
A PORTABLE GRAPHICS PACKAGE FOR THREE-DIMENSIONAL
SURFACE RECONSTRUCTION

A Thesis
Presented to

the Faculty of the Department of Computer Science
University of Houston - University Park

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

By
Yu Ping Wing

December, 1987

ACKNOWLEDGEMENT

I would like to express my gratitude to my thesis
advisor, Dr. Goffredo Pieroni for his guidance and
assistance, and also to Dr. Ramez Elmasri and Dr. Atam
Dhawan for serving on the committee.

A great many people have helped me in this project in
a variety of ways. They are Chris Yam who helped me use
the word processor and the laser jet printer, and Tom Hicks
who provided his time in editing my grammar.

Finally, I thank my fiancee, Bernice Sit, for her
patience in typing and testing my programs and her
encouragement during the development stages.

A PORTABLE GRAPHICS PACKAGE FOR THREE-DIMENSIONAL
SURFACE RECONSTRUCTION

An Abstract of a Thesis
Presented to

the Faculty of the Department of Computer Science
University of Houston - University Park

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

By
Yu Ping Wing

December, 1987

iv

ABSTRACT

The CORE protocol provides a list of standard features
for constructing a program in dealing with two-dimensional
and three-dimensional object representations. The most
important features of a such system are linear
transformation, windowing, clipping, viewing
transformation, projection, hidden-line elimination and
hidden-surface removal.

In this thesis, the implementation of the CORE system
is based on Steven Harrington's book "Computer Graphics - A
Programming Approach" by McGraw Hill. A list of basic
algorithms is critically analyzed. Errors were discovered
in some important algorithms as proposed by Harrington.
A corrected version is presented and implemented.

Finally a set of experiments for constructing 3D
objects has been performed by using different output
devices : Lexidata, Tektronix and Printronix. The principal
one consists of displaying a 3D surface of a human heart
obtained by a sequence of PET images.

v

TABLE OF CONTENTS
PAGE

1. INTRODUCTION 1
2. GRAPHICS SYSTEM IMPLEMENTATION 4

2.1 INTRODUCTION 4
2.2 GRAPHICS DESIGN PHILOSOPHY 4
2.3 GRAPHICS DISPLAY COMPONENTS 6
2.4 BASIC GEOMETRICAL ELEMENTS 7
2.5 VECTOR GENERATION - DDA 9
2.6 CHARACTER GENERATION 10
2.7 GRAPHICS PRIMITIVES 13
2.8 DISPLAY FILE 15
2.9 FILLING POLYGONS 17

3. TRANSFORMATIONS, SEGMENTATION AND CLIPPING 19
3.1 TWO-DIMENSIONAL TRANSFORMATION 19
3.2 SEGMENTATION 22
3.3 WINDOWING AND CLIPPING 25

3.3.1 VIEWING TRANSFORMATION 25
3.3.2 CLIPPING 27

3.4 THREE-DIMENSIONAL TRANSFORMATION 29
3.4.1 THREE-DIMENSIONAL PRIMITIVES 31
3.4.2 VIEWING TRANSFORMATION 33
3.4.3 VIEWING PARAMETERS 35
3.4.4 THREE-DIMENSIONAL CLIPPING 37

4. HIDDEN SURFACE AND HIDDEN LINE REMOVAL 40
4.1 BACK-PLANE REMOVAL 40
4.2 DECOMPOSITION OF POLYGON 42
4.3 GEOMETRICAL SORTING OF TRIANGLES 43
4.4 COMPARING DEPTHS OF TWO TRIANGLES 44
4.5 HIDDEN LINE REMOVAL 47

5. SHADING .. 49
5.1 INTRODUCTION 49
5.2 SHADING PARAMETERS 49
5.3 IMPLEMENTATION.............................. 51

6. CURVES ... 53
6.1 BLENDING FUNCTIONS 53
6.2 SPLINE CURVE 56

7. STANDARD GRAPHICS ALGORITHMS ANALYSIS 59
7.1 POLYGON FILLING METHODS 59
7.2 CLIPPING ALGORITHMS 60
7.3 HIDDEN SURFACE REMOVAL 63

vi

7.3.1 DEPTH-BUFFER METHOD 63
7.3.2 SCAN LINE METHOD 64
7.3.3 QUAD-TREE SUBDIVISION METHOD 64
7.3.4 OCTREE METHOD 66

7.4 HIDDEN-LINE REMOVAL METHODS 69
8. 3D SURFACE RECONDSTRUCTION FROM PLANAR CONTOURS . 70

8.1 INTRODUCTION 70
8.2 MEASURING SYSTEM EXAMPLE 71
8.3 TWO-DIMENSIONAL REPRESENTATION OF AN OBJECT. 72
8.4 TRIANGULATION METHOD 73

8.4.1 CRITERIA OF CONSTRUCTION 74
8.4.2 SHORTER DIAGONAL METHOD 74
8.4.3 PROPERTIES OF TRIANGULATION 76
8.4.4 NUMBER OF TRIANGLES 77
8.4.5 ALGORITHM 78
8.4.6 LIMITATION OF ALGORITHM 79

8.5 GRAPHICAL REPRESENTATION OF TRIANGULATION . 80
8.6 CONVERSION OF CONCAVITY TO CONVEXITY 89

8.6.1 CONVEX HULL ALGORITHM 90
8.6.2 BACKTRACKING 92
8.6.3 RECONSTRUCTION FROM LOCAL CONCAVITY . 93

8.7 TRIANGULATION IMPLEMENTATION 94
8.8 EXPERIMENTATION USING THE GRAPHICS PACKAGE . 96

9. CORRECTIONS OF PROGRAMMING ERRORS 98
10. CONCLUSION .. 120
REFERENCES ... 122
APPENDIX A USER CALLABLE SUBROUTINES 124
APPENDIX B DIFFERENT GRAPHICS OUTPUTS 127

Vll

CHAPTER 1

INTRODUCTION

The main purpose of this graphics package is to
provide users a very portable system which does not require
specialized display hardware. Even the low resolution of an
ordinary dot matrix printer is adequate to show how
graphics work. The software is built around the graphics
standard, the CORE system. Most of the graphics principles
are based on simple analytic geometry.

The CORE system is organized in three areas, namely
dimension, input and output. Dimensionally speaking, two
levels are represented, two-dimensional operations in the
lower level and the three-dimensional operations in the
higher level. They both can be addressed at the same time.
Output-wise, a temporary display file is at the basic
level. Buffered output is employed to retain display
attributes of segments while dynamic output buffer is for
segments dealing with image transformation. Input can take
three different forms: 1) no input, 2) synchronous and 3)
asynchronous interaction. In this implementation, device
initialization is needed. The only user inputs are from the

1

2

keyboard and the data file.

This CORE version as proposed by Steve Harrington can
allow the user to create a two-dimensional or three-
dimensional representation of an object. Curves
construction is also implemented. The system aims to
specify the basic graphics capabilities, providing a
foundation for more advanced techniques.

During the process of implementation of this system,
errors were found, both simple and complex, in Harrington's
book. They will be discussed in detail in the chapters that
follow. Of course algorithms presented by Harrington are
not necessarily unique and the most efficient. The primary
objective is to provide the ease of understanding the
principles. However, a list of basic and standard
alogrithms is analyzed here along with those of
Harrington's to give the reader a broader view of the
graphics principles. References have been drawn from
several authors. Among them are Donal Hearn and M. Pauline
Baker, Roy A. Plastock and Gordon Kalley, Pavlidis, Newman
and Sproull.

In the application, several techniques have been

3

employed to construct the three-dimensional surface
representation. These techniques are common in image
processing. They are triangulation, convex hull
construction and graph theory. The proposed algorithms
apply specifically to a given set of two-dimensional
parallel cross-sections of an object. Computation
complexity is not analyzed in this thesis. The result of
the implementation of this CORE protocol as demonstrated by
the experiments is found very satisfactory in three
different display hardware systems; these are namely
Lexidata, Tektronics and Printronix. Better display quality
is obtained with a device of higher resolution.
Modification for use in different devices is kept minimal
in order to make the system protable. The system is
implemented in high level language FORTRAN 77. Future
enhancement, for example sophisticated shading algorithm
and splined surfaces, can be added to this system.

CHAPTER 2

GRAPHICS SYSTEM IMPLEMENTATION

2.1 INTRODUCTION

Computer graphics has made tremendous progess in the
past ten years. High resolution display hardware and
software are now affordable even at the personal computing
level. Computer graphics improves the communication between
human and machine. Many applications now rely heavily on
computer graphics. To mention a few, flight simulation
training pilots, graphical presentation of data, computer
aided design in the car industry, architectural design,
VLSI cirucit design, video games and animation in the
entertainment sector. The main reasons for the
effectiveness of computer graphics in these applications
are the speed and cost.

2.2 GRAPHICS DESIGN PHILOSOPHY

A graphics system can be defined as a collection of
hardware and software designed to make it easier to use
graphic input and output in computer programs. The software
package is a set of subroutines or functions used by an

4

5

application program to generate pictures on the display
device. The construction of the system has to meet the
basic requirements; simplicity, portability, consistency,
completeness, robustness, performance and economy. On the
other hand, the design should not be unduly influenced by
hardware features.

Functionally as a whole, the system can be divided
into sets, each set handling a particular kind of task.
These functions are summarized as follows:

1. Graphics primitives which are used to display
straight lines, text strings, polygons and other
simple graphical items.

2. Windowing and clipping which allow the programmer
to choose his viewing coordinate system and to
define the visible boundary of the picture.

3. Segmenting functions which provides dynamic
manipulation of subpicture structure.

4. Transformation functions which include scaling,
translation and rotation in both two-dimension and
three-dimension, and projection in three-dimension.

No system can do without graphics primitives and details of
the screen coordinates have to be transparent to the user.
Therefore the purpose of a graphics system is to make

6

programming easier for the user.

2.3 GRAPHICS DISPLAY COMPONENTS

The modern graphics system consists simply of three
elements: A frame buffer which is an internal memory array
storing the image as a matrix of intensiy or color; a
cathode-ray tube monitor where image is displayed; a simple
display controller which is an interface between the frame
buffer and the TV monitor (figure 2.1).

user program
frame
buffer
00011001...
10010011...
01001100...
11100100. . .

display
controller

MONITOR
OUTPUT

Figure 2.1 Basic graphics system

Inside the frame buffer, the image is stored as a
pattern of binary digital numbers which represent a
rectangular array of picture elements called pixels. Each
pixel requires at least one bit of intensity information.

7

light or dark, and further bits are needed if shades of
grey or different colors are desired.

The display controller simply reads each successive
byte of data from the frame buffer and converts its bits.
Os and Is into the corresponding video signal. This signal
is then fed to the display monitor producing the desired
image on the screen. The display controller repeats this
operation 30 times a second in order to maintain a steady
picture on the screen.

In order to change the displayed picture, all that is
needed is to modify the frame buffer's content.

2.4 BASIC GEOMETRICAL ELEMENTS

A display screen can be viewed as a cartesian
coordinate system with horizontal as the x-axis and
vertical as the y-axis by convention. Such arrangement
defines a two-dimensional display. The following can now be
defined precisely on the display screen:

1. Point: specified by (x,y) coordinate pair
2. Line segment: specified by joining two points

(xl,yl) and (x2,y2)

8

3. Vector: specified by direction and length. It has
no fixed position in space.

To apply the mathematical notion to actual graphics
display, we limited ourselves to a finite set of values
imposed by the physical dimensions of the display hardware
system. A point is represented by a pixel, the smallest
addressable screen element. Then a line segment is
constructed from a finite number of points. The maximum
number of distinguishable points which a line may have is
called the resolution of the display screen. For example, a
resolution of 100 dots (pixels) per inch indicates two dots
1/100 inch apart can be distinguished from each other. The
greater the number of points the higher the resolution. If

Figure 2.2 Staircase effect of a line

display unit has a low resolution, the line or curve will
appear as a staircase (figure 2.2).

9

Pictures and shapes, whether two-dimensional or three
dimensional, can be generated from these basic geometrical
elements. Changes of the display will be performed by
applying standard mathematical techniques such as affine
transformation, clipping and projection.

2.5 VECTOR GENERATION - DDA

In order to generate a smooth line represented by
pixels, an ordinary differential equation called digital
differential analyzer DDA is used. The line represented by
DDA is

dY/dX = (Y2 - Y1)/(X2 - XI)
where (XI,Yl) and (X2,Y2) are two points. This can be
expressed in parametric form with two end points given.

X = XI + (X2 - XI) u
Y = Yl + (Y2 - Yl) u

where u is the parameter. When u = 0, X = XI, and Y = Yl.
When u = 1, X = X2 and Y = Y2. The idea is to start
plotting a point at u = 0 and increment u by small steps
until it reaches 1. In terms of a coordinate pair, (X,Y)
starts at (XI,Yl) and steps up by an amount

STEPS = MAX((X2 - XI), (Y2 - Yl))
XINCREMENT = (X2 - XI)/STEPS
YINCREMENT = (Y2 - Yl)/STEPS

10

until (X2,Y2) is reached. The following pseudocodes
represent such iteration:

X = XI; Y = Y1

For i = 1 to STEPS do
X = X + XINCREMENT
Y = Y + YINCREMENT

enddo
The line drawn with this simple DDA algorithm is shown in
figure 2.3.

Figure 2.3 Straight line generated by DDA

2.6 CHARACTER GENERATION

Along with lines and points, characters strings are
also necessary to convey the meaning of the drawing on the
screen. There are two forms of character generation :

11

stroke=method and dot-matrix method. In this
implementation, stroke-method is used in order to allow
user to do transformation on characters, e.g. scaling,
translation and rotation.

The character stroke sequences are coded in a file.
Each character is defined by 5 pixels times 7 pixels in
dimension (see figure 2.4). Each stroke is then coded by
two operations: M for move to a position (X,Y) without
drawing and L for draw a line from current position to a

6 - - * - - code relative position
5 x y
4 * - - - * M 0 0
3 L 0 4
2 * - - - * L 2 6
1 — — — — — L 4 4
0 * - - - * L 4 0

0 12 3 4 M
L

0 2
4 2
0 0

Figure 2.4 Coding of character 'A'

point with (DX,DY) relative to the current. Coding is
terminated by a triplet (space, 0, 0). The file is then
converted to another data structure to be loaded into
memory during system initialization. The structure contains
two tables : A link list and the codes (see figure 2.5).
The link list is to store the starting location of the

12

coded sequence of each stroke character. The ASCII value of
the character is mapped to this list by an offset of 31.
The content in the list will locate the sequence of the
character codes in the character table. For instance,
character 'A' has an ASCII value of 65. Its locator is at
65 -31 = 33 of the link list. From there, index 53 is
read. Hence all codes from location 53 down in the
character table are for character 'A'.

