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Abstract

Background and Objectives—The morphology of red blood cells (RBCs) deteriorates 

progressively during hypothermic storage. The degree of deterioration varies between individual 

cells, resulting in a highly heterogeneous population of cells contained within each RBC unit. 

Current techniques capable of categorizing the morphology of individual stored RBCs are manual, 

laborious, error-prone procedures that limit the number of cells that can be studied. Our objective 

was to create a simple, automated system for high-throughput RBC morphology classification.

Materials and Methods—A simple microfluidic device, designed to enable rapid, consistent 

acquisition of images of optimally oriented RBCs, was fabricated using soft lithography. A custom 

image analysis algorithm was developed to categorize the morphology of each individual RBC in 

the acquired images. The system was used to determine morphology of individual RBCs in several 

RBC units stored hypothermically for 6–8 weeks.

Results—The system was used to automatically determine the distribution of cell diameter 

within each morphological class for >1,000,000 individual stored RBCs (speed: >10,000 cells/

hour; accuracy: 91.9% low-resolution, 75.3% high-resolution). Diameter mean and standard 

deviation by morphology class: discocyte 7.80±0.49μm, echinocyte 1 7.61±0.63μm, echinocyte 2 

7.02±0.61μm, echinocyte 3 6.47±0.42μm, sphero-echinocyte 6.01±0.26μm, spherocyte 

6.02±0.27μm, stomatocyte 1 6.95±0.61μm, stomatocyte 2 7.32 ± 0.47μm.

Conclusion—The automated morphology classification procedure described in this study is 

significantly simpler, faster and less subjective than conventional manual procedures. The ability 

to evaluate the morphology of individual RBCs automatically, rapidly and in statistically 

significant numbers enabled us to perform the most extensive study of stored RBC morphology to 

date.
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Introduction

Normal, healthy red blood cells (RBCs) are highly-deformable biconcave discs with a 

diameter of ~8 μm, thickness of ~2.5 μm and volume of ~90 fL (Fig. 1a).[1–3] High surface 

membrane area to volume ratio enables RBCs to deform and fit into even the narrowest 

capillaries, such as those in the spleen.[4, 5] During ex vivo hypothermic storage, RBCs 

accumulate significant oxidative damage and shed microparticles via vesiculation, 

progressively losing membrane surface area, cell volume and physiologically relevant 

deformability.[6–8] As a result of the storage-induced biochemical changes and 

microvesiculation, stored RBCs undergo a gradual morphological transformation from 

healthy, flexible discocytes through reversible intermediate forms to irreversibly-damaged, 

rigid spherocytes with the smallest surface area to volume ratio allowed by geometry, before 

ultimately undergoing lysis (Fig. 1c).[9, 10]

Individual RBCs are extraordinarily heterogeneous with respect to this morphological 

transformation – after the first 2–3 weeks of storage, the population of stored RBCs in a 

single unit consists of a complex mixture of relatively well-preserved cells, reversibly 

damaged intermediate cells and an increasing fraction of irreparably damaged cells (Fig. 

1b). A manual evaluation of individual RBC morphology in 9 units previously found that 

after 6 weeks of storage the units consisted of 23.3 ± 4.3 % discocytes, 46.8 ± 6.7 % 

reversibly damaged RBCs and 29.9 ± 4.0 % irreversibly damaged RBCs.[9] The variation 

between units is likely the result of intrinsic inter-donor differences, post-collection 

processing practices and storage conditions. Unlike RBC biochemical properties (e.g. levels 

of ATP or 2,3-BPG) that are known to recover following infusion, [11] the transformation of 

stored RBCs into spherocytes is irreversible because the total surface area of the cell 

membrane lost due to vesiculation is too large for the cell to return to the discoid form.[9, 

12] These irreparably damaged RBCs are dysfunctional, non-deformable cells, potentially 

capable of obstructing capillaries and causing ischemia.[13] They are removed from the 

circulation by the phagocytic cells of the recipient’s spleen shortly after transfusion, 

provided they did not lyse in the blood bag or bloodstream before reaching that organ.[5, 14] 

