Cassandra

(1998). However we shall apply the finite-horizon equations for use in solving

finite-horizon problems with partial observability.

Given a value function a greedy policy is given by:

 () arg max (,) (, ,) ()V
a s S

s R s a T s a s V s 


 
   

 
 . (2.9)

A greedy policy is one that selects an action in every state that maximizes the sum of

the immediate expected reward and the expected discounted value of the

subsequent states. For finite-horizon models the optimal policy are potentially non-

stationary, thus the optimal policy for the n-th decision step, *

n , is computed in

33

terms of the immediate expected reward and optimal value function of the 1n

step. The equation is given by:

 * *

1() arg max (,) (, ,) ()n n
a s S

s R s a T s a s V s  


 
   

 
 . (2.10)

The optimal n-th step value function is denoted by the following equation:

 * *

1() max (,) (, ,) ()n n
a

s S

V s R s a T s a s V s 


 
   

 
 . (2.11)

For the infinite-horizon model, the optimal value function can be found by executing

a stationary optimal policy * . This optimal value function is given by the equation:

 * *() max (,) (, ,) ()
a

s S

V s R s a T s a s V s


 
   

 
 . (2.12)

This is similar to the optimal value function for finite-horizons but the time steps

have been omitted. Since it is not practical to have infinite time it is often

convenient to compute the optimal value function using an approximate finite-

horizon model whose time horizon approaches infinity. Thus we may define an

arbitrarily small value as the stopping point between two successive backup

computations of the set of equations of the value function V. The optimal policy for

the infinite-horizon model is the equation:

 * *() arg max (,) (, ,) ()
a s S

s R s a T s a s V s 


 
   

 
 . (2.13)

In the next section we discuss the most common method used for solving MDPs

namely the value iteration algorithm. In the general case of Partially Observable

MDPs we apply a variant of the value iteration algorithm.

34

2.4.5 Value Iteration Algorithm

The Value Iteration algorithm shown in table 2.1 is the most commonly used

algorithm to solve MDP. Its variant will be used to solve POMDPs and their

approximations. Simply put, the value iteration algorithm is a recursive algorithm

that calculates the value function for every action and finds the action that

maximizes the value function. It terminates when the difference of two subsequent

value functions is less than a small error value. This algorithm is derived from

dynamic programming as described by Bellman (1957b).

The value iteration algorithm above terminates when 1() ()n nV s V s is less than

the error value  known as the Bellman error magnitude. Puterman (1994) also

shows that the difference between *()V s and ()nV s of the optimal policy does not

exceed 2 / (1)  at any state of the process. Consequently we shall be more

concerned with -optimal value functions such that * *: max () ()s nV V s V s   . Most

times the optimal policy * is found early in the iteration process. That is, * 

before nV approaches *V .

2.4.6 Policy Iteration Algorithm

Another popular algorithm used in solving MDPs is the Policy Iteration algorithm.

This algorithm is shown in table 2.2 and finds the optimal policy by computing a

sequence of policies that are monotonically improving in value. The sequence of

policies thus converges to an optimal policy. If  is not optimal, then there’s a

policy  with action a in state s such that () ()a aQ s Q s   .

35

Table 2.1 – Value Iteration Algorithm

We first have to find the solution to the value function V for an arbitrary policy

 by solving the S simultaneous linear equations:

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

() () ... () 0

() () ... () 0

() () ... () 0,

k k

k k

k k kk k k

c V s c V s c V s b

c V s c V s c V s b

c V s c V s c V s b

  

  

  

    

    

    

 (2.14)

where k S is the total number of states and
ijc for , 1,2,...,i j k are the

coefficients of the linear equations that simply represents the product of the

immediate reward and the transition function parameters. After that, for every

Value Iteration Algorithm

Input (S, A, (,), (, ,)R s a T s a s)

1. 1n  (Initialize the decision step)

2. 1() 0,V s s S   (Initialize value for all states to zero)

3. repeat loop

4. 1n n 

5. for all s S

6. for all a A

7. 1() (,) (, ,) ()a

n n

s S

Q s R s a T s a s V s 


   

8. end for

9. () max ()a

n n
a

V s Q s

10. end for

11. until 1() ()n nV s V s   s S 

Output: optimal policy, () arg max (,) (, ,) ()n
a s S

s R s a T s a s V s 


 
   

 


36

state s and action a we compare ()V s with ()aQ s and if there is any a such that

() ()aV s Q s  we set ()s which is the current action under to policy  to the new

action a. This process is repeated until the policy cannot be improved upon again.

Table 2.2 – Policy Iteration Algorithm

It is important to note that the policy iteration does not guarantee a global

optimal value function but guarantees an optimal policy in a finite number of

Policy Iteration Algorithm

Input (S, A, (,), (, ,)R s a T s a s)

1.  an arbitrary policy

2. repeat loop

3.  

4. V  solution to policy  using simultaneous linear equations

5. for all s S

6. for all a A

7. () (,) (, ,) ()a

s S

Q s R s a T s a s V s


   

8. () max ()a

a
Q s Q s

9. if
()() ()sQ s V s

10. then () argmax ()a

a

s Q s 

11. else () ()s s  

12. end for

13. end for

14. until  

Output: return 

37

iterations since there are finite number of policies
A

S in the stationary case. Even

though policy iteration is an interesting algorithm, we do not use it in the partially

observable case for theoretical and computational reasons. The reader may consult

White (1993), Puterman (1994), Sutton & Barto (1998) or Cassandra (1998) for

more rigorous details of the algorithm. Pashenkova, Rish & Dechter (1996) also

provided additional survey of the value iteration and policy iteration algorithms for

MDPs.

2.5 Summary

In this chapter we presented and discussed the Markov Decision Process

framework for sequential decision making when the actions effects of an agent

operating in an environment is uncertain. We also outlined the formal MDP model

with finite states and finite actions. The computation of the value function as they

are applied to solving MDPs using the value iteration algorithm and policy iteration

algorithm were also presented. The MDP model precedes our discussions of the

generalized partially observable model. We shall use an extension of the value

iteration algorithm to solve the partially observable case. We are interested in

applying the model for decision-making and control in autonomous systems even

though the framework can be applied to any decision-making process that can be

modeled as an MDP.

38

Chapter 3

Partially Observable Markov Decision Processes

3.1 Overview

In chapter 2 we discussed the sequential decision making process where the

agent has perfect knowledge of its environment but its action effects was uncertain.

This model is suitable in practical applications where the uncertainty that results

from sensing the state of an environment is minimal. In most interesting

applications such as autonomous robot navigation or medical decision-making, the

agent is operating in a potentially highly unpredictable and dynamic environment so

it does not suffice to use sensory data solely as the true state of the environment.

This results in a rapid increase in the cumulative error between the goal state and

the agent’s belief of the goal state. Consequently, the environment is only partially

observable by the agent and the agent has both perceptual uncertainty and action

uncertainty. The formal framework discussed in this chapter to account for

perceptual uncertainty is Partially Observable Markov Decision Processes (POMDPs) a

generalization of MDPs.

3.2 The POMDP Model

The POMDP model is the tuple , , , , , ,S A T R Z O  . It is simply an MDP with the

addition of a finite set of observations Z and an observation probability distribution

function O as shown in figure 3.1. It is defined below as:

39

 The MDP Model: , , ,S A T R described in section 2.3

 Observations: z Z is the finite set of observations. The observations are a

noisy projection of the true state of the environment. If the set of observations

maps perfectly to the set of states, that is, some function :f Z S for all z Z

and s S , then this function is a complete representation of the environment. It

is said to be bijective thereby permitting the POMDP to be modeled as an MDP

where each state simply maps to its corresponding measurement. However in

practice this is rarely the case.

 Observation Probability Function: (, ,)O z a s is the function that describes the

conditional probability of observing z given the action a and the subsequent

state s . Thus (, ,) (| ,)O z a s p z a s  .

 Beliefs: The agent must now maintain a belief of the state of the environment

since it is unable to fully observe the state with certainty. All agents acting

rationally1 in physical environments must maintain a belief of its environment

relative to idealized states of the environment. We define the belief b as a

probability distribution over the set of states S and ()b s to be the probability of

observing a state s. The belief space is the space of all possible belief states

which is a simplex of 1S  dimensions. Also 0 () 1b s  and () 1
s S

b s


 . We

show how to compute the belief for subsequent states in section 3.2.2.

1 We use the term rational agents, as described in Russell and Norvig (2003), to be any autonomous
system capable of exhibiting goal-based behavior.

40

 Discount Factor: The discount factor is the real value [0,1)  . As with MDPs it

indicates the desirability of decisions made in the future and ensures that the

value iteration algorithm converges to a finite value.

Figure 3.1 – An Abstract POMDP Model

Other interesting formulations exist. For instance Doshi-Velez (2009) model the

problem as an infinite POMDP (iPOMDP) where the set of states are not explicitly

represented but increases from an initialize size without bound as the agent acts in

the environment.

3.2.1 Objective of the POMDP

As with MDPs the objective of solving POMDPs is to find the policy that

maximizes the long term reward that the agent receives. This is equivalent to the

rewards described in the MDP model. For the finite horizon model which we will be

41

more interested in, the maximum cumulative reward from the set of all possible

policies   is given by:

 *

1

max





  
   

  

T

t

t

t

R E r . (3.1)

The corresponding optimal policy that maximizes the expected future discounted

reward is given by:

 *

1

() arg max ,
T

t

t t t

t

b E r b


  


 
  

 
 . (3.2)

Since the agent cannot directly observe its domain. This optimal policy is a mapping

from belief to action. That is, :POMDP b a  where ()b is the action selected for a

given belief. Consequently, the reward function is a function of belief and not the

states since the agent can only accumulate reward based on what it beliefs are. In

the next section we discuss how the beliefs are constructed.

3.2.2 Belief Computation

The agent maintains a belief of the state of the environment and selects actions

based on these beliefs. In autonomous robot navigation and path planning, the state

of the environment are typically represented by the robot’s pose (, ,)x y  and its

respective velocity components (, ,)x y  . State estimators such as Kalman filters are

used to generate beliefs which can be used by a POMDP controller to execute

appropriate actions.

Recall that the belief b, of an agent is the probability distribution over all states.

In theory, the belief can be any formalism that can effectively capture the states of

42

the environment. During agent-environment interaction the agent has to update its

beliefs at every decision step. It also has to maintain a history of previous

observation and actions to deduce its current beliefs. However, Smallwood and

Sondik (1973) show that the current belief state is a sufficient statistic given the

past history of initial belief, observations and actions. This implies that belief

computation is Markovian. That is, if the belief at time t is given by

1 1 1 0() (| , , ,..., ,)t t t t tb s p s s z a z a b   , it is equivalent to 1() (| ,)t t t tb s p s s z a   .

We compute the subsequent belief state ()b s  of the agent using a variant of

Bayes’ Theorem and the Total Probability Theorem. The belief () (| , ,)b s p s z a b  

and can be derived as follows:

 () (| , ,)b s p s z a b   , (3.3)

(| , ,) (| ,) (|)

()
(| ,) (|)

p z s a b p s a b p a b
b s

p z a b p a b

 
   , (3.4)

(| , ,) (| , ,) (| ,)

()
(| ,)

s S
p z s a b p s s a b p s a b

b s
p z a b


 

  


, (3.5)

(, ,) (, ,) ()

()
(| ,)

s S

O s a z T s a s b s

b s
p z a b



 

  


. (3.6)

The reciprocal of (| ,)p z a b can be considered a normalizing factor that allows ()b s 

to sum to 1.

Therefore ()b s  can be given by:

 () (, ,) (, ,) ()


    
s S

b s O s a z T s a s b s , (3.7)

where  is the normalizing factor1/ (| ,)p z a b .

43

3.2.3 POMDPs as Belief State MDPs

To compute an optimal policy for the POMDP we can use a variant of the value

iteration algorithm. This algorithm is only computationally stable for finite horizon

models. Recall that our policy now is the mapping :POMDP b a  , where b is the

belief (a probability distribution vector over states of the POMDP). Since the belief

represents a sufficient statistic for the history of the agent’s behavior we can

convert the POMDP into a Belief-State MDP or simply Belief MDPs (BMDPs). It is

very important to note that BMDPs has a continuous bounded state space but with

infinite possible states.

For the clarity, if there are three states 1 2 3{ , , }S s s s , then the state space of the

BMDP will be 2-dimensional simplex in a 3-dimensional space whose vertices will

be at the points (1,0,0),(0,1,0),(0,0,1) as shown in figure 3.2. The vertices are the

belief points where the agent is certain to be in states 1s , 2s and 3s respectively.

Notice that the belief point has a dimensionality of |S|=3. This is because it is the

vector representing the distribution of over states. We can model the BMDP as the

tuple , , ,B A r . It is described as follows:

 Belief States: B is the set of belief states whose dimensionality is |S| and

makes up the state space. It is represented as an | 1|S  hyperplane in |S|-

dimensional space. The vertices of the hyperplane have a value of 1 which

denotes the certainty of being in a specific state. Though the hyperplane is

bounded, it is continuous—which implies it is uncountably finite. That is,

there are an infinite number of belief points in the region. This poses

44

problems when solving the POMDP or BMDP optimally using the value

iteration algorithm. We discuss how to overcome this issue in the next

section

 Actions: A is the set of actions available at each decision point. For

simplicity it is assumed that the same set of finite actions is available at every

decision point

 Transition Probability Function: (| ,)p b a b is the transitional probability

function between beliefs. It can also be represented as (, ,)b a b  . Since we

are transitioning between belief states there are observation probabilities

that should be accounted for. Thus, (| ,) (| , ,) (| ,)
z Z

p b b a p b b a z p z b a


 

where (| , ,) 1p b b a z  if the ,a zb b  (i.e. the state estimate is b)

(| ,) (| ,)
z Z

p b b a p z b a


 

 Reward Function: (,)r b a is the reward received for executing action a in

belief state b. This reward is related to (,)R s a by the equation:

(,) () (,)
s S

r b a b s R s a


 . This reward function considers the probability of

observing the state s for every component of the belief point.

This model shows how we can convert a POMDP to a BMDP. The next step is to

solve the BMDP using the value iteration algorithm discussed earlier. The primary

difficulty with using the value iteration algorithm to solve the POMDP or BMDP is

that we have to iterate recursively over every belief state. This is not possible since

there are infinite numbers of belief states on the hyperplane representing the belief

states. In the MDP case the number of states and actions were finite thus the MDP

45

was solvable in polynomial time (Puterman, 1994). Perhaps reducing the

dimensionality of the belief space may improve the solvability of the problem. The

problem with this approach is that the guarantee of optimality of the original

problem no longer exists. Fordor (2002) provide a survey of some dimensionality

techniques that may be of interest while Roy (2003) use EPCA to reduce the

dimensionality of the POMDP model.

Figure 3.2 – A 2D Simplex in 3D Space Representing the Belief Space

3.2.4 POMDP Value Functions

To compute optimal policies for POMDPs we can compute optimal value

functions for the POMDP and extract the optimal policy from the value function.

However we focus on approximate value functions for practical reasons. Again, the

value iteration algorithm is used to solve the POMDP as we did with the MDPs. In

46

MDPs the decision process for a finite horizon model has the possible sequence

0 1 1(...) ()T

T TS A S A S S A S        where T is the time horizon length. For the

infinite horizon model the sequence is ()S A  . Whereas with a finite horizon

POMDP the agent makes a sequence of actions and observations given by:

1

1 1 2 2 1(...) ()T

T TA Z A Z Z A A Z A

         . Since the observations and actions

are a function of the belief state, they must be considered when computing the non-

stationary policy for the POMDP. As we did with MDPs, when looking forward in

time we use the notation t to denote a specific decision point and T the horizon

length for finite horizon models.

Given any decision sequence 1 1 2 1 1{ ... }n n n

i k i i k id a z a a z a        , where

n denotes the decision point with n-steps to go—(it should not be confused with the

tht decision point which is the time from the start of policy execution)—we can

compute a value function for that sequence. In the sequence, n

ia is the thi action

selected from the action set A with n-steps to go and 1n

kz is the thk observation

made with (1)n -steps to go. A complete decision sequence of actions conditioned

on observations occurs when T n . That is, when n is the horizon length. The

decision sequence can also be modeled as a decision tree (Kaelbling, Littman and

Cassandra, 1998).

 Case 1: 1n 

 () (,)d dV s R s a , (3.8)

where da is the action selected for first time step executed in the decision

sequence.

47

 Case 2: n-steps to go

 () (,) (| ,) (| ,) ()d
k

k

d d d k d z
s S z Z

V s R s a p s s a p z s a V s
 

      , (3.9)

 () (,) (, ,) (, ,) ()d
k

k

d d d d k z
s S z Z

V s R s a T s a s O s a z V s
 

      . (3.10)

Recall that (, ,)dT s a s is the transition probability function between states;

(, ,)d kO s a z is the observation probability function and ()d
kz

V s is the value function

for the (1)n -step decision sequence after observation kz is made.

The value function in equations (3.8)-(3.10) is defined over the state of the

environment. However our agent can only make decisions based on its belief b.

Thus the value function for a belief b given a decision sequence d is given by:

 () () ()d d

s S

V b b s V s


 . (3.11)

It can also be written in vector form where d is the value vector whose component

is ()d iV s for all 1,2,...,i S . It is denoted as:

 ()d dV b b   , (3.12)

where 1(),..., ()d d d nV s V s    is known as the -vector. The value function for every

belief vector is the expectation of the value function of states S.

3.3 Optimal POMDP Value Function

The optimal value function is found by selecting the value of the decision

sequence d that maximizes the value function ()dV b . That is, the optimal value

function with n-steps to go is:

48

 *() max () ()n d
d

s S

V b b s V s




  , (3.13)

 *() max ()n d
d

V b V b


 , (3.14)

where  is the set of possible decision sequences.

Computing the corresponding optimal policy is very difficult for large state

spaces with long time horizons. This is because there can be numerous decision

sequences to consider in order to find the optimal value function. Consider a

decision sequence with 4A  actions, 3Z  observations and the planning horizon

10T  . Then possible decision sequences can be found by 1()TA Z A  . Therefore

there are 9(12) 4 20,639,121,408  possible decision sequences. This is often

referred to as the curse of history. Exact methods developed focused on exhaustive

enumeration (Sondik, 1971). Other approximate solutions are generated by

selecting from a set of belief points rather than the entire belief space and then

pruning the value functions of undesirable decision sequences that do not

contribute to the optimal value function. Figure 3.3 illustrates an arbitrary set of 4

value functions where the optimal value function is the upper surface of the

collection.

Since we can represent the POMDP and a BMDP with a finite horizon, the value

function backup equation is denoted as:

 1() max () (,) (| , ,) (| ,) ()n n
a A

s S z Z

V b b s R s a p b b a z p z b a V b


 

 
   

 
  . (3.15)

When ,a zb b  then (| , ,) 1p b b a z  since the transition between beliefs is perfectly

modeled by the state estimator.

