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The chemical production of radicals inside acoustically driven bubbles is determined by the local

temperature inside the bubbles. Therefore, modeling of chemical reaction rates in bubbles requires

an accurate evaluation of the temperature field and the heat exchange with the liquid. The aim of

the present work is to compare a detailed partial differential equation model in which the tempera-

ture field is spatially resolved with an ordinary differential equation model in which the bubble con-

tents are assumed to have a uniform average temperature and the heat exchanges are modeled by

means of a boundary layer approximation. The two models show good agreement in the range

of pressure amplitudes in which the bubble is spherically stable. VC 2011 Acoustical Society of
America. [DOI: 10.1121/1.3626132]

PACS number(s): 43.35.Vz, 43.35.Ei, 43.25.Yw [CCC] Pages: 3243–3251

I. INTRODUCTION

In acoustically driven microbubbles extreme conditions

of temperature and pressure can emerge, giving rise to chemi-

cal reactions, involving the gas inside the bubbles and the

surrounding liquid (“sonochemistry,” see, e.g., Refs. 1–6).

Even without bubble-bubble interaction—i.e., in the case of a

single isolated acoustically trapped bubble as in single-bub-

ble sonoluminescence7–11—the fluid- and thermodynamics is

still rather complex. Even if such a bubble remains spherical

(i.e., is small enough and weakly enough driven), a complete

description of the process still must take into account spatial

pressure and temperature distribution both inside and outside

the bubble, mass, and heat diffusion, evaporation/condensa-

tion phenomena, change in transport parameters due to ther-

mal and compositional changes of the mixture, inertial

effects, as well as all chemical reactions of the unstable spe-

cies in the bubble. Various models with an increasing degree

of sophistication exist, see, e.g., Refs. 12–20 and for a

review, Ref. 11. Clearly, the complexity of the process

implies the need of simplifications when addressing practical

problems, such as studying the chemical output.

In this paper we focus on the thermal behavior (achieved

temperatures, heat fluxes in and out of the bubble), which gov-

erns the chemical reactions by Arrhenius’ law. We want

to compare the results from the numerical solutions of the

advection-diffusion partial differential equation (PDE) for the

temperature field inside the bubble as described by Prosperetti

and co-workers12,21 and others22–24 with the results from a

thermal boundary layer approximation of the full dynamics,

which leads to the ODE model which has been developed in

Twente.19,20,25 As such ordinary differential equation (ODE)

models are computationally much cheaper than solving the

full PDEs of the gas flow inside the bubble, they are highly

desirable in order to get a quick overview on the thermal con-

ditions inside the bubble and the resulting chemical reactions.

However, such simplifying ODE models must be verified

against the results from the solution of the full PDEs. Such a

verification is the aim of the present paper. From a sonochemi-

cal point of view, there is a temperature range where the radi-

cal production is optimal, regardless of the ambient pressure.26

Therefore a precise determination of applicable limits of

ODE-type approximations plays a crucial role in correct quan-

titative estimates of production/destruction of radicals.

ODE type approximations of the gas dynamics inside

acoustically driven bubbles have a tradition, see Refs. 11,

27–29. A first attempt was the adoption of the adiabatic

approximation for the gas transformation with artificial

increase of the liquid viscosity,30 in order to keep into

account the energy loss and the subsequent thermal damp-

ing. However, this solution was found unsatisfactory, as it

overestimated the damping of nonlinear oscillations, espe-

cially the first nonlinear resonant peak. A second attempt

was to consider a gas transformation with a variable isoen-

tropic index jðtÞ, depending on the instantaneous Peclet

number PeðtÞ ¼ j _RðtÞjR2
0=RðtÞDgðtÞ,12,31,32 but also this

model had strong limitations,33 as it was based on linear
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oscillation approximation and it could not include the

effects of subharmonic components in the response. None-

theless, it has successfully been used in the context of sin-

gle bubble sonoluminescence,13,14,18,24,34,35 often even

only with an effective polytropic exponent.

In the present work we use the ODE model based on the

thermal boundary layer approximation of Refs. 19, 20, 25. It

will be described in detail in Sec. II. Roughly speaking, this

ODE model includes the Rayleigh–Plesset equation for the

radial dynamics of the bubble, van der Waals law for the

inner pressure, and the energy equation for the temperature,

where the heat flux is estimated from a boundary layer

approximation.

