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Abstract 

Decision-making for autonomous systems acting in real world domains are 

complex and difficult to formalize.  For instance, consider the task of autonomously 

navigating a mobile robot in an automated manufacturing facility.  Its task is to 

transport hazardous material from a collection site to a disposal site.  This is a 

navigation problem where the robot has to consider numerous variables such as 

collision avoidance, recognition of goal locations, accurate selection of the desired 

material, and knowledge of its location within the facility.   The difficulty is often to 

reliably model the uncertainties and dynamics of the robot-environment interaction 

when the robot can only partially observe the states of the environment.  

Therefore a principal problem in designing mobile robots that can efficiently 

navigate indoor domains to achieve a desired task autonomously is to construct 

robust models for efficient planning and motion control in stochastic domains.   This 

is still a difficult and open problem despite significant advances.  The robot must 

generate efficient policies to reliably accomplish its tasks while accounting for 

uncertainties in both its action and perception.  In this dissertation we model the 

uncertainties in action selection and perception using a sequential decision-making 

model.  The mathematical formalism adopted is the Partially Observable Markov 

Decision Process (POMDP), a generalization of the well-known Markov Decision 

Process (MDP).  Though POMDPs represent a robust formalism for the modeling of 

agent-based decision making, it is still very difficult and often intractable to 

compute optimal solutions for problems with large state space due to the high 
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dimensionality of the underlying belief space.  We propose a technique called Goal-

Specific Representation (GSR) that exploits domain structure and generates policies 

over a subset of the state space given a map of the domain, a starting location and a 

goal location. We solve the resulting POMDP model using a Point-Based Value 

Iteration (PBVI) solver and apply the generated policies for navigation on an 

autonomous robot.  We anticipate that the results from this work can be applied in 

manufacturing facilities to enhance automation and healthcare domains for assisted 

care. 
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Chapter 1  

Introduction 

1.1 Overview of Agent-Based Decision Making 

Autonomous agents typically interact in non-trivial domains that are dynamic 

and relatively unpredictable.  In the case of biological agents, they actively gather 

information about their environment to generate perceptual models for use in 

achieving high-level goals or simply as a primitive low-level mechanism without any 

directed use of the internal models.   Mechanical agents, such as robots can be 

designed to perform similar functions where the designer has a set of basic 

requirements for the robot to achieve.  The robot could be designed to 

autonomously transport objects from an initial location to a predefined destination 

or could be designed to actively gather information and explore unknown terrain. 

We may also consider decision-making from a more abstract perspective where 

the agent is an abstraction that can be clearly distinguished from an environment 

and has the ability to modify the state of the environment to meet a desired goal.  

The decision-maker or agent in this case need not be physical.  For instance, it could 

be software designed to control and adapt to complex operations in a manufacturing 

facility (Bhatnagar et al., 1999). It can also be applied in healthcare for medical 

diagnosis or medical decision making (Alagoz et al., 2010).  For this reason it is 

important to establish the context in which we wish to model the agent-

environment interaction as the notion of an agent is commonly confused.  We freely 
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use the term agent or system to denote the decision-maker and the environment or 

domain to denote the structure in which the agent is embedded and acts upon.  

Agent-based decision making models can be modeled with a minimal set of 

constructs namely: (1) the agent or decision maker, (2) the environment, and (3) 

goals/rewards.  We discuss the details of these constructs in subsequent 

subsections. For now their intuitive notion will suffice.  An agent acting in an 

environment generally does so to meet certain goals.   Interactions of practical 

interest are typical non-deterministic in that the system dynamics behave 

stochastically.  By stochastic we mean that the effect of actions on the state of the 

environment is uncertain and sensory models of the environment are noisy and 

incomplete at best, resulting in uncertain state representation of the environment.  

This is an important characteristic as it serves as the basis of formulating a 

theoretical framework that models agent-based decision-making.  In this work we 

are interested in investigating and formulating efficient policies for decision-making 

when the environment is partially observable and the action effects are stochastic.  

A policy is a description of how the agent should behave when it maintains a belief of 

the environment at a decision point.  

Sequential decision-making problems can be modeled as an agent-environment 

interaction where the goal of the agent is to optimize some reward function over 

time.   There are numerous approaches to modeling this problem as presented in  

Howard (1960), Bertsekas &  Tsitsiklis (1996), Sutton & Barto (1998), Hunt (2005), 

Barto, Bradtke & Singh (1995)  and Puterman (1994).  The minimal set of constructs 

required to model the sequential decision-making problem are the agent(s), 
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environment and rewards.  In the following subsection we discuss these 

components in more detail and explore how various authors have modeled the 

problem.  It is important to emphasize that we are primarily interested in finding 

optimal or efficient policies that guide the agent’s behavior.  This dissertation is 

broken down as follows: chapter 1 introduces a general overview of sequential 

decision-making for autonomous systems while chapter 2 discusses Markov 

Decision Processes (MDPs).  We proceed to discuss Partially Observable Markov 

Decision Processes (POMDPs) in chapter 3.  In chapter 4 we outline applications of 

POMDPs for decision-making in autonomous robots while in chapter 5 we present 

the proposed methodology.  We conclude in chapter 6 to discuss lessons learned 

and the future work we wish to investigate.  

1.1.1 Agents 

When one thinks of an agent, we my may tend to imagine physical entities such 

as humans, animals or robots.  However, this may not be the case as agents can be 

highly abstract concepts which may take the form of immaterial constructs such as 

software programs.  Simply put, an agent is a decision-maker that receives sensory 

information, dynamically updates its beliefs and acts based on its beliefs (Gordon, 

1999). Its beliefs may be able to perfectly represent the states of the environment in 

ideal cases.  In many decision-making applications the context in which the agent is 

formalized will indicate how the agent is modeled.  This can be quite challenging but 

taking a synthetic view can provide a more intuitive conception of an agent as 

discussed in Pfiefer & Scheier (1999) and Pfiefer & Bongard (2007).  
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At the agent-environment interface, the agent receives perceptual signals z.  

Along with a selected action a, it updates its belief b which it then uses to decide 

which action to take in order to optimize some reward function R over a definite or 

indefinite time period.  This time period are commonly called finite or infinite 

planning horizon which is discussed later.  The agent makes observations (or 

measurements) from a possible set Z.  If this set of observations Z maps identically 

to a set of states S, then the described environment is fully observable.  That is, if an 

observation probability function O accurately maps what is observed to the true 

state, then the state of the environment is known with certainty. 

Russell & Norvig (2003) classify agents into five categories namely: (1) simple 

reflex agents; (2) model-based reflex agents; (3) goal-based agents; (4) utility-based 

agents; and (5) learning agents.  Of these five we are most interested is goal-based 

agents.   In goal-based agents there is a desired state which the agent wishes to 

achieve.  This state generates the maximum reward for the agent.  Therefore the 

agents actively chooses actions that will likely lead to observing the state.  The 

reader may refer to the literature for details on the other types of agents. 

1.1.2 Environments 

The environment is part of the system that does not include the agent or 

decision maker.  In some cases the agent itself may be considered as part of the 

environment—such as when multiple agent interactions are being considered.  In 

autonomous robots for instance, the environment could be that domain where the 

robot has to navigate as well as the physical part of the robot itself.  It may seem 
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counter-intuitive but recall that the agent need not be the physical.  The boundary 

between agent and environment is more of an abstraction as discussed in the 

previous section.  In the robot example the agent could be the computer controller 

that receives information from the environment including sensors attached to the 

robot itself (wheel encoders, joint sensors etc). 

Sutton & Barto (1998) describes the environment as the thing the agent 

interacts with.  It is instructive to restate that the agent-environment model is an 

abstraction that can be applied to diverse range of problem domains.  The 

environment can be modeled as continuous spaces such as three-dimensional 

physical spaces or discrete spaces that can be n-dimensional such as the states of a 

manufacturing machine.  This description can either take the form of high-level 

feature or its complementary low-level properties.  For instance in robotics vision a 

high-level description of the state of the environment could be objects located in a 

room—such as a desk, computer, chair, telephone, lab coat etc.  Conversely a low-

level description of the state could be the pixilated image data expected from the 

sensory reading with no direct reference the object observed. 

We assume in this work that the environment is indifferent.  That is, the 

environment responds passively to the actions of the agent without any intent to 

subvert the actions effects of the agent.  If this were not the case then the 

environment can be modeled as another agent with its own set of rules for decision-

making which can possibly be competitive—or worse—combative to the primary 

agent.   Multi-agent systems are common in Game Theory and Markov Games.  If we 

accept that the environment is indifferent to the actions of the agent, this does not 
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necessarily imply that the environment does not change.  In fact, the environment 

can be considered a static or dynamic system.  In the static case, the states of the 

environment don’t change and are intrinsically time-invariant systems whereas in 

the dynamic case the states of the environment may change at slow or rapid rate.  If 

this change is slow enough then we can approximate the environment as a static 

system.  As one might deduce, it is conceptually more challenging to formalize 

environments that are dynamic. 

In machine learning, dynamic environments are often termed non-stationary 

environments whereas static environments are referred to as stationary 

environments.  Sugiyama & Kawanabe (2012) provide some the latest theoretical 

approaches to handling non-stationary domains.   However, we restrict this work to 

approximate stationary environments with stable dynamics or that which can be 

modeled as such. 

1.1.3 Rewards 

For any decision-making process to be meaningful it requires motivation or 

goals.  Without motivation, the agent’s behavior cannot be effectively evaluated.  A 

way of generating goal-based behavior for an agent is by assigning rewards for the 

actions that lead to desirable states of the environment.  Conversely, an agent may 

induce negative rewards or costs if it takes actions that do not lead its goals.  An 

example of negative rewards could be the depletion of battery life of an autonomous 

robot roaming an environment without achieving its goal. 
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A rewards function is a part of the decision-making process that is distinct from 

the agent-environment interaction.  It provides an objective means to evaluate the 

agent’s performance (Littman, 1996).  It is essentially the designer’s task to model 

the reward function for which on occasion is an art rather than a science.   From a 

theoretical perspective it is always desired to maximize the reward function while 

minimizing agent resources.  As such, most agent-based decision-making problems 

are modeled algorithmically where the designed algorithm maximizes a reward 

function with minimal computational and execution time. 

1.1.4 Policies 

A policy is a full description of how the agent should behave in every state of the 

environment.  Policies are different from plans in that plans specify how to behave 

in only a subset of states in state space.  We discuss policies in the context of Markov 

Decision Processes in chapter 2.   For now we should note that the purpose of a 

policy is for goal directed behavior of the agent.  Our objective is to find an optimal 

policy for the agent. 

Policy can be stationary or non-stationary.  Stationary policies have a fixed state-

action sequence for every decision or time step whereas in non-stationary policies 

the decision made in a time step may taken from a set of different policies.  Consider 

this illustrative example:  An environment has 3 states ( 1 2 3, ,s s s ) and the agent has 2 

actions (
1, 2a a ) to choose from.  If there are three decision (time) steps in which the 

agent has to make its decision, then a sample stationary policy for each of the 

decision step 1 2 3, ,t t t is: 
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1 2 2 1 3 1 1 1 2 2 1 3 1 2 1 2 2 1 3 1 3{[( , ),( , ),( , )] ,[( , ),( , ),( , )] ,[( , ),( , ),( , )] }t t ts a s a s a s a s a s a s a s a s a   .  

This policy states that for every decision step if the agent is in state 1s  it chooses 

action 2a ; state 2s  the choice is action 1a ; and in state 3s  the selected action is 1a .  In 

a non-stationary policy such as: 

1 1 2 21 2 2 1 3 1 1 3 1 2 2 2 32 21 3{[( , ),( , ),( , )] ,[ , , ( , )] ,[( , ),( , ) ( , ) ( , ], ) ( }, )t t ts a s a s a s as a s a s a s a s a   , 

if the agent is in state 1s  at decision step 2t   rather than use the same policy and 

choose action 2a , it chooses an action based on a different policy and selects action 

1a .  The policy differences are highlighted in red. 

1.2 Decision-Making for Autonomous Robots 

We have briefly discussed the essential constituents of agent-based decision 

making.  Our goal in this work is to apply it by formulating an approach to facilitate 

solving open problems in autonomous robot navigation in partially observable, 

uncertain and potentially dynamic environments.  This is a challenging problem that 

has received considerable research attention.  The approach is to model the decision 

making problem as a Partially Observable Markov Decision Processes (POMDPs) and 

to compute practical efficient policies to control the robot motion during a given 

task. 

1.2.1 Robot-Environment Model 

The robot-environment dynamics can be modeled as a coupled dynamical 

system as shown in figure 1.1.  The robot observes the state of the environment as 
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well as its internal state.  It then maintains a belief according to some rule and acts 

on the belief to achieve a goal.  The environment and robot are always in a certain 

state.  A complete description of state variables is a complex and impracticable task 

as physical environments are continuous both spatially and temporally.  The 

continuous nature of the real-world ensure that it is impossible to have perfect 

models of the environment as there are infinite set of possibilities.  Most practical 

approaches simply use a suitable approximation.  The environment is also highly 

contextual as the descriptions in say, a factory environment will significantly differ 

from descriptions in an outdoor environment.  However, for practical purposes we 

consider the state to be the set of all structures of the robot-environment system 

that can be modeled in the appropriate operating context.  In this case continuous 

states are discretized in addition to other discrete state variables such as the binary 

operation of a bumper sensor.  

Continuous states variables may include the location of the robot with respect to 

some global reference frame, it’s heading or direction, both rigid and non-rigid 

physical structures in the environment, the robot’s present joint angle readings etc.  

As stated the possibilities are infinite and its representation is largely an art which 

depends on the designer’s ability to abstract the features of the environment.  
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Figure 1.1 – Robot-Environment Model 

The state variables of the system can be considered static or dynamic (Thrun, 

Burgard & Fox, 2006).   In the environment, static state variables are the locations of 

rigid fixed objects and relevant features which may also be modeled as landmarks 

for navigation purposes.  The location and orientation of the robot are considered 

static state variables.  There are three variables for the location which represent the 

( , , )X Y Z 3-dimensional Cartesian space and three variables for the orientation 

namely the (pitch, roll, yaw).   Conversely, objects in motion in the environment are 

considered dynamic state variables.  Also the robot velocities as well as the joint and 

actuator velocities are considered to be the robot’s dynamic state variables. 

Environment  

Observation, tz  

Action at 

 

Belief, tb  

State, ts  
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1.2.2 Sensory Observations 

One of the primary ways the robot interacts with the environment is by making 

observations of the current state of the environment.  This is achieved by using 

sensors such as laser range finder, cameras, ultrasonic sensor etc. to take 

measurements.  The sensory data is used by the robot to maintain state estimates 

which are then used by the controller to choose appropriate actions.  Typically, 

numerous observations can be made simultaneously and processed in parallel but 

this approach has its own challenges and drawbacks.  In this work we consider only 

sequential processes where the observation data is acquired in discrete time steps.  

1.2.3 Acting in the Environment  

The objective of designing any mobile robot controller is for it to choose 

appropriate actions based on sensory information the robot receives from its 

environment.  Classical approach to planning and navigation were idealized and 

assumed that the robot had perfect knowledge of the state of the environment.  Its 

actions were fully deterministic (Nilsson, 1973; Shue and Xue, 1993).  This approach 

is only sufficient for a very small subset of interesting real world problems where 

uncertainty can be ignored.  However since uncertainty cannot be ignored in most 

real world problems and the robot-environment interaction is a coupled dynamical 

system we must account for the stochastic nature of this interaction.  We are 

interested in applying decision-making models for autonomous robot navigation 

that models the uncertainty in action selection and perception.  Therefore 

unmodeled stochastic interactions will result in poor performance of the controller.  
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For this reason the action effects are modeled using Markovian decision-making 

processes discussed in more detail in chapter 2 and its generalization discussed in 

chapter 3.  At every time step the robot takes an action based on its belief resulting 

in a probabilistic transition to a new state and thus a new belief after observation 

are taken.  Details of this process will be further elucidated in subsequent chapters.  

Nevertheless, a belief can be understood as a model of the environment with respect 

to the true state of the environment maintained by the robot. 

1.2.4 Planning in Partially Observable Environments 

We briefly mentioned that it was impractical to describe and list the complete 

state variables of the environment.  Due to this only a contextual subset of relevant 

state variables are used to model the robot environment-interaction.   The next 

issue is for the robot to the decide how to act in order to achieve its designed goals.  

Since we are interested in the navigation problem, the goal for the robot is thus to 

select appropriate control actions to effectively move from an initial location to a 

target location autonomously while avoiding obstacle.  This is done by generating 

control policies or plans that describe the actions the robot should take at every state 

of the environment.  A policy in this case is a complete specification of the actions 

the robot should take at every belief state in contrast to plans that only consider a 

subset of belief states from belief space.   

Policies are implemented over a time horizon.  Though time is naturally a 

continuous variable, for practical purposes we model it as a discrete variable of 

equally spaced intervals.  Actions of the robot, which can also be referred as controls 
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or decisions, are taken sequentially.  The robot starts off in some state 0s  at time 0t  

but cannot directly observe this state.  Thus it has to generate an initial belief 0b of 

the starting state.  A belief b can be modeled as a probability distribution over all the 

states.  The robot then takes action 1a and probabilistically transitions to a 

subsequent state s  at time 1t .  It generates a posterior belief bof the subsequent 

state by probabilistically observing z  from a set of possible observations which are 

noisy projections of the true state of the system.  Hence the updated belief is a 

posterior probability conditioned on the subsequent state, observation and action.  

It is sometimes referred to as the state estimate.   

Thus the problem of planning in partially observable environments is to find 

optimal (or near-optimal) decision policies that the robot can execute during its 

navigation task.  The planning algorithms discussed in this work produce action 

policies that are computed offline.  Online algorithms such those considered in Ross 

et al. (2008) are not within the scope of this research.  They however provide very 

interesting methods for solving the hard problems of planning in partially 

observable domains.  Also extensive literature on other planning algorithms and 

techniques can be found in LaValle (2006). 

1.2.5 The Autonomous Robot Navigation Problem 

Simply stated, the autonomous navigation problem is as follows: Given a map of 

an environment find a collision free path that a mobile robot can efficiently navigate 

given an initial location and goal location with minimal external intervention while 

avoiding obstacles.  This navigation can be applied in 2-dimensional environments 
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where the variables of interest are ( , , ).x y   Here ( , )x y  is the planner location of the 

robot depicted as a point in 2D Euclidean space and   the heading. Navigation in 3-

dimensional environments are naturally more challenging to model and have 

received more research attention (Hornung et al., 2012).   

To solve the navigation problem, path planning techniques such as those 

discussed in LaValle (2006) can be employed.  Path planning involves finding a path 

or trajectory in the physical or configuration space that the robot should traverse to 

reach its destination location efficiently. Configuration space is the space of all 

possible representations of the robot’s configuration. There are numerous path 

planning algorithms that have been proposed to solve the navigation problem.  

These plans generally fall into two categories: 1) Graph Search and 2) Potential Field 

Planning (Siegwart, Nourbakhsh & Scaramuzza, 2011).  In graph search, the 

environment is represented as free space and occupied space then subsequently 

decomposed in some type of graph where various algorithms can be applied to 

calculating a collision free path.  The most common types of graph search 

techniques are the Voronoi Diagram (Aurenhammer, 1991), Visibility Graphs, Exact 

and Approximate Cell Decomposition.  Also A*, D* algorithms and Rapidly Exploring 

Random Trees (RRTs) are also popular methods used for path planning.  Potential 

field planning in contrast plans over a gradient field map of the environment.  The 

goal location is modeled as an attractive force while the obstacles are modeled as 

repulsive forces.  The objective is for the attractive forces to “pull” the robot towards 

the goal location while the obstacle “pushes” the robot away from its location.   
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As will be extensively discussed Markovian decision processes and its partially 

observable variant have been applied in early literature to tackle the robot 

navigation problem due to the need to better handle uncertainty (Cassandra, 1996).  

1.3 Related Work 

Sequential decision-making in stochastic partially observable environments has 

received significant research attention both theoretically and practically.  We are 

focusing our attention in applications for autonomous robotics—specifically in the 

area of motion control and planning.  The primary issues in these areas are to 

formulate optimal plans or policies for efficient execution by the robot with minimal 

external intervention.  The robot has to select appropriate actions that result in 

robust goal-directed behavior. 

We tackle this problem by focusing on domain-specific model parameters of the 

POMDP formalism and implement it as a controller of the robot’s actions.  A closely 

related work is that of Kaplow, Atrash & Pineau (2010).  One significant challenge 

and disadvantage of implementing POMDPs is that they are computationally 

intractable for problems with large state space so it suffices that most methods 

focus on its approximation.   Also planning horizons and problem structure affects 

computability.  Recently diverse algorithms using point-based methods have been 

proposed to solve POMDPs with large state space such as in Smith & Simmons 

(2004); Spaan & Vlassis (2005); Kurniawati, Hsu & Lee (2008); Poupart, Kim & Kim 

(2011).  We use a state-of-the-art point-based solver to solve our problem. 
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1.3.1 POMDP in Robotics 

Most applications of POMDPs in robotics are in navigation for mobile robots.  

However, some application in manipulation tasks does exist.  Research for POMDPs 

in robotics originates from difficulties with hierarchical planners and behavior-

based models in handling uncertainty.  Probabilistic Robotics (Thrun, Burgard & Fox 

2006)—a relatively new robotics paradigm—focuses on using probability theory to 

model the robot’s behavior in the real world. 

Early work by Cassandra (1996) use heuristics to solve the POMDP model for 

robot navigation while Koenig & Simmons (1998) propose a robot navigation 

architecture called Xavier.  The robot in the latter performs delivery tasks in office 

environments and demonstrated reliability in uncertain sensory data and action 

effects.  Pineau & Thrun (2002) introduced the application of a POMDP controller 

with uncertain sensory information for high-level control of the robot’s behavior.  

Their model was applied in an assisted care facility.  Also, Lopez et al. (2007) apply 

POMDP in assistant robots for robust navigation in a hospital environment by 

representing it as topological structures.   They show their model to be robust to 

dynamic objects such as people in motion giving more credence to its potential 

application.   

