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ABSTRACT

The CORE protocol provides a list of standard features 
for constructing a program in dealing with two-dimensional 
and three-dimensional object representations. The most 
important features of a such system are linear 
transformation, windowing, clipping, viewing 
transformation, projection, hidden-line elimination and 
hidden-surface removal.

In this thesis, the implementation of the CORE system 
is based on Steven Harrington's book "Computer Graphics - A 
Programming Approach" by McGraw Hill. A list of basic 
algorithms is critically analyzed. Errors were discovered 
in some important algorithms as proposed by Harrington. 
A corrected version is presented and implemented.

Finally a set of experiments for constructing 3D 
objects has been performed by using different output 
devices : Lexidata, Tektronix and Printronix. The principal 
one consists of displaying a 3D surface of a human heart 
obtained by a sequence of PET images.
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CHAPTER 1

INTRODUCTION

The main purpose of this graphics package is to 
provide users a very portable system which does not require 
specialized display hardware. Even the low resolution of an 
ordinary dot matrix printer is adequate to show how 
graphics work. The software is built around the graphics 
standard, the CORE system. Most of the graphics principles 
are based on simple analytic geometry.

The CORE system is organized in three areas, namely 
dimension, input and output. Dimensionally speaking, two 
levels are represented, two-dimensional operations in the 
lower level and the three-dimensional operations in the 
higher level. They both can be addressed at the same time. 
Output-wise, a temporary display file is at the basic 
level. Buffered output is employed to retain display 
attributes of segments while dynamic output buffer is for 
segments dealing with image transformation. Input can take 
three different forms: 1) no input, 2) synchronous and 3) 
asynchronous interaction. In this implementation, device 
initialization is needed. The only user inputs are from the 
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keyboard and the data file.

This CORE version as proposed by Steve Harrington can 
allow the user to create a two-dimensional or three- 
dimensional representation of an object. Curves 
construction is also implemented. The system aims to 
specify the basic graphics capabilities, providing a 
foundation for more advanced techniques.

During the process of implementation of this system, 
errors were found, both simple and complex, in Harrington's 
book. They will be discussed in detail in the chapters that 
follow. Of course algorithms presented by Harrington are 
not necessarily unique and the most efficient. The primary 
objective is to provide the ease of understanding the 
principles. However, a list of basic and standard 
alogrithms is analyzed here along with those of 
Harrington's to give the reader a broader view of the 
graphics principles. References have been drawn from 
several authors. Among them are Donal Hearn and M. Pauline 
Baker, Roy A. Plastock and Gordon Kalley, Pavlidis, Newman 
and Sproull.

In the application, several techniques have been
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employed to construct the three-dimensional surface 
representation. These techniques are common in image 
processing. They are triangulation, convex hull 
construction and graph theory. The proposed algorithms 
apply specifically to a given set of two-dimensional 
parallel cross-sections of an object. Computation 
complexity is not analyzed in this thesis. The result of 
the implementation of this CORE protocol as demonstrated by 
the experiments is found very satisfactory in three 
different display hardware systems; these are namely 
Lexidata, Tektronics and Printronix. Better display quality 
is obtained with a device of higher resolution. 
Modification for use in different devices is kept minimal 
in order to make the system protable. The system is 
implemented in high level language FORTRAN 77. Future 
enhancement, for example sophisticated shading algorithm 
and splined surfaces, can be added to this system.



CHAPTER 2

GRAPHICS SYSTEM IMPLEMENTATION

2.1 INTRODUCTION

Computer graphics has made tremendous progess in the 
past ten years. High resolution display hardware and 
software are now affordable even at the personal computing 
level. Computer graphics improves the communication between 
human and machine. Many applications now rely heavily on 
computer graphics. To mention a few, flight simulation 
training pilots, graphical presentation of data, computer 
aided design in the car industry, architectural design, 
VLSI cirucit design, video games and animation in the 
entertainment sector. The main reasons for the 
effectiveness of computer graphics in these applications 
are the speed and cost.

2.2 GRAPHICS DESIGN PHILOSOPHY

A graphics system can be defined as a collection of 
hardware and software designed to make it easier to use 
graphic input and output in computer programs. The software 
package is a set of subroutines or functions used by an 
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application program to generate pictures on the display 
device. The construction of the system has to meet the 
basic requirements; simplicity, portability, consistency, 
completeness, robustness, performance and economy. On the 
other hand, the design should not be unduly influenced by 
hardware features.

Functionally as a whole, the system can be divided 
into sets, each set handling a particular kind of task. 
These functions are summarized as follows:

1. Graphics primitives which are used to display 
straight lines, text strings, polygons and other 
simple graphical items.

2. Windowing and clipping which allow the programmer 
to choose his viewing coordinate system and to 
define the visible boundary of the picture.

3. Segmenting functions which provides dynamic 
manipulation of subpicture structure.

4. Transformation functions which include scaling, 
translation and rotation in both two-dimension and 
three-dimension, and projection in three-dimension.

No system can do without graphics primitives and details of 
the screen coordinates have to be transparent to the user. 
Therefore the purpose of a graphics system is to make 
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programming easier for the user.

2.3 GRAPHICS DISPLAY COMPONENTS

The modern graphics system consists simply of three 
elements: A frame buffer which is an internal memory array 
storing the image as a matrix of intensiy or color; a 
cathode-ray tube monitor where image is displayed; a simple 
display controller which is an interface between the frame 
buffer and the TV monitor (figure 2.1).

user program
frame
buffer
00011001...
10010011...
01001100...
11100100. . .

display 
controller

MONITOR 
OUTPUT

Figure 2.1 Basic graphics system

Inside the frame buffer, the image is stored as a 
pattern of binary digital numbers which represent a 
rectangular array of picture elements called pixels. Each 
pixel requires at least one bit of intensity information. 
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light or dark, and further bits are needed if shades of 
grey or different colors are desired.

The display controller simply reads each successive 
byte of data from the frame buffer and converts its bits. 
Os and Is into the corresponding video signal. This signal 
is then fed to the display monitor producing the desired 
image on the screen. The display controller repeats this 
operation 30 times a second in order to maintain a steady 
picture on the screen.

In order to change the displayed picture, all that is 
needed is to modify the frame buffer's content.

2.4 BASIC GEOMETRICAL ELEMENTS

A display screen can be viewed as a cartesian 
coordinate system with horizontal as the x-axis and 
vertical as the y-axis by convention. Such arrangement 
defines a two-dimensional display. The following can now be 
defined precisely on the display screen:

1. Point: specified by (x,y) coordinate pair
2. Line segment: specified by joining two points 

(xl,yl) and (x2,y2)
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3. Vector: specified by direction and length. It has 
no fixed position in space.

To apply the mathematical notion to actual graphics 
display, we limited ourselves to a finite set of values 
imposed by the physical dimensions of the display hardware 
system. A point is represented by a pixel, the smallest 
addressable screen element. Then a line segment is 
constructed from a finite number of points. The maximum 
number of distinguishable points which a line may have is 
called the resolution of the display screen. For example, a 
resolution of 100 dots (pixels) per inch indicates two dots 
1/100 inch apart can be distinguished from each other. The 
greater the number of points the higher the resolution. If

Figure 2.2 Staircase effect of a line

display unit has a low resolution, the line or curve will 
appear as a staircase (figure 2.2).
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Pictures and shapes, whether two-dimensional or three 
dimensional, can be generated from these basic geometrical 
elements. Changes of the display will be performed by 
applying standard mathematical techniques such as affine 
transformation, clipping and projection.

2.5 VECTOR GENERATION - DDA

In order to generate a smooth line represented by 
pixels, an ordinary differential equation called digital 
differential analyzer DDA is used. The line represented by 
DDA is

dY/dX = (Y2 - Y1)/(X2 - XI)
where (XI,Yl) and (X2,Y2) are two points. This can be 
expressed in parametric form with two end points given.

X = XI + (X2 - XI) u
Y = Yl + (Y2 - Yl) u

where u is the parameter. When u = 0, X = XI, and Y = Yl. 
When u = 1, X = X2 and Y = Y2. The idea is to start 
plotting a point at u = 0 and increment u by small steps 
until it reaches 1. In terms of a coordinate pair, (X,Y) 
starts at (XI,Yl) and steps up by an amount

STEPS = MAX( (X2 - XI), (Y2 - Yl) )
XINCREMENT = (X2 - XI)/STEPS
YINCREMENT = (Y2 - Yl)/STEPS
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until (X2,Y2) is reached. The following pseudocodes 
represent such iteration:

X = XI; Y = Y1

For i = 1 to STEPS do
X = X + XINCREMENT
Y = Y + YINCREMENT

enddo
The line drawn with this simple DDA algorithm is shown in 
figure 2.3.

Figure 2.3 Straight line generated by DDA

2.6 CHARACTER GENERATION

Along with lines and points, characters strings are 
also necessary to convey the meaning of the drawing on the 
screen. There are two forms of character generation : 
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stroke=method and dot-matrix method. In this 
implementation, stroke-method is used in order to allow 
user to do transformation on characters, e.g. scaling, 
translation and rotation.

The character stroke sequences are coded in a file. 
Each character is defined by 5 pixels times 7 pixels in 
dimension (see figure 2.4). Each stroke is then coded by 
two operations: M for move to a position (X,Y) without 
drawing and L for draw a line from current position to a

6 - - * - - code relative position
5 x y
4 * - - - * M 0 0
3 L 0 4
2 * - - - * L 2 6
1 — — — — — L 4 4
0 * - - - * L 4 0

0 12 3 4 M 
L

0 2
4 2
0 0

Figure 2.4 Coding of character 'A'

point with (DX,DY) relative to the current. Coding is 
terminated by a triplet (space, 0, 0). The file is then 
converted to another data structure to be loaded into 
memory during system initialization. The structure contains 
two tables : A link list and the codes (see figure 2.5). 
The link list is to store the starting location of the 



12

coded sequence of each stroke character. The ASCII value of 
the character is mapped to this list by an offset of 31. 
The content in the list will locate the sequence of the 
character codes in the character table. For instance, 
character 'A' has an ASCII value of 65. Its locator is at 
65 -31 = 33 of the link list. From there, index 53 is 
read. Hence all codes from location 53 down in the 
character table are for character 'A'.

62

1 | 0 | 2---+----- +--
2 | 4 | 2---+----- +--
-1 | -1 | -1

ASCII value link list character table
space 32 1 +----+----- +---- H

! 33 2 • ■
• • • • e • •

• • •
• • • ———— ————— ————

-> 53 1 0 0
0 48 17 ----+----- -----
e • • 54 2 | 0 4
e • ■ ----+----- +----
• e e 55 2 | 2 | 6
A 65 —> 33 53 — ----+----- +----

2 1 4 1 4

B 66 34 62 ----+----- +----
• e • 2 1 4 1 o

----+----- +----

Figure 2.5 Mapping from ASCII to character table
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2.7 GRAPHICS PRIMITIVES

When starting a graphics program, system 
initialization is performed. It includes hardware setup 
physical dimensioning, clearing screen and storage 
allocation to hold the image for instance. All these are 
done in a routine called INIT_SYSTEM. Upon termination, 
device storage deallocation and other housekeeping routines 
have to be done. Regardless of the differences in display 
devices, a set of graphics primitives commands must exist 
as a basic tool to construct pictures on the screen. There 
are two different sets to draw lines but similar in 
function; one is for use in absolute position and the other 
is for relative position in space.

a. Absolute Commands
M0VE_ABS_2(X,Y) move to a position (X,Y) on

screen without drawing
LINE_ABS_2(X,Y,COLOR) draw a straight line from 

the current position to the 
point (X,Y) with a certain 
color or intensity COLOR

b. Relative Commands
M0VE_REL_2(DX,DY) move to a new position whose 

coordinates are DX,DY away
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from the current position 
LINE_REL_2(DX,DY,COLOR) draw a straight line from

the current position to a 
new point which is (DX,DY) 
away from it with a color or 
intensity COLOR

Another primitive operation is to draw text. The string 
characters output may be drawn by either the dot-matrix or 
the stroke-method. On CRT and line-printer, characters are 
generated by hardware. With others like Lexidata and 
Tektronix, the stroke-method can be employed.

Utilities on string operations are given below : 
TEXT(STR, COLORS) display the string STR of 

characters with individual 
colors starting at its lower 
left corner at the present 
position

SET_CHARUP(DX,DY) define the direction (DX,DY)
of the string to be printed

SET_CHARSPACE(S) define the spacing between
characters in terms of frac
tion of character

These basic primitives can be extended to include the 
drawing of polygons. A polygon is represented as a closed 
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figure consisting of straight line segments connected end 
to end. The figure can be either concave or convex. In this 
system, the polygon has a minimum of 3 sides and at most 31 
sides. The command is

POLYGON_ABS_2(AX,AY,ACOL,N) draw an absolute 
polygon whose coordinates of 
vertices are in arrays AX,AY 
and side colors in ACOL and 
number of sides defined by N 

POLYGON_REL_2(AX,AY,ACOL,N) draw a polygon rela
tive to the current position

2.8 DISPLAY FILE

In graphics environment, it is often necessary to 
reconstruct pictures repeatedly in order to achieve dynamic 
picture changes, for example image transformations. 
Besides, it is also desirable to have a machine independent 
routine to deal with such display changes. This suggests a 
memory storage called display file to save instructions 
rather than the picture itself. In doing so, it takes up 
less memory and not every display device has a frame 
buffer. These instructions will generate the image by a 
display file interpreter. The structure of the display file 
is a multiple array set. It contains a sequence of 
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operation codes which indicate what kind of command, 
operands which are coordinates of a point, and the color or 
intensity at this position. The opcodes are defined as 
follows:

opcode < 0 : set line style display (line color)
opcode 1 : MOVE command
opcode 2 : draw LINE command
opcode 3 - 31 : draw POLYGON with sides 3 <= n <= 31 
opcode >31 : draw character command

The interpreter routine examines the display file and acts 
appropriately to cause the LINE or MOVE to be carried out 
on the display. Actual drawing depends on the hardware. If 
a frame buffer is used, DDA routine is called by the 
command to generate the image before output to the screen 
or printer. Otherwise, the command is sent to the display 
device directly.

