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ABSTRACT 

This study employs deep learning-based models for developing: fast, real-time air 

quality forecasting systems; a post-processing tool for bias-correcting the chemical transport 

model; and a reliable hybrid hurricane tracking model. A deep convolutional neural network 

(CNN) algorithm, which is an advanced deep learning algorithm, was employed to predict the 

hourly ozone concentrations each day (24 hours in advance) for the entire year using several 

meteorological variables and air pollution concentrations from the previous day. The CNN 

model showed a reasonable performance with an average index of agreement (IOA) of 0.84-

0.89 and a Pearson correlation coefficient of 0.74-0.81. Although the CNN model successfully 

captured daily trends of the ozone concentrations, it notably underpredictd high ozone peaks 

during the summer. To address this issue, six generalized machine leaning ensemble models 

were developed to regularize low- and high-ozone episodes. By resampling the training dataset 

based on the daily peaks, the ‘best’ ensemble model reduced the ozone peak prediction error by 

5 to 30 ppb during summer. Another deep CNN model was developed to post-process the results 

of the Community Multiscale Air Quality (CMAQ) model. The CNN model significantly 

improved the performance of the CMAQ model by improving its absolute correlation 

coefficient by 0.16 and reducing its prediction bias by more than 20 ppb on average. To improve 

the prediction of hurricane models, a novel, hybrid approach was proposed using a CNN and 

an ensemble Kalman filter (EnKF). First, a three-step CNN ensemble model was developed to 

predict direction, distance traveled, and intensity of a hurricane. Then, an EnKF was applied as 

a post-processing step. The results of the hybrid model for 17 tropical storms in 2017 showed 

statistical advantages over official National Hurricane Center (NHC) 24-hour-ahead forecasts 

(i.e., ~13% and ~34% improvement in track and intensity forecast biases, respectively). 
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CHAPTER 1. INTRODUCTION 

Ambient ozone is an essential phytotoxic pollutant. As one of the most harmful 

secondary air pollutants, surface ozone is mainly formed by the photochemical reactions 

between nitrogen oxides (NOx) and volatile organic compounds (VOCs) under certain 

meteorological circumstances (1). With increased awareness of the health effects of ozone, 

having an accurate system for real-time ozone forecasting can be a significant benefit to public 

health by identifying adverse impacts of ozone (2-6). In recent years, many research studies 

have focused on improving air quality models, specifically real-time ozone forecasting (7-16). 

Real-time air pollution concentrations can be estimated using two different models: 

deterministic models (e.g., chemical transport models) and statistical methods (e.g., machine 

learning techniques). 

Air quality forecasting is commonly carried out using three-dimensional Eulerian 

chemical transport models, such as the United States Environmental Protection Agency (U.S. 

EPA)’s Community Multiscale Air Quality (CMAQ) model (17) to forecast extreme events and 

take necessary precautions to prevent extensive damage, especially in heavily populated areas. 

These models often report a significant model-measurement error that results from uncertainties 

in the treatment of physical processes and require higher runtime (6, 11, 18, 19). Hence, 

statistical models, which are more computationally efficient, are also currently used for 

forecasting purposes. They include neural networks, regression methods, the fuzzy logic (FL) 

method, classification and regression trees (CART), and decision trees (11, 12). 

One common class of statistical models is a neural network technique. The most popular 

of these models are multilayer perceptrons (MLP), recurrent neural networks (RNN), stacked 
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autoencoders (SAE), and convolutional neural networks (CNN) (20-22). There are two general 

neural network models in terms of their computational complexity: shallow and deep neural 

networks. The difference between these networks is their depth, i.e., the number of ‘hidden’ 

computational layers. These techniques have been incorporated into multiple approaches for air 

quality forecasting (23-29). Certain concerns remain regarding the performance of such 

methods. For one, they require the determination of the optimum network structure (e.g., the 

number of hidden layers/units, input variables). In theory, nonlinear physics can be 

approximated using a hidden layer with a large number of units (21, 22), which can lead to 

“overfitting”, necessitating the use of an adaptive structure (21). These methods also require a 

proper input dataset using suitable initial weights for accelerating learning convergence and 

avoiding stoppage at local error minima. Because of these limitations, the aforementioned 

“shallow” neural networks produce substandard results, necessitating the use of “deep” neural 

networks (30). Introduced by Hinton et al. (31), deep learning is a subfield of machine learning 

and neural networks, which consists of several hidden computational layers. Using these hidden 

layers, deep learning utilizes a hierarchical level of artificial neural networks to carry out the 

process of learning from a large, nonlinear dataset. Deep learning allows machines to solve 

complex problems even when using a dataset that is very diverse, unstructured, and inter-

connected. 