The PDE model, also described in detail in Sec. II,

includes the Rayleigh–Plesset equation, an ODE equation

derived from momentum and continuity equations for the

evolution of the inner pressure,32 and a PDE for the tempera-

ture, both inside and outside the bubble.

In both models we assumed a perfect gas inside the bub-

ble, low Mach number regimes, spherical symmetry, and thus

shape stability. However, while the first two assumptions are

generally realistic, the last two are strictly dependent on the

specific parameter regime that are considered, as large and

strongly driven gas bubbles become shape unstable. This

shape instability is meanwhile well understood, even quantita-

tively.11,36–45 Obviously, strictly speaking our results cannot

be applied to shape unstable bubbles, as such bubbles decay

to smaller ones, and for those cases special care has to be paid

when comparing numerical results with experimental data.

II. SUMMARY OF THE MODELS

Both models studied in this work make use of the Ray-

leigh-Plesset equation to describe the radial dynamics of the

bubble:

1�
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� �
R €Rþ3

2
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_R

3cL

� �
_R2¼ 1

qL

1þ
_R
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d

dt

� �
pB�pA½ �:

(1)

Here time derivatives are denoted by a dot, R is the bubble

radius, cL and qL are the speed of sound and the density of

the liquid, pB is the liquid pressure just outside the bubble

surface, and pA the ambient pressure in the liquid assumed to

be given by

pA ¼ p1 � Pa cos xt; (2)

in which p1 is the static pressure and Pa the acoustic driving

pressure. The period of the driving sound field is given by

sd ¼ 2p=x. An explicit expression for pB results from nor-

mal stress balance at the bubble wall

p ¼ pB þ 4lL

_R

R
þ 2r

R
; (3)

with lL the dynamic viscosity of the liquid and r the surface

tension coefficient. The gas pressure in the bubble, p, may

be regarded as spatially uniform as long as the Mach number

of the bubble wall motion is not too large. In the left-hand

side of Eq. (3) we have neglected the very small contribu-

tions due to the gas viscosity and the vapor pressure. As will

be shown below, the temperature of the liquid at the bubble

surface remains sufficiently low for this to be an excellent

approximation.

The two models differ significantly in the way in which

the pressure and temperature of the bubble contents are cal-

culated. Here we provide a summary of the two formulations

referring the reader to several papers for additional details

and derivations.20,44,46,47

A. PDE model for T(t)

In the detailed model of Refs. 44, 46 the gas pressure is

found by solving

_p ¼ 3

R
c� 1ð Þk @T

@r

����
R

� cp _R

� �
; (4)

where T is the gas temperature, c is the ratio of the gas spe-

cific heats, k ¼ kðTÞ is the gas thermal conductivity, and r
the radial coordinate measured from the bubble center. The

temperature distribution inside the bubble is given by

c
c� 1

p

T

@T

@t
þ 1
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c� 1ð Þk@T

@r
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3
r _p
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(5)

The derivation of this equation (see, e.g., Ref. 46) treats the

gas as perfect and its pressure as spatially uniform.

The temperature in the liquid TLðr; tÞ is described by the

standard constant-properties convection-diffusion equation

neglecting compressibility effects and viscous dissipation:

qLcp;L
@TL

@t
þ R2 _R

r2

@TL

@r

� �
¼ kLr2TL: (6)

Here cp;L and kL are the liquid specific heat and thermal

conductivity.

At the bubble surface continuity of temperatures and

heat fluxes are assumed:

TðRðtÞ; tÞ ¼ TLðRðtÞ; tÞ; (7)

k
@T

@r
ðRðtÞ; tÞ ¼ kL

@TL

@r
ðRðtÞ; tÞ: (8)

The gas temperature is assumed to be regular at the bubble

center r ¼ 0 and the liquid temperature to remain undis-

turbed at the initial value T1 far from the bubble.