The infusion and subsequent destruction of a large number of these cells may accelerate iron 

overload in chronically transfused patients.[7, 15] The non-transferrin-bound iron released 

due to the extra- or intravascular lysis of these cells may predispose the recipient to 

inflammation and infection.[16, 17]

In current research and clinical practice, the morphology of individual stored RBCs is 

evaluated by visually matching and assigning cells to predefined morphological classes 

based on each cell’s overall appearance (e.g. size, shape, surface texture).[2] The extent of 

RBC morphological deterioration induced by hypothermic storage for each unit is then 

quantified by determining the percentage of cells in the RBC population that belong to each 

of the predefined morphological classes and/or calculating a weighted-average “morphology 
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score”.[18, 19] A conventional approach to performing the measurement is to fix the RBCs 

in the sample, spread them on a glass slide and acquire several non-overlapping images of 

the cells in the blood smear via bright-field digital microscopy[20, 21] or using a scanning 

electron microscope.[9, 19, 22] Individual RBCs captured in the acquired images are then 

visually classified via manual counting.[23, 24] The highly laborious nature of this manual 

approach has limited the number of individual cells that are normally counted in a single 

morphological measurement to a very small number, varying from only 200 to 1500 cells.[9, 

19–22] This technical limitation may introduce a significant sampling error, [24, 25] 

particularly when attempting to quantify the morphological heterogeneity of nearly 2×1012 

cells contained in a single RBC unit.

The objective of this study was to develop and validate a simple, automated system for 

morphological classification of single stored RBCs at high-throughput and to use this system 

to analyze a statistically meaningful number of individual cells. Once loaded into the 

microfluidic device, individual RBCs (arranged in a single-cell, non-overlapping layer) were 

continuously passed through the field-of-view of a microscope equipped with a digital 

camera. The morphological appearance of individual RBCs was determined via automated 

segmentation, feature extraction and classification of the acquired images. The use of the 

microfluidic device alleviated the need for skilled sample preparation and, in combination 

with the image analysis algorithm, reduced subjectivity and eliminated the need for tedious 

manual counting. We demonstrated the performance of this automated system by 

simultaneously classifying the morphology and measuring the diameter of 1,367,852 

individual stored RBCs; the largest set of such paired data known to date.

Materials and Methods

Microfabrication

The microfluidic devices used in the study were fabricated using soft lithography.[26] 

Silicon wafers (University Wafer, South Boston, MA) were spin-coated with a 7 μm layer of 

SU-8 negative photoresist (MicroChem Corp, Newton, MA). The wafers were then exposed 

to near-UV light (ETI/6/350/NUV/DCCD/M mask aligner, Evergreen Technology Inc., San 

Jose, CA) through a transparency photomask (FineLine Imaging, Colorado Springs, CO) 

and developed. Large domed structures at the inlet and the outlet port were fabricated by 

depositing small droplets (23 μL) of SU-8 photoresist onto the circular regions outlining the 

inlet and the outlet, soft-baking at 55°C for 8 hours, exposing to near-UV light (3×100 

seconds) and post-baking at 95°C for ~5 hours.[27, 28] Patterned wafers were treated for 8 

hours with (tridecafluoro-1,1,2,2-tetrahydrooctyl) trichlorosilane (Gelest Inc., Morrisville, 

PA) in a vacuum chamber.

The patterned wafers served as templates for replicating the microfluidic devices in 

polydimethylsiloxane (PDMS) (Sylgard 184, Dow Corning Corp, Midland, MI). Inlet and 

outlet ports were created by punching 4 mm holes through the PDMS replicas using biopsy 

punches (Acuderm Inc., Fort Lauderdale, FL). A ~1 mm thick slab of PDMS and the 

patterned surface of the PDMS replica of the device were exposed to air plasma (PDC-3xG, 

Harrick Plasma, Ithaca, NY) for 100 seconds then sealed together. The resulting devices 

were filled with 1% (w/v) aqueous solution of mPEG-silane (MW 5000, Laysan Bio Inc., 
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Arab, AL) and let sit for at least 15 minutes before being flushed with GASP buffer (1.3 mM 

NaH2PO4, 9 mM Na2HPO4, 140 mM NaCl, 5.5 mM glucose, 1% bovine serum albumin; 

osmolality 290 mmol/kg; pH 7.4) in order to prevent unwanted RBC adhesion to the walls 

of the microchannels.[29–31] The combined cost of materials needed to fabricate a single 

PDMS device for our system was less than $0.25. The microfluidic devices were discarded 

after a single use.