Other research efforts focus more on theoretical formulations that approximate 

solutions of the POMDP model.  Roy, Gordon and Thrun (2005) apply Exponential 

Principal Component Analysis (EPCA) to reduce the belief space in order improve 

speed of computation.  Pineau & Gordon (2005) also present a POMDP algorithm 

called PEMA and apply it in a nursebot.  Their algorithm selects salient states of the 
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environment to improve its scalability.  Ong et al. (2009) present a method using 

mixed observability to solve POMDPs.  They suggest that parts of the environment 

may be fully observable thus reducing the dimensionality of the belief space.  They 

also demonstrate that their algorithm significantly improved in performance over 

Pineau, Gordon & Thrun (2003). 

Recent research in POMDPs for robot decision-making and navigation has 

witnessed positive results.   That notwithstanding there is still significant progress 

to be made.  Candido & Hutchinson (2011) propose a method to the solve navigation 

problem using Continuous POMDPs to find policies for minimizing collisions and 

successfully reaching its desired location in minimal time.  Kaplow, Atrash & Pineau 

(2010) present a framework for decomposing the environment into non-uniform 

grids or variable resolution to exploit the facts that nearby states without obstacles 

can be merged in larger states thus reducing the computational demands of solving 

the POMDP.  Ong, Png, Hsu and Lee (2010) discuss their approach of robot motion 

planning and navigation in uncertain environments by proposing a factored 

representation to model the fact that certain aspects of the environment may be 

fully observable as well as partially observable.  They derive a reduced 

representation of the belief space of the POMDP. 

These approaches and numerous others provided valuable contributions to 

decision-making and planning for mobile robotic systems.  We complement these 

approaches by contributing a practical method to reducing the planning state space 

for the robot in order to achieve the desired tasks. 
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1.4 Contributions 

Our main contribution in this dissertation is to present a methodology called 

Goal-Specific Representation (GSR) that exploits the intrinsic contextual properties 

of a task environment.  Given a map of the domain decomposed into uniform cells, 

an initial location and a goal location, the proposed method selects only a subset of 

states relevant for task completion based on the domains structural properties and 

ignores other states.  We show that there is not a significant difference in task 

completion between a complete state representation and a GSR state 

representation.  The result is that the methodology can be applied to very complex 

domains were planning is only conducted over a precise region of the task domain.    

We apply this to the robot navigation problem then proceed to formulate action 

policies using a POMDP model parameterized by a GSR algorithm.  We solve the 

POMDP model using a point-based POMDP solver and perform empirical evaluation 

accordingly.  The decision policies are tested on a real robot in an indoor 

environment that simulated an automated manufacturing facility layout.  Our 

primary goal of this work is to advance research in decision-making for autonomous 

systems and formulate methods for autonomous robot navigation that can be utilize 

in applications such as automated material handling in a manufacturing domain or  

assisted care in healthcare domains. 
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Chapter 2 

Markov Decision Processes 

2.1 Overview 

A Markov Decision Process (MDP) is a framework for decision-making under 

uncertainty that follows the Markov property.  By Markov property, we mean a 

memoryless stochastic process where future states of the system depend only on the 

current state and not the history of previous states of the system.  A stochastic 

process is a process whose time-based evolution has probabilistic elements, thus 

the sequence of states of the stochastic process is non-deterministic where the state 

transition is guided by a probability distribution over all states.  

In MDPs the outcome of an action is partly under the control of the decision 

maker and partly random.  The objective is to find the best policy to guide the 

decision-maker’s actions.  They are solved using dynamic programming or linear 

programming.  Dynamic programming algorithms developed by Bellman (1957a, 

1957b) and its variants are the preferred in literature.  A detailed treatment of 

Markov Decision Processes can be found in Bellman (1957b) and Howard (1960), 

Puterman (1994).  Bertsekas and Shreve (1996) also provide a mathematically 

rigorous analysis of solving discrete-time stochastic processes using dynamic 

programming.  
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2.2 The Markov Process 

Let S be a sequence of random state variables 1 2, ,..., tS S S and let there be only 

one action available at each state.  If 1 1 2 1( , ,..., ) ( )t t t tp s s s s p s s   then the sequence 

is said to have the Markov property where the next future state variable of the 

sequence, 1ts  , only depends on the current state variable ts  and not the previous 

state variables 1 2 1, ,..., ts s s  .  Any stochastic process that has the Markov property is 

called a Markov process.  This process is also described as memoryless.  In agent-

based decision-making however, there are usually multiple actions available for the 

agent at any given state.  Thus the Markov property can be written as: 

 1 1 1 0 0 1{ , , , ,..., , } { , }.t t t t t t t tp s s s s a a s a s a p s s s s a a   
         (2.1) 

 

Figure 2.1 – An MDP Model of the Agent-Environment Interaction  
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This property is of significance because the behavior of the system modeled as an 

MDP may deviate from expectation if all the previous states and actions have to be 

accounted for in making our current decision. Also conditioning our present 

decision on all past decision will quickly result in computational intractability as the 

number of states and actions sequences increases exponentially resulting in the 

curse of history. 

2.3  The MDP Model 

When an agent or mobile robot operating in an environment has the ability to 

directly observe the state of the environment and perform actions to change the 

state of the environment, this behavior can be modeled as an MDP if the state space 

and action space are well-defined.  An abstract model is shown in figure 2.1 and 2.2.  

In practice however, agents cannot directly observe the state of the environment 

and can only infer it from sensory information.  This is called partial observability 

and we discuss this generalization in chapter 3.  In this section we assume that the 

state of the environment is directly observable in order to develop an appropriate 

MDP model.  

An MDP can be modeled as a set of states, a set of actions, a state transition 

probability function and a state transition reward function.  It is the tuple 

, , ,S A T R  where: 

 States: s S  is a discrete and finite set of states of the environment, 

1 2{ , ,..., }.nS s s s   The environment is assumed to always be in some state s  at 

time t  and initialized at state 0s . 
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 Actions: a A  is a discrete and finite set of actions: 1 2{ , ,..., }mA a a a . This 

describes the actions the agent takes that can potentially alter the state of the 

environment. 

 

Figure 2.2 – An Abstract Representation of an MDP model  

 State transition probability function: :T S A S    is the function that 

assigns a value in the interval [0,1] to the triplet ( , , )s a s .  It can also be described 

as 1( , , ) ( , )t t tT s a s p s s s s a a
      which is the set of transition probabilities 

from state s to s over time t to 1t   under action a.  Furthermore the sum 

( , , ) 1, ( , ).
s S

T s a s s a


    

 Reward Function: :  R S A  is the function that assigns a real number for 

every state-action pair. We define ( , )R s a  as the set of expected immediate 

rewards the agent receives from selecting action a in state s.  The reward 

function can also be defined as :r S A S    which is the state-action-state 
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triple that assigns an immediate reward for every subsequent state in state 

space given the current state and action.  However it is usually convenient to 

represent the reward function in terms of the expected immediate reward 

( , )R s a .  We express the relationship between the expected immediate and the 

immediate reward as: 

 ( , ) ( , , ) ( , , ).
s S

R s a T s a s r s a s


   (2.2) 

In summary, an MDP model is define by the tuple , , ,S A T R    where S is the set of 

states, A is the set of actions, T is the transition probability function and R the 

reward function.  The process starts at time t = 0 in state 0s S and takes action 

a A  specified by some arbitrary policy or decision rule.  It transitions to the next 

state according to ( , , )T s a s and receives an expected reward ( , )R s a .  We discuss 

the objective of the model and how it is solved in the next sections. 

2.3.1 Objective of an MDP 

The objective of an MDP is to find a policy—a complete mapping of state to 

action—that maximizes the cumulative sum of the expected discounted reward R 

over a finite or infinite time horizon.  A policy can be stationary or non-stationary.  A 

stationary policy : S A   is a fixed policy independent of the decision step.  The 

action taken under the policy  is given by ( )sa s .  This means that the policy is 

dependent only on the state of the system.  In contrast, if a policy specifies an action 

to take at a certain state that is dependent on the decision or time step of selection 
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then the policy is non-stationary as the action selected at time t is taken from the 

policy set 1 2{ , ,..., }    T  where i is the policy selected at time i  for 1,2,...,i T .  

For finite-horizon problems the reward function for a given policy   is denoted 

as: 

 
1

,
T

t

t

t

R E r 


 
  

 
  (2.3) 

where T is the horizon length, t is the time step and 0 1   is the discount factor 

which allows us to model the fact that future rewards are potentially less beneficial 

than present rewards and are thus geometrically discounted over the time horizon.   

If 0   then the rewards are not considered whereas if the  = 1 then we assign 

equal value of future rewards to the present reward.  For finite horizon models we 

can sometimes assign 1   since the problem is solvable within finite time. 

There are challenges in solving finite-horizon problems optimally since it is 

typically not known when the decisionprocess will terminate.  To overcome this 

difficulty infinite-horizon models with a discount factor are preferred.  The 

cumulative expected reward for a given policy  is given by: 

 
1

t

t

t

R E r 




 
  

 
 , (2.4) 

where 0 1   is the discount factor.  Note that for infinite horizon problems 1   

or else R  will have infinite value.  The policy that maximizes the expected 

cumulative discounted reward R is denoted as *  and is given by: 

 *

1

max |t

t

t

R E r
 

 




 
  

 
 . (2.5) 
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MDPs can be modeled as discrete-time or continuous-time processes.   Discrete-

time MDPs are used when actions are made in discrete time intervals whereas in 

continuous-time MDPs, actions are executed at any point in time.  Puterman (1994) 

and Guo & Hernández-Lerma (2009) extensively discuss continuous-time MDPs.  

Continuous-time models pose its unique challenges in finding optimal solutions and 

are not within the scope of this work.  We are primarily interested in discrete-time 

over discounted finite or infinite horizons. There are other interesting MDP 

formulations such as Decentralized MDPs formulated by Allen, Petrik & Zilberstein 

(2008).  

2.3.2 MDP Solution Approach 

A naïve approach to finding a solution for an MDP is to select the action that 

results in largest expected immediate reward for a given state.  This might seem 

rather intuitive but since the decision process has probabilistic transitions and a 

planning horizon, choosing an action with a lower immediate reward may result in 

larger long term cumulative reward in the future.   This adds to the complexity of 

computing optimal policies for the MDP.  Thus, as equations (2.3) and (2.4) suggests 

it is preferable to compute the cumulative reward over the desired time horizon 

rather than simply considering the expected immediate reward. The notion of value 

or utility of a state that measures the expected cumulative reward from any decision 

step to the terminal step from that state is a consistent method to compute the 

optimal policy. 
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Howard (1960), Puterman (1994) and Bertsekas (2007) provide extensive 

theoretical analysis of methods and algorithms for solving MDPs.  We discuss 

established algorithms for solving MDPs such as value iteration and policy iteration. 

A variant of the value iteration algorithm will be used to solve the generalized case 

of MDPs where the states are partially observable.  We shall apply solutions to the 

robot motion planning and navigation.   

2.3.3 Policies 

We briefly discussed policies in section 2.3.1.  As stated a policy, : S A   is a 

mapping of state to action for every state in the state space.  Consider a decision 

process with five states 1 5{ ,..., }s s , three actions 1 2 3{ , , }a a a  and finite time horizon of 

10T   time steps.  For this case we have a total of 53 243
S

A    possible policies.  

This is the number of possible action combinations for every state.  We may also be 

interested in the histories of the process.  A history is the sequence of state-action 

pairs selected during the process. In this example there are 

 
1 9 10(5 3) 3.8443 10

T

S A


      possible state-action sequences for the 10 time 

steps.  Note that the last decision step is the terminal step and is not included in the 

possible histories of the process.   

Policies can be deterministic or probabilistic.  In a deterministic policy the action 

selected at each state is fully determined whereas in probabilistic policies, the action 

selected for each state of the process come from a probability distribution over the 

all actions.  In this work we only consider deterministic policies.  That is, policies 
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that the agent must chose to during its decision-making process.  The decision 

process can also be considered as a control problem.  The difference being with the 

time scales under consideration.  Policies could also be stationary or non-stationary.  

We also mentioned that a stationary policy is that which applies the same policy at 

every decision step while non-stationary policies select from a set of policies at 

various decision steps.  The type of policy executed is important for selecting 

optimal decisions because when the time horizon is finite it may not be satisfactory 

to select from the same policy at the last decision point since this may not result in 

optimal agent behavior. 

2.3.4 Decision Steps 

An agent acting in an environment must make decisions at some point in time.  

Even the act of doing nothing may be considered a decision or action.  Decisions are 

made in time steps which are sometimes called decision steps, decision periods or 

action steps.  They are modeled as a discrete or continuous sets K of positive real 

numbers.  K may either be finite or infinite.  For the discrete finite horizon case K = 

{1, 2, 3, … , T} where T  .  That is, T is a set of finite positive integers whereas for 

the discrete infinite horizon K = {1, 2, 3,…}, the set of all positive integers.  If the 

decision steps were continuous and the time horizon is finite then [0, ]K T  is the 

interval of positive real numbers where decisions can be made at any point in time. 
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Figure 2.3 – Timeline for Discrete Decision Points 

Note that there are an infinite number of possible decision points in a finite interval.  

For continuous and infinite time horizons the decisions are made in the interval 

[0, )K   .   Figure 2.3 illustrates the division of the time line into discrete decision 

steps or periods and decision points.  As noted, decisions are made at each decision 

point except the last point T. 

The mathematical theory and practical applications of continuous time problems 

still pose significant challenges.  We restrict our focus to discrete time horizons 

where decisions are made sequentially at equally spaced intervals.  We also assume 

the last action is taken in time step 1T  .  By convention we adopt T to denote the 

length of the time horizon and t, the tht decision step of the process.  We replace the 

horizon length and decision step with N and n, respectively when discussing the 

problem in terms of the backup update using a dynamic programming algorithm. 
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2.4 Algorithms for Solving MDPs 

In this section we discuss the Value Iteration and Policy Iteration algorithms for 

solving MDPs.  Other methods such as linear programming exist for computing 

optimal policies.  However we focus more on the value iteration algorithm as this is 

the most widely used in research and practice.  Some other recent interesting 

algorithms and techniques for solving variants of the MDP model are discussed in 

Guo & Zhu (2002) and Melo & Veloso (2011).  Before we present the value iteration 

algorithm, we define the value function and how it can be used to compute optimal 

policies. 

2.4.1 Value Functions 

When an agent acts in an environment its motivation is modeled as a reward 

function.  The reward function assigns a real value to the actions the agent performs 

for a given state.  Since policies are a complete description of the agent’s behavior 

for a given time or decision horizon we need a way to evaluate how desirable a 

policy would be if implemented.  This is done by calculating the value as a function 

of state for a given policy.   The value function at a time step t is the cumulative 

expected reward of starting at state s and executing the policy  for the remaining 

T t  decision steps of the time horizon.  If the time horizon were finite then the 

value function is computable.  However, if the time horizon were infinite then the 

value function will have infinite value and also poses theoretical issues when 

attempting to compute it using dynamic programming methods.  In order to 

mitigate this we add a discount factor [0,1)   allowing for a unique solution.  Also 
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for algorithmic reasons a stopping criteria 1t tV V     is included where   is some 

arbitrary small value. 

We solve the MDP by computing an optimal value function.  There can be 

multiple policies associated with the optimal value function.  The agent simply 

selects an optimal policy arbitrarily.  If the agent is a mobile robot and the policies 

are utilized for navigation then optimal policies associated with an optimal value 

function is selected based on the structure of the environments maps.   This is 

discussed more extensively in subsequent chapters.  For now, we present the value 

function for finite and infinite time horizons and discuss how to use them to solve 

MDPs using value iteration algorithm.  White (1993) and Puterman (1994) discuss 

in greater mathematical detail these approaches along with proofs. 

2.4.2 Value Function for Finite Horizon Models 

A decision process has a finite horizon when there is a well-defined number of a 

decision steps that the process has to run.  We consider these time steps to be 

discrete and the number of time steps the process runs is represented by T.  As 

noted, optimal policies for finite horizon models are typically non-stationary since 

the policy selected at the early stages of the process may differ from the later stages 

in order to have optimal behavior.  Thus for a given policy the long-term value the 

agent accumulates for a finite horizon is denoted by 
, ( )nV s  which is the expected 

sum of rewards accumulated from starting in state s and implementing the non-

stationary policy  for n decision steps.  As mentioned, we avoid ambiguity between 

policy execution and the dynamic programming backup operation by using n to 
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represent the number of decision step-to-go. The notation n relates to t through the 

equation n T t  .   This value function is given by: 

 , , 1

'

( ) ( , ) ( , , ) ( ).n n n n

s S

V s R s a T s a s V s  



     (2.6) 

This is the sum of the immediate expected reward for selecting action a with n-steps 

to go in state s and the expected discounted value for the 1n  remaining decision 

steps.  Notice that the 1n  value function is multiplied by the transition function 

( , , ).T s a s  The value function for the last step when 1n   in the finite horizon 

problem is given by: 

 
,1 1( ) ( , ).V s R s a   (2.7) 

The value of the last step in the decision process is simply the expected reward of 

selecting action a at time step 1n   in state s and we can safely assume that 

,0 ( ') 0V s  .  This implies that there is no decision made at the last decision point.  

Equation (2.5) can be solved via dynamic programming using the principle of 

optimality (Bellman, 1957b). 

2.4.3 Value Function for Infinite Horizon Models 

When the decision-making process does not have a time limit it is described 

using infinite-horizon models.  At first glance the reader may observe that infinite 

time will result in infinite rewards the agent accumulates.  However since the 

discount factor is 0 1  , convergence and thus an optimal value function is 

guaranteed.   The value function for infinite-horizon models is given by:  
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 ( ) ( , ) ( , , ) ( ).
s S

V s R s a T s a s V s 


     (2.8) 

Equation (2.7) is recursive and the decision step n is omitted since the horizon is 

infinite.  Also notice that equation (2.7) results in a value function, V , whose values 

for each state can be computed from the set of |S| simultaneous equations with |S| 

unknowns variables where the unknowns variables are ( )V s . 

2.4.4 Optimal Value Functions and Policies  

The purpose of solving an MDP is to find an optimal policy (a mapping of states 

to actions) that guides the agent’s behavior.  Infinite-horizon discounted models are 

more convenient to solve since the desired finite-horizon length is rarely known in 

practice.  Details on deriving optimal finite-horizon value functions and policies are 

discussed in White (1993), Puterman (1994) and Kaelbling, Littman & Cassandra 

(1998).  However we shall apply the finite-horizon equations for use in solving 

finite-horizon problems with partial observability. 

Given a value function a greedy policy is given by: 

 ( ) arg max ( , ) ( , , ) ( )V
a s S

s R s a T s a s V s 


 
   

 
 . (2.9) 

A greedy policy is one that selects an action in every state that maximizes the sum of 

the immediate expected reward and the expected discounted value of the 

subsequent states.  For finite-horizon models the optimal policy are potentially non-

stationary, thus the optimal policy for the n-th decision step, *

n , is computed in 
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terms of the immediate expected reward and optimal value  function of the 1n   

step.  The equation is given by: 

 * *

1( ) arg max ( , ) ( , , ) ( )n n
a s S

s R s a T s a s V s  


 
   

 
 . (2.10) 

The optimal n-th step value function is denoted by the following equation: 

 * *

1( ) max ( , ) ( , , ) ( )n n
a

s S

V s R s a T s a s V s 


 
   

 
 . (2.11) 

For the infinite-horizon model, the optimal value function can be found by executing 

a stationary optimal policy * .  This optimal value function is given by the equation: 

 * *( ) max ( , ) ( , , ) ( )
a

s S

V s R s a T s a s V s


 
   

 
 . (2.12) 

This is similar to the optimal value function for finite-horizons but the time steps 

have been omitted.  Since it is not practical to have infinite time it is often 

convenient to compute the optimal value function using an approximate finite-

horizon model whose time horizon approaches infinity.  Thus we may define an 

arbitrarily small value as the stopping point between two successive backup 

computations of the set of equations of the value function V.  The optimal policy for 

the infinite-horizon model is the equation: 

 * *( ) arg max ( , ) ( , , ) ( )
a s S

s R s a T s a s V s 


 
   

 
 . (2.13) 

In the next section we discuss the most common method used for solving MDPs 

namely the value iteration algorithm.  In the general case of Partially Observable 

MDPs we apply a variant of the value iteration algorithm. 
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2.4.5 Value Iteration Algorithm 

The Value Iteration algorithm shown in table 2.1 is the most commonly used 

algorithm to solve MDP. Its variant will be used to solve POMDPs and their 

approximations.  Simply put, the value iteration algorithm is a recursive algorithm 

that calculates the value function for every action and finds the action that 

maximizes the value function.  It terminates when the difference of two subsequent 

value functions is less than a small error value.   This algorithm is derived from 

dynamic programming as described by Bellman (1957b). 

The value iteration algorithm above terminates when 1( ) ( )n nV s V s  is less than 

the  error value   known as the Bellman error magnitude.   Puterman (1994) also 

shows that the difference between *( )V s  and ( )nV s  of the optimal policy does not 

exceed 2 / (1 )   at any state of the process.  Consequently we shall be more 

concerned with -optimal value functions such that * *: max ( ) ( )s nV V s V s   .  Most 

times the optimal policy * is found early in the iteration process.  That is, *   

before nV  approaches *V . 

2.4.6 Policy Iteration Algorithm 

Another popular algorithm used in solving MDPs is the Policy Iteration algorithm.  