B. ODE model for T(t)

This model19,20 makes no attempt to describe the spatial

distribution of the gas temperature inside the bubble. Rather,

it is formulated in terms of a volume-averaged value hTi
determined by a global balance over the bubble volume

expressing the first principle of thermodynamics:
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cvmgh _Ti ¼ Q� p _V; (9)

where mg is the mass of gas inside the bubble, cv is the con-

stant-volume specific heat of the gas, and V ¼ 4
3
pR3 is the

bubble volume. The net heat absorbed by the bubble per unit

time is modeled as

Q ¼ 4pR2k
T1 � hTi

lth

(10)

with lth an estimate of the thickness of the thermal boundary

layer in the liquid. A correct prescription for this quantity is

crucial for the physical realism of the model. The general

properties of diffusion processes suggest

lth ¼
ffiffiffiffiffiffiffiffiffi
Dsth

p
(11)

in which D is the gas thermal diffusivity evaluated for T ¼ T1
and sth an appropriate time scale which is chosen as

sth ¼ R=j _Rj. A cutoff is required when _R becomes too small. A

consideration of the Fourier series solution of the diffusion

equation in a bubble of constant radius (which is appropriate

when _R is small) leads to the estimate lth ¼ R=p. In conclusion,

the final expression for the estimate of the boundary layer is19,20

lth ¼ min

ffiffiffiffiffiffiffi
RD

j _Rj

s
;
R

p

 !
: (12)

The gas pressure is obtained from a form of the van der

Waals equation of state modified to take into account inertial

effects of the gas:

p ¼ NtotkBhTi
V � NtotB

� 1

2
hqiR €R; (13)

where hqi is the volume-averaged gas density, Ntot the total

number of gas molecules, kB the Boltzmann constant, and B
the molecular covolume.

III. NUMERICAL METHOD

The gas energy equation (5) of the detailed model is first

reduced to a more manageable form by introducing the aux-

iliary variable

~T :¼ 1

kðT1Þ

ðT

T1

kðT0ÞdT0: (14)

After this step, the numerical solution of the model is carried

out by first transforming it into a set of ordinary differential

equations by a collocation procedure as described in Ref. 12

and, in greater detail, in Ref. 21. We set

~T

T1
�
XN

k¼0

akðtÞT2kðyÞ; (15)

where y ¼ r=RðtÞ and the T2k are even Chebyshev polyno-

mials. The variable y fixes the boundary at y ¼ 1 and the use

of even polynomials guarantees a vanishing gradient at the

bubble center y ¼ 0. The expansion (15) is substituted into

the gas energy equation written in terms of ~T and the result

evaluated at the Gauss–Lobatto collocation points yk

yk ¼ cosðpk=2NÞ; k ¼ 0; 1; :::;N: (16)

Before subjecting the liquid energy equation to a similar

treatment, the semi-infinite range RðtÞ � r <1 is mapped

onto the finite range 1 � n � 0 by the coordinate

transformation

1

n
¼ 1þ r=RðtÞ � 1

l
: (17)

The length l is a measure of the thermal diffusion length in

the liquid and is taken as

l ¼ ‘
ffiffiffiffiffiffiffiffiffiffiffiffi
DL=x

p
R0

; (18)

with DL the liquid thermal diffusivity DL ¼ kL=cp;LqL and ‘
a numerical constant. On the basis of the results described in

Ref. 21 a value of ‘ ¼ 20 has been used in this work. After

recasting the liquid energy equation (6) in terms of the new

variable n, the liquid temperature is expanded in a truncated

Chebyshev series similar to Eq. (15):

TL

T1
�
XM

k¼0

bkðtÞT2kðnÞ; (19)

substituted into the equation and the result evaluated at the

Gauss–Lobatto collocation points nj

nj ¼ cosðpj=2MÞ; j ¼ 0; 1; :::;M: (20)

Use of the even polynomials in Eq. (19) enforces the temper-

ature condition at infinity in the form @TL=@r ! 0 as n! 0,

i.e., as r!1
The interface conditions (7) and (8), as written, are alge-

braic constraints among the unknown coefficients of the

expansions (15) and (19). For numerical purposes it proves

convenient to differentiate them with respect to time to find

kðT1Þ
kðTsÞ

XN

k¼0

_ak ¼
XM

j¼0

_bj; (21)

XN

‘¼0

4‘2 _a‘ ¼ �
1

l

kL

kðT1Þ
XM

n¼1

4n2 _bn; (22)

where Ts is the bubble surface temperature.