49

Thus we have:

 1() max () (,) (| ,) ()n n
a A

s S z Z

V b b s R s a p z b a V b


 

 
  

 
  . (3.16)

The corresponding policy is:

 1() arg max () (,) (| ,) ()n n
a A s S z Z

b b s R s a p z b a V b 
  

 
  

 
  . (3.17)

Figure 3.3 – A Sample Value Function for a 2 State POMDP

3.4 Algorithms for Solving POMDPs

In this section we briefly describe some early algorithms developed to solve the

POMDP problem as well as algorithms presently implemented by current

researchers. As mentioned, the main issue with solving POMDPs with value

iteration is to iterate over belief space which is continuous and uncountably finite—

i.e. there are infinite number of points in the bounded belief space hyperplane.

However, Smallwood & Sondik (1973) showed that the value functions over belief

50

space are Piecewise Linear Convex (PWLC) which provides interesting properties

that allow for the formulation of algorithms to solve the POMDP or BMDP.

Monahan (1982) discusses early algorithms used to solve the POMDPs such as

the One-Pass Algorithm by Sondik (1971). Other early algorithms proposed are the

Witness Algorithm by Littman (1994) and Kaelbling et al. (1998). The witness

algorithms works by computing the best value function for a set of actions at a given

time and takes their union to get the optimal value function at decision point n.

Hansen (1997) focuses on using a policy iteration algorithm to solve the problem by

representing the policy as a finite state controller. Cassandra, Littman and Zhang

(1997) presented the incremental pruning algorithm which is an exact algorithm

that prunes dominated vectors that do not add to the optimal value function.

More recent algorithms such as the Point-Based Value Iteration (PBVI) algorithm

by Pineau, Gordon & Thrun (2003) have significantly improved the size of problems

that can be solved. Their algorithm is an approximate method that chooses a small

set of belief points and computes a single value function hyperplane and their

resulting derivatives for those points. Hsu, Lee and Rong (2007) discuss why

POMDPs are simpler to approximate in relation to computing exact solutions. He &

Roy (2009) use a forward search technique that generates policies directly from the

posterior belief distribution thereby avoiding the task of computing belief

distributions by considering all the possible observations. The technique is used in

continuous models. Kurniawati, Hsu & Lee (2008) propose an algorithm called

SARSOP which is an acronym for Successive Approximations of the Reachable Space

under Optimal Policies. It is a version of the Point-Based Value Iteration algorithm

51

that improves computational efficiency by focusing on reachable belief spaces

rather than the entire belief space. They apply their algorithm to robot exploration

tasks. We discuss the SARSOP algorithm further and employ a SARSOP based solver

to find efficient policies for the proposed POMDP model.

Notwithstanding, other approaches for solving POMDP variants such as

Decentralized POMDPs (DEC-POMDPs) using finite-state controllers have been

proposed (Amato, Bonet & Zilberstein, 2010). Decentralized POMDPs are used

when multiple agents are involved in the decision-making. Pajarinen and Peltonen

(2011) also apply a finite-state controller to find a deterministic finite-horizon

policy for the DEC-POMDP while Eker & Akin (2013) propose an algorithm that uses

Genetic Algorithms to search the policy space then use a finite-state controller to

represent the finite-horizon DEC-POMDP. In the case of infinite-horizon models

which we do not consider, Li, Liao & Carin (2006) present an incremental least

squares approach to solve the problem.

3.4.1 Point-Based Value Iteration Algorithms

Since solving partially observable problems is PSPACE-hard (Papadimitriou &

Tsitsiklis, 1987) even for cases where the observation is deterministic it is often

practical to search for near optimal or approximate solutions rather than exact

optimal solutions except for the smallest problems. In fact it is often not desirable in

practice to solve the POMDP optimally as the computational costs typically exceed

its potential practical utility. The value iteration algorithm is generally adopted as a

solution method for POMDPs. As mentioned exact value iteration is undesirable

52

since they iterate over the entire belief space which is enumerable infinite—that is,

the belief space is continuous. To alleviate this difficulty, Point-Based value iteration

techniques approximate the solution for exact value iteration by identifying a small

set of belief points then computing its value and its derivative for only those

selected points (Lovejoy, 1991 and Pineau, Gordon & Thrun, 2003).

The formulations by Lovejoy (1991) centered on selecting an arbitrary set of

belief points then pruning any of the -vectors from the value function that were not

optimal from the set of belief subsets. A problem with this approach is that from the

belief points selected there was a likelihood that those belief points will not be

reached. Pineau, Gordon & Thrun (2003) propose selecting a set of reachable belief

points by selecting a sequence of actions and observations. Thus the Bellman

backup equation can be modified to include only the selected actions and

observations sequence.

Given a POMDP model , , , , , ,S A T R Z O  as described in section 3.2 and an -

vector, which is a set value functions for each state s, the value function at each

selected belief from the decision sequence is computed by the modified Bellman

backup equation as follows:

 ,() max (,) (| ,) ()a z

a A
z Z

V b R b a p z b a V b




    , (3.18)

 ,() max (,) (| ,)max () ()a z

a A V
z Z s S

V b R b a p z b a s b s


 
 

 

      , (3.19)

(, ,) () (, ,)

() max (,) (| ,)max ()
(| ,)

s S

a A V
z Z s S

O s a z b s T s a s
V b R b a p z b a s

p z b a
  

 
 

 
  


  , (3.20)

53

 () max (,) max () () (, ,) (, ,)
a A V

z Z s S s S

V b R b a b s s O s a z T s a s


 
 

  

 
      

 
   , (3.21)

 ,() max (,) max () ()a z

a A V
z Z s S

V b R b a b s s


 
 

 

 
    

 
  , (3.22)

where (| ,) 0p z b a  and () () (, ,) (, ,)
s S

s s O s a z T s a s 


   . (,)R b a can be written in

vector form as (,) aR b a r b  . Equation (3.22) in vector form we have:

 ,() max max a z

a
a A V

z Z

V b r b b


 
 



     . (3.23)

The backup operator that generates a new -vector for a specific belief b is given by:

,

(,) argmax b

a
V a A

f V b b



 

  , (3.24)

where argmax ()b b

a a V az Z
r b  

   . The function (,)f V b prunes the vectors

that are dominated twice thereby reducing the computational costs of the

procedure. The complexity of the point-based backup procedure for a set of belief

point B is
2

()O A Z V S A S Z      in comparison with exact backup

procedure which has
2

()
Z

O A Z V S A S V      . Further details on the

complexity analysis and comparison can be found in Shani, Pineau and Kaplow

(2012). A point-based value iteration algorithm is shown in table 3.1 and the

corresponding optimal policy for a point-based value function is:

 ,() argmax (,) (| ,) ()a z

V
a z Z

b R b a p z b a V b 


   . (3.25)

The application of point-based value iteration techniques for solving problems

with large state spaces have proven successful. As mentioned, the initial framework

was present by Pineau, Gordon & Thrun (2003). Since then numerous variant

54

algorithms such as HSVI by Smith & Simmons (2004, 2005); FSVI by Shani, Brafman

& Shimony (2007); Perseus by Spaan & Vlassis (2004, 2005) and SARSOP by

Kurniawati, Hsu & Lee (2008) have been formulated. Other algorithms such as

GapMin by Poupart, Kim & Kim, (2011) have been formulated to improve the

bounds of the value function generated by the point-based algorithms. It is based on

initial work by Poupart (2005). Porta, Spaan & Vlassis (2005) also postulates an

extension of the discrete state model to continuous state spaces. Naturally modeling

continuous state spaces is nontrivial as the expected value functions over states are

defined by integrals that typically cannot be computed in closed form. However,

they show that the optimal value function over an infinite dimensional belief space

is also piece-wise linear convex. These findings permit the use of point-based value

iteration algorithms to solve the problem.

These advances improve the problem space that can be tackled lending credence

to their potentially diverse application in sequential decision-making problems and

in our case the autonomous navigation problem. In this section we have succinctly

discussed the point-based VI algorithms and how it significantly improves results in

solving POMDP problems with large state space applicable in complex domains.

Kaplow (2010), Shani, Pineau & Kaplow (2012) present the most up to date and

rigorous survey of the current state-of-the-art point-based POMDP solvers. They

focus on comparing the various algorithms by performing empirical analysis on

several well-known benchmark problems such as tag and coastal navigation. Since

certain solvers will be well-suited for certain domains it is important that their

advantages and disadvantages are also highlighted. The survey analysis does this.

55

So how exactly does the point-based technique perform? To answer this we must

understand the methods by which belief points are selected from the belief space.

Table 3.1 – A Point-Based Value Iteration Algorithm

Most early approach used ad hoc methods and heuristics that provided poor

results of the true optimal solution of the POMDP. As discussed more recent

methods use a more structured approach in belief point selection. Rather than

Point-Based Value Iteration Algorithm

Input (POMDP Model, 0B)

1. 0B B (initialize the set of belief points)

2. repeat loop

3. repeat loop

4. for all b B

5. (,)f b V  (randomly execute a backup operation for all belief points)

6. { }V V 

7. V V 

8. end for

9. until V V   (stop when V and V has converged for all belief points)

10. B B

11. for all b B

12. ,() { | (| ,) 0}a znext b b p z b a 

13.
()

argmax ,
L

b next b

B B B b


   (add the next belief b furthest from all points in B)

14. B B

15. end for

16. until *V V   (stop when V and
*V has converged for all belief points)

Output: B

56

develop algorithms that iterate over the entire belief space, which is enumerable

infinite, the point-based technique approximates the solution to an exact value

iteration by identifying a small set of belief points then computing its value and its

derivative for only those selected points.

3.5 Summary

This chapter briefly presents the POMDP framework and algorithms that have

been formulated to solve them and their approximations. It is not meant to be an

exhaustive treatment of POMDPs. More rigorous treatment in literature can be

found in Sondik (1973, 1978), Monahan (1982), Kaelbling (1998), Cassandra

(1998), Pineau, Gordon & Thrun (2003) and Shani, Pineau & Kaplow (2012). Most

authors that conduct research on POMDPs focus on computing efficient solutions

using point-based techniques to avoid planning over the entire belief space which is

known to be computationally intractable. We are interested in POMDPs because it

has shown promising results in solving complex decision-making in autonomous

systems where the agent-environment interactions are not fully predictable. In

regard to this research we wish to further investigate its potential for generating

efficient policies for autonomous navigation in mobile robots with possible

application in industry.

57

Chapter 4

Decision-Making for Autonomous Robots using POMDPs

4.1 Overview

In the previous chapter we discussed the basic theory of POMDPs. We also

outlined the difficulties of finding exact solutions of the POMDP model and

discussed some approaches that have been implemented to overcome these

difficulties but at the cost of optimality. However, in this work we are interested in

practical implementation of POMDPs in autonomous robots. This implies that we

are willing to accept the cost of guaranteed optimality of the POMDP solution in lieu

of efficient performance of the autonomous robot. As mentioned, robots operating

in real-world environments encounter uncertainty from both the environment

dynamics and its internal sensory-motor dynamics. We model these uncertainties

using a probabilistic framework and apply POMDPs primarily for action selection

given the perceptual data. The POMDP model is essentially a high-level model. We

are not concerned with how motor signals are executed electronically or how

sensory signals are processed as this is robot specific. Thus in this chapter we shall

discuss POMDPs as it relates to the generation of goal-based behavior in mobile

robots. We focus more on navigation in partially structured environments as this is

still an open problem in robotics.

It is instructive to note that numerous other planning methods exist for robot

navigation. They all basically attempt to formulate an algorithm that can efficiently

58

navigate a robot from an initial location to a goal destination by planning a

trajectory path. Accurate localization and mapping is a necessary precondition for

navigation of a mobile robot. We do not consider details localization and mapping

techniques in this work as this a separate research area in its own right. However

we adopt Bayesian state estimation techniques such as Kalman filters for

localization and belief estimates.

4.2 The Autonomous Robot Navigation Problem

When we mention decision-making in relation to robotics we are refer to

navigation and task completion in an operating domain. The robot navigation

problem is a well studied problem. Numerous methods and models have been

proposed. We define the problem as follows:

Given a map of a known environment such as an office or factory floor with static

and dynamic obstacles, an autonomous robot is required to navigate from an

initial location to a goal location. We wish to formulate an effective decision-

making policy that results in the robot arriving at its goal location using minimal

resources. The robot receives perceptual information from its sensors and

translates this information to motor commands based on the decision policy.

Recall that a robot is simply a computer controlled mechanical device. For the robot

to behave autonomously, it must reliably take perceptual information, process this

information, and select appropriate motor actions that result in the robot reaching

its goal state. Thus from the problem statement above our goal in this work is to

find an efficient decision policy—that is a description of how to robot should select

59

its motor command at every state of the environment to guide the robot’s behavior.

It is also noteworthy to specify that the mechanical composition of the robot

significantly affects the performance of the controller and its overall behavior. In

this section we briefly describe components of the robot used for sensory

observation and motor control then describe how it will be used in the POMDP

model. We also discuss basic mobile robot kinematics.

4.2.1 Mobile Robot Kinematics

Mobile robot kinematics deals with the analysis of motion without regard to the

forces that create the motion. It is necessary to understand mobile robot kinematics

for motion planning and navigation. A mobile robot can be modeled as a rigid body

on a 2-dimensional plane. Its position is defined with respect to a global reference

frame. This (,)g gx y position denoted by P along with its heading or orientation  is

known as the pose of the mobile robot. Most times the pose is considered the state

in regard to the planning models. It is represented as the vector [, ,]T

G g gs x y  .

The robot can also have its own reference frame called the local reference frame and

the axis orthogonal to the plane which describes the heading. In general, the

kinematic model can be described with six variables. The first three represents its

3-dimensional spatial coordinates while the last three describe its three Euler

angles—namely the pitch () , roll () and yaw () (note that the heading  should

not be confused with the pitch ). Figure 4.1 illustrates the robot pose in a global

coordinate system.

60

Figure 4.1 – Global and Local Coordinate Systems of the Robot Pose in 2D

The axes (,)G GX Y is the global reference coordinate system with origin O while the

body attached axes is (,)R RX Y with center P. The center of the body attached axes P,

has the location (,)g gx y with respect to the global reference frame. The heading 

is the angular difference between the global reference and the robot local reference

frame.

In order to describe the motion of the robot with respect to the global reference

frame we simply use an orthogonal rotation matrix that maps the motion along the

global reference frame axes to that of the robot’s local reference frame. The

rotation matrix is given by:

cos sin 0

() sin cos 0

0 0 1

 

  

 
 

 
 
  

R . (4.1)

XG

YG
YR



XR

O

P

61

Thus the robot’s pose with respect to the robot’s local reference frame can be

computed by:

 ()R Gs R s , (4.2)

 ()

 

   
   


   
      R G

x x

y R y . (4.3)

Correspondingly, the velocity component of the pose in the global reference is

denoted by the vector [, ,]T

G g gs x y  . The velocity with respect to the robot’s

reference frame can computed in a similar manner to equation (4.2),

 ()R Gs R s . (4.4)

Further discussion on mobile robot kinematics can be found in the Seigwart,

Nourbakhsh & Scaramuzza (2011).

4.2.2 Probabilistic Kinematic Model

Since we are interested in mobile robots that operate in probabilistic domains

we must consider the error difference between desired actions and actual motion

actions. This is important in the robot’s decision-making because it directly reflects

the state transition model. Given that the robot’s state is its pose [, ,] T

ts x y at

time t, the state transition model is given by 1(,)t t tp s a s . It can also be denoted as

1 1(,) t t tp s a s , which is simply a matter of convention. The transition model is the

posterior probability distribution over the subsequent states given current states ts

and action ta . As an example the robot’s odometer may provide the execution of the

62

action control ta . The action control ta indicates the motion commands that are

sent to the robot motor for execution.

It is also possible to provide action controls using a velocity model by

considering the rotational and translational velocities as discussed in Thrun,

Burgard & Fox (2006). The translational velocities at any point in time can be

denoted by t while for rotational velocities it is denoted as t . In this formulation

the action control is [,]  T

t t ta where the translational velocities produce forward

linear motion and the rotational velocities produce counterclockwise rotation of the

robot wheels. Thus to compute the subsequent state at 1t a desired algorithm

would receive as input the pose [, ,] T

ts x y and action [,]  T

t t ta while

outputting the subsequent state
1 [, ,]

   T

ts x y . The POMDP we formulate does

not consider rotational and translational velocities.

4.2.3 Sensory Model

An important part of the POMDP model for decision-making is the observation

model. There are varieties of sensors used in mobile robots. Some are laser range

finder, ultrasonic sensors, stereovision cameras, wheel encoders, contact and

proximity sensors, temperature sensors etc. They are typically classified in two

functional categories namely proprioceptive and exteroceptive sensors.

Proprioceptive sensors measure the robot’s internal state while exteroceptive

sensors measure the environment’s state. Since we are interested in observations in

partially observable environments, the sensory model must handle sensory noise

63

and measurement errors. This is due to the intrinsic uncertainties in the robot’s

perceptual system. The observation model is given by 1(,)t t tp z s a , where tz

defines the robot’s observation at time t , ts defines that state of the system which is

the robot’s pose at time t and 1ta the previous action controls at time 1t . We can

use both the action model and sensory to update the state of the system as

information is acquired during operation. Also the type of sensory data collected

affects how it is modeled and the amount of computing time required to process the

data. For instance 3D data requires considerably more computing power than 2D

data.

4.2.4 Recursive State Estimation

A key issue in robotics and decision-making in general is to estimate the state of

the system after an action and observation has been made. Without doing so it will

not be possible to determine the necessary controls for the robot to achieve its task.

This is equivalent to the belief update we discussed in 3.2.2. It is especially

important since it allows us to continuously localize the robot in its environment.

To compute the state estimates we typically use a variant of the Bayes Filter

algorithm which is a recursive algorithm. We present the algorithm but do not

discuss its variant such as the Gaussian Filters, Particle Filters, Kalman Filters or

Extended Kalman Filters. Further details can be found in Bar-Shalom & Li (1998),

Gustafsson et al. (2002) and Thrun, Burgard & Fox (2006).

64

The Bayes’ filter algorithm computes the belief ()tb s recursively from

observation tz , action ta and previous belief at time 1t  , 1()tb s  . To describe the

algorithm better, consider that we have a set of data 0 1 1{ , ,..., , }t t td a z a z at time t

that consists of the history of observations and actions. The sensor or observation

model is given by ()t tp z s , the action model is given by 1(| ,)t t tp s a s  and the prior

probability is given by ()p s . The problem is to estimate the posterior

1 1 0() (| , ,..., ,)t t t tb s p s z a z a . We assume the system is Markovian and neglect

sensory noise. The Bayes filter can be computed as follows:

 1 1 0() (| , ,..., ,)t t t tb s p s z a z a , (4.5)

 1 1 0 1 1 0
1 1 0

1 1 0

(| , ,..., ,) (| ,..., ,)
(| , ,..., ,)

(| ,..., ,)

t t t t t
t t t

t t

p z s a z a p s a z a
p s z a z a

p z a z a

 




 , (4.6)

 1 1 0 1 1 0() (| , ,..., ,) (| ,..., ,)t t t t t tb s p z s a z a p s a z a   , (4.7)

 1 1 0() (|) (| ,..., ,)t t t t tb s p z s p s a z a  , (4.8)

 1 1 1 0 1 1 1 0 1() (|) (| , ,..., ,) (| ,..., ,)t t t t t t t t tb s p z s p s s a z a p s a z a ds       , (4.9)

 1 1 1 1 1 0 1() (|) (| ,) (| ,..., ,)t t t t t t t t tb s p z s p s s a p s a z a ds       , (4.10)

 1 1 1 1() (|) (| ,) ()t t t t t t t tb s p z s p s s a b s ds      . (4.11)

 Equation (4.6) is simply the Bayes’ Theorem. In equation (4.7)  is known as the

normalizing constant given by 1 1 01/ (| ,..., ,)t tp z a z a  . In equation (4.8) and (4.11)

we apply the Markov assumption and we use the law of total probability in equation

(4.9). The reader can notice the similarity between equation (4.11) and (3.7). Also

in equations (4.9)-(4.11) integrals are used instead of summation due to the fact

65

robots operate in real worlds which are both spatially and temporally continuous.