Preparation of stored RBC samples

Six units of packed RBCs were purchased from regional blood centers (The Blood Center, 

New Orleans, LA; Gulf Coast Regional Blood Center, Houston, TX). RBC units were stored 

in a blood bank refrigerator (Helmer iB111 i.Series, Helmer Scientific, Noblesville, IN) at 

2–6°C for 8 weeks. Prior to sampling, RBC units were removed from the refrigerator and 

placed on a rocking platform (model 100, VWR, West Chester, PA) for 15 minutes. 5mL 

RBC samples were withdrawn from each unit after 6, 7 and 8 weeks of storage, using the 

aseptic technique with a sterile syringe (BD, Franklin Lakes, NJ) through a sampling site 

coupler (Fenwal Inc., Lake Zurich, IL). Whole blood samples from healthy, consenting 

volunteers were collected by venipuncture into 4 mL plastic Vacutainer tubes spray-coated 

with K2EDTA (BD, Franklin Lakes, NJ). A hematology analyzer (Medonic M-Series, Boule 

Medical AB, Stockholm, Sweden) was used to verify the initial hematocrit and cell count of 

the blood samples. The samples were diluted to ~1% hematocrit with GASP buffer prior to 

introduction into the devices. 40μL aliquots of the diluted RBC samples were used for each 

experiment. Experiments were repeated six times for each unit at each time point.

Imaging and analysis

The imaging system consisted of an inverted microscope (IX71, Olympus America Inc., 

Center Valley, PA) and a digital camera (MC1362, Mikrotron GmbH, Germany). The 

microscope was manually focused on the microchannel at a magnification of 64x. The 

camera was programmed to acquire an image every 5 seconds for 30 minutes (100 fps, 9.617 

ms exposure, global shutter). Image sequences were analyzed using a custom algorithm 

developed in MATLAB (The Math Works Inc., Natick, MA) for automated classification of 

individual stored RBC morphology in accordance with standard classification.[2, 9] The 

algorithm first standardized the brightness of captured grayscale images, then created a 

binary mask separating objects from the background via a combination of contrast 

stretching, erosion, dilation and thresholding. Partial cells, overlapping cells and image 

artifacts were removed from the binary mask, and a composite image of the brightness-

adjusted grayscale image and the binary mask was then used to measure features of 

individual RBCs, and a binary decision tree was then used to assign RBCs into morphology 

categories based on these features.[32]

Results

Design of the microfluidic device

The design of the microfluidic device is illustrated schematically in Figure 2. The device 

was symmetrical, with two identical cylindrical through-holes serving as the inlet and the 

outlet ports. To prevent screening of cells based on their shape and size in the inlet, the 
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through-holes lead into a smooth, curved slope allowing for a less abrupt transition into the 

microchannel.[28] The microfluidic part of the device (Fig. 2a) comprised a relatively wide 

(1.5 mm) and long (7.5 mm) but shallow (7 μm) channel connecting the inlet and the outlet 

of the device. The channel contained a sparse array of 30 μm × 30 μm square pillars oriented 

to conform to the field-of-view of the microscope (280 μm × 225μm) (Fig. 2a, inset). The 

pillars (i) prevented spontaneous collapse of the shallow microchannel, [33] (ii) simplified 

alignment of the field-of-view of the microscope with the direction of flow through the 

device, and (iii) provided a high-definition standard for microscope focusing to ensure 

consistency of images obtained from different devices.