To use deep neural networks, Hinton et al. (31) developed a deep belief net (DBN) based 

on a fast, deep learning algorithm. In DBN, a layer-wise unsupervised learning algorithm is 

first used to pre-train the initial weights (32, 33). These weights are then fine-tuned by a global 

supervised learning approach with which more accurate architectures of hidden layers can be 

used for data-driven forecasting (34, 35). Previous studies (35-37)  have indicated that for a set 
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of nonlinear input variables, deep learning algorithms have reported higher forecasting 

precision than the conventional neural networks and the traditional autoregressive integrated 

moving average (ARIMA) time series model. The deep learning algorithm has been 

implemented in numerous applications in various fields such as finance, biology, and physics 

(20, 38). Kuremoto et al. (36) used a three-layer deep network to forecast a sample time-series. 

Hraskoa et al. (39) implemented a hybrid neural network to predict time series obtained from 

three databases. Li et al. (40) designed four deep learning models using feed-forward, energy-

based, and recurrent architectures to predict the torsion angle of proteins. All of their models 

resulted in comparable accuracy.  

For the application of the deep learning approach to weather and air pollution 

forecasting, Zhang et al. (29, 41) applied a deep learning algorithm to predict short-term wind 

speed for up to two hours at one location. Li et al. (29) proposed a deep learning architecture 

for predicting PM2.5 concentrations up to 12 hours using only previous concentrations. Despite 

achieving a relatively high prediction accuracy, the average mean absolute error of their 

predictions was around 9 µg/m3, compared to the average concentration of 83 µg/m3. Li et al. 

(42) used long short-term memory (LSTM) along with several machine learning techniques for 

the same application. Their results, however, showed a significant error for more than a four-

hour prediction. Li et al. (43) applied a deep learning approach to improve the estimation of 

surface PM2.5 using satellite data and surface observation. 

In recent years, the convolutional neural network (CNN) (44), which was widely used 

in this study, has been acknowledged as the most successful and widely used deep learning 

approach (20). The CNN is a biologically inspired, multistage architecture composed of 

convolutional, pooling, and fully-connected layers that can be efficiently trained in a completely 
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supervised manner. The key attribute of this model is the use of multiple processing units that 

can yield an effective representation of local data features. The deep architecture allows the 

stacking of multiple layers of these processing units that enable the characterization of data 

properties over several scales. Thus, the features extracted by the CNN are task-dependent and 

“non-handcrafted”; meaning there is no need to use an external feature detection algorithm.  

In order to obtain better understanding of capabilities of deep learning in the field of 

atmospheric sciences, I developed different modeling approaches for three exclusive 

applications during my Ph.D. studies: real-time air quality forecasting, post-processing the 

chemical transport models, and hurricane tracking. The rest of this dissertation is organized as 

follows: Chapter 2 describes the CNN model and its characteristics. Chapter 3 employs a CNN 

model as a real-time ozone forecasting system in Seoul, South Korea. In Chapter 4, several 

generalized machine learning-based data ensemble techniques are proposed to address several 

issues with the CNN model discussed in Chapter 3. Chapter 5 proposes a new generation of 

post-processing method for chemical transport models, in particular CMAQ, using a CNN 

model. The advantages of using such a model as an ozone forecasting system in the United 

States is discussed. Chapter 6 employs the CNN ensemble modeling approach and ensemble 

Kalman filter to introduce a hybrid hurricane forecasting model for the north Atlantic tropical 

cyclones. Finally, Chapter 7 concludes the findings of this research study and discusses a 

number of potential benefits of the current work in the field of atmospheric sciences. 
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CHAPTER 2. METHODS 

 

2.1 Machine learning 

Machine learning, particularly deep neural networks and CNNs, has been at the 

foundation of this study. A general background information of CNN model being used in this 

study is described in this chapter. The specific modeling configuration is expressed based on 

each application being discussed here in this study. A general introduction to machine learning 

is explained, and then an explanation is provided on how CNNs works for regression problems 

(e.g., forecasting model).  

Machine learning (ML) is a subfield of artificial intelligence (AI) which is becoming 

increasingly more popular, and is widely used out in the industry to solve various tasks. 