These steps reduce the detailed model to a system of or-

dinary differential equations, the N equations for ak arising

from the collocation of the gas energy equation, the M equa-

tions for bk arising from the collocation of the liquid energy

equation, the two boundary conditions (21) and (22), the

Rayleigh–Plesset radial equation (1) and the pressure equa-

tion (4). These equations (and notably those including the
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time derivatives of the temperature expansion coefficients)

constitute a coupled linear system which is first solved for

the derivatives by Gaussian elimination and then integrated

in time by using the 6th order Gear stiff solver implemented

in the IMSL libraries.48

In order to ascertain the accuracy of the time integration

we monitored the ratios of the coefficients of the last to the

first terms in the expansions jaN=a1j and jbM=b1j, checking

that they remained smaller than 10�6 and 10�4, respectively,

at all times. We found that 20 and 30 terms, respectively, for

the gas and liquid temperature fields were sufficient to meet

these condition.

To simplify the inverse mapping between the modified

and original gas temperatures ~T and T the temperature de-

pendence of the gas thermal conductivity was approximated

by a linear relation

k ¼ Aþ CT: (23)

The values A ¼ 0:01165 W/mK and C ¼ 5:528� 10�5

W/mK2 approximate the measured thermal conductivity of

air over the range 200 K � T � 3000 K.12

The other numerical values used in the simulations

described in the next section were cL ¼ 1481 m/s,

qL ¼ 1000 kg/m3, lL ¼ 10�3 kg/ms, r ¼ 0:072 N/m,

cp;L ¼ 4182 J/kg K, kL ¼ 0:59 W/mK, and B ¼ 5:1� 10�29

m3. These values are appropriate for an air-water system at

normal temperature and pressure, T1 ¼ 293.15 K and

p1 ¼ 101:3 kPa.

IV. RESULTS

The results that follow refer to a sound frequency of

20 kHz, which is typical of much sonochemical work.49

According to the theoretical results of Refs. 29, 39, 41, 44

which were later experimentally confirmed,43,45 at this fre-

quency a 50 and a 100 lm-radius bubble become spheri-

cally unstable at pressure amplitudes on the order of 30

and 15 kPa, respectively. At pressure amplitudes slightly

above this threshold the bubble will develop shape oscilla-

tions superimposed on the volume mode. These oscillations

lead to a breakup of the bubble at still higher amplitudes

which it is difficult to quantify as they depend on various

factors such as the perturbations induced by other bubbles,

liquid motion and others. Even in the regime of weak shape

oscillations a spherically symmetric model will capture the

major effect responsible for the heating of the gas, namely,

the compression of the bubble. For this reason, and in order

to bring out more clearly the differences between the two

models, we will use pressure amplitudes of both 20 and

70 kPa.

The latter case Pa ¼ 70 kPa is shown in Fig. 1 for

R0 ¼ 130 lm and f ¼ 20 kHz. These conditions are close to

resonance as for a R0 ¼ 130 lm bubble the linear natural

frequency is approximately 24.4 kHz. The bubble executes

strong volume pulsations with a maximum radius of about 3

times R0, which corresponds to a maximum volume more

than two orders of magnitude larger than the equilibrium

volume. In contrast, for Pa ¼ 20 kHz only very gentle oscil-

lations are observed (not shown). In both cases the differen-

ces between the ODE model and the PDE model are very

small as can be seen in Fig. 1 for the Pa ¼ 70 kPa case (for

the Pa ¼ 20 kPa case the differences are hardly detectable).

FIG. 1. Comparison between the temporal evolution of the normalized ra-

dius during the steady oscillations of an air bubble with an equilibrium

radius of 130 lm driven at 70 kPa and 20 kHz as predicted by the detailed

(solid line) and simplified models.

FIG. 2. (a) Liquid temperature at the bubble surface during the steady oscil-

lations of an air bubble in water with an equilibrium radius of 130 lm driven

at 20 kHz by a sound field with a pressure amplitude of 70 kPa; sd is the pe-

riod of the sound field. (b) Liquid temperature distribution at the instant

t=sd ¼ 0:45 at which the bubble wall of the previous figure reaches its maxi-

mum temperature.
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We now consider the effect of variations of the liquid

temperature on the gas temperature and the radial dynamics

of the bubble. The temperature Ts of the liquid at the bubble

surface was estimated in 12 as

Ts � T1
Tcenter � Ts

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kcpq
kLcp;LqL

s
(24)

with Tcenter the gas temperature at the bubble center, cp the

gas specific heat at constant pressure, and q a measure of the

gas density. On this basis the expected liquid temperature

increase can be estimated to be small, but it is useful to go

beyond estimates and determine quantitatively the actual im-

portance of this effect.