62

1 | 0 | 2---+----- +--
2 | 4 | 2---+----- +--
-1 | -1 | -1

ASCII value link list character table
space 32 1 +----+----- +---- H

! 33 2 • ■
• • • • e • •

• • •
• • • ———— ————— ————

-> 53 1 0 0
0 48 17 ----+----- -----
e • • 54 2 | 0 4
e • ■ ----+----- +----
• e e 55 2 | 2 | 6
A 65 —> 33 53 — ----+----- +----

2 1 4 1 4

B 66 34 62 ----+----- +----
• e • 2 1 4 1 o

----+----- +----

Figure 2.5 Mapping from ASCII to character table

13

2.7 GRAPHICS PRIMITIVES

When starting a graphics program, system
initialization is performed. It includes hardware setup
physical dimensioning, clearing screen and storage
allocation to hold the image for instance. All these are
done in a routine called INIT_SYSTEM. Upon termination,
device storage deallocation and other housekeeping routines
have to be done. Regardless of the differences in display
devices, a set of graphics primitives commands must exist
as a basic tool to construct pictures on the screen. There
are two different sets to draw lines but similar in
function; one is for use in absolute position and the other
is for relative position in space.

a. Absolute Commands
M0VE_ABS_2(X,Y) move to a position (X,Y) on

screen without drawing
LINE_ABS_2(X,Y,COLOR) draw a straight line from

the current position to the
point (X,Y) with a certain
color or intensity COLOR

b. Relative Commands
M0VE_REL_2(DX,DY) move to a new position whose

coordinates are DX,DY away

14

from the current position
LINE_REL_2(DX,DY,COLOR) draw a straight line from

the current position to a
new point which is (DX,DY)
away from it with a color or
intensity COLOR

Another primitive operation is to draw text. The string
characters output may be drawn by either the dot-matrix or
the stroke-method. On CRT and line-printer, characters are
generated by hardware. With others like Lexidata and
Tektronix, the stroke-method can be employed.

Utilities on string operations are given below :
TEXT(STR, COLORS) display the string STR of

characters with individual
colors starting at its lower
left corner at the present
position

SET_CHARUP(DX,DY) define the direction (DX,DY)
of the string to be printed

SET_CHARSPACE(S) define the spacing between
characters in terms of frac
tion of character

These basic primitives can be extended to include the
drawing of polygons. A polygon is represented as a closed

15

figure consisting of straight line segments connected end
to end. The figure can be either concave or convex. In this
system, the polygon has a minimum of 3 sides and at most 31
sides. The command is

POLYGON_ABS_2(AX,AY,ACOL,N) draw an absolute
polygon whose coordinates of
vertices are in arrays AX,AY
and side colors in ACOL and
number of sides defined by N

POLYGON_REL_2(AX,AY,ACOL,N) draw a polygon rela
tive to the current position

2.8 DISPLAY FILE

In graphics environment, it is often necessary to
reconstruct pictures repeatedly in order to achieve dynamic
picture changes, for example image transformations.
Besides, it is also desirable to have a machine independent
routine to deal with such display changes. This suggests a
memory storage called display file to save instructions
rather than the picture itself. In doing so, it takes up
less memory and not every display device has a frame
buffer. These instructions will generate the image by a
display file interpreter. The structure of the display file
is a multiple array set. It contains a sequence of

16

operation codes which indicate what kind of command,
operands which are coordinates of a point, and the color or
intensity at this position. The opcodes are defined as
follows:

opcode < 0 : set line style display (line color)
opcode 1 : MOVE command
opcode 2 : draw LINE command
opcode 3 - 31 : draw POLYGON with sides 3 <= n <= 31
opcode >31 : draw character command

The interpreter routine examines the display file and acts
appropriately to cause the LINE or MOVE to be carried out
on the display. Actual drawing depends on the hardware. If
a frame buffer is used, DDA routine is called by the
command to generate the image before output to the screen
or printer. Otherwise, the command is sent to the display
device directly.

There are two routines to allow user to control the
display without knowing the existence of the display file.
In other words display file is transparent.

NEW_FRAME to indicate that frame buffer should be
cleared before showing the display file

MAKE_PICTURE_CURRENT to interpret the display file
and then display the frame buffer

17

The logics of such a scheme is
MAKE PICTURE CURRENT -> INTERPRET -> DISPLAY

the display file the picture

2.9 FILLING POLYGONS

The display images become more appealing and
interesting if they can be filled with color or light
intensities rather than just plain line drawings. Many of
the shapes can be represented by polygons. Coloring is
possible with raster display devices because pixels are

Figure 2.6 x values are paired and used
for line drawing

SCAM LINE

addressable. An algorithm to fill the interior of a polygon
is based on the inside test of points on the scan line
which crosses the boundaries of the tested polygon. It
begins by ordering the polygon sides on the largest y

18

value and scans down the polygon from the largest y. For
each y, it computes the intersection with the polygon
edges. If an intersection exists, the x values are sorted
and paired. Such a pair represents a region of the scan
line in which visible pixels should be displayed. The
smallest x value will be the left polygon boundary (see
figure 2.6).

CHAPTER THREE

TRANSFORMATIONS, SEGMENTATION AND CLIPPING

3.1 TWO-DIMENSIONAL TRANSFORMATION

Pictures in graphics system are basically represented
by coordinate points. By applying appropiate geometric
transformations to these coordinates, pictures can be
changed in shape and position. This provide a useful
complement to graphics design. The basic transformations
are scaling, translation and rotation.

Using homogeneous coordinates, these three
transformations are defined in terms of matrices as
follows:

a. scaling where the size of an object is changed by a
factor SX in x direction and SY in y direction

[X* Y' 1] = [X Y 1] SX 0 0
0 SY 0
0 0 1

b. translation which changes the position of an object
from one place to another along a straight line by
(Tx,Ty) in distance

19

20

[X1 Y' 1] = [X Y 1] 1 0 0
0 10
Tx Ty 1

c. rotation which changes the position of an object
along a circular path with a clockwise rotation
angle A about the origin

[X1 Y' 1] = [X Y 1] cosA -sinA 0
sinA cosA 0
0 0 1

Figure 3.1 shows these transformations.

original scaling translation rotation
Figure 3.1 Scaling, translation and Rotation

In the implementation, the transformation process is
applied at the time the display file is interpreted (see
figure 3.2). The user is restricted from building complex

set up get point transform
transform -> from display -> the image -> display
matrix file point it

Figure 3.2 Addition of transformation

21

transformations. Instead he is allowed to setup the
scaling, translation and rotation at one time.

Rotation about an arbitrary point can be determined by
matrix concatenation of operational matrices. The order is
first to translate the center of rotation to the origin.

Figure 3.3 Rotation about an arbitrary point

second rotate about the origin of the desired angle, and
third translate the center of rotation back to its original
position. This sequence is presented by the matrix product

T1 = 1 0 0
0 10

-Xc -Yc 1

22

R = COSA sinA 0
-sinA cosA 0

0 0 1

T2 = 1 0 0
0 1 0
Xc Yc 1

depicts such a transformation sequence.

cosA sinA 0
T1 R T2 = -sinA cosA 0

-Xc * cosA +
Yc * sinA + Xc

-Xc * sinA -
Yc * cosA + Yc

1

Figure 3.3

The user defined routines are SCALE(Sx,Sy),
TRANSLATE(Tx,Ty) and ROTATE(A).

3.2 SEGMENTATION

For many applications, images are often composed of
several pictures. Each subpicture can be composed together
to form a new image. Manipulation of pictures in terms of
their component parts are more flexible and appealing to
the user. By defining each object in a picture as a
separate entity, a user can make modifications to the
picture more easily. To reflect such subpicture structure.

23

segment
name

segment
start

segment
size

visibility scale X scale Y

0
1
2
3

Figure 3.4 Segment table

the display file is reorganized by being divided into
segments. Each segment corresponds to a component of the
overall display. Associating with each segment is a set of
attributes. These attributes are visibility, scaling,
translation and rotation. Visibility is used to determine
if the stored subpicture should be displayed or not while
transformation is performed on each segment independently.
This attribute information is represented by means of a
segment table of simple arrays (see figure 3.4). Each
segment is given a numeric name. The unnamed segment is
named 0 and can be used for nonsegmented display system.
Therefore, for each segment the display file interpreter
will only interpret those visible ones.

24

This system does not permit two segments open at the
same time and no two segments have the same name. Once a
segment is created, all subsequent graphics commands will
belong to this segment until a close segment command is
issued. Basic segment related commands are :

CREATE_SEGMENT(Numeric_name)
CLOSE_SEGMENT
DELETE_SEGMENT(segment_name)
DELETE_ALL_SEGMENTS
RENAME_SEGMENT(old_name, new_name)
SET_VISIBILITY(name, on_off)
SET_IMAGE_TRANSLATION(name, Tx,Ty)
SET_IMAGE_TRANSFORMATION(name,Sx,Sy,Angle,Tx,Ty)

The display system with segment file organization is
depicted in figure 3.5.

segment
table

+—>—
display I
file —'

all segments
check visibility

and
transformation

> display

Figure 3.5 Segment organization.

25

3.3 WINDOWING AND CLIPPING

It is very useful if one can select an area of a
picture to display and place it in a specified region of
the screen. This transformation process involves operations
for translating and scaling selected areas and for deleting
picture parts outside the area. These operations are
referred to as windowing and clipping.

3.3.1 VIEWING TRANSFORMATION

As noted, there are two coordinate systems: world and
device systems. They are referred to as object space and

Figure 3.6

object space
viewport in
normalized device
coordinates

Relationship between window and viewport

image space (see figure 3.6). A rectangular area specified
in the object space is called a window. The rectangular

26

area on the screen to which a window is mapped through
transformation is called a view port. This mapping is then
called a viewing transformation.

By changing the position of the viewport, objects can
be displayed at different positions on the output device.
Also by varying the size of viewports, the size and
proportions of objects can be changed. Zooming in or out
effect can be achieved when the size of the window varies.

The viewing transformation involves first translating
the window with lower left corner to the origin, second,
scaling the window to the size of the viewport and third,
moving it to the viewport corner location. Commands to
define the window and viewport sizes are :

SET_WINDOW(XL,XH, YL,YH)
SET_VIEWPORT(XL,XH, YL,YH)

Parameters in each function are used to define the
boundaries of the rectangular area - left and right, bottom
and top. In this system, both coordinate systems have a
range of 0 to 1 (normalized units). Viewing parameters have
to be specified right before the segment is created, and
they cannot be changed in the middle of the segment.

27

3.3.2 CLIPPING

The process of clipping is to clip away lines outside
the window. An algorithm used here is based on Sutherland
and Hugman's method which can clip polygons, lines and
characters. The entire figure is clipped against each
window boundary in turn. That is each drawing command is
clipped against the window starting from left, right, then
bottom and finally top. If a vertex moves across the
boundary from its preceding position, the intersection is
saved as a new command.

There are four possible situations as illustrated in
figure 3.7. Any point inside the window is saved. After

Figure 3.7 Four possible clipping cases

clipping against one boundary, the result is passed to the
next boundary check until all four boundaries have been

28

considered. The last step will enter all commands into the
display file.

Extra work is needed to clip the polygon because the
number of sides of a polygon will be changed. The result is
also limited to 31 sides. Before entering the polygon
instructions into the display file, a temporary array is
used to save the most recent point that was clipped for
each window boundary. After all polygon vertices have been
processed, one more clipping is performed on the line
joining the first visible point created and the last point.
This will then close the polygon (see figure 3.8).

In from vertex A clockwise, thefigure 3.8, starting

Clipping polygon

clipping process will generate the following sequence of

29

new polygon vertices.

last current points
point point saved
A B XI B
B C C
C D X2
D A X3 D A cross two

boundaries
X3 A X4
A XI XI closing

The clipping algorithm is implemented inside the
entering display file module. It is not user accessible.
Opcodes greater than 1 (MOVE command) will be inspected
first by clipping before entered into display file as shown
below.

enter windowing display
command —> & —> file —> interpreter

clipping

Figure 3.9

3.4 THREE-DIMENSIONAL TRANSFORMATION

Without three-dimensional representation, real live
objects cannot be visualized. Hence a graphics system

30

should be generalized to handle realism of the three-
dimensional objects.

In addition to the two-dimensional coordinates, a
third z-axis is added to represent the depth of the system.
Right handed convention is adopted.

Basic mathematical geometry required for building
three-dimensional structures are as follows :

a. point : (X,Y,Z)
b. line : represented in parametric form

X = XI + (X2 - XI) u
Y = Y1 + (Y2 - Yl) u
Z = Z1 + (Z2 - Zl) u

c. plane : represented by the equation
AX + BY + CZ + D = 0
where the triplet (A, B, C) stands for the
vector normal to the plane.

d. normal vector : a vector perpendicular to the plane
AX+BY + CZ + D= 0
It is called outward normal if
AX+BY + CZ + D>0

else, it is inward normal.
e. angle between two vectors A(XA, YA, ZA) and

31

B(XB, YB, ZB) :

-1 A . B
angle = cos ----------

|A| |B|

where A . B is the dot product given by
A . B = XA XB + YA YB + ZA ZB

3.4.1 THREE-DIMENSIONAL PRIMITIVES

An extra variable array storing z-coordinates is all
that needed in the three-dimensional system. These
primitives are :

M0VE_ABS_3(X, Y, Z)
M0VE_REL_3(DX,DY,DZ)
LINE_ABS_3(X, Y, Z, COLOR)
LINE_REL_3(DX,DY,DZ, COLOR)
POLYGON_ABS_3(AX,AY,AZ, ACOL, N)
POLYGON_REL_3(AX,AY,AZ, ACOL, N)

In order to display a three-dimensional object on a
two-dimensional viewing screen, a viewing transformation
mapping is needed. In this way, the two-dimensional display
file can remain unchanged in structure. Before giving the
methods of viewing transformation, the two-dimensional

32

transformations are expanded here below in homogeneous
form.

Sx 0 0 0
a. scaling : S = 0

0
0

1

Sy 0 0
0 Sz 0
0 0 1

0 0 0
b. translation : T = 0

0
Tx

10 0
0 10

Ty Tz 1

c. rotation about each axis through an angle A

1 0 0 0
Rx = 0 cosA sinA 0

0 -sinA cosA 0
0 0 0 1

cosA 0 -sinA 0
Ry = 0

sinA
0

cosA

1 0 0
0 cosA 0
0 0 1

sinA 0 0
Rz = -sinA

0
0

cosA 0 0
0 10
0 0 1

d. rotation about any line L through a clockwise
angle A

L : X = XI + A u
Y = Y1 + B u
Z = Z1 + C u

33

is :
-1 -1 -1

Ra = T Rx Ry Rz (Ry) (Rx) (T)
where
T = translation to the point (XI, Yl, Zl)

-1 22 1/2
Rx = rotation at an angle sin B/(B + C)

-1 222 1/2
Ry = rotation at an angle sin A/(A + B + C)
Rz = rotation at an angle A

3.4.2 VIEWING TRANSFORMATION

Viewing transformation of three-dimension is the
projection onto a two-dimensional view plane. The simplest
form is parallel projection. Others commonly used are
perspective and isometric projections. Only parallel and
perspective projections are implemented in this system.