However in practice the state is usually discretized allowing for the use of

summations. Therefore equation (4.11) can be written as:

1

1 1 1() (|) (| ,) ()
t

t t t t t t t

s S

b s p z s p s s a b s


  



  . (4.12)

The belief update component of the algorithm is shown in table 4.1. In order to

compute the belief recursively it is initialized with 0()b s . This initial belief may be a

Gaussian distribution over the state space if the initial state is known with some

degree of confidence, a uniform distribution if we are completely unaware of the

initial state or a probability mass function over a specific state if we are certain of

the initial state. In general the algorithm simply consists of a predictive step and an

observation update step.

 Table 4.1 – Bayes Filter Algorithm

State estimation is also very important in solving a fundamental problem in

robotics called Simultaneous Localization and Mapping (SLAM). The problem arises

when the robot has to navigate unknown environments without the use of a map. It

Bayes Filter Algorithm

Input (0, , ()t ta z b s)

1. for all ts S

2.
1

* 1 1 1() (| ,) ()
t

t t t t t

s S

b s p s s a b s


  



 

3. *() (|) ()t t t tb s p z s b s

4. end for

Output: return ()tb s

66

must then generate a map. But to generate a map it needs to know its pose within

the environment and to know it pose it needs a map. Therefore it must

simultaneously localize and map. We do not consider the SLAM problems in this

work as we assume the map of the environment is given. However is still important

to mention since the formulation of SLAM techniques and methods are highly

researched. Thrun (2008) reviews the three important approaches to solving the

SLAM planning which apply the Extended Kalman Filters (EKFs), Sparse Graphs and

Particle Filters.

4.3 Autonomous Robot Navigation using POMDPs

In this section we discuss the literature on implementation of POMDPs for

decision-making in autonomous robots. We especially focus on its application in

navigation path planning and motion control. Ibekwe & Kamrani (2008) provided a

general overview on robotics while Seigwart, Nourbakhsh & Scaramuzza (2011)

discuss specifically on autonomous mobile robots. Currently active research is

dominant in the Artificial Intelligence and Computer Science communities however

POMDP research originated from the Operations Research field. Much of the current

research in POMDPs has been focused on formulating algorithms that solves models

with large state space over longer time horizons. Applying it to robot navigation is

still an open problem. Essentially, the navigation problem reduces to a controls

problem where we want to select control actions given the current knowledge and

perceptual information. As is the main focus of this work, the models should handle

the inherent uncertainty of the robot interactions. In the real-world on the other

67

hand, the use of POMDPs for localization are limited. Theocharous, Murphy and

Kaelbling (2004) provide a method which uses a Dynamic Bayes Network (DBN) to

represent a Hierarchical POMDP for the localization in multi-resolution spatial maps

for indoor navigation. Even though we focus on navigation tasks, it is not the only

application of POMDPs in robotics. Glashan et al. (2007) highlight the use of

POMDPs for manipulation tasks while Zhang, Sridharan & Washington (2013)

introduce a hierarchical decomposition of a POMDP that includes adaptive

observation functions, automatic belief propagation and constrained convolutional

policies that allow a team of robots to preserve task achieving behaviors using a

visual sensing technique.

4.3.1 Robot Navigation with POMDPs in Literature

Most approaches for autonomous robot navigation focus on indoor

environments. Littman, Cassandra & Kaelbling (1995), Cassandra, Kaelbling &

Kurien (1996) and Koenig & Simmons (1998) provide some of the early noteworthy

attempts for the application of POMDPs for robot navigation. They present a

POMDP architecture that, at the time significantly outperformed a landmark-based

approached. Pineau & Thrun (2002) describe the implantation of POMDPs for high-

level control of robot behaviors. López et al. (2007) outline a global navigation

architecture using a POMDP called SIRAPEM used for assisted care for the elderly

and disabled. On the other hand some researchers (Likhachev & Stentz, 2006) have

opted to take a different approach citing the hardness of the POMDP planning.

Likhchev & Stentz (2006) use a probabilistic planner called PPCP in partially known

68

environments that was able to scale to environments with thousands of states while

Marder-Eppstein et al. (2010) describe a method for indoor navigation of a PR2

robot using voxel-based 3D mapping that models unknown spaces in indoor

environments.

Ross, Chaid-Draa & Pineau (2008) present a Bayesian reinforcement learning

method using Continuous POMDPs. The paper proposes the use of a particle filter

algorithm to compute the posterior distribution of the model parameter. It then

applies a planning algorithm that uses trajectory sampling to determine the actions.

Their method selects actions optimally that tradeoff between state estimation,

environment exploration and knowledge utilization. Some research involving multi-

robot models using POMDP have been conducted. Chuang, Gerkey, Gordon & Ng

(2005) put forth an open-loop planning method performance metrics in the

benchmark problem tag. They argue that even though open-loop plans are less

robust than full policies they still provide reliable performance that can be applied

in certain scenarios. Roy, Gordon & Thrun (2005) present a method of compressing

the belief space using an Exponential Family Principal Component Analysis (E-PCA).

The result is that the problem space that can be solved is considerably increased. A

recent algorithm called Automated Model Approximation (AMA) (Grady, Moll &

Kavraki, 2013) focuses on constructing approximations of the state and action space

that are domain-specific to compute efficient policies. This method and others

described are approximate techniques that attempt to solve POMDPs which in

practice has demonstrated success.

69

4.3.2 Sampling-Based Motion Planning for Mobile Robots

It is instructive to discuss other approaches to the motion planning problem for

autonomous robots in order to have an intuition on how they contrast with the

POMDP approach. Sampling-based motion planning uses a graph model to

approximate the connectivity of the search space of the planning problem whereas

in POMDPs we generates planning policies over the entire belief space in the exact

case. Sample-based planning methods are computationally complex (Latombe,

1991) so approximations such Rapidly-expanding Random Trees (RRT) (LaValle,

1998 and LaValle & Kuffner, 2001) and Probabilistic Roadmap Method (PRM)

(Kavraki et al., 1996) have been proposed to minimize the complexity.

Alterovitz, Siméon & Goldberg (2007) present a sampling-based motion

planning framework called Stochastic Motion Roadmap (SMR) that constructs a

roadmap by sampling collision-free states in configuration space and locally sample

motions at each state to estimate state transition probabilities for every possible

action. The roadmap is then used to formulate an MDP to generate optimal plans.

Bhatia, Kavraki & Vardi (2010) propose a geometric approach where a high-level

planner formulates high-level plans for the discrete abstraction of the system model

while a low-level sampling-based planner uses both the physical model of the

system along with the high-level plans to search the state-space for a feasible

solution of the desired trajectories. They show that the geometry-based approach

improves computational speed of benchmark sampling-based techniques. Bhatia,

Maly Kavraki & Vardi (2011) outline an extension of the geometric approach called

a multilayered synergistic planning framework which includes temporal goals over

70

a subset of the workspace. Recent advances have been made in providing

simulation tools to explore sampling-based algorithms such as the OMPL (Şucan,

Moll & Kavraki, 2012). An example of an implementation is shown in figure 4.2.

Figure 4.2 – The Open Motion Planning Library on ROS (Courtesy of ROS.org)

One of the more recent methods we describe is the use of Task Motion Multigraphs

(TMMs) to solve the simultaneous task and motion planning (STAMP) problem

(Şucan & Kavraki, 2012). A TMM is a directed acyclic multigraph (,)M M MG V E

such that { | () }MV Q S   is a finite set of vertices and every vertex  is

associated with a set of robot states ()Q S  . S is the complete state space of the

robot while ()Q  is a sampled set of states. ME is a finite multiset of edges that

represents all the motion planning possibilities between every pair of nodes

(,)i j M Mv v V V  . MDPs as described in chapter 2 along with TMMs are used to

compute robust task plans.

71

The sampling-based approach are computationally less expensive than POMDPs

hence its pervasive use in cutting edge motion-planning research. However

POMDPs handle both the uncertainty from the motion and the noise from sensory

observation to generate future plans in a more principled manner. The difficulty is

that it must construct such plans in belief space. Nevertheless recent research show

that empirically promising result can still be obtained as described in Porta, Spaan &

Vlassis (2005), Candido & Hutchinson (2011) and Marthi (2012). When solutions to

a motion planning problem are computed, they often have to be recomputed when

the model condition changes. Also Kurniawati et al. (2012) outline a Guided Cluster

Sampling motion planner that considers three sources of sensory uncertainty during

active sensing. A sampling distribution based on the sensory data is used to

partition a set of selected belief points into smaller subsets and an optimal policy is

computed over this subset. Furthermore Kurniawati & Patrikalakis (2013) propose

a Point-Based Policy Transformation (PBPT) algorithm that transforms the original

solution to the POMDP by modifying the set of sampled belief points.

4.4 Summary

In this chapter we discussed the navigation and motion planning using POMDP

controllers and sampling-based techniques. POMDPs provide a robust framework

for modeling robot-environment interaction in uncertain and dynamic

environments. Classical methods such as deliberative or behavior-based models

either fail under inherent system uncertainty or are not scalable to larger more

complex robot platform. As we have now seen, although POMDPs provided a

72

reliable framework there are still numerous limiting factors for widespread

implementation in real-world domains such as office, home or factory

environments. A diverse range of algorithms exists that have been applied in robot

motion planning and navigation. In this work we do not focus on theoretical

analysis of algorithms but rather propose a method for exploiting domain-specific

features. We compute efficient policies using a state-of-the-art POMDP solver. We

anticipate that by exploiting structured domain-specific features of the operating

environment we should have greater success of implementing a POMDP-based

robot controller in more complex situations. We discuss our proposed methodology

in the next chapter and present experiments to demonstrate its validity.

73

Chapter 5

A Methodology for Goal-Specific Representation of POMDP

Model Parameters

5.1 Overview

In preceding chapters we considered cases where the agent or decision-maker

was perfectly aware of the world state after it selects an action though the effects of

the selected actions were unpredictable. We mentioned that this is not a practical

model of real-world agent-environment interactions as the agent or decision maker

has to consider uncertainties in its perception as well. We then discussed using a

POMDP model since they explicitly model perceptual uncertainty. Solving the

POMDP model required generating policies—a description of how the agent should

act based on its beliefs rather than the true state of the world. This led to

computational issues as the agent’s beliefs are potentially infinite. We then

methodically described a variety of state-the-art methods and algorithms

researchers have developed to overcome these difficulties in order to solve the

POMDP model efficiently. Most techniques are not optimal but are within an upper

and lower bound of optimality as heuristics are used to sample the belief space for

computational tractability.

While the techniques described have advanced the state-of-the-art and solved

relatively large sequential decision-making problems they are still ineffective in

many complex real-world scenarios requiring lengthy time horizons to make

74

decisions. Minimal attention has been given to how the properties of the task

environment affect the formulation of problem parameters. Recently Shani, Pineau

& Kaplow (2012) have recognized this and allude to the importance of considering

the properties of the task domain in selecting a solver rather than selecting the

lastest and fastest solver. Researchers often assume that if we have fast solvers,

then problems modeled by the POMDPs should be trivial without consideration of

the task properties. This is a flawed assumption as complex real-world problems

require prohibitively large number of parameters that must be enumerate to

effectively solve them and these parameters must be able to capture the essential

features of the problem.

 As a result we proposed a methodology for modeling the task environment

called Goal-Specific Representation (GSR) that we anticipate will improve the

computational efficiency in solving complex real-world problems by exploiting

structural properties of the task environment. Along with the task requirement we

can significantly reduce the parameters required to model problem space. The idea

behind the GSR approach is based on the fact that every agent operates within a

context local only to that environment. A case in point is in the robot navigation

problem where it is desired that the robot exhibit autonomous goal-based behaviors

in its task environment. If we are given a known map, the starting location and the

goal location within this map then we can ignore states that do not contribute to the

robot navigating to its goal location. In a sense we are generating sub-maps. Also no

two tasks are identical in the real-world even if the maps do not change. Obstacles

can be added or removed between tasks or even while the robot is performing its

75

task. So it is also necessary to account for the dynamic nature of the environment.

In this work we don’t explicitly model the dynamics of the task domain. To the best

of our knowledge this approach has not been explicitly formulated in literature and

we anticipated that the methodology described can be adapted to complex domains.

From our literature survey, the work most closely related to our proposed

methodology is the variable grid decomposition method by Kaplow, Atrash & Pineau

(2010).

5.2 The GSR Methodology

We apply the GSR methodology to the autonomous robot navigation problem.

The goal is to generate policies that guide the robot’s behavior. We model the

decision-making process using a POMDP model and solve the POMDP with a state-

or-the-art solver called APPL based on the SARSOP Algorithm by Kurniawati, Hsu

and Lee (2008). We proceed to conduct empirical analysis on policies generated

and test them on a real robot. We do not propose a new algorithm to solve the

POMDPs but a methodology to reduce the parameter space required to model

complex environments such as warehouses, offices or hospitals. Ultimately our goal

is to deploy the proposed methods for industrial and service applications.

Consider a robot navigating an underwater domain. The model of this domain

will differ from that of a robot operating on the planet Mars. The underwater

domain will have to be modeled as a 3D voxel grid. Therefore it is imperative the

state space is reduced. The GSR approach is robot invariant, meaning that it can be

applied to any platform but obviously may perform differently between two varying

76

platforms. As highlighted in preceding chapters, various approaches exist to solve

the robot navigation and motion planning problem. Adopting the POMDP

formulation has met with varying degrees of success. If we have a map of the

environment we only consider states closest to the initial state and goal state. The

states of the environment are first decomposed to disregard the set of likely non-

reachable states. Then planning is performed only on the reachable states in the

sub-map. This indirectly reduces the dimensionality of the belief space the robot

plans over. An optimal set of reachable belief states *

0()b are then extracted from

the set of reachable beliefs 0()b which in turn are sampled from the belief space

B . This is presented by Kurniawati, Hsu & Lee (2008). The result is that we only

consider states and beliefs that are relevant for reaching the goal state. By

implication, the tradeoff is that the computed control policies are approximations as

the entire state-space is not considered. However since we are more interested in

reliable and efficient behavior of the robot rather than theoretically optimal

solutions, these approximations will suffice.

5.2.1 Goal-Specific Representation

Operating environments for autonomous robot possess structure. In an office

environment for instance desks, cabinets and other furniture are rarely moved.

Thus they can be modeled as stationary objects. Typically the most dynamic aspects

of the environment are people moving and other salient motions such as flying

journal papers or changing the position of staplers that do not generally interfere

with the task achievement of the robot. Another environment could be a warehouse

77

or an automated manufacturing facility where products and packages are moved to

different positions repeatedly. Some equipment in a manufacturing facility are

rarely moved and can also be considered stationary. We assume problem scenarios

where a map of the environment is given. The GSR algorithm is describes in table

5.1. The algorithm simply prunes areas of the map that are not necessary for goal

completion. It does this by selecting free cells in the rows of the grid that are both

above and below the initial and goal states then prunes them from the map. It also

does this for the columns of the grid by selecting columns before and after the initial

and goal state then prunes them from the map. An illustration of this is shown in

figure 5.1.

 a b

Figure 5.1 – (a) A Map of a Task Environment Depicting the Initial and Goal State (b) A GSR-Map of

the Task Environment in Red Outline

78

Table 5.1 – A Goal-Specific Representation (GSR) Algorithm

Goal-Specific Representation (GSR) Algorithm

input  _ (),(,) , (,) , (,)initial goal landmarkdomain map m n i j i j i j

1. [1:]i m

2. [1:]j n

3. if (,)goali j is within (,)landmarki j (checks if goal state is within landmark state)

4. then (,) (,)goal landmarki j i j

5. end if

6. for all free cells in rows i (scans all rows and delete free cells)

7. if initiali i and
goali i

8. then delete free cells in rows 1: i

9. end if

10. if initiali i and
goali i

11. then delete free cells in rows :i m

12. end if

13. end for

14. for all free cells in columns j (scans all columns and deletes free cells)

15. if initialj j and
goalj j

16. then delete free cells in columns 1: j

17. end if

18. if initialj j and
goalj j

19. then delete free cells in columns :j n

20. end if

21. end for

22. return _GSR map

output (GSR map)

79

If a map is not given then the robot must actively explore the environment and

generate a map. Popular techniques used to generate maps are Simultaneous and

Localization and Mapping (SLAM) algorithms such as graphSLAM or EKF SLAM. We

do not consider such cases in this work as we assume a map is given. Most

applications of POMDP in robot motion planning and navigation discretize the task

domain into uniform resolution grids and formulate policies over those states.

Recall that physical environments are continuous both spatially and temporally and

must be approximated using discrete models. As referred to, a related method to

our approach is a variable resolution technique postulated by Kaplow, Atrash &

Pineau (2010). The technique assigns aspects of the domain with larger grid sizes

where there are open spaces and smaller grids sizes closer to walls. Also in

Kurniawati et al. (2011), they use a method called Milestone Guided Sampling which

plans over a compact set of states in state-space. As a consequence the sampled

belief space is reduced. An example of a robot generated map where the proposed

method can be applied is shown in figure 5.2. It is a map generated by a Turtlebot

robot that explores an office domain.

Figure 5.2 – A Sample Map Generated by a Turtlebot (Courtesy of ROS.org)

80

We consider states of the environment that are represented as 2-dimensional

discrete grids to approximate a continuous space 2D maps. Figure 5.3 shows a

sample of a robot generated maps with a grid overlay.

Figure 5.3 – A Sample Map Generated by a Turtlebot with a Grid Overlay

In practice as the scales of the task domain increase in size of the grid resolution

decreases to maintain computational tractability since computing an efficient

control policy tends to be infeasible for high resolution grids. A GSR-map can be

generated for the figure 5.3 if we know the initial location and the desired goal

location. To find the initial location we may use state estimation technique such as

Bayes filters or particle filters. An example of the corresponding GSR-map may look

like figure 5.4. We use the locations on the GSR-map as well as the orientation as

state inputs for the POMDP model along with a suitable transition function,

observation function and reward function. We then solve the POMDP using a point-

based solver and generate a control policy that guides the robot’s actions. The

81

transition function, possible observations and observation functions are modeled

based on the structure of the environment and the level of abstraction required.