Figure 2(a) shows the liquid temperature at the bubble

surface as a function of time for the 130 lm-radius bubble

driven at 20 kHz with a pressure amplitude of 70 kPa. The

temperature distribution in the liquid in correspondence of

the peak surface temperature is shown in Fig. 2(b). A space

and time view of the temperature distribution in the gas and

in the liquid in the course of a complete oscillation is pro-

vided in Fig. 3. It is seen that, even with oscillations of such

relatively large amplitude, the maximum liquid temperature

at the bubble surface increases by less than 15 K while the

temperature at the core of the bubble becomes close to 1500

K. The shift in the absolute value of t=sd respect to Fig. 1

has no particular meaning, as it depends on where the origin

of the acoustic cycle is taken.

The effect of the liquid temperature on the gas tempera-

ture is demonstrated in Fig. 4 which compares the gas tem-

perature distributions taken at the instant at which the peak

values are predicted allowing or not allowing for variations

of the liquid temperature. The detailed model provides the

entire gas temperature distribution (solid line), which is seen

to be very little affected by the neglect of the liquid tempera-

ture rise (dotted line). The simplified model only gives the

average temperature without liquid temperature variations

(dash-dot line), which is seen to be very close to the average

temperatures calculated with the detailed model.

FIG. 3. Temporal and spatial evolution of temperature inside (a) and outside

(b) a steadily oscillating 130 lm air bubble in water driven at 20 kHz by a

sound field with a pressure amplitude of 70 kPa.

FIG. 4. Gas temperature distribution with a fixed (solid line) and a variable

(dotted line) liquid temperature according to the detailed model. The dash-

dot line shows the (average) temperature according to the simplified model

and the horizontal solid and dotted lines are the average values of the

detailed model. The temperatures are shown at the instants at which the

peak value is reached in each case.

FIG. 5. Normalized maximum radius dur-

ing the steady oscillations of an air bubble

in water driven at 20 kHz as a function of

the equilibrium radius R0. The detailed and

simplified model results are shown by the

solid and dashed lines, respectively. In

ascending order, the driving pressure ampli-

tudes are 20 and 70 kPa.
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We conclude from these and other similar results not

shown that temperature variations of the liquid have a negli-

gible effect on the bubble gas temperature. This result is in

line with the estimate (24) and the earlier results of Ref. 12.

On this basis, in order to save computational time, in all the

simulations described in the remainder of this paper we have

kept the interface liquid temperature at the undisturbed value

T1. Correspondingly, we have replaced Eq. (21) by the sim-

pler condition

XN

k¼0

_ak ¼ 0: (25)

An overall impression of how the two models compare

can be obtained from Fig. 5, where the normalized maximum

radius during steady oscillations is shown as a function of

the equilibrium radius R0 for driving pressure amplitudes of

20 and 70 kPa; the sound frequency is 20 kHz as before. As

already noted, the spherical shape is expected to be unstable

at 70 kPa, but we consider this value of the pressure ampli-

tude to bring into clearer evidence the differences between

the two models.

As could be expected, the main differences are localized

around the linear and nonlinear resonance peaks and are

seen to grow with the driving amplitude. In general it is

observed that, as R0 increases, the transition to a large-ampli-

tude regime (signaled by the vertical or nearly vertical line;

see, e.g., Ref. 30 for an explanation of the nature of this tran-

sition) occurs slightly earlier in the detailed model than in

the simplified one. As a consequence, the maximum ampli-

tude reached by the detailed model is slightly higher but the

difference remains small for the pressure amplitudes studied.