To perform the measurement, 40 μL of diluted RBC sample was added to the inlet, the 

microscope was focused on the microchannel (such that the square pillars were outside the 

margins of the field-of-view) and image acquisition was initiated. The height of sample in 

the inlet created a sufficient pressure difference between the inlet and the outlet of the device 

to drive the flow of sample through the device. Because of the very small rate of flow 

through the device (~0.5 nL/s), the level of liquid in the inlet did not change significantly 

during the measurement and, consequently, the driving pressure difference remained 

relatively constant. The sample flow through the 7 μm microchannel transported thousands 

of individual RBCs through the field-of-view of the microscope in a single-cell layer, 

without significant cell flipping, overlap or evidence of morphology-based selection bias at 

the inlet. The image acquisition was timed with the rate of cells entering and exiting the 

field-of-view to prevent possible bias due to double-counting. The recorded images were 

processed off-line to classify the morphology of each individual RBC.

Automated classification of individual RBC morphology

The uniform, high quality images acquired using the microfluidic system enabled consistent 

extraction of basic cellular features and complex subcellular features. Cell form factor, 

cross-sectional area, spicule presence, spicule coverage, pallor intensity and pallor aspect 

ratio were extracted from each isolated RBC image. Individual cells were automatically 

classified based on these features. The RBCs were categorized at two levels: into 8 specific 

(“high-resolution”) categories (D, discocyte; E1, echinocyte 1; E2, echinocyte 2; E3, 

echinocyte 3; SE, sphero-echinocyte; ST1, stomatocyte 1; ST2, stomatocyte 2; S, 

spherocyte) and into 4 broad (“low-resolution”) categories (D; E [E1, E2, E3, SE]; ST [ST1, 

ST2]; S) based on Bessis’s general classification.[2] Two levels of precision (high-

resolution and low-resolution) were calculated in order to avoid limiting the utility of the 

system. Some applications (e.g. study of RBC deformability, fragility or morphology 

recovery) may require high-resolution classification because the number of spicules an 

echinocyte has is an indicator of the degree of membrane loss due to microvesiculation 

during storage and therefore of functionally relevant RBC surface area to volume ratio. 

However, other applications (e.g. microfluidic cell sorting) may only require distinctions 

between broad categories of RBCs (e.g. D, E and ST vs. S) in order to separate reversibly 

and irreversibly damaged RBCs.

Figure 3 shows the logic of the simple binary decision tree used to structure the RBC 

classification algorithm. The layout of the tree was modeled after the decision making 
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process used for manual RBC classification. A multiparameter cluster analysis algorithm 

employed all six cellular features at each branch point to classify each individual RBC; 

weighting factors for each feature, and a threshold level with which to classify the result of 

their combination, at each branch point were determined via previously-described numerical 

methods.[32] The final categorization was determined by the terminal branch reached by 

each individual RBC. The RBC classification algorithm was capable of automatically 

classifying single RBCs at a rate of >10,000 cells per hour (CPU time). After the algorithm 

is initiated, it does not require user input, so the operator is free to perform other tasks while 

the algorithm is running – a significant improvement compared to manual classification 

which requires active user involvement. The cell classification algorithm was optimized 

using a manually-categorized training set of 1000 randomly-selected individual RBCs, taken 

from the entire set (n = 1,367,852) of images of single stored RBCs acquired using the 

system.

Figure 4 shows a confusion matrix (a method commonly used for evaluating the accuracy of 

automated classifications)[34, 35] for the morphology classifications based on the multi-

parameter cluster analysis algorithm. To produce the confusion matrix, we selected a 

random set of images of 1000 single stored RBCs (test set) from the set of all images and 

classified the morphology of each individual RBC via visual examination (“True Class”) 

and by applying the automated classification (“Algorithm Predicted Class”). The overall 

accuracy was calculated as the quotient of the number of correctly classified RBCs (i.e. cells 

in which the true class was the same as algorithm predicted class) and the total number of 

analyzed RBCs. The overall accuracy of the RBC classification algorithm was 91.9% for 

low-resolution classification (D, E, ST, S) and 75.3% for high-resolution classification (D, 

E1, E2, E3, SE, ST1, ST2, S). The overall accuracy for high-resolution sub-classifications 

(E1, E2, E3, SE) of RBCs classified as echinocytes (E) at low-resolution was 77.5%. The 

overall accuracy for high-resolution sub-classifications (ST1, ST2) of RBCs classified as 

stomatocytes (ST) at low-resolution was 66.7%.