Figure 5.4 – A GSR-Map Generated by a Turtlebot with a Grid Overlay Depicting the Initial Location

and Goal Location

The goal state is absorbing and receives the largest reward. Most POMDP

models are fairly abstract in that they do not describe details of the control signals

required to actuate the robot. It is intuitive to reason that low level controls depend

on the type of robot and quality of its sensory hardware. Once we have a control

policy we use it to guide the behavior on a real robot. The robot of choice is the

Turtlebot 2® that runs on the Robot Operating System® (ROS). The experimental

setup, analysis and discussion are described in the sections that follow.

5.3 A Sample Problem

In this section we describe a sample problem to understand the GSR

methodology. The problem captures the essential features of a task environment.

82

The problem scenario can be applied to similar tasks in increasing order of

complexity.

5.3.1 Problem Scenario

The problem scenario is as follows: An autonomous robot is deployed in an

automated manufacturing environment. Its goal is to efficiently transport products to

one of eight specified collection locations in the facility as shown in figure 5.5. Only the

initial location is specified since the robot has not been given a goal location.

Figure 5.5 – A Grid Map of a Task Environment Depicting the Initial Location of the Robot

5.3.2 Problem Description

The robot starts at location starts and arrives at a goal location
goals . The map of

the environment is decomposed into a finite set of uniform m n grids where m is

the number of rows of the grids while n is the number of columns. For instance

location
3,4s is the cell in the 3rd row and 4th column. If the task is to move the

83

product to location 3, then the goal location is either
4,5s or

5,6s . Likewise if the task

is to move the product to location 6 then the goal state is
6,7s .

The problem is as follows: Given a map of an environment decomposed into

uniform grids, a starting state and a goal state, formulate the POMDP model such

that only a subset of states required to reach the goal state is used for planning in

the POMDP model. We call this a Goal-Specific Representation (GSR) of the POMDP

model and the resulting state GSR-states. For instance suppose our goal state is

location 3 with orientation 0o then the map represented with GSR states are

1,1 1,2 5,6{ , ,..., }s s s . The robot selects the goal state that is the most reachable state

from its initial state. From the example it is
4,5s from the set

4,5 5,6{ , }goals s . In this

specific problem we assume that the goal location in the front of collection site for 1, 3, 5

and 7. While the collection site 2, 4, 6 and 9 are located to side of the collection zone.

5.3.3 The GSR POMDP Model

The selection of the model parameter such as the transition function and

observation function are done heuristically based on the capabilities of the robot.

As alluded to these parameters are highly dependent on the type of robot adopted

for the described task.

The GSR POMDP model can be described as 0, , , , , ,GSRS A T R Z O b 

 Set of States: The set of states are the robot’s configuration (, ,)x y  where

,(,) i jx y s , 1,2,...,9; 1,2,...,7i j   . The robot has one of 8 possible orientation

angles {0 ,45 , 45 ,90 , 90 ,135 , 135 ,180 }           . With this configuration there

84

are a total of 504 possible states if obstacle cells are included and 344 possible

states if obstacle cells are ignored. Once the GSR algorithm is applied the states

are reduced to GSR states depending on the initial location and goal location. In

the example described in 5.3.2 the GSR state are the grid cells

{ | 1,...,4; 1,...,7}ijs i j   where
, 4,1 4,2,i js s s since they are not free cells along

with all 8 orientations. This is illustrated in figure 5.6b. Thus the states are

reduced to 144 possible states for the specific problem.

 Set of Actions: There are a total of 6 actions that the robot can perform. These

actions are signals send to the motor to rotate at a certain angular velocity that

corresponds to the desire length of travel. It can move forward with a heading of

0o, 45o, -45o, left at 90o and right at 90o. The last is the do_nothing action.

{ 1 (0)a forward  , 2 (45)a forward  , 3 (45)a forward   , 4 (90),a left 

5 (90)a right   , 6 _a do nothing }.

 Transition Probability Function: Since transitions in real domains are

uncertain we model the transition function (, ,)T s a s with 0.9p  success that

the robot translates to the desired state when it performs action a and

0.0125p  that it translates to any of the 8 possible adjacent states when it

performs the same action a. There is a probability 0p  for the all other states

since it is safe to assume the robot cannot teleport.

 Reward Function: (,)R s a = +10 for goal state and -0.05 for all others, bumping

into wall is -1 and boundary states -2.

85

 Set of Observations: There are 3 possible observations the robot can make

from it sensors. They are 1 2 3{ , , }z free z obstacle z goal   . We consider these

observations to be independent of the robot orientation.

 Observation Probability Function: The robot observes the correct state

probabilistically by (, ,)O s a z . However we may model the observation function

with just the subsequent state and ignore the actions that led to the subsequent

state. That is, we have (, ,) (,),O z a s O z s a A    . This further simplifies the

model allowing for computational efficiency. If the subsequent state is free the

robot observes 1z free with 0.9p  probability. The 2 other observations

have the probability 0.05p  of being observed. Due to sensory noise if the

subsequent state has an obstacle such as a wall or machine, it is observed with

probability 0.85p  while the other 2 observations have a probability 0.075p 

respectively. Lastly the goal state is observed with 0.95p  while the other 2

observations are observed with 0.025p  . This is shown in table 5.2.

Table 5.2 – Observation Probabilities

True State Observation

Free 1 2 30.90, 0.05, 0.05z z z  

Obstacle (wall, machine etc.) 1 2 30.075, 0.85, 0.075z z z  

Goal 1 2 30.025, 0.025, 0.95z z z  

 Initial Belief: The initial belief is
0 1b  for the initial location. Since we assume

the robot knows it initial location with certainty. We use the discount factor

0.95  to model the desirability of future rewards.

86

Representing model parameters and data collection can be an extremely tedious

task as the state space increases. Recall that all the data has to be enumerated since

they are countably finite. For instance the transition probability function (, ,)T s a s

can be generated as a lookup table with 1,524,096 entries. Luckily most of the

entries are 0p  and can be ignored since only transitions to the 8 adjacent cells are

considered. For a robot operating environment there is almost zero probability of

being in a none-adjacent cell. This will only occur if there is a problem with the

motor system and the robot fails to follow the motor commands. It may exhibits

erratic runaway behavior. Also the observation probability function (, ,)O z a s can

have as much as 9,072 entries. But since we have defined all observations as equally

likely for every action the data is reduced. Likewise the reward function (,)R s a will

have 3024 entries if completely enumerated.

Some GSR maps are illustrated in figure 5.6. Notice that all the GSR maps

outlined in red have at least 2 corner grid cells that are either the goal state or initial

state. This tightly binds the number of states required for planning. Recall the

original domain map has 504 states. The corresponding GSR state for the maps in

figures 5.6b, 5.6d, 5.6f and 5.6h is shown in table 5.3.

Table 5.3 – States of the Domain Map and GSR Map

 Domain Map GSR MAPs

Map 1 | | 344S  | | 144S 

Map 2 | | 344S  | | 216S 

Map 3 | | 344S  | | 216S 

Map 4 | | 344S  | | 248S 

87

Figure 5.6 – Sample GSR Maps of the Domain Map

88

5.4 Empirical Analysis

In this section we describe the problem used to conduct experiment. The

domain selected is adapted from the Hallway2 layout present by Littman, Cassandra

& Kaelbling (1995). The layout has served as a benchmark problem for POMDP

research. We call the adapted model automation since we are interested in a

manufacturing layout. We create corresponding GSR maps for the environment and

plan over the GSR maps.

5.4.1 POMDP Model for the Automation Problem

The layout for the automation problem is shown in figure 5.7. In the automation

problem, the robot is given some parts at an initial location in the domain map (grid

cell with green robot).

Figure 5.7 – Domain Map for the Automation Problem (Layout Adapted from Littman et al., 1995)

Its task is to efficiently move the part from this initial location to one of 4 drop off

locations. The drop off location must be specified to the robot a priori. Based on the

Y

X

89

drop off location the robot must autonomously plan a route to the desired location

given the domain map and a good estimate of its initial location. Although it is

possible to have numerous possible orientations for computational reasons we

assume that the robot is in one of 4 possible orientations.

On the implemented solver they are (0 , 90 ,90 ,180)     where the 0 orientation

is parallel to the Y-axis and the states in each grid are indicated clockwise. The

robot can perform one of 5 possible actions at a time in one of the 4 orientations

(_ , , , , (180))do nothing forward right left rotate  . The robot all has 4 sensors in each of

its quadrants which can detect the presence of an obstacle by registering an on-off

switch. All 4 sensors operate at a given time so the robot can make a total 16

possible observations. Also the robot observes a signal when it has arrived at its

goal location. It receives a reward only when it has arrived at the designated drop

off location. Since the robot cannot know precisely where it is except for the initial

location and goal location, it must maintain a belief of the current state throughout

its navigation. The problem is to provide a policy to guide the robot’s actions based

on its beliefs. For the 4 drop off locations we created GSR maps that the robot uses

to guide action selection. The model parameters are as follows:

POMDP model automation: 0, , , , , ,S A T R Z O b  :

 Set of States: | | 92S  for 4 possible orientations in each grid cell.

 Set of Actions: | | 5A  (_ , , , , (180))do nothing forward right left rotate 

 Set of Observations: | | 17Z  one for each combination of the 4 quadrant

sensors plus the observation of the goal state.

90

 Transition Probability Function: The transition (, ,)T s a s between states is

approximately 0.7p  in the desired direction and 0.1p  in the 3 other

primary adjacent directions. There is also a small probability of translating to a

different orientation depending on the current orientation. See appendix A on

where a complete specification of the transition probability can be found.

 Observation Probability Function: The robot observes the correct state given

all the actions at approximately 0.73p  . The distribution for all other states

are according to how close the observation made is to the actually state. Again

see appendix A where a complete specification can be found.

 Reward Function: The robot receives no reward until it has arrived it location.

The reward (,) 1R s a  for the correct orientation in the goal state. This is

important since the robot may be in the correct location but in a wrong

orientation.

 Initial Belief: The initial belief is
0 1b  for the starting state.

 Discount Factor: The discount factor is 0.95 

5.4.2 The GSR Maps of the Automation Problem

We now describe and illustrate the GSR maps for the automation problem. As

discussed in section 5.3, the domain maps are generated as a grid of size (5 7) . The

cells (1,1),(1,7),(3,1),(3,7),(5,1),(5,7) are automatically deleted from the domain map

to resemble domain in figure 5.7. The resulting domain map is generated and the

states for each map are labeled as shown in figure 5.8. Labels 1-4 represents the

91

location of the robot plus each of the 4 orientations. However when solving the

POMDP the syntax require that we label from 0-91 (still 92 total states). Due to the

configuration of the domain we place a landmark at a grid cell that generates a map

that is navigable.

Figure 5.8 – State Labels for the Automation Domain Map

 We now illustrate each of the GSR maps based on the goal location in figures 5.9-

5.12.

 Drop Location A:

 a b

Figure 5.9 – GSR Map for Drop Location A

92

 Drop Location B:

 a b

Figure 5.10 – GSR Map for Drop Location B

Notice that in figure 5.9 and 5.11 are similar with the exception of the orientation of

the robot. In drop location A the robot must be oriented at 180 (w.r.t. the global

reference frame) in grid (2,4) while it has to be oriented at 0 in the same grid

location for drop location C.

 Drop Location C:

 a b

Figure 5.11 – GSR Map for Drop Location C

93

 Drop Location D:

 a b

Figure 5.12 – GSR Map for Drop Location D

In figure 5.9 and 5.12 we had to add a landmark as described in the GSR algorithm. If

we did not do so the generated map will not be navigable as shown in table 5.1. The

landmark is depicted with a blue star.

5.4.3 Solving the GSR POMDP

To solve the GSR POMDP model, we used a point-based POMDP solver called

APPL ver. 0.95. It is based on the paper by Kurniawati, Hsu & Lee (2008) and Ong,

Png, Hsu & Lee (2009). This solver was selected since policies are solved over the

set of optimal reachable belief points *

0()b called the optimal reachable belief

space rather than the set of reachable belief points 0()b . Both are subsets of the

belief space B. The solver significantly improves the computational efficiency of

solving POMDPs when compared to other existing solvers. APPL ver. 0.95 is based

on ZMDP solver by Smith (2007). Both the APPL and ZMDP are based on the

POMDP-Solve ver. 5.3 software and use file format developed by Cassandra

94

(1998). Details on the discussed software can be found at the websites listed in

table 5.4. The APPL solver was implemented on a PC that runs a 64-bit Linux-based

OS Ubuntu 12.04 LTS (Precise) with a 2.4 GHz Intel® Duo Core processor and 4GB of

RAM. The GapMin solver is one of the latest solvers that run on MATLAB. It is

based on the paper written by Poupart, Kim & Kim (2011). The authors present an

algorithm for improving the bounds on the upper and lower bound of the optimal

value function of the POMDP. We do not apply this solver in this problem.

Table 5.4 – Websites for POMDP Solvers

APPL ver. 0.95 http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl

ZMDP ver. 1.1.7 http://www.cs.cmu.edu/~trey/zmdp

POMDP-Solve ver.

5.3
http://www.pomdp.org/pomdp/code

GapMin ver. 2011-

06-13
https://cs.uwaterloo.ca/~ppoupart/software.html

5.4.4 Turtlebot 2 Robot

The Turtlebot 2 is an innovative platform developed by Willow Garage Inc. and

distributed by Clearpath Robotics Inc. It is shown in figure 5.13. We selected the

turtlebot because it provides a state-of-the-art robotic research platform with

advanced sensory capabilities at an affordable price. It is a highly suitable platform

for autonomous navigation research. Also its performance is sufficiently adequate

in undertaking a diverse range of other robotics related research. It is designed for

an indoor environment and will be used to demonstrate proof of concept for our

algorithm. The specifications are shown in table 5.5. It is important to note that the

http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl
http://www.cs.cmu.edu/~trey/zmdp
http://www.pomdp.org/pomdp/code
https://cs.uwaterloo.ca/~ppoupart/software.html

95

GSR-POMDP model is solved offline and the generate policies are based on the

defined model parameters. The solved policy is simply implemented on the robot.

Figure 5.13 – A Turtlebot 2 Robot

The turtlebot 2 runs on ROS which is an open-source meta-operating system

developed on a Linux-based platform such as Ubuntu 12.04 LTS (Precise). It offers

similar capabilities that traditional operating systems do, which include the direct

control of low-level device, hardware abstraction, libraries, code building, multiple

computer networking and a host of other functionalities. Details of the functionality

of ROS for robotic devices can be found at www.ros.org.

 An autonomous navigation task was performed on the turtlebot in a home

environment. Figure 5.14 illustrates a screenshot of a path travelled. The cluster of

coordinate axes indicates the robot’s position estimate, while the coordinate on the

bottom toward the left indicates the global reference frame. The coordinate toward

the bottom right indicates the robot’s goal location. We selected 2 destination

http://www.ros.org/

96

points and it performed the navigation task with relative success. Curiously, it

sometimes exhibited a rotating behavior when assigned to its goal location. We

could not immediately ascertain the cause of this. Further inquiry will be conducted

to understand what necessitated such behaviors. It may perhaps be a mechanical

issue. Such behavior further highlights the need to model the uncertainties in the

robot’s action and perception. On a positive note, two goal locations that were

selected were eventually successfully navigated by the robot. The robot achieved

this task at a speed of roughly 20 cm/sec. Our preliminary results on the turtlebot

are promising. It is important to note that there is a navigation package for the

turtlebot that could support other motion planning methods.

Figure 5.14 – An Autonomous Navigation Task on the Turtlebot

Robot’s Position Estimate

Global Reference Frame

Goal Destination

97

Table 5.5 – Turtlebot Specifications

Turtlebot Specifications

Dimensions 35.4 cm x 35.4 cm x 42.0 cm

Wheels 7.6 cm diameter

Weight 6.3 kg

Ground Clearance 15 cm

Max Speed 65 cm/s

Max Rotational Speed 180 deg/s

Max Payload 5 kg

Battery 2200 mAh Li-Ion (with 4400 mAh extended)

User power 5V & 19V @ 1A, 12V @1.5A, 12V @5A

3D Vision Sensor Microsoft Kinect

Camera Color 640 x 480 px, 30 fps

Depth Camera 640 x 480 px, 30 fps

Encoders 25700 cps; 11 ticks/mm

Gyroscope 100 deg/s

Bumper Sensor 3x forward

Other Sensor 2x cliff sensor and 2x wheel drop

Computer
ASUS with 1.6GHz Intel Atom N2600
processor and 1GB RAM

Operating System
Robot Operating System (ROS®) running on
Ubuntu 12.04 LTS (Precise)

98

5.5 Results and Discussion

A snapshot of the results from the experiments is described in table 5.6. We

follow up with a detailed discussion of the finding.

Table 5.6 – Results of GSR-Model Implementation

 GSR POMDP Model Expected Reward Execution Time (secs)

Task 1

States | |S : 92

GSR States | |GSRS : 24

Initial location: ((2,1), 0)

Goal location: ((2, 4),180)

Actions | |A : 5

Observations | |Z : 17

(100 Simulations)
Domains States: 0.662648
GSR States: 0.837799

(200 Simulations)
 Domains States: 0.691717
GSR States: 0.833081

Domain States: 300.79

GSR States: 300.71

Task 2

States | |S : 92

GSR States | |GSRS : 20

Initial location: ((2,1), 0)

Goal location: ((4, 2), 0)

Actions | |A : 5

Observations | |Z : 17

(100 Simulations)
Domains States: 1.090130
GSR States: 2.732290

(200 Simulations)
 Domains States: 1.082360
GSR States: 2.748350

Domain States: 302.4

GSR States: 300.65

Task 3

States | |S : 92

GSR States | |GSRS : 24

Initial location: ((2,1), 0)

Goal location: ((2, 4), 0)

Actions | |A : 5

Observations | |Z : 17

(100 Simulations)
Domains States: 0.653846
GSR States: 0.949199

(200 Simulations)
 Domains States: 0.685472
GSR States: 0.943234

Domain States: 301.95

GSR States: 301.57

Task 4

States | |S : 92

GSR States | |GSRS : 64

Initial location: ((2,1), 0)

Goal location: ((4, 6),180)

Actions | |A : 5

Observations | |Z : 17

(100 Simulations)
Domains States: 0.567472
GSR States: 0.681748

(200 Simulations)
 Domains States: 0.558172
GSR States: 0.684719

Domain States: 301.8

GSR States: 301.13

99

5.5.1 Data Analysis

In this section we analyze the result from the experiments. The data utilized had

to be configured to the filename.pomdp format. Appendix A directs the reader to

where this format can be located. Figure 5.15 illustrate the state labels according to

this format.