Figure 3.10 Parallel projection onto XY-plane.

X

34

A parallel projection is formed by projecting points
on the object surface along parallel lines onto a viewing
plane (see figure 3.10). If the direction of projection is
given by a vector (XP, YP, ZP), the projection onto XY-
plane is

X2 = XI - Z1 (XP/ZP)
Y2 = Y1 - Z1 (YP/ZP)
Z2 = 0

Perspective projection changes the sizes of objects so
that the further away an object is.from the viewer, the
smaller it appears. The projection lines instead of being

Figure 3.11 Perspective projection

parallel will converge to a single point known as center of
projection. The intersections of these lines with the view
plane becomes the projected image (see figure 3.11). With

35

the center of projection at (XC, YC, ZC), the perspective
projection of a point (X, Y, Z) on the object onto the XY-
plane is

X2 = (XC Z1 - XI ZC)/(Z1 - ZC)
Y2 = (YC Z1 - Y1 ZC)/(Y1 - ZC)
Z2 = 0

3.4.3 VIEWING PARAMETERS

In this system, the view plane is treated as a
variable element just like the film in a camera which can
be positioned around in space. There are viewing parameters
that can change the projection onto the view plane.

a. reference point (XR,YR,ZR) : is the center of
attention.

b. view plane normal (VX,VY,VZ) : is the perpendicular
direction to the view plane.

c. view distance : is the distance from the view
reference point to the view plane.

d. view up direction (UX,UY,UZ) : is the upward
orientation of the view plane.

These parameters allow the user to select how the object is

36

to be displayed. The commands allowing these settings are
SET_VIEW_REFERENCE_POINT(X,Y,Z)
SET_VIEW_PLANE_NORMAL(NX,NY,NZ)
SET_VIEW_DISTANCE(D)
SET_VIEW_UP(UX,UY,UZ)

The definitions of projection are specified by
SET_PARALLEL(VX,VY,VZ)
SET_PERSPECTIVE(XC,YC,ZC)

In order to project the object model onto the view
plane correctly, a transformation from the object

Figure 3.13 System with three-dimensional viewing
operations

37

coordinates to the view plane coordinates is performed
first. The process includes translation and three rotations
about X-, Y- and Z- axes. Once this is done, the specified
projection is carried out. Figure 3.13 illustrates the
implementation of the three-dimensional viewing operations.

3.4.4 THREE-DIMENSIONAL CLIPPING

The projected image may produce more detail lines than
necessary. For example, objects behind the viewport can
appear on the screen. Sometimes objects may exceed the
prescribed limits of the viewport specified. These effects
can be eliminated by defining a clipping plane to clip away
the undesirable portion before projection has taken place.

The testing point in viewer's coordinates is checked
as a viewing volume which defines the space bounded by the
projecting rays and two clipping planes - front and back
(see figure 3.14). In this system, the user has an option
to do three-dimensional clipping by simply executing the
following commands :

SET_VIEW_DEPTH(front_jDlane_dist, back_plane_dist)
SET_FRONT_PLANE_CLIPPING(on_off)
SET_BACK_PLANE_CLIPPING(on_off)

38

Figure 3.14 Viewing volume in parallel and perspective
projections

Perspective

Here three-dimensional clipping requires two additonal
steps, clipping back and front. The whole process is placed
before the projection. This eliminates a lot of undesired
points and thus saves computation. Given a window size
(WXH,WXL,WYH,WYL), the four clipping planes in parallel
projection with direction (VXP,VYP,VZP) are :

a. top : Y = SI Z + WYH
b. bottom : Y = S2 Z + WYL
c. right : X = S3 Z + WXH
d. left : X = S4 Z + WXL

where
SI = S2 = VYP/VZP ; S3 = S4 = VXP/VZP.

39

For the perspective case with projection center at
(XC,YC,ZC), the corresponding planes take the same form of
equations with different plane slopes as

SI = (YC - WYH)/ZC ; S2 = (YC - WYL)/ZC
S3 = (XC - WXH)/ZC ; S4 = (XC - WXL)/ZC.

For a point (X1,Y1,Z1) to be visible within the viewing
volume, it must satisfy the following conditions :

Y1 <= SI Z1 + WYH below top plane
Y1 >= S2 Z1 + WYL above bottom plane
XI <= S3 Z1 + WXH left of right plane
XI >= S4 Z1 + WXL right of left plane
FRONT_Z <= Z1 <= BACK_Z between front & back planes.

The clipping of a line is performed by calculating the
intersecting point of the line with the plane.

CHAPTER 4

HIDDEN SURFACE AND HIDDEN LINE REMOVAL

A major consideration in the generation of realistic
scenes is the identification and removal of the parts of
the picture definition, either line or surface, that are
not visible from a chosen position. The discussion here is
limited to plane polygons and lines. Both involve the
determination of depth and visibility of hidden geometry.

4.1 BACK-PLANE REMOVAL

A surface (plane polygon with straight edges) is said
to have two faces, front and back. By adopting a convention
such that a visible front face is drawn clockwise on the

Figure 4.1 Front and back face convention.

40

41

viewer side, the cross-product of two adjacent edges and
the direction of projection determine the visibility of the
face. If R is the resulting cross-product and S the
direction of projection, a positive dot-product of R and S
will indicate a back face, otherwise a front face to the
viewer (see figure 4.1).

Care is taken to ensure the two vectors formed from
two adjacent sides meet at a convex vertex and do not
coincide with each other. The back-face check algorithm is
to be done after the clipping is performed. Front face is
saved while back face is discarded. When multiple objects
exist together, a front face of one object can be obscured
by another front face of another object. To display these
multiple front faces properly requires the knowledge of
depth information about them. A simple technique called
painter's algorithm handles the display of these faces as
if they were being painted onto the screen one over the
other in the order of their distance from the viewer.
Nearer faces are painted on top of more distant ones
partially or totally. Therefore before the display, the
faces are sorted in decreasing depth order.

In order to facilitate the geometrical sorting,
polygon face is decomposed into triangles. Buffers are

42

needed to keep track of the changes in polygon properties.
They are edge colors, fill style, depth and projected
coordinates, and drawing commands. The painting function is
applied within a given segment. Objects in other segments
have no effect on the current one. Therefore, the hidden
surface algorithm is done just before the segment is
closed.

4.2 DECOMPOSITION OF POLYGON

By starting from the leftmost vertex Pi of a polygon
to ensure a convex vertex, and combining the points
preceding and following it (Pi-1 and Pi+1), a trial
triangle is created. The rest of vertices are tested if any
leftmost point lies inside this triangle. If none, Pi-1, Pi
and Pi+1 form

Figure 4.2 Decomposition of polygon.

43

the triangle. The triangle is copied to a buffer. If there
is an interior point Pj, the polygon is split into two
subpolygons sharing the splitting side Pi Pj (see figure
4.2). The process is repeated until the polygon buffer is
emptied.

4.3 GEOMETRICAL SORTING OF TRIANGLES

The first step in sorting is to establish the depth
order of all triangles in a list. From the top, a triangle
is compared with all others down in the list according to
their depths. By depth, it means the Z coordinate of a
projected point common to both triangles. The front
triangle Fi having shorter depth is inserted into a list
called INFRONT of the back triangle Bj. A back count of Fi
is incremented to indicate one more triangle is behind it.
Once all have been compared, the order is constructed from
back to front.

Initially, the back count list is searched for zero in
which the triangle has nothing behind it. These triangles
are put into a TO_BE_DONE list. There must be at least 1
such triangle in the set. By taking out a triangle P from
the bottom of this stack, the back count for each of its
corresponding front triangles is decremented by 1. If one

44

count reaches zero, this front triangle is added to the
TO_BE_DONE list. When all its front triangles have been
examined, triangle P is entered into the display file.
Figure 4.3 shows an example.

Figure 4.3 Sorting of triangles.

4.4 COMPARING DEPTHS OF TWO TRIANGLES

There are several passes before a depth conclusion can
be reached if one test fails after another. The tests for
overlapping are listed in order of increasing difficulty.

a. XY MINIMAX TEST

A rectangular box over the vertices of a
triangle is compared with the other rectangle over

45

the other triangle. The rectangle sides are the
maximum and minimum of X and Y coordinates of the
three vertices. If X minimum of one box is less than
the X maximum of the other box, the boxes overlap and
need further tests.

b. Z MINIMAX TEST

This test determines which triangle is in front
of which. If the smallest Z value for one triangle is
larger than the largest Z value for the other
triangle, then the first triangle lies in front.

C. OVERLAPPING EDGE TEST

If a projected side of one triangle intersects
one of the projected sides of the other triangle, they
must overlap. At the point of intersection, their Z
values determine the depth order of the two triangles.

d. CONTAINMENT TEST

If three vertices of one triangle lie inside the
other triangle, the first one is contained by the
second. A point is said to be inside a triangle if it

46

lies to the right of each triangle side assuming a
clockwise drawn triangle. Mathematically, the
condition is

(X - XI)(Y2 - Yl) - (X2 - XI)(Y - Yl) < 0

where (X,Y) is the point and (XI,Yl) and (X2,Y2)
represent the end points of a triangle side. Once a
point is found inside the triangle, it can be used to
establish the depth order. The value (X,Y) of this
point is substituted into the plane equation formed by
the triangle to solve for Z value. This Z is compared
with the Z of the point.

summarized by figure 4.4The sequence of these tests is

Figure 4.4 Comparison of two triangles.

47

4.5 HIDDEN LINE REMOVAL

The hidden face algorithm discussed does not work for
line oriented (unfilled) polygons. For hidden line removal,
the obscured portions of line segments will be replaced by
MOVE commands. The approach is to compare each side of a
triangle against all of the triangles which lie in front
of it to see if it is partially or totally obscured. The
three sides are saved initially on a stack. Three cases can
occur: 1) a line segment is completely inside the triangle;
2) one end is inside and the other is outside; 3) both ends
are outside with middle lying inside the triangle
generating two intersecting points. The invisible part of
the line will need no further comparison while the visible
part needs further comparison against the remainder of the
front triangles.

When a line segment is to be drawn from the outside in
of a concealing triangle, the LINE command is replaced by a
new LINE command drawn to the intersecting point. If it is
an inside out line, the LINE command will be replaced first
by a MOVE command to the intersecting point and then a LINE
command drawn to the outside point. If both end points of
the line segment lie outside the triangle yielding two
distinct intersecting points P and Q, the new commands are

48

a LINE command drawn to first point P, a MOVE command to
the second point Q, and a LINE command to the last end
point down the line. A complete concealed line is replaced
by a MOVE command.

When all sides are processed and the stack is empty,
the resulting triangle is entered into the display file.
The implementation including hidden surface and line
removal is illustrated in figure 4.5.

vie*) i kJ §
transform

Figure 4.5 Implementation of hidden surface and
line removal.

CHAPTER 5

SHADING

5.1 INTRODUCTION

Shading three-dimensional objects can give further
realism to the image. A mathematical model is used to
describe the light sources which illuminate objects. There
are two kinds of reflection that change the shading effect,
diffuse reflection and specular reflection. If the light
energy emitted from the light source is reflected uniformly
in all directions, it is called diffuse reflection.
Specular reflection occurs at certain viewing angles and
produces a spot of reflected light that is the same color
as the incident light. A shiny surface reflects all
incident light and has a narrow reflection range. A dull
surface has a wider reflection range. The intensity to the
viewer decreases as the viewing angle falls off the range
(see figure 5.1).

5.2 SHADING PARAMETERS

Physical parameters needed in computing the shade of a
surface are background intensity B, surface reflectivity R

49

50

which is the fraction of light reflected by the surface,
portion of light that goes into specular reflection SP
which happens at certain viewing angles and the location of
the light source. When given these values, the following
are defined:

a. amount of incident light source P
P = 1 - B

b. amount of specular reflection S
S = (1 - B) (1 - R) SP

Figure 5.1 Relation between reflections and viewing
angle.

Lambert's Law states that the reflection of light from a
surface varies as the cosine of the angle between the
normal to the surface and the direction of reflected ray,
and also that illumination from a point source decreases by
the square of the distance between it and the object being
illuminated. If L, N, and H are the unit vectors shown in

51

figure 5.1 with H being half way between the light ray and
the viewing direction, by applying the law, a shading model
is expressed as follows:

P R cosl + S (cosN) ** A
SHADE = BR + -----------------------------

1 + D

where cosl = L . N, cosN = N . H, D = distance between
the object surface and the light source, and the value of
SHADE is between 0 and 1. CosN is raised to power A called
glossiness in order to produce the specular reflection
effect more prominently so that it is 1 within the range
and 0 for out of range.

5.3 IMPLEMENTATION

The shading algorithm is inserted at the end of the
back-face check procedure. If the face is a back face,
shading is not necessary else the surface color is changed
by shading. After shading, the face is passed to hidden
surface and line removal process. Shading parameters can be
set using the following routines:

SET_LIGHT(LX,LY,LZ, brightness, background)
SET_OBJECT_SHADE(reflectivity, specular, gloss)
SET_SHADING(on_off)

52

In this system, brightness is between 1 and 2, background 0
to 1, reflectivity 0 to 1, specular reflection 0 to 1, and
glossiness 40 to 60. Initially, shading is turned off.

CHAPTER 6

CURVES

The easiest way to approximate a curve on the screen
is by a number of small straight-line segments. To draw a
curve based on given sample points requires finding a
polynomial function that passes these points. A polynomial
can be expressed in parametric form as

X = Fx(u)
Y = Fy(u)
Z = Fz(u)

6.1 BLENDING FUNCTION

If the polynomial passes through n sample points, the
function can be represented by

Fx(u) = SUM(Xi Bi(u))
Fy(u) = SUM(Yi Bi(u))
Fz(u) = SUM(Zi Bi(u))

where i = 1 .. n. Bi(u) are called blending functions.
Each is between 0 and 1 for some u. A function Bi(u) is
chosen such that it passes through four given sample
points. It is set equal to 1 at some u and 0 for other u.
Using the Lagrange polynomial.