There are two routines to allow user to control the 
display without knowing the existence of the display file. 
In other words display file is transparent.

NEW_FRAME to indicate that frame buffer should be 
cleared before showing the display file

MAKE_PICTURE_CURRENT to interpret the display file 
and then display the frame buffer
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The logics of such a scheme is
MAKE PICTURE CURRENT -> INTERPRET -> DISPLAY

the display file the picture

2.9 FILLING POLYGONS

The display images become more appealing and 
interesting if they can be filled with color or light 
intensities rather than just plain line drawings. Many of 
the shapes can be represented by polygons. Coloring is 
possible with raster display devices because pixels are 

Figure 2.6 x values are paired and used 
for line drawing

SCAM LINE

addressable. An algorithm to fill the interior of a polygon 
is based on the inside test of points on the scan line 
which crosses the boundaries of the tested polygon. It 
begins by ordering the polygon sides on the largest y 
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value and scans down the polygon from the largest y. For 
each y, it computes the intersection with the polygon 
edges. If an intersection exists, the x values are sorted 
and paired. Such a pair represents a region of the scan 
line in which visible pixels should be displayed. The 
smallest x value will be the left polygon boundary (see 
figure 2.6).



CHAPTER THREE

TRANSFORMATIONS, SEGMENTATION AND CLIPPING

3.1 TWO-DIMENSIONAL TRANSFORMATION

Pictures in graphics system are basically represented 
by coordinate points. By applying appropiate geometric 
transformations to these coordinates, pictures can be 
changed in shape and position. This provide a useful 
complement to graphics design. The basic transformations 
are scaling, translation and rotation.

Using homogeneous coordinates, these three 
transformations are defined in terms of matrices as 
follows:

a. scaling where the size of an object is changed by a 
factor SX in x direction and SY in y direction

[X*  Y' 1] = [X Y 1] SX 0 0
0 SY 0
0 0 1

b. translation which changes the position of an object 
from one place to another along a straight line by 
(Tx,Ty) in distance

19
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[X1 Y' 1] = [X Y 1] 1 0 0
0 10
Tx Ty 1

c. rotation which changes the position of an object 
along a circular path with a clockwise rotation 
angle A about the origin

[X1 Y' 1] = [X Y 1] cosA -sinA 0
sinA cosA 0
0 0 1

Figure 3.1 shows these transformations.

original scaling translation rotation
Figure 3.1 Scaling, translation and Rotation

In the implementation, the transformation process is 
applied at the time the display file is interpreted (see 
figure 3.2 ). The user is restricted from building complex

set up get point transform
transform -> from display -> the image -> display
matrix file point it

Figure 3.2 Addition of transformation 
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transformations. Instead he is allowed to setup the 
scaling, translation and rotation at one time.

Rotation about an arbitrary point can be determined by 
matrix concatenation of operational matrices. The order is 
first to translate the center of rotation to the origin.

Figure 3.3 Rotation about an arbitrary point

second rotate about the origin of the desired angle, and 
third translate the center of rotation back to its original 
position. This sequence is presented by the matrix product

T1 = 1 0 0
0 10

-Xc -Yc 1
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R = COSA sinA 0
-sinA cosA 0

0 0 1

T2 = 1 0 0
0 1 0
Xc Yc 1

depicts such a transformation sequence.

cosA sinA 0
T1 R T2 = -sinA cosA 0

-Xc * cosA + 
Yc * sinA + Xc

-Xc * sinA - 
Yc * cosA + Yc

1

Figure 3.3

The user defined routines are SCALE(Sx,Sy),
TRANSLATE(Tx,Ty) and ROTATE(A).

3.2 SEGMENTATION

For many applications, images are often composed of 
several pictures. Each subpicture can be composed together 
to form a new image. Manipulation of pictures in terms of 
their component parts are more flexible and appealing to 
the user. By defining each object in a picture as a 
separate entity, a user can make modifications to the 
picture more easily. To reflect such subpicture structure.
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segment 
name

segment 
start

segment 
size

visibility scale X scale Y

0
1
2
3

Figure 3.4 Segment table

the display file is reorganized by being divided into 
segments. Each segment corresponds to a component of the 
overall display. Associating with each segment is a set of 
attributes. These attributes are visibility, scaling, 
translation and rotation. Visibility is used to determine 
if the stored subpicture should be displayed or not while 
transformation is performed on each segment independently. 
This attribute information is represented by means of a 
segment table of simple arrays (see figure 3.4). Each 
segment is given a numeric name. The unnamed segment is 
named 0 and can be used for nonsegmented display system. 
Therefore, for each segment the display file interpreter 
will only interpret those visible ones.



24

This system does not permit two segments open at the 
same time and no two segments have the same name. Once a 
segment is created, all subsequent graphics commands will 
belong to this segment until a close segment command is 
issued. Basic segment related commands are :

CREATE_SEGMENT(Numeric_name)
CLOSE_SEGMENT
DELETE_SEGMENT(segment_name)
DELETE_ALL_SEGMENTS
RENAME_SEGMENT(old_name, new_name) 
SET_VISIBILITY(name, on_off) 
SET_IMAGE_TRANSLATION(name, Tx,Ty) 
SET_IMAGE_TRANSFORMATION(name,Sx,Sy,Angle,Tx,Ty)

The display system with segment file organization is
depicted in figure 3.5.

segment 
table

+—>—
display I
file —'

all segments
check visibility 

and
transformation

> display

Figure 3.5 Segment organization.
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3.3 WINDOWING AND CLIPPING

It is very useful if one can select an area of a 
picture to display and place it in a specified region of 
the screen. This transformation process involves operations 
for translating and scaling selected areas and for deleting 
picture parts outside the area. These operations are 
referred to as windowing and clipping.

3.3.1 VIEWING TRANSFORMATION

As noted, there are two coordinate systems: world and
device systems. They are referred to as object space and

Figure 3.6

object space
viewport in 
normalized device 
coordinates

Relationship between window and viewport 

image space (see figure 3.6). A rectangular area specified 
in the object space is called a window. The rectangular 
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area on the screen to which a window is mapped through 
transformation is called a view port. This mapping is then 
called a viewing transformation.

By changing the position of the viewport, objects can 
be displayed at different positions on the output device. 
Also by varying the size of viewports, the size and 
proportions of objects can be changed. Zooming in or out 
effect can be achieved when the size of the window varies.

The viewing transformation involves first translating 
the window with lower left corner to the origin, second, 
scaling the window to the size of the viewport and third, 
moving it to the viewport corner location. Commands to 
define the window and viewport sizes are :

SET_WINDOW(XL,XH, YL,YH) 
SET_VIEWPORT(XL,XH, YL,YH)

Parameters in each function are used to define the 
boundaries of the rectangular area - left and right, bottom 
and top. In this system, both coordinate systems have a 
range of 0 to 1 (normalized units). Viewing parameters have 
to be specified right before the segment is created, and 
they cannot be changed in the middle of the segment.
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3.3.2 CLIPPING

The process of clipping is to clip away lines outside 
the window. An algorithm used here is based on Sutherland 
and Hugman's method which can clip polygons, lines and 
characters. The entire figure is clipped against each 
window boundary in turn. That is each drawing command is 
clipped against the window starting from left, right, then 
bottom and finally top. If a vertex moves across the 
boundary from its preceding position, the intersection is 
saved as a new command.

There are four possible situations as illustrated in
figure 3.7. Any point inside the window is saved. After

Figure 3.7 Four possible clipping cases

clipping against one boundary, the result is passed to the 
next boundary check until all four boundaries have been 
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considered. The last step will enter all commands into the 
display file.

Extra work is needed to clip the polygon because the 
number of sides of a polygon will be changed. The result is 
also limited to 31 sides. Before entering the polygon 
instructions into the display file, a temporary array is 
used to save the most recent point that was clipped for 
each window boundary. After all polygon vertices have been 
processed, one more clipping is performed on the line 
joining the first visible point created and the last point. 
This will then close the polygon (see figure 3.8).

In from vertex A clockwise, thefigure 3.8, starting

Clipping polygon

clipping process will generate the following sequence of
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new polygon vertices.

last current points
point point saved
A B XI B
B C C
C D X2
D A X3 D A cross two 

boundaries
X3 A X4
A XI XI closing

The clipping algorithm is implemented inside the 
entering display file module. It is not user accessible. 
Opcodes greater than 1 (MOVE command) will be inspected 
first by clipping before entered into display file as shown 
below.

enter windowing display
command —> & —> file —> interpreter

clipping

Figure 3.9

3.4 THREE-DIMENSIONAL TRANSFORMATION

Without three-dimensional representation, real live 
objects cannot be visualized. Hence a graphics system 
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should be generalized to handle realism of the three- 
dimensional objects.

In addition to the two-dimensional coordinates, a 
third z-axis is added to represent the depth of the system. 
Right handed convention is adopted.

Basic mathematical geometry required for building 
three-dimensional structures are as follows :

a. point : (X,Y,Z)
b. line : represented in parametric form

X = XI + (X2 - XI) u
Y = Y1 + (Y2 - Yl) u
Z = Z1 + (Z2 - Zl) u

c. plane : represented by the equation
AX + BY + CZ + D = 0
where the triplet (A, B, C) stands for the 
vector normal to the plane.

d. normal vector : a vector perpendicular to the plane
AX+BY + CZ + D= 0
It is called outward normal if
AX+BY + CZ + D>0 

else, it is inward normal.
e. angle between two vectors A(XA, YA, ZA) and
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B(XB, YB, ZB) :

-1 A . B 
angle = cos ----------

|A| |B|

where A . B is the dot product given by
A . B = XA XB + YA YB + ZA ZB

3.4.1 THREE-DIMENSIONAL PRIMITIVES

An extra variable array storing z-coordinates is all 
that needed in the three-dimensional system. These 
primitives are :

M0VE_ABS_3(X, Y, Z)
M0VE_REL_3(DX,DY,DZ)
LINE_ABS_3(X, Y, Z, COLOR)
LINE_REL_3(DX,DY,DZ, COLOR)
POLYGON_ABS_3(AX,AY,AZ, ACOL, N)
POLYGON_REL_3(AX,AY,AZ, ACOL, N)

In order to display a three-dimensional object on a 
two-dimensional viewing screen, a viewing transformation 
mapping is needed. In this way, the two-dimensional display 
file can remain unchanged in structure. Before giving the 
methods of viewing transformation, the two-dimensional
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transformations are expanded here below in homogeneous
form.

Sx 0 0 0
a. scaling : S = 0

0 
0

1

Sy 0 0
0 Sz 0
0 0 1

0 0 0
b. translation : T = 0

0 
Tx

10 0
0 10

Ty Tz 1

c. rotation about each axis through an angle A

1 0 0 0
Rx = 0 cosA sinA 0

0 -sinA cosA 0
0 0 0 1

cosA 0 -sinA 0
Ry = 0

sinA 
0

cosA

1 0 0
0 cosA 0
0 0 1

sinA 0 0
Rz = -sinA 

0 
0

cosA 0 0
0 10
0 0 1

d. rotation about any line L through a clockwise
angle A

L : X = XI + A u
Y = Y1 + B u
Z = Z1 + C u
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is :
-1 -1 -1

Ra = T Rx Ry Rz (Ry) (Rx) (T) 
where
T = translation to the point (XI, Yl, Zl)

-1 22 1/2
Rx = rotation at an angle sin B/(B + C )

-1 222 1/2
Ry = rotation at an angle sin A/(A + B + C )
Rz = rotation at an angle A

3.4.2 VIEWING TRANSFORMATION

Viewing transformation of three-dimension is the 
projection onto a two-dimensional view plane. The simplest 
form is parallel projection. Others commonly used are 
perspective and isometric projections. Only parallel and 
perspective projections are implemented in this system.

Figure 3.10 Parallel projection onto XY-plane.

X
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A parallel projection is formed by projecting points 
on the object surface along parallel lines onto a viewing 
plane (see figure 3.10). If the direction of projection is 
given by a vector (XP, YP, ZP), the projection onto XY- 
plane is

X2 = XI - Z1 (XP/ZP)
Y2 = Y1 - Z1 (YP/ZP) 
Z2 = 0

Perspective projection changes the sizes of objects so 
that the further away an object is.from the viewer, the 
smaller it appears. The projection lines instead of being 

Figure 3.11 Perspective projection

parallel will converge to a single point known as center of 
projection. The intersections of these lines with the view 
plane becomes the projected image (see figure 3.11). With 
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the center of projection at (XC, YC, ZC), the perspective 
projection of a point (X, Y, Z) on the object onto the XY- 
plane is

X2 = (XC Z1 - XI ZC)/(Z1 - ZC)
Y2 = (YC Z1 - Y1 ZC)/(Y1 - ZC)
Z2 = 0

3.4.3 VIEWING PARAMETERS

In this system, the view plane is treated as a 
variable element just like the film in a camera which can 
be positioned around in space. There are viewing parameters 
that can change the projection onto the view plane.

a. reference point (XR,YR,ZR) : is the center of
attention.

b. view plane normal (VX,VY,VZ) : is the perpendicular
direction to the view plane.

c. view distance : is the distance from the view
reference point to the view plane.

d. view up direction (UX,UY,UZ) : is the upward
orientation of the view plane.

These parameters allow the user to select how the object is 
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to be displayed. The commands allowing these settings are 
SET_VIEW_REFERENCE_POINT(X,Y,Z) 
SET_VIEW_PLANE_NORMAL(NX,NY,NZ) 
SET_VIEW_DISTANCE(D) 
SET_VIEW_UP(UX,UY,UZ)

The definitions of projection are specified by 
SET_PARALLEL(VX,VY,VZ) 
SET_PERSPECTIVE(XC,YC,ZC)

In order to project the object model onto the view 
plane correctly, a transformation from the object

Figure 3.13 System with three-dimensional viewing 
operations
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coordinates to the view plane coordinates is performed 
first. The process includes translation and three rotations 
about X-, Y- and Z- axes. Once this is done, the specified 
projection is carried out. Figure 3.13 illustrates the 
implementation of the three-dimensional viewing operations.