This algorithm is shown in table 2.2 and finds the optimal policy by computing a 

sequence of policies that are monotonically improving in value.  The sequence of 

policies thus converges to an optimal policy.  If   is not optimal, then there’s a 

policy  with action a in state s such that ( ) ( )a aQ s Q s   .   
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Table 2.1 – Value Iteration Algorithm 

 

We first have to find the solution to the value function V  for an arbitrary policy 

 by solving the S simultaneous linear equations: 

 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

( ) ( ) ... ( ) 0

( ) ( ) ... ( ) 0

( ) ( ) ... ( ) 0,

k k

k k

k k kk k k

c V s c V s c V s b

c V s c V s c V s b

c V s c V s c V s b

  

  

  

    

    

    

 (2.14) 

where k S  is the total number of states and 
ijc  for , 1,2,...,i j k are the 

coefficients of the linear equations that simply represents the product of the 

immediate reward and the transition function parameters.  After that, for every 

Value Iteration Algorithm 

Input (S, A, ( , ), ( , , )R s a T s a s ) 

1. 1n   (Initialize the decision step) 

2. 1( ) 0,V s s S    (Initialize value for all states to zero) 

3. repeat loop  

4. 1n n   

5. for all s S   

6. for all a A  

7. 1( ) ( , ) ( , , ) ( )a

n n

s S

Q s R s a T s a s V s 


     

8. end for 

9. ( ) max ( )a

n n
a

V s Q s  

10. end for 

11. until 1( ) ( )n nV s V s     s S   

Output: optimal policy, ( ) arg max ( , ) ( , , ) ( )n
a s S

s R s a T s a s V s 


 
   

 
  
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state s and action a we compare ( )V s  with ( )aQ s and if there is any a such that 

( ) ( )aV s Q s   we set ( )s  which is the current action under to policy   to the new 

action a.  This process is repeated until the policy cannot be improved upon again. 

Table 2.2 – Policy Iteration Algorithm 

 

It is important to note that the policy iteration does not guarantee a global 

optimal value function but guarantees an optimal policy in a finite number of 

Policy Iteration Algorithm 

Input (S, A, ( , ), ( , , )R s a T s a s ) 

1.   an arbitrary policy 

2. repeat loop  

3.    

4. V  solution to policy  using simultaneous linear equations 

5. for all s S   

6. for all a A  

7. ( ) ( , ) ( , , ) ( )a

s S

Q s R s a T s a s V s


     

8. ( ) max ( )a

a
Q s Q s  

9. if 
( )( ) ( )sQ s V s  

10. then ( ) argmax ( )a

a

s Q s   

11. else ( ) ( )s s    

12. end for 

13. end for 

14. until      

Output: return   
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iterations since there are finite number of policies 
A

S  in the stationary case.  Even 

though policy iteration is an interesting algorithm, we do not use it in the partially 

observable case for theoretical and computational reasons.  The reader may consult 

White (1993), Puterman (1994), Sutton & Barto (1998) or Cassandra (1998) for 

more rigorous details of the algorithm.  Pashenkova, Rish & Dechter (1996) also 

provided additional survey of the value iteration and policy iteration algorithms for 

MDPs.  

2.5 Summary 

In this chapter we presented and discussed the Markov Decision Process 

framework for sequential decision making when the actions effects of an agent 

operating in an environment is uncertain.  We also outlined the formal MDP model 

with finite states and finite actions.  The computation of the value function as they 

are applied to solving MDPs using the value iteration algorithm and policy iteration 

algorithm were also presented.  The MDP model precedes our discussions of the 

generalized partially observable model.  We shall use an extension of the value 

iteration algorithm to solve the partially observable case. We are interested in 

applying the model for decision-making and control in autonomous systems even 

though the framework can be applied to any decision-making process that can be 

modeled as an MDP. 
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Chapter 3  

Partially Observable Markov Decision Processes 

3.1 Overview 

In chapter 2 we discussed the sequential decision making process where the 

agent has perfect knowledge of its environment but its action effects was uncertain.  

This model is suitable in practical applications where the uncertainty that results 

from sensing the state of an environment is minimal.  In most interesting 

applications such as autonomous robot navigation or medical decision-making, the 

agent is operating in a potentially highly unpredictable and dynamic environment so 

it does not suffice to use sensory data solely as the true state of the environment.  

This results in a rapid increase in the cumulative error between the goal state and 

the agent’s belief of the goal state.  Consequently, the environment is only partially 

observable by the agent and the agent has both perceptual uncertainty and action 

uncertainty.  The formal framework discussed in this chapter to account for 

perceptual uncertainty is Partially Observable Markov Decision Processes (POMDPs) a 

generalization of MDPs. 

3.2 The POMDP Model 

The POMDP model is the tuple , , , , , ,S A T R Z O  .  It is simply an MDP with the 

addition of a finite set of observations Z and an observation probability distribution 

function O as shown in figure 3.1.  It is defined below as: 
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 The MDP Model: , , ,S A T R  described in section 2.3 

 Observations: z Z  is the finite set of observations.  The observations are a 

noisy projection of the true state of the environment.  If the set of observations 

maps perfectly to the set of states, that is, some function :f Z S for all z Z

and s S , then this function is a complete representation of the environment. It 

is said to be bijective thereby permitting the POMDP to be modeled as an MDP 

where each state simply maps to its corresponding measurement.  However in 

practice this is rarely the case. 

 Observation Probability Function: ( , , )O z a s is the function that describes the 

conditional probability of observing z given the action a  and the subsequent 

state s .  Thus ( , , ) ( | , )O z a s p z a s  .  

 Beliefs: The agent must now maintain a belief of the state of the environment 

since it is unable to fully observe the state with certainty.  All agents acting 

rationally1 in physical environments must maintain a belief of its environment 

relative to idealized states of the environment.  We define the belief b as a 

probability distribution over the set of states S and ( )b s  to be the probability of 

observing a state s.  The belief space is the space of all possible belief states 

which is a simplex of 1S   dimensions.  Also 0 ( ) 1b s   and ( ) 1
s S

b s


 .  We 

show how to compute the belief for subsequent states in section 3.2.2. 

                                                        
1 We use the term rational agents, as described in Russell and Norvig (2003), to be any autonomous 
system capable of exhibiting goal-based behavior. 
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 Discount Factor: The discount factor is the real value [0,1)  .  As with MDPs it 

indicates the desirability of decisions made in the future and ensures that the 

value iteration algorithm converges to a finite value.  

 

Figure 3.1 – An Abstract POMDP Model  

Other interesting formulations exist. For instance Doshi-Velez (2009) model the 

problem as an infinite POMDP (iPOMDP) where the set of states are not explicitly 

represented but increases from an initialize size without bound as the agent acts  in 

the environment. 

3.2.1 Objective of the POMDP 

As with MDPs the objective of solving POMDPs is to find the policy that 

maximizes the long term reward that the agent receives.  This is equivalent to the 

rewards described in the MDP model.  For the finite horizon model which we will be 



  

41 

more interested in, the maximum cumulative reward from the set of all possible 

policies    is given by: 

 *

1

max





  
   

  

T

t

t

t

R E r . (3.1) 

The corresponding optimal policy that maximizes the expected future discounted 

reward is given by: 

 *

1

( ) arg max ,
T

t

t t t

t

b E r b


  


 
  

 
 . (3.2) 

Since the agent cannot directly observe its domain.  This optimal policy is a mapping 

from belief to action.  That is, :POMDP b a   where ( )b is the action selected for a 

given belief.  Consequently, the reward function is a function of belief and not the 

states since the agent can only accumulate reward based on what it beliefs are.  In 

the next section we discuss how the beliefs are constructed. 

3.2.2 Belief Computation 

The agent maintains a belief of the state of the environment and selects actions 

based on these beliefs.  In autonomous robot navigation and path planning, the state 

of the environment are typically represented by the robot’s pose ( , , )x y   and its 

respective velocity components ( , , )x y   .  State estimators such as Kalman filters are 

used to generate beliefs which can be used by a POMDP controller to execute 

appropriate actions.  

Recall that the belief b, of an agent is the probability distribution over all states.  

In theory, the belief can be any formalism that can effectively capture the states of 
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the environment.  During agent-environment interaction the agent has to update its 

beliefs at every decision step.  It also has to maintain a history of previous 

observation and actions to deduce its current beliefs.  However, Smallwood and 

Sondik (1973) show that the current belief state is a sufficient statistic given the 

past history of initial belief, observations and actions.  This implies that belief 

computation is Markovian. That is, if the belief at time t is given by 

1 1 1 0( ) ( | , , ,..., , )t t t t tb s p s s z a z a b   , it is equivalent to 1( ) ( | , )t t t tb s p s s z a   . 

We compute the subsequent belief state ( )b s   of the agent using a variant of 

Bayes’ Theorem and the Total Probability Theorem. The belief ( ) ( | , , )b s p s z a b    

and can be derived as follows: 

 ( ) ( | , , )b s p s z a b   , (3.3) 

 
( | , , ) ( | , ) ( | )

( )
( | , ) ( | )

p z s a b p s a b p a b
b s

p z a b p a b

 
   , (3.4) 

 
( | , , ) ( | , , ) ( | , )

( )
( | , )

s S
p z s a b p s s a b p s a b

b s
p z a b


 

  


, (3.5) 

 

( , , ) ( , , ) ( )

( )
( | , )

s S

O s a z T s a s b s

b s
p z a b



 

  


. (3.6) 

The reciprocal of ( | , )p z a b  can be considered a normalizing factor that allows ( )b s   

to sum to 1.    

Therefore ( )b s  can be given by:  

 ( ) ( , , ) ( , , ) ( )


    
s S

b s O s a z T s a s b s , (3.7) 

where  is the normalizing factor1/ ( | , )p z a b . 
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3.2.3 POMDPs as Belief State MDPs 

To compute an optimal policy for the POMDP we can use a variant of the value 

iteration algorithm.  This algorithm is only computationally stable for finite horizon 

models.   Recall that our policy now is the mapping :POMDP b a   , where b is the 

belief (a probability distribution vector over states of the POMDP).  Since the belief 

represents a sufficient statistic for the history of the agent’s behavior we can 

convert the POMDP into a Belief-State MDP or simply Belief MDPs (BMDPs).  It is 

very important to note that BMDPs has a continuous bounded state space but with 

infinite possible states.    

For the clarity, if there are three states  1 2 3{ , , }S s s s  , then the state space of the 

BMDP will be 2-dimensional simplex in a 3-dimensional space whose vertices will 

be at the points (1,0,0),(0,1,0),(0,0,1)  as shown in figure 3.2.  The vertices are the 

belief points where the agent is certain to be in states 1s , 2s  and 3s  respectively.  

Notice that the belief point has a dimensionality of |S|=3.  This is because it is the 

vector representing the distribution of over states.  We can model the BMDP as the 

tuple , , ,B A r  . It is described as follows: 

 Belief States: B is the set of belief states whose dimensionality is |S| and 

makes up the state space.  It is represented as an | 1|S   hyperplane in |S|-

dimensional space.  The vertices of the hyperplane have a value of 1 which 

denotes the certainty of being in a specific state.  Though the hyperplane is 

bounded, it is continuous—which implies it is uncountably finite.  That is, 

there are an infinite number of belief points in the region. This poses 
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problems when solving the POMDP or BMDP optimally using the value 

iteration algorithm.  We discuss how to overcome this issue in the next 

section 

  Actions:  A is the set of actions available at each decision point.   For 

simplicity it is assumed that the same set of finite actions is available at every 

decision point 

 Transition Probability Function: ( | , )p b a b is the transitional probability 

function between beliefs.  It can also be represented as ( , , )b a b  .  Since we 

are transitioning between belief states there are observation probabilities 

that should be accounted for.  Thus, ( | , ) ( | , , ) ( | , )
z Z

p b b a p b b a z p z b a


   

where ( | , , ) 1p b b a z   if the ,a zb b  (i.e. the state estimate is b ) 

( | , ) ( | , )
z Z

p b b a p z b a


   

 Reward Function: ( , )r b a is the reward received for executing action a in 

belief state b.  This reward is related to ( , )R s a  by the equation: 

( , ) ( ) ( , )
s S

r b a b s R s a


 .  This reward function considers the probability of 

observing the state s for every component of the belief point. 

This model shows how we can convert a POMDP to a BMDP.  The next step is to 

solve the BMDP using the value iteration algorithm discussed earlier.  The primary 

difficulty with using the value iteration algorithm to solve the POMDP or BMDP is 

that we have to iterate recursively over every belief state.  This is not possible since 

there are infinite numbers of belief states on the hyperplane representing the belief 

states.  In the MDP case the number of states and actions were finite thus the MDP 
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was solvable in polynomial time (Puterman, 1994).  Perhaps reducing the 

dimensionality of the belief space may improve the solvability of the problem.  The 

problem with this approach is that the guarantee of optimality of the original 

problem no longer exists.  Fordor (2002) provide a survey of some dimensionality 

techniques that may be of interest while Roy (2003) use EPCA to reduce the 

dimensionality of the POMDP model.   

 

Figure 3.2 – A 2D Simplex in 3D Space Representing the Belief Space 

3.2.4 POMDP Value Functions 

To compute optimal policies for POMDPs we can compute optimal value 

functions for the POMDP and extract the optimal policy from the value function. 

However we focus on approximate value functions for practical reasons. Again, the 

value iteration algorithm is used to solve the POMDP as we did with the MDPs.  In 
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MDPs the decision process for a finite horizon model has the possible sequence 

0 1 1( ... ) ( )T

T TS A S A S S A S         where T is the time horizon length.  For the 

infinite horizon model the sequence is ( )S A  .   Whereas with a finite horizon 

POMDP the agent makes a sequence of actions and observations given by: 

1

1 1 2 2 1( ... ) ( )T

T TA Z A Z Z A A Z A

         .  Since the observations and actions 

are a function of the belief state, they must be considered when computing the non-

stationary policy for the POMDP.  As we did with MDPs, when looking forward in 

time we use the notation t to denote a specific decision point and T the horizon 

length for finite horizon models. 

Given any decision sequence 1 1 2 1 1{ ... }n n n

i k i i k id a z a a z a        , where 

n denotes the decision point with n-steps to go—(it should not be confused with the 

tht decision point which is the time from the start of policy execution)—we can 

compute a value function for that sequence. In the sequence, n

ia  is the thi  action 

selected from the action set A with n-steps to go and 1n

kz  is the thk  observation 

made with ( 1)n -steps to go.  A complete decision sequence of actions conditioned 

on observations occurs when T n . That is, when n is the horizon length.   The 

decision sequence can also be modeled as a decision tree (Kaelbling, Littman and 

Cassandra, 1998). 

 Case 1:  1n   

 ( ) ( , )d dV s R s a , (3.8) 

where da  is the action selected for first time step executed in the decision 

sequence. 
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 Case 2:  n-steps to go 

 ( ) ( , ) ( | , ) ( | , ) ( )d
k

k

d d d k d z
s S z Z

V s R s a p s s a p z s a V s
 

      , (3.9) 

 ( ) ( , ) ( , , ) ( , , ) ( )d
k

k

d d d d k z
s S z Z

V s R s a T s a s O s a z V s
 

      . (3.10) 

Recall that ( , , )dT s a s  is the transition probability function between states; 

( , , )d kO s a z  is the observation probability function and ( )d
kz

V s  is the value function 

for the ( 1)n -step decision sequence after observation kz  is made.  

The value function in equations (3.8)-(3.10) is defined over the state of the 

environment.  However our agent can only make decisions based on its belief b.  

Thus the value function for a belief b given a decision sequence d  is given by: 

 ( ) ( ) ( )d d

s S

V b b s V s


 . (3.11) 

It can also be written in vector form where d  is the value vector whose component 

is ( )d iV s for all 1,2,...,i S .  It is denoted as: 

 ( )d dV b b   , (3.12) 

where 1( ),..., ( )d d d nV s V s     is known as the -vector.  The value function for every 

belief vector is the expectation of the value function of states S. 

3.3 Optimal POMDP Value Function  

The optimal value function is found by selecting the value of the decision 

sequence d  that maximizes the value function ( )dV b .  That is, the optimal value 

function with n-steps to go is: 
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 *( ) max ( ) ( )n d
d

s S

V b b s V s




  , (3.13) 

 *( ) max ( )n d
d

V b V b


 , (3.14) 

where  is the set of possible decision sequences.  

Computing the corresponding optimal policy is very difficult for large state 

spaces with long time horizons.  This is because there can be numerous decision 

sequences to consider in order to find the optimal value function.  Consider a 

decision sequence with 4A   actions,  3Z   observations and the planning horizon 

10T  .  Then possible decision sequences can be found by 1( )TA Z A  .  Therefore 

there are 9(12) 4 20,639,121,408   possible decision sequences.  This is often 

referred to as the curse of history.  Exact methods developed focused on exhaustive 

enumeration (Sondik, 1971).  Other approximate solutions are generated by 

selecting from a set of belief points rather than the entire belief space and then 

pruning the value functions of undesirable decision sequences that do not 

contribute to the optimal value function.  Figure 3.3 illustrates an arbitrary set of 4 

value functions where the optimal value function is the upper surface of the 

collection. 

Since we can represent the POMDP and a BMDP with a finite horizon, the value 

function backup equation is denoted as: 

 1( ) max ( ) ( , ) ( | , , ) ( | , ) ( )n n
a A

s S z Z

V b b s R s a p b b a z p z b a V b


 

 
   

 
  . (3.15) 

When ,a zb b   then ( | , , ) 1p b b a z   since the transition between beliefs is perfectly 

modeled by the state estimator.   
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Thus we have: 

 1( ) max ( ) ( , ) ( | , ) ( )n n
a A

s S z Z

V b b s R s a p z b a V b


 

 
  

 
  . (3.16) 

The corresponding policy is: 

 1( ) arg max ( ) ( , ) ( | , ) ( )n n
a A s S z Z

b b s R s a p z b a V b 
  

 
  

 
  . (3.17) 

 

 

Figure 3.3 – A Sample Value Function for a 2 State POMDP 

3.4 Algorithms for Solving POMDPs 

In this section we briefly describe some early algorithms developed to solve the 

POMDP problem as well as algorithms presently implemented by current 

researchers.  As mentioned, the main issue with solving POMDPs with value 

iteration is to iterate over belief space which is continuous and uncountably finite—

i.e. there are infinite number of points in the bounded belief space hyperplane.  

However, Smallwood & Sondik (1973) showed that the value functions over belief 
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space are Piecewise Linear Convex (PWLC) which provides interesting properties 

that allow for the formulation of algorithms to solve the POMDP or BMDP.   

Monahan (1982) discusses early algorithms used to solve the POMDPs such as 

the One-Pass Algorithm by Sondik (1971).  Other early algorithms proposed are the 

Witness Algorithm by Littman (1994) and Kaelbling et al. (1998).  The witness 

algorithms works by computing the best value function for a set of actions at a given 

time and takes their union to get the optimal value function at decision point n.  

Hansen (1997) focuses on using a policy iteration algorithm to solve the problem by 

representing the policy as a finite state controller.  Cassandra, Littman and Zhang 

(1997) presented the incremental pruning algorithm which is an exact algorithm 

that prunes dominated vectors that do not add to the optimal value function. 

More recent algorithms such as the Point-Based Value Iteration (PBVI) algorithm 

by Pineau, Gordon & Thrun (2003) have significantly improved the size of problems 

that can be solved.  Their algorithm is an approximate method that chooses a small 

set of belief points and computes a single value function hyperplane and their 

resulting derivatives for those points.   Hsu, Lee and Rong (2007) discuss why 

POMDPs are simpler to approximate in relation to computing exact solutions.  He & 

Roy (2009) use a forward search technique that generates policies directly from the 

posterior belief distribution thereby avoiding the task of computing belief 

distributions by considering all the possible observations.  The technique is used in 

continuous models.  Kurniawati, Hsu & Lee (2008) propose an algorithm called 

SARSOP which is an acronym for Successive Approximations of the Reachable Space 

under Optimal Policies.  It is a version of the Point-Based Value Iteration algorithm 



  

51 

that improves computational efficiency by focusing on reachable belief spaces 

rather than the entire belief space.  They apply their algorithm to robot exploration 

tasks.  We discuss the SARSOP algorithm further and employ a SARSOP based solver 

to find efficient policies for the proposed POMDP model.   

Notwithstanding, other approaches for solving POMDP variants such as 

Decentralized POMDPs (DEC-POMDPs) using finite-state controllers have been 

proposed (Amato, Bonet & Zilberstein, 2010).  Decentralized POMDPs are used 

when multiple agents are involved in the decision-making.  Pajarinen and Peltonen 

(2011) also apply a finite-state controller to find a deterministic finite-horizon 

policy for the DEC-POMDP while Eker & Akin (2013) propose an algorithm that uses 

Genetic Algorithms to search the policy space then use a finite-state controller to 

represent the finite-horizon DEC-POMDP.   In the case of infinite-horizon models 

which we do not consider, Li, Liao & Carin (2006) present an incremental least 

squares approach to solve the problem. 

3.4.1 Point-Based Value Iteration Algorithms 

Since solving partially observable problems is PSPACE-hard (Papadimitriou & 

Tsitsiklis, 1987) even for cases where the observation is deterministic it is often 

practical to search for near optimal or approximate solutions rather than exact 

optimal solutions except for the smallest problems.  In fact it is often not desirable in 

practice to solve the POMDP optimally as the computational costs typically exceed 

its potential practical utility.   The value iteration algorithm is generally adopted as a 

solution method for POMDPs.  As mentioned exact value iteration is undesirable 
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since they iterate over the entire belief space which is enumerable infinite—that is, 

the belief space is continuous. To alleviate this difficulty, Point-Based value iteration 

techniques approximate the solution for exact value iteration by identifying a small 

set of belief points then computing its value and its derivative for only those 

selected points (Lovejoy, 1991 and Pineau, Gordon & Thrun, 2003).   

The formulations by Lovejoy (1991) centered on selecting an arbitrary set of 

belief points then pruning any of the -vectors from the value function that were not 

optimal from the set of belief subsets.  A problem with this approach is that from the 

belief points selected there was a likelihood that those belief points will not be 

reached.  Pineau, Gordon & Thrun (2003) propose selecting a set of reachable belief 

points by selecting a sequence of actions and observations.  Thus the Bellman 

backup equation can be modified to include only the selected actions and 

observations sequence.    