53

54

(U+1) U (U-1) ...(u-(i-3))(u-(i-l))...(u-(i-2))
Bi(u) = --

(i-1) (i-2) (i-3) . . . (1) (-1) . . . (i-n)

the blending functions over four control points are :
u (u - 1) (u - 2)

Bl(u) = -----------
-1 (-2) (-3)

(u + 1) (u - 1) (u - 2)
B2(u) -----------------------------

"I (-2) (1)
(u + 1) u (u - 2)

B3(u) = --------------------------
(2) (1) (-1)

(u + 1) u (u - 1)
B4(u) -----------------------------

(3) (2) (1)
and so the curve in parametric form is

X = XI Bl(u) + X2 B2(u) + X3 B3(u) + X4 B4(u)
Y = Y1 B1(U) + Y2 B2(u) + Y3 B3(u) + Y4 B4(u)
Z = Z1 Bl(u) + Z2 B2(u) + Z3 B3(u) + Z4 B4(u)

When given a set of sample points, the curve between two
successive points, i and i+1, is approximated by a
specified number of line segments with the blending
function computed over the four sample points i-1, i, i+1
and i+2. The entire curve is approximated by repeating this
process. The larger the number of line segments per
section, the smoother the curve drawn on the screen is. As
an example, given that X = (1,3,4,7) and Y = (1,5,3,6), to
generate three segments over the interval u = (0,1)

55

requires the calculation of Bi(u) with u = (0, 1/3, 2/3,1).
As a result, two more points are generated at u = 1/3 and
2/3.

u = 0 1/3 2/3 1
X = 3 3.296 3.593 4
Y = 5 4.457 3.654 3

Once these new points are created, they are entered as
LINE commands. The routines to generate such a curve are

START_CURVE(XA, YA, ZA, COLORA)
CURVE_ABS_3(X,Y,Z,COLOR)
END_CURVE(X,Y,Z,COLOR)

XA, YA, ZA, COLORA are 4-element arrays containing first 4
sample points. X, Y, Z, COLOR represent the new sample
point for the curve.

These blending functions can be applied to drawing
smooth polygons. Because the number of sides will be
increased during interpolation, a triangle could be
smoothed to 10 small line segments per side while a 15-
sided polygon could only be smoothed by 2 segments per
side. The routine to do this is

SMOOTH_POLY_ABS_3 (.AX, AY, AZ , ACOL, N) .

56

6.2 SPLINE CURVE

The blending functions given above have some
drawbacks. First, the sum is equal to 1 only at integer
values of u. Hence, flat behavior cannot be obtained when
needed. Second, the slopes at the boudnary point between
two sections are not the same, therefore creating corner at
this point. Finally, control of the curve by a sample
point ripples in and out as it moves along in u.

A set of functions that guarantees the curve smoothly
follows the control points without discontinuity is called
B spline function. The composite function is a polynomial
of degree one less than the number of control points used.
It is described as

n
P(U) = SUM P B (U)

i=0 i i,k
where B are the blending functions of degree k - 1. The

i,k
parameter u varies from 0 to n - k + 2. The functions B

i,k
are defined recursively as

B (U) = 1 if Ti <= Ti+1
= 0 otherwise

(U - Ti) Ti+k - U
B (U) ------------- * B (U) +--------- * B (U)
i,k Ti+k-1 - Ti i,k-l Ti+k - Ti i+l,k-l

57

If any term becomes 0/0, it is set to 0 by convention. The
values of T define the subinterval of U. They are chosen,
for i from 0 to n + k, as

Ti = 0 if i < k
= i - k + 1 if k <= i <= n
= n - k + 2 if i > n.

For example when k = 3, n = 4 then T values are TO to T7 of
0, 0, 0, 1, 2, 3, 3, 3. Cubic B spline is obtained with
k = 4.

Sharp corners can be created with B-spline functions. It is
done by controlling the curve over several identical sample
points. Figure 6.2 illustrates the difference between
interpolation smoothing and the B-spline smoothing.

by interpolation by B spline
Fig 6.1 Interpolation smoothing and B-spline

smoothing

58

Routines that draw a B-spline curve and a smooth
polygon are

SET_B_SPLINE(no_of_lines_per_section)
START_B_SPLINE(AX,AY,AZ,COLORS)
END_B_SPLINE(XI,Y1,Z1,X2,Y2,Z2,COLOR)
B_SPLINE_POLY_ABS(AX,AY,AZ,M COLORS)

where AX,AY,AX,COLORS are arrays and X1,Y1,Z1,X2,Y2,Z2 are
the last two sample points.

CHAPTER 7

STANDARD GRAPHICS ALGORITHMS ANALYSIS

Some common standard graphics algorithms are analyzed
to give readers an insight how they work differently from
those discussed in Harrington's book. These algorithms are
polygon filling methods, clipping methods, hidden surface
removal methods and hidden line methods.

7.1 POLYGON FILLING METHODS

The method used by Harrington is called scan
conversion filling. This algorithm is based on the
geometrical information in which only vertices are known.
In case of a frame buffer is used, the polygon boundaries
are represented by pixels. Several methods based on pixels
are known. Two of these are flooding filling algorithm and
boundary-fill algorithm.

In flood filling, a seed inside the polygon is
initiated. Its surrounding 8 pixels are inspected to
determine whether the boundry has been reached. The process
is repeated until all pixels inside the region have been
inspected.

59

60

In boundary filling, a starting seed inside the
polygon is also required. The method inspects each pixel to
the left and right of the seed. When the left- and
rightmost boundary pixels are hit, a run or line of pixels
is drawn. Then each pixel above and below the line just
drawn is examined. Again when the boundary pixels are
reached, a line is drawn. The process is continued until
all pixels inspected are shown to be boundary pixels.

These two algorithms are useful in interactive
sketching and painting packages. Using a graphics tablet or
other interactive devices, a user sketches a figure
outline, picks an interior point and selects a color or
pattern from a color palette. The system then paints the
figure interior.

7.2 CLIPPING ALGORITHMS

The clipping of a line segment by a rectangular window
can be done by checking the end points of the line against
eight regions around the window as shown in figure 7.1.
Each region is coded by 4 bits. Each bit position indicates
the point is in that relative position. The assignment is
bit 1 as left, bit 2 as right, bit 3 as below and bit 4 as
top. If a point is within the window, the region code is

61

1001 -1- 1000 1 -+— 1010
0001 -+- window 0000 -+— 0010
0101 1 0100 1 0110

Figure 7.1. Eight regions of a window.

0000. A point in the lower left corner has the region code
0101. Bit values of the point are determined by comparing
endpoint coordinate value (X,Y) to the window boudnaries.
Bit 1 is set to 1 if X < WXmin (window minimum X value).
The other three bit values can be determined in similar
fashion. Once the region codes for all endpoints have been
established, lines which are completely inside and which
are outside the window can be found. Line with both
endpoints of 0000 code is completely contained inside the
window. If the line has a 1 in the same bit position in the
region codes for each endpoint, it is completely outside
the window and is rejected. All these operations can be
done by XORing the bits. Further computation for
intersecting point with the window boundries is needed if
the line is partially inside the window or cannot be
identified completely. An endpoint is checked against the
window boundaries in the order left, right, bottom and top.

This method finds the clipping endpoints very rapidly

62

but also rejects even more rapidly any line that is clearly
invisible. This makes it a very good algorithm for clipping
pictures that are much larger than the screen.

Another technique for locating window intersections
without the direct computation of the line-equation is a
binary search procedure. The goal is to find the visible
point on the line segment P0P1 that is farthest from PO.
The steps in the process are as follows. Initial testing of
lines is carried out using region codes. Undetermined case
will be examined by studying the line's midpoint. Each
half of the line can be tested for total acceptance or
rejection. If half of the line can be accepted or rejected,
then the other half is processed in the same way. This
continues until an intersection point is reached. If one
half of the line cannot be trivially accepted or rejected,
each half of it is processed until either the line is
totally rejected or a visible section is found.

This method can be hardware implemented because
midpoint calculation is equivalent to an addition and a
left shift operation, and hence provide fast line clipping
than a software type.

63

7.3 HIDDEN SURFACE REMOVAL

Besides the Painter's algorithm, there are several
commonly used approaches.

7.3.1 DEPTH-BUFFER METHOD

Basically, it tests the surface visibility one point
at a time. For each pixel position of a projected surface
on the view plane, the surface with the smallest Z
coordinate at the location is visible. Two buffers are
required. One stores the Z values for each X and Y. Another
stores the intensity or color for each position. The depth
at points over the surface is calculated from the plane
equation. Initially, the depth buffer and refresh buffer
are set to 1 for maximum normalized depth and background
intensity. For each position on each surface, if the
calculated depth Z is less than the value of the same
position stored in the depth buffer, then new Z value is
stored and intensity at this point is put into the buffer.
The polygons are processed by scan line one at a time. For
any scan line, X coordinates across the line differ by 1
and Y values between line differ 1. If the initial Z is
determined by the plane equation Z = -(AX + BY + D)/C at
(X,Y) the next iteration at (X+1,Y) is Z' = Z - A/C and

64

move to next line Z'= Z + B/C at (X, Y-l).

This method requires no geometrical sorting of
surfaces. However, it does require a very larger buffer;
e.g., a resolution of 1024 by 1024 would require a million.

7.3.2 SCAN LINE METHOD

This method is similar to the scan-line-fill polygon
algorithm. The edges of polygons are sorted in order of
increasing X. A flag is defined for each surface. It is set
on when the scan line is processed from left to right. When
the rightmost boundary of the surface is reached, the
surface flag is set to off. When the scan line is over the
overlapping region of two surfaces, both surface flags are
on. For single flag on, no depth calculations are necessary
and the intensity information for that surface is entered.
When multiple flags are on, depth calculation are
performed. The color of the surface with the smallest Z is
loaded into the intensity buffer.

7.3.3 QUAD-TREE SUBDIVISION METHOD

This method is applied by successively dividing the
view plane into smaller rectangles until in each rectangle,

65

the projected polygon is found visible or until the screen
area is a single pixel. Tests to determine the visibility
of a single polygon within a specified rectangle are made
by comparing surfaces to the boundary of the rectangle.
Four possible catagories can occur :

1. Surrounding polygon which completely encloses the
rectangle.

2. Intersecting polygon which intersects the
rectangle.

3. Contained polygon which is completely inside the
rectangle.

4. Disjoint polygon which is completely outside the
rectangle.

No further subdivisions of a specified rectangle are needed
if one of the following conditions is true :

1. All polygons are outside the rectange.
Action : the rectangle is colored to background
color.

2. Only one polygon which is completely inside, in
tersecting or surrounding the rectangle.
Action : area covering the polygon is colored with
the rest in background color.

3. A surrounding polygon is closer to the viewer than
all other polygons within the boundary.
Action : color the area with the color of this

66

polygon.
4. Subdivision reaches a pixel.

Action : the Z-coordinates at this point of all
visible polygons is computed. The pixel is set to
the color of the polygon with the smallest Z
value.

If none of these conditions has occurred, the screen area
is subdivided into fourths and the process is repeated for
each of these quadrants.

7.3.4 OCTREE METHOD

It is used for the viewing volume which is similar to
the viewing rectangle in the quad-tree method. The
modelling process is to subdivide the viewing cube into
eight suboctants. These subcubes are tested against the
object to be examined to determine whether a) they lie
entirely inside the object - called FULL cubes, b) they lie
entirely outside the object - called EMPTY cubes, or c)
they lie partially inside and partially outside the object
- PARTIAL cubes. Only partial subcubes are further
subdivided into sub-subcubes and are tested again. This
process of successive subdividing and testing continues
until a cube size is reached that is of the desired
resolution fineness.

67

Such a model can be represented by an 8-ary tree
structure in which each node represents a cube. The
terminal nodes correspond to the FULL or EMPTY subcubes
while non-terminal nodes correspond to the PARTIAL
subcubes.

The octants when created are labelled as 0 to 7 such
that the highest number indicates the octant is the most
visible one to the viewer (see figure 7.2). Therefore
nothing in octants 0 through 5 can obscure anything in
octants 6 and 7. This ordered-priority convention is used
as a basis for hidden surface elimination.

Figure 7.2 Octree method.

The elimination is accomplished first by setting up a
corresponding quad-tree that mapps the visible octants. All
FULL and PARTIAL octants are projected onto this quad-tree
using a recursive front-to-back traversal order (i.e. 7-to-

68

0 order). Obviously, surfaces of front octants are visible
to the viewer while any surfaces toward the rear of the
front octants or in the back octants may be hidden by the
front surfaces.

If a quad-tree location has no value, this location is
then assigned to the color of the projected visible octant
being examined. If the traversal order shows an octant to
be completely obscured, it needs no further processing and
its subsequent subtrees as well. The final result of this
quad-tree representation for the visible surfaces is loaded
into the frame buffer.

The effectiveness of a hidden-surface method depends
on the characteristics of a particular application. As a
general rule, the Painter's algorithm is a lightly
effective approach for scenes with only a few surfaces.
These scenes usually have few overlapping surfaces. The
scan-line method also performs well when a scene contains a
small number of surfaces. Either the scan-line method or
the Painter's algorithm can be used effectively for scenes
with several thousand faces. For over a few thousand
surfaces, the depth-buffer or octree method performs best.
The depth-buffer method has a nearly constant processing
time, independent of the number of surfaces in a scene.

69

However it requires more memory than most methods. Octree
or quad-tree method may be preferred for scenes with many
surfaces as well. Either one requires no sorting or
intersection calculations and occupies less memory. Octree
representation can be useful for obtaining cross-sectional
slices of solids.

7.4 HIDDEN-LINE REMOVAL METHODS

Some hidden-surface methods can be adapted to hidden-
line removal. By using a back-face method, all back
surfaces of an object can be identified. Only the
boundaries of the visible surfaces are displayed. With the
Painter's algorithm surfaces can be painted into the frame
buffer so that surface interiors are in the background
color, while boundaries are in the foreground color. By
processing the surfaces from back to front, hidden lines
are erased by the nearer surfaces. A quad-tree subdivision
can be adapted by displaying only the boundaries of visible
surfaces. Scan-line methods can be used to display ivisible
lines by setting points along the scan line that coincide
with boudnaries of visible surfaces.

CHAPTER 8

3D SURFACE RECONSTRUCTION FROM PLANAR CONTOURS

8.1 INTRODUCTION

In many scientific and technical applications, a
three-dimensional solid must be reconstructed from serial
sections, either to aid in the comprehension of the
object's structure or to facilitate its automatic
manipulation and analysis. The structures, for example, in
biological research, medical diagnosis, and automobile
design are very often so detailed and the interaction with
them so extensive that automation of some kind by computer
is almost a necessity.