3.4.4 THREE-DIMENSIONAL CLIPPING

The projected image may produce more detail lines than 
necessary. For example, objects behind the viewport can 
appear on the screen. Sometimes objects may exceed the 
prescribed limits of the viewport specified. These effects 
can be eliminated by defining a clipping plane to clip away 
the undesirable portion before projection has taken place.

The testing point in viewer's coordinates is checked 
as a viewing volume which defines the space bounded by the 
projecting rays and two clipping planes - front and back 
(see figure 3.14). In this system, the user has an option 
to do three-dimensional clipping by simply executing the 
following commands :

SET_VIEW_DEPTH(front_jDlane_dist, back_plane_dist)
SET_FRONT_PLANE_CLIPPING(on_off)
SET_BACK_PLANE_CLIPPING(on_off)
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Figure 3.14 Viewing volume in parallel and perspective 
projections

Perspective

Here three-dimensional clipping requires two additonal 
steps, clipping back and front. The whole process is placed 
before the projection. This eliminates a lot of undesired 
points and thus saves computation. Given a window size 
(WXH,WXL,WYH,WYL), the four clipping planes in parallel 
projection with direction (VXP,VYP,VZP) are :

a. top : Y = SI Z + WYH
b. bottom : Y = S2 Z + WYL
c. right : X = S3 Z + WXH
d. left : X = S4 Z + WXL

where
SI = S2 = VYP/VZP ; S3 = S4 = VXP/VZP.
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For the perspective case with projection center at 
(XC,YC,ZC), the corresponding planes take the same form of 
equations with different plane slopes as

SI = (YC - WYH)/ZC ; S2 = (YC - WYL)/ZC
S3 = (XC - WXH)/ZC ; S4 = (XC - WXL)/ZC.

For a point (X1,Y1,Z1) to be visible within the viewing 
volume, it must satisfy the following conditions :

Y1 <= SI Z1 + WYH below top plane
Y1 >= S2 Z1 + WYL above bottom plane
XI <= S3 Z1 + WXH left of right plane
XI >= S4 Z1 + WXL right of left plane
FRONT_Z <= Z1 <= BACK_Z between front & back planes.

The clipping of a line is performed by calculating the 
intersecting point of the line with the plane.



CHAPTER 4

HIDDEN SURFACE AND HIDDEN LINE REMOVAL

A major consideration in the generation of realistic 
scenes is the identification and removal of the parts of 
the picture definition, either line or surface, that are 
not visible from a chosen position. The discussion here is 
limited to plane polygons and lines. Both involve the 
determination of depth and visibility of hidden geometry.

4.1 BACK-PLANE REMOVAL

A surface (plane polygon with straight edges) is said 
to have two faces, front and back. By adopting a convention 
such that a visible front face is drawn clockwise on the 

Figure 4.1 Front and back face convention.

40
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viewer side, the cross-product of two adjacent edges and 
the direction of projection determine the visibility of the 
face. If R is the resulting cross-product and S the 
direction of projection, a positive dot-product of R and S 
will indicate a back face, otherwise a front face to the 
viewer (see figure 4.1).

Care is taken to ensure the two vectors formed from 
two adjacent sides meet at a convex vertex and do not 
coincide with each other. The back-face check algorithm is 
to be done after the clipping is performed. Front face is 
saved while back face is discarded. When multiple objects 
exist together, a front face of one object can be obscured 
by another front face of another object. To display these 
multiple front faces properly requires the knowledge of 
depth information about them. A simple technique called 
painter's algorithm handles the display of these faces as 
if they were being painted onto the screen one over the 
other in the order of their distance from the viewer. 
Nearer faces are painted on top of more distant ones 
partially or totally. Therefore before the display, the 
faces are sorted in decreasing depth order.

In order to facilitate the geometrical sorting, 
polygon face is decomposed into triangles. Buffers are 
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needed to keep track of the changes in polygon properties. 
They are edge colors, fill style, depth and projected 
coordinates, and drawing commands. The painting function is 
applied within a given segment. Objects in other segments 
have no effect on the current one. Therefore, the hidden 
surface algorithm is done just before the segment is 
closed.

4.2 DECOMPOSITION OF POLYGON

By starting from the leftmost vertex Pi of a polygon
to ensure a convex vertex, and combining the points 
preceding and following it (Pi-1 and Pi+1), a trial 
triangle is created. The rest of vertices are tested if any 
leftmost point lies inside this triangle. If none, Pi-1, Pi 
and Pi+1 form

Figure 4.2 Decomposition of polygon.
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the triangle. The triangle is copied to a buffer. If there 
is an interior point Pj, the polygon is split into two 
subpolygons sharing the splitting side Pi Pj (see figure 
4.2). The process is repeated until the polygon buffer is 
emptied.

4.3 GEOMETRICAL SORTING OF TRIANGLES

The first step in sorting is to establish the depth 
order of all triangles in a list. From the top, a triangle 
is compared with all others down in the list according to 
their depths. By depth, it means the Z coordinate of a 
projected point common to both triangles. The front 
triangle Fi having shorter depth is inserted into a list 
called INFRONT of the back triangle Bj. A back count of Fi 
is incremented to indicate one more triangle is behind it. 
Once all have been compared, the order is constructed from 
back to front.

Initially, the back count list is searched for zero in 
which the triangle has nothing behind it. These triangles 
are put into a TO_BE_DONE list. There must be at least 1 
such triangle in the set. By taking out a triangle P from 
the bottom of this stack, the back count for each of its 
corresponding front triangles is decremented by 1. If one 
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count reaches zero, this front triangle is added to the
TO_BE_DONE list. When all its front triangles have been 
examined, triangle P is entered into the display file.
Figure 4.3 shows an example.

Figure 4.3 Sorting of triangles.

4.4 COMPARING DEPTHS OF TWO TRIANGLES

There are several passes before a depth conclusion can 
be reached if one test fails after another. The tests for 
overlapping are listed in order of increasing difficulty.

a. XY MINIMAX TEST

A rectangular box over the vertices of a 
triangle is compared with the other rectangle over 
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the other triangle. The rectangle sides are the 
maximum and minimum of X and Y coordinates of the 
three vertices. If X minimum of one box is less than 
the X maximum of the other box, the boxes overlap and 
need further tests.

b. Z MINIMAX TEST

This test determines which triangle is in front 
of which. If the smallest Z value for one triangle is 
larger than the largest Z value for the other 
triangle, then the first triangle lies in front.

C. OVERLAPPING EDGE TEST

If a projected side of one triangle intersects 
one of the projected sides of the other triangle, they 
must overlap. At the point of intersection, their Z 
values determine the depth order of the two triangles.

d. CONTAINMENT TEST

If three vertices of one triangle lie inside the 
other triangle, the first one is contained by the 
second. A point is said to be inside a triangle if it 
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lies to the right of each triangle side assuming a 
clockwise drawn triangle. Mathematically, the 
condition is

(X - XI)(Y2 - Yl) - (X2 - XI)(Y - Yl) < 0

where (X,Y) is the point and (XI,Yl) and (X2,Y2) 
represent the end points of a triangle side. Once a 
point is found inside the triangle, it can be used to 
establish the depth order. The value (X,Y) of this 
point is substituted into the plane equation formed by 
the triangle to solve for Z value. This Z is compared 
with the Z of the point.

summarized by figure 4.4The sequence of these tests is

Figure 4.4 Comparison of two triangles.
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4.5 HIDDEN LINE REMOVAL

The hidden face algorithm discussed does not work for 
line oriented (unfilled) polygons. For hidden line removal, 
the obscured portions of line segments will be replaced by 
MOVE commands. The approach is to compare each side of a 
triangle against all of the triangles which lie in front 
of it to see if it is partially or totally obscured. The 
three sides are saved initially on a stack. Three cases can 
occur: 1) a line segment is completely inside the triangle; 
2) one end is inside and the other is outside; 3) both ends 
are outside with middle lying inside the triangle 
generating two intersecting points. The invisible part of 
the line will need no further comparison while the visible 
part needs further comparison against the remainder of the 
front triangles.

When a line segment is to be drawn from the outside in 
of a concealing triangle, the LINE command is replaced by a 
new LINE command drawn to the intersecting point. If it is 
an inside out line, the LINE command will be replaced first 
by a MOVE command to the intersecting point and then a LINE 
command drawn to the outside point. If both end points of 
the line segment lie outside the triangle yielding two 
distinct intersecting points P and Q, the new commands are 
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a LINE command drawn to first point P, a MOVE command to 
the second point Q, and a LINE command to the last end 
point down the line. A complete concealed line is replaced 
by a MOVE command.

When all sides are processed and the stack is empty, 
the resulting triangle is entered into the display file. 
The implementation including hidden surface and line 
removal is illustrated in figure 4.5.

vie*) i kJ § 
transform

Figure 4.5 Implementation of hidden surface and 
line removal.



CHAPTER 5

SHADING

5.1 INTRODUCTION

Shading three-dimensional objects can give further 
realism to the image. A mathematical model is used to 
describe the light sources which illuminate objects. There 
are two kinds of reflection that change the shading effect, 
diffuse reflection and specular reflection. If the light 
energy emitted from the light source is reflected uniformly 
in all directions, it is called diffuse reflection. 
Specular reflection occurs at certain viewing angles and 
produces a spot of reflected light that is the same color 
as the incident light. A shiny surface reflects all 
incident light and has a narrow reflection range. A dull 
surface has a wider reflection range. The intensity to the 
viewer decreases as the viewing angle falls off the range 
(see figure 5.1).

5.2 SHADING PARAMETERS

Physical parameters needed in computing the shade of a 
surface are background intensity B, surface reflectivity R 

49
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which is the fraction of light reflected by the surface, 
portion of light that goes into specular reflection SP 
which happens at certain viewing angles and the location of 
the light source. When given these values, the following 
are defined:

a. amount of incident light source P
P = 1 - B

b. amount of specular reflection S
S = (1 - B) (1 - R) SP

Figure 5.1 Relation between reflections and viewing 
angle.

Lambert's Law states that the reflection of light from a 
surface varies as the cosine of the angle between the 
normal to the surface and the direction of reflected ray, 
and also that illumination from a point source decreases by 
the square of the distance between it and the object being 
illuminated. If L, N, and H are the unit vectors shown in 
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figure 5.1 with H being half way between the light ray and 
the viewing direction, by applying the law, a shading model 
is expressed as follows:

P R cosl + S (cosN) ** A 
SHADE = BR + -----------------------------

1 + D

where cosl = L . N, cosN = N . H, D = distance between 
the object surface and the light source, and the value of 
SHADE is between 0 and 1. CosN is raised to power A called 
glossiness in order to produce the specular reflection 
effect more prominently so that it is 1 within the range 
and 0 for out of range.

5.3 IMPLEMENTATION

The shading algorithm is inserted at the end of the 
back-face check procedure. If the face is a back face, 
shading is not necessary else the surface color is changed 
by shading. After shading, the face is passed to hidden 
surface and line removal process. Shading parameters can be 
set using the following routines: 

SET_LIGHT(LX,LY,LZ, brightness, background) 
SET_OBJECT_SHADE(reflectivity, specular, gloss) 
SET_SHADING(on_off)
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In this system, brightness is between 1 and 2, background 0 
to 1, reflectivity 0 to 1, specular reflection 0 to 1, and 
glossiness 40 to 60. Initially, shading is turned off.



CHAPTER 6

CURVES

The easiest way to approximate a curve on the screen 
is by a number of small straight-line segments. To draw a 
curve based on given sample points requires finding a 
polynomial function that passes these points. A polynomial 
can be expressed in parametric form as

X = Fx(u)
Y = Fy(u)
Z = Fz(u)

6.1 BLENDING FUNCTION

If the polynomial passes through n sample points, the 
function can be represented by

Fx(u) = SUM( Xi Bi(u) )
Fy(u) = SUM( Yi Bi(u) )
Fz(u) = SUM( Zi Bi(u) )

where i = 1 .. n. Bi(u) are called blending functions. 
Each is between 0 and 1 for some u. A function Bi(u) is 
chosen such that it passes through four given sample 
points. It is set equal to 1 at some u and 0 for other u. 
Using the Lagrange polynomial.

53
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(U+1) U (U-1) ...(u-(i-3))(u-(i-l))...(u-(i-2))
Bi(u) = --------------------------------------------------

(i-1) (i-2) (i-3) . . . (1) (-1) . . . (i-n)

the blending functions over four control points are : 
u (u - 1) (u - 2) 

Bl(u) = -----------
-1 (-2) (-3)

(u + 1) (u - 1) (u - 2)
B2(u) -----------------------------

"I (-2) ( 1) 
(u + 1) u (u - 2)

B3(u) = --------------------------
(2) (1) (-1) 

(u + 1) u (u - 1)
B4(u) -----------------------------

(3) (2) (1) 
and so the curve in parametric form is

X = XI Bl(u) + X2 B2(u) + X3 B3(u) + X4 B4(u)
Y = Y1 B1(U) + Y2 B2(u) + Y3 B3(u) + Y4 B4(u)
Z = Z1 Bl(u) + Z2 B2(u) + Z3 B3(u) + Z4 B4(u)

When given a set of sample points, the curve between two
successive points, i and i+1, is approximated by a 
specified number of line segments with the blending 
function computed over the four sample points i-1, i, i+1 
and i+2. The entire curve is approximated by repeating this 
process. The larger the number of line segments per 
section, the smoother the curve drawn on the screen is. As 
an example, given that X = (1,3,4,7) and Y = (1,5,3,6), to 
generate three segments over the interval u = (0,1) 
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requires the calculation of Bi(u) with u = (0, 1/3, 2/3,1). 
As a result, two more points are generated at u = 1/3 and 
2/3.

u = 0 1/3 2/3 1
X = 3 3.296 3.593 4
Y = 5 4.457 3.654 3

Once these new points are created, they are entered as 
LINE commands. The routines to generate such a curve are 

START_CURVE(XA, YA, ZA, COLORA) 
CURVE_ABS_3(X,Y,Z,COLOR) 
END_CURVE(X,Y,Z,COLOR)

XA, YA, ZA, COLORA are 4-element arrays containing first 4 
sample points. X, Y, Z, COLOR represent the new sample 
point for the curve.