Given a POMDP model , , , , , ,S A T R Z O   as described in section 3.2 and an -

vector, which is a set value functions for each state s, the value function at each 

selected belief from the decision sequence is computed by the modified Bellman 

backup equation as follows: 

 ,( ) max ( , ) ( | , ) ( )a z

a A
z Z

V b R b a p z b a V b




    , (3.18) 

 ,( ) max ( , ) ( | , )max ( ) ( )a z

a A V
z Z s S

V b R b a p z b a s b s


 
 

 

      , (3.19) 

 
( , , ) ( ) ( , , )

( ) max ( , ) ( | , )max ( )
( | , )

s S

a A V
z Z s S

O s a z b s T s a s
V b R b a p z b a s

p z b a
  

 
 

 
  


  , (3.20) 
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 ( ) max ( , ) max ( ) ( ) ( , , ) ( , , )
a A V

z Z s S s S

V b R b a b s s O s a z T s a s


 
 

  

 
      

 
   , (3.21) 

 ,( ) max ( , ) max ( ) ( )a z

a A V
z Z s S

V b R b a b s s


 
 

 

 
    

 
  , (3.22) 

where ( | , ) 0p z b a   and  ( ) ( ) ( , , ) ( , , )
s S

s s O s a z T s a s 


   .  ( , )R b a can be written in 

vector form as ( , ) aR b a r b   .  Equation (3.22) in vector form we have: 

 ,( ) max max a z

a
a A V

z Z

V b r b b


 
 



     . (3.23) 

The backup operator that generates a new -vector for a specific belief b is given by: 

 
,

( , ) argmax b

a
V a A

f V b b



 

  , (3.24) 

where argmax ( )b b

a a V az Z
r b  

   .  The function ( , )f V b prunes the vectors 

that are dominated twice thereby reducing the computational costs of the 

procedure.  The complexity of the point-based backup procedure for a set of belief 

point B  is 
2

( )O A Z V S A S Z      in comparison with exact backup 

procedure which has 
2

( )
Z

O A Z V S A S V      .  Further details on the 

complexity analysis and comparison can be found in Shani, Pineau and Kaplow 

(2012).  A point-based value iteration algorithm is shown in table 3.1 and the 

corresponding optimal policy for a point-based value function is: 

 ,( ) argmax ( , ) ( | , ) ( )a z

V
a z Z

b R b a p z b a V b 


   . (3.25) 

The application of point-based value iteration techniques for solving problems 

with large state spaces have proven successful.  As mentioned, the initial framework 

was present by Pineau, Gordon & Thrun (2003).  Since then numerous variant 
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algorithms such as HSVI by Smith & Simmons (2004, 2005); FSVI by Shani, Brafman 

& Shimony (2007); Perseus by Spaan & Vlassis (2004, 2005) and SARSOP by 

Kurniawati, Hsu & Lee (2008) have been formulated.  Other algorithms such as 

GapMin by Poupart, Kim & Kim, (2011) have been formulated to improve the 

bounds of the value function generated by the point-based algorithms.  It is based on 

initial work by Poupart (2005).  Porta, Spaan & Vlassis (2005) also postulates an 

extension of the discrete state model to continuous state spaces.  Naturally modeling 

continuous state spaces is nontrivial as the expected value functions over states are 

defined by integrals that typically cannot be computed in closed form.  However, 

they show that the optimal value function over an infinite dimensional belief space 

is also piece-wise linear convex.  These findings permit the use of point-based value 

iteration algorithms to solve the problem.   

These advances improve the problem space that can be tackled lending credence 

to their potentially diverse application in sequential decision-making problems and 

in our case the autonomous navigation problem.   In this section we have succinctly 

discussed the point-based VI algorithms and how it significantly improves results in 

solving POMDP problems with large state space applicable in complex domains.  

Kaplow (2010), Shani, Pineau & Kaplow (2012) present the most up to date and 

rigorous survey of the current state-of-the-art point-based POMDP solvers.  They 

focus on comparing the various algorithms by performing empirical analysis on 

several well-known benchmark problems such as tag and coastal navigation.  Since 

certain solvers will be well-suited for certain domains it is important that their 

advantages and disadvantages are also highlighted.  The survey analysis does this.  
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So how exactly does the point-based technique perform?  To answer this we must 

understand the methods by which belief points are selected from the belief space.   

Table 3.1 – A Point-Based Value Iteration Algorithm 

 

Most early approach used ad hoc methods and heuristics that provided poor 

results of the true optimal solution of the POMDP.  As discussed more recent 

methods use a more structured approach in belief point selection.  Rather than 

Point-Based Value Iteration Algorithm 

Input (POMDP Model, 0B ) 

1. 0B B  (initialize the set of belief points) 

2. repeat loop 

3. repeat loop 

4. for all b B  

5. ( , )f b V  (randomly execute a backup operation for all belief points) 

6. { }V V   

7. V V   

8. end for 

9. until V V    (stop when V and V has converged for all belief points) 

10. B B  

11. for all b B  

12. ,( ) { | ( | , ) 0}a znext b b p z b a   

13. 
( )

argmax ,
L

b next b

B B B b


   (add the next belief b furthest from all points in B) 

14. B B  

15. end for 

16. until *V V     (stop when V and 
*V has converged for all belief points) 

Output: B  
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develop algorithms that iterate over the entire belief space, which is enumerable 

infinite, the point-based technique approximates the solution to an exact value 

iteration by identifying a small set of belief points then computing its value and its 

derivative for only those selected points. 

3.5 Summary 

This chapter briefly presents the POMDP framework and algorithms that have 

been formulated to solve them and their approximations.  It is not meant to be an 

exhaustive treatment of POMDPs.  More rigorous treatment in literature can be 

found in Sondik (1973, 1978), Monahan (1982), Kaelbling (1998), Cassandra 

(1998), Pineau, Gordon & Thrun (2003) and Shani, Pineau & Kaplow (2012).   Most 

authors that conduct research on POMDPs focus on computing efficient solutions 

using point-based techniques to avoid planning over the entire belief space which is 

known to be computationally intractable.  We are interested in POMDPs because it 

has shown promising results in solving complex decision-making in autonomous 

systems where the agent-environment interactions are not fully predictable.  In 

regard to this research we wish to further investigate its potential for generating 

efficient policies for autonomous navigation in mobile robots with possible 

application in industry. 
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Chapter 4  

Decision-Making for Autonomous Robots using POMDPs 

4.1 Overview 

In the previous chapter we discussed the basic theory of POMDPs.  We also 

outlined the difficulties of finding exact solutions of the POMDP model and 

discussed some approaches that have been implemented to overcome these 

difficulties but at the cost of optimality.  However, in this work we are interested in 

practical implementation of POMDPs in autonomous robots.  This implies that we 

are willing to accept the cost of guaranteed optimality of the POMDP solution in lieu 

of efficient performance of the autonomous robot.  As mentioned, robots operating 

in real-world environments encounter uncertainty from both the environment 

dynamics and its internal sensory-motor dynamics.  We model these uncertainties 

using a probabilistic framework and apply POMDPs primarily for action selection 

given the perceptual data.  The POMDP model is essentially a high-level model.  We 

are not concerned with how motor signals are executed electronically or how 

sensory signals are processed as this is robot specific.  Thus in this chapter we shall 

discuss POMDPs as it relates to the generation of goal-based behavior in mobile 

robots.  We focus more on navigation in partially structured environments as this is 

still an open problem in robotics. 

It is instructive to note that numerous other planning methods exist for robot 

navigation.  They all basically attempt to formulate an algorithm that can efficiently 
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navigate a robot from an initial location to a goal destination by planning a 

trajectory path.  Accurate localization and mapping is a necessary precondition for 

navigation of a mobile robot.  We do not consider details localization and mapping 

techniques in this work as this a separate research area in its own right.  However 

we adopt Bayesian state estimation techniques such as Kalman filters for 

localization and belief estimates. 

4.2 The Autonomous Robot Navigation Problem 

When we mention decision-making in relation to robotics we are refer to 

navigation and task completion in an operating domain.  The robot navigation 

problem is a well studied problem.  Numerous methods and models have been 

proposed.  We define the problem as follows: 

Given a map of a known environment such as an office or factory floor with static 

and dynamic obstacles, an autonomous robot is required to navigate from an 

initial location to a goal location. We wish to formulate an effective decision-

making policy that results in the robot arriving at its goal location using minimal 

resources.  The robot receives perceptual information from its sensors and 

translates this information to motor commands based on the decision policy.  

Recall that a robot is simply a computer controlled mechanical device.  For the robot 

to behave autonomously, it must reliably take perceptual information, process this 

information, and select appropriate motor actions that result in the robot reaching 

its goal state.  Thus from the problem statement above our goal in this work is to 

find an efficient decision policy—that is a description of how to robot should select 
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its motor command at every state of the environment to guide the robot’s behavior.  

It is also noteworthy to specify that the mechanical composition of the robot 

significantly affects the performance of the controller and its overall behavior.  In 

this section we briefly describe components of the robot used for sensory 

observation and motor control then describe how it will be used in the POMDP 

model. We also discuss basic mobile robot kinematics.  

4.2.1 Mobile Robot Kinematics 

Mobile robot kinematics deals with the analysis of motion without regard to the 

forces that create the motion.  It is necessary to understand mobile robot kinematics 

for motion planning and navigation.  A mobile robot can be modeled as a rigid body 

on a 2-dimensional plane.  Its position is defined with respect to a global reference 

frame.  This ( , )g gx y  position denoted by P along with its heading or orientation   is 

known as the pose of the mobile robot.  Most times the pose is considered the state 

in regard to the planning models.  It is represented as the vector [ , , ]T

G g gs x y  .  

The robot can also have its own reference frame called the local reference frame and 

the axis orthogonal to the plane which describes the heading.   In general, the 

kinematic model can be described with six variables.  The first three represents its 

3-dimensional spatial coordinates while the last three describe its three Euler 

angles—namely the pitch ( ) , roll ( )  and yaw ( )  (note that the heading  should 

not be confused with the pitch ).  Figure 4.1 illustrates the robot pose in a global 

coordinate system.  
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Figure 4.1 – Global and Local Coordinate Systems of the Robot Pose in 2D 

The axes ( , )G GX Y is the global reference coordinate system with origin O while the 

body attached axes is ( , )R RX Y  with center P.  The center of the body attached axes P, 

has the location ( , )g gx y with respect to the global reference frame.  The heading   

is the angular difference between the global reference and the robot local reference 

frame. 

In order to describe the motion of the robot with respect to the global reference 

frame we simply use an orthogonal rotation matrix that maps the motion along the 

global reference frame axes to that of the robot’s local reference frame.   The 

rotation matrix is given by: 

 

cos sin 0

( ) sin cos 0

0 0 1

 

  

 
 

 
 
  

R . (4.1) 

XG 

YG 
YR 

 

XR 

O 

P 
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Thus the robot’s pose with respect to the robot’s local reference frame can be 

computed by: 

 ( )R Gs R s , (4.2) 

 ( )

 

   
   


   
      R G

x x

y R y . (4.3) 

Correspondingly, the velocity component of the pose in the global reference is 

denoted by the vector [ , , ]T

G g gs x y  .   The velocity with respect to the robot’s 

reference frame can computed in a similar manner to equation (4.2),  

 ( )R Gs R s . (4.4) 

Further discussion on mobile robot kinematics can be found in the Seigwart, 

Nourbakhsh & Scaramuzza (2011). 

4.2.2 Probabilistic Kinematic Model 

Since we are interested in mobile robots that operate in probabilistic domains 

we must consider the error difference between desired actions and actual motion 

actions.  This is important in the robot’s decision-making because it directly reflects 

the state transition model.  Given that the robot’s state is its pose [ , , ] T

ts x y at 

time t, the state transition model is given by 1( , )t t tp s a s .  It can also be denoted as 

1 1( , ) t t tp s a s , which is simply a matter of convention.  The transition model is the 

posterior probability distribution over the subsequent states given current states ts  

and action ta .  As an example the robot’s odometer may provide the execution of the 
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action control ta .  The action control ta  indicates the motion commands that are 

sent to the robot motor for execution.   

It is also possible to provide action controls using a velocity model by 

considering the rotational and translational velocities as discussed in Thrun, 

Burgard & Fox (2006).  The translational velocities at any point in time can be 

denoted by t  while for rotational velocities it is denoted as t .  In this formulation 

the action control is [ , ]  T

t t ta  where the translational velocities produce forward 

linear motion and the rotational velocities produce counterclockwise rotation of the 

robot wheels.  Thus to compute the subsequent state at 1t  a desired algorithm 

would receive as input the pose [ , , ] T

ts x y  and action [ , ]  T

t t ta  while 

outputting the subsequent state 
1 [ , , ]

   T

ts x y .   The POMDP we formulate does 

not consider rotational and translational velocities. 

4.2.3 Sensory Model 

An important part of the POMDP model for decision-making is the observation 

model.  There are varieties of sensors used in mobile robots.  Some are laser range 

finder, ultrasonic sensors, stereovision cameras, wheel encoders, contact and 

proximity sensors, temperature sensors etc.  They are typically classified in two 

functional categories namely proprioceptive and exteroceptive sensors.  

Proprioceptive sensors measure the robot’s internal state while exteroceptive 

sensors measure the environment’s state.  Since we are interested in observations in 

partially observable environments, the sensory model must handle sensory noise 
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and measurement errors.  This is due to the intrinsic uncertainties in the robot’s 

perceptual system.   The observation model is given by 1( , )t t tp z s a , where tz  

defines the robot’s observation at time t , ts  defines that state of the system which is 

the robot’s pose at time t  and 1ta  the previous action controls at time 1t .  We can 

use both the action model and sensory to update the state of the system as 

information is acquired during operation.  Also the type of sensory data collected 

affects how it is modeled and the amount of computing time required to process the 

data.  For instance 3D data requires considerably more computing power than 2D 

data. 

4.2.4 Recursive State Estimation 

A key issue in robotics and decision-making in general is to estimate the state of 

the system after an action and observation has been made.  Without doing so it will 

not be possible to determine the necessary controls for the robot to achieve its task.  

This is equivalent to the belief update we discussed in 3.2.2.  It is especially 

important since it allows us to continuously localize the robot in its environment.  

To compute the state estimates we typically use a variant of the Bayes Filter 

algorithm which is a recursive algorithm.  We present the algorithm but do not 

discuss its variant such as the Gaussian Filters, Particle Filters, Kalman Filters or 

Extended Kalman Filters.  Further details can be found in Bar-Shalom & Li (1998), 

Gustafsson et al. (2002) and Thrun, Burgard & Fox (2006).   
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The Bayes’ filter algorithm computes the belief ( )tb s  recursively from 

observation tz , action ta  and previous belief at time 1t  , 1( )tb s  .   To describe the 

algorithm better, consider that we have a set of data 0 1 1{ , ,..., , }t t td a z a z  at time t 

that consists of the history of observations and actions.  The sensor or observation 

model is given by ( )t tp z s , the action model is given by 1( | , )t t tp s a s   and the prior 

probability is given by ( )p s . The problem is to estimate the posterior 

1 1 0( ) ( | , ,..., , )t t t tb s p s z a z a .  We assume the system is Markovian and neglect 

sensory noise.  The Bayes filter can be computed as follows: 

 1 1 0( ) ( | , ,..., , )t t t tb s p s z a z a , (4.5) 

 1 1 0 1 1 0
1 1 0

1 1 0

( | , ,..., , ) ( | ,..., , )
( | , ,..., , )

( | ,..., , )

t t t t t
t t t

t t

p z s a z a p s a z a
p s z a z a

p z a z a

 




 , (4.6) 

 1 1 0 1 1 0( ) ( | , ,..., , ) ( | ,..., , )t t t t t tb s p z s a z a p s a z a   , (4.7) 

 1 1 0( ) ( | ) ( | ,..., , )t t t t tb s p z s p s a z a  , (4.8) 

 1 1 1 0 1 1 1 0 1( ) ( | ) ( | , ,..., , ) ( | ,..., , )t t t t t t t t tb s p z s p s s a z a p s a z a ds       , (4.9) 

 1 1 1 1 1 0 1( ) ( | ) ( | , ) ( | ,..., , )t t t t t t t t tb s p z s p s s a p s a z a ds       , (4.10) 

 1 1 1 1( ) ( | ) ( | , ) ( )t t t t t t t tb s p z s p s s a b s ds      . (4.11) 

 Equation (4.6) is simply the Bayes’ Theorem.  In equation (4.7)  is known as the 

normalizing constant given by 1 1 01/ ( | ,..., , )t tp z a z a  .  In equation (4.8) and (4.11)

we apply the Markov assumption and we use the law of total probability in equation 

(4.9).  The reader can notice the similarity between equation (4.11) and (3.7).  Also 

in equations (4.9)-(4.11) integrals are used instead of summation due to the fact 
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robots operate in real worlds which are both spatially and temporally continuous.  

However in practice the state is usually discretized allowing for the use of 

summations.  Therefore equation (4.11) can be written as: 

 
1

1 1 1( ) ( | ) ( | , ) ( )
t

t t t t t t t

s S

b s p z s p s s a b s


  



  . (4.12) 

The belief update component of the algorithm is shown in table 4.1.  In order to 

compute the belief recursively it is initialized with 0( )b s .  This initial belief may be a 

Gaussian distribution over the state space if the initial state is known with some 

degree of confidence, a uniform distribution if we are completely unaware of the 

initial state or a probability mass function over a specific state if we are certain of 

the initial state.  In general the algorithm simply consists of a predictive step and an 

observation update step. 

 Table 4.1 – Bayes Filter Algorithm  

 

State estimation is also very important in solving a fundamental problem in 

robotics called Simultaneous Localization and Mapping (SLAM).  The problem arises 

when the robot has to navigate unknown environments without the use of a map.  It 

Bayes Filter Algorithm 

Input ( 0, , ( )t ta z b s ) 

1. for all ts S   

2. 
1

* 1 1 1( ) ( | , ) ( )
t

t t t t t

s S

b s p s s a b s


  



   

3. *( ) ( | ) ( )t t t tb s p z s b s  

4. end for 

Output: return ( )tb s  
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must then generate a map.  But to generate a map it needs to know its pose within 

the environment and to know it pose it needs a map.  Therefore it must 

simultaneously localize and map.  We do not consider the SLAM problems in this 

work as we assume the map of the environment is given.  However is still important 

to mention since the formulation of SLAM techniques and methods are highly 

researched.  Thrun (2008) reviews the three important approaches to solving the 

SLAM planning which apply the Extended Kalman Filters (EKFs), Sparse Graphs and 

Particle Filters.  

4.3 Autonomous Robot Navigation using POMDPs 

In this section we discuss the literature on implementation of POMDPs for 

decision-making in autonomous robots.  We especially focus on its application in 

navigation path planning and motion control.  Ibekwe & Kamrani (2008) provided a 

general overview on robotics while Seigwart, Nourbakhsh & Scaramuzza (2011) 

discuss specifically on autonomous mobile robots.  Currently active research is 

dominant in the Artificial Intelligence and Computer Science communities however 

POMDP research originated from the Operations Research field.  Much of the current 

research in POMDPs has been focused on formulating algorithms that solves models 

with large state space over longer time horizons.  Applying it to robot navigation is 

still an open problem.  Essentially, the navigation problem reduces to a controls 

problem where we want to select control actions given the current knowledge and 

perceptual information.  As is the main focus of this work, the models should handle 

the inherent uncertainty of the robot interactions.  In the real-world on the other 
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hand, the use of POMDPs for localization are limited.  Theocharous, Murphy and 

Kaelbling (2004) provide a method which uses a Dynamic Bayes Network (DBN) to 

represent a Hierarchical POMDP for the localization in multi-resolution spatial maps 

for indoor navigation.  Even though we focus on navigation tasks, it is not the only 

application of POMDPs in robotics.   Glashan et al. (2007) highlight the use of 

POMDPs for manipulation tasks while Zhang, Sridharan & Washington (2013) 

introduce a hierarchical decomposition of a POMDP that includes adaptive 

observation functions, automatic belief propagation and constrained convolutional 

policies that allow a team of robots to preserve task achieving behaviors using a 

visual sensing technique. 

4.3.1 Robot Navigation with POMDPs in Literature 

Most approaches for autonomous robot navigation focus on indoor 

environments.  Littman, Cassandra & Kaelbling (1995), Cassandra, Kaelbling & 

Kurien (1996) and Koenig & Simmons (1998) provide some of the early noteworthy 

attempts for the application of POMDPs for robot navigation.  They present a 

POMDP architecture that, at the time significantly outperformed a landmark-based 

approached.  Pineau & Thrun (2002) describe the implantation of POMDPs for high-

level control of robot behaviors.  López et al. (2007) outline a global navigation 

architecture using a POMDP called SIRAPEM used for assisted care for the elderly 

and disabled.  On the other hand some researchers (Likhachev & Stentz, 2006) have 

opted to take a different approach citing the hardness of the POMDP planning.   

Likhchev & Stentz (2006) use a probabilistic planner called PPCP in partially known 
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environments that was able to scale to environments with thousands of states while 

Marder-Eppstein et al. (2010) describe a method for indoor navigation of a PR2 

robot using voxel-based 3D mapping that models unknown spaces in indoor 

environments. 

Ross, Chaid-Draa & Pineau (2008) present a Bayesian reinforcement learning 

method using Continuous POMDPs.  The paper proposes the use of a particle filter 

algorithm to compute the posterior distribution of the model parameter.  It then 

applies a planning algorithm that uses trajectory sampling to determine the actions.  

Their method selects actions optimally that tradeoff between state estimation, 

environment exploration and knowledge utilization.  Some research involving multi-

robot models using POMDP have been conducted.  Chuang, Gerkey, Gordon & Ng 

(2005) put forth an open-loop planning method performance metrics in the 

benchmark problem tag.  They argue that even though open-loop plans are less 

robust than full policies they still provide reliable performance that can be applied 

in certain scenarios.  Roy, Gordon & Thrun (2005) present a method of compressing 

the belief space using an Exponential Family Principal Component Analysis (E-PCA). 

The result is that the problem space that can be solved is considerably increased.  A 

recent algorithm called Automated Model Approximation (AMA) (Grady, Moll & 

Kavraki, 2013) focuses on constructing approximations of the state and action space 

that are domain-specific to compute efficient policies.  This method and others 

described are approximate techniques that attempt to solve POMDPs which in 

practice has demonstrated success. 
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4.3.2 Sampling-Based Motion Planning for Mobile Robots 

It is instructive to discuss other approaches to the motion planning problem for 

autonomous robots in order to have an intuition on how they contrast with the 

POMDP approach.  Sampling-based motion planning uses a graph model to 

approximate the connectivity of the search space of the planning problem whereas 

in POMDPs we generates planning policies over the entire belief space in the exact 

case.  Sample-based planning methods are computationally complex (Latombe, 

1991) so approximations such Rapidly-expanding Random Trees (RRT) (LaValle, 

1998 and LaValle & Kuffner, 2001) and Probabilistic Roadmap Method (PRM) 

(Kavraki et al., 1996) have been proposed to minimize the complexity.  