Figure 5.15 – Domain Map with Labels in the filename.pomdp syntax

Recall that the goal of the GSR approach is to reduce the size of the state space

with the expectation that computational efficiency will be improved. To accurately

compare the results of the policies generated from all 8 maps (4 for the domain map

state and 4 for the GSR map), we ran the solver for approximately the same amount

of time (300 seconds). It is possible that the solver run indefinitely if the level of

precision between updates in reduced. The resulting -vectors, number of beliefs

sampled, number of backups and the upper and lower bounds on the optimal

expected value (rewards) were recorded. Details of the results can be found in

Appendix B. The -vectors, beliefs, backups and expected rewards were compared

for all 8 policies generated. The generated policies were evaluated with 100 and

100

200 simulations and the expected cumulative rewards (value) for both simulations

were documented. Table 5.7 outlines the results that were compared. We also

averaged the expected rewards from both simulations. We found some interesting

results from the comparisons as illustrate in figures 5.16, 5.17, 5.18 and 5.19. The

first were from the -vectors comparison in figure 5.16. At first glance one might

interpret from the chart that an excessive number of -vectors we generated for the

GSR maps. This is simply due to the fact that a large number of value iteration

backups were performed as illustrated in figure 5.18.

Table 5.7 – Results from POMDP Solver with Expected Cost

Maps #Alphas #Beliefs #Backups

Exp Rewards

(100 Sim)

Exp Rewards

(200 Sim)

Exp Rewards

(Avg.)

Domain 1 181 1671 14233 0.662648 0.691717 0.677183

GSR 1 484 1719 22138 0.837799 0.833081 0.835440

Domain 2 251 1603 14321 1.090130 1.082360 1.086245

GSR 2 491 1963 19720 2.732290 2.748350 2.740320

Domain 3 266 1651 13597 0.653846 0.685472 0.669659

GSR 3 475 1771 23317 0.949199 0.943234 0.946217

Domain 4 229 1432 16668 0.567472 0.558172 0.562822

GSR 4 441 1409 17933 0.681748 0.684719 0.683234

Also recall that the solver ran for virtually the same time as indicated in table 5.6

so the large number of value iteration backups cannot be due to longer computation

time for the GSR-based maps. This observation suggests that the GSR model

performed as anticipated. Notice that quantity of beliefs generated were relatively

the same even for the reduced GSR states. A more careful observation will only

101

imply a marginal increase. This is likely due to that fact that the APPL solver selects

beliefs over an optimal reachable belief space and not the entire belief space.

Figure 5.16 – Chart Comparing the Number of -vectors Generated

Figure 5.17 – Chart Comparing the Number of Belief Generated

The number of beliefs generated for the GSR map for task 2 were the largest due to

the fact that the number of states in the GSR map is considerably smaller thus the

corresponding belief space for generating a policy is significantly reduced. This is

0

100

200

300

400

500

600

Domain
1

GSR 1 Domain
2

GSR 2 Domain
3

GSR 3 Domain
4

GSR 4

#Alphas

0

500

1000

1500

2000

2500

Domain
1

GSR 1 Domain
2

GSR 2 Domain
3

GSR 3 Domain
4

GSR 4

#Beliefs

102

exactly what we expected to observe and why the GSR methodology is proposed as

an alternative to the complete state representation of model parameters.

Figure 5.18 – Chart Comparing the Number of Backups Computed

Figure 5.19 – Chart Comparing the Expected Rewards from the Policy Evaluation

There was no significant difference in the expected rewards for the 100 simulations

and 200 simulations run. The GSR map for task 2 has greater rewards because the

number of initial states and the goal state are very close together as shown in figure

0

5000

10000

15000

20000

25000

Domain
1

GSR 1 Domain
2

GSR 2 Domain
3

GSR 3 Domain
4

GSR 4

#Backups

0

0.5

1

1.5

2

2.5

3

Rewards

Exp Rewards (100 Sim)

Exp Rewards (200 Sim)

Exp Rewards (Avg.)

103

5.9. The upper and lower bounds on the expected cumulative rewards can be found

in Appendix B. The number of value iteration backups for the GSR task 1 and GSR

task 2 are very close. They are 22138 backups and 23317 backups respectively.

This is because they have very similar configurations as shown in figure 5.9 and

figure 5.11. In fact the only difference is that their goal state has different

orientations.

5.6 Summary

In summary, we presented an approach called Goal-Specific Representation

(GSR) to reduce the state space required for planning with POMDPs. Results were

encouraging and demonstrated that this methodology is viable for complex

domains. A drawback is that the policies generated still plan over a relatively short

horizon as the solver quickly runs out of memory. Solving long horizon navigation

problems using POMDPs is still considerably difficult since the time complexity is

exponential in the horizon length. We shall look into applying a non-uniform grid

model to further reduce the model parameters and generate more efficient

solutions. We also applied the policy computed offline to the Turtlebot 2 robot

platform for autonomous navigation. The turtlebot successfully navigated an indoor

environment. Future work is aimed at applying the model directly in complex 3-

dimensional domains and also in real manufacturing facilities. Of course doing so

will be more computationally tasking but exploiting the structure of the domain

should significantly reduce the problem parameter as we have successfully

demonstrated.

104

Chapter 6

Summary and Future Work

6.1 Overview

In this dissertation we thoroughly discussed sequential decision-making for

autonomous systems in partially observable environments. We were particularly

interested in applying the Partially Observable Markov Decision Process (POMDP)

model in the robot motion planning and navigation problem. For decades there has

been significant interest in designing robotic systems that can operate

autonomously in uncertain and dynamic environments. A major hindrance is that

modeling robot-environment interactions is still a difficult problem. If current

research methods prove successful, it is anticipated that potential application

domains include healthcare for assisted-care of the elderly, hazardous material

management, search & rescue, autonomous material handling etc.

A POMDP model—a generalization of Markov Decision Processes—is a robust

theoretical formalism that explicitly accounts for uncertainty of an agent’s action

and observation as it interacts within its task environment. This ensures its

suitability in modeling real-world problems that are intrinsically stochastic by

nature. A major drawback with adopting POMDPs for decision-making is that it is

computationally intractable to solve problems with large state space. Researchers

have addressed this problem by formulating approximate techniques resulting in

105

solution to problems with state space in orders of magnitude large than previously

possible.

 We formulated a novel approach to reduce the state space of the POMDP

parameters by exploiting the structures of the problem which include the method by

which the domain is modeled, the goal location within this domain and the type of

action and observation the agent can perform. This was applied in robot navigation

problem to generate control policies that guide the robot to autonomously

completing a described task with a specific domain. We modeled the domain as an

automated manufacturing facility. We called the proposed methodology Goal-

Specific Representation (GSR) which reduces the state-space to only states

reachable from the initial location to the goal location. This ensured that we

computed policies over only GSR states thus reducing computational costs. We then

solved the GSR model using a point-based POMDP solver called APPL v 0.95 and

performed empirical analysis and evaluation on the solution it generated. We also

applied to the policy solved offline to navigate a real robot.

6.2 Limitations

Though our approach to planning for autonomous systems where the operating

domain is stochastic has been shown to be useful, there are still some disadvantages

that have been observed. The first and most obvious is that we do not generate

policies for the complete task environment which may be undesirable in certain

cases. The second is that the generated policies are currently limited by the

precision and efficiency of the latest state-of-the-art POMDP solvers. Developing

106

better solvers is still an active area of research. The third limitation in this work is

that the model parameters described are relatively high-level in that the effects of

the robot design specifications are abstracted out of the model. This may be

important to consider in future work. Also one issue rarely discussed in literature

which we encountered is the prohibitively large data set required as input

parameters for the POMDP model even for smaller models. This may require

further research to investigate more efficient means of representing the problem

parameters.

6.3 Future Work

We have learned important lessons in this dissertation on how to efficiently

model decision-making tasks for complex autonomous systems where the

environment is partially observable. We were interested in the autonomous robot

navigation problem even though the models can be extended to other domains such

as medical decision-making, computer network management, metropolitan city

evacuation, and computational biology just to name a few. In the navigation task

described we only discussed the scenario where the robot is operating in a 2-

dimensional environment. Further research will be conducted to explore 3-D

dimensional environments. Clearly the state space of the problem will significantly

increase in 3D so the GSR methodology will provide considerable utility in taking

advantage of the domain structures. We deliberately did not present a real

automated facility in order to focus on the decision-making model. Ultimately we

anticipate that our contributions in this work can be applied in industrial and

107

manufacturing environments with teams of fully autonomous robots performing

tasks with minimal human intervention.

108

References

1. Alagoz, O., Hsu, H., Schaefer, A. J., Roberts, M. S. (2010). Markov Decision

Processes: A Tool for Sequential Decision Making under Uncertainty, Medical

Decision Making, Vol. 30, No. 4, pp 474-483.

2. Allen, M., Petrik, M., Zilberstein, S. (2008). Interaction Structure and

Dimensionality Reduction in Decentralized MDPs, In Proceedings of the 23rd AAAI

Conference on Artificial Intelligence.

3. Alterovitz, R. Siméon, T., Goldberg, K. (2007). The Stochastic Motion Roadmap:

A Sampling Framework for Planning with Markov Motion Uncertainty, In

Proceeding of Robotics: Science and Systems, pp 246-253.

4. Amato, C., Bonet, B., Zilberstein, S. (2010). Finite-State Controllers Based on

Mealy Machines for Centralized and Decentralized POMDPs, In Proceedings of the

24th Conference on Artificial Intelligence.

5. Aurenhammer, F. (1991). Voronoi Diagrams: A Survey of a Fundamental

Geometric Data Structure, ACM Computing Surveys, Vol. 23, No. 3, pp 346 – 405

6. Bar-Shalom, Y., Li, X-R. (1998). Estimation and Tracking: Principles, Techniques

and Software, YBS, Danvers, MA.

7. Barto, A., Bradtke, S., Singh, S. (1995). Learning to Act using Real-Time Dynamic

Programming, Artificial Intelligence, Vol. 72, pp 81-138.

8. Bellman, R. (1957a). A Markovian Decision Process, Journal of Mathematics and

Mechanics, Vol. 6, No. 5, pp 679- 684.

109

9. Bellman, R. (1957b). Dynamic Programming, Princeton University Press,

Princeton, NJ.

10. Bertsekas, D. P. (2007). Dynamic Programming and Optimal Control Vols. 1 & 2,

Athena Scientific, Belmont, MA.

11. Bertsekas, D. P., Shreve S. E. (1996). Stochastic Optimal Control: The Discrete-

Time Case, Athena Scientific, Belmont, MA.

12. Bertsekas, D. P., Tsitsiklis, J. (1996). Neuro-Dynamic Programming, Athena

Scientific, Belmont, MA.

13. Bhati, A., Kavraki, L. E., Vardi, M. Y. (2010). Sampling-Based Motion Planning

with Temporal Goals, In Proceedings of the International Conference on

Robotics and Automation.

14. Bhatia, A., Maly, M. R., Kavraki, L. E., Vardi, M. Y. (2011). A Multi-Layered

Synergistic Approach to Motion Planning with Complex Goals, IEEE Robotics &

Automation Magazine, Vol. 18, No 3, pp 55-64.

15. Bhatnagar, S., Fernández-Gaucherand, E., Fu, M. C., He, Y., Marcus, S. I.

(1999). A Markov Decision Model for Capacity Expansion and Allocation, In

Proceedings of the 38th Conference on Decision and Control, Phoenix, AZ, pp

1380-1385.

16. Candido, S. Hutchinson, S. (2011). Minimum Uncertainty Robot Navigation

using Information-Guided POMDP Planning, In Conference Proceedings of IEEE

International Conference on Robotics and Automation, pp 6102-6108.

110

17. Candido, S., Hutchinson, S. (2011). Minimum Uncertainty Robot Navigation

using Information-Guided POMDP Planning, In Proceedings of the International

Conference on Robotics and Automation, pp 6102-6108.

18. Cassandra, A. R. (1994). Optimal Policies for Partially Observable Markov

Decision Processes, MS Thesis, Computer Science Department, Brown University,

Providence, RI.

19. Cassandra, A. R. (1998). Exact and Approximate Algorithms for Partially

Observable Markov Decision Processes, PhD Thesis, Computer Science

Department, Brown University, Providence, RI.

20. Cassandra, A. R., Kaelbling, L. P., Kurien, J. A. (1996). Acting Under

Uncertainty: Discrete Bayesian Models for Mobile-Robot Navigation, In

Proceedings of the International Conference on Intelligent Robots and Systems,

Vol. 2, pp 963-972.

21. Cassandra, A., Littman, M. L., Zhang, N. L. (1997). Incremental Pruning: A

Simple Fast, Exact Method for Partially Observable Markov Decision Processes, In

Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence, pp

54-61.

22. Doshi-Velez, F. (2009). The Infinite Partially Observable Markov Decision

Process, Advances in Neural Information Processing Systems (NIPS), Vol. 22, pp

477-485.

111

23. Eker, B., Akin, H. L. (2013). Solving Decentralized POMDP Problems using

Genetic Algorithms, Autonomous Agents and Multi-Agent Systems, Vol. 27, No. 1,

pp 161-196.

24. Fodor, I. K. (2002). A Survey of Dimension Reduction Techniques, Technical

Report, Center of Applied Scientific Computing, Lawrence Livermore National

Laboratory, Livermore, CA.

25. Glashan, R., Hsiao, K., Kaelbling, L. P., Lozano-Pérez, T. (2007). Grasping

POMDPs: Theory and Experiments, In Proceedings of Robotics: Science and

Systems Workshop on Manipulation for Human Environments.

26. Gordon, G. J. (1999). Approximate Solutions to Markov Decision Processes, PhD

Dissertation, School of Computer Science, Carnegie Mellon University,

Pittsburgh, PA

27. Grady, D., Moll, M., Kavraki, L. E. (2013). Automated Model Approximation for

Robotic Navigation with POMDPs, In Proceedings of the International

Conference on Robotics and Automation.

28. Guo, X., Hernández-Lerma, O. (2009). Continuous-Time Markov Decision

Processes, Springer-Verlag, Berlin.

29. Guo, X., Zhu, W. (2002). Denumerable-State Continuous-Time Markov Decision

Processes with Unbounded Transition and Reward Rates under the Discounted

Criterion, Journal of Applied Probability, Vol. 39, No. 2, pp 233-250.

30. Gustafsson, F., Gunnarsson, F., Bergman, N., Forssell, U., Jansson, J.,

Karlsson, R., Nordlund, P. J. (2002). Particle Filters for Positioning, Navigation,

112

and Tracking, IEEE Transactions on Signal Processing, Vol. 50, No. 2, pp 425-

437.

31. Hansen, E. A. (1997). An Improved Policy Iteration Algorithm for Partially

Observable MDPs, In Proceedings of 10th Neural Processing Systems, Denver,

CO.

32. Hansen, E. A. (1997). An Improved Policy Iteration Algorithm for Partially

Observable MDPs, In Proceedings of the 10th Neural Information Processing

Systems Conference, Denver, CO.

33. He, R., Roy, N. (2009). Efficient POMDP Forward Search by Predicting the

Posterior Belief Distribution, Technical Report MIT-CSAIL-TR-2009-044,

Computer Science and Artificial Intelligence Laboratory, Massachusetts

Institute of Technology, Cambridge, MA.

34. Hornung, A., Phillips, M., Jones, E. G., Bennewitz, M., Likhachev, M., Chitta,

S. (2012). Navigation in Three-Dimensional Cluttered Environments for Mobile

Manipulation, In Proceedings of the IEEE International Conference on Robotics

and Automation, pp 423-429.

35. Howard, R. A. (1960). Dynamic Programming and Markov Processes. MIT Press,

Boston, MA.

36. Hsu, D., Lee, W. S., Rong, N. (2007). What makes some POMDP Problems easy to

Approximate, Advances in Neural Information Processing Systems (NIPS).

37. Hunt, F. Y. (2005). Sample Path Optimality for a Markov Optimization Problem,

Stochastic Processes and their Applications, Vol. 115, pp 769-779.

113

38. Ibekwe, H. I., Kamrani, A. K. (2008). Robotics and Autonomous Robots, In book

Collaborative Engineering, Eds. Kamrani, A. K., Nasr, E. A., pp 173-206,

Springer Science+Business Media, NY.

39. Kaelbling, L. P., Littman M. L., Cassandra, A. R. (1998). Planning and Acting in

Partially Observable Stochastic Domains, Artificial Intelligence, Vol. 101, pp 99-

134.

40. Kaplow, R. (2010). Point-Based POMDP Solvers: Survey and Comparative

Analysis, MSc Thesis, Department of Computer Science, McGill University,

Montreal, Quebec, Canada.

41. Kaplow, R., Atrash, A., Pineau, J. (2010). Variable Resolution Decomposition

For Robotic Navigation Under a POMDP Framework. In Proceedings of the

International Conference on Robotics and Automation (ICRA), Anchorage, AK.

42. Kavraki, L. E., Švestka, P., Latombe, J.-C., Overmars, M. H. (1996).

Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration

Spaces, IEEE Transactions on Robotics and Automation, Vol. 12, No. 4, pp 566-

580.

43. Koenig, S., Simmons, R. G. (1998). Xavier: A Robot Navigation Architecture

Based on Partially Observable Markov Decision Process Models, In book Artificial

Intelligence Based Mobile Robotics: Case Studies of Successful Robot Systems, Eds.

Kortenkamp, D., Bonasso, R. P., Murphy, R. R., pp 91-122, MIT Press,

Cambridge, MA.

114

44. Kurniawati, H., Bandyopadhyay, T., Patrikalakis, N. (2012). Global Motion

Planning under Uncertain Motion, Sensing, and Environment Map, Autonomous

Robots, Vol. 33, pp 255-272.

45. Kurniawati, H., Du, Y., Hsu, D., Lee W. S. (2011). Motion Planning under

Uncertainty for Robotic Tasks with Long Time Horizons, International Journal of

Robotics Research, Vol. 30, No. 3, pp 308-323.

46. Kurniawati, H., Hsu, D., Lee W. S. (2008). SARSOP: Efficient Point-Based

POMDP Planning by Approximating Optimally Reachable Belief Spaces, In

Conference Proceedings of Robotics: Science and Systems IV, Zurich,

Switzerland.

47. Kurniawati, H., Patrikalakis, N. M. (2013). Point-Based Policy Transformation:

Adapting Policy to Changing POMDP Models, In Proceedings on the 10th

Workshop on the Algorithmic Foundations of Robotics, pp 493-509.

48. Latombe, J.-C. (1991). Robot Motion Planning, Kluwer Academic Publishers,

Boston, MA.

49. LaValle, S. M. (1998). Rapidly-Exploring Random Trees: A New Tool for Path

Planning, Technical Report 98-11, Computer Science Dept., Iowa State

University, IA.

50. LaValle, S. M. (2006). Planning Algorithms, Cambridge University Press, New

York, NY.

51. LaValle, S. M., Kuffner, J. J. (2001). Randomized Kinodynamic Planning,

International Journal of Robotics Research, Vol. 20, No. 5, pp 378-400.

115

52. Li, H., Liao, X., Carin, L. (2006). Incremental Least Squares Policy Iteration for

POMDPs, In Proceedings of the National Conference on Artificial Intelligence,

Vol. 21, No. 2, pp 1167.

53. Likhachev, M., Stentz, A. (2006). PPCP: Efficient Planning with Clear

Preferences in Partially-Known Environments, In Proceedings of the National

Conference on Artificial Intelligence (AAAI).