These blending functions can be applied to drawing 
smooth polygons. Because the number of sides will be 
increased during interpolation, a triangle could be 
smoothed to 10 small line segments per side while a 15- 
sided polygon could only be smoothed by 2 segments per 
side. The routine to do this is

SMOOTH_POLY_ABS_3 (.AX, AY, AZ , ACOL, N) .
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6.2 SPLINE CURVE

The blending functions given above have some 
drawbacks. First, the sum is equal to 1 only at integer 
values of u. Hence, flat behavior cannot be obtained when 
needed. Second, the slopes at the boudnary point between 
two sections are not the same, therefore creating corner at 
this point. Finally, control of the curve by a sample 
point ripples in and out as it moves along in u.

A set of functions that guarantees the curve smoothly 
follows the control points without discontinuity is called 
B spline function. The composite function is a polynomial 
of degree one less than the number of control points used. 
It is described as

n
P(U) = SUM P B (U) 

i=0 i i,k
where B are the blending functions of degree k - 1. The 

i,k
parameter u varies from 0 to n - k + 2. The functions B

i,k 
are defined recursively as

B (U) = 1 if Ti <= Ti+1
= 0 otherwise

(U - Ti ) Ti+k - U
B (U) ------------- * B (U) +--------- * B (U)
i,k Ti+k-1 - Ti i,k-l Ti+k - Ti i+l,k-l 
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If any term becomes 0/0, it is set to 0 by convention. The 
values of T define the subinterval of U. They are chosen, 
for i from 0 to n + k, as

Ti = 0 if i < k
= i - k + 1 if k <= i <= n
= n - k + 2 if i > n.

For example when k = 3, n = 4 then T values are TO to T7 of 
0, 0, 0, 1, 2, 3, 3, 3. Cubic B spline is obtained with 
k = 4.

Sharp corners can be created with B-spline functions. It is 
done by controlling the curve over several identical sample 
points. Figure 6.2 illustrates the difference between 
interpolation smoothing and the B-spline smoothing.

by interpolation by B spline
Fig 6.1 Interpolation smoothing and B-spline 

smoothing
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Routines that draw a B-spline curve and a smooth 
polygon are

SET_B_SPLINE(no_of_lines_per_section)
START_B_SPLINE(AX,AY,AZ,COLORS)
END_B_SPLINE(XI,Y1,Z1,X2,Y2,Z2,COLOR)
B_SPLINE_POLY_ABS(AX,AY,AZ,M COLORS) 

where AX,AY,AX,COLORS are arrays and X1,Y1,Z1,X2,Y2,Z2 are
the last two sample points.



CHAPTER 7

STANDARD GRAPHICS ALGORITHMS ANALYSIS

Some common standard graphics algorithms are analyzed 
to give readers an insight how they work differently from 
those discussed in Harrington's book. These algorithms are 
polygon filling methods, clipping methods, hidden surface 
removal methods and hidden line methods.

7.1 POLYGON FILLING METHODS

The method used by Harrington is called scan
conversion filling. This algorithm is based on the 
geometrical information in which only vertices are known. 
In case of a frame buffer is used, the polygon boundaries 
are represented by pixels. Several methods based on pixels 
are known. Two of these are flooding filling algorithm and 
boundary-fill algorithm.

In flood filling, a seed inside the polygon is 
initiated. Its surrounding 8 pixels are inspected to 
determine whether the boundry has been reached. The process 
is repeated until all pixels inside the region have been 
inspected.
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In boundary filling, a starting seed inside the 
polygon is also required. The method inspects each pixel to 
the left and right of the seed. When the left- and 
rightmost boundary pixels are hit, a run or line of pixels 
is drawn. Then each pixel above and below the line just 
drawn is examined. Again when the boundary pixels are 
reached, a line is drawn. The process is continued until 
all pixels inspected are shown to be boundary pixels.

These two algorithms are useful in interactive 
sketching and painting packages. Using a graphics tablet or 
other interactive devices, a user sketches a figure 
outline, picks an interior point and selects a color or 
pattern from a color palette. The system then paints the 
figure interior.

7.2 CLIPPING ALGORITHMS

The clipping of a line segment by a rectangular window 
can be done by checking the end points of the line against 
eight regions around the window as shown in figure 7.1. 
Each region is coded by 4 bits. Each bit position indicates 
the point is in that relative position. The assignment is 
bit 1 as left, bit 2 as right, bit 3 as below and bit 4 as 
top. If a point is within the window, the region code is
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1001 -1- 1000 1 -+— 1010
0001 -+- window 0000 -+— 0010
0101 1 0100 1 0110

Figure 7.1. Eight regions of a window.

0000. A point in the lower left corner has the region code 
0101. Bit values of the point are determined by comparing 
endpoint coordinate value (X,Y) to the window boudnaries. 
Bit 1 is set to 1 if X < WXmin (window minimum X value). 
The other three bit values can be determined in similar 
fashion. Once the region codes for all endpoints have been 
established, lines which are completely inside and which 
are outside the window can be found. Line with both 
endpoints of 0000 code is completely contained inside the 
window. If the line has a 1 in the same bit position in the 
region codes for each endpoint, it is completely outside 
the window and is rejected. All these operations can be 
done by XORing the bits. Further computation for 
intersecting point with the window boundries is needed if 
the line is partially inside the window or cannot be 
identified completely. An endpoint is checked against the 
window boundaries in the order left, right, bottom and top.

This method finds the clipping endpoints very rapidly 
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but also rejects even more rapidly any line that is clearly 
invisible. This makes it a very good algorithm for clipping 
pictures that are much larger than the screen.

Another technique for locating window intersections 
without the direct computation of the line-equation is a 
binary search procedure. The goal is to find the visible 
point on the line segment P0P1 that is farthest from PO. 
The steps in the process are as follows. Initial testing of 
lines is carried out using region codes. Undetermined case 
will be examined by studying the line's midpoint. Each 
half of the line can be tested for total acceptance or 
rejection. If half of the line can be accepted or rejected, 
then the other half is processed in the same way. This 
continues until an intersection point is reached. If one 
half of the line cannot be trivially accepted or rejected, 
each half of it is processed until either the line is 
totally rejected or a visible section is found.

This method can be hardware implemented because 
midpoint calculation is equivalent to an addition and a 
left shift operation, and hence provide fast line clipping 
than a software type.
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7.3 HIDDEN SURFACE REMOVAL

Besides the Painter's algorithm, there are several 
commonly used approaches.

7.3.1 DEPTH-BUFFER METHOD

Basically, it tests the surface visibility one point 
at a time. For each pixel position of a projected surface 
on the view plane, the surface with the smallest Z 
coordinate at the location is visible. Two buffers are 
required. One stores the Z values for each X and Y. Another 
stores the intensity or color for each position. The depth 
at points over the surface is calculated from the plane 
equation. Initially, the depth buffer and refresh buffer 
are set to 1 for maximum normalized depth and background 
intensity. For each position on each surface, if the 
calculated depth Z is less than the value of the same 
position stored in the depth buffer, then new Z value is 
stored and intensity at this point is put into the buffer. 
The polygons are processed by scan line one at a time. For 
any scan line, X coordinates across the line differ by 1 
and Y values between line differ 1. If the initial Z is 
determined by the plane equation Z = -(AX + BY + D)/C at 
(X,Y) the next iteration at (X+1,Y) is Z' = Z - A/C and 
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move to next line Z'= Z + B/C at (X, Y-l).

This method requires no geometrical sorting of 
surfaces. However, it does require a very larger buffer; 
e.g., a resolution of 1024 by 1024 would require a million.

7.3.2 SCAN LINE METHOD

This method is similar to the scan-line-fill polygon 
algorithm. The edges of polygons are sorted in order of 
increasing X. A flag is defined for each surface. It is set 
on when the scan line is processed from left to right. When 
the rightmost boundary of the surface is reached, the 
surface flag is set to off. When the scan line is over the 
overlapping region of two surfaces, both surface flags are 
on. For single flag on, no depth calculations are necessary 
and the intensity information for that surface is entered. 
When multiple flags are on, depth calculation are 
performed. The color of the surface with the smallest Z is 
loaded into the intensity buffer.

7.3.3 QUAD-TREE SUBDIVISION METHOD

This method is applied by successively dividing the 
view plane into smaller rectangles until in each rectangle, 
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the projected polygon is found visible or until the screen 
area is a single pixel. Tests to determine the visibility 
of a single polygon within a specified rectangle are made 
by comparing surfaces to the boundary of the rectangle. 
Four possible catagories can occur :

1. Surrounding polygon which completely encloses the 
rectangle.

2. Intersecting polygon which intersects the 
rectangle.

3. Contained polygon which is completely inside the 
rectangle.

4. Disjoint polygon which is completely outside the 
rectangle.

No further subdivisions of a specified rectangle are needed 
if one of the following conditions is true :

1. All polygons are outside the rectange.
Action : the rectangle is colored to background 
color.

2. Only one polygon which is completely inside, in
tersecting or surrounding the rectangle.
Action : area covering the polygon is colored with 
the rest in background color.

3. A surrounding polygon is closer to the viewer than 
all other polygons within the boundary.
Action : color the area with the color of this
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polygon.
4. Subdivision reaches a pixel.

Action : the Z-coordinates at this point of all 
visible polygons is computed. The pixel is set to 
the color of the polygon with the smallest Z 
value.

If none of these conditions has occurred, the screen area 
is subdivided into fourths and the process is repeated for 
each of these quadrants.

7.3.4 OCTREE METHOD

It is used for the viewing volume which is similar to 
the viewing rectangle in the quad-tree method. The 
modelling process is to subdivide the viewing cube into 
eight suboctants. These subcubes are tested against the 
object to be examined to determine whether a) they lie 
entirely inside the object - called FULL cubes, b) they lie 
entirely outside the object - called EMPTY cubes, or c) 
they lie partially inside and partially outside the object 
- PARTIAL cubes. Only partial subcubes are further 
subdivided into sub-subcubes and are tested again. This 
process of successive subdividing and testing continues 
until a cube size is reached that is of the desired 
resolution fineness.
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Such a model can be represented by an 8-ary tree 
structure in which each node represents a cube. The 
terminal nodes correspond to the FULL or EMPTY subcubes 
while non-terminal nodes correspond to the PARTIAL 
subcubes.

The octants when created are labelled as 0 to 7 such 
that the highest number indicates the octant is the most 
visible one to the viewer (see figure 7.2). Therefore 
nothing in octants 0 through 5 can obscure anything in 
octants 6 and 7. This ordered-priority convention is used 
as a basis for hidden surface elimination.

Figure 7.2 Octree method.

The elimination is accomplished first by setting up a 
corresponding quad-tree that mapps the visible octants. All 
FULL and PARTIAL octants are projected onto this quad-tree 
using a recursive front-to-back traversal order (i.e. 7-to- 
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0 order). Obviously, surfaces of front octants are visible 
to the viewer while any surfaces toward the rear of the 
front octants or in the back octants may be hidden by the 
front surfaces.

If a quad-tree location has no value, this location is 
then assigned to the color of the projected visible octant 
being examined. If the traversal order shows an octant to 
be completely obscured, it needs no further processing and 
its subsequent subtrees as well. The final result of this 
quad-tree representation for the visible surfaces is loaded 
into the frame buffer.

The effectiveness of a hidden-surface method depends 
on the characteristics of a particular application. As a 
general rule, the Painter's algorithm is a lightly 
effective approach for scenes with only a few surfaces. 
These scenes usually have few overlapping surfaces. The 
scan-line method also performs well when a scene contains a 
small number of surfaces. Either the scan-line method or 
the Painter's algorithm can be used effectively for scenes 
with several thousand faces. For over a few thousand 
surfaces, the depth-buffer or octree method performs best. 
The depth-buffer method has a nearly constant processing 
time, independent of the number of surfaces in a scene.
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However it requires more memory than most methods. Octree 
or quad-tree method may be preferred for scenes with many 
surfaces as well. Either one requires no sorting or 
intersection calculations and occupies less memory. Octree 
representation can be useful for obtaining cross-sectional 
slices of solids.

7.4 HIDDEN-LINE REMOVAL METHODS

Some hidden-surface methods can be adapted to hidden- 
line removal. By using a back-face method, all back 
surfaces of an object can be identified. Only the 
boundaries of the visible surfaces are displayed. With the 
Painter's algorithm surfaces can be painted into the frame 
buffer so that surface interiors are in the background 
color, while boundaries are in the foreground color. By 
processing the surfaces from back to front, hidden lines 
are erased by the nearer surfaces. A quad-tree subdivision 
can be adapted by displaying only the boundaries of visible 
surfaces. Scan-line methods can be used to display ivisible 
lines by setting points along the scan line that coincide 
with boudnaries of visible surfaces.



CHAPTER 8

3D SURFACE RECONSTRUCTION FROM PLANAR CONTOURS

8.1 INTRODUCTION

In many scientific and technical applications, a 
three-dimensional solid must be reconstructed from serial 
sections, either to aid in the comprehension of the 
object's structure or to facilitate its automatic 
manipulation and analysis. The structures, for example, in 
biological research, medical diagnosis, and automobile 
design are very often so detailed and the interaction with 
them so extensive that automation of some kind by computer 
is almost a necessity.

In order to define a three-dimensional structure 
effectively to the computer, it has to be reconstructed 
from a sequence of two dimensional images. One way to 
obtain a set of two-dimensional images is by means of a 
laser range finder which measures the three-dimensional 
coordinates of a point on the surface of the object. The 
cross-sectional images are then used to reconstruct the 
three-dimensional surfaces. The construction is done by 
means of triangulation. There are already different methods 
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to deal with triangulation. Most of them use heuristic and 
interpolation approaches. The method to be discussed here 
will solve the problem by using graph theory and the 
properties of convex hull.