Currently, there is a significant interest for applying ML algorithms in the field of atmospheric 

sciences, especially in air quality forecasting, remote sensing data retrieval, hurricane tracking, 

etc. (45). ML is a technique in development of data-driven algorithms that learn to mimic 

human behavior on the basis of prior example or experience. Machine learning is often 

considered as a tool for increasing the performance of systems for coping with knowledge-

intensive problems in complex domains (46). This happens in a way of learning that involves 

gathering information from a training dataset for purposefully detecting a pattern in a certain 

logic. Thus, the fundamental goal of ML models is to generalize such a knowledge detection 

beyond the examples in the training set. The generalization by ML models provides a scope of 

improvement in vast variety of physical applications (47). The growing interest in applying 

machine learning is evidenced by the rapid increase in scientific publications in this area, 

illustrated in Figure 2.1. 
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Figure 2.1. Number of machine learning-related publications in different topics from the Web of 
Science database. 

ML has proven to be a valuable tool as an advanced forecasting model and now is a 

successful part of several data-driven physical approaches. Several methods including neural 

networks, regression methods, classification and regression trees (CART), and Fuzzy Logic 

Method (FL) (11, 12) have been employed in this space. Among which, neural networks are 

most commonly used method in both prediction and classification problems. 

Fully-connected neural networks, shown in Figure 2.2, consist of a system of simple 

interconnected nodes or ‘neurons’ within a set of ‘hidden’ layers. These neurons are 

representing a nonlinear mapping between an input (array) and an output (array). An input layer 

distributes input variables to the next layer, which is a hidden layer. Each unit in the hidden 

layer sums its inputs, then processes then by applying a transfer function (i.e., linear or 

nonlinear activation function). The results of such process are then distributed the next layer 

(hidden or output layer). Due to this direction of processing (from input to hidden layer to output 



 

 7 

layer), the fully-connected neural network is also known as a feed-forward neural network. The 

superposition of many small linear or nonlinear processes enables a fully-connected network to 

model extremely non-linear relationships (22). Due to its easily computed derivative a 

commonly used activation function is the Rectified Linear Unit (33), shown in Figure 2.3.  

 

Figure 2.2. A fully-connected neural network with two hidden layers. 

 
Figure 2.3. Rectified Linear Unit. 
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2.2 Deep Learning 

The backpropagation algorithm and gradient-based optimization technique are widely used 

for training neural networks (22). Deeper networks (with more computation layers) with large 

initial weights usually lead to poor local minima. Those with small initial weights, however, 

produce shallow gradients in the later layers, which decrease the applicability of training 

networks with numerous hidden layers (31). To resolve this issue, Bengio et al. (32) used a 

greedy layer-wise learning technique to train deep networks effectively. As the training strategy 

for this technique, the first layer learned the simpler concepts, and then the next layer learned 

more abstract features using the feature representation provided by the previous layer. Hence, 

the objective was to train the deep network layer-by-layer and use the backpropagation 

algorithm to fine-tune all of the network parameters (32). This is the basis different between 

the ‘deep’ and ‘shallow’ neural networks. 

Common deep learning architecture for regression problems are the fully-connected 

network (i.e., multilayer perceptrons, or MLP) and LSTM. The MLP uses the feedforward 

approach with backpropagation. Unfortunately, this approach results in inaccurate predictions 

of global error minima and consumes a great deal of computational time when dealing with 

large size of input variables and nonlinearity (48). In addition, as hidden units can be very 

inefficient, especially in networks with multiple hidden layers, the learning process of earlier 

hidden layers could be significantly slower than that of latter layers (32). The LSTM, on the 

other land, is a type of recurrent neural network and is designed to recognize patterns in 

sequences of data, such as times series (49, 50). Since LSTM uses sequential processing over 

time steps, it has a temporal dimension which is essential in a robust time-series prediction. 

However, LSTM is a complicated network, requires a tremendous trial for the fine-tuning 
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process, and is computationally expensive (see Section 3.3). Because of these issues, this study 

proposed using a deep CNN architecture as its selected deep learning algorithm.  

 

2.3 CNNs 

Unlike other methods, CNNs, capable of joint feature and classifier learning, can 

achieve greater classification accuracy on large-scale datasets (44). Deep CNNs can be trained 

to approximate smooth, highly nonlinear functions, rendering them appropriate for forecasting 

nonlinear processes related to air quality (51, 52). In addition, feature extraction using deep 

learning algorithms is more efficient than using other neural network methods, particularly 

when multiple hidden layers are structured. Although numerous studies have applied CNN, 

very few have used it for regression problems (51, 52).  

A schematic for the deep CNN used in this paper appears in Figure 2.4. The figure 

shows that the CNN algorithm (53) has the input layer receives the time series of all input 

variables that are normalized to avoid a steep cost function. Each unit of a layer receives inputs 

from a set of units located in a small neighborhood in the previous layer. With local receptive 

fields, neurons can extract elementary features of inputs that are then combined with those of 

the higher layers. The outputs of such a set of neurons constitute a feature map (see Figure 2.4). 