In order to define a three-dimensional structure
effectively to the computer, it has to be reconstructed
from a sequence of two dimensional images. One way to
obtain a set of two-dimensional images is by means of a
laser range finder which measures the three-dimensional
coordinates of a point on the surface of the object. The
cross-sectional images are then used to reconstruct the
three-dimensional surfaces. The construction is done by
means of triangulation. There are already different methods

70

71

to deal with triangulation. Most of them use heuristic and
interpolation approaches. The method to be discussed here
will solve the problem by using graph theory and the
properties of convex hull.

8.2 AN EXAMPLE OF A MEASURING SYSTEM

The system which is used to collect the three-
dimensional coordination data of an object consists of a
laser range finder, camera system, a complete controlled
table and a microprocessor system. The sensor provides the
Z coordinate of a point on the surface of an object as a
function of the X coordinate. The laser beam creates a
small spot on the surface. The spot is then picked up as an
image on each camera detector. The position of the image
and the geometrical parameters of the cameras X and Z
coordinates of the point can be computed by the
microprocessor. The automated vertical motion and the
rotation of the platform, by varying the X and Y
coordinates, will make the uniform collection of the three-
dimensional coordinates possible. The use of two cameras
each associated with a microprocessor is to produce a
better accuracy. The connection to a computer is done
through the second microprocessor. The system is shown in
figure 8.1.

72

Figure 8.1 A measuring system.

8.3 TWO-DIMENSIONAL REPRESENTATION OF AN OBJECT

Once the three-dimensional coordinate data is
collected, the object can be displayed with a finite number
of specified paralllel planes. Each of these planes
intersect the object with the measured coordinates.
Obviously, each set of coordinates is assumed to be a
simple closed curve called a contour. The curve segment
between two consecutive points is approximated by a
straight line. The analysis here is based on the fact that
only a single contour per cross-section is allowed (see
figure 8.2).

The contour representation of the three-dimensional

73

object does not have the real human perception of the
object's surface. In order to construct the surface over a
set of cross-sectional contours, a piecewise planar
approximation to the original surface is to be done by
means of triangulation between contours as shown in figure
8.2. The result is a closed band of non-intersecting, non
overlapping triangular tiles between two slices.

BOTTOM

Figure 8.2 Triangulation between planar contours.

8.4 TRIANGULATION METHOD

To create a surface between two successive contours,
one would construct tiles between the contours. One way of
doing this is by means of triangles such that the vertices
are the contour points. The vertices of each triangle are
taken - two from one contour and one from the other. The

74

surface is complete when one edge of the last triangle
meets the very first one created. The property of such
triangulation is that no two triangles will intersect or
overlap each other. In other words, one edge of a triangle
is also the edge of the next adjacent one.

8.4.1 CRITERIA OF CONSTRUCTION

There are several ways to construct a triangle. Some
popular criteria are :

1. Find a triangle having a minimum surface area
between three source points.

2. For a pair of triangle vertices A and B on one
contour, find the minimum cost path from A to B
through the third point on the other contour.

3. Find the nearest neighboring points that will
form a triangle touching the two contours.

Papers concerning these methods can be found in the works
of Yuval, Shamos, and Johnson. The next section will
introduce another approach to the triangulation.

8.4.2 SHORTER DIAGONAL METHOD

The principle of constructing a triangle from three
points taken from two successive contours is by considering

75

four points - two consecutive points on one contour and two
consecutive ones on the other. In other words, they form a
quadrangle in space. Let these four points be a and b
on the top contour and p and q on the bottom as shown
in figure 8.3. Assuming the construction is in
anticlockwise sequence and started off from the closest

Bottom

Figure 8.3 Shorter diagonal method.

pair of points aO and pO, the segment ap is then a side of
a triangle. A point either b or q will be chosen to
complete such triangle. The shorter diagonal of the two, aq
or pb segment is selected as the criterion. The process
moves on to the next two pairs, for example in figure 8.3,
be and pq with bp as the base of the next triangle.

The calculation in finding the shorter diagonal is
simple. Let the spacing between the contours be in Z-
direction and the coordinates of a point p be denoted by
(Xp,Yp,Zp). Then the diagonals are

76

2 2 2 2
(aq) = (Xa - Xq) + (Ya - Yq) + (Za - Zq)

2 2 2 2
(bp) = (Xb - Xp) + (Yb - Yp) + (Zb - Zp)

To compare the two diagonals, we take the difference

2 2
diff = (aq) - (pb)

2 2 2 2
= (Xa - Xq) - (Xb - Xp) + (Ya - Yq) - (Yb - Yp)

2 2
+ (Za - Zq) - (Zb - Zp)

From the fact that these points are lying on the two
adjacent parallel planes, hence

Za - Zq = Zb - Zp
and so

2 2 2 2
diff = (Xa - Xq) - (Xb - Xp) + (Ya - Yq) - (Yb - Yp)

If diff is negative, diagonal aq is shorter, otherwise
diagonal pb is shorter if diff is non-zero.

8.4.3 PROPERTIES OF TRIANGULATION

There are several interesting points about this
method. First, the computation does not depend on the third
coordinate (the spacing between two contours). From the
diff expression, spacing is cancelled out. This certainly
saves a lot of computer time in three-dimensional system
and pattern recognition. Second, it requires no

77

interpolation between points. The joining of points will
automatically take care of the uneven distribution of
points on two contours. As an example in figure 8.4, the
number of points on the top is larger than that on the
bottom. It is clear that the left half points on the top
contour will be joined to the left bottom point while the
rest of the right half points on the top are joined to the
bottom right point. This effect is extremely desirable
because it is direct and straight forward. It needs no
interpolation, heuristic, or approximation.

BdrroM

Figure 8.4 Uneven distribution case.

8.44 NUMBER OF TRIANGLES

Number of triangles created can be computed if number
of points on each contour is given. If on two successive
contours the number of points are A and B, then the number
of triangles formed without overlapping is obviously A + B.
So for three cross-sections having A, B and C, the total
number of triangles will be

78

(A + B) + (B + C) .
If there are n such cross-sections, and the last one has N
points, the total will be

total = (A+B) + (B+C) + (C+D) + ... n-1 terms
= A + (2B + 2C + . . .) + N
= 2(A+B+...+N) - (A+N)

n
= 2 * SUM(Xi) - (XI + Xn)

i=l
For an object having 20 cross-sections each with an average
of 25 points, the total number of trianlges created will be

total = 2 * (20 * 25) - 2 * 25
= 950.

Certainly, in order to construct a smoother surface, more
cross-sections are needed and hence the number of triangles
will increase proportionally. For every extra section of X
points, there is an increase of 2X triangles.

8.4.5 ALGORITHM

Let the two successive contours be Ci and Ci+1.
1. Find the rightmost (largest X coordinate) point Pi on

Ci and call it P0.
2. Find the rightmost point Qi which is the closest to Pi

and call it Q0 on Ci+1.

19

3. Pick Pi+1 and Qi+1 and find the shorter diagonal
between diagonals DI = Pi Qi+1 and D2 = Pi+1 Qi.

4. If DI is shorter, form triangle Pi Qi+1 Qi and set
Qi = Qi+1

or else form triangle Pi Pi+1 Qi, and set
Pi = Pi+1.

5. If Pi or Qi, whichever reaches the starting point PO
or QO first, create the rest of the triangles by join
ing the rest of the unlinked points to this PO or QO.

6. Otherwise, repeat 3 to 4.

8.4.6 LIMITATION OF ALGORITHM

The shorter diagonal algorithm works correctly if two
contours are more or less similar in shape and size to each
other. In other words, the profile variation between the
two is not very great. One could think of the algorithm as
the delinearization of the two closed curves and the
joining of the points on two parallel lines based on the
said criteria ideally.

There are two extreme cases that will produce an
unacceptable effect to the viewer. This happens because the
two contours have a large variation. Figure 8.5 illustrates
the two cases. In the first one, points Qi, Qi+1, ... on

80

contour 2 are incorrectly linked to the concavity points of
contour 1. The second one is due to large variation in size
between the two contours. This problem can be solved. The
smaller contour can be imagined as a big one but shrunk. By
expanding its size close to the big one such that both are
inscribed by the same rectangle, triangulation process can
be applied as usual. Case one needs special treatment and
is discussed next.

Figure 8.5 Extreme cases.

8.5 GRAPHICAL REPRESENTATION OF TRIANGULATION

Let two successive contours be defined by P and Q and
the points on each of them be P0, Pl, P2, ... Pn-1 and Q0,
QI, Q2, ... Qn-1 respectively. Each triangle is constructed
by a set of three distinct points either of the form (Pi

81

Qj, Pi+1) or the form (Pi, Qj, Qj+1) with increasing index
orientation. Segment Pi Qj is always on the left of (Pi,
Qj, Pi+1) or (Pi, Qi, Qj+1). It is obvious that an
acceptable triangulation set is said to be satisfied if the
following two conditions are met :

1. Each contour segment appears in exactly one
triangle in the set.

2. If Pi Qi appears as the left edge of a triangle t,
it will appear as the right edge of the triangle
t-1 in the set.

Additional criteria will be used to construct the most
appropiate surface as suggested by the shorter diagonal
algorithm.

Points on two successive contours can be represented
by a two-dimensional directed graph G with row i standing
for top contour P and column j the bottom contour Q. The
last row and column will repeat the starting points of each
contour. The intersection called vertex Vij in the graph
maps to the edge joining the two contours. An arc then
denotes the orientation of a triangle. So there is a one-
to-one correspondence between the triangle set and the
graph. As an example, the triangles (5,4,5) and (5,5,6) in
figure 8.6 are mapped into the graph as arcs (row5, col4)
to (row5, col5) and (row5, col5) to (row6, col5). The

82

orientation in the graph in from left to right for row and
top to bottom for column.

Gl

Figure 8.6 Mapping of triangles.

The reconstruction of triangles from the graph is
simple just by reading off the marked arcs. Arc I in the
graph for instance has end coordinates (row5, col4) and
(row5, col5). Therefore the triangle is (P5, Q4, Q5).

Any set of triangles can be described as a subgraph of
the entire directed graph G. A subgraph is called an
acceptable subgraph which corresponds to an acceptable
surface. If S is the acceptable subgraph, the previously
stated conditions can be redefined as

1. For every row i, i = 0, 1, ... m-1, 0, there is
exactly one vertical arc Pi Pi+1 in S between the

83

rows i and i+1 ;
and for every column j, j = 0, 1, ... n-1, 0f
there is also exactly one horizontal arc Qj Qj+1.

2. If a vertex is marked, it must be shared by two
links (incoming and outgoing).

A directed graph is weakly connected if and only if it is
connected with arcs of no unique direction. There are two
Lemmas related to this directed graph.

Lemma 1. An acceptable subgraph S of G is weakly
connected.

Figure 8.7 Possible subgraphs.

Lemma 2. If vertex of a subgraph S such that the
number of incoming arcs plus the number of
outgoing arcs is greater than or equal to
3, then at vertex Vij, the number of

84

incoming arcs = number of outgoing arcs
= 2, and for every other vertex Vst of S
the number of incoming arcs = number of
outgoing arcs = 1.

Figure 8.7 illustrates some possible subgraphs.

Proof of Lemma 1 :
Let S be an acceptable subgraph which contains arcs

and vertices at least two weak components, one SO, the
other S -SO. For simplicity there is at least one
horizontal arc in S but not SO. Therefore, we claim that
Vij is in SO and SO does not contain a horizontal arc
between columns j-1 and j. Let e denote an element of a
set and /e denote not belonging to the set.

arc V V e SO
kj k+1 j

for k = 0, 1,.. m-1, 0

but Vij e S

therefore
incoming(Vij) > 0

with arc V V /e SO
i j-1 ij

therefore
V V e SO
i-1 j ij

by assumption

85

and V e SO
i-1 j

By similar argument,
incoming(V) > 0

i-1 j
and arc V V /e S

i-1 j-1 i-1 j
so V V e SO

i-2 j i-1 j

Continuously proving in this fashion, for all k = 0,
1, ... i, ... m-1, 0, we will have

arc V V e SO
k j k+1 j

As we claim earlier S has a horizontal arc between any two
adjacent columns for some k, that is

arc V V e S
k j-1 k j

but not SO. This implies
Vkj e S, and Vkj e SO.

By the fact that a vertex Vkj in SO indicates its incoming
arc must be in SO. Hence

V V e SO
k j-1 k j

Early we assumed SO contains no arc between column j-1 and
j, it follows by contradiction that

86

S = SO
and so S is weakly connected.

Proof of Lemma 2 :

Let the three arcs of Vij be V V , V V ,
i j-1 ij ij i j+1

and V V . Assume that S does not contain any other
i-1 j ij

horizontal arcs between columns j-1 and j, and between
columns j and j+1. Using the proof in lemma 1, then all
vertical arcs

V V e S for k = 0, 1, ...i, m-1, 0
kj k+1 j

Therefore,
arcs V V e S

i-1 j ij

V V e S
ij i+1 j

and by condition 1, S then contains no other vertical arcs
between rows i-1 and i and between the rows i and i+1.
Since S is weakly connected,

V V e S between any two adjacent
ik i k+1

columns with k = 0, 1, ..., j, ... n-1, 0
therefore V V , V V , V V , V V

i j-1 ij ij i j+1 i-1 j ij ij i+l,j

all four are connected through vertex Vij. In other terms,

87

any other vertex Vik for some k, can have only arcs
V V , V V and the vertex Vkj with arcs
i k-1 ik ik i k+1

V V , V V
k-1 j kj kj k+1 j

Obviously, triangles created between two planar
contours will never cross each other. In terms of the arcs
in the directed graph, we claim that the graph is traversed
by a closed walk in which every arc occurs exactly once.
That is, for every vertex Vij in S the number of incoming
arcs = the number of outcoming arcs. The above two lemmas
then lead to the following theorem.

Theorem :
A subgraph S of G represents an acceptable surface if

and only if S contains exactly one horizontal arc between
any two adjacent columns, and exactly one vertical arc
between any two adjacent rows and it is a closed graph.

If IN = number of incoming arcs and OUT for outgoing arcs
at vertex Vij, there are two acceptable cases :

1) IN = OUT = 1 for every vertex Vij.
2) IN = OUT = 2 for one vertex Vab and

IN = OUT = 1 for every other vertex Vij,
b in S.

88

These two are illustrated in figure 8.8.

Figure 8.8 Two acceptable subgraphs.

As there are many acceptable surfaces (m+n)!/(m! n!)
where m, n are the number of vertices of two planar
contours, a criterion must be chosen to obtain a good
acceptable surface. In this discussion, only case 1 is an
acceptable construction. Case 2 happens as discussed in
section 8.4.6. The shorter diagonal method presented
earlier is used to find the appropiate path in the graph.

After the path is created, the directed graph theorem
is then used to detect disqualified triangulation between
two contours. A good triangulation is one whose every
vertex in the graph is visited no more than once.