Alterovitz, Siméon & Goldberg (2007) present a sampling-based motion 

planning framework called Stochastic Motion Roadmap (SMR) that constructs a 

roadmap by sampling collision-free states in configuration space and locally sample 

motions at each state to estimate state transition probabilities for every possible 

action.  The roadmap is then used to formulate an MDP to generate optimal plans.  

Bhatia, Kavraki & Vardi (2010) propose a geometric approach where a high-level 

planner formulates high-level plans for the discrete abstraction of the system model 

while a low-level sampling-based planner uses both the physical model of the 

system along with the high-level plans to search the state-space for a feasible 

solution of the desired trajectories.  They show that the geometry-based approach 

improves computational speed of benchmark sampling-based techniques.  Bhatia, 

Maly Kavraki & Vardi (2011) outline an extension of the geometric approach called 

a multilayered synergistic planning framework which includes temporal goals over 
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a subset of the workspace.  Recent advances have been made in providing 

simulation tools to explore sampling-based algorithms such as the OMPL (Şucan, 

Moll & Kavraki, 2012).  An example of an implementation is shown in figure 4.2. 

 

Figure 4.2 – The Open Motion Planning Library on ROS (Courtesy of ROS.org) 

One of the more recent methods we describe is the use of Task Motion Multigraphs 

(TMMs) to solve the simultaneous task and motion planning (STAMP) problem 

(Şucan & Kavraki, 2012).  A TMM is a directed acyclic multigraph ( , )M M MG V E  

such that { | ( ) }MV Q S    is a finite set of vertices and every vertex   is 

associated with a set of robot states ( )Q S  . S is the complete state space of the 

robot while ( )Q  is a sampled set of states.  ME is a finite multiset of edges that 

represents all the motion planning possibilities between every pair of nodes 

( , )i j M Mv v V V  . MDPs as described in chapter 2 along with TMMs are used to 

compute robust task plans. 
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The sampling-based approach are computationally less expensive than POMDPs 

hence its pervasive use in cutting edge motion-planning research.  However 

POMDPs handle both the uncertainty from the motion and the noise from sensory 

observation to generate future plans in a more principled manner.  The difficulty is 

that it must construct such plans in belief space.  Nevertheless recent research show 

that empirically promising result can still be obtained as described in Porta, Spaan & 

Vlassis (2005), Candido & Hutchinson (2011) and Marthi (2012).  When solutions to 

a motion planning problem are computed, they often have to be recomputed when 

the model condition changes.  Also Kurniawati et al. (2012) outline a Guided Cluster 

Sampling motion planner that considers three sources of sensory uncertainty during 

active sensing.  A sampling distribution based on the sensory data is used to 

partition a set of selected belief points into smaller subsets and an optimal policy is 

computed over this subset.  Furthermore Kurniawati & Patrikalakis (2013) propose 

a Point-Based Policy Transformation (PBPT) algorithm that transforms the original 

solution to the POMDP by modifying the set of sampled belief points. 

4.4 Summary 

In this chapter we discussed the navigation and motion planning using POMDP 

controllers and sampling-based techniques.  POMDPs provide a robust framework 

for modeling robot-environment interaction in uncertain and dynamic 

environments.  Classical methods such as deliberative or behavior-based models 

either fail under inherent system uncertainty or are not scalable to larger more 

complex robot platform.   As we have now seen, although POMDPs provided a 
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reliable framework there are still numerous limiting factors for widespread 

implementation in real-world domains such as office, home or factory 

environments.  A diverse range of algorithms exists that have been applied in robot 

motion planning and navigation.  In this work we do not focus on theoretical 

analysis of algorithms but rather propose a method for exploiting domain-specific 

features.  We compute efficient policies using a state-of-the-art POMDP solver.  We 

anticipate that by exploiting structured domain-specific features of the operating 

environment we should have greater success of implementing a POMDP-based 

robot controller in more complex situations.  We discuss our proposed methodology 

in the next chapter and present experiments to demonstrate its validity.   
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Chapter 5  

A Methodology for Goal-Specific Representation of POMDP 

Model Parameters 

5.1 Overview 

In preceding chapters we considered cases where the agent or decision-maker 

was perfectly aware of the world state after it selects an action though the effects of 

the selected actions were unpredictable.  We mentioned that this is not a practical 

model of real-world agent-environment interactions as the agent or decision maker 

has to consider uncertainties in its perception as well.  We then discussed using a 

POMDP model since they explicitly model perceptual uncertainty.  Solving the 

POMDP model required generating policies—a description of how the agent should 

act based on its beliefs rather than the true state of the world.  This led to 

computational issues as the agent’s beliefs are potentially infinite.  We then 

methodically described a variety of state-the-art methods and algorithms 

researchers have developed to overcome these difficulties in order to solve the 

POMDP model efficiently.  Most techniques are not optimal but are within an upper 

and lower bound of optimality as heuristics are used to sample the belief space for 

computational tractability.   

While the techniques described have advanced the state-of-the-art and solved 

relatively large sequential decision-making problems they are still ineffective in 

many complex real-world scenarios requiring lengthy time horizons to make 
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decisions.  Minimal attention has been given to how the properties of the task 

environment affect the formulation of problem parameters.  Recently Shani, Pineau 

& Kaplow (2012) have recognized this and allude to the importance of considering 

the properties of the task domain in selecting a solver rather than selecting the 

lastest and fastest solver.  Researchers often assume that if we have fast solvers, 

then problems modeled by the POMDPs should be trivial without consideration of 

the task properties.  This is a flawed assumption as complex real-world problems 

require prohibitively large number of parameters that must be enumerate to 

effectively solve them and these parameters must be able to capture the essential 

features of the problem.   

 As a result we proposed a methodology for modeling the task environment 

called Goal-Specific Representation (GSR) that we anticipate will improve the 

computational efficiency in solving complex real-world problems by exploiting 

structural properties of the task environment.   Along with the task requirement we 

can significantly reduce the parameters required to model problem space.  The idea 

behind the GSR approach is based on the fact that every agent operates within a 

context local only to that environment.  A case in point is in the robot navigation 

problem where it is desired that the robot exhibit autonomous goal-based behaviors 

in its task environment.  If we are given a known map, the starting location and the 

goal location within this map then we can ignore states that do not contribute to the 

robot navigating to its goal location.  In a sense we are generating sub-maps.  Also no 

two tasks are identical in the real-world even if the maps do not change.  Obstacles 

can be added or removed between tasks or even while the robot is performing its 
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task.  So it is also necessary to account for the dynamic nature of the environment.  

In this work we don’t explicitly model the dynamics of the task domain. To the best 

of our knowledge this approach has not been explicitly formulated in literature and 

we anticipated that the methodology described can be adapted to complex domains.  

From our literature survey, the work most closely related to our proposed 

methodology is the variable grid decomposition method by Kaplow, Atrash & Pineau 

(2010). 

5.2 The GSR Methodology 

We apply the GSR methodology to the autonomous robot navigation problem.  

The goal is to generate policies that guide the robot’s behavior.  We model the 

decision-making process using a POMDP model and solve the POMDP with a state-

or-the-art solver called APPL based on the SARSOP Algorithm by Kurniawati, Hsu 

and Lee (2008).  We proceed to conduct empirical analysis on policies generated 

and test them on a real robot.  We do not propose a new algorithm to solve the 

POMDPs but a methodology to reduce the parameter space required to model 

complex environments such as warehouses, offices or hospitals.  Ultimately our goal 

is to deploy the proposed methods for industrial and service applications.   

Consider a robot navigating an underwater domain. The model of this domain 

will differ from that of a robot operating on the planet Mars.  The underwater 

domain will have to be modeled as a 3D voxel grid.  Therefore it is imperative the 

state space is reduced.  The GSR approach is robot invariant, meaning that it can be 

applied to any platform but obviously may perform differently between two varying 
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platforms.  As highlighted in preceding chapters, various approaches exist to solve 

the robot navigation and motion planning problem.  Adopting the POMDP 

formulation has met with varying degrees of success.  If we have a map of the 

environment we only consider states closest to the initial state and goal state.  The 

states of the environment are first decomposed to disregard the set of likely non-

reachable states.  Then planning is performed only on the reachable states in the 

sub-map.  This indirectly reduces the dimensionality of the belief space the robot 

plans over.  An optimal set of reachable belief states *

0( )b  are then extracted from 

the set of reachable beliefs 0( )b   which in turn are sampled from the belief space 

B .  This is presented by Kurniawati, Hsu & Lee (2008).   The result is that we only 

consider states and beliefs that are relevant for reaching the goal state.  By 

implication, the tradeoff is that the computed control policies are approximations as 

the entire state-space is not considered.  However since we are more interested in 

reliable and efficient behavior of the robot rather than theoretically optimal 

solutions, these approximations will suffice. 

5.2.1 Goal-Specific Representation 

Operating environments for autonomous robot possess structure.  In an office 

environment for instance desks, cabinets and other furniture are rarely moved.  

Thus they can be modeled as stationary objects.  Typically the most dynamic aspects 

of the environment are people moving and other salient motions such as flying 

journal papers or changing the position of staplers that do not generally interfere 

with the task achievement of the robot.  Another environment could be a warehouse 
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or an automated manufacturing facility where products and packages are moved to 

different positions repeatedly.  Some equipment in a manufacturing facility are 

rarely moved and can also be considered stationary.  We assume problem scenarios 

where a map of the environment is given.  The GSR algorithm is describes in table 

5.1.  The algorithm simply prunes areas of the map that are not necessary for goal 

completion.  It does this by selecting free cells in the rows of the grid that are both 

above and below the initial and goal states then prunes them from the map.  It also 

does this for the columns of the grid by selecting columns before and after the initial 

and goal state then prunes them from the map.  An illustration of this is shown in 

figure 5.1. 

                       

      a            b 

Figure 5.1 – (a) A Map of a Task Environment Depicting the Initial and Goal State (b) A GSR-Map of 

the Task Environment in Red Outline 

 

  



  

78 

Table 5.1 – A Goal-Specific Representation (GSR) Algorithm 

 

Goal-Specific Representation (GSR) Algorithm  

input  _ ( ),( , ) , ( , ) , ( , )initial goal landmarkdomain map m n i j i j i j  

1. [1: ]i m  

2. [1: ]j n  

3. if ( , )goali j  is within ( , )landmarki j (checks if goal state is within landmark state) 

4. then ( , ) ( , )goal landmarki j i j  

5. end if 

6. for all free cells in rows i (scans all rows and delete free cells) 

7. if  initiali i  and 
goali i  

8. then delete free cells in rows 1: i  

9. end if 

10. if initiali i and 
goali i  

11. then delete free cells in rows :i m  

12. end if 

13. end for 

14. for all free cells in columns j (scans all columns and deletes free cells) 

15. if  initialj j  and 
goalj j  

16. then delete free cells in columns 1: j  

17. end if 

18. if initialj j and 
goalj j  

19. then delete free cells in columns :j n  

20. end if 

21. end for 

22. return _GSR map  

output (GSR map) 
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If a map is not given then the robot must actively explore the environment and 

generate a map. Popular techniques used to generate maps are Simultaneous and 

Localization and Mapping (SLAM) algorithms such as graphSLAM or EKF SLAM.  We 

do not consider such cases in this work as we assume a map is given.  Most 

applications of POMDP in robot motion planning and navigation discretize the task 

domain into uniform resolution grids and formulate policies over those states.   

Recall that physical environments are continuous both spatially and temporally and 

must be approximated using discrete models.  As referred to, a related method to 

our approach is a variable resolution technique postulated by Kaplow, Atrash & 

Pineau (2010).  The technique assigns aspects of the domain with larger grid sizes 

where there are open spaces and smaller grids sizes closer to walls.  Also in 

Kurniawati et al. (2011), they use a method called Milestone Guided Sampling which 

plans over a compact set of states in state-space.  As a consequence the sampled 

belief space is reduced.  An example of a robot generated map where the proposed 

method can be applied is shown in figure 5.2.  It is a map generated by a Turtlebot 

robot that explores an office domain. 

 

Figure 5.2 – A Sample Map Generated by a Turtlebot (Courtesy of ROS.org) 
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We consider states of the environment that are represented as 2-dimensional 

discrete grids to approximate a continuous space 2D maps.  Figure 5.3 shows a 

sample of a robot generated maps with a grid overlay.   

 

Figure 5.3 – A Sample Map Generated by a Turtlebot with a Grid Overlay 

In practice as the scales of the task domain increase in size of the grid resolution 

decreases to maintain computational tractability since computing an efficient 

control policy tends to be infeasible for high resolution grids.  A GSR-map can be 

generated for the figure 5.3 if we know the initial location and the desired goal 

location.  To find the initial location we may use state estimation technique such as 

Bayes filters or particle filters.  An example of the corresponding GSR-map may look 

like figure 5.4.   We use the locations on the GSR-map as well as the orientation as 

state inputs for the POMDP model along with a suitable transition function, 

observation function and reward function.  We then solve the POMDP using a point-

based solver and generate a control policy that guides the robot’s actions.  The 
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transition function, possible observations and observation functions are modeled 

based on the structure of the environment and the level of abstraction required.   

 

Figure 5.4 – A GSR-Map Generated by a Turtlebot with a Grid Overlay Depicting the Initial Location 

and Goal Location 

The goal state is absorbing and receives the largest reward.  Most POMDP 

models are fairly abstract in that they do not describe details of the control signals 

required to actuate the robot.  It is intuitive to reason that low level controls depend 

on the type of robot and quality of its sensory hardware.  Once we have a control 

policy we use it to guide the behavior on a real robot.  The robot of choice is the 

Turtlebot 2® that runs on the Robot Operating System® (ROS).  The experimental 

setup, analysis and discussion are described in the sections that follow. 

5.3 A Sample Problem 

In this section we describe a sample problem to understand the GSR 

methodology.  The problem captures the essential features of a task environment.  
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The problem scenario can be applied to similar tasks in increasing order of 

complexity. 

5.3.1 Problem Scenario 

The problem scenario is as follows: An autonomous robot is deployed in an 

automated manufacturing environment.  Its goal is to efficiently transport products to 

one of eight specified collection locations in the facility as shown in figure 5.5.  Only the 

initial location is specified since the robot has not been given a goal location. 

 

Figure 5.5 – A Grid Map of a Task Environment Depicting the Initial Location of the Robot 

5.3.2 Problem Description  

The robot starts at location starts and arrives at a goal location 
goals .  The map of 

the environment is decomposed into a finite set of uniform m n  grids where m is 

the number of rows of the grids while n is the number of columns.  For instance 

location 
3,4s  is the cell in the 3rd row and 4th column.  If the task is to move the 
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product to location 3, then the goal location is either 
4,5s  or 

5,6s .  Likewise if the task 

is to move the product to location 6 then the goal state is 
6,7s .  

The problem is as follows: Given a map of an environment decomposed into 

uniform grids, a starting state and a goal state, formulate the POMDP model such 

that only a subset of states required to reach the goal state is used for planning in 

the POMDP model.  We call this a Goal-Specific Representation (GSR) of the POMDP 

model and the resulting state GSR-states.  For instance suppose our goal state is 

location 3 with orientation 0o then the map represented with GSR states are 

1,1 1,2 5,6{ , ,..., }s s s .  The robot selects the goal state that is the most reachable state 

from its initial state.  From the example it is 
4,5s  from the set 

4,5 5,6{ , }goals s  .  In this 

specific problem we assume that the goal location in the front of collection site for 1, 3, 5 

and 7.  While the collection site 2, 4, 6 and 9 are located to side of the collection zone. 

5.3.3 The GSR POMDP Model 

The selection of the model parameter such as the transition function and 

observation function are done heuristically based on the capabilities of the robot.  

As alluded to these parameters are highly dependent on the type of robot adopted 

for the described task.  

The GSR POMDP model can be described as 0, , , , , ,GSRS A T R Z O b   

 Set of States: The set of states are the robot’s configuration ( , , )x y   where 

,( , ) i jx y s , 1,2,...,9; 1,2,...,7i j   . The robot has one of 8 possible orientation 

angles {0 ,45 , 45 ,90 , 90 ,135 , 135 ,180 }           .  With this configuration there 
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are a total of 504 possible states if obstacle cells are included and 344 possible 

states if obstacle cells are ignored. Once the GSR algorithm is applied the states 

are reduced to GSR states depending on the initial location and goal location.  In 

the example described in 5.3.2 the GSR state are the grid cells 

{ | 1,...,4; 1,...,7}ijs i j   where 
, 4,1 4,2,i js s s since they are not free cells along 

with all 8 orientations.  This is illustrated in figure 5.6b.  Thus the states are 

reduced to 144 possible states for the specific problem.  

 Set of Actions: There are a total of 6 actions that the robot can perform.  These 

actions are signals send to the motor to rotate at a certain angular velocity that 

corresponds to the desire length of travel.  It can move forward with a heading of 

0o, 45o, -45o, left at 90o and right at 90o.  The last is the do_nothing action.   

{ 1 (0 )a forward  , 2 (45 )a forward  , 3 ( 45 )a forward   , 4 (90 ),a left 

5 ( 90 )a right   , 6 _a do nothing }.   

 Transition Probability Function: Since transitions in real domains are 

uncertain we model the transition function ( , , )T s a s  with 0.9p   success that 

the robot translates to the desired state when it performs action a and 

0.0125p   that it translates to any of the 8 possible adjacent states when it 

performs the same action a.  There is a probability 0p   for the all other states 

since it is safe to assume the robot cannot teleport.   

 Reward Function: ( , )R s a = +10 for goal state and -0.05 for all others, bumping 

into wall is -1 and boundary states -2. 
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 Set of Observations: There are 3 possible observations the robot can make 

from it sensors.  They are 1 2 3{ , , }z free z obstacle z goal   .  We consider these 

observations to be independent of the robot orientation. 

 Observation Probability Function: The robot observes the correct state 

probabilistically by ( , , )O s a z .  However we may model the observation function 

with just the subsequent state and ignore the actions that led to the subsequent 

state.  That is, we have ( , , ) ( , ),O z a s O z s a A    .  This further simplifies the 

model allowing for computational efficiency.  If the subsequent state is free the 

robot observes 1z free  with 0.9p   probability.  The 2 other observations 

have the probability 0.05p   of being observed.  Due to sensory noise if the 

subsequent state has an obstacle such as a wall or machine, it is observed with 

probability 0.85p   while the other 2 observations have a probability 0.075p   

respectively.  Lastly the goal state is observed with 0.95p   while the other 2 

observations are observed with 0.025p  .  This is shown in table 5.2. 

Table 5.2 – Observation Probabilities  

True State Observation 

Free 1 2 30.90, 0.05, 0.05z z z    

Obstacle (wall, machine etc.) 1 2 30.075, 0.85, 0.075z z z    

Goal 1 2 30.025, 0.025, 0.95z z z    

 

 Initial Belief: The initial belief is 
0 1b   for the initial location. Since we assume 

the robot knows it initial location with certainty.  We use the discount factor

0.95   to model the desirability of future rewards. 
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Representing model parameters and data collection can be an extremely tedious 

task as the state space increases.  Recall that all the data has to be enumerated since 

they are countably finite.  For instance the transition probability function ( , , )T s a s  

can be generated as a lookup table with 1,524,096 entries.  Luckily most of the 

entries are 0p   and can be ignored since only transitions to the 8 adjacent cells are 

considered.  For a robot operating environment there is almost zero probability of 

being in a none-adjacent cell.  This will only occur if there is a problem with the 

motor system and the robot fails to follow the motor commands.  It may exhibits 

erratic runaway behavior.  Also the observation probability function ( , , )O z a s  can 

have as much as 9,072 entries.  But since we have defined all observations as equally 

likely for every action the data is reduced.  Likewise the reward function ( , )R s a  will 

have 3024 entries if completely enumerated. 

Some GSR maps are illustrated in figure 5.6.  Notice that all the GSR maps 

outlined in red have at least 2 corner grid cells that are either the goal state or initial 

state.  This tightly binds the number of states required for planning.  Recall the 

original domain map has 504 states.  The corresponding GSR state for the maps in 

figures 5.6b, 5.6d, 5.6f and 5.6h is shown in table 5.3. 

Table 5.3 – States of the Domain Map and GSR Map 

 Domain Map GSR MAPs 

Map 1 | | 344S   | | 144S   

Map 2 | | 344S   | | 216S   

Map 3 | | 344S   | | 216S   

Map 4 | | 344S   | | 248S   
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Figure 5.6 – Sample GSR Maps of the Domain Map 
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5.4 Empirical Analysis 

In this section we describe the problem used to conduct experiment.  The 

domain selected is adapted from the Hallway2 layout present by Littman, Cassandra 

& Kaelbling (1995).  The layout has served as a benchmark problem for POMDP 

research.  We call the adapted model automation since we are interested in a 

manufacturing layout.  We create corresponding GSR maps for the environment and 

plan over the GSR maps. 

5.4.1 POMDP Model for the Automation Problem 

The layout for the automation problem is shown in figure 5.7.  In the automation 

problem, the robot is given some parts at an initial location in the domain map (grid 

cell with green robot).   

 

Figure 5.7 – Domain Map for the Automation Problem (Layout Adapted from Littman et al., 1995) 

Its task is to efficiently move the part from this initial location to one of 4 drop off 

locations.  The drop off location must be specified to the robot a priori.  Based on the 

Y 

X 



  

89 

drop off location the robot must autonomously plan a route to the desired location 

given the domain map and a good estimate of its initial location.  Although it is 

possible to have numerous possible orientations for computational reasons we 

assume that the robot is in one of 4 possible orientations.   

On the implemented solver they are (0 , 90 ,90 ,180 )      where the 0  orientation 

is parallel to the Y-axis and the states in each grid are indicated clockwise.  The 

robot can perform one of 5 possible actions at a time in one of the 4 orientations 

( _ , , , , (180 ))do nothing forward right left rotate  .  The robot all has 4 sensors in each of 

its quadrants which can detect the presence of an obstacle by registering an on-off 

switch.  All 4 sensors operate at a given time so the robot can make a total 16 

possible observations.  Also the robot observes a signal when it has arrived at its 

goal location.  It receives a reward only when it has arrived at the designated drop 

off location.  Since the robot cannot know precisely where it is except for the initial 

location and goal location, it must maintain a belief of the current state throughout 

its navigation.  The problem is to provide a policy to guide the robot’s actions based 

on its beliefs.  For the 4 drop off locations we created GSR maps that the robot uses 

to guide action selection. The model parameters are as follows: 

POMDP model automation: 0, , , , , ,S A T R Z O b  : 

 Set of States: | | 92S   for 4 possible orientations in each grid cell. 