At each position, various types of units in different feature maps compute different types of 

features. A sequential implementation of this procedure for each feature map would be used to 

scan the input data with a single neuron with a local receptive field and to store the states of 

this neuron at corresponding locations in the feature map. The constrained units in a feature 

map perform the same operation on different instances in a time series, and several feature maps 
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(with different weight vectors) can comprise one convolutional layer; thus, multiple features 

can be extracted at each instance (53). Once a feature is detected, its exact “location” becomes 

less important as long as its approximate position relative to the other features is preserved (54). 

 
Figure 2.4. Schematic of the deep CNN in our approach for a real-time ozone forecasting system. 

The CNN captures changes in the temporal variation of the input data by sweeping 

through time series using a kernel of a given size. The various sections of the data are 

represented by feature maps. An additional layer performs a local averaging, called “pooling,” 

and a subsampling reduces the resolution of the feature map and the sensitivity of the output to 

possible shifts and distortions. This step could potentially discard important information (e.g., 

sudden ozone peaks). Hence, this study uses the convolution layer without pooling. The feature 

maps are connected to a fully-connected layer, which helps map each feature for multiple inputs 

to hourly ozone output (see Figure 2.4).  

The deep CNN model is a common deep learning architecture with a long history in 

numerous applications. Unlike other methods, the CNN model, which is capable of joint feature 
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and classifier learning, and achieves greater accuracy with large-scale datasets. In addition, the 

use of deep learning algorithms for feature extraction is more efficient than the use of other 

neural network methods, particularly when multiple hidden layers are structured. Unlike 

conventional machine learning methods, deep CNNs are capable of automatically identifying 

the most informative required features, which facilitates predictions from input/output 

information of the air quality forecasting system. 

Compared to fully connected MLPs that have been extensively used as regression 

models, CNNs are attractive for several reasons. Firstly, MLPs are not explicitly designed to 

model variance within an ozone concentration that results from a complex interaction between 

several inputs. While MLPs of sufficient size could indeed capture invariance, they require 

large networks with a large training set. On the other hand, CNNs are more suitable for small-

scale datasets than MLPs because they generally use a smaller number of parameters compared 

to fully-connected MLPs. Since input can be presented in any order without affecting the 

performance of the network, MLPs ignore input topology (53). However, temporal variations 

of the ozone concentration have strong correlations, and modeling these local correlations with 

Unlike the CNN model used in this study, recurrent neural networks (RNN)—the most common 

algorithms for time-series forecasting— urged several challenges for the air quality forecasting 

purpose. As Chapter 3 discussed, their implementation is challenging and their cost is 

prohibitively high; nevertheless, they offer no significant benefits in terms of accuracy (45, 52). 
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CHAPTER 3. A REAL-TIME HOURLY OZONE PREDICTION 

SYSTEM USING A DEEP CONVOLUTIONAL NEURAL NETWORK 

 

3.1 Introduction 

To protect citizens from unhealthy air, real-time air quality forecasting systems are 

required to forecast the concentrations of pollutants of special health concern such as O3, and 

PM (2). Such forecast will be used to issue early air quality alerts that allow governments and 

individuals to take precautionary measures to reduce air pollution and avoid or limit their 

exposures to unhealthy levels of air pollution (11). Accurate forecasting system can, therefore, 

offer tremendous societal and economic benefits by enabling advanced planning for 

individuals, organizations, and communities in order to reduce pollutant emissions and their 

adverse health impacts.  

There are two major air quality forecasting modeling approaches: chemical transport 

models (CTMs), and statistical models. Despite their physical advantages (taking into account 

chemical and meteorological processes) over statistical models, chemical transport models 

(CTM) are limited for real-time air pollution forecasting in several ways. For one, they require 

a specific computational configuration to deal with all of the nonlinearities in the complex 

atmosphere, resulting in prolonged computational time. CTM models also encounter significant 

uncertainties in input fields as well as in the models themselves (e.g., uncertain emissions, 

simplified physical processes, limited access to measurement data and meteorological fields) 

(1, 55, 56).  