89

8.6 CONVERSION OF CONCAVITY TO CONVEXITY

One way of keeping case 2 from happening when
applying the shorter diagonal method is to detect the
concavity of a contour or polygon. If with two polygons,
one has extreme concavity and the other has convexity over
the same vicinity of the first one, case 2 connection will
result; so such concavity has to be dealt with locally.

The convex hull of a finite planar set is defined as
the minimum area convex set containing the original set.
The two properties of a convex polygon are given here to
help the discussion that follows.

a. All interior angles are less than 180 degrees.
b. If the polygon is drawn counter-clockwise, each

vertex must be lying on the left side of a
preceding edge.

Property b is used to detect a special situation during the
conversion process.

Two vertices of either convex or concave polygon P are
said to be visible if the line segment joining them lies in
P. P is said to be weakly visible from edge UV if for each
vertex Z belonging to P, there exists a vertex W belonging
to UV such that Z and W are visible. A polygon is edge-

90

visible if there exists at least one edge of P from which P
is weakly visible.

8.6.1 CONVEX HULL ALGORITHM

The main function of this algorithm is to discard a
concave point j. Its neighboring points j-1 and j+1 will
then form a new edge. The vertices are processed counter
clockwise starting with the rightmost vertex - one with the
largest X value. By applying the property a, three
consecutive points i, i+1, i+2 are tested for the condition

SI = (X - X) (Y - Y) - (Y - Y) (X - X)
i+1 i i+2 i+1 i+1 i i+2 i+1

> 0
to be satisfied. If SI < 0, that means vertex i+1 is a
concave point lying to the left of the line segment joining
i and i+2 and is discarded. A new edge joining i and i+2
is created. In order to ensure that vertex i is still
convex with respect to vertices i-1 and i+2, the process is
backtracked to i-1 (see figure 8.9). If the condition is
satisfied, vertex i+1 is said to be on the right of the
diagonal joining vertices i and i+2. The tested points are
said to be temporarily in proper order. A further test on
point i+2 is required to maintain the property b.

91

Figure 8.9 Eliminating a concave point.

A new edge which results from eliminating a concave
point may cross an existing edge. That is whenever a reflex
vertex is discarded, a weakly external visible polygon is
replaced by another weakly external visible polygon with
one less vertex as shown in figure 8.10. The second test
condition remains the same, but with changes in vertices i,
i+2 and i-1.

S2 = (X - X) (Y - Y) " (Y - Y) (X - X)
i+2 i i-1 i+2 i+2 i i-1 i+2

> 0

If the condition S2 is not satisfied, the polygon is weakly
visible with i, i+1 as the visible edge. Both points i and
i+1 are discarded from consideration and the process is
repeated again by backtracking. When three points survive

92

from the tests SI and S2, the index is incremented by one
until point i+1 reaches the beginning rightmost vertex.

test bed test bde test def
result drop c result OK result OK

test bea test dfb
result OK result drop de

a. b. c. d.

Figure 8.10 Crossover condition.

8.6.2 BACKTRACKING

Backtracking can be done without building a recursive
function. A simple link list is used to save the point i at
i+1 when points i, i+1 and i+2 satisfy the conditions SI

93

and S2. So at i+1, it remembers the previous qualified
point i. If three points do not meet the criteria,
backtracking one point will become

TEMP = i
I = LIST(i)
i2 = il
Il = TEMP .

At the end of process, the list will give all the convex
points.

8.6.3 RECONSTRUCTION FROM LOCAL CONCAVITY

It is the concavity that gives rise to an unacceptable
triangulation. When there exists a concave region on one
polygon P with two end convex points a and b embracing it,
a search for two corresponding end convex points p and q on
the other polygon Q in the neighborhood of the concavity is
carried out. Such a local situation is shown in figure
8.11. The shorter diagonal method applied to this local
region will not produce a good surface. All points on
polygon P will converge to the point q on polygon Q. In
order to produce a better approximation of the surface when
one region has more points than the other, the points must
be distributed evenly over both regions. Therefore a point

94

i on the larger region is compared with two points j,
on the smaller region. If it is nearer to j+1, two lines

a. shorter diagonal b. even distribution
Figure 8.11 Local surface reconstruction.

are formed i j and i j+1; that is two triangles are
created. Otherwise only line i j is joined forming one
triangle. The process continues to the next point i+1 until
all points in this local area are joined.

8.7 TRIANGULATION IMPLEMENTATION

For a given set of polygons, two will be processed at
a time. Each is converted to a convex hull with the
concave points marked if they exist. The two convex hulls
are joined together using the shorter diagonal algorithm.

95

At the same time, the directed graph of this connection is
constructed. The directed graph is represented by a two
dimensional matrix with rows representing the top polygon
and columns representing the bottom one. A check for
concavity on each polygon is made. If it exists, the links
on the directed graph over this region must be broken.
Local surface reconstruction is performed by even
distribution method and the broken arcs are reconnected. In
the end, the triangles are recreated from the directed
graph by following through the arcs (figure 8.12).

polygons P+1

Any column or row not marked
between two successive dots is a
concavity. The link is said to be
broken in that region.

Figure 8.12 Triangulation between 2 polygons.

96

Another variation to this implementation is first to
join the two polygons by the shorter diagonal method
regardless of the existence of concavity. Simultaneously,
the directed graph is constructed. Second, the graph is
examined to detect unacceptable triangulation where IN =
OUT = 2 occurs. If such vertex exists on the graph, the two
polygons are converted to convex hulls, and the above
scenerio is applied. Otherwise, the process is moved onto
the next two polygons.

The triangulation result is output to a formatted file
so that it can be displayed by the graphics system.

8.8 EXPERIMENTATION USING THE GRAPHICS PACKAGE

The experimentation here is the three-dimensional
surface reconstruction of the cross-section of a human
heart. Coordinate points were obtained from a sequence of
PET images. Limitations of the implemented graphics system
do exist. The most important drawback of the system is its
number of allowable sides for a polygon. It limits the user
to having 31 sides. The experiment has polygons over 31
sides. This problem is solved by making use of the existing
routine which splits the polygon into triangles when
dealing with hidden surfaces and lines. Only the display of

97

the topmost and the very bottom slices will use such
transformation. The surfaces between layers are represented
by triangular tiles which are the result of the
triangulation process discussed in previous sections. Each
layer is colored differently in order to show concavity
clearly. Another limitation of the system is its view plane
being fixed to the X-Y plane where projected image is
displayed. That is the object must be located in the
region bounded by X >= 0, Y >= 0 and Z <= 0. If the viewer
wants the back view of the object using the view point
transformation, the result is a blank screen. To move the
view point requires readjustments of the center of
projection, the view plane normal and the view up
direction, making the user input difficult. To this end,
the experiment is performed by allowing the user to rotate
about three axes parallel to X-, Y- and Z-axis and through
the center of gravity of the object in any order and for
whatever number of times. Windowing function is also
implemented in the experiment to allow the user to zoom a
particular region of the image on the screen. Results are
shown in appendix B.

CHAPTER 9

CORRECTIONS OF PROGRAMMING ERRORS

The implemented graphics system is based on Steven
Harrington's book - Computer Graphics, A Programming
Approach, 1983 edition. Errors are found during testing.
They are either typographical or logical. The corrected
versions of these routines are listed with comments. The
system is implemented in VAX FORTRAN 77.

98

99

* ALGOR 3.11
SUBROUTINE INCLUDE(END_EDGE,LAST_EDGE,SCAN)
INTEGER* 2
REAL
COMMON
COMMON

ENDJEDGE,LAST_EDGE,SCAN
YMAX(31),XA(31),DX(31)
/C_YMAX/YMAX,/C_XA/XA,/C JDX/DX
/C_SCAN_DEC/SCAN_DECREMENT

DO WHILE ((END_EDGE.LE.LAST_EDGE).AND.(YMAX(END_EDGE)
.GE.SCAN))

XA(ENDJEDGE)=XA(END_EDGE) + DX(END_EDGE)*
(SCAN_DECREMENT + SCAN - YMAX(END_EDGE))

DX(END_EDGE) = DX(END_EDGE)*(-1.0 * SCAN_DECREMENT)
END_EDGE = ENDJEDGE + 1

ENDDO
RETURN
END
Comment : typo error.

100

* ALGOR 6.8
* routine for clipping against the lower boundary

SUBROUTINE CLIP_BOTTOM_M912(OP,X,Y,COLOR)
INTEGER* 2 OP,COLOR,COLS(4)
REAL X,Y,XB
REAL WXL,WYL,WXH,WYH
REAL XS(4),YS(4)
COMMON /W_CUR/WXL,WYL,WXH,WYH
COMMON /L_PTS/XS,YS, /L_COLS/COLS
IF ((Y.GE.WYL).AND.(YS(3).LT.WYL)) THEN
XB = (X-XS(3)) * (WYL-Y)/(Y-YS(3)) + X

* adjust the x-coordinate
IF (XB.LT.WXL) XB = WXL
IF (XB.GT.WXH) XB = WXH
CALL CLIP_TOP(1,XB,WYL,COLOR)

ENDIF
IF ((Y.LE.WYL).AND.(YS(3).GT.WYL)) THEN
XB = (X-XS(3)) * (WYL-Y)/(Y-YS(3)) + X

* adjust the x-coordinate
IF (XB.LT.WXL) XB = WXL
IF (XB.GT.WXH) XB = WXH
IF (OP.LT.32) THEN

CALL CLIPJTOP(OP,XB,WYL,COLOR)
ELSE

CALL CLIPJTOP(1, XB,WYL,COLOR)
ENDIF

ENDIF
XS(3) = X
YS(3) = Y
COLS(3) = COLOR
IF (Y.GE.WYL) THEN

CALL CLIPJTOP(OP,X,Y,COLOR)
ENDIF
RETURN
END

Comment : The correction is to adjust the computed value of
X if it is still beyond the window boundary.

101

* ALGOR 6.9
* routine for clipping against the upper boundary
SUBROUTINE CLIP_TOP_M913(OP,X,Y,COLOR)
INTEGER* 2 OP,COLOR,COLS(4)
REAL X,Y,XTOP
REAL WXL,WYL,WXH,WYH
REAL XS(4),YS(4)
COMMON /W_CUR/WXL,WYL,WXH,WYH
COMMON /L_PTS/XS,YS, /L_COLS/COLS

IF ((Y.LE.WYH).AND.(YS(4).GT.WYH)) THEN
XTOP = (X-XS(4)) * (WYH - Y)/(Y - YS(4)) + X

* adjust the x-coordinate
IF (XTOP.LT.WXL) XTOP = WXL
IF (XTOP.GT.WXH) XTOP = WXH
CALL SAVE_CLIPPED_POINT(1,XTOP,WYH,COLOR)

ENDIF
IF ((Y.GE.WYH).AND.(YS(4).LT.WYH)) THEN

XTOP = (X-XS(4)) * (WYH - Y)/(Y - YS(4)) + X
* adjust the x-coordinate

IF (XTOP.LT.WXL) XTOP = WXL
IF (XTOP.GT.WXH) XTOP = WXH
IF (OP.LT.32) THEN

CALL SAVE_CLIPPED_POINT(OP,XTOP,WYH,COLOR)
ELSE

CALL SAVE_CLIPPED_POINT(1, XTOP,WYH,COLOR)
ENDIF

ENDIF
XS(4) = X
YS(4) = Y
COLS(4) = COLOR
IF (Y.LE.WYH) THEN

CALL SAVE_CLIPPED_POINT(OP,X,Y,COLOR)
ENDIF
RETURN
END
Comment : Again the computed value for X should be

adjusted if X exceeds the window boundary.

102

* ALGOR 8.10
SUBROUTINE ROTATE_Y_3(S,C)
INTEGER* 2
REAL
REAL
COMMON

I
S,C, TMP
TMATRIX(4,3)
/C TMX/TMATRIX

DO I = 1, 4
TMP = TMATRIX(I,1)*C + TMATRIX(I,3)*S
TMATRIX(I,3) = -TMATRIX(I,1)*S + TMATRIX(I,3)*C
TMATRIX (1,1) ■-

ENDDO
= TMP

RETURN
END

103

ROUNDOFF = 0.001

* ALGOR 8.20
SUBROUTINE MAKE_VPLANE_TRANS FORM
REAL
REAL
REAL
REAL
LOGICAL
REAL

XR,YR,ZR
DXN,DYN,DZN
DXUP,DYUP,DZUP
TMATRIX(4,3)
PERSPECTIVE FLAG
VIEW_DISTANCE

REAL V,XUP_VP, YUP_VP, RUP, ROUNDOFF
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

/C REF/XR,YR,ZR
/C NORM/DXN,DYN,DZN
/C VUP/DXUP,DYUP,DZUP
/C TMX/TMATRIX
/C PPFLAG/PERSPECTIVE FLAG
/C VDIST/VIEW DISTANCE

CALL NEW_TRANSFORMATION_3
* Start with the identity matrix

* Translate so that view plane center is new origin
CALL TRANSLATE_3(-(XR + DXN VIEW_DISTANCE),*
* -(YR + DYN VIEW_DISTANCE),*
* -(ZR + DZN VIEW_DISTANCE))*
* Rotate so that view plane normal is z axis

* Determine rotation needed to make view-up vertical
RUP = SQRT(XUP_VP*XUP_VP +YUP_VP*YUP_VP)
IF (RUP.LT.ROUNDOFF) THEN

PRINT *,' ** ERROR: SET_VIEW_UP ALONG '
* VIEWPLANE NORMAL **'

PRINT ** ALGOR 8.20 **'
STOP

V = SQRT(DYN*DYN + DZN*DZN)
IF (V.GT.ROUNDOFF) THEN

CALL ROTATE_X_3(-DYN/V,-DZN/V)
ENDIF
CALL ROTATE_Y_3(DXN,V)
* Determine the view-up direction in new coordinates
XUP_VP = DXUP TMATRIX(1,1) + DYUP TMATRIX(2,1) +* *
* DZUP TMATRIX(3,1)*
YUP_VP = DXUP * TMATRIX(1,2) + DYUP * TMATRIX(2,2) +
* DZUP TMATRIX(3,2)*