 Set of Actions: | | 5A  ( _ , , , , (180 ))do nothing forward right left rotate   

 Set of Observations: | | 17Z  one for each combination of the 4 quadrant 

sensors plus the observation of the goal state. 
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 Transition Probability Function: The transition  ( , , )T s a s  between states is 

approximately 0.7p   in the desired direction and 0.1p   in the 3 other 

primary adjacent directions.  There is also a small probability of translating to a 

different orientation depending on the current orientation.  See appendix A on 

where a complete specification of the transition probability can be found. 

 Observation Probability Function:  The robot observes the correct state given 

all the actions at approximately 0.73p  .  The distribution for all other states 

are according to how close the observation made is to the actually state.  Again 

see appendix A where a complete specification can be found. 

 Reward Function:  The robot receives no reward until it has arrived it location.  

The reward ( , ) 1R s a   for the correct orientation in the goal state.  This is 

important since the robot may be in the correct location but in a wrong 

orientation. 

 Initial Belief: The initial belief is 
0 1b   for the starting state. 

 Discount Factor:  The discount factor is 0.95   

5.4.2 The GSR Maps of the Automation Problem 

We now describe and illustrate the GSR maps for the automation problem.  As 

discussed in section 5.3, the domain maps are generated as a grid of size (5 7) .  The 

cells (1,1),(1,7),(3,1),(3,7),(5,1),(5,7)  are automatically deleted from the domain map 

to resemble domain in figure 5.7.   The resulting domain map is generated and the 

states for each map are labeled as shown in figure 5.8.  Labels 1-4 represents the 
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location of the robot plus each of the 4 orientations.  However when solving the 

POMDP the syntax require that we label from 0-91 (still 92 total states).  Due to the 

configuration of the domain we place a landmark at a grid cell that generates a map 

that is navigable.   

 

Figure 5.8 – State Labels for the Automation Domain Map 

 We now illustrate each of the GSR maps based on the goal location in figures 5.9-

5.12. 

 Drop Location A: 

  

      a            b 

Figure 5.9 – GSR Map for Drop Location A 
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 Drop Location B: 

 

      a            b 

Figure 5.10 – GSR Map for Drop Location B 

Notice that in figure 5.9 and 5.11 are similar with the exception of the orientation of 

the robot.  In drop location A the robot must be oriented at 180  (w.r.t. the global 

reference frame) in grid (2,4) while it has to be oriented at 0  in the same grid 

location for drop location C. 

 

 Drop Location C: 

   

      a            b 

Figure 5.11 – GSR Map for Drop Location C 
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 Drop Location D: 

 

      a            b 

Figure 5.12 – GSR Map for Drop Location D 

In figure 5.9 and 5.12 we had to add a landmark as described in the GSR algorithm.  If 

we did not do so the generated map will not be navigable as shown in table 5.1.  The 

landmark is depicted with a blue star.  

5.4.3 Solving the GSR POMDP  

To solve the GSR POMDP model, we used a point-based POMDP solver called 

APPL ver. 0.95.  It is based on the paper by Kurniawati, Hsu & Lee (2008) and Ong, 

Png, Hsu & Lee (2009).  This solver was selected since policies are solved over the 

set of optimal reachable belief points *

0( )b  called the optimal reachable belief 

space rather than the set of reachable belief points 0( )b .  Both are subsets of the 

belief space B.  The solver significantly improves the computational efficiency of 

solving POMDPs when compared to other existing solvers.  APPL ver. 0.95 is based 

on ZMDP solver by Smith (2007).  Both the APPL and ZMDP are based on the 

POMDP-Solve ver. 5.3 software and use file format developed by Cassandra 
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(1998).  Details on the discussed software can be found at the websites listed in 

table 5.4.  The APPL solver was implemented on a PC that runs a 64-bit Linux-based 

OS Ubuntu 12.04 LTS (Precise) with a 2.4 GHz Intel® Duo Core processor and 4GB of 

RAM.  The GapMin solver is one of the latest solvers that run on MATLAB.  It is 

based on the paper written by Poupart, Kim & Kim (2011).   The authors present an 

algorithm for improving the bounds on the upper and lower bound of the optimal 

value function of the POMDP.  We do not apply this solver in this problem. 

Table 5.4 – Websites for POMDP Solvers 

APPL ver. 0.95 http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl 

ZMDP ver. 1.1.7 http://www.cs.cmu.edu/~trey/zmdp  

POMDP-Solve ver. 

5.3 
http://www.pomdp.org/pomdp/code 

GapMin ver. 2011-

06-13 
https://cs.uwaterloo.ca/~ppoupart/software.html  

 

5.4.4 Turtlebot 2 Robot 

The Turtlebot 2 is an innovative platform developed by Willow Garage Inc. and 

distributed by Clearpath Robotics Inc.  It is shown in figure 5.13.  We selected the 

turtlebot because it provides a state-of-the-art robotic research platform with 

advanced sensory capabilities at an affordable price.  It is a highly suitable platform 

for autonomous navigation research.  Also its performance is sufficiently adequate 

in undertaking a diverse range of other robotics related research.  It is designed for 

an indoor environment and will be used to demonstrate proof of concept for our 

algorithm.  The specifications are shown in table 5.5.  It is important to note that the 

http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl
http://www.cs.cmu.edu/~trey/zmdp
http://www.pomdp.org/pomdp/code
https://cs.uwaterloo.ca/~ppoupart/software.html
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GSR-POMDP model is solved offline and the generate policies are based on the 

defined model parameters.  The solved policy is simply implemented on the robot.  

 

 

Figure 5.13 – A Turtlebot 2 Robot 

The turtlebot 2 runs on ROS which is an open-source meta-operating system 

developed on a Linux-based platform such as Ubuntu 12.04 LTS (Precise).  It offers 

similar capabilities that traditional operating systems do, which include the direct 

control of low-level device, hardware abstraction, libraries, code building, multiple 

computer networking and a host of other functionalities.  Details of the functionality 

of ROS for robotic devices can be found at www.ros.org. 

 An autonomous navigation task was performed on the turtlebot in a home 

environment.  Figure 5.14 illustrates a screenshot of a path travelled.  The cluster of 

coordinate axes indicates the robot’s position estimate, while the coordinate on the 

bottom toward the left indicates the global reference frame.  The coordinate toward 

the bottom right indicates the robot’s goal location.  We selected 2 destination 

http://www.ros.org/
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points and it performed the navigation task with relative success.  Curiously, it 

sometimes exhibited a rotating behavior when assigned to its goal location.  We 

could not immediately ascertain the cause of this.  Further inquiry will be conducted 

to understand what necessitated such behaviors.  It may perhaps be a mechanical 

issue. Such behavior further highlights the need to model the uncertainties in the 

robot’s action and perception.  On a positive note, two goal locations that were 

selected were eventually successfully navigated by the robot.   The robot achieved 

this task at a speed of roughly 20 cm/sec.  Our preliminary results on the turtlebot 

are promising.  It is important to note that there is a navigation package for the 

turtlebot that could support other motion planning methods. 

 

 

Figure 5.14 – An Autonomous Navigation Task on the Turtlebot 

 

Robot’s Position Estimate 

Global Reference Frame 

Goal Destination 
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Table 5.5 – Turtlebot Specifications 

Turtlebot Specifications 

Dimensions 35.4 cm x 35.4 cm x 42.0 cm 

Wheels 7.6 cm diameter 

Weight 6.3 kg 

Ground Clearance  15 cm 

Max Speed 65 cm/s 

Max Rotational Speed  180 deg/s 

Max Payload 5 kg  

Battery 2200 mAh Li-Ion (with 4400 mAh extended) 

User power 5V & 19V @ 1A, 12V @1.5A, 12V @5A 

3D Vision Sensor Microsoft Kinect 

Camera Color 640 x 480 px, 30 fps 

Depth Camera 640 x 480 px, 30 fps  

Encoders 25700 cps; 11 ticks/mm 

Gyroscope 100 deg/s 

Bumper Sensor  3x forward 

Other Sensor 2x cliff sensor and 2x wheel drop 

Computer 
ASUS with 1.6GHz Intel Atom N2600 
processor and 1GB RAM 

Operating System 
Robot Operating System (ROS®) running on 
Ubuntu 12.04 LTS (Precise)  
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5.5 Results and Discussion 

A snapshot of the results from the experiments is described in table 5.6.  We 

follow up with a detailed discussion of the finding. 

Table 5.6 – Results of GSR-Model Implementation 

 GSR POMDP Model Expected Reward Execution Time (secs) 

Task 1 

States | |S : 92 

GSR States | |GSRS : 24 

Initial location: ((2,1), 0 )   

Goal location: ((2, 4),180 )  

Actions | |A : 5 

Observations | |Z : 17 

(100 Simulations) 
Domains States: 0.662648 
GSR States: 0.837799 
 
(200 Simulations) 
 Domains States: 0.691717 
GSR States: 0.833081 

Domain States: 300.79 
 
GSR States: 300.71 
 

Task 2 

States | |S : 92 

GSR States | |GSRS : 20 

Initial location: ((2,1), 0 )   

Goal location: ((4, 2), 0 )  

Actions | |A : 5 

Observations | |Z : 17 

(100 Simulations) 
Domains States: 1.090130 
GSR States: 2.732290 
 
(200 Simulations) 
 Domains States: 1.082360 
GSR States: 2.748350 

Domain States: 302.4 
 
GSR States: 300.65 
 

Task 3  

States | |S : 92 

GSR States | |GSRS : 24 

Initial location: ((2,1), 0 )   

Goal location: ((2, 4), 0 )  

Actions | |A : 5 

Observations | |Z : 17 

(100 Simulations) 
Domains States: 0.653846 
GSR States: 0.949199 
 
(200 Simulations) 
 Domains States: 0.685472 
GSR States: 0.943234 

Domain States: 301.95 
 
GSR States: 301.57 
 

Task 4 

States | |S  : 92 

GSR States | |GSRS : 64 

Initial location: ((2,1), 0 )   

Goal location: ((4, 6),180 )  

Actions | |A : 5 

Observations | |Z : 17 

(100 Simulations) 
Domains States: 0.567472 
GSR States: 0.681748 
 
(200 Simulations) 
 Domains States: 0.558172 
GSR States: 0.684719 

Domain States: 301.8 
 
GSR States: 301.13 
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5.5.1 Data Analysis 

In this section we analyze the result from the experiments.  The data utilized had 

to be configured to the filename.pomdp format.  Appendix A directs the reader to 

where this format can be located.  Figure 5.15 illustrate the state labels according to 

this format. 

 

Figure 5.15 – Domain Map with Labels in the filename.pomdp syntax 

Recall that the goal of the GSR approach is to reduce the size of the state space 

with the expectation that computational efficiency will be improved.  To accurately 

compare the results of the policies generated from all 8 maps (4 for the domain map 

state and 4 for the GSR map), we ran the solver for approximately the same amount 

of time (300 seconds).  It is possible that the solver run indefinitely if the level of 

precision between updates in reduced.  The resulting -vectors, number of beliefs 

sampled, number of backups and the upper and lower bounds on the optimal 

expected value (rewards) were recorded.  Details of the results can be found in 

Appendix B.  The -vectors, beliefs, backups and expected rewards were compared 

for all 8 policies generated.  The generated policies were evaluated with 100 and 
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200 simulations and the expected cumulative rewards (value) for both simulations 

were documented. Table 5.7 outlines the results that were compared.  We also 

averaged the expected rewards from both simulations.  We found some interesting 

results from the comparisons as illustrate in figures 5.16, 5.17, 5.18 and 5.19.  The 

first were from the -vectors comparison in figure 5.16.  At first glance one might 

interpret from the chart that an excessive number of -vectors we generated for the 

GSR maps.  This is simply due to the fact that a large number of value iteration 

backups were performed as illustrated in figure 5.18.   

Table 5.7 – Results from POMDP Solver with Expected Cost 

Maps #Alphas #Beliefs #Backups 

Exp Rewards 

(100 Sim) 

Exp Rewards 

(200 Sim) 

Exp Rewards 

(Avg.) 

Domain 1 181 1671 14233 0.662648 0.691717 0.677183 

GSR 1 484 1719 22138 0.837799 0.833081 0.835440 

Domain 2 251 1603 14321 1.090130 1.082360 1.086245 

GSR 2 491 1963 19720 2.732290 2.748350 2.740320 

Domain 3 266 1651 13597 0.653846 0.685472 0.669659 

GSR 3 475 1771 23317 0.949199 0.943234 0.946217 

Domain 4 229 1432 16668 0.567472 0.558172 0.562822 

GSR 4 441 1409 17933 0.681748 0.684719 0.683234 

   

Also recall that the solver ran for virtually the same time as indicated in table 5.6 

so the large number of value iteration backups cannot be due to longer computation 

time for the GSR-based maps.  This observation suggests that the GSR model 

performed as anticipated.  Notice that quantity of beliefs generated were relatively 

the same even for the reduced GSR states.  A more careful observation will only 
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imply a marginal increase.  This is likely due to that fact that the APPL solver selects 

beliefs over an optimal reachable belief space and not the entire belief space.    

 

Figure 5.16 – Chart Comparing the Number of -vectors Generated 

 

Figure 5.17 – Chart Comparing the Number of Belief Generated 

The number of beliefs generated for the GSR map for task 2 were the largest due to 

the fact that the number of states in the GSR map is considerably smaller thus the 

corresponding belief space for generating a policy is significantly reduced.  This is 
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exactly what we expected to observe and why the GSR methodology is proposed as 

an alternative to the complete state representation of model parameters. 

 

Figure 5.18 – Chart Comparing the Number of Backups Computed 

 

Figure 5.19 – Chart Comparing the Expected Rewards from the Policy Evaluation 

There was no significant difference in the expected rewards for the 100 simulations 

and 200 simulations run.  The GSR map for task 2 has greater rewards because the 

number of initial states and the goal state are very close together as shown in figure 
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5.9.  The upper and lower bounds on the expected cumulative rewards can be found 

in Appendix B.  The number of value iteration backups for the GSR task 1 and GSR 

task 2 are very close.  They are 22138 backups and 23317 backups respectively.  

This is because they have very similar configurations as shown in figure 5.9 and 

figure 5.11.  In fact the only difference is that their goal state has different 

orientations. 

5.6 Summary  

In summary, we presented an approach called Goal-Specific Representation 

(GSR) to reduce the state space required for planning with POMDPs.  Results were 

encouraging and demonstrated that this methodology is viable for complex 

domains.  A drawback is that the policies generated still plan over a relatively short 

horizon as the solver quickly runs out of memory.  Solving long horizon navigation 

problems using POMDPs is still considerably difficult since the time complexity is 

exponential in the horizon length.  We shall look into applying a non-uniform grid 

model to further reduce the model parameters and generate more efficient 

solutions.  We also applied the policy computed offline to the Turtlebot 2 robot 

platform for autonomous navigation.  The turtlebot successfully navigated an indoor 

environment.  Future work is aimed at applying the model directly in complex 3-

dimensional domains and also in real manufacturing facilities.  Of course doing so 

will be more computationally tasking but exploiting the structure of the domain 

should significantly reduce the problem parameter as we have successfully 

demonstrated.   
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Chapter 6 

Summary and Future Work 

6.1 Overview 

In this dissertation we thoroughly discussed sequential decision-making for 

autonomous systems in partially observable environments.  We were particularly 

interested in applying the Partially Observable Markov Decision Process (POMDP) 

model in the robot motion planning and navigation problem.  For decades there has 

been significant interest in designing robotic systems that can operate 

autonomously in uncertain and dynamic environments.  A major hindrance is that 

modeling robot-environment interactions is still a difficult problem.  If current 

research methods prove successful, it is anticipated that potential application 

domains include healthcare for assisted-care of the elderly, hazardous material 

management, search & rescue, autonomous material handling etc.    

A POMDP model—a generalization of Markov Decision Processes—is a robust 

theoretical formalism that explicitly accounts for uncertainty of an agent’s action 

and observation as it interacts within its task environment.  This ensures its 

suitability in modeling real-world problems that are intrinsically stochastic by 

nature.  A major drawback with adopting POMDPs for decision-making is that it is 

computationally intractable to solve problems with large state space.  Researchers 

have addressed this problem by formulating approximate techniques resulting in 
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solution to problems with state space in orders of magnitude large than previously 

possible. 

 We formulated a novel approach to reduce the state space of the POMDP 

parameters by exploiting the structures of the problem which include the method by 

which the domain is modeled, the goal location within this domain and the type of 

action and observation the agent can perform.  This was applied in robot navigation 

problem to generate control policies that guide the robot to autonomously 

completing a described task with a specific domain.  We modeled the domain as an 

automated manufacturing facility. We called the proposed methodology Goal-

Specific Representation (GSR) which reduces the state-space to only states 

reachable from the initial location to the goal location.  This ensured that we 

computed policies over only GSR states thus reducing computational costs.  We then 

solved the GSR model using a point-based POMDP solver called APPL v 0.95 and 

performed empirical analysis and evaluation on the solution it generated.  We also 

applied to the policy solved offline to navigate a real robot. 

6.2 Limitations 

Though our approach to planning for autonomous systems where the operating 

domain is stochastic has been shown to be useful, there are still some disadvantages 

that have been observed.  The first and most obvious is that we do not generate 

policies for the complete task environment which may be undesirable in certain 

cases.  The second is that the generated policies are currently limited by the 

precision and efficiency of the latest state-of-the-art POMDP solvers.  Developing 
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better solvers is still an active area of research.  The third limitation in this work is 

that the model parameters described are relatively high-level in that the effects of 

the robot design specifications are abstracted out of the model.  This may be 

important to consider in future work.  Also one issue rarely discussed in literature 

which we encountered is the prohibitively large data set required as input 

parameters for the POMDP model even for smaller models.  This may require 

further research to investigate more efficient means of representing the problem 

parameters. 

6.3 Future Work 

We have learned important lessons in this dissertation on how to efficiently 

model decision-making tasks for complex autonomous systems where the 

environment is partially observable.  We were interested in the autonomous robot 

navigation problem even though the models can be extended to other domains such 

as medical decision-making, computer network management, metropolitan city 

evacuation, and computational biology just to name a few.  In the navigation task 

described we only discussed the scenario where the robot is operating in a 2-

dimensional environment.  Further research will be conducted to explore 3-D 

dimensional environments.  Clearly the state space of the problem will significantly 

increase in 3D so the GSR methodology will provide considerable utility in taking 

advantage of the domain structures.  We deliberately did not present a real 

automated facility in order to focus on the decision-making model.  Ultimately we 

anticipate that our contributions in this work can be applied in industrial and 
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manufacturing environments with teams of fully autonomous robots performing 

tasks with minimal human intervention.  
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Appendix 

A. Data Syntax 

Data acquisition on a real robot is extremely tedious.  Even abstracts models like 

that presented in this work can be extremely cumbersome to document.  Since we 

are interested in assessment of the proposed methodology we opted to use existing 

benchmark data found in POMDP literature.  The data used in the work closely 

related to the Hallway2 problem presented in Littman, Cassandra and Kaelbling 

(1995).  The input parameters followed the format require for the pomdp-solve 

ver. 5.3 solver.  The file naming convention is: filename.pomdp.  The APPL ver. 0.95 

requires a XML input format.  It is capable of converting filename.pomdp to 

filename.pomdpx which is the corresponding XML format for the pomdp file.  The 

APPL ver. 0.95 solver can generate policies, solve then evaluate them.  The original 

data for the hallway2 problem can be found at the link below.  The data used in this 

work has been considerable modified for the problem space.  We do not show the 

complete data set since it is prohibitively large.  However we only illustrate the 

input data for GSR Map 2 in section A.1.  

http://www.pomdp.org/pomdp/examples/index.shtml  

 

 

 

 

 

http://www.pomdp.org/pomdp/examples/index.shtml
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A.1 Input Data for GSR map Task 2 

# A grid world layout applied to the GSR Algorithm 

# Adapted from "Hallway2" benchmark POMDP problem 

# Model for GSR-Map for task2 

 

discount: 0.950000 

values: reward 

states: 20 

actions: 5 

observations: 17 

 

start: 

0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.000000 0.000000 0.000000 0.000000  

 

# Transition Probabilities 

 

T: 0 : 0 : 0 1.000000 

T: 1 : 0 : 5 0.050000 

T: 1 : 0 : 0 0.950000 

T: 2 : 0 : 0 0.100000 

T: 2 : 0 : 1 0.700000 

T: 2 : 0 : 2 0.100000 

T: 2 : 0 : 3 0.100000 

T: 3 : 0 : 0 0.100000 

T: 3 : 0 : 1 0.150000 

T: 3 : 0 : 2 0.600000 

T: 3 : 0 : 3 0.150000 

T: 4 : 0 : 0 0.100000 

T: 4 : 0 : 1 0.100000 

T: 4 : 0 : 2 0.100000 

T: 4 : 0 : 3 0.700000 

T: 0 : 1 : 1 1.000000 

T: 1 : 1 : 5 0.800000 

T: 1 : 1 : 1 0.200000 

T: 2 : 1 : 0 0.100000 

T: 2 : 1 : 1 0.100000 

T: 2 : 1 : 2 0.700000 

T: 2 : 1 : 3 0.100000 

T: 3 : 1 : 0 0.150000 

T: 3 : 1 : 1 0.100000 

T: 3 : 1 : 2 0.150000 

T: 3 : 1 : 3 0.600000 

T: 4 : 1 : 0 0.700000 

T: 4 : 1 : 1 0.100000 

T: 4 : 1 : 2 0.100000 

T: 4 : 1 : 3 0.100000 

T: 0 : 2 : 2 1.000000 

T: 1 : 2 : 5 0.050000 

T: 1 : 2 : 2 0.950000 

T: 2 : 2 : 0 0.100000 

T: 2 : 2 : 1 0.100000 

T: 2 : 2 : 2 0.100000 
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T: 2 : 2 : 3 0.700000 