8.2 AN EXAMPLE OF A MEASURING SYSTEM

The system which is used to collect the three- 
dimensional coordination data of an object consists of a 
laser range finder, camera system, a complete controlled 
table and a microprocessor system. The sensor provides the 
Z coordinate of a point on the surface of an object as a 
function of the X coordinate. The laser beam creates a 
small spot on the surface. The spot is then picked up as an 
image on each camera detector. The position of the image 
and the geometrical parameters of the cameras X and Z 
coordinates of the point can be computed by the 
microprocessor. The automated vertical motion and the 
rotation of the platform, by varying the X and Y 
coordinates, will make the uniform collection of the three- 
dimensional coordinates possible. The use of two cameras 
each associated with a microprocessor is to produce a 
better accuracy. The connection to a computer is done 
through the second microprocessor. The system is shown in 
figure 8.1.
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Figure 8.1 A measuring system.

8.3 TWO-DIMENSIONAL REPRESENTATION OF AN OBJECT

Once the three-dimensional coordinate data is 
collected, the object can be displayed with a finite number 
of specified paralllel planes. Each of these planes 
intersect the object with the measured coordinates. 
Obviously, each set of coordinates is assumed to be a 
simple closed curve called a contour. The curve segment 
between two consecutive points is approximated by a 
straight line. The analysis here is based on the fact that 
only a single contour per cross-section is allowed (see 
figure 8.2).

The contour representation of the three-dimensional 
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object does not have the real human perception of the 
object's surface. In order to construct the surface over a 
set of cross-sectional contours, a piecewise planar 
approximation to the original surface is to be done by 
means of triangulation between contours as shown in figure 
8.2. The result is a closed band of non-intersecting, non
overlapping triangular tiles between two slices.

BOTTOM

Figure 8.2 Triangulation between planar contours.

8.4 TRIANGULATION METHOD

To create a surface between two successive contours, 
one would construct tiles between the contours. One way of 
doing this is by means of triangles such that the vertices 
are the contour points. The vertices of each triangle are 
taken - two from one contour and one from the other. The 
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surface is complete when one edge of the last triangle 
meets the very first one created. The property of such 
triangulation is that no two triangles will intersect or 
overlap each other. In other words, one edge of a triangle 
is also the edge of the next adjacent one.

8.4.1 CRITERIA OF CONSTRUCTION

There are several ways to construct a triangle. Some 
popular criteria are :

1. Find a triangle having a minimum surface area 
between three source points.

2. For a pair of triangle vertices A and B on one 
contour, find the minimum cost path from A to B 
through the third point on the other contour.

3. Find the nearest neighboring points that will 
form a triangle touching the two contours.

Papers concerning these methods can be found in the works 
of Yuval, Shamos, and Johnson. The next section will 
introduce another approach to the triangulation.

8.4.2 SHORTER DIAGONAL METHOD

The principle of constructing a triangle from three 
points taken from two successive contours is by considering 
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four points - two consecutive points on one contour and two 
consecutive ones on the other. In other words, they form a 
quadrangle in space. Let these four points be a and b 
on the top contour and p and q on the bottom as shown 
in figure 8.3. Assuming the construction is in 
anticlockwise sequence and started off from the closest

Bottom

Figure 8.3 Shorter diagonal method.

pair of points aO and pO, the segment ap is then a side of 
a triangle. A point either b or q will be chosen to 
complete such triangle. The shorter diagonal of the two, aq 
or pb segment is selected as the criterion. The process 
moves on to the next two pairs, for example in figure 8.3, 
be and pq with bp as the base of the next triangle.

The calculation in finding the shorter diagonal is 
simple. Let the spacing between the contours be in Z- 
direction and the coordinates of a point p be denoted by 
(Xp,Yp,Zp). Then the diagonals are
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2 2 2 2
(aq) = (Xa - Xq) + (Ya - Yq) + (Za - Zq)

2 2 2 2
(bp) = (Xb - Xp) + (Yb - Yp) + (Zb - Zp)

To compare the two diagonals, we take the difference

2 2
diff = (aq) - (pb)

2 2 2 2
= (Xa - Xq) - (Xb - Xp) + (Ya - Yq) - (Yb - Yp) 

2 2
+ (Za - Zq) - (Zb - Zp)

From the fact that these points are lying on the two 
adjacent parallel planes, hence

Za - Zq = Zb - Zp 
and so

2 2 2 2
diff = (Xa - Xq) - (Xb - Xp) + (Ya - Yq) - (Yb - Yp) 

If diff is negative, diagonal aq is shorter, otherwise 
diagonal pb is shorter if diff is non-zero.

8.4.3 PROPERTIES OF TRIANGULATION

There are several interesting points about this 
method. First, the computation does not depend on the third 
coordinate (the spacing between two contours). From the 
diff expression, spacing is cancelled out. This certainly 
saves a lot of computer time in three-dimensional system 
and pattern recognition. Second, it requires no 
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interpolation between points. The joining of points will 
automatically take care of the uneven distribution of 
points on two contours. As an example in figure 8.4, the 
number of points on the top is larger than that on the 
bottom. It is clear that the left half points on the top 
contour will be joined to the left bottom point while the 
rest of the right half points on the top are joined to the 
bottom right point. This effect is extremely desirable 
because it is direct and straight forward. It needs no 
interpolation, heuristic, or approximation.

BdrroM

Figure 8.4 Uneven distribution case.

8.44 NUMBER OF TRIANGLES

Number of triangles created can be computed if number 
of points on each contour is given. If on two successive 
contours the number of points are A and B, then the number 
of triangles formed without overlapping is obviously A + B. 
So for three cross-sections having A, B and C, the total 
number of triangles will be
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(A + B) + (B + C) .
If there are n such cross-sections, and the last one has N 
points, the total will be

total = (A+B) + (B+C) + (C+D) + ... n-1 terms
= A + (2B + 2C + . . .) + N
= 2(A+B+...+N) - (A+N)

n
= 2 * SUM( Xi) - (XI + Xn) 

i=l
For an object having 20 cross-sections each with an average 
of 25 points, the total number of trianlges created will be 

total = 2 * (20 * 25) - 2 * 25
= 950.

Certainly, in order to construct a smoother surface, more 
cross-sections are needed and hence the number of triangles 
will increase proportionally. For every extra section of X 
points, there is an increase of 2X triangles.

8.4.5 ALGORITHM

Let the two successive contours be Ci and Ci+1.
1. Find the rightmost (largest X coordinate) point Pi on 

Ci and call it P0.
2. Find the rightmost point Qi which is the closest to Pi 

and call it Q0 on Ci+1.
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3. Pick Pi+1 and Qi+1 and find the shorter diagonal 
between diagonals DI = Pi Qi+1 and D2 = Pi+1 Qi.

4. If DI is shorter, form triangle Pi Qi+1 Qi and set
Qi = Qi+1

or else form triangle Pi Pi+1 Qi, and set
Pi = Pi+1.

5. If Pi or Qi, whichever reaches the starting point PO 
or QO first, create the rest of the triangles by join
ing the rest of the unlinked points to this PO or QO.

6. Otherwise, repeat 3 to 4.

8.4.6 LIMITATION OF ALGORITHM

The shorter diagonal algorithm works correctly if two 
contours are more or less similar in shape and size to each 
other. In other words, the profile variation between the 
two is not very great. One could think of the algorithm as 
the delinearization of the two closed curves and the 
joining of the points on two parallel lines based on the 
said criteria ideally.

There are two extreme cases that will produce an 
unacceptable effect to the viewer. This happens because the 
two contours have a large variation. Figure 8.5 illustrates 
the two cases. In the first one, points Qi, Qi+1, ... on
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contour 2 are incorrectly linked to the concavity points of 
contour 1. The second one is due to large variation in size 
between the two contours. This problem can be solved. The 
smaller contour can be imagined as a big one but shrunk. By 
expanding its size close to the big one such that both are 
inscribed by the same rectangle, triangulation process can 
be applied as usual. Case one needs special treatment and 
is discussed next.

Figure 8.5 Extreme cases.

8.5 GRAPHICAL REPRESENTATION OF TRIANGULATION

Let two successive contours be defined by P and Q and 
the points on each of them be P0, Pl, P2, ... Pn-1 and Q0, 
QI, Q2, ... Qn-1 respectively. Each triangle is constructed 
by a set of three distinct points either of the form (Pi
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Qj, Pi+1) or the form (Pi, Qj, Qj+1) with increasing index
orientation. Segment Pi Qj is always on the left of (Pi, 
Qj, Pi+1) or (Pi, Qi, Qj+1). It is obvious that an 
acceptable triangulation set is said to be satisfied if the 
following two conditions are met :

1. Each contour segment appears in exactly one 
triangle in the set.

2. If Pi Qi appears as the left edge of a triangle t, 
it will appear as the right edge of the triangle 
t-1 in the set.

Additional criteria will be used to construct the most 
appropiate surface as suggested by the shorter diagonal 
algorithm.

Points on two successive contours can be represented 
by a two-dimensional directed graph G with row i standing 
for top contour P and column j the bottom contour Q. The 
last row and column will repeat the starting points of each 
contour. The intersection called vertex Vij in the graph 
maps to the edge joining the two contours. An arc then 
denotes the orientation of a triangle. So there is a one- 
to-one correspondence between the triangle set and the 
graph. As an example, the triangles (5,4,5) and (5,5,6) in 
figure 8.6 are mapped into the graph as arcs (row5, col4) 
to (row5, col5) and (row5, col5) to (row6, col5). The
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orientation in the graph in from left to right for row and
top to bottom for column.

Gl

Figure 8.6 Mapping of triangles.

The reconstruction of triangles from the graph is 
simple just by reading off the marked arcs. Arc I in the 
graph for instance has end coordinates (row5, col4) and 
(row5, col5). Therefore the triangle is (P5, Q4, Q5).

Any set of triangles can be described as a subgraph of 
the entire directed graph G. A subgraph is called an 
acceptable subgraph which corresponds to an acceptable 
surface. If S is the acceptable subgraph, the previously 
stated conditions can be redefined as

1. For every row i, i = 0, 1, ... m-1, 0, there is 
exactly one vertical arc Pi Pi+1 in S between the 
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rows i and i+1 ;
and for every column j, j = 0, 1, ... n-1, 0f
there is also exactly one horizontal arc Qj Qj+1.

2. If a vertex is marked, it must be shared by two 
links (incoming and outgoing).

A directed graph is weakly connected if and only if it is 
connected with arcs of no unique direction. There are two 
Lemmas related to this directed graph.

Lemma 1. An acceptable subgraph S of G is weakly 
connected.

Figure 8.7 Possible subgraphs.

Lemma 2. If vertex of a subgraph S such that the 
number of incoming arcs plus the number of 
outgoing arcs is greater than or equal to 
3, then at vertex Vij, the number of 
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incoming arcs = number of outgoing arcs 
= 2, and for every other vertex Vst of S 
the number of incoming arcs = number of 
outgoing arcs = 1.

Figure 8.7 illustrates some possible subgraphs.

Proof of Lemma 1 :
Let S be an acceptable subgraph which contains arcs 

and vertices at least two weak components, one SO, the 
other S -SO. For simplicity there is at least one 
horizontal arc in S but not SO. Therefore, we claim that 
Vij is in SO and SO does not contain a horizontal arc 
between columns j-1 and j. Let e denote an element of a 
set and /e denote not belonging to the set.

arc V V e SO
kj k+1 j

for k = 0, 1,.. m-1, 0

but Vij e S

therefore
incoming(Vij) > 0

with arc V V /e SO 
i j-1 ij 

therefore
V V e SO 
i-1 j ij

by assumption
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and V e SO
i-1 j

By similar argument,
incoming(V ) > 0 

i-1 j
and arc V V /e S

i-1 j-1 i-1 j
so V V e SO

i-2 j i-1 j

Continuously proving in this fashion, for all k = 0, 
1, ... i, ... m-1, 0, we will have 

arc V V e SO
k j k+1 j

As we claim earlier S has a horizontal arc between any two 
adjacent columns for some k, that is 

arc V V e S 
k j-1 k j

but not SO. This implies
Vkj e S, and Vkj e SO.

By the fact that a vertex Vkj in SO indicates its incoming 
arc must be in SO. Hence

V V e SO 
k j-1 k j

Early we assumed SO contains no arc between column j-1 and 
j, it follows by contradiction that
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S = SO
and so S is weakly connected.

Proof of Lemma 2 :

Let the three arcs of Vij be V V , V V , 
i j-1 ij ij i j+1 

and V V . Assume that S does not contain any other 
i-1 j ij 

horizontal arcs between columns j-1 and j, and between 
columns j and j+1. Using the proof in lemma 1, then all 
vertical arcs

V V e S for k = 0, 1, ...i, m-1, 0
kj k+1 j

Therefore, 
arcs V V e S 

i-1 j ij

V V e S 
ij i+1 j

and by condition 1, S then contains no other vertical arcs 
between rows i-1 and i and between the rows i and i+1. 
Since S is weakly connected,

V V e S between any two adjacent
ik i k+1

columns with k = 0, 1, ..., j, ... n-1, 0
therefore V V , V V , V V , V V

i j-1 ij ij i j+1 i-1 j ij ij i+l,j

all four are connected through vertex Vij. In other terms, 
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any other vertex Vik for some k, can have only arcs
V V , V V and the vertex Vkj with arcs
i k-1 ik ik i k+1

V V , V V
k-1 j kj kj k+1 j

Obviously, triangles created between two planar 
contours will never cross each other. In terms of the arcs 
in the directed graph, we claim that the graph is traversed 
by a closed walk in which every arc occurs exactly once. 
That is, for every vertex Vij in S the number of incoming 
arcs = the number of outcoming arcs. The above two lemmas 
then lead to the following theorem.

Theorem :
A subgraph S of G represents an acceptable surface if 

and only if S contains exactly one horizontal arc between 
any two adjacent columns, and exactly one vertical arc 
between any two adjacent rows and it is a closed graph.

If IN = number of incoming arcs and OUT for outgoing arcs 
at vertex Vij, there are two acceptable cases :

1) IN = OUT = 1 for every vertex Vij.
2) IN = OUT = 2 for one vertex Vab and

IN = OUT = 1 for every other vertex Vij,
b in S.
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These two are illustrated in figure 8.8.

Figure 8.8 Two acceptable subgraphs.