54. Littman, M. L. (1994). The Witness Algorithm: Solving Partially Observable

Markov Decision Processes, Technical Report: CS-94-40, Computer Science

Department, Brown University, Providence, RI.

55. Littman, M. L. (1996). Algorithms for Sequential Decision Making, PhD

Dissertation, Department of Computer Science, Brown University, Providence,

RI.

56. Littman, M., Cassandra, A. R., Kaelbling L. P. (1995). Learning Policies for

Partially Observable Environments: Scaling Up, In Proceedings of the 12th

International Conference on Machine Learning, pp 362-370.

57. Lovejoy, W. S. (1991). Computationally Feasible Bounds for Partially Observed

Markov Decision Processes, Operations Research, Vol. 39, No. 1, pp 162-175.

58. Lόpez, M. E., Barea, R., Bergasa, L. M., Ocaña, Escudero, M. S. (2007). Global

Navigation of Assistant Robots using Partially Observable Markov Decision

Processes, In book Perception and Navigation book, Ed. Kolski, S., pp 263-298,

Pro Literatur, Verlag, Germany.

116

59. Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., Konolige, K. (2010).

The Office Marathon: Robust Navigation in an Indoor Office Environment, In

Proceedings of the International Conference on Robotics and Automation.

60. Marthi, B. (2012). Robust Navigation Execution by Planning in Belief Space, In

Proceedings of Robotics: Science and Systems, pp 37.

61. Melo, F. S., Veloso, M. (2011). Decentralized MDPs with Sparse Interactions,

Artificial Intelligence, Vol. 175, pp 1757-1789.

62. Monahan, G. E. (1982). A Survey of Partially Observable Markov Decision

Processes: Theory, Models, and Algorithms, Management Science, Vol. 28, No. 1,

pp 1-16.

63. Nilsson, N. J. (1973). A Hierarchical Robot Planning and Execution System,

Technical Report 76, SRI Report 1187, Artificial Intelligence Center, Menlo Park,

CA.

64. Ong, S. C. W., Png, S. W., Hsu, D., Lee, W. S. (2009). POMDPs for Robotics Tasks

with Mixed Observability, In the Conference Proceedings of Robotics: Science

and Systems, Seattle, WA.

65. Ong, S. C. W., Png, S. W., Hsu, D., Lee, W.S. (2010). Planning Under Uncertainty

for Robotic Tasks with Mixed Observability, International Journal of Robotics

Research, Vol. 29, No. 8, pp 1053-1068.

66. Pajarinen, J., Peltonen, J. (2011). Periodic Finite State Controller for Efficient

POMDP and DEC-POMDP Planning, In Proceedings of the 25th Annual Conference

on Neural Information Processing Systems.

117

67. Papadimitriou, C. H., Tsitsiklis, J. N. (1987). The Complexity of Markov

Decision Processes, Mathematics of Operations Research, Vol. 12, No. 3, pp 441-

450.

68. Pashenkova, E., Rish, I., Dechter, R. (1996). Value Iteration and Policy

Iteration Algorithms for Markov Decision Problems, In Proceedings of the

National Conference on Artificial Intelligence (AAAI) Workshop on Structural

Issues in Planning and Temporal Reasoning.

69. Pfeifer, R., Bongard, J. (2007). How the Body Shapes the Way we Think: A New

View on Intelligence, MIT Press, Boston, MA.

70. Pfeifer, R., Scheier, C. (1999). Understanding Intelligence, MIT Press, Boston,

MA.

71. Pineau, J., Gordon G., Thrun, S. (2003). Point-Based Value Iteration: An

Anytime Algorithm for POMDPs, In Proceedings of the International Joint

Conference on Artificial Intelligence (IJCAI), Acapulco, Mexico, pp 1025-1032.

72. Pineau, J., Gordon, G. (2005). POMDP Planning for Robust Robot Control, In

Proceedings of the International Symposium on Robotics Research (ISRR), San

Francisco, CA.

73. Pineau, J., Thrun, S. (2002). High-Level Robot Behavior Control with POMDPs, In

the AAAI Workshop on Cognitive Robotics, Edmonton, Canada.

74. Porta, J. M., Spaan, M. T. J., Vlassis, N. (2005). Robot Planning in Partially

Observable Continuous Domains, In Proceedings of Robotics: Science and

Systems I, pp 29, Cambridge, MA.

118

75. Poupart, P. (2005). Exploiting Structure to Efficiently Solve Large Scale Partially

Observable Markov Decision Processes, PhD Dissertation, Department of

Computer Science, University of Toronto, Toronto, Canada

76. Poupart, P., Kim, K-E., Kim, D. (2011). Closing the Gap: Improved Bounds on

Optimal POMDP Solutions, In Proceedings of the 21st International Conference

on Automated Planning and Scheduling, Freiburg Germany.

77. Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic

Programming, John Wiley & Sons Inc., NY.

78. Ross, S. Pineau, J., Paquet, S., Chaib-Draa, B. (2008). Online Planning

Algorithms for POMDPs, Journal of Artificial Intelligence Research, Vol. 31, pp

663-704.

79. Ross, S., Chaib-Draa, B., Pineau, J. (2008). Bayesian Reinforcement Learning in

Continuous POMDPs with Application to Robot Navigation, In Proceedings of the

International Conference on Robotics and Automation, pp 2845-2851.

80. Roy, N. (2003). Finding Approximate POMDP Solutions through Belief

Compression, PhD Dissertation, Carnegie Mellon University, Pittsburgh, PA

81. Roy, N., Gordon, G., Thrun, S. (2005). Finding Approximate POMDP Solutions

Through Belief Compression, Journal of Artificial Intelligence Research, Vol. 23,

pp 1-40.

82. Russell, S. J., Norvig, P. (2003). Artificial Intelligence: A Modern Approach,

Prentice Hall, Upper Saddle River, NJ.

119

83. Siegwart, R., Nourbakhsh, I. R., Scaramuzza, D. (2011). Introduction to

Autonomous Mobile Robots, MIT Press, MA.

84. Shani, G., Brafman, R., Shimony, S. (2007). Forward Search Value Iteration for

POMDPs, In Proceedings of the International Joint Conference on Artificial

Intelligence.

85. Shue, P. C. Y., Xue, S. Q. (1993). Intelligent Robotic Planning Systems, World

Scientific Publishing, River Edge, NJ.

86. Siegwart, R., Nourbakhsh, I. R., Scaramuzza, D. (2011). Introduction to

Autonomous Mobile Robots, MIT Press, Cambridge, MA.

87. Smallwood, R. D., Sondik, E. J. (1973). The Optimal Control of Partially

Observable Markov Processes Over a Finite Horizon, Operation Research, Vol. 21,

No. 5, pp. 1071-1088.

88. Smith, T. (2007). Probabilistic Planning for Robotic Exploration, PhD

Dissertation, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.

89. Smith, T., Simmons, R. (2004). Heuristic Search Value Iteration for POMDPs, In

Proceedings of the Conference on Uncertainty in Artificial Intelligence.

90. Smith, T., Simmons, R. (2005). Point-Based POMDP Algorithms: Improved

Analysis and Implementation, In Proceedings of the Conference on Uncertainty

in Artificial Intelligence.

91. Sondik, E. (1971). The Optimal Control of Partially Observable Markov Decision

Processes, PhD Dissertation, Stanford University, Stanford, CA.

120

92. Spaan, M., Vlassis, N. (2004). A Point-Based POMDP Algorithm for Robot

Planning, In Proceedings of the International Conference on Robotics and

Automation, pp 2399-2404.

93. Spaan, M., Vlassis, N. (2005). Perseus: Randomized Point-Based Value Iteration

for POMDPs, Journal of Artificial Intelligence Research, Vol. 24, pp 195-220.

94. Şucan, I. A., Kavraki, L. E. (2012). Accounting for Uncertainty in Simultaneous

Task and Motion Planning using Task Motion Multigraphs, In Proceedings of the

International Conference on Robotics and Automation, pp 4822-4828.

95. Şucan, I. A., Moll, M., Kavraki, L. E. (2012). The Open Motion Planning Library,

IEEE Robotics & Automation Magazine, Vol. 19, No. 4, pp 72-82.

96. Sugiyama, M., Kawanabe, M. (2012). Machine Learning in Non-Stationary

Environments: Introduction to Covariate Shift Adaptation, MIT Press, Boston,

MA.

97. Sutton, R. S., Barto, A. G. (1998). Reinforcement Learning: An Introduction, MIT

Press, Boston, MA.

98. Theocharous, G., Murphy, K., Kaelbling, L. P. (2004). Representing

Hierarchical POMDPs as DBN for Multi-Scale Robot Localization. In Proceedings

of the International Conference on Robotics and Automation, Vol. 1, pp 1045-

1051.

99. Thrun, S. (2000). A Programming Language Extension for Probabilistic Robot

Programming, In Workshop Notes of the IJCAI Workshop on Uncertainty in

Robotics.

121

100. Thrun, S. (2008). Simultaneous Localization and Mapping, In Robotics and

Cognitive Approaches to Spatial Mapping, Eds. Jefferies, M. E., Yeap, W-K., Vol.

38, Springer-Verlag Berlin Heidelberg.

101. Thrun, S., Burgard, W., Fox, D. (2006). Probabilistic Robotics, MIT Press,

Boston, MA.

102. White, D. J. (1993). Markov Decision Processes, John Wiley and Sons, New York,

NY.

103. Yu, C-H., Chuang, J., Gerkey, B., Gordon, G., Ng, A. (2005). Open-Loop Plans in

Multi-Robot POMDPs, Technical Report, Computer Science Department,

Stanford University, Stanford, CA.

104. Zhang, S. Sridharan, M., Washington, C. (2013). Active Visual Planning for

Mobile Robot Teams using Hierarchical POMDPs, IEEE Transactions on

Robotics, Vol. 29, No. 4.

122

Appendix

A. Data Syntax

Data acquisition on a real robot is extremely tedious. Even abstracts models like

that presented in this work can be extremely cumbersome to document. Since we

are interested in assessment of the proposed methodology we opted to use existing

benchmark data found in POMDP literature. The data used in the work closely

related to the Hallway2 problem presented in Littman, Cassandra and Kaelbling

(1995). The input parameters followed the format require for the pomdp-solve

ver. 5.3 solver. The file naming convention is: filename.pomdp. The APPL ver. 0.95

requires a XML input format. It is capable of converting filename.pomdp to

filename.pomdpx which is the corresponding XML format for the pomdp file. The

APPL ver. 0.95 solver can generate policies, solve then evaluate them. The original

data for the hallway2 problem can be found at the link below. The data used in this

work has been considerable modified for the problem space. We do not show the

complete data set since it is prohibitively large. However we only illustrate the

input data for GSR Map 2 in section A.1.

http://www.pomdp.org/pomdp/examples/index.shtml

http://www.pomdp.org/pomdp/examples/index.shtml

123

A.1 Input Data for GSR map Task 2

A grid world layout applied to the GSR Algorithm

Adapted from "Hallway2" benchmark POMDP problem

Model for GSR-Map for task2

discount: 0.950000

values: reward

states: 20

actions: 5

observations: 17

start:

0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000

Transition Probabilities

T: 0 : 0 : 0 1.000000

T: 1 : 0 : 5 0.050000

T: 1 : 0 : 0 0.950000

T: 2 : 0 : 0 0.100000

T: 2 : 0 : 1 0.700000

T: 2 : 0 : 2 0.100000

T: 2 : 0 : 3 0.100000

T: 3 : 0 : 0 0.100000

T: 3 : 0 : 1 0.150000

T: 3 : 0 : 2 0.600000

T: 3 : 0 : 3 0.150000

T: 4 : 0 : 0 0.100000

T: 4 : 0 : 1 0.100000

T: 4 : 0 : 2 0.100000

T: 4 : 0 : 3 0.700000

T: 0 : 1 : 1 1.000000

T: 1 : 1 : 5 0.800000

T: 1 : 1 : 1 0.200000

T: 2 : 1 : 0 0.100000

T: 2 : 1 : 1 0.100000

T: 2 : 1 : 2 0.700000

T: 2 : 1 : 3 0.100000

T: 3 : 1 : 0 0.150000

T: 3 : 1 : 1 0.100000

T: 3 : 1 : 2 0.150000

T: 3 : 1 : 3 0.600000

T: 4 : 1 : 0 0.700000

T: 4 : 1 : 1 0.100000

T: 4 : 1 : 2 0.100000

T: 4 : 1 : 3 0.100000

T: 0 : 2 : 2 1.000000

T: 1 : 2 : 5 0.050000

T: 1 : 2 : 2 0.950000

T: 2 : 2 : 0 0.100000

T: 2 : 2 : 1 0.100000

T: 2 : 2 : 2 0.100000

124

T: 2 : 2 : 3 0.700000

T: 3 : 2 : 0 0.600000

T: 3 : 2 : 1 0.150000

T: 3 : 2 : 2 0.100000

T: 3 : 2 : 3 0.150000

T: 4 : 2 : 0 0.100000

T: 4 : 2 : 1 0.700000

T: 4 : 2 : 2 0.100000

T: 4 : 2 : 3 0.100000

T: 0 : 3 : 3 1.000000

T: 1 : 3 : 5 0.025000

T: 1 : 3 : 7 0.025000

T: 1 : 3 : 3 0.950000

T: 2 : 3 : 0 0.700000

T: 2 : 3 : 1 0.100000

T: 2 : 3 : 2 0.100000

T: 2 : 3 : 3 0.100000

T: 3 : 3 : 0 0.150000

T: 3 : 3 : 1 0.600000

T: 3 : 3 : 2 0.150000

T: 3 : 3 : 3 0.100000

T: 4 : 3 : 0 0.100000

T: 4 : 3 : 1 0.100000

T: 4 : 3 : 2 0.700000

T: 4 : 3 : 3 0.100000

T: 0 : 4 : 4 1.000000

T: 1 : 4 : 6 0.800000

T: 1 : 4 : 8 0.050000

T: 1 : 4 : 3 0.050000

T: 1 : 4 : 4 0.100000

T: 2 : 4 : 4 0.100000

T: 2 : 4 : 5 0.700000

T: 2 : 4 : 6 0.100000

T: 2 : 4 : 7 0.100000

T: 3 : 4 : 4 0.100000

T: 3 : 4 : 5 0.150000

T: 3 : 4 : 6 0.600000

T: 3 : 4 : 7 0.150000

T: 4 : 4 : 4 0.100000

T: 4 : 4 : 5 0.100000

T: 4 : 4 : 6 0.100000

T: 4 : 4 : 7 0.700000

T: 0 : 5 : 5 1.000000

T: 1 : 5 : 0 0.050000

T: 1 : 5 : 10 0.050000

T: 1 : 5 : 1 0.025000

T: 1 : 5 : 3 0.025000

T: 1 : 5 : 5 0.850000

T: 2 : 5 : 4 0.100000

T: 2 : 5 : 5 0.100000

T: 2 : 5 : 6 0.700000

T: 2 : 5 : 7 0.100000

T: 3 : 5 : 4 0.150000

T: 3 : 5 : 5 0.100000

T: 3 : 5 : 6 0.150000

T: 3 : 5 : 7 0.600000

T: 4 : 5 : 4 0.700000

125

T: 4 : 5 : 5 0.100000

T: 4 : 5 : 6 0.100000

T: 4 : 5 : 7 0.100000

T: 0 : 6 : 6 1.000000

T: 1 : 6 : 0 0.025000

T: 1 : 6 : 2 0.025000

T: 1 : 6 : 10 0.800000

T: 1 : 6 : 3 0.050000

T: 1 : 6 : 6 0.100000

T: 2 : 6 : 4 0.100000

T: 2 : 6 : 5 0.100000

T: 2 : 6 : 6 0.100000

T: 2 : 6 : 7 0.700000

T: 3 : 6 : 4 0.600000

T: 3 : 6 : 5 0.150000

T: 3 : 6 : 6 0.100000

T: 3 : 6 : 7 0.150000

T: 4 : 6 : 4 0.100000

T: 4 : 6 : 5 0.700000

T: 4 : 6 : 6 0.100000

T: 4 : 6 : 7 0.100000

T: 0 : 7 : 7 1.000000

T: 1 : 7 : 0 0.050000

T: 1 : 7 : 10 0.050000

T: 1 : 7 : 3 0.800000

T: 1 : 7 : 7 0.100000

T: 2 : 7 : 4 0.700000

T: 2 : 7 : 5 0.100000

T: 2 : 7 : 6 0.100000

T: 2 : 7 : 7 0.100000

T: 3 : 7 : 4 0.150000

T: 3 : 7 : 5 0.600000

T: 3 : 7 : 6 0.150000

T: 3 : 7 : 7 0.100000

T: 4 : 7 : 4 0.100000

T: 4 : 7 : 5 0.100000

T: 4 : 7 : 6 0.700000

T: 4 : 7 : 7 0.100000

T: 0 : 8 : 8 1.000000

T: 1 : 8 : 4 0.800000

T: 1 : 8 : 16 0.025000

T: 1 : 8 : 18 0.025000

T: 1 : 8 : 8 0.150000

T: 2 : 8 : 8 0.100000

T: 2 : 8 : 9 0.700000

T: 2 : 8 : 10 0.100000

T: 2 : 8 : 11 0.100000

T: 3 : 8 : 8 0.100000

T: 3 : 8 : 9 0.150000

T: 3 : 8 : 10 0.600000

T: 3 : 8 : 11 0.150000

T: 4 : 8 : 8 0.100000

T: 4 : 8 : 9 0.100000

T: 4 : 8 : 10 0.100000

T: 4 : 8 : 11 0.700000

T: 0 : 9 : 9 1.000000

T: 1 : 9 : 4 0.050000

126

T: 1 : 9 : 18 0.050000

T: 1 : 9 : 9 0.900000

T: 2 : 9 : 8 0.100000

T: 2 : 9 : 9 0.100000

T: 2 : 9 : 10 0.700000

T: 2 : 9 : 11 0.100000

T: 3 : 9 : 8 0.150000

T: 3 : 9 : 9 0.100000

T: 3 : 9 : 10 0.150000

T: 3 : 9 : 11 0.600000

T: 4 : 9 : 8 0.700000

T: 4 : 9 : 9 0.100000

T: 4 : 9 : 10 0.100000

T: 4 : 9 : 11 0.100000

T: 0 : 10 : 10 1.000000

T: 1 : 10 : 4 0.025000

T: 1 : 10 : 6 0.025000

T: 1 : 10 : 18 0.800000

T: 1 : 10 : 10 0.150000

T: 2 : 10 : 8 0.100000

T: 2 : 10 : 9 0.100000

T: 2 : 10 : 10 0.100000

T: 2 : 10 : 11 0.700000

T: 3 : 10 : 8 0.600000

T: 3 : 10 : 9 0.150000

T: 3 : 10 : 10 0.100000

T: 3 : 10 : 11 0.150000

T: 4 : 10 : 8 0.100000

T: 4 : 10 : 9 0.700000

T: 4 : 10 : 10 0.100000

T: 4 : 10 : 11 0.100000

T: 0 : 11 : 11 1.000000

T: 1 : 11 : 4 0.050000

T: 1 : 11 : 18 0.050000

T: 1 : 11 : 11 0.900000

T: 2 : 11 : 8 0.700000

T: 2 : 11 : 9 0.100000

T: 2 : 11 : 10 0.100000

T: 2 : 11 : 11 0.100000

T: 3 : 11 : 8 0.150000

T: 3 : 11 : 9 0.600000

T: 3 : 11 : 10 0.150000

T: 3 : 11 : 11 0.100000

T: 4 : 11 : 8 0.100000

T: 4 : 11 : 9 0.100000

T: 4 : 11 : 10 0.700000

T: 4 : 11 : 11 0.100000

T: 0 : 12 : 12 1.000000

T: 1 : 12 : 17 0.050000

T: 1 : 12 : 12 0.950000

T: 2 : 12 : 12 0.100000

T: 2 : 12 : 13 0.700000

T: 2 : 12 : 14 0.100000

T: 2 : 12 : 15 0.100000

T: 3 : 12 : 12 0.100000

T: 3 : 12 : 13 0.150000

T: 3 : 12 : 14 0.600000

127

T: 3 : 12 : 15 0.150000

T: 4 : 12 : 12 0.100000

T: 4 : 12 : 13 0.100000

T: 4 : 12 : 14 0.100000

T: 4 : 12 : 15 0.700000

T: 0 : 13 : 13 1.000000

T: 1 : 13 : 17 0.800000

T: 1 : 13 : 13 0.200000

T: 2 : 13 : 12 0.100000

T: 2 : 13 : 13 0.100000

T: 2 : 13 : 14 0.700000

T: 2 : 13 : 15 0.100000

T: 3 : 13 : 12 0.150000

T: 3 : 13 : 13 0.100000

T: 3 : 13 : 14 0.150000

T: 3 : 13 : 15 0.600000

T: 4 : 13 : 12 0.700000

T: 4 : 13 : 13 0.100000

T: 4 : 13 : 14 0.100000

T: 4 : 13 : 15 0.100000

T: 0 : 14 : 14 1.000000

T: 1 : 14 : 17 0.050000

T: 1 : 14 : 14 0.950000

T: 2 : 14 : 12 0.100000

T: 2 : 14 : 13 0.100000

T: 2 : 14 : 14 0.100000

T: 2 : 14 : 15 0.700000

T: 3 : 14 : 12 0.600000

T: 3 : 14 : 13 0.150000

T: 3 : 14 : 14 0.100000

T: 3 : 14 : 15 0.150000

T: 4 : 14 : 12 0.100000

T: 4 : 14 : 13 0.700000

T: 4 : 14 : 14 0.100000

T: 4 : 14 : 15 0.100000

T: 0 : 15 : 15 1.000000

T: 1 : 15 : 17 0.025000

T: 1 : 15 : 19 0.025000

T: 1 : 15 : 15 0.950000

T: 2 : 15 : 12 0.700000

T: 2 : 15 : 13 0.100000

T: 2 : 15 : 14 0.100000

T: 2 : 15 : 15 0.100000

T: 3 : 15 : 12 0.150000

T: 3 : 15 : 13 0.600000

T: 3 : 15 : 14 0.150000

T: 3 : 15 : 15 0.100000

T: 4 : 15 : 12 0.100000

T: 4 : 15 : 13 0.100000

T: 4 : 15 : 14 0.700000

T: 4 : 15 : 15 0.100000

T: 0 : 16 : 16 1.000000

T: 1 : 16 : 8 0.800000

T: 1 : 16 : 19 0.025000

T: 1 : 16 : 17 0.025000

T: 1 : 16 : 15 0.050000

T: 1 : 16 : 16 0.100000

128

T: 2 : 16 : 16 0.100000

T: 2 : 16 : 17 0.700000

T: 2 : 16 : 18 0.100000

T: 2 : 16 : 19 0.100000

T: 3 : 16 : 16 0.100000

T: 3 : 16 : 17 0.150000

T: 3 : 16 : 18 0.600000

T: 3 : 16 : 19 0.150000

T: 4 : 16 : 16 0.100000

T: 4 : 16 : 17 0.100000

T: 4 : 16 : 18 0.100000

T: 4 : 16 : 19 0.700000

T: * : 17

0.052642 0.052631 0.052631 0.052631 0.052631 0.052631 0.052631 0.052631

0.052631 0.052631 0.052631 0.052631 0.052631 0.052631 0.052631 0.052631

0.0 0.052631 0.052631 0.052631

T: 0 : 18 : 18 1.000000

T: 1 : 18 : 8 0.025000

T: 1 : 18 : 10 0.025000

T: 1 : 18 : 17 0.800000

T: 1 : 18 : 15 0.050000

T: 1 : 18 : 18 0.100000

T: 2 : 18 : 16 0.100000

T: 2 : 18 : 17 0.100000

T: 2 : 18 : 18 0.100000

T: 2 : 18 : 19 0.700000

T: 3 : 18 : 16 0.600000

T: 3 : 18 : 17 0.150000

T: 3 : 18 : 18 0.100000

T: 3 : 18 : 19 0.150000

T: 4 : 18 : 16 0.100000

T: 4 : 18 : 17 0.700000

T: 4 : 18 : 18 0.100000

T: 4 : 18 : 19 0.100000

T: 0 : 19 : 19 1.000000

T: 1 : 19 : 8 0.050000

T: 1 : 19 : 17 0.050000

T: 1 : 19 : 15 0.800000

T: 1 : 19 : 19 0.100000

T: 2 : 19 : 16 0.700000

T: 2 : 19 : 17 0.100000

T: 2 : 19 : 18 0.100000

T: 2 : 19 : 19 0.100000

T: 3 : 19 : 16 0.150000

T: 3 : 19 : 17 0.600000

T: 3 : 19 : 18 0.150000

T: 3 : 19 : 19 0.100000

T: 4 : 19 : 16 0.100000

T: 4 : 19 : 17 0.100000

T: 4 : 19 : 18 0.700000

T: 4 : 19 : 19 0.100000

Observation Probabilities

O: * : 0

0.000949 0.008549 0.008549 0.076949 0.000049 0.000449 0.000449 0.004049

0.008549 0.076949 0.076949 0.692550 0.000449 0.004049 0.004049 0.036464

0.0

129

O: * : 1

0.000949 0.008549 0.008549 0.076949 0.008549 0.076949 0.076949 0.692550

0.000049 0.000449 0.000449 0.004049 0.000449 0.004049 0.004049 0.036464

0.0

O: * : 2

0.000949 0.000049 0.008549 0.000449 0.008549 0.000449 0.076949 0.004049

0.008549 0.000449 0.076949 0.004049 0.076949 0.004049 0.692550 0.036464

0.0

O: * : 3

0.000949 0.008549 0.000049 0.000449 0.008549 0.076949 0.000449 0.004049

0.008549 0.076949 0.000449 0.004049 0.076949 0.692550 0.004049 0.036464

0.0

O: * : 4

0.085737 0.004512 0.004512 0.000237 0.771637 0.040612 0.040612 0.002137

0.004512 0.000237 0.000237 0.000012 0.040612 0.002137 0.002137 0.000120

0.0

O: * : 5

0.085737 0.004512 0.004512 0.000237 0.004512 0.000237 0.000237 0.000012

0.771637 0.040612 0.040612 0.002137 0.040612 0.002137 0.002137 0.000120

0.0

O: * : 6

0.085737 0.771637 0.004512 0.040612 0.004512 0.040612 0.000237 0.002137

0.004512 0.040612 0.000237 0.002137 0.000237 0.002137 0.000012 0.000120

0.0

O: * : 7

0.085737 0.004512 0.771637 0.040612 0.004512 0.000237 0.040612 0.002137

0.004512 0.000237 0.040612 0.002137 0.000237 0.000012 0.002137 0.000120

0.0

O: * : 8

0.009024 0.081225 0.000474 0.004275 0.081225 0.731024 0.004275 0.038475

0.000474 0.004275 0.000024 0.000225 0.004275 0.038475 0.000225 0.002030

0.0

O: * : 9

0.009024 0.000474 0.081225 0.004275 0.000474 0.000024 0.004275 0.000225

0.081225 0.004275 0.731024 0.038475 0.004275 0.000225 0.038475 0.002030

0.0

O: * : 10

0.009024 0.081225 0.000474 0.004275 0.081225 0.731024 0.004275 0.038475

0.000474 0.004275 0.000024 0.000225 0.004275 0.038475 0.000225 0.002030

0.0

O: * : 11

0.009024 0.000474 0.081225 0.004275 0.000474 0.000024 0.004275 0.000225

0.081225 0.004275 0.731024 0.038475 0.004275 0.000225 0.038475 0.002030

0.0

O: * : 12

0.000949 0.008549 0.008549 0.076949 0.000049 0.000449 0.000449 0.004049

0.008549 0.076949 0.076949 0.692550 0.000449 0.004049 0.004049 0.036464

0.0

O: * : 13

0.000949 0.008549 0.008549 0.076949 0.008549 0.076949 0.076949 0.692550

0.000049 0.000449 0.000449 0.004049 0.000449 0.004049 0.004049 0.036464

0.0

O: * : 14

0.000949 0.000049 0.008549 0.000449 0.008549 0.000449 0.076949 0.004049

0.008549 0.000449 0.076949 0.004049 0.076949 0.004049 0.692550 0.036464

0.0

O: * : 15

130

0.000949 0.008549 0.000049 0.000449 0.008549 0.076949 0.000449 0.004049

0.008549 0.076949 0.000449 0.004049 0.076949 0.692550 0.004049 0.036464

0.0

O: * : 16

0.085737 0.004512 0.004512 0.000237 0.771637 0.040612 0.040612 0.002137

0.004512 0.000237 0.000237 0.000012 0.040612 0.002137 0.002137 0.000120

0.0

O: * : 17

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

O: * : 18

0.085737 0.771637 0.004512 0.040612 0.004512 0.040612 0.000237 0.002137

0.004512 0.040612 0.000237 0.002137 0.000237 0.002137 0.000012 0.000120

0.0

O: * : 19

0.085737 0.004512 0.771637 0.040612 0.004512 0.000237 0.040612 0.002137

0.004512 0.000237 0.040612 0.002137 0.000237 0.000012 0.002137 0.000120

0.0

Rewards

R: * : * : 17 : * 1.000000

131

B. Generated Policies for the Robot Tasks

The APPL solver was run for approximately 300 seconds. It reports the number

of trials, the number of backups, the upper and lower bound on the optimal value

function along the number of -vectors. The number of belief points sampled were

also reported. Approximately the last 60 seconds of computations are illustrated.