T: 3 : 2 : 0 0.600000 

T: 3 : 2 : 1 0.150000 

T: 3 : 2 : 2 0.100000 

T: 3 : 2 : 3 0.150000 

T: 4 : 2 : 0 0.100000 

T: 4 : 2 : 1 0.700000 

T: 4 : 2 : 2 0.100000 

T: 4 : 2 : 3 0.100000 

T: 0 : 3 : 3 1.000000 

T: 1 : 3 : 5 0.025000 

T: 1 : 3 : 7 0.025000 

T: 1 : 3 : 3 0.950000 

T: 2 : 3 : 0 0.700000 

T: 2 : 3 : 1 0.100000 

T: 2 : 3 : 2 0.100000 

T: 2 : 3 : 3 0.100000 

T: 3 : 3 : 0 0.150000 

T: 3 : 3 : 1 0.600000 

T: 3 : 3 : 2 0.150000 

T: 3 : 3 : 3 0.100000 

T: 4 : 3 : 0 0.100000 

T: 4 : 3 : 1 0.100000 

T: 4 : 3 : 2 0.700000 

T: 4 : 3 : 3 0.100000 

T: 0 : 4 : 4 1.000000 

T: 1 : 4 : 6 0.800000 

T: 1 : 4 : 8 0.050000 

T: 1 : 4 : 3 0.050000 

T: 1 : 4 : 4 0.100000 

T: 2 : 4 : 4 0.100000 

T: 2 : 4 : 5 0.700000 

T: 2 : 4 : 6 0.100000 

T: 2 : 4 : 7 0.100000 

T: 3 : 4 : 4 0.100000 

T: 3 : 4 : 5 0.150000 

T: 3 : 4 : 6 0.600000 

T: 3 : 4 : 7 0.150000 

T: 4 : 4 : 4 0.100000 

T: 4 : 4 : 5 0.100000 

T: 4 : 4 : 6 0.100000 

T: 4 : 4 : 7 0.700000 

T: 0 : 5 : 5 1.000000 

T: 1 : 5 : 0 0.050000 

T: 1 : 5 : 10 0.050000 

T: 1 : 5 : 1 0.025000 

T: 1 : 5 : 3 0.025000 

T: 1 : 5 : 5 0.850000 

T: 2 : 5 : 4 0.100000 

T: 2 : 5 : 5 0.100000 

T: 2 : 5 : 6 0.700000 

T: 2 : 5 : 7 0.100000 

T: 3 : 5 : 4 0.150000 

T: 3 : 5 : 5 0.100000 

T: 3 : 5 : 6 0.150000 

T: 3 : 5 : 7 0.600000 

T: 4 : 5 : 4 0.700000 
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T: 4 : 5 : 5 0.100000 

T: 4 : 5 : 6 0.100000 

T: 4 : 5 : 7 0.100000 

T: 0 : 6 : 6 1.000000 

T: 1 : 6 : 0 0.025000 

T: 1 : 6 : 2 0.025000 

T: 1 : 6 : 10 0.800000 

T: 1 : 6 : 3 0.050000 

T: 1 : 6 : 6 0.100000 

T: 2 : 6 : 4 0.100000 

T: 2 : 6 : 5 0.100000 

T: 2 : 6 : 6 0.100000 

T: 2 : 6 : 7 0.700000 

T: 3 : 6 : 4 0.600000 

T: 3 : 6 : 5 0.150000 

T: 3 : 6 : 6 0.100000 

T: 3 : 6 : 7 0.150000 

T: 4 : 6 : 4 0.100000 

T: 4 : 6 : 5 0.700000 

T: 4 : 6 : 6 0.100000 

T: 4 : 6 : 7 0.100000 

T: 0 : 7 : 7 1.000000 

T: 1 : 7 : 0 0.050000 

T: 1 : 7 : 10 0.050000 

T: 1 : 7 : 3 0.800000 

T: 1 : 7 : 7 0.100000 

T: 2 : 7 : 4 0.700000 

T: 2 : 7 : 5 0.100000 

T: 2 : 7 : 6 0.100000 

T: 2 : 7 : 7 0.100000 

T: 3 : 7 : 4 0.150000 

T: 3 : 7 : 5 0.600000 

T: 3 : 7 : 6 0.150000 

T: 3 : 7 : 7 0.100000 

T: 4 : 7 : 4 0.100000 

T: 4 : 7 : 5 0.100000 

T: 4 : 7 : 6 0.700000 

T: 4 : 7 : 7 0.100000 

T: 0 : 8 : 8 1.000000 

T: 1 : 8 : 4 0.800000 

T: 1 : 8 : 16 0.025000 

T: 1 : 8 : 18 0.025000 

T: 1 : 8 : 8 0.150000 

T: 2 : 8 : 8 0.100000 

T: 2 : 8 : 9 0.700000 

T: 2 : 8 : 10 0.100000 

T: 2 : 8 : 11 0.100000 

T: 3 : 8 : 8 0.100000 

T: 3 : 8 : 9 0.150000 

T: 3 : 8 : 10 0.600000 

T: 3 : 8 : 11 0.150000 

T: 4 : 8 : 8 0.100000 

T: 4 : 8 : 9 0.100000 

T: 4 : 8 : 10 0.100000 

T: 4 : 8 : 11 0.700000 

T: 0 : 9 : 9 1.000000 

T: 1 : 9 : 4 0.050000 
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T: 1 : 9 : 18 0.050000 

T: 1 : 9 : 9 0.900000 

T: 2 : 9 : 8 0.100000 

T: 2 : 9 : 9 0.100000 

T: 2 : 9 : 10 0.700000 

T: 2 : 9 : 11 0.100000 

T: 3 : 9 : 8 0.150000 

T: 3 : 9 : 9 0.100000 

T: 3 : 9 : 10 0.150000 

T: 3 : 9 : 11 0.600000 

T: 4 : 9 : 8 0.700000 

T: 4 : 9 : 9 0.100000 

T: 4 : 9 : 10 0.100000 

T: 4 : 9 : 11 0.100000 

T: 0 : 10 : 10 1.000000 

T: 1 : 10 : 4 0.025000 

T: 1 : 10 : 6 0.025000 

T: 1 : 10 : 18 0.800000 

T: 1 : 10 : 10 0.150000 

T: 2 : 10 : 8 0.100000 

T: 2 : 10 : 9 0.100000 

T: 2 : 10 : 10 0.100000 

T: 2 : 10 : 11 0.700000 

T: 3 : 10 : 8 0.600000 

T: 3 : 10 : 9 0.150000 

T: 3 : 10 : 10 0.100000 

T: 3 : 10 : 11 0.150000 

T: 4 : 10 : 8 0.100000 

T: 4 : 10 : 9 0.700000 

T: 4 : 10 : 10 0.100000 

T: 4 : 10 : 11 0.100000 

T: 0 : 11 : 11 1.000000 

T: 1 : 11 : 4 0.050000 

T: 1 : 11 : 18 0.050000 

T: 1 : 11 : 11 0.900000 

T: 2 : 11 : 8 0.700000 

T: 2 : 11 : 9 0.100000 

T: 2 : 11 : 10 0.100000 

T: 2 : 11 : 11 0.100000 

T: 3 : 11 : 8 0.150000 

T: 3 : 11 : 9 0.600000 

T: 3 : 11 : 10 0.150000 

T: 3 : 11 : 11 0.100000 

T: 4 : 11 : 8 0.100000 

T: 4 : 11 : 9 0.100000 

T: 4 : 11 : 10 0.700000 

T: 4 : 11 : 11 0.100000 

T: 0 : 12 : 12 1.000000 

T: 1 : 12 : 17 0.050000 

T: 1 : 12 : 12 0.950000 

T: 2 : 12 : 12 0.100000 

T: 2 : 12 : 13 0.700000 

T: 2 : 12 : 14 0.100000 

T: 2 : 12 : 15 0.100000 

T: 3 : 12 : 12 0.100000 

T: 3 : 12 : 13 0.150000 

T: 3 : 12 : 14 0.600000 
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T: 3 : 12 : 15 0.150000 

T: 4 : 12 : 12 0.100000 

T: 4 : 12 : 13 0.100000 

T: 4 : 12 : 14 0.100000 

T: 4 : 12 : 15 0.700000 

T: 0 : 13 : 13 1.000000 

T: 1 : 13 : 17 0.800000 

T: 1 : 13 : 13 0.200000 

T: 2 : 13 : 12 0.100000 

T: 2 : 13 : 13 0.100000 

T: 2 : 13 : 14 0.700000 

T: 2 : 13 : 15 0.100000 

T: 3 : 13 : 12 0.150000 

T: 3 : 13 : 13 0.100000 

T: 3 : 13 : 14 0.150000 

T: 3 : 13 : 15 0.600000 

T: 4 : 13 : 12 0.700000 

T: 4 : 13 : 13 0.100000 

T: 4 : 13 : 14 0.100000 

T: 4 : 13 : 15 0.100000 

T: 0 : 14 : 14 1.000000 

T: 1 : 14 : 17 0.050000 

T: 1 : 14 : 14 0.950000 

T: 2 : 14 : 12 0.100000 

T: 2 : 14 : 13 0.100000 

T: 2 : 14 : 14 0.100000 

T: 2 : 14 : 15 0.700000 

T: 3 : 14 : 12 0.600000 

T: 3 : 14 : 13 0.150000 

T: 3 : 14 : 14 0.100000 

T: 3 : 14 : 15 0.150000 

T: 4 : 14 : 12 0.100000 

T: 4 : 14 : 13 0.700000 

T: 4 : 14 : 14 0.100000 

T: 4 : 14 : 15 0.100000 

T: 0 : 15 : 15 1.000000 

T: 1 : 15 : 17 0.025000 

T: 1 : 15 : 19 0.025000 

T: 1 : 15 : 15 0.950000 

T: 2 : 15 : 12 0.700000 

T: 2 : 15 : 13 0.100000 

T: 2 : 15 : 14 0.100000 

T: 2 : 15 : 15 0.100000 

T: 3 : 15 : 12 0.150000 

T: 3 : 15 : 13 0.600000 

T: 3 : 15 : 14 0.150000 

T: 3 : 15 : 15 0.100000 

T: 4 : 15 : 12 0.100000 

T: 4 : 15 : 13 0.100000 

T: 4 : 15 : 14 0.700000 

T: 4 : 15 : 15 0.100000 

T: 0 : 16 : 16 1.000000 

T: 1 : 16 : 8 0.800000 

T: 1 : 16 : 19 0.025000 

T: 1 : 16 : 17 0.025000 

T: 1 : 16 : 15 0.050000 

T: 1 : 16 : 16 0.100000 
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T: 2 : 16 : 16 0.100000 

T: 2 : 16 : 17 0.700000 

T: 2 : 16 : 18 0.100000 

T: 2 : 16 : 19 0.100000 

T: 3 : 16 : 16 0.100000 

T: 3 : 16 : 17 0.150000 

T: 3 : 16 : 18 0.600000 

T: 3 : 16 : 19 0.150000 

T: 4 : 16 : 16 0.100000 

T: 4 : 16 : 17 0.100000 

T: 4 : 16 : 18 0.100000 

T: 4 : 16 : 19 0.700000 

T: * : 17  

0.052642 0.052631 0.052631 0.052631 0.052631 0.052631 0.052631 0.052631 

0.052631 0.052631 0.052631 0.052631 0.052631 0.052631 0.052631 0.052631 

0.0 0.052631 0.052631 0.052631  

T: 0 : 18 : 18 1.000000 

T: 1 : 18 : 8 0.025000 

T: 1 : 18 : 10 0.025000 

T: 1 : 18 : 17 0.800000 

T: 1 : 18 : 15 0.050000 

T: 1 : 18 : 18 0.100000 

T: 2 : 18 : 16 0.100000 

T: 2 : 18 : 17 0.100000 

T: 2 : 18 : 18 0.100000 

T: 2 : 18 : 19 0.700000 

T: 3 : 18 : 16 0.600000 

T: 3 : 18 : 17 0.150000 

T: 3 : 18 : 18 0.100000 

T: 3 : 18 : 19 0.150000 

T: 4 : 18 : 16 0.100000 

T: 4 : 18 : 17 0.700000 

T: 4 : 18 : 18 0.100000 

T: 4 : 18 : 19 0.100000 

T: 0 : 19 : 19 1.000000 

T: 1 : 19 : 8 0.050000 

T: 1 : 19 : 17 0.050000 

T: 1 : 19 : 15 0.800000 

T: 1 : 19 : 19 0.100000 

T: 2 : 19 : 16 0.700000 

T: 2 : 19 : 17 0.100000 

T: 2 : 19 : 18 0.100000 

T: 2 : 19 : 19 0.100000 

T: 3 : 19 : 16 0.150000 

T: 3 : 19 : 17 0.600000 

T: 3 : 19 : 18 0.150000 

T: 3 : 19 : 19 0.100000 

T: 4 : 19 : 16 0.100000 

T: 4 : 19 : 17 0.100000 

T: 4 : 19 : 18 0.700000 

T: 4 : 19 : 19 0.100000 

 

# Observation Probabilities 

O: * : 0  

0.000949 0.008549 0.008549 0.076949 0.000049 0.000449 0.000449 0.004049 

0.008549 0.076949 0.076949 0.692550 0.000449 0.004049 0.004049 0.036464 

0.0 
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O: * : 1  

0.000949 0.008549 0.008549 0.076949 0.008549 0.076949 0.076949 0.692550 

0.000049 0.000449 0.000449 0.004049 0.000449 0.004049 0.004049 0.036464 

0.0 

O: * : 2  

0.000949 0.000049 0.008549 0.000449 0.008549 0.000449 0.076949 0.004049 

0.008549 0.000449 0.076949 0.004049 0.076949 0.004049 0.692550 0.036464 

0.0 

O: * : 3  

0.000949 0.008549 0.000049 0.000449 0.008549 0.076949 0.000449 0.004049 

0.008549 0.076949 0.000449 0.004049 0.076949 0.692550 0.004049 0.036464 

0.0 

O: * : 4  

0.085737 0.004512 0.004512 0.000237 0.771637 0.040612 0.040612 0.002137 

0.004512 0.000237 0.000237 0.000012 0.040612 0.002137 0.002137 0.000120 

0.0 

O: * : 5  

0.085737 0.004512 0.004512 0.000237 0.004512 0.000237 0.000237 0.000012 

0.771637 0.040612 0.040612 0.002137 0.040612 0.002137 0.002137 0.000120 

0.0 

O: * : 6  

0.085737 0.771637 0.004512 0.040612 0.004512 0.040612 0.000237 0.002137 

0.004512 0.040612 0.000237 0.002137 0.000237 0.002137 0.000012 0.000120 

0.0 

O: * : 7  

0.085737 0.004512 0.771637 0.040612 0.004512 0.000237 0.040612 0.002137 

0.004512 0.000237 0.040612 0.002137 0.000237 0.000012 0.002137 0.000120 

0.0 

O: * : 8  

0.009024 0.081225 0.000474 0.004275 0.081225 0.731024 0.004275 0.038475 

0.000474 0.004275 0.000024 0.000225 0.004275 0.038475 0.000225 0.002030 

0.0 

O: * : 9  

0.009024 0.000474 0.081225 0.004275 0.000474 0.000024 0.004275 0.000225 

0.081225 0.004275 0.731024 0.038475 0.004275 0.000225 0.038475 0.002030 

0.0 

O: * : 10  

0.009024 0.081225 0.000474 0.004275 0.081225 0.731024 0.004275 0.038475 

0.000474 0.004275 0.000024 0.000225 0.004275 0.038475 0.000225 0.002030 

0.0 

O: * : 11  

0.009024 0.000474 0.081225 0.004275 0.000474 0.000024 0.004275 0.000225 

0.081225 0.004275 0.731024 0.038475 0.004275 0.000225 0.038475 0.002030 

0.0 

O: * : 12  

0.000949 0.008549 0.008549 0.076949 0.000049 0.000449 0.000449 0.004049 

0.008549 0.076949 0.076949 0.692550 0.000449 0.004049 0.004049 0.036464 

0.0 

O: * : 13  

0.000949 0.008549 0.008549 0.076949 0.008549 0.076949 0.076949 0.692550 

0.000049 0.000449 0.000449 0.004049 0.000449 0.004049 0.004049 0.036464 

0.0 

O: * : 14  

0.000949 0.000049 0.008549 0.000449 0.008549 0.000449 0.076949 0.004049 

0.008549 0.000449 0.076949 0.004049 0.076949 0.004049 0.692550 0.036464 

0.0 

O: * : 15  
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0.000949 0.008549 0.000049 0.000449 0.008549 0.076949 0.000449 0.004049 

0.008549 0.076949 0.000449 0.004049 0.076949 0.692550 0.004049 0.036464 

0.0 

O: * : 16  

0.085737 0.004512 0.004512 0.000237 0.771637 0.040612 0.040612 0.002137 

0.004512 0.000237 0.000237 0.000012 0.040612 0.002137 0.002137 0.000120 

0.0 

O: * : 17  

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 

O: * : 18  

0.085737 0.771637 0.004512 0.040612 0.004512 0.040612 0.000237 0.002137 

0.004512 0.040612 0.000237 0.002137 0.000237 0.002137 0.000012 0.000120 

0.0 

O: * : 19  

0.085737 0.004512 0.771637 0.040612 0.004512 0.000237 0.040612 0.002137 

0.004512 0.000237 0.040612 0.002137 0.000237 0.000012 0.002137 0.000120 

0.0 

 

 

# Rewards 

R: * : * : 17 : * 1.000000 
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B. Generated Policies for the Robot Tasks 

The APPL solver was run for approximately 300 seconds.  It reports the number 

of trials, the number of backups, the upper and lower bound on the optimal value 

function along the number of -vectors.  The number of belief points sampled were 

also reported.  Approximately the last 60 seconds of computations are illustrated. 
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B.1 Output Data for Domain Map Task 1 

#automat_map1 output 

  

 239.17  286     12600    0.422828   0.963478   0.54065     148      1518      

 240.61  288     12665    0.423164   0.963478   0.540314    148      1522      

 242.41  289     12709    0.423226   0.963478   0.540252    151      1524      

 243.41  290     12753    0.423259   0.963478   0.540219    150      1526      

 244.34  291     12800    0.423276   0.963478   0.540202    148      1528      

 246.36  292     12850    0.423285   0.963478   0.540193    149      1530      

 247.39  293     12900    0.42329    0.963478   0.540188    144      1532      

 249.24  295     12967    0.423297   0.963478   0.540181    147      1538      

 251.18  296     13009    0.423301   0.963478   0.540177    148      1541      

 252.31  297     13053    0.423304   0.963478   0.540174    149      1544      

 252.97  298     13100    0.423306   0.963478   0.540172    153      1547      

 254.98  299     13150    0.423308   0.963478   0.540171    152      1549      

 255.97  300     13200    0.423308   0.963478   0.54017     153      1553      

 257.25  302     13267    0.423309   0.963478   0.540169    150      1559      

 259.17  303     13309    0.42331    0.963478   0.540168    147      1560      

 260.32  304     13351    0.423392   0.963478   0.540086    147      1562      

 261.57  305     13400    0.423479   0.963478   0.539999    144      1565      

 264.89  306     13450    0.423617   0.963478   0.539861    145      1573      

 268.7   308     13519    0.423941   0.963478   0.539537    153      1583      

 269.82  309     13559    0.424046   0.963478   0.539432    158      1589      

 272.59  310     13601    0.424207   0.963478   0.539271    164      1593      

 274.38  311     13650    0.424359   0.963478   0.539119    165      1599      

 276.18  312     13700    0.425407   0.963478   0.538071    160      1603      

 279.25  313     13750    0.426664   0.963478   0.536814    162      1610      

 281.57  314     13800    0.427599   0.963478   0.535879    163      1622      

 284     316     13867    0.428654   0.963478   0.534824    170      1631      

 286.48  317     13911    0.428935   0.963478   0.534543    172      1635      

 288.23  318     13957    0.42912    0.963478   0.534358    180      1639      

 289.08  319     14001    0.42924    0.963478   0.534238    166      1643      

 291.02  320     14050    0.42943    0.963478   0.534048    166      1646      

 294.03  321     14100    0.429702   0.963478   0.533776    165      1651      

 296.2   323     14169    0.430336   0.963478   0.533142    161      1659      

 298.9   324     14215    0.430638   0.963478   0.53284     165      1670      

 

------------------------------------------------------------------------------- 

 Time   |#Trial |#Backup |LBound    |UBound    |Precision  |#Alphas |#Beliefs   

------------------------------------------------------------------------------- 

 300.79  324     14233    0.430638   0.963478   0.53284     181      1671      

------------------------------------------------------------------------------- 

 

 

----------------------------------- 

 #Simulations  | Exp Total Reward   

----------------------------------- 

 100             0.662648 

 200             0.691717 
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B.2 Output Data for GSR Map Task 1 

#automat_gsr1 output 

 