To evaluate the reproducibility of the system, we performed 5 measurements of the same 

stored blood unit and compared the distributions of morphologies among all individual 

RBCs analyzed for each measurement. A total of 66,161 RBCs were used to evaluate 

reproducibility (n = 16,217 – measurement 1, n = 12,262 – measurement 2, n = 12,943 – 

measurement 3, n = 10,213 – measurement 4 and n = 14,526 – measurement 5). The means 

and standard deviations of the proportions of the samples composed of each morphology 

class are as follows: 3.50 ± 0.26 % (CV 7.5%) - D, 25.50 ± 3.40 % (CV 13.3%) - E1, 13.20 

± 1.05 % (CV 8.0%) - E2, 19.16 ± 4.10 % (CV 21.4%) - E3, 16.48 ± 0.65 % (CV 4.0%) - 

SE, 21.25 ± 1.07 % (CV 5.1%) - S, 0.90 ± 0.19 % (CV 21.2%) - ST1 and 0.01 ± 0.01 % (CV 

122.9%) - ST2. The low standard deviation between experiments suggests that the system is 

highly reproducible. The coefficient of variation for ST2 is very high because very few 

RBCs with this morphology were present in this unit compared to all other morphologies.

Measurement of the diameter of individual RBCs with different morphologies

The data from all experiments (6 units × 3 weeks per unit × 6 experiments per week) was 

combined to form a single representative set of single stored RBCs (n = 1,367,852). We 
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used our system to automatically classify the morphology of these individual stored RBCs 

and to determine the mean effective diameter (d = (4A/π)0.5, where A is the total cross-

sectional area of the cell) of individual RBCs belonging to different stages of storage-

induced RBC morphology deterioration. Figure 5 shows the distribution of the diameters of 

individual RBCs by morphology class for all stages of echinocytosis. A distribution of sizes 

for fresh RBCs (D0 in Fig. 5) is given for reference. With respect to discocytes from fresh 

blood samples, stored discocytes were slightly larger (D: 7.80 ± 0.49 μm vs. D0: 7.69 ± 0.43 

μm), which is consistent with initial swelling of RBCs during storage, prior to loss of 

volume by vesiculation. There was significant overlap of the size distributions for individual 

stored RBCs in various stages of echinocytosis (Fig. 5), which is indicative of the practical 

difficulty with making a sharp distinction between echinocyte subtypes. Sphero-echinocytes 

and spherocytes had a virtually identical size distribution (SE: 6.01 ± 0.26 μm vs. S: 6.02 ± 

0.27 μm). The mean diameters for all high-resolution and low-resolution morphology 

categories are summarized in Table 1.

Discussion

The majority of individual stored RBCs are well-preserved cells (discocytes or early stages 

of echinocytosis), which largely recover their properties post-transfusion and survive a 

normal lifespan in circulation [11, 36]. A relatively small fraction of individual stored 

RBCs, however, is damaged irreversibly, entering into the terminal stages of echinocytosis 

(sphero-echinocytes, spherocytes) and ultimately undergoing lysis either during storage or 

soon after transfusion. Conventional approaches to improving the quality of stored blood 

have focused on optimizing storage conditions (e.g. composition of the anticoagulant-

preservative solution, [36] or reduction of oxygen in the storage bag[11]). Given the highly 

heterogeneous response of individual RBCs to hypothermic storage, however, further fine-

tuning of the overall storage conditions may not produce a significant improvement in 

quality.[36] In this context, a more successful approach could be to simply remove the 

irreparably damaged cells from the unit before transfusion (e.g. using one of the methods 

recently developed in the field of high-throughput microfluidics [37–39]). To enable this 

approach, we need to quantify morphology, size and other properties that could potentially 

inform the design of microfluidic devices to be used for separating the populations of well-

preserved and irreparably damaged cells. Existing manual methods for evaluating 

morphology of single stored RBCs severely limit the number of cells that can be analyzed 

and are impractical for making simultaneous measurements of morphology and other 

properties (e.g. size) for a meaningful number of cells with required precision. The simple, 

automated system we developed in this study enabled us to accomplish this task for 

>1,000,000 individual cells.