As there are many acceptable surfaces (m+n)!/(m! n!) 
where m, n are the number of vertices of two planar 
contours, a criterion must be chosen to obtain a good 
acceptable surface. In this discussion, only case 1 is an 
acceptable construction. Case 2 happens as discussed in 
section 8.4.6. The shorter diagonal method presented 
earlier is used to find the appropiate path in the graph.

After the path is created, the directed graph theorem 
is then used to detect disqualified triangulation between 
two contours. A good triangulation is one whose every 
vertex in the graph is visited no more than once.
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8.6 CONVERSION OF CONCAVITY TO CONVEXITY

One way of keeping case 2 from happening when 
applying the shorter diagonal method is to detect the 
concavity of a contour or polygon. If with two polygons, 
one has extreme concavity and the other has convexity over 
the same vicinity of the first one, case 2 connection will 
result; so such concavity has to be dealt with locally.

The convex hull of a finite planar set is defined as 
the minimum area convex set containing the original set. 
The two properties of a convex polygon are given here to 
help the discussion that follows.

a. All interior angles are less than 180 degrees.
b. If the polygon is drawn counter-clockwise, each 

vertex must be lying on the left side of a 
preceding edge.

Property b is used to detect a special situation during the 
conversion process.

Two vertices of either convex or concave polygon P are 
said to be visible if the line segment joining them lies in 
P. P is said to be weakly visible from edge UV if for each 
vertex Z belonging to P, there exists a vertex W belonging 
to UV such that Z and W are visible. A polygon is edge- 
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visible if there exists at least one edge of P from which P 
is weakly visible.

8.6.1 CONVEX HULL ALGORITHM

The main function of this algorithm is to discard a 
concave point j. Its neighboring points j-1 and j+1 will 
then form a new edge. The vertices are processed counter
clockwise starting with the rightmost vertex - one with the 
largest X value. By applying the property a, three 
consecutive points i, i+1, i+2 are tested for the condition 

SI = (X - X ) (Y - Y ) - (Y - Y ) (X - X ) 
i+1 i i+2 i+1 i+1 i i+2 i+1

> 0
to be satisfied. If SI < 0, that means vertex i+1 is a 
concave point lying to the left of the line segment joining 
i and i+2 and is discarded. A new edge joining i and i+2 
is created. In order to ensure that vertex i is still 
convex with respect to vertices i-1 and i+2, the process is 
backtracked to i-1 (see figure 8.9). If the condition is 
satisfied, vertex i+1 is said to be on the right of the 
diagonal joining vertices i and i+2. The tested points are 
said to be temporarily in proper order. A further test on 
point i+2 is required to maintain the property b.
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Figure 8.9 Eliminating a concave point.

A new edge which results from eliminating a concave 
point may cross an existing edge. That is whenever a reflex 
vertex is discarded, a weakly external visible polygon is 
replaced by another weakly external visible polygon with 
one less vertex as shown in figure 8.10. The second test 
condition remains the same, but with changes in vertices i, 
i+2 and i-1.

S2 = (X - X ) (Y - Y ) " (Y - Y ) (X - X ) 
i+2 i i-1 i+2 i+2 i i-1 i+2

> 0

If the condition S2 is not satisfied, the polygon is weakly 
visible with i, i+1 as the visible edge. Both points i and 
i+1 are discarded from consideration and the process is 
repeated again by backtracking. When three points survive
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from the tests SI and S2, the index is incremented by one
until point i+1 reaches the beginning rightmost vertex.

test bed test bde test def
result drop c result OK result OK

test bea test dfb
result OK result drop de

a. b. c. d.

Figure 8.10 Crossover condition.

8.6.2 BACKTRACKING

Backtracking can be done without building a recursive 
function. A simple link list is used to save the point i at 
i+1 when points i, i+1 and i+2 satisfy the conditions SI 
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and S2. So at i+1, it remembers the previous qualified 
point i. If three points do not meet the criteria, 
backtracking one point will become

TEMP = i
I = LIST(i)
i2 = il
Il = TEMP .

At the end of process, the list will give all the convex 
points.

8.6.3 RECONSTRUCTION FROM LOCAL CONCAVITY

It is the concavity that gives rise to an unacceptable 
triangulation. When there exists a concave region on one 
polygon P with two end convex points a and b embracing it, 
a search for two corresponding end convex points p and q on 
the other polygon Q in the neighborhood of the concavity is 
carried out. Such a local situation is shown in figure 
8.11. The shorter diagonal method applied to this local 
region will not produce a good surface. All points on 
polygon P will converge to the point q on polygon Q. In 
order to produce a better approximation of the surface when 
one region has more points than the other, the points must 
be distributed evenly over both regions. Therefore a point 
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i on the larger region is compared with two points j, 
on the smaller region. If it is nearer to j+1, two lines

a. shorter diagonal b. even distribution
Figure 8.11 Local surface reconstruction.

are formed i j and i j+1; that is two triangles are 
created. Otherwise only line i j is joined forming one 
triangle. The process continues to the next point i+1 until 
all points in this local area are joined.

8.7 TRIANGULATION IMPLEMENTATION

For a given set of polygons, two will be processed at 
a time. Each is converted to a convex hull with the 
concave points marked if they exist. The two convex hulls 
are joined together using the shorter diagonal algorithm. 
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At the same time, the directed graph of this connection is 
constructed. The directed graph is represented by a two 
dimensional matrix with rows representing the top polygon 
and columns representing the bottom one. A check for 
concavity on each polygon is made. If it exists, the links 
on the directed graph over this region must be broken. 
Local surface reconstruction is performed by even 
distribution method and the broken arcs are reconnected. In 
the end, the triangles are recreated from the directed
graph by following through the arcs (figure 8.12).

polygons P+1

Any column or row not marked 
between two successive dots is a 
concavity. The link is said to be 
broken in that region.

Figure 8.12 Triangulation between 2 polygons.
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Another variation to this implementation is first to 
join the two polygons by the shorter diagonal method 
regardless of the existence of concavity. Simultaneously, 
the directed graph is constructed. Second, the graph is 
examined to detect unacceptable triangulation where IN = 
OUT = 2 occurs. If such vertex exists on the graph, the two 
polygons are converted to convex hulls, and the above 
scenerio is applied. Otherwise, the process is moved onto 
the next two polygons.

The triangulation result is output to a formatted file 
so that it can be displayed by the graphics system.

8.8 EXPERIMENTATION USING THE GRAPHICS PACKAGE

The experimentation here is the three-dimensional 
surface reconstruction of the cross-section of a human 
heart. Coordinate points were obtained from a sequence of 
PET images. Limitations of the implemented graphics system 
do exist. The most important drawback of the system is its 
number of allowable sides for a polygon. It limits the user 
to having 31 sides. The experiment has polygons over 31 
sides. This problem is solved by making use of the existing 
routine which splits the polygon into triangles when 
dealing with hidden surfaces and lines. Only the display of 



97

the topmost and the very bottom slices will use such 
transformation. The surfaces between layers are represented 
by triangular tiles which are the result of the 
triangulation process discussed in previous sections. Each 
layer is colored differently in order to show concavity 
clearly. Another limitation of the system is its view plane 
being fixed to the X-Y plane where projected image is 
displayed. That is the object must be located in the 
region bounded by X >= 0, Y >= 0 and Z <= 0. If the viewer 
wants the back view of the object using the view point 
transformation, the result is a blank screen. To move the 
view point requires readjustments of the center of 
projection, the view plane normal and the view up 
direction, making the user input difficult. To this end, 
the experiment is performed by allowing the user to rotate 
about three axes parallel to X-, Y- and Z-axis and through 
the center of gravity of the object in any order and for 
whatever number of times. Windowing function is also 
implemented in the experiment to allow the user to zoom a 
particular region of the image on the screen. Results are 
shown in appendix B.



CHAPTER 9

CORRECTIONS OF PROGRAMMING ERRORS

The implemented graphics system is based on Steven 
Harrington's book - Computer Graphics, A Programming 
Approach, 1983 edition. Errors are found during testing. 
They are either typographical or logical. The corrected 
versions of these routines are listed with comments. The 
system is implemented in VAX FORTRAN 77.

98
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* ALGOR 3.11 
SUBROUTINE INCLUDE(END_EDGE,LAST_EDGE,SCAN)
INTEGER* 2 
REAL 
COMMON 
COMMON

ENDJEDGE,LAST_EDGE,SCAN
YMAX(31),XA(31),DX(31) 
/C_YMAX/YMAX,/C_XA/XA,/C JDX/DX 
/C_SCAN_DEC/SCAN_DECREMENT

DO WHILE ((END_EDGE.LE.LAST_EDGE).AND.(YMAX(END_EDGE) 
.GE.SCAN))

XA(ENDJEDGE)=XA(END_EDGE) + DX(END_EDGE)* 
(SCAN_DECREMENT + SCAN - YMAX(END_EDGE))

DX(END_EDGE) = DX(END_EDGE)*(-1.0  * SCAN_DECREMENT) 
END_EDGE = ENDJEDGE + 1 

ENDDO
RETURN
END
Comment : typo error.
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* ALGOR 6.8
* routine for clipping against the lower boundary

SUBROUTINE CLIP_BOTTOM_M912(OP,X,Y,COLOR)
INTEGER* 2 OP,COLOR,COLS(4)
REAL X,Y,XB
REAL WXL,WYL,WXH,WYH
REAL XS(4),YS(4)
COMMON /W_CUR/WXL,WYL,WXH,WYH
COMMON /L_PTS/XS,YS, /L_COLS/COLS
IF ((Y.GE.WYL).AND.(YS(3).LT.WYL)) THEN
XB = (X-XS(3)) * (WYL-Y)/(Y-YS(3)) + X

* adjust the x-coordinate
IF (XB.LT.WXL) XB = WXL
IF (XB.GT.WXH) XB = WXH
CALL CLIP_TOP(1,XB,WYL,COLOR)

ENDIF
IF ((Y.LE.WYL).AND.(YS(3).GT.WYL)) THEN
XB = (X-XS(3)) * (WYL-Y)/(Y-YS(3)) + X

* adjust the x-coordinate
IF (XB.LT.WXL) XB = WXL
IF (XB.GT.WXH) XB = WXH
IF (OP.LT.32) THEN

CALL CLIPJTOP(OP,XB,WYL,COLOR)
ELSE

CALL CLIPJTOP(1, XB,WYL,COLOR)
ENDIF

ENDIF
XS(3) = X
YS(3) = Y
COLS(3) = COLOR
IF (Y.GE.WYL) THEN

CALL CLIPJTOP(OP,X,Y,COLOR)
ENDIF
RETURN
END

Comment : The correction is to adjust the computed value of 
X if it is still beyond the window boundary.
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* ALGOR 6.9
* routine for clipping against the upper boundary
SUBROUTINE CLIP_TOP_M913(OP,X,Y,COLOR)
INTEGER* 2 OP,COLOR,COLS(4)
REAL X,Y,XTOP
REAL WXL,WYL,WXH,WYH
REAL XS(4),YS(4)
COMMON /W_CUR/WXL,WYL,WXH,WYH
COMMON /L_PTS/XS,YS, /L_COLS/COLS

IF ((Y.LE.WYH).AND.(YS(4).GT.WYH)) THEN
XTOP = (X-XS(4)) * (WYH - Y)/(Y - YS(4)) + X

* adjust the x-coordinate
IF (XTOP.LT.WXL) XTOP = WXL
IF (XTOP.GT.WXH) XTOP = WXH
CALL SAVE_CLIPPED_POINT(1,XTOP,WYH,COLOR) 

ENDIF
IF ((Y.GE.WYH).AND.(YS(4).LT.WYH)) THEN

XTOP = (X-XS(4)) * (WYH - Y)/(Y - YS(4)) + X
* adjust the x-coordinate

IF (XTOP.LT.WXL) XTOP = WXL
IF (XTOP.GT.WXH) XTOP = WXH
IF (OP.LT.32) THEN

CALL SAVE_CLIPPED_POINT(OP,XTOP,WYH,COLOR)
ELSE

CALL SAVE_CLIPPED_POINT(1, XTOP,WYH,COLOR)
ENDIF

ENDIF
XS(4) = X
YS(4) = Y
COLS(4) = COLOR
IF (Y.LE.WYH) THEN

CALL SAVE_CLIPPED_POINT(OP,X,Y,COLOR) 
ENDIF
RETURN
END
Comment : Again the computed value for X should be

adjusted if X exceeds the window boundary.
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* ALGOR 8.10 
SUBROUTINE ROTATE_Y_3(S,C)
INTEGER* 2 
REAL 
REAL 
COMMON

I
S,C, TMP 
TMATRIX(4,3) 
/C TMX/TMATRIX

DO I = 1, 4
TMP = TMATRIX(I,1)*C + TMATRIX(I,3)*S
TMATRIX(I,3) = -TMATRIX(I,1)*S + TMATRIX(I,3)*C
TMATRIX (1,1) ■- 

ENDDO
= TMP

RETURN 
END
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ROUNDOFF = 0.001

* ALGOR 8.20 
SUBROUTINE MAKE_VPLANE_TRANS FORM
REAL
REAL
REAL
REAL 
LOGICAL 
REAL

XR,YR,ZR 
DXN,DYN,DZN 
DXUP,DYUP,DZUP 
TMATRIX(4,3) 
PERSPECTIVE FLAG 
VIEW_DISTANCE

REAL V,XUP_VP, YUP_VP, RUP, ROUNDOFF
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

/C REF/XR,YR,ZR
/C NORM/DXN,DYN,DZN
/C VUP/DXUP,DYUP,DZUP
/C TMX/TMATRIX
/C PPFLAG/PERSPECTIVE FLAG
/C VDIST/VIEW DISTANCE

CALL NEW_TRANSFORMATION_3
* Start with the identity matrix

* Translate so that view plane center is new origin 
CALL TRANSLATE_3(-(XR + DXN  VIEW_DISTANCE),*
* -(YR + DYN  VIEW_DISTANCE),*
* -(ZR + DZN  VIEW_DISTANCE))*
* Rotate so that view plane normal is z axis

* Determine rotation needed to make view-up vertical 
RUP = SQRT(XUP_VP*XUP_VP +YUP_VP*YUP_VP)
IF (RUP.LT.ROUNDOFF) THEN