 238.6   531     20000    0.81357    1.02818    0.214608    399      1538      

 240.02  533     20059    0.813585   1.02818    0.214593    397      1545      

 241.55  534     20100    0.81363    1.02818    0.214548    399      1549      

 242.29  535     20150    0.813671   1.02818    0.214507    400      1551      

 243.41  537     20215    0.814057   1.02818    0.214121    393      1556      

 245.08  538     20255    0.814109   1.02818    0.214069    394      1561      

 246.11  539     20300    0.814134   1.02818    0.214044    399      1566      

 247.2   540     20350    0.814149   1.02818    0.214029    399      1571      

 249.61  542     20411    0.81416    1.02818    0.214018    407      1576      

 250.12  543     20450    0.814167   1.02818    0.214011    407      1577      

 251.57  544     20500    0.814173   1.02818    0.214004    410      1582      

 254.32  546     20567    0.814181   1.02818    0.213997    414      1590      

 255.18  547     20609    0.814185   1.02818    0.213993    418      1593      

 255.96  548     20650    0.814193   1.02818    0.213985    418      1596      

 257.05  549     20700    0.814561   1.02818    0.213617    416      1600      

 259.02  551     20767    0.814796   1.02818    0.213382    420      1603      

 259.69  552     20805    0.814808   1.02818    0.21337     418      1605      

 260.5   553     20850    0.814812   1.02818    0.213365    420      1608      

 262.29  555     20900    0.814823   1.02818    0.213355    423      1610      

 263.42  556     20959    0.814844   1.02818    0.213334    426      1614      

 264.2   557     21000    0.814876   1.02818    0.213302    433      1617      

 266.24  558     21050    0.814897   1.02818    0.21328     436      1620      

 267.96  560     21113    0.814905   1.02818    0.213273    436      1626      

 269.06  561     21153    0.814912   1.02818    0.213266    441      1629      

 269.8   562     21200    0.814997   1.02818    0.213181    441      1631      

 272.24  564     21269    0.815089   1.02818    0.213089    450      1638      

 273.65  565     21311    0.815108   1.02818    0.21307     450      1642      

 274.79  566     21350    0.815113   1.02818    0.213064    454      1645      

 276.64  567     21400    0.815117   1.02818    0.213061    448      1648      

 277.94  569     21465    0.815144   1.02818    0.213034    437      1652      

 278.92  570     21503    0.815153   1.02818    0.213024    441      1655      

 280.55  571     21550    0.815164   1.02818    0.213014    440      1657      

 282.37  573     21619    0.815173   1.02818    0.213005    444      1665      

 283.71  574     21659    0.815173   1.02818    0.213005    445      1668      

 286.62  575     21701    0.815173   1.02818    0.213004    446      1674      

 287.75  576     21750    0.815173   1.02818    0.213004    442      1676      

 289.67  578     21815    0.815173   1.02818    0.213004    454      1684      

 290.59  579     21851    0.815173   1.02818    0.213004    455      1686      

 292.61  580     21900    0.815176   1.02818    0.213001    459      1691      

 294.1   582     21959    0.815182   1.02818    0.212996    455      1696      

 295.24  583     22000    0.815199   1.02818    0.212979    460      1701      

 297.85  584     22050    0.815208   1.02818    0.212969    463      1708      

 299.75  586     22100    0.815213   1.02818    0.212965    468      1714      

 

 

------------------------------------------------------------------------------- 

 Time   |#Trial |#Backup |LBound    |UBound    |Precision  |#Alphas |#Beliefs   

------------------------------------------------------------------------------- 

 300.71  586     22138    0.815215   1.02818    0.212963    484      1719      

------------------------------------------------------------------------------- 

 

----------------------------------- 

 #Simulations  | Exp Total Reward   

----------------------------------- 

 100             0.837799 

 200             0.833081 
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B.3 Output Data for Domain Map Task 2 

#automat_map2 output 

  

 238.52  384     12550    0.80649    1.41543    0.608943    219      1476      

 240.06  386     12615    0.807188   1.41543    0.608245    218      1480      

 241.73  387     12650    0.807235   1.41543    0.608198    219      1482      

 243.32  389     12709    0.807274   1.41543    0.608159    218      1486      

 244.74  390     12750    0.807281   1.41543    0.608153    219      1490      

 247.92  392     12811    0.80733    1.41543    0.608103    223      1500      

 248.9   393     12850    0.807392   1.41543    0.608042    223      1502      

 250.6   395     12907    0.807462   1.41543    0.607971    225      1505      

 252.41  396     12950    0.807469   1.41543    0.607965    226      1506      

 254.29  398     13005    0.807478   1.41543    0.607955    221      1512      

 255.32  399     13050    0.80748    1.41543    0.607954    224      1513      

 257.79  401     13101    0.807484   1.41543    0.60795     217      1516      

 259.04  403     13159    0.807485   1.41543    0.607948    219      1517      

 260.12  404     13200    0.807485   1.41543    0.607948    224      1520      

 262.7   406     13257    0.807485   1.41543    0.607948    223      1525      

 264.11  407     13300    0.807487   1.41543    0.607946    222      1528      

 265.74  409     13355    0.807488   1.41543    0.607945    223      1532      

 267.87  410     13400    0.807489   1.41543    0.607945    223      1534      

 269.34  412     13455    0.807599   1.41543    0.607835    223      1539      

 270.89  413     13500    0.807653   1.41543    0.607781    210      1544      

 274.05  415     13557    0.807681   1.41543    0.607752    210      1550      

 275.57  416     13600    0.807815   1.41543    0.607619    211      1553      

 277.17  418     13655    0.807916   1.41543    0.607517    212      1557      

 279.61  419     13700    0.80793    1.41543    0.607504    213      1560      

 281.29  421     13755    0.80794    1.41543    0.607493    219      1564      

 282.35  422     13800    0.807942   1.41543    0.607491    217      1566      

 285.51  424     13859    0.808073   1.41543    0.607361    217      1572      

 286.61  425     13900    0.80812    1.41543    0.607313    217      1574      

 288.23  427     13961    0.808152   1.41543    0.607281    216      1578      

 290.32  428     14000    0.808157   1.41543    0.607277    216      1579      

 291.85  430     14055    0.80816    1.41543    0.607273    219      1582      

 292.98  431     14100    0.808161   1.41543    0.607272    219      1585      

 296.1   433     14157    0.808163   1.41543    0.607271    223      1591      

 297.11  434     14200    0.808163   1.41543    0.60727     225      1592      

 299.3   436     14259    0.808203   1.41543    0.60723     233      1599      

 300.33  437     14300    0.808227   1.41543    0.607206    234      1600      

 

 

 

------------------------------------------------------------------------------- 

 Time   |#Trial |#Backup |LBound    |UBound    |Precision  |#Alphas |#Beliefs   

------------------------------------------------------------------------------- 

 302.4   438     14321    0.808236   1.41543    0.607198    251      1603      

------------------------------------------------------------------------------- 

 

----------------------------------- 

 #Simulations  | Exp Total Reward   

----------------------------------- 

 100             1.09013 

 200             1.08236 
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B.4 Output Data for GSR Map Task 2 

#automat_gsr2 output 

 

 239.68  536     17601    2.71021    2.81027    0.100059    445      1738      

 240.73  537     17650    2.71021    2.81027    0.100058    448      1745      

 242.22  539     17700    2.71022    2.81027    0.100054    441      1746      

 243.27  541     17751    2.71022    2.81027    0.100048    444      1751      

 244.42  542     17800    2.71023    2.81027    0.100045    445      1757      

 246.17  544     17855    2.71023    2.81027    0.100043    449      1764      

 247.03  545     17900    2.71023    2.81027    0.100037    445      1768      

 248.31  547     17951    2.71026    2.81027    0.100015    451      1775      

 250.27  549     18000    2.71026    2.81027    0.100014    455      1783      

 251.1   550     18051    2.71027    2.81027    0.100006    461      1786      

 252.42  552     18113    2.71027    2.81027    0.100001    465      1792      

 253.94  553     18150    2.71027    2.81027    0.0999981   466      1796      

 255.07  555     18213    2.71029    2.81027    0.099986    466      1801      

 255.88  556     18250    2.71029    2.81027    0.0999818   469      1805      

 258.17  558     18315    2.71029    2.81027    0.0999778   475      1813      

 258.9   559     18350    2.71035    2.81027    0.0999249   475      1815      

 260.23  561     18403    2.71037    2.81027    0.0999057   468      1821      

 261.27  563     18461    2.71038    2.81027    0.0998951   466      1823      

 262.99  564     18500    2.71038    2.81027    0.0998915   463      1827      

 264.93  566     18559    2.71039    2.81027    0.0998853   468      1836      

 265.95  567     18600    2.71039    2.81027    0.0998838   465      1840      

 267.6   569     18650    2.71039    2.81027    0.0998773   470      1847      

 270.31  571     18717    2.7104     2.81027    0.099872    477      1856      

 271.25  572     18750    2.71042    2.81027    0.099853    481      1860      

 272.54  574     18801    2.71044    2.81027    0.0998347   481      1866      

 273.72  576     18853    2.71048    2.81027    0.0997961   481      1869      

 276.07  578     18915    2.71049    2.81027    0.0997766   477      1875      

 276.88  579     18950    2.71051    2.81027    0.0997591   471      1877      

 278.51  581     19013    2.71052    2.81027    0.0997526   480      1885      

 280.42  582     19050    2.71052    2.81027    0.0997513   476      1890      

 281.33  584     19100    2.71053    2.81027    0.0997453   471      1891      

 282.22  586     19150    2.71053    2.81027    0.0997415   475      1892      

 284.19  588     19209    2.71053    2.81027    0.0997392   483      1901      

 286.07  589     19250    2.71053    2.81027    0.0997388   481      1908      

 287.82  591     19309    2.71054    2.81027    0.0997319   486      1915      

 289.07  592     19350    2.71054    2.81027    0.0997305   485      1921      

 290     594     19400    2.71055    2.81027    0.0997206   479      1922      

 292.51  596     19455    2.71056    2.81027    0.0997141   479      1931      

 293.9   597     19500    2.71056    2.81027    0.0997132   478      1938      

 295.39  599     19551    2.71056    2.81027    0.099712    486      1945      

 297.65  601     19613    2.71057    2.81027    0.0997027   491      1950      

 298.8   602     19650    2.71058    2.81027    0.0996933   489      1955      

 300.3   604     19707    2.71058    2.81027    0.0996916   487      1961      

 

 

------------------------------------------------------------------------------- 

 Time   |#Trial |#Backup |LBound    |UBound    |Precision  |#Alphas |#Beliefs   

------------------------------------------------------------------------------- 

 300.65  604     19720    2.71058    2.81027    0.0996916   491      1963      

------------------------------------------------------------------------------- 

 

----------------------------------- 

 #Simulations  | Exp Total Reward   

----------------------------------- 

 100             2.73229 

 200             2.74835 
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B.5 Output Data for Domain Map Task 3 

#automat_map3 output 

  

 239.12  271     12150    0.470563   0.963453   0.49289     240      1476      

 241.23  273     12215    0.47077    0.963453   0.492684    242      1478      

 242.42  274     12263    0.470849   0.963453   0.492604    240      1482      

 244.96  275     12307    0.470876   0.963453   0.492577    243      1484      

 246.41  276     12351    0.470941   0.963453   0.492512    243      1486      

 248.26  277     12400    0.470995   0.963453   0.492459    242      1489      

 250.31  278     12450    0.471025   0.963453   0.492428    241      1490      

 251.92  279     12500    0.471043   0.963453   0.49241     248      1499      

 253.04  280     12550    0.471052   0.963453   0.492401    235      1510      

 255.83  282     12621    0.47121    0.963453   0.492243    232      1515      

 257.13  283     12663    0.471281   0.963453   0.492172    235      1522      

 259.81  284     12707    0.471948   0.963453   0.491505    232      1524      

 260.97  285     12751    0.472292   0.963453   0.491162    228      1525      

 262.68  286     12800    0.472427   0.963453   0.491026    233      1531      

 265.22  287     12850    0.472598   0.963453   0.490856    235      1532      

 266.32  288     12900    0.472677   0.963453   0.490776    236      1535      

 268.46  290     12967    0.472719   0.963453   0.490734    228      1541      

 270.47  291     13009    0.472725   0.963453   0.490728    232      1545      

 271.97  292     13051    0.472735   0.963453   0.490718    230      1549      

 273.02  293     13100    0.472743   0.963453   0.49071     234      1556      

 275.86  294     13150    0.472804   0.963453   0.490649    230      1565      

 278.27  295     13200    0.472848   0.963453   0.490605    237      1576      

 281.38  296     13250    0.472867   0.963453   0.490586    236      1591      

 285.92  298     13319    0.472914   0.963453   0.490539    226      1602      

 288.67  299     13363    0.473316   0.963453   0.490137    228      1610      

 290.09  300     13407    0.474211   0.963453   0.489242    231      1616      

 294.42  301     13451    0.474805   0.963453   0.488648    239      1626      

 296.96  302     13500    0.47501    0.963453   0.488443    240      1636      

 298.62  303     13550    0.475078   0.963453   0.488375    243      1643      

 

 

------------------------------------------------------------------------------- 

 Time   |#Trial |#Backup |LBound    |UBound    |Precision  |#Alphas |#Beliefs   

------------------------------------------------------------------------------- 

 301.95  304     13597    0.475102   0.963453   0.488352    266      1651      

------------------------------------------------------------------------------- 

 

 

----------------------------------- 

 #Simulations  | Exp Total Reward   

----------------------------------- 

 100             0.653846 

 200             0.685472 
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B.6 Output Data for GSR Map Task 3 

#automat_gsr3 output 

 

 239.83  566     21167    0.901508   1.12468    0.223167    454      1619      

 240.6   567     21205    0.901532   1.12468    0.223143    452      1622      

 242.69  568     21250    0.901544   1.12468    0.223131    452      1625      

 244.02  569     21300    0.901547   1.12468    0.223128    456      1632      

 245.09  571     21355    0.901548   1.12468    0.223127    457      1634      

 245.93  572     21400    0.901549   1.12468    0.223126    450      1636      

 248.05  574     21461    0.901553   1.12468    0.223123    446      1640      

 249.41  575     21503    0.901554   1.12468    0.223121    443      1645      

 250.33  576     21550    0.901555   1.12468    0.22312     440      1647      

 253.49  578     21617    0.901644   1.12468    0.223031    439      1657      

 254.35  579     21651    0.901693   1.12468    0.222982    436      1660      

 255.36  580     21700    0.902968   1.12468    0.221707    439      1663      

 257.56  582     21763    0.903598   1.12468    0.221078    440      1667      

 258.27  583     21803    0.903612   1.12468    0.221063    441      1669      

 259.02  584     21850    0.903617   1.12468    0.221058    442      1671      

 260.06  585     21900    0.903626   1.12468    0.221049    442      1675      

 262.29  587     21959    0.903724   1.12468    0.220951    449      1679      

 263.7   588     22003    0.903739   1.12468    0.220936    453      1683      

 264.35  589     22050    0.903751   1.12468    0.220924    452      1684      

 266.39  591     22117    0.903861   1.12468    0.220814    453      1688      

 267.32  592     22159    0.903889   1.12468    0.220786    453      1692      

 268.63  593     22200    0.903901   1.12468    0.220774    457      1695      

 269.49  594     22250    0.903904   1.12468    0.220771    457      1697      

 271.82  596     22317    0.903916   1.12468    0.220759    465      1703      

 272.45  597     22355    0.90392    1.12468    0.220755    465      1704      

 273.1   598     22400    0.903921   1.12468    0.220754    466      1705      

 275.28  600     22467    0.903937   1.12468    0.220738    466      1707      

 275.85  601     22503    0.903946   1.12468    0.220729    466      1708      

 276.74  602     22550    0.904043   1.12468    0.220632    461      1710      

 278.91  604     22613    0.90409    1.12468    0.220585    466      1714      

 280.33  605     22650    0.904098   1.12468    0.220577    466      1718      

 281.55  606     22700    0.904104   1.12468    0.220571    465      1722      

 283.03  608     22757    0.904123   1.12468    0.220552    465      1728      

 284.73  609     22800    0.904127   1.12468    0.220548    464      1729      

 286.83  611     22867    0.904128   1.12468    0.220547    463      1735      

 288.62  612     22907    0.904129   1.12468    0.220546    471      1741      

 289.85  613     22950    0.904135   1.12468    0.22054     473      1746      

 291.78  614     23000    0.904162   1.12468    0.220513    466      1749      

 293.67  616     23057    0.904183   1.12468    0.220492    473      1755      

 294.54  617     23100    0.904184   1.12468    0.220491    475      1757      

 297.38  619     23165    0.904185   1.12468    0.22049     471      1762      

 298.18  620     23203    0.905024   1.12468    0.219651    466      1764      

 298.87  621     23250    0.905264   1.12468    0.219411    466      1765      

 301.56  623     23317    0.905324   1.12468    0.219352    475      1771      

 

------------------------------------------------------------------------------- 

 Time   |#Trial |#Backup |LBound    |UBound    |Precision  |#Alphas |#Beliefs   

------------------------------------------------------------------------------- 

 301.57  623     23317    0.905324   1.12468    0.219352    475      1771      

------------------------------------------------------------------------------- 

 

----------------------------------- 

 #Simulations  | Exp Total Reward   

----------------------------------- 

 100             0.949199 

 200             0.943234 
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B.7 Output Data for Domain Map Task 4 

#automat_map4 output 

  

 239.02  331     15001    0.343245   0.769087   0.425842    210      1298      

 241.39  332     15050    0.343252   0.769087   0.425835    206      1303      

 242.89  333     15100    0.343258   0.769087   0.425829    205      1309      

 244.46  334     15150    0.34331    0.769087   0.425778    212      1313      

 246.6   335     15200    0.343375   0.769087   0.425712    210      1318      

 248.4   336     15250    0.343434   0.769087   0.425654    206      1323      

 251.69  338     15319    0.348479   0.769087   0.420608    189      1329      

 252.71  339     15363    0.349714   0.769087   0.419373    184      1330      

 253.91  340     15407    0.350384   0.769087   0.418703    185      1334      

 255.82  341     15451    0.350762   0.769087   0.418325    185      1336      

 256.85  342     15500    0.350989   0.769087   0.418098    190      1340      

 257.74  343     15550    0.351122   0.769087   0.417966    187      1342      

 260.1   344     15600    0.351204   0.769087   0.417883    183      1344      

 261.7   345     15650    0.351258   0.769087   0.417829    192      1348      

 263.2   347     15700    0.351367   0.769087   0.41772     189      1354      

 265.36  348     15765    0.35151    0.769087   0.417577    189      1356      

 266.35  349     15809    0.35154    0.769087   0.417547    185      1358      

 267.37  350     15851    0.35156    0.769087   0.417527    185      1360      

 269.41  351     15900    0.351593   0.769087   0.417494    180      1362      

 270.51  352     15950    0.351649   0.769087   0.417438    180      1367      

 273.44  353     16000    0.35176    0.769087   0.417328    186      1373      

 275.57  354     16050    0.35186    0.769087   0.417227    195      1379      

 277.41  356     16119    0.351938   0.769087   0.417149    194      1383      

 280.05  357     16165    0.351951   0.769087   0.417136    193      1388      

 280.98  358     16209    0.351959   0.769087   0.417128    193      1390      

 282.54  359     16253    0.351965   0.769087   0.417122    196      1394      

 285.25  360     16300    0.351971   0.769087   0.417116    197      1397      

 286.94  361     16350    0.351976   0.769087   0.417112    204      1401      

 289.82  362     16400    0.352009   0.769087   0.417078    209      1406      

 292.07  363     16450    0.352085   0.769087   0.417002    209      1412      

 293.62  365     16515    0.352199   0.769087   0.416888    210      1414      

 295.96  366     16557    0.352221   0.769087   0.416866    213      1417      

 297.06  367     16601    0.352234   0.769087   0.416854    215      1420      

 298.63  368     16650    0.35224    0.769087   0.416847    215      1424      

 

 

------------------------------------------------------------------------------- 

 Time   |#Trial |#Backup |LBound    |UBound    |Precision  |#Alphas |#Beliefs   

------------------------------------------------------------------------------- 

 301.8   368     16668    0.35224    0.769087   0.416847    229      1432      

------------------------------------------------------------------------------- 

 

 

----------------------------------- 

 #Simulations  | Exp Total Reward   

----------------------------------- 

 100             0.567472 

 200             0.558172 
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B.8 Output Data for GSR Map Task 4 

#automat_gsr4 output 

 

 238.69  381     16250    0.580532   0.784755   0.204223    399      1285      

 241.09  382     16300    0.580639   0.784755   0.204116    397      1289      

 243.46  383     16350    0.580674   0.784755   0.204081    400      1297      

 245.4   385     16419    0.580734   0.784755   0.204021    399      1301      

 247.85  386     16465    0.580744   0.784755   0.204011    405      1305      

 248.81  387     16509    0.580752   0.784755   0.204004    400      1307      

 250.99  388     16553    0.580756   0.784755   0.203999    410      1310      

 252.51  389     16600    0.580873   0.784755   0.203883    411      1314      

 254.35  390     16650    0.580964   0.784755   0.203791    412      1317      

 256.72  391     16700    0.580996   0.784755   0.203759    409      1321      

 258.17  393     16765    0.581019   0.784755   0.203737    408      1325      

 259.67  394     16811    0.581372   0.784755   0.203383    410      1329      

 261.78  395     16855    0.581533   0.784755   0.203222    408      1333      

 262.57  396     16900    0.581594   0.784755   0.203161    405      1335      

 264.82  397     16950    0.58161    0.784755   0.203145    406      1337      

 266.39  398     17000    0.581616   0.784755   0.203139    407      1340      

 268.95  399     17050    0.581619   0.784755   0.203136    405      1347      

 271.97  401     17117    0.581622   0.784755   0.203133    402      1351      

 273.06  402     17159    0.581624   0.784755   0.203132    408      1354      

 273.95  403     17203    0.581625   0.784755   0.20313     402      1356      

 275.9   404     17250    0.581626   0.784755   0.20313     403      1358      

 277.03  405     17300    0.581626   0.784755   0.203129    406      1361      

 279.71  407     17367    0.582342   0.784755   0.202413    405      1367      

 280.97  408     17409    0.58288    0.784755   0.201876    403      1371      

 282.47  409     17455    0.583218   0.784755   0.201537    409      1375      

 284.79  410     17500    0.583372   0.784755   0.201383    416      1379      

 286.22  411     17550    0.58365    0.784755   0.201105    413      1382      

 288.35  413     17621    0.58381    0.784755   0.200945    412      1386      

 290.76  414     17667    0.583824   0.784755   0.200931    409      1390      

 291.56  415     17709    0.584035   0.784755   0.20072     406      1392      

 293     416     17755    0.584244   0.784755   0.200511    408      1395      

 295.75  417     17800    0.584345   0.784755   0.20041     412      1399      

 297.88  418     17850    0.584762   0.784755   0.199994    409      1405      

 298.94  419     17900    0.584963   0.784755   0.199793    411      1406      

 

------------------------------------------------------------------------------- 

 Time   |#Trial |#Backup |LBound    |UBound    |Precision  |#Alphas |#Beliefs   

------------------------------------------------------------------------------- 

 301.13  420     17933    0.585013   0.784755   0.199742    441      1409      

------------------------------------------------------------------------------- 

 

----------------------------------- 

 #Simulations  | Exp Total Reward   

----------------------------------- 

 100             0.681748 

 200             0.684719 
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