104

ENDIF
CALL ROTATE_Z_3(XUP_VP/RUP, YUP_VP/RUP)
IF (PERSPECTIVE_FLAG.EQ. .TRUE.) THEN

CALL MAKE_PERSPECT_TRANSFORM
ELSE

CALL MAKE_PARALLEL_TRANSFORM
ENDIF
RETURN
END

Comment : NEW_TRANSFORM_3 is changed to
NEWJTRANS F0RMATI0N_3

105

* ALGOR 9.12
* extension of ALGOR 6.8
SUBROUTINE CLIP_BOTTOM(OP,X,Y,Z,COLOR)
INTEGER* 2
REAL
REAL
REAL
REAL
REAL
REAL

OP,COLOR,COLS(6)
X Y Z
wxl;wyl,wxh,wyh

XLM,XHM,YLM,YHM
XS(6),YS(6),ZS(6)
OLD POINT TEST(6)
NEW_POINT_TEST,X_CLIP,Y_CLIP,Z_CLIP

COMMON
COMMON
COMMON
COMMON
COMMON

/W CUR/WXL,WYL,WXH,WYH
/W SLOP/XLM,YLM, XHM,YHM
/L PTS/XS,YS
/L PTZ/ZS, /L COLS/COLS
/C OLDPT/OLD POINT TEST

NEW_POINT_TEST = YLM * Z + WYL
IF (((Y .GE. NEW_POINT_TEST) .AND.
* (YS(3) .LT. OLD_POINT_TEST(3))) .OR.
* ((Y .LE. NEW_POINT_TEST) .AND.
* (YS(3) .GT. OLD_POINT_TEST(3)))) THEN

Z_CLIP = CLIPPED_Z(Y,Z,YS(3),ZS(3),YLM,WYL)
Y_CLIP = YLM * Z_CLIP + WYL
X_CLIP = CLIPPED_X_OR_Y(Y,X,Z,YS(3),XS(3),ZS(3),

* Y_CLIP, Z_CLIP)
* fix bug in text book

IF (X_CLIP.LT.WXL) X_CLIP = WXL
IF (X_CLIP.GT.WXH) X_CLIP = WXH
IF ((YS(3) .LT. OLD_POINT_TEST(3))

* .OR. (OP.GT.31)) THEN
CALL CLIP_TOP(1,X_CLIP,Y_CLIP,Z_CLIP,COLOR)

ELSE
CALL CLIP_TOP(OP,X_CLIP,Y_CLIP,Z_CLIP,COLOR)

ENDIF
ENDIF
XS(3) = X
YS(3) = Y
ZS(3) = Z
COLS(3) “ COLOR
OLD_POINT_TEST(3) = NEW_POINT_TEST

106

IF (Y.GE. NEW_POINT_TEST) THEN
CALL CLIP_TOP(OP,X,Y,Z,COLOR)

ENDIF
RETURN
END

Comment : X value is readjusted not to exceed the window
boundary.

107

* ALGOR 9.13
* extension of ALGOR 6.9
SUBROUTINE CLIP_TOP(OP,X,Y,Z,COLOR)
INTEGER* 2
REAL
REAL
REAL
REAL
REAL
REAL

OP,COLOR,COLS(6)
X Y Z
wxl;wyl,wxh,wyh

XLM,XHM,YLM,YHM
XS(6),YS(6),ZS(6)
OLD POINT TEST(6)
NEW_POINT_TEST,X_CLIP,Y_CLIP,Z_CLIP

COMMON
COMMON
COMMON
COMMON
COMMON

/W CUR/WXL,WYL,WXH,WYH
/W SLOP/XLM,YLM, XHM,YHM
/L PTS/XS,YS
/L PTZ/ZS, /L COLS/COLS
/C OLDPT/OLD POINT TEST

NEW_POINT_TEST = YHM * Z + WYH
IF (((Y .LE. NEW_POINT_TEST) .AND.
* (YS(4) .GT. OLD_POINT_TEST(4))) .OR.
* ((Y .GE. NEW_POINT_TEST) .AND.
* (YS(4) .LT. OLD_POINT_TEST(4)))) THEN

Z_CLIP = CLIPPED_Z(Y,Z,YS(4),ZS(4),YHM,WYH)
Y_CLIP = YHM * Z_CLIP + WYH
X_CLIP = CLIPPED_X_OR_Y(Y,X,Z,YS(4),XS(4),ZS(4),

* Y_CLIP, Z_CLIP)
* fix bug in text book

IF (X_CLIP.LT.WXL) X_CLIP = WXL
IF (X_CLIP.GT.WXH) X_CLIP = WXH
IF ((YS(4).GT.OLD_POINT_TEST(4)) .OR.

* (OP.GT.31)) THEN
CALL CLIP_BACK(1,X_CLIP,Y_CLIP,Z_CLIP,COLOR)

ELSE
CALL CLIP_BACK(OP,X_CLIP,Y_CLIP,Z_CLIP,COLOR)

ENDIF
ENDIF
XS(4) = X
YS(4) = Y
ZS(4) = Z
COLS(4) = COLOR
OLD_POINT_TEST(4) = NEW_POINT_TEST

108

IF (Y.LE. NEW_POINT_TEST) THEN
CALL CLIP_BACK(OP,X,Y,Z,COLOR)

ENDIF

RETURN
END

Comment : Same argument as in algorithm 9.12.

109

* ALGOR 10.21
* Minimax test of two triangles
LOGICAL FUNCTION MINIMAX(LI,L2)

ROUNDOFF = 0.0001

INTEGER* 2 L1,L2
INTEGER* 2
REAL

IDB(4096),COLD(4096)
XDB(4096),YDB(4096),ZDB(4096)

REAL ROUNDOFF
COMMON /C_DBUF/1DB,XDB,YDB,Z DB,COLD

T1 = MAX(XDB(LI),MAX(XDB(Ll-1),XDB(Ll-2)))
T2 = MIN(XDB(L2),MIN(XDB(L2-1),XDB(L2-2)))
T3 = MAX(YDB(L1),MAX(YDB(Ll-1),YDB(Ll-2)))
T4 = MIN(YDB(L2),MIN(YDB(L2-1),YDB(L2-2)))

T5 = MAX(XDB(L2),MAX(XDB(L2-1),XDB(L2-2)))
T6 = MIN(XDB(L1),MIN(XDB(L1-1),XDB(Ll-2)))
T7 = MAX(YDB(L2),MAX(YDB(L2-1),YDB(L2-2)))
T8 = MIN(YDB(L1),MIN(YDB(Ll-1),YDB(Ll-2)))
MINIMAX = (((T1-T2).LT.ROUNDOFF).OR.
* ((T3-T4).LT.ROUNDOFF).OR.
* ((T5-T6).LT.ROUNDOFF).OR.
* ((T7-T8).LT.ROUNDOFF))

RETURN
END

Comment : YD(LI) of line 5 in the text should read YD(L2).

110

* ALGOR 10.29
* compares two triangles for depth order
FUNCTION TRIANGLE_COMPARE(10,JO)
INTEGER*2 10,JO
INTEGER* 2 LI,II,12

TRIANGLE_COMPARE = 0
IF (MINIMAX(I0,JO).EQ. .TRUE.) THEN

RETURN
ENDIF

LI = Z_MINIMAX(IO,JO)
11 = 10 - 2
12 = 10 -1
DO WHILE ((TRIANGLE_COMPARE .EQ.0).AND. (Il .LE. 10))

TRIANGLE_COMPARE = COMPAREJSIDES(Il,12,10,JO,LI)
Il = Il + 1
IF (II.EQ.10) THEN

12 = 10 - 2
ELSE

12 = 12 + 1
ENDIF

ENDDO

IF (TRIANGLE_COMPARE.EQ.O) THEN
TRIANGLE_COMPARE = COMPARE_CONTAINED(10,JO,LI)

ENDIF
RETURN
END

Comment : Line TRIANGLE_COMPARE <> 0 in the text should
read TRIANGLE_COMPARE = 0.

Ill

NXT = 1

* ALGOR 10.31
* compare all triangles to determine their depth order
SUBROUTINE COMPARE_ALL_TRIANGLES (NUMBER_OF_TRIANGLES)
INTEGER* 2
INTEGER* 2

NUMNBER OF TRIANGLES
I,K,L, NXT

INTEGER*2
INTEGER* 2

INFRONT(4096), INBACK(4096)
INLIST(4096),INLINK(4096)

COMMON
COMMON
COMMON

/C INF/INFRONT, /C INB/INBACK
/C NXT/NXT
/C HEAP/INLIST,INLINK

DO I = 1, NUMBER_OF_TRIANGLES
INFRONT(I) = 0
INBACK(I) = 0

ENDDO
DO I = 1, NUMBER_OF_TRIANGLES - 1
DO K = 1+1, NUMBER_OF_TRIANGLES

L = TRIANGLE_COMPARE(3*I, 3*K)
IF (L.GT.O) THEN

CALL ADD_TO_LISTS(K,I) !2ND INFRONT
ENDIF
IF (L.LT.O) THEN

CALL ADD_TO_LISTS(I,K) !1ST INFRONT
ENDIF

ENDDO
ENDDO

RETURN
END

Comment : Inequality comparisons are interchanged.

112

R0UND0FF2 = 0.0001

* ALGOR 10.46
* Case of both endpoints visible
SUBROUTINE CHOP_OUT_IN_OUT(INFR,BFREE,IDX)
INTEGER* 2
INTEGER* 2
REAL

INFR,BFREE,IDX
BCOL,OPB
LXA,LYA,LXB,LYB

REAL
LOGICAL
REAL

X,Y,U,V
CROSS
T,ROUNDOFF2

COMMON
COMMON
COMMON

/C LDIV/LXA,LYA,LXB,LYB
/C BCOL/BCOL
/C OPB/OPB

CALL LEFT_IN_FRONT(INFR)
CALL INTERSECTION_PAIR(X,Y,U,V,CROSS,IDX)
IF (CROSS.EQ. .FALSE.) THEN

RETURN
ENDIF
IF ((SIGNOF(LXA - LXB) .NE. SIGNOF(X - U)) .OR.
* (SIGNOF(LYA - LYB) .NE. SIGNOF(Y - V))) THEN

T = U
U = X
X = T
T = V
V = Y
Y = T

ENDIF
IF ((ABS(X - LXA) + ABS(Y - LYA)).LT.ROUNDOFF2) THEN
IF ((ABS(U-LXB) + ABS(V-LYB)).LT.ROUNDOFF2) THEN

CALL CHANGE_OP_CODE(1)
ELSE

CALL PUT_IN_B(1,U,V,0.0,BFREE,BCOL)
BFREE = BFREE + 1
LXA = U
LYA = V

ENDIF
ELSE
TRIAN_INFR = INFR
IF ((ABS(U-LXB) + ABS(V-LYB)).LT.ROUNDOFF2) THEN

CALL CHANGE_OP_CODE(1)

113

* CALL PUT_IN_C(2,X,Y,TRIAN_INFR,BC0L)
* set to opcode of point B

CALL PUT_IN_C(OPB,X,Y,TRIAN_INFR,BCOL)
ELSE

CALL PUT_IN_C(1,U,V,TRIAN_INFR,BCOL)
* CALL PUT_IN_C(2,X,Y,TRIAN_INFR,BCOL)
* set to opcode of point B

CALL PUT_IN_C(OPB,X,Y,TRIAN_INFR,BCOL)
ENDIF

ENDIF

RETURN
END

Comment : Wrong logical indication of NO_CROSS in the text.

114

* ALGOR 10.48
* Routine to remove an instruction from the C-buffer stack
* and save it in the B buffer
SUBROUTINE SIDE_IS_DONE(BFREE,OP)
INTEGER* 2
INTEGER* 2
REAL
INTEGER*2

BFREE,OP
BCOL
LXA,LYA,LXB,LYB
CFREE,I

INTEGER* 2
REAL

IBB(4096),COLB(4096)
XBB(4096),YBB(4096),ZBB(4096)

COMMON
COMMON
COMMON
COMMON

/C LDIV/LXA,LYA,LXB,LYB
/C CFREE/CFREE
/C BCOL/BCOL
/C_BBUF/IBB,XBB,YBB,ZBB,COLB

CFREE = CFREE -- 1
* adjust the endpoint
* check conflict opcode of a point
IF (OP .EQ. 2) THEN

I = BFREE -1
IF ((LXB.EQ.XBB(I)) .AND. (LYB.EQ.YBB(I)).AND.

* (IBB(I) .EQ.l)) THEN
OP = 1

ENDIF
ENDIF
CALL PUT_IN_B(OP,LXB,LYB,0,BFREE,BCOL)
BFREE = BFREE + 1
LXA = LXB
LYA = LYB
RETURN
END

Comment : This is to adjust the end point command coding
to prevent it from creating a dot.

115

* ALGOR 10.51A
* similar to algor 10.26 INSIDE
* to test if a point is inside a triangle formed by
* 3 vertices X1,Y1,X2,Y2,X3,Y3

LOGICAL FUNCTION INSIDE_TRIANGLE(X,Y,XI,Y1,X2,Y2,X3,Y3)
REAL X,Y,X1,Y1,X2,Y2,X3,Y3
REAL XMAX,XMIN,YMAX,YMIN
REAL ROUNDOFF
ROUNDOFF = 0.0001
XMAX = MAX(X1,MAX(X2,X3))
XMIN = MIN(X1,MIN(X2,X3))
YMAX = MAX(Y1,MAX(Y2,Y3))
YMIN = MIN(Y1,MIN(Y2,Y3))
INSIDEJTRIANGLE = .FALSE.
IF (((X - XMAX).GT.ROUNDOFF).OR.((XMIN - X) .GT. ROUNDOFF)
* .OR.((Y - YMAX).GT.ROUNDOFF).OR.((YMIN - Y)
* .GT. ROUNDOFF)) THEN

RETURN
ENDIF
IF (HALF_PLANE(X,Y, XI,Yl, X2,Y2) .NE.
* HALF_PLANE(X3,Y3, XI,Yl, X2,Y2)) RETURN
IF (HALF_PLANE(X,Y, X2,Y2, X3,Y3) .NE.
* HALF_PLANE(XI,Yl, X2,Y2, X3,Y3)) RETURN

INSIDE_TRIANGLE = HALF_PLANE(X,Y,X3,Y3,XI,Yl) .EQ.
* HALF_PLANE(X2,Y2, X3,Y3,X1,Y1)
RETURN
END

Comment : Extra subroutine is created for use in algorithm
10.51.

116

* ALGOR 10.51
* find two vertices on which to divide the polygon
FUNCTION SPLIT_VERTEX(L,LA,LB,M, N)
INTEGER* 2
INTEGER*2
REAL

L, LA, LB, M, N
IBB(4096),COLB(4096)
XBB(4096),YBB(4096),ZBB(4096)
X,Y,XI,Y1,X2,Y2,X3,Y3
LPU,LPL, K

REAL
INTEGER* 2

/C_BBUF/1BB,XBB,YBB,Z BB,COLBCOMMON
IF (YBB(LB).GT.YBB(LA)) THEN

LPU = LB
LPL = LA

ELSE
LPU = LA
LPL = LB

ENDIF
IF (XBB(LB).GT. XBB(LA)) THEN

SPLIT_VERTEX = LB
ELSE

SPLIT_VERTEX = LA
ENDIF
XI = XBB(L)
Y1 = YBB(L)
X2 = XBB(LPU)
Y2 = YBB(LPU)
X3 = XBB(LPL)
Y3 = YBB(LPL)
DO K = M, N

X = XBB(K)
Y = YBB(K)
IF (INSIDE_TRIANGLE(X,Y,XI,Y1,X2,Y2,X3,Y3)

.EQ. .TRUE.) THEN
SPLIT_VERTEX = K

ENDIF
ENDDO
XS = XBB(SPLIT_VERTEX)
YS = YBB(SPLIT_VERTEX)
RETURN
END
Comment : Minmax test in the text is too primitive.