PRINT *,' ** ERROR: SET_VIEW_UP ALONG '
* VIEWPLANE NORMAL **'

PRINT ** ALGOR 8.20 **'
STOP

V = SQRT(DYN*DYN  + DZN*DZN)
IF (V.GT.ROUNDOFF) THEN

CALL ROTATE_X_3(-DYN/V,-DZN/V)
ENDIF
CALL ROTATE_Y_3(DXN,V)
* Determine the view-up direction in new coordinates 
XUP_VP = DXUP  TMATRIX(1,1) + DYUP  TMATRIX(2,1) +* *
* DZUP  TMATRIX(3,1)*
YUP_VP = DXUP * TMATRIX(1,2) + DYUP * TMATRIX(2,2) +
* DZUP  TMATRIX(3,2)*
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ENDIF
CALL ROTATE_Z_3(XUP_VP/RUP, YUP_VP/RUP)
IF (PERSPECTIVE_FLAG.EQ. .TRUE.) THEN

CALL MAKE_PERSPECT_TRANSFORM 
ELSE

CALL MAKE_PARALLEL_TRANSFORM
ENDIF
RETURN
END

Comment : NEW_TRANSFORM_3 is changed to
NEWJTRANS F0RMATI0N_3
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* ALGOR 9.12
* extension of ALGOR 6.8
SUBROUTINE CLIP_BOTTOM(OP,X,Y,Z,COLOR)
INTEGER* 2
REAL
REAL
REAL
REAL
REAL
REAL

OP,COLOR,COLS(6)
X Y Z
wxl;wyl,wxh,wyh

XLM,XHM,YLM,YHM
XS(6),YS(6),ZS(6)
OLD POINT TEST(6)
NEW_POINT_TEST,X_CLIP,Y_CLIP,Z_CLIP

COMMON
COMMON
COMMON
COMMON
COMMON

/W CUR/WXL,WYL,WXH,WYH
/W SLOP/XLM,YLM, XHM,YHM
/L PTS/XS,YS
/L PTZ/ZS, /L COLS/COLS
/C OLDPT/OLD POINT TEST

NEW_POINT_TEST = YLM * Z + WYL
IF ( ( (Y .GE. NEW_POINT_TEST) .AND.
* (YS(3) .LT. OLD_POINT_TEST(3)) ) .OR.
* ( (Y .LE. NEW_POINT_TEST) .AND.
* (YS(3) .GT. OLD_POINT_TEST(3)) ) ) THEN

Z_CLIP = CLIPPED_Z(Y,Z,YS(3),ZS(3),YLM,WYL)
Y_CLIP = YLM * Z_CLIP + WYL
X_CLIP = CLIPPED_X_OR_Y(Y,X,Z,YS(3),XS(3),ZS(3),

* Y_CLIP, Z_CLIP)
* fix bug in text book

IF (X_CLIP.LT.WXL) X_CLIP = WXL
IF (X_CLIP.GT.WXH) X_CLIP = WXH
IF ((YS(3) .LT. OLD_POINT_TEST(3))

* .OR. (OP.GT.31)) THEN
CALL CLIP_TOP(1,X_CLIP,Y_CLIP,Z_CLIP,COLOR)

ELSE
CALL CLIP_TOP(OP,X_CLIP,Y_CLIP,Z_CLIP,COLOR) 

ENDIF
ENDIF
XS(3) = X
YS(3) = Y
ZS(3) = Z
COLS(3) “ COLOR
OLD_POINT_TEST(3) = NEW_POINT_TEST
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IF (Y.GE. NEW_POINT_TEST) THEN 
CALL CLIP_TOP(OP,X,Y,Z,COLOR)

ENDIF
RETURN
END

Comment : X value is readjusted not to exceed the window 
boundary.
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* ALGOR 9.13
* extension of ALGOR 6.9
SUBROUTINE CLIP_TOP(OP,X,Y,Z,COLOR)
INTEGER* 2
REAL
REAL
REAL
REAL
REAL
REAL

OP,COLOR,COLS(6)
X Y Z
wxl;wyl,wxh,wyh

XLM,XHM,YLM,YHM
XS(6),YS(6),ZS(6)
OLD POINT TEST(6)
NEW_POINT_TEST,X_CLIP,Y_CLIP,Z_CLIP

COMMON
COMMON
COMMON
COMMON 
COMMON

/W CUR/WXL,WYL,WXH,WYH
/W SLOP/XLM,YLM, XHM,YHM
/L PTS/XS,YS
/L PTZ/ZS, /L COLS/COLS
/C OLDPT/OLD POINT TEST

NEW_POINT_TEST = YHM * Z + WYH
IF ( ( (Y .LE. NEW_POINT_TEST) .AND.
* (YS(4) .GT. OLD_POINT_TEST(4) ) ) .OR.
* ( (Y .GE. NEW_POINT_TEST) .AND.
* (YS(4) .LT. OLD_POINT_TEST(4)) ) ) THEN

Z_CLIP = CLIPPED_Z(Y,Z,YS(4),ZS(4),YHM,WYH)
Y_CLIP = YHM * Z_CLIP + WYH
X_CLIP = CLIPPED_X_OR_Y(Y,X,Z,YS(4),XS(4),ZS(4),

* Y_CLIP, Z_CLIP)
* fix bug in text book

IF (X_CLIP.LT.WXL) X_CLIP = WXL
IF (X_CLIP.GT.WXH) X_CLIP = WXH
IF ((YS(4).GT.OLD_POINT_TEST(4)) .OR.

* (OP.GT.31)) THEN
CALL CLIP_BACK(1,X_CLIP,Y_CLIP,Z_CLIP,COLOR)

ELSE
CALL CLIP_BACK(OP,X_CLIP,Y_CLIP,Z_CLIP,COLOR) 

ENDIF
ENDIF
XS(4) = X
YS(4) = Y
ZS(4) = Z
COLS(4) = COLOR
OLD_POINT_TEST(4) = NEW_POINT_TEST
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IF (Y.LE. NEW_POINT_TEST) THEN
CALL CLIP_BACK(OP,X,Y,Z,COLOR) 

ENDIF

RETURN 
END

Comment : Same argument as in algorithm 9.12.
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* ALGOR 10.21
* Minimax test of two triangles
LOGICAL FUNCTION MINIMAX(LI,L2)

ROUNDOFF = 0.0001

INTEGER* 2 L1,L2
INTEGER* 2 
REAL

IDB(4096),COLD(4096)
XDB(4096),YDB(4096),ZDB(4096)

REAL ROUNDOFF
COMMON /C_DBUF/1DB,XDB,YDB,Z DB,COLD

T1 = MAX(XDB(LI),MAX(XDB(Ll-1),XDB(Ll-2))) 
T2 = MIN(XDB(L2),MIN(XDB(L2-1),XDB(L2-2))) 
T3 = MAX(YDB(L1),MAX(YDB(Ll-1),YDB(Ll-2))) 
T4 = MIN(YDB(L2),MIN(YDB(L2-1),YDB(L2-2)))

T5 = MAX(XDB(L2),MAX(XDB(L2-1),XDB(L2-2))) 
T6 = MIN(XDB(L1),MIN(XDB(L1-1),XDB(Ll-2))) 
T7 = MAX(YDB(L2),MAX(YDB(L2-1),YDB(L2-2))) 
T8 = MIN(YDB(L1),MIN(YDB(Ll-1),YDB(Ll-2)))
MINIMAX = (((T1-T2).LT.ROUNDOFF).OR.
* ((T3-T4).LT.ROUNDOFF).OR.
* ((T5-T6).LT.ROUNDOFF).OR.
* ((T7-T8).LT.ROUNDOFF))

RETURN 
END

Comment : YD(LI) of line 5 in the text should read YD(L2).
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* ALGOR 10.29
* compares two triangles for depth order
FUNCTION TRIANGLE_COMPARE(10,JO)
INTEGER*2  10,JO
INTEGER* 2 LI,II,12

TRIANGLE_COMPARE = 0
IF (MINIMAX(I0,JO).EQ. .TRUE.) THEN 

RETURN
ENDIF

LI = Z_MINIMAX(IO,JO)
11 = 10 - 2
12 = 10 -1
DO WHILE ((TRIANGLE_COMPARE .EQ.0).AND. (Il .LE. 10)) 

TRIANGLE_COMPARE = COMPAREJSIDES(Il,12,10,JO,LI)
Il = Il + 1
IF (II.EQ.10) THEN

12 = 10 - 2
ELSE

12 = 12 + 1
ENDIF

ENDDO

IF (TRIANGLE_COMPARE.EQ.O) THEN
TRIANGLE_COMPARE = COMPARE_CONTAINED(10,JO,LI) 

ENDIF
RETURN 
END

Comment : Line TRIANGLE_COMPARE <> 0 in the text should
read TRIANGLE_COMPARE = 0.
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NXT = 1

* ALGOR 10.31
* compare all triangles to determine their depth order
SUBROUTINE COMPARE_ALL_TRIANGLES (NUMBER_OF_TRIANGLES)
INTEGER* 2
INTEGER* 2

NUMNBER OF TRIANGLES 
I,K,L, NXT

INTEGER*2
INTEGER* 2

INFRONT(4096), INBACK(4096)
INLIST(4096),INLINK(4096)

COMMON
COMMON
COMMON

/C INF/INFRONT, /C INB/INBACK
/C NXT/NXT
/C HEAP/INLIST,INLINK

DO I = 1, NUMBER_OF_TRIANGLES
INFRONT(I) = 0
INBACK(I) = 0

ENDDO
DO I = 1, NUMBER_OF_TRIANGLES - 1
DO K = 1+1, NUMBER_OF_TRIANGLES

L = TRIANGLE_COMPARE(3*I,  3*K)
IF (L.GT.O) THEN

CALL ADD_TO_LISTS(K,I) !2ND INFRONT 
ENDIF
IF (L.LT.O) THEN

CALL ADD_TO_LISTS(I,K) !1ST INFRONT 
ENDIF

ENDDO
ENDDO

RETURN 
END

Comment : Inequality comparisons are interchanged.



112

R0UND0FF2 = 0.0001

* ALGOR 10.46
* Case of both endpoints visible
SUBROUTINE CHOP_OUT_IN_OUT(INFR,BFREE,IDX)
INTEGER* 2 
INTEGER* 2 
REAL

INFR,BFREE,IDX 
BCOL,OPB 
LXA,LYA,LXB,LYB

REAL 
LOGICAL
REAL

X,Y,U,V
CROSS
T,ROUNDOFF2

COMMON
COMMON
COMMON

/C LDIV/LXA,LYA,LXB,LYB
/C BCOL/BCOL
/C OPB/OPB

CALL LEFT_IN_FRONT(INFR)
CALL INTERSECTION_PAIR(X,Y,U,V,CROSS,IDX)
IF (CROSS.EQ. .FALSE.) THEN

RETURN
ENDIF
IF ((SIGNOF(LXA - LXB) .NE. SIGNOF(X - U)) .OR.
* (SIGNOF(LYA - LYB) .NE. SIGNOF(Y - V))) THEN

T = U
U = X 
X = T 
T = V
V = Y
Y = T

ENDIF
IF ((ABS(X - LXA) + ABS(Y - LYA)).LT.ROUNDOFF2) THEN
IF ((ABS(U-LXB) + ABS(V-LYB)).LT.ROUNDOFF2) THEN 

CALL CHANGE_OP_CODE(1)
ELSE

CALL PUT_IN_B(1,U,V,0.0,BFREE,BCOL)
BFREE = BFREE + 1
LXA = U
LYA = V

ENDIF
ELSE
TRIAN_INFR = INFR
IF ((ABS(U-LXB) + ABS(V-LYB)).LT.ROUNDOFF2) THEN 

CALL CHANGE_OP_CODE(1)
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* CALL PUT_IN_C(2,X,Y,TRIAN_INFR,BC0L)
* set to opcode of point B

CALL PUT_IN_C(OPB,X,Y,TRIAN_INFR,BCOL)
ELSE

CALL PUT_IN_C(1,U,V,TRIAN_INFR,BCOL)
* CALL PUT_IN_C(2,X,Y,TRIAN_INFR,BCOL )
* set to opcode of point B

CALL PUT_IN_C(OPB,X,Y,TRIAN_INFR,BCOL)
ENDIF 

ENDIF

RETURN 
END

Comment : Wrong logical indication of NO_CROSS in the text.
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* ALGOR 10.48
* Routine to remove an instruction from the C-buffer stack
* and save it in the B buffer
SUBROUTINE SIDE_IS_DONE(BFREE,OP)
INTEGER* 2 
INTEGER* 2 
REAL 
INTEGER*2

BFREE,OP
BCOL
LXA,LYA,LXB,LYB
CFREE,I

INTEGER* 2 
REAL

IBB(4096),COLB(4096)
XBB(4096),YBB(4096),ZBB(4096)

COMMON
COMMON
COMMON
COMMON

/C LDIV/LXA,LYA,LXB,LYB
/C CFREE/CFREE
/C BCOL/BCOL
/C_BBUF/IBB,XBB,YBB,ZBB,COLB

CFREE = CFREE -- 1
* adjust the endpoint
* check conflict opcode of a point 
IF (OP .EQ. 2) THEN

I = BFREE -1
IF ( (LXB.EQ.XBB(I)) .AND. (LYB.EQ.YBB(I)).AND.