For sonochemical applications, a key aspect of the phe-

nomenon of bubble oscillations is the gas temperature. Fig-

ure 6 shows the maximum value of this quantity as a

function of R0 for the same conditions as in Fig. 1. The cen-

ter temperature for the detailed model is shown by the dotted

line while the average temperature of the simplified model is

indicated by the dash-dot line. The solid line is the volume-

averaged temperature predicted by the detailed model and

calculated from

hTi ¼ 3

R3ðtÞ

ðR

0

Tðr; tÞr2dr: (26)

In correspondence with the larger maximum radius, the tem-

peratures predicted by the detailed model are larger than that

predicted by the simplified one, with a difference of a few

hundred degrees attained in correspondence of slightly dif-

ferent radii near the main resonance at the largest driving

amplitude. Just as in the case of the radius shown in Fig. 1,

however, at the same value of the equilibrium radius the dif-

ferences are not very large.

FIG. 6. Gas temperature at the center of the

bubble (dotted line), and mean temperatures

according to the detailed (solid line) and

simplified (dash-dot line) models during the

steady oscillations of an air bubble in water

driven at 20 kHz as a function of the equi-

librium bubble radius R0. In ascending

order, the driving pressure amplitudes are

20 and 70 kPa.

FIG. 7. Comparison between the temporal evolutions of the average tem-

perature according to the simplified model (dash-dot line) and the center

(dotted line) and average (solid line) temperatures of the detailed model dur-

ing steady oscillations for the same conditions as in Fig. 1.

FIG. 8. Normalized temperature distribution inside air bubbles in water

with equilibrium radii of 30 (a) and 305 (b) lm driven at 20 kHz by a sound

pressure amplitude of 70 kPa. In each figure the upper and lower groups of

three lines refer to the instants at which the peak and minimum average tem-

peratures are attained. The solid lines are the results of the detailed model,

the horizontal dash-dot line the average temperature from the simplified

model and the dotted horizontal lines the average temperature of the detailed

model calculated from Eq. (26).
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A more detailed view of the differences between the gas

temperatures predicted by two models is shown in Fig. 7 for

a 130 lm-radius bubble driven at 70 kPa and 20 kHz. The

average temperatures of the detailed (solid line) and simpli-

fied (dash-dot line) models are nearly identical, while the

center temperature of the detailed model peaks at a slightly

higher value for a very short amount of time.

Figure 8 shows the normalized maximum and minimum

temperature distributions inside bubbles with equilibrium

radii of 30 and 305 lm driven at 70 kPa and 20 kHz. The

solid and dotted lines are the local and average temperatures

of the detailed model while the dash-dot lines are the aver-

age temperatures of the simplified model. The upper three

lines refer to the instants at which the maximum average

temperatures are reached in each model, and the lower three

lines to the instants at which the minimum average tempera-

tures are attained. The gas temperature distribution inside

the largest bubble is approximately uniform except for a

boundary layer near the wall. The temperature in the small-

est bubble, on the other hand, exhibits a significant variation

throughout the bubble volume. In this case the mean temper-

atures are very close, but the detailed distribution shows that

this result comes about because the temperature in the inner

region of the detailed model is offset by the relatively cool

gas near the bubble wall. A good fraction of the gas is at a

temperature about 20%–30% higher than the mean value.

Given the at least approximate Arrhenius-law dependence of

reaction rates, this difference in principle could have some

observable effects in the sonochemical yield.

Related to the temperature distribution is the heat

exchanged with the liquid which is given by Eq. (10) in the

simplified model and by

Q ¼ 4pR2 k
@T

@r

� �
r¼RðtÞ

(27)

in the detailed model. The peak values of this quantity

which, as defined, is positive when the transfer is directed

from the liquid to the bubble, are shown in Fig. 9. The upper

and lower diagrams show the heat lost and gained by the

bubble, respectively. A major qualitative difference between

the two diagrams is the respective orders of magnitude. The

heat lost by the bubble is more than one order of magnitude

larger than that gained. This feature is at the root of the dom-

inance of thermal energy losses over other dissipative mech-

anisms affecting the oscillations of bubbles below and

around the resonance frequency (provided the radius is not

too small as to make viscous losses significant). The heat

losses predicted by the detailed model (solid line, upper dia-

gram) are close to those of the simplified model except in a

narrow radius range near the fundamental resonance for the

highest driving pressure, where they are seen to be around

40% smaller. This is a large difference, but it occurs only

during the brief instants in which the bubble is close to its

FIG. 9. Peak values of the heat lost (upper

figure) and gained by a steadily oscillating

air bubble in water driven at 20 kHz as a

function of the equilibrium bubble radius

R0 according to the detailed (solid line) and

simplified (dash-dot line) models. The

sound pressure amplitudes are 20 and 70

kPa.