The most common conventional procedure for measuring the morphology of individual 

stored RBCs involves preparation of a blood smear, best-effort focusing of the microscope 

on the cells in the smear, a search for good working areas of correctly oriented cells by 

repeatedly moving the blood smear preparation in the field-of-view of the microscope (with 

a possible need for re-focusing), image acquisition, and visual classification of a few 

hundred individual RBCs (all normally manually performed by a skilled technician). These 

manual operations are very laborious, highly dependent on the technical skills and 
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experience of the operator performing the measurement and are notoriously difficult to 

standardize between different laboratories. The primary advantage of our automated 

approach is its simplicity. To perform the RBC morphology measurement with our 

approach, an operator only needs to load the diluted RBC sample into the inlet of the 

microfluidic device, focus the microscope using the support pillars as a high-definition 

standard, and initiate the automated image acquisition and analysis processes. The 

microfluidic device completely eliminated the need for preparation of the blood smear and 

search for good working areas by creating a dynamic blood smear (Fig. 2) which allowed 

acquisition of numerous unique images of single optimally oriented, non-overlapping RBCs, 

without moving the blood smear preparation in the field-of-view of the microscope or re-

focusing. The automated morphology analysis algorithm eliminated the need for subjective 

visual classification of individual RBCs. Our approach significantly reduced the time and 

user-input required to perform the morphological study and simultaneously increased the 

consistency and quality of the images. A secondary advantage of our approach is it’s 

relatively low cost, and lack of a need for specialized equipment – the disposable 

microfluidic devices are compatible with any sufficiently powerful bright field microscope 

equipped with a digital camera, which may already be in place in many laboratories. 

Because of these properties, our system could also be useful for studying the impact of 

different storage conditions, naturally occurring inter-donor variation and various 

rejuvenation strategies on the morphology of stored RBCs.

The approach to morphometric image analysis described in this paper represents a 

significant departure from conventional paradigms that emphasize development of ever 

more complex image analysis algorithms capable of compensating for images with 

inconsistent quality instead of improving the consistency and quality of images. Recent 

efforts in developing new analytical methods attempt to counterbalance the physical 

limitations of poor sample preparation by circumventing the issue of poor image quality 

through additional layers of complex code. Several clever methods (e.g. the pulse-coupled 

neural network approach) have been developed that can efficiently de-noise and segment 

blood cell images, selectively eliminating objects that may confound subsequent analysis 

steps, and extract specific cells from the image background.[40, 41] However, because these 

improved methods do not resolve the inherent problem of poor quality images, complex 

additional codes are required each time new features need to be extracted from the same 

images, severely limiting the versatility of these systems. The approach implemented in this 

paper utilizes automated sample preparation and imaging to produce standardized RBC 

images with consistently-high quality (minimal cell clumping, overlapping and non-standard 

orientation), thereby eliminating the need for complex image analysis techniques.

By resolving the problem of poor image quality, our system significantly reduced the 

complexity of the code required for cell feature extraction and measurement, creating a 

versatile, easily adaptable platform for high-throughput morphometric analysis of single 

cells. Here, paired stored RBC morphology and diameter data was chosen as a useful 

demonstration of the capabilities of the system, however the system is capable of extracting 

other complex cellular and subcellular features (e.g. number of spicules, form factor or 

central pallor aspect ratio) with single cell resolution. The image analysis algorithm could 
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easily be adapted for use in quality control procedures (e.g. after blood collection and 

processing) or for the automated detection of RBC pathologies (e.g. sickle cell disease). As 

such, this simple, versatile, low-cost system has applications in both clinical and research 

environments.