* (IBB(I) .EQ.l) ) THEN 
OP = 1

ENDIF
ENDIF
CALL PUT_IN_B(OP,LXB,LYB,0,BFREE,BCOL) 
BFREE = BFREE + 1 
LXA = LXB 
LYA = LYB
RETURN 
END

Comment : This is to adjust the end point command coding 
to prevent it from creating a dot.
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* ALGOR 10.51A
* similar to algor 10.26 INSIDE
* to test if a point is inside a triangle formed by
* 3 vertices X1,Y1,X2,Y2,X3,Y3

LOGICAL FUNCTION INSIDE_TRIANGLE(X,Y,XI,Y1,X2,Y2,X3,Y3)
REAL X,Y,X1,Y1,X2,Y2,X3,Y3
REAL XMAX,XMIN,YMAX,YMIN
REAL ROUNDOFF
ROUNDOFF = 0.0001
XMAX = MAX(X1,MAX(X2,X3))
XMIN = MIN(X1,MIN(X2,X3))
YMAX = MAX(Y1,MAX(Y2,Y3))
YMIN = MIN(Y1,MIN(Y2,Y3))
INSIDEJTRIANGLE = .FALSE.
IF (((X - XMAX).GT.ROUNDOFF).OR.((XMIN - X) .GT. ROUNDOFF)
* .OR.((Y - YMAX).GT.ROUNDOFF).OR.((YMIN - Y)
* .GT. ROUNDOFF) ) THEN 

RETURN
ENDIF
IF ( HALF_PLANE(X,Y, XI,Yl, X2,Y2) .NE.
* HALF_PLANE(X3,Y3, XI,Yl, X2,Y2) ) RETURN
IF ( HALF_PLANE(X,Y, X2,Y2, X3,Y3) .NE.
* HALF_PLANE(XI,Yl, X2,Y2, X3,Y3) ) RETURN

INSIDE_TRIANGLE = HALF_PLANE(X,Y,X3,Y3,XI,Yl) .EQ.
* HALF_PLANE(X2,Y2, X3,Y3,X1,Y1)
RETURN
END

Comment : Extra subroutine is created for use in algorithm
10.51.
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* ALGOR 10.51
* find two vertices on which to divide the polygon
FUNCTION SPLIT_VERTEX(L,LA,LB,M, N)
INTEGER* 2 
INTEGER*2  
REAL

L, LA, LB, M, N
IBB(4096),COLB(4096)
XBB(4096),YBB(4096),ZBB(4096)
X,Y,XI,Y1,X2,Y2,X3,Y3 
LPU,LPL, K

REAL 
INTEGER* 2

/C_BBUF/1BB,XBB,YBB,Z BB,COLBCOMMON
IF (YBB(LB).GT.YBB(LA)) THEN

LPU = LB
LPL = LA

ELSE
LPU = LA
LPL = LB

ENDIF
IF ( XBB(LB).GT. XBB(LA)) THEN

SPLIT_VERTEX = LB
ELSE

SPLIT_VERTEX = LA
ENDIF
XI = XBB(L)
Y1 = YBB(L)
X2 = XBB(LPU)
Y2 = YBB(LPU)
X3 = XBB(LPL)
Y3 = YBB(LPL)
DO K = M, N

X = XBB(K)
Y = YBB(K) 
IF (INSIDE_TRIANGLE(X,Y,XI,Y1,X2,Y2,X3,Y3)

.EQ. .TRUE.) THEN 
SPLIT_VERTEX = K

ENDIF
ENDDO
XS = XBB(SPLIT_VERTEX)
YS = YBB(SPLIT_VERTEX)
RETURN 
END
Comment : Minmax test in the text is too primitive.
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* ALGOR 10.52
* splits the polygon into two polygons
SUBROUTINE DOSPLIT(M,M1,N1,N)
INTEGER* 2 M,N,M1,N1
INTEGER* 2 
REAL

IBB(4096),COLB(4096)
XBB(4096),YBB(4096),ZBB(4096)

INTEGER* 2 K,K1,K2,J
COMMON /C_BBUF/IBB,XBB,YBB,ZBB,COLB

K = N + 3 - M
DO J = Ml, N1

CALL SHIFT_BUFFER(J,J+K) 
ENDDO
DO J = N,N1, -1

CALL SHIFT_BUFFER(J,J+2) 
ENDDO
K = N1 - Ml + 1
DO J = Ml, M, -1

CALL SHIFT_BUFFER(J,J+K) 
ENDDO
KI = N + 3 - M
K2 = M - Ml
DO J = Ml, N1

CALL SHIFT_BUFFER(J+K1, J+K2) 
ENDDO
IBB(M) = 1
IBB(Nl+2) = 1

RETURN 
END

Comment : Wrong index Ml in the text.
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* ALGOR 10.53
* replacement for algor 10.17
SUBROUTINE POLYGON_SPLIT(SIDES,DFREE,KNT)
INTEGER* 2
INTEGER* 2

SIDES,DFREE,KNT 
SOURCE_POLY(4096)

INTEGER* 2
INTEGER* 2

POLYGON END(4096),DO NEXT,M,N,JP,L
LA,LB,LS,M1,N1,ILEFT

INTEGER* 2 
REAL

IBB(4096),COLB(4096)
XBB(4096),YBB(4096),ZBB(4096)

INTEGER* 2 I
COMMON
COMMON

/C BBUF/IBB,XBB,YBB,ZBB,COLB
/C_SOURCE/SOURCE_POLY

DO_NEXT = 2
POLYGON_END(1) = 0
P0LYG0N_END(2) = SIDES
DO WHILE (DO_NEXT.GT.l)

M = POLYGON_END(DO_NEXT - 1) + 1
N = POLYGON_END(DO_NEXT)
IF ( (N-M).EQ.2) THEN

* triangle case 
L = M+l
IF (IN_A_LINE(N).EQ. .FALSE.) THEN 
JP = INT((DFREE + 2.0)/3.0) 
SOURCE_POLY(JP) = KNT 
CALL PUT_IN_D(M,N,DFREE)

ELSE
* in case of a straight line, enter it as a line
* the 3 points directly into display file

CALL VIEWING_TRANSFORM(1,XBB(N),YBB(N),COLB(N)) 
DO I = M,N

CALL VIEWING_TRANSFORM(IBB(I),XBB(I),
* YBB(I),COLB(I)) 

ENDDO
ENDIF
DO_NEXT = DO_NEXT - 1 

ELSE
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* polygon case
* the following code replace LEFT_MOST(M,N) 

L = M
DO ILEFT = M+l, N
IF (XBB(ILEFT).LT.XBB(L)) THEN 
L = ILEFT 
ENDIF

ENDDO
IF (L.EQ.N) THEN 
LA = M

ELSE
LA = L + 1

ENDIF
IF (L.EQ.M) THEN 
LB = N

ELSE
LB = L - 1

ENDIF
LS = SPLIT_VERTEX(L,LA,LB,M,N)

IF ((LS.EQ.LA).OR.(LS.EQ.LB)) THEN
Ml = MIN(LA,LB)
N1 = MAX(LA,LB)

ELSE
Ml = MIN(L,LS)
N1 = MAX(L,LS)

ENDIF
CALL DOSPLIT(M,M1,N1,N)
POLYGON_END(DO_NEXT) = M + N1 - Ml
DO_NEXT = DO_NEXT + 1
POLYGON_END(DO_NEXT) = N + 2 

ENDIF
ENDDO
RETURN 
END

Comment : If the straight line formed by 3 points is 
ignored, the polygon when displayed becomes 
broken. Therefore a provision for straight 
case is needed.



CHAPTER 10

CONCLUSION

The CORE protocol system implemented and applied to 
the experimenation of 3D surface reconstruction by 
triangulation was found quite effective. The speed of the 
system is slowed down when the number of the surfaces is 
increased. It is due to the fact that there is a huge 
amount of computation by the Painter's algorithm in hidden- 
surface and hidden-line removal process. A better 
throughput can be improved if some other algorithm, for 
example quad-tree method, is used.

The triangulation method used here is found 
satisfactory. The quality of triangulated surface 
representation is very acceptable. When the number of 
slices is increased, the size of the display file has to be 
increased tremendously. One triangle display will occupy 4 
elements in the display file. In other words, the increase 
of size is four fold.

In any event the system is built very portable and 
simple to use. Most importantly, it has provided all the 
standard features that a graphics system should provide. In 
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the future, the author hopes add-on enhancement can be 
implemented by the users. Results of the experimentation 
are given in appendix B.
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APPENDIX A

USER CALLABLE SUBROUTINES

In this Appendix, a list of user available subroutines 
is given below. These subroutines are written in VAX 
FORTRAN 77. Argument names prefixed by character I are in 
INTEGER*2,  otherwise they are in REAL. Prefix IA, or A is 
to denote an array argument either in INTEGER*2  or REAL. 
ONOFF stands for LOGICAL value, either .TRUE, or .FALSE.

ERASE
MOVE_ABS_2(X,Y,ICOLOR)
LINE_ABS_2(X,Y,ICOLOR)
M0VE_REL_2(DX,DY,ICOLOR)
LINE_REL_2(DX,DY,ICOLOR) 
NEW_FRAME
MAKE_PICTURE_CURRENT
SET_CHARUP(DX,DY)
SET_CHARSPACE(SPACING)
TEXT(STRING,IACOLORS)

STRING : CHARACTER*!  STRING(80)
IACOLORS : INTEGER*2  IACOLORS(80)

SET_LINE_STYLE(ISTYLE)
POLYGON_ABS_2(AX,AY,I,IACOLORS) dimension 128
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P0LYG0N_REL_2(AX,AY,I,IACOLORS) dimension 128
SET_FILL(ICOLOR)
TRANSLATE(TX,TY)
SCALE(SX,SY)
ROTATE_ANGLE(DEGREE)
CREATE_SEGMENT(INANE)
DELETE_SEGMENT(INANE)
DELETE_ALL_SEGNENTS
RENANE_SEGNENT(IOLDNANE, INEWNANE)
SET_VISIBILITY(INANE,ONOFF)
SET_INAGE_TRANSLATION(INANE,TX,TY)
SET_VIEWPORT(XL,XH,YL,YH)
SET_WINDOW(XL,XH,YL,YH)
NOVE_ABS_3(X,Y,Z)
NOVE_REL_3(DX,DY,DZ)
LINE_ABS_3(X,Y,Z,ICOLOR)
LINE_REL_3(X,Y,Z,ICOLOR)
POLYGON_ABS_3(AX,AY,AZ,I,IACOLORS) dimension 128
POLYGON_REL_3(AX,AY,AZ,I,IACOLORS) dimension 128
SET_VIEW_REFERENCE_POINT(X,Y,Z)
SET_VIEW_PLANE_NORNAL(DX,DY,DZ)
SET_VIEW_DISTANCE(D)
SET_VIEW_UP(DX,DY,DZ)
SET_PARALLEL(DX,DY,DZ)
SET_PERSPECTIVE(XC,YC,ZC)
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SET_VIEW_DEPTH(FRONT_DISTANCE,BACKJDISTANCE)
SET_FRONT_PLANE_CLIPPING(ONOFF)
SET_BACK_PLANE_CLIPPING(ONOFF)
SET_HIDDEN_LINE_REMOVAL(ONOFF)
SETJSHADING(ONOFF)
SET_OBJECT_SHADE(REFLECTIVITY,SHINE,GLOSS)
SET_LIGHT(X,Y,Z,BRIGHTNESS,BACKGROUND)
SETJSMOOTH(ILINES_PER_SEGMENT)
START_CURVE(AX,AY,AZ,IACOLORS) dimension 4
CURVE_ABS_3(X,Y,Z,ICOLOR)
END_CURVE(X,Y,Z,ICOLOR)
SMOOTH_POLY_ABS_3(AX,AY,AZ,I,IACOLORS) dimension 128



APPENDIX B

DIFFERENT GRAPHICS OUTPUTS

The system has been implemented on different graphics 
output devices. They are Lexidata, Tektronix, Printronix, 
regular line printer and CRT terminal. The results of the 
experimentation on these devices are included for 
reference.
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THIS. 13 A lEJf.

PR.INTRONIX output
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zzzzzzz 
zzzzzzz zz 

zzzzzzzz zz 
zzzzzzzz zzzzz

zzzzzzzz zzzzz
zz zzzzz

z zzzzz
z zzzz

z zzzzzzzz
ZZ RR« ZZZZZZZZ

Z RRRRRR R ZZZZZZZZ
RRRRRR RR ZZZZZZZ

srkrrr r mil
R.RhRRK R Z

R R R R F R R RR Z
RR R Z Z

R RR Z Z
F R ZZ Z

k R I I
R R ? Z Z
. < Z Z Z

< J Z Z
■ rR z Z

HIDDEN LINE REMOVAL
Line nrinter output
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m FAIR LADY

TEST FOR 8_3FLIHE CURVE

Dot ‘latrix Trioter : PRIIITRDMIK outnut
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Sequence of PET izaces

Data set



132

Scale(3.,3.) Perspective(.5,.5,.5) Ro tation(0,0,0)

TEKTRONIX output



133

windox#(xl,x2,yl ,y2)= (.8, .9, .5 ,. 7) viex#port (.0,.4,.0,1. )

7EKT2.O1ZIX Dutouc
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scale(3t,3,) perspective(,5,.5,,5) rotation(60,60,0)

TEKTRONIX output
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windox-7(xl,x2,yl,y2)= (,1,.2, .4, .5) viex^port (.3,1. ,.3,1.)

TEKTRONIX outnut
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scale(2.5,2.5) perspective(.5,1.,1.) rotation(0,110,0)

TEKTRONIX output
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scale(2.5,2,5) perspective(.5,l,l.) rotation(-30,110,-30)

TEKTRONIX output
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scale(2.5,2.5) perspective(.5,1.,1.) rotation(-30,110,-75)

TEKTRONIX output
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Sequence of PET Linages

Daca sec 2



140

scale(3.,3.) perspectlve(.5,1.,1.) rotation(0.,0.,0.)

PRIHTHOHIX output



141

scale(3.,3.) ?erspecclve(.5,1.,1.) rotation(0,100,0)

PRIl'TRONIX output
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scaleC2.5,2.5) perspective(.5,1.,1.) rotation(o,20,0)

TEKTRONIX output
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scale(2.5,2.5) perspective(.5,l.,1.) rotation(0,80,0)

TEKTRONIX output
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scale(2.5,2.5) perspective(.5,1.,1.) rotation(0,120,0)

TEKTRONIX output
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scale(2.5,2,5) perspective(,5,1.,1.) rotation(0,160,0)

TEKTRONIX output
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scale(2.5,2.5) perspective(.5,l.,1.) rotation(0,180,0)

TEKTRONIX output



147

(with triangles shown)

scale(3.,3.) perspective(.5,l.,1.) rotation(80,90,0)

TEKTRONIX output
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(with triangles shown)

scale(3.,3.) perspective!.5,1.,1.) rotation(0,180,0)

TEKTRONIX OUTPUT