FIG. 10. Heat flow rate into the bubble as a function of time during the

steady oscillations of a 130 lm-radius air bubble in water with driven at 70

kPa and 20 kHz as predicted by the detailed (solid line) and simplified

models.
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minimum radius, as shown in Fig. 10. The differences

among the incoming heat flow rates are much larger, particu-

larly from the second harmonic region on up, but the abso-

lute values are small.

The distribution in time of the heat flow rate for the

steady oscillations of a 130 lm-radius bubble driven at 70

kPa and 20 kHz is shown in Fig. 10. The solid line is the

detailed model prediction and the dashed line that of the ap-

proximate model. The spike exhibited by the latter model

near the point of maximum radius is an effect of the cutoff

(12) applied when the boundary layer thickness becomes too

large near the points of low radial velocity. This effect is

highly localized in time and it is unlikely to have major con-

sequences. In spite of the differences between the peak val-

ues shown in Fig. 9, one notices a substantial consistency

between the two results over the complete course of an

oscillation.

V. SUMMARY AND CONCLUSIONS

In this paper we have compared two models of the

forced oscillations of gas bubbles in liquids, devoting partic-

ular attention to the gas temperature in view of its impor-

tance for sonochemistry. The two models differ in their

ability to capture details of the process. One accounts for the

temperature distribution in the bubble and in the surrounding

liquid, while the other one treats the bubble as a spatially ho-

mogeneous system. We have found that when the oscillation

amplitude is moderate, namely, at pressure amplitudes up to

70 kPa or, for larger pressures, away from linear and nonlin-

ear resonances, the two models are in very good agreement.

Thus, in this parameter range, the simpler model can be used

with confidence with the advantage of simpler programming

and shorter execution times. For strong driving or near

resonances we have found some differences, but it is then

doubtful that bubbles would retain their integrity in view of

their susceptibility to shape instabilities and breakup.

We have focused on the single driving frequency of 20

kHz which is common in applications. At higher frequencies

the picture would remain very similar provided radii are

approximately shifted in inverse proportion to the frequency.

Smaller bubbles, however, also tend to be more isothermal,

with a consequent increase in energy loss. This feature is

expected to reduce the difference between the two models at

higher frequencies. The expectation is the opposite at lower

frequencies, but larger bubbles are even more shape-unstable

and, therefore, it is likely that neither model would be rele-

vant except at rather low pressure amplitudes.

ACKNOWLEDGMENTS

This work is part of the research program of the Tech-

nology Foundation STW, which is financially supported by

the Nederlandse Organisatie voor Wetenschappelijk Onder-

zoek (NWO).

1K. S. Suslick, “Sonochemistry,” Science 247, 1439–1445 (1990).
2K. S. Suslick, S. J. Doktycz, and E. B. Flint, “On the origin of sonolumi-

nescence and sonochemistry,” Ultrasonics 28, 280–290 (1990).
3K. S. Suslick and G. J. Price, “Applications of ultrasound to materials

chemistry,” Annu. Rev. Mater. Sci. 29, 295–326 (1999).

4Sonochemistry and Sonoluminescence, edited by L. A. Crum, T. J. Mason,

J. L. Reisse, and K. S. Suslick (Kluwer Academic Publishers, Dordrecht,

1999), pp. 191–298.
5T. J. Mason and J. P. Lorimer, Applied Sonochemistry, the Uses of Power
Ultrasound in Chemistry and Processing (Wiley-VCH, New York, 2002),

pp. 1–22, 75–124.
6K. S. Suslick and D. J. Flannigan, “Inside a collapsing bubble: Sonolumi-

nescence and the conditions during cavitation,” Annu. Rev. Phys. Chem.

59, 659–683 (2008).
7D. F. Gaitan, L. A. Crum, C. C. Church, and R. A. Roy,

“Sonoluminescence and bubble dynamics for a single, stable, cavitation

bubble,” J. Acoust. Soc. Am. 91, 3166–3183 (1992).
8L. A. Crum, “Sonoluminescence,” Phys. Today 47, 22–29 (1994).
9B. P. Barber, R. A. Hiller, R. Löfstedt, S. J. Putterman, and K. R.
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