117

* ALGOR 10.52
* splits the polygon into two polygons
SUBROUTINE DOSPLIT(M,M1,N1,N)
INTEGER* 2 M,N,M1,N1
INTEGER* 2
REAL

IBB(4096),COLB(4096)
XBB(4096),YBB(4096),ZBB(4096)

INTEGER* 2 K,K1,K2,J
COMMON /C_BBUF/IBB,XBB,YBB,ZBB,COLB

K = N + 3 - M
DO J = Ml, N1

CALL SHIFT_BUFFER(J,J+K)
ENDDO
DO J = N,N1, -1

CALL SHIFT_BUFFER(J,J+2)
ENDDO
K = N1 - Ml + 1
DO J = Ml, M, -1

CALL SHIFT_BUFFER(J,J+K)
ENDDO
KI = N + 3 - M
K2 = M - Ml
DO J = Ml, N1

CALL SHIFT_BUFFER(J+K1, J+K2)
ENDDO
IBB(M) = 1
IBB(Nl+2) = 1

RETURN
END

Comment : Wrong index Ml in the text.

118

* ALGOR 10.53
* replacement for algor 10.17
SUBROUTINE POLYGON_SPLIT(SIDES,DFREE,KNT)
INTEGER* 2
INTEGER* 2

SIDES,DFREE,KNT
SOURCE_POLY(4096)

INTEGER* 2
INTEGER* 2

POLYGON END(4096),DO NEXT,M,N,JP,L
LA,LB,LS,M1,N1,ILEFT

INTEGER* 2
REAL

IBB(4096),COLB(4096)
XBB(4096),YBB(4096),ZBB(4096)

INTEGER* 2 I
COMMON
COMMON

/C BBUF/IBB,XBB,YBB,ZBB,COLB
/C_SOURCE/SOURCE_POLY

DO_NEXT = 2
POLYGON_END(1) = 0
P0LYG0N_END(2) = SIDES
DO WHILE (DO_NEXT.GT.l)

M = POLYGON_END(DO_NEXT - 1) + 1
N = POLYGON_END(DO_NEXT)
IF ((N-M).EQ.2) THEN

* triangle case
L = M+l
IF (IN_A_LINE(N).EQ. .FALSE.) THEN
JP = INT((DFREE + 2.0)/3.0)
SOURCE_POLY(JP) = KNT
CALL PUT_IN_D(M,N,DFREE)

ELSE
* in case of a straight line, enter it as a line
* the 3 points directly into display file

CALL VIEWING_TRANSFORM(1,XBB(N),YBB(N),COLB(N))
DO I = M,N

CALL VIEWING_TRANSFORM(IBB(I),XBB(I),
* YBB(I),COLB(I))

ENDDO
ENDIF
DO_NEXT = DO_NEXT - 1

ELSE

119

* polygon case
* the following code replace LEFT_MOST(M,N)

L = M
DO ILEFT = M+l, N
IF (XBB(ILEFT).LT.XBB(L)) THEN
L = ILEFT
ENDIF

ENDDO
IF (L.EQ.N) THEN
LA = M

ELSE
LA = L + 1

ENDIF
IF (L.EQ.M) THEN
LB = N

ELSE
LB = L - 1

ENDIF
LS = SPLIT_VERTEX(L,LA,LB,M,N)

IF ((LS.EQ.LA).OR.(LS.EQ.LB)) THEN
Ml = MIN(LA,LB)
N1 = MAX(LA,LB)

ELSE
Ml = MIN(L,LS)
N1 = MAX(L,LS)

ENDIF
CALL DOSPLIT(M,M1,N1,N)
POLYGON_END(DO_NEXT) = M + N1 - Ml
DO_NEXT = DO_NEXT + 1
POLYGON_END(DO_NEXT) = N + 2

ENDIF
ENDDO
RETURN
END

Comment : If the straight line formed by 3 points is
ignored, the polygon when displayed becomes
broken. Therefore a provision for straight
case is needed.

CHAPTER 10

CONCLUSION

The CORE protocol system implemented and applied to
the experimenation of 3D surface reconstruction by
triangulation was found quite effective. The speed of the
system is slowed down when the number of the surfaces is
increased. It is due to the fact that there is a huge
amount of computation by the Painter's algorithm in hidden-
surface and hidden-line removal process. A better
throughput can be improved if some other algorithm, for
example quad-tree method, is used.

The triangulation method used here is found
satisfactory. The quality of triangulated surface
representation is very acceptable. When the number of
slices is increased, the size of the display file has to be
increased tremendously. One triangle display will occupy 4
elements in the display file. In other words, the increase
of size is four fold.

In any event the system is built very portable and
simple to use. Most importantly, it has provided all the
standard features that a graphics system should provide. In

120

121

the future, the author hopes add-on enhancement can be
implemented by the users. Results of the experimentation
are given in appendix B.

REFERENCES

[1] Boissonnat, J. D., "Representation of Objects by
Triangulating Points in 3-D Space," IEEE Proceeding,
6th International Conference on Pattern Recognition,
Vol. 2, 1982, pp. 830 - 832.

[2] Boissonnat, J. D. and Faugeras, P. D., "Triangulation
of 3-D Objects," Proceedings of the 7th International
Joint Conference on Artificial Intelligence, Vol. 2,
1981, pp 658 - 660.

[3] Faugeras, P. D. and Pauchon, E., "Measuring the Shape
of 3-D Objects," IEEE Computer Vision and Pattern
Recognition, 1983, pp. 2-7.

[4] Fuchs, H., Kedem, Z. M., and Uselton, S. P., "Optimal
Surface Reconstruction from Planar Contours,"
Communications of ACM, Vol. 20, Oct., 1977, pp. 693 -
702.

[5] Graham, R. L. and Yao, F. F., "Finding the Convex
Hull of a Simple Polygon," Journal of Algorithms,
Vol. 4, 1983, pp. 324 - 331.

[6] Harrington, S., "Computer Graphics - A Programming
Approach," McGraw-Hill, 1983.

[7] Hearn, D. and Baker, M. P., "Computer Graphics,"
Prentic-Hall, 1986.

[8] Johnson, D. B., "Efficient Algorithms for Shortest
Paths in Sparse Networks," Journal of ACM, Vol. 24,
Jan., 1977, pp. 1-13.

[9] Newman, W. and Sproull, R. F., "Principle of
Interactive Computer Graphics," McGraw-Hill, 1979.

[10] Pavlidis, T., "Algorithms for Graphics and Image
Processing," Computer Science Press, 1982.

[11] Pieroni, G. G. and Freeman, H., "Computer
Architecture for Spatially Distributed Data,"
Spinger-Verlag, 1985.

[12] Plastock, R. A. and Kalley, G., "Computer Graphics,"
McGraw-Hill, 1986.

122

123

[13] Shamos, M. I. and Hoey, D., "Closest-Point Problems,"
6th Annual IEEE Symposium on Foundations of Computer
Science, Oct., 1975, pp. 151 - 162.

[14] Toussaint, G. T., "Pattern Recognition and
Geometrical Complexity," IEEE Proceedings, 5th
International Conference on Pattern Recognition, Vol.
1, 1980, pp. 1324 - 1347.

[15] Toussaint, G. T. and Avis, D., "On a Convex Hull
Algorithm for Polygons and Its Application to
Triangulation Problems," IEEE Proceedings, Pattern
Recognition, Vol. 15, 1982, pp. 23 - 28.

[16] Yuval, G., "Finding Near Neighbours in K-Dimensional
Space," Information Processing Letters, Vol. 3, No.
4, March 1975, pp. 113 - 114.

APPENDIX A

USER CALLABLE SUBROUTINES

In this Appendix, a list of user available subroutines
is given below. These subroutines are written in VAX
FORTRAN 77. Argument names prefixed by character I are in
INTEGER*2, otherwise they are in REAL. Prefix IA, or A is
to denote an array argument either in INTEGER*2 or REAL.
ONOFF stands for LOGICAL value, either .TRUE, or .FALSE.

ERASE
MOVE_ABS_2(X,Y,ICOLOR)
LINE_ABS_2(X,Y,ICOLOR)
M0VE_REL_2(DX,DY,ICOLOR)
LINE_REL_2(DX,DY,ICOLOR)
NEW_FRAME
MAKE_PICTURE_CURRENT
SET_CHARUP(DX,DY)
SET_CHARSPACE(SPACING)
TEXT(STRING,IACOLORS)

STRING : CHARACTER*! STRING(80)
IACOLORS : INTEGER*2 IACOLORS(80)

SET_LINE_STYLE(ISTYLE)
POLYGON_ABS_2(AX,AY,I,IACOLORS) dimension 128

124

125

P0LYG0N_REL_2(AX,AY,I,IACOLORS) dimension 128
SET_FILL(ICOLOR)
TRANSLATE(TX,TY)
SCALE(SX,SY)
ROTATE_ANGLE(DEGREE)
CREATE_SEGMENT(INANE)
DELETE_SEGMENT(INANE)
DELETE_ALL_SEGNENTS
RENANE_SEGNENT(IOLDNANE, INEWNANE)
SET_VISIBILITY(INANE,ONOFF)
SET_INAGE_TRANSLATION(INANE,TX,TY)
SET_VIEWPORT(XL,XH,YL,YH)
SET_WINDOW(XL,XH,YL,YH)
NOVE_ABS_3(X,Y,Z)
NOVE_REL_3(DX,DY,DZ)
LINE_ABS_3(X,Y,Z,ICOLOR)
LINE_REL_3(X,Y,Z,ICOLOR)
POLYGON_ABS_3(AX,AY,AZ,I,IACOLORS) dimension 128
POLYGON_REL_3(AX,AY,AZ,I,IACOLORS) dimension 128
SET_VIEW_REFERENCE_POINT(X,Y,Z)
SET_VIEW_PLANE_NORNAL(DX,DY,DZ)
SET_VIEW_DISTANCE(D)
SET_VIEW_UP(DX,DY,DZ)
SET_PARALLEL(DX,DY,DZ)
SET_PERSPECTIVE(XC,YC,ZC)

126

SET_VIEW_DEPTH(FRONT_DISTANCE,BACKJDISTANCE)
SET_FRONT_PLANE_CLIPPING(ONOFF)
SET_BACK_PLANE_CLIPPING(ONOFF)
SET_HIDDEN_LINE_REMOVAL(ONOFF)
SETJSHADING(ONOFF)
SET_OBJECT_SHADE(REFLECTIVITY,SHINE,GLOSS)
SET_LIGHT(X,Y,Z,BRIGHTNESS,BACKGROUND)
SETJSMOOTH(ILINES_PER_SEGMENT)
START_CURVE(AX,AY,AZ,IACOLORS) dimension 4
CURVE_ABS_3(X,Y,Z,ICOLOR)
END_CURVE(X,Y,Z,ICOLOR)
SMOOTH_POLY_ABS_3(AX,AY,AZ,I,IACOLORS) dimension 128

APPENDIX B

DIFFERENT GRAPHICS OUTPUTS

The system has been implemented on different graphics
output devices. They are Lexidata, Tektronix, Printronix,
regular line printer and CRT terminal. The results of the
experimentation on these devices are included for
reference.

127

128

THIS. 13 A lEJf.

PR.INTRONIX output

129

zzzzzzz
zzzzzzz zz

zzzzzzzz zz
zzzzzzzz zzzzz

zzzzzzzz zzzzz
zz zzzzz

z zzzzz
z zzzz

z zzzzzzzz
ZZ RR« ZZZZZZZZ

Z RRRRRR R ZZZZZZZZ
RRRRRR RR ZZZZZZZ

srkrrr r mil
R.RhRRK R Z

R R R R F R R RR Z
RR R Z Z

R RR Z Z
F R ZZ Z

k R I I
R R ? Z Z
. < Z Z Z

< J Z Z
■ rR z Z

HIDDEN LINE REMOVAL
Line nrinter output

130

m FAIR LADY

TEST FOR 8_3FLIHE CURVE

Dot ‘latrix Trioter : PRIIITRDMIK outnut

131

Sequence of PET izaces

Data set

132

Scale(3.,3.) Perspective(.5,.5,.5) Ro tation(0,0,0)

TEKTRONIX output

133

windox#(xl,x2,yl ,y2)= (.8, .9, .5 ,. 7) viex#port (.0,.4,.0,1.)

7EKT2.O1ZIX Dutouc

134

scale(3t,3,) perspective(,5,.5,,5) rotation(60,60,0)

TEKTRONIX output

135

windox-7(xl,x2,yl,y2)= (,1,.2, .4, .5) viex^port (.3,1. ,.3,1.)

TEKTRONIX outnut

136

scale(2.5,2.5) perspective(.5,1.,1.) rotation(0,110,0)

TEKTRONIX output

137

scale(2.5,2,5) perspective(.5,l,l.) rotation(-30,110,-30)

TEKTRONIX output

138

scale(2.5,2.5) perspective(.5,1.,1.) rotation(-30,110,-75)

TEKTRONIX output

139

Sequence of PET Linages

Daca sec 2

140

scale(3.,3.) perspectlve(.5,1.,1.) rotation(0.,0.,0.)

PRIHTHOHIX output

141

scale(3.,3.) ?erspecclve(.5,1.,1.) rotation(0,100,0)

PRIl'TRONIX output

142

scaleC2.5,2.5) perspective(.5,1.,1.) rotation(o,20,0)

TEKTRONIX output

143

scale(2.5,2.5) perspective(.5,l.,1.) rotation(0,80,0)

TEKTRONIX output

144

scale(2.5,2.5) perspective(.5,1.,1.) rotation(0,120,0)

TEKTRONIX output

145

scale(2.5,2,5) perspective(,5,1.,1.) rotation(0,160,0)

TEKTRONIX output

146

scale(2.5,2.5) perspective(.5,l.,1.) rotation(0,180,0)

TEKTRONIX output

147

(with triangles shown)

scale(3.,3.) perspective(.5,l.,1.) rotation(80,90,0)

TEKTRONIX output

148

(with triangles shown)

scale(3.,3.) perspective!.5,1.,1.) rotation(0,180,0)

TEKTRONIX OUTPUT