132

B.1 Output Data for Domain Map Task 1

#automat_map1 output

 239.17 286 12600 0.422828 0.963478 0.54065 148 1518

 240.61 288 12665 0.423164 0.963478 0.540314 148 1522

 242.41 289 12709 0.423226 0.963478 0.540252 151 1524

 243.41 290 12753 0.423259 0.963478 0.540219 150 1526

 244.34 291 12800 0.423276 0.963478 0.540202 148 1528

 246.36 292 12850 0.423285 0.963478 0.540193 149 1530

 247.39 293 12900 0.42329 0.963478 0.540188 144 1532

 249.24 295 12967 0.423297 0.963478 0.540181 147 1538

 251.18 296 13009 0.423301 0.963478 0.540177 148 1541

 252.31 297 13053 0.423304 0.963478 0.540174 149 1544

 252.97 298 13100 0.423306 0.963478 0.540172 153 1547

 254.98 299 13150 0.423308 0.963478 0.540171 152 1549

 255.97 300 13200 0.423308 0.963478 0.54017 153 1553

 257.25 302 13267 0.423309 0.963478 0.540169 150 1559

 259.17 303 13309 0.42331 0.963478 0.540168 147 1560

 260.32 304 13351 0.423392 0.963478 0.540086 147 1562

 261.57 305 13400 0.423479 0.963478 0.539999 144 1565

 264.89 306 13450 0.423617 0.963478 0.539861 145 1573

 268.7 308 13519 0.423941 0.963478 0.539537 153 1583

 269.82 309 13559 0.424046 0.963478 0.539432 158 1589

 272.59 310 13601 0.424207 0.963478 0.539271 164 1593

 274.38 311 13650 0.424359 0.963478 0.539119 165 1599

 276.18 312 13700 0.425407 0.963478 0.538071 160 1603

 279.25 313 13750 0.426664 0.963478 0.536814 162 1610

 281.57 314 13800 0.427599 0.963478 0.535879 163 1622

 284 316 13867 0.428654 0.963478 0.534824 170 1631

 286.48 317 13911 0.428935 0.963478 0.534543 172 1635

 288.23 318 13957 0.42912 0.963478 0.534358 180 1639

 289.08 319 14001 0.42924 0.963478 0.534238 166 1643

 291.02 320 14050 0.42943 0.963478 0.534048 166 1646

 294.03 321 14100 0.429702 0.963478 0.533776 165 1651

 296.2 323 14169 0.430336 0.963478 0.533142 161 1659

 298.9 324 14215 0.430638 0.963478 0.53284 165 1670

 Time |#Trial |#Backup |LBound |UBound |Precision |#Alphas |#Beliefs

 300.79 324 14233 0.430638 0.963478 0.53284 181 1671

 #Simulations | Exp Total Reward

 100 0.662648

 200 0.691717

133

B.2 Output Data for GSR Map Task 1

#automat_gsr1 output

 238.6 531 20000 0.81357 1.02818 0.214608 399 1538

 240.02 533 20059 0.813585 1.02818 0.214593 397 1545

 241.55 534 20100 0.81363 1.02818 0.214548 399 1549

 242.29 535 20150 0.813671 1.02818 0.214507 400 1551

 243.41 537 20215 0.814057 1.02818 0.214121 393 1556

 245.08 538 20255 0.814109 1.02818 0.214069 394 1561

 246.11 539 20300 0.814134 1.02818 0.214044 399 1566

 247.2 540 20350 0.814149 1.02818 0.214029 399 1571

 249.61 542 20411 0.81416 1.02818 0.214018 407 1576

 250.12 543 20450 0.814167 1.02818 0.214011 407 1577

 251.57 544 20500 0.814173 1.02818 0.214004 410 1582

 254.32 546 20567 0.814181 1.02818 0.213997 414 1590

 255.18 547 20609 0.814185 1.02818 0.213993 418 1593

 255.96 548 20650 0.814193 1.02818 0.213985 418 1596

 257.05 549 20700 0.814561 1.02818 0.213617 416 1600

 259.02 551 20767 0.814796 1.02818 0.213382 420 1603

 259.69 552 20805 0.814808 1.02818 0.21337 418 1605

 260.5 553 20850 0.814812 1.02818 0.213365 420 1608

 262.29 555 20900 0.814823 1.02818 0.213355 423 1610

 263.42 556 20959 0.814844 1.02818 0.213334 426 1614

 264.2 557 21000 0.814876 1.02818 0.213302 433 1617

 266.24 558 21050 0.814897 1.02818 0.21328 436 1620

 267.96 560 21113 0.814905 1.02818 0.213273 436 1626

 269.06 561 21153 0.814912 1.02818 0.213266 441 1629

 269.8 562 21200 0.814997 1.02818 0.213181 441 1631

 272.24 564 21269 0.815089 1.02818 0.213089 450 1638

 273.65 565 21311 0.815108 1.02818 0.21307 450 1642

 274.79 566 21350 0.815113 1.02818 0.213064 454 1645

 276.64 567 21400 0.815117 1.02818 0.213061 448 1648

 277.94 569 21465 0.815144 1.02818 0.213034 437 1652

 278.92 570 21503 0.815153 1.02818 0.213024 441 1655

 280.55 571 21550 0.815164 1.02818 0.213014 440 1657

 282.37 573 21619 0.815173 1.02818 0.213005 444 1665

 283.71 574 21659 0.815173 1.02818 0.213005 445 1668

 286.62 575 21701 0.815173 1.02818 0.213004 446 1674

 287.75 576 21750 0.815173 1.02818 0.213004 442 1676

 289.67 578 21815 0.815173 1.02818 0.213004 454 1684

 290.59 579 21851 0.815173 1.02818 0.213004 455 1686

 292.61 580 21900 0.815176 1.02818 0.213001 459 1691

 294.1 582 21959 0.815182 1.02818 0.212996 455 1696

 295.24 583 22000 0.815199 1.02818 0.212979 460 1701

 297.85 584 22050 0.815208 1.02818 0.212969 463 1708

 299.75 586 22100 0.815213 1.02818 0.212965 468 1714

 Time |#Trial |#Backup |LBound |UBound |Precision |#Alphas |#Beliefs

 300.71 586 22138 0.815215 1.02818 0.212963 484 1719

 #Simulations | Exp Total Reward

 100 0.837799

 200 0.833081

134

B.3 Output Data for Domain Map Task 2

#automat_map2 output

 238.52 384 12550 0.80649 1.41543 0.608943 219 1476

 240.06 386 12615 0.807188 1.41543 0.608245 218 1480

 241.73 387 12650 0.807235 1.41543 0.608198 219 1482

 243.32 389 12709 0.807274 1.41543 0.608159 218 1486

 244.74 390 12750 0.807281 1.41543 0.608153 219 1490

 247.92 392 12811 0.80733 1.41543 0.608103 223 1500

 248.9 393 12850 0.807392 1.41543 0.608042 223 1502

 250.6 395 12907 0.807462 1.41543 0.607971 225 1505

 252.41 396 12950 0.807469 1.41543 0.607965 226 1506

 254.29 398 13005 0.807478 1.41543 0.607955 221 1512

 255.32 399 13050 0.80748 1.41543 0.607954 224 1513

 257.79 401 13101 0.807484 1.41543 0.60795 217 1516

 259.04 403 13159 0.807485 1.41543 0.607948 219 1517

 260.12 404 13200 0.807485 1.41543 0.607948 224 1520

 262.7 406 13257 0.807485 1.41543 0.607948 223 1525

 264.11 407 13300 0.807487 1.41543 0.607946 222 1528

 265.74 409 13355 0.807488 1.41543 0.607945 223 1532

 267.87 410 13400 0.807489 1.41543 0.607945 223 1534

 269.34 412 13455 0.807599 1.41543 0.607835 223 1539

 270.89 413 13500 0.807653 1.41543 0.607781 210 1544

 274.05 415 13557 0.807681 1.41543 0.607752 210 1550

 275.57 416 13600 0.807815 1.41543 0.607619 211 1553

 277.17 418 13655 0.807916 1.41543 0.607517 212 1557

 279.61 419 13700 0.80793 1.41543 0.607504 213 1560

 281.29 421 13755 0.80794 1.41543 0.607493 219 1564

 282.35 422 13800 0.807942 1.41543 0.607491 217 1566

 285.51 424 13859 0.808073 1.41543 0.607361 217 1572

 286.61 425 13900 0.80812 1.41543 0.607313 217 1574

 288.23 427 13961 0.808152 1.41543 0.607281 216 1578

 290.32 428 14000 0.808157 1.41543 0.607277 216 1579

 291.85 430 14055 0.80816 1.41543 0.607273 219 1582

 292.98 431 14100 0.808161 1.41543 0.607272 219 1585

 296.1 433 14157 0.808163 1.41543 0.607271 223 1591

 297.11 434 14200 0.808163 1.41543 0.60727 225 1592

 299.3 436 14259 0.808203 1.41543 0.60723 233 1599

 300.33 437 14300 0.808227 1.41543 0.607206 234 1600

 Time |#Trial |#Backup |LBound |UBound |Precision |#Alphas |#Beliefs

 302.4 438 14321 0.808236 1.41543 0.607198 251 1603

 #Simulations | Exp Total Reward

 100 1.09013

 200 1.08236

135

B.4 Output Data for GSR Map Task 2

#automat_gsr2 output

 239.68 536 17601 2.71021 2.81027 0.100059 445 1738

 240.73 537 17650 2.71021 2.81027 0.100058 448 1745

 242.22 539 17700 2.71022 2.81027 0.100054 441 1746

 243.27 541 17751 2.71022 2.81027 0.100048 444 1751

 244.42 542 17800 2.71023 2.81027 0.100045 445 1757

 246.17 544 17855 2.71023 2.81027 0.100043 449 1764

 247.03 545 17900 2.71023 2.81027 0.100037 445 1768

 248.31 547 17951 2.71026 2.81027 0.100015 451 1775

 250.27 549 18000 2.71026 2.81027 0.100014 455 1783

 251.1 550 18051 2.71027 2.81027 0.100006 461 1786

 252.42 552 18113 2.71027 2.81027 0.100001 465 1792

 253.94 553 18150 2.71027 2.81027 0.0999981 466 1796

 255.07 555 18213 2.71029 2.81027 0.099986 466 1801

 255.88 556 18250 2.71029 2.81027 0.0999818 469 1805

 258.17 558 18315 2.71029 2.81027 0.0999778 475 1813

 258.9 559 18350 2.71035 2.81027 0.0999249 475 1815

 260.23 561 18403 2.71037 2.81027 0.0999057 468 1821

 261.27 563 18461 2.71038 2.81027 0.0998951 466 1823

 262.99 564 18500 2.71038 2.81027 0.0998915 463 1827

 264.93 566 18559 2.71039 2.81027 0.0998853 468 1836

 265.95 567 18600 2.71039 2.81027 0.0998838 465 1840

 267.6 569 18650 2.71039 2.81027 0.0998773 470 1847

 270.31 571 18717 2.7104 2.81027 0.099872 477 1856

 271.25 572 18750 2.71042 2.81027 0.099853 481 1860

 272.54 574 18801 2.71044 2.81027 0.0998347 481 1866

 273.72 576 18853 2.71048 2.81027 0.0997961 481 1869

 276.07 578 18915 2.71049 2.81027 0.0997766 477 1875

 276.88 579 18950 2.71051 2.81027 0.0997591 471 1877

 278.51 581 19013 2.71052 2.81027 0.0997526 480 1885

 280.42 582 19050 2.71052 2.81027 0.0997513 476 1890

 281.33 584 19100 2.71053 2.81027 0.0997453 471 1891

 282.22 586 19150 2.71053 2.81027 0.0997415 475 1892

 284.19 588 19209 2.71053 2.81027 0.0997392 483 1901

 286.07 589 19250 2.71053 2.81027 0.0997388 481 1908

 287.82 591 19309 2.71054 2.81027 0.0997319 486 1915

 289.07 592 19350 2.71054 2.81027 0.0997305 485 1921

 290 594 19400 2.71055 2.81027 0.0997206 479 1922

 292.51 596 19455 2.71056 2.81027 0.0997141 479 1931

 293.9 597 19500 2.71056 2.81027 0.0997132 478 1938

 295.39 599 19551 2.71056 2.81027 0.099712 486 1945

 297.65 601 19613 2.71057 2.81027 0.0997027 491 1950

 298.8 602 19650 2.71058 2.81027 0.0996933 489 1955

 300.3 604 19707 2.71058 2.81027 0.0996916 487 1961

 Time |#Trial |#Backup |LBound |UBound |Precision |#Alphas |#Beliefs

 300.65 604 19720 2.71058 2.81027 0.0996916 491 1963

 #Simulations | Exp Total Reward

 100 2.73229

 200 2.74835

136

B.5 Output Data for Domain Map Task 3

#automat_map3 output

 239.12 271 12150 0.470563 0.963453 0.49289 240 1476

 241.23 273 12215 0.47077 0.963453 0.492684 242 1478

 242.42 274 12263 0.470849 0.963453 0.492604 240 1482

 244.96 275 12307 0.470876 0.963453 0.492577 243 1484

 246.41 276 12351 0.470941 0.963453 0.492512 243 1486

 248.26 277 12400 0.470995 0.963453 0.492459 242 1489

 250.31 278 12450 0.471025 0.963453 0.492428 241 1490

 251.92 279 12500 0.471043 0.963453 0.49241 248 1499

 253.04 280 12550 0.471052 0.963453 0.492401 235 1510

 255.83 282 12621 0.47121 0.963453 0.492243 232 1515

 257.13 283 12663 0.471281 0.963453 0.492172 235 1522

 259.81 284 12707 0.471948 0.963453 0.491505 232 1524

 260.97 285 12751 0.472292 0.963453 0.491162 228 1525

 262.68 286 12800 0.472427 0.963453 0.491026 233 1531

 265.22 287 12850 0.472598 0.963453 0.490856 235 1532

 266.32 288 12900 0.472677 0.963453 0.490776 236 1535

 268.46 290 12967 0.472719 0.963453 0.490734 228 1541

 270.47 291 13009 0.472725 0.963453 0.490728 232 1545

 271.97 292 13051 0.472735 0.963453 0.490718 230 1549

 273.02 293 13100 0.472743 0.963453 0.49071 234 1556

 275.86 294 13150 0.472804 0.963453 0.490649 230 1565

 278.27 295 13200 0.472848 0.963453 0.490605 237 1576

 281.38 296 13250 0.472867 0.963453 0.490586 236 1591

 285.92 298 13319 0.472914 0.963453 0.490539 226 1602

 288.67 299 13363 0.473316 0.963453 0.490137 228 1610

 290.09 300 13407 0.474211 0.963453 0.489242 231 1616

 294.42 301 13451 0.474805 0.963453 0.488648 239 1626

 296.96 302 13500 0.47501 0.963453 0.488443 240 1636

 298.62 303 13550 0.475078 0.963453 0.488375 243 1643

 Time |#Trial |#Backup |LBound |UBound |Precision |#Alphas |#Beliefs

 301.95 304 13597 0.475102 0.963453 0.488352 266 1651

 #Simulations | Exp Total Reward

 100 0.653846

 200 0.685472

137

B.6 Output Data for GSR Map Task 3

#automat_gsr3 output

 239.83 566 21167 0.901508 1.12468 0.223167 454 1619

 240.6 567 21205 0.901532 1.12468 0.223143 452 1622

 242.69 568 21250 0.901544 1.12468 0.223131 452 1625

 244.02 569 21300 0.901547 1.12468 0.223128 456 1632

 245.09 571 21355 0.901548 1.12468 0.223127 457 1634

 245.93 572 21400 0.901549 1.12468 0.223126 450 1636

 248.05 574 21461 0.901553 1.12468 0.223123 446 1640

 249.41 575 21503 0.901554 1.12468 0.223121 443 1645

 250.33 576 21550 0.901555 1.12468 0.22312 440 1647

 253.49 578 21617 0.901644 1.12468 0.223031 439 1657

 254.35 579 21651 0.901693 1.12468 0.222982 436 1660

 255.36 580 21700 0.902968 1.12468 0.221707 439 1663

 257.56 582 21763 0.903598 1.12468 0.221078 440 1667

 258.27 583 21803 0.903612 1.12468 0.221063 441 1669

 259.02 584 21850 0.903617 1.12468 0.221058 442 1671

 260.06 585 21900 0.903626 1.12468 0.221049 442 1675

 262.29 587 21959 0.903724 1.12468 0.220951 449 1679

 263.7 588 22003 0.903739 1.12468 0.220936 453 1683

 264.35 589 22050 0.903751 1.12468 0.220924 452 1684

 266.39 591 22117 0.903861 1.12468 0.220814 453 1688

 267.32 592 22159 0.903889 1.12468 0.220786 453 1692

 268.63 593 22200 0.903901 1.12468 0.220774 457 1695

 269.49 594 22250 0.903904 1.12468 0.220771 457 1697

 271.82 596 22317 0.903916 1.12468 0.220759 465 1703

 272.45 597 22355 0.90392 1.12468 0.220755 465 1704

 273.1 598 22400 0.903921 1.12468 0.220754 466 1705

 275.28 600 22467 0.903937 1.12468 0.220738 466 1707

 275.85 601 22503 0.903946 1.12468 0.220729 466 1708

 276.74 602 22550 0.904043 1.12468 0.220632 461 1710

 278.91 604 22613 0.90409 1.12468 0.220585 466 1714

 280.33 605 22650 0.904098 1.12468 0.220577 466 1718

 281.55 606 22700 0.904104 1.12468 0.220571 465 1722

 283.03 608 22757 0.904123 1.12468 0.220552 465 1728

 284.73 609 22800 0.904127 1.12468 0.220548 464 1729

 286.83 611 22867 0.904128 1.12468 0.220547 463 1735

 288.62 612 22907 0.904129 1.12468 0.220546 471 1741

 289.85 613 22950 0.904135 1.12468 0.22054 473 1746

 291.78 614 23000 0.904162 1.12468 0.220513 466 1749

 293.67 616 23057 0.904183 1.12468 0.220492 473 1755

 294.54 617 23100 0.904184 1.12468 0.220491 475 1757

 297.38 619 23165 0.904185 1.12468 0.22049 471 1762

 298.18 620 23203 0.905024 1.12468 0.219651 466 1764

 298.87 621 23250 0.905264 1.12468 0.219411 466 1765

 301.56 623 23317 0.905324 1.12468 0.219352 475 1771

 Time |#Trial |#Backup |LBound |UBound |Precision |#Alphas |#Beliefs

 301.57 623 23317 0.905324 1.12468 0.219352 475 1771

 #Simulations | Exp Total Reward

 100 0.949199

 200 0.943234

138

B.7 Output Data for Domain Map Task 4

#automat_map4 output

 239.02 331 15001 0.343245 0.769087 0.425842 210 1298

 241.39 332 15050 0.343252 0.769087 0.425835 206 1303

 242.89 333 15100 0.343258 0.769087 0.425829 205 1309

 244.46 334 15150 0.34331 0.769087 0.425778 212 1313

 246.6 335 15200 0.343375 0.769087 0.425712 210 1318

 248.4 336 15250 0.343434 0.769087 0.425654 206 1323

 251.69 338 15319 0.348479 0.769087 0.420608 189 1329

 252.71 339 15363 0.349714 0.769087 0.419373 184 1330

 253.91 340 15407 0.350384 0.769087 0.418703 185 1334

 255.82 341 15451 0.350762 0.769087 0.418325 185 1336

 256.85 342 15500 0.350989 0.769087 0.418098 190 1340

 257.74 343 15550 0.351122 0.769087 0.417966 187 1342

 260.1 344 15600 0.351204 0.769087 0.417883 183 1344

 261.7 345 15650 0.351258 0.769087 0.417829 192 1348

 263.2 347 15700 0.351367 0.769087 0.41772 189 1354

 265.36 348 15765 0.35151 0.769087 0.417577 189 1356

 266.35 349 15809 0.35154 0.769087 0.417547 185 1358

 267.37 350 15851 0.35156 0.769087 0.417527 185 1360

 269.41 351 15900 0.351593 0.769087 0.417494 180 1362

 270.51 352 15950 0.351649 0.769087 0.417438 180 1367

 273.44 353 16000 0.35176 0.769087 0.417328 186 1373

 275.57 354 16050 0.35186 0.769087 0.417227 195 1379

 277.41 356 16119 0.351938 0.769087 0.417149 194 1383

 280.05 357 16165 0.351951 0.769087 0.417136 193 1388

 280.98 358 16209 0.351959 0.769087 0.417128 193 1390

 282.54 359 16253 0.351965 0.769087 0.417122 196 1394

 285.25 360 16300 0.351971 0.769087 0.417116 197 1397

 286.94 361 16350 0.351976 0.769087 0.417112 204 1401

 289.82 362 16400 0.352009 0.769087 0.417078 209 1406

 292.07 363 16450 0.352085 0.769087 0.417002 209 1412

 293.62 365 16515 0.352199 0.769087 0.416888 210 1414

 295.96 366 16557 0.352221 0.769087 0.416866 213 1417

 297.06 367 16601 0.352234 0.769087 0.416854 215 1420

 298.63 368 16650 0.35224 0.769087 0.416847 215 1424

 Time |#Trial |#Backup |LBound |UBound |Precision |#Alphas |#Beliefs

 301.8 368 16668 0.35224 0.769087 0.416847 229 1432

 #Simulations | Exp Total Reward

 100 0.567472

 200 0.558172

139

B.8 Output Data for GSR Map Task 4

#automat_gsr4 output

 238.69 381 16250 0.580532 0.784755 0.204223 399 1285

 241.09 382 16300 0.580639 0.784755 0.204116 397 1289

 243.46 383 16350 0.580674 0.784755 0.204081 400 1297

 245.4 385 16419 0.580734 0.784755 0.204021 399 1301

 247.85 386 16465 0.580744 0.784755 0.204011 405 1305

 248.81 387 16509 0.580752 0.784755 0.204004 400 1307

 250.99 388 16553 0.580756 0.784755 0.203999 410 1310

 252.51 389 16600 0.580873 0.784755 0.203883 411 1314

 254.35 390 16650 0.580964 0.784755 0.203791 412 1317

 256.72 391 16700 0.580996 0.784755 0.203759 409 1321

 258.17 393 16765 0.581019 0.784755 0.203737 408 1325

 259.67 394 16811 0.581372 0.784755 0.203383 410 1329

 261.78 395 16855 0.581533 0.784755 0.203222 408 1333

 262.57 396 16900 0.581594 0.784755 0.203161 405 1335

 264.82 397 16950 0.58161 0.784755 0.203145 406 1337

 266.39 398 17000 0.581616 0.784755 0.203139 407 1340

 268.95 399 17050 0.581619 0.784755 0.203136 405 1347

 271.97 401 17117 0.581622 0.784755 0.203133 402 1351

 273.06 402 17159 0.581624 0.784755 0.203132 408 1354

 273.95 403 17203 0.581625 0.784755 0.20313 402 1356

 275.9 404 17250 0.581626 0.784755 0.20313 403 1358

 277.03 405 17300 0.581626 0.784755 0.203129 406 1361

 279.71 407 17367 0.582342 0.784755 0.202413 405 1367

 280.97 408 17409 0.58288 0.784755 0.201876 403 1371

 282.47 409 17455 0.583218 0.784755 0.201537 409 1375

 284.79 410 17500 0.583372 0.784755 0.201383 416 1379

 286.22 411 17550 0.58365 0.784755 0.201105 413 1382

 288.35 413 17621 0.58381 0.784755 0.200945 412 1386

 290.76 414 17667 0.583824 0.784755 0.200931 409 1390

 291.56 415 17709 0.584035 0.784755 0.20072 406 1392

 293 416 17755 0.584244 0.784755 0.200511 408 1395

 295.75 417 17800 0.584345 0.784755 0.20041 412 1399

 297.88 418 17850 0.584762 0.784755 0.199994 409 1405

 298.94 419 17900 0.584963 0.784755 0.199793 411 1406

 Time |#Trial |#Backup |LBound |UBound |Precision |#Alphas |#Beliefs

 301.13 420 17933 0.585013 0.784755 0.199742 441 1409

 #Simulations | Exp Total Reward

 100 0.681748

 200 0.684719

	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1
	Introduction

	1.1 Overview of Agent-Based Decision Making
	1.1.1 Agents
	1.1.2 Environments
	1.1.3 Rewards
	1.1.4 Policies

	1.2 Decision-Making for Autonomous Robots
	1.2.1 Robot-Environment Model
	1.2.2 Sensory Observations
	1.2.3 Acting in the Environment
	1.2.4 Planning in Partially Observable Environments
	1.2.5 The Autonomous Robot Navigation Problem

	1.3 Related Work
	1.3.1 POMDP in Robotics

	1.4 Contributions
	Chapter 2
	Markov Decision Processes

	2.1 Overview
	2.2 The Markov Process
	2.3 The MDP Model
	2.3.1 Objective of an MDP
	2.3.2 MDP Solution Approach
	2.3.3 Policies
	2.3.4 Decision Steps

	2.4 Algorithms for Solving MDPs
	2.4.1 Value Functions
	2.4.2 Value Function for Finite Horizon Models
	2.4.3 Value Function for Infinite Horizon Models
	2.4.4 Optimal Value Functions and Policies
	2.4.5 Value Iteration Algorithm
	2.4.6 Policy Iteration Algorithm

	2.5 Summary
	Chapter 3
	Partially Observable Markov Decision Processes

	3.1 Overview
	3.2 The POMDP Model
	3.2.1 Objective of the POMDP
	3.2.2 Belief Computation
	3.2.3 POMDPs as Belief State MDPs
	3.2.4 POMDP Value Functions

	3.3 Optimal POMDP Value Function
	3.4 Algorithms for Solving POMDPs
	3.4.1 Point-Based Value Iteration Algorithms

	3.5 Summary
	Chapter 4
	Decision-Making for Autonomous Robots using POMDPs

	4.1 Overview
	4.2 The Autonomous Robot Navigation Problem
	4.2.1 Mobile Robot Kinematics
	4.2.2 Probabilistic Kinematic Model
	4.2.3 Sensory Model
	4.2.4 Recursive State Estimation

	4.3 Autonomous Robot Navigation using POMDPs
	4.3.1 Robot Navigation with POMDPs in Literature
	4.3.2 Sampling-Based Motion Planning for Mobile Robots

	4.4 Summary
	Chapter 5
	A Methodology for Goal-Specific Representation of POMDP Model Parameters

	5.1 Overview
	5.2 The GSR Methodology
	5.2.1 Goal-Specific Representation

	5.3 A Sample Problem
	5.3.1 Problem Scenario
	5.3.2 Problem Description
	5.3.3 The GSR POMDP Model

	5.4 Empirical Analysis
	5.4.1 POMDP Model for the Automation Problem
	5.4.2 The GSR Maps of the Automation Problem
	5.4.3 Solving the GSR POMDP
	5.4.4 Turtlebot 2 Robot

	5.5 Results and Discussion
	5.5.1 Data Analysis

	5.6 Summary
	Chapter 6
	Summary and Future Work

	6.1 Overview
	6.2 Limitations
	6.3 Future Work
	References
	Appendix
	A. Data Syntax
	A.1 Input Data for GSR map Task 2

	B. Generated Policies for the Robot Tasks
	B.1 Output Data for Domain Map Task 1
	B.2 Output Data for GSR Map Task 1
	B.3 Output Data for Domain Map Task 2
	B.4 Output Data for GSR Map Task 2
	B.5 Output Data for Domain Map Task 3
	B.6 Output Data for GSR Map Task 3
	B.7 Output Data for Domain Map Task 4
	B.8 Output Data for GSR Map Task 4