The overall accuracy of the automated RBC classification algorithm was 91.9% for low-

resolution and 75.3% for high-resolution. This compares favorably with the general 

accuracy of automated image analysis methods throughout other areas, particularly for the 

low-resolution classification.[34, 42] Interestingly, the majority of incorrectly categorized 

cells (high-resolution) in the test set were categorized as one of the neighboring 

morphologies along the transition from discocyte to spherocyte (e.g. E1 identified as D or 

E2). These ‘off-by-one’ errors likely occurred because the transition from discocyte to 

spherocyte is a continuous spectrum spanning a range of intermediate forms between these 

more distinct morphological endpoints. Even experienced technicians have to make 

subjective judgments regarding how to classify each individual cell, and thus could 

potentially classify the same cell differently. Manual classification of RBCs, which in itself 

is not perfectly objective, was used to define ‘true’ classes in the training and test sets. The 

observed deviation of the diameter distributions from normal distributions for some of the 

morphological classes (particularly E2) likely reflects these classification inaccuracies.

In summary, we developed an easy-to-use system for automated and high-throughput 

measurement of the morphology of individual stored RBCs by combining a simple 

microfluidic device and a morphometric image analysis. Our system completely eliminated 

the need for laborious manual preparation and visual examination of blood smears, and thus 

enabled classification of the morphology of more than one million individual cells, the 

largest dataset of stored RBC morphology data known to date. Using these data, we were 

able to quantify the distribution of cell diameter across a heterogeneous population of single 

stored RBCs in various stages of morphological deterioration. This information will be 

useful for developing technologies aimed at eliminating the irreparably damaged cells 

(particularly spherocytes and sphero-echinocytes) from stored blood units before 

transfusion. The ability to evaluate the morphology and other properties of individual RBCs 

automatically, rapidly and in statistically significant numbers could also improve our ability 

to assess the quality of stored blood in clinical and research settings.
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Figure 1. 
Morphological heterogeneity of individual fresh and stored RBCs. (a) Representative image 

of normal, fresh RBCs. (b) Representative image of RBCs stored for 6 weeks (2–6°C, AS-1 

additive solution). Scale bars are 10 μm. (c) Morphological transformation of stored RBCs: 

discocyte (D), echinocyte 1 (E1), echinocyte 2 (E2), echinocyte 3 (E3), sphero-echinocyte 

(SE), stomatocyte 1 (ST1), stomatocyte 2 (ST2), spherocyte (S), ghost (G).
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Figure 2. 
Schematic illustration of the microfluidic device used for acquiring non-overlapping images 

of single RBCs. (a) Loading a 40 μL sample of stored RBCs at 1% hematocrit into the inlet 

produced a pressure differential (ΔP) between the inlet and outlet sufficient to drive the 

sample through the device at the desired rate. Inset shows a 280 μm × 225 μm viewing area 

(dashed line) surrounded by eight 30 μm × 30 μm square pillars. Scale bar is 30 μm. (b) 
Photograph of the assembled microfluidic device filled with a sample of stored RBCs (one-

cent U.S. coin shown for size reference).
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Figure 3. 
Schematic illustration of the binary decision tree used by the automated RBC morphology 

classification algorithm. The feature specified at each bifurcation informed the structure of 

the tree. The multiparameter cluster analysis algorithm uses all six cellular features to sort 

RBCs at each bifurcation. Final morphology classification is determined by the terminal 

branch reached by each sorted cell.
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Figure 4. 
Confusion matrix for the automated stored RBC morphology classification algorithm. Test 

set consisted of 1000 individual stored RBCs randomly selected from the entire set. Rows 

correspond to true RBC classes (categorized manually by eye) and columns correspond to 

algorithm-predicted RBC classes (categorized automatically by algorithm). Cells along the 

diagonal contain correct high-resolution morphology classifications, and all shaded cells 

contain correct low-resolution morphology classifications. The overall low-resolution 

classification accuracy of the algorithm is 91.9%, and the overall high-resolution 

classification accuracy of the algorithm is 75.3%.
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Figure 5. 
Distribution of individual stored RBC diameters by morphology class. Data presented as 

relative frequency polygons (bin size 0.1μm). Cells were categorized automatically by 

multiparameter cluster analysis. The distribution of a sample (unpaired) of fresh discocytes 

(D0) is shown for comparison. A total of 1,367,852 individual RBCs were analyzed.
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