An alternative method for forecasting pollutant concentrations in real-time is statistical 

methods. Parametric or non-parametric statistical methods for air quality are based on the fact 
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that weather and air quality variables are statistically related. Commonly-used statistical 

methods are NNs, which use simplified mathematical models to mimic human’s brain to enable 

a structure to find a pattern in the data. NNs usually require a large quantity of historical 

measured data under a variety of atmospheric conditions (e.g., several years of observed O3 

concentrations). They are generally more suitable for descriptions of complex site-specific 

relationships between concentrations of air pollutants and potential predictors. When a specific 

geographical location or city is considered, NNs often have higher accuracy than deterministic 

models (25, 45). 

Conventional neural networks have several common drawbacks. First, they cannot 

properly capture the contribution of a weather-dependent sources that are important in the 

formation of a secondary pollutant (e.g., O3) since they only take ‘local’ relationship into 

account. Second, they are unable to address the temporal relations between the time-series of a 

weather and air pollution variables. This is important when the predicting multiple hours (e.g., 

24 hours) is required (e.g., operational real-time, air quality forecasting system). Third, in 

operational level, they are either unreliable in capturing high air quality episodes (e.g., decision 

tree models), or computationally inefficient in predicting such events (e.g., LSTM model). 

Given the computational efficiency of CNN in processing complex data, a CNN model 

can be potentially used as a real-time air quality forecasting system. However, real-time hourly 

ozone forecasting is challenging because of its nonlinear chemistry and the highly varying and 

complex behavior of the atmosphere. Since ozone chemistry is significantly influenced by 

meteorology, which adds to the complexity of the problem, providing high prediction accuracy 

using conventional methods such as chemical transport modeling is challenging. This study 

introduces a deep learning technique for predicting hourly ozone concentrations for the entire 
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year of 2017 over the city of Seoul, South Korea. Ozone is a secondary pollutant formed by 

reactions between primary pollutants such as NO2. In Seoul, these pollutants are emitted by 

various sources and in various locations that are influenced by industry, automobiles, and 

biogenic sources (57, 58). This study uses a deep convolutional neural network to predict hourly 

ozone concentrations based on previous day observations of species and meteorological 

variables over multiple locations in Seoul.   

 

3.2 Materials and Methods 

To model the ozone concentration time-series, we used several predictors including 

hourly observed values of O3 and NOx concentrations (as recorded by South Korea’s National 

Institute of Environmental Research, or NIER), surface temperature, relative humidity, wind 

speed, and direction, dew-point temperature, surface pressure, and precipitation (as recorded by 

the Korean Meteorological Administration, or KMA). All of these parameters were measured 

each hour in the Seoul area since 2014. Thus, each of these nine input parameters had a size of 

24, representing the previous day’s hourly values. All available data in 25 air quality monitoring 

stations and one meteorological station was used to construct the input and target dataset for 

training the CNN model. The location of air and meteorology stations can be found in Figure 

3.1.  

This study used predictive deep learning techniques to forecast hourly surface ozone 

concentrations for the year 2017 and selected historical surface measurement data from 2014 

to 2016 for training the model. Such a training period provides a broad history to fit a 

relationship between input variables and ozone concentration. For treating the missing 
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observation data, SOFT-IMPUTE by Mazumder et al. (59) was applied to the raw measured 

data. SOFT-IMPUTE is a missing data treatment approach that iteratively replaces missing 

elements with those obtained from a soft-thresholded singular-value decomposition by taking 

all available data (spatially and temporally) into account.  

 
Figure 3.1. Location of the ozone monitoring network by managed by Korea’s NIER. The red triangle 
is the location of meteorology station managed by KMA. 

I used a deep convolutional neural network with five convolutional layers, followed by 

a fully-connected layer before the output layer. Each convolutional layer is characterized by 32 

filters and a kernel size of 2, while the fully-connected layer features 256 hidden units. I used a 

rectified linear unit (ReLU) as the activation function in each layer applied to the normalized 

input data (since ReLU only passes values greater than zero). The algorithm was implemented 

in the Keras environment with the TensorFlow backend (60). For a given station, I predicted 
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each day’s ozone concentrations in 2017 based on the observations from the previous day. At 

the end of the day of forecasting, we modified the weight matrix. The CNN algorithm is able 

to adjust its weight matrix through the backpropagation process with introducing a small 

modification in weights or bias (a sharp change might lead to the instability of the learning 

process). I used 80% of the randomly selected data samples for training the model, and the 

remaining 20% for the validation process; the ratio was the result of a trial/error experience 

within the model configuration tuning. After each epoch (an epoch is one complete presentation 

of the sample dataset to train a machine learning model), I monitored the performance of the 

model to make sure that the model stopped training at a minimum validation loss to avoid the 

possibility of overfitting. 

 

3.3 Results and Discussion 

3.3.1 General statistical analysis 

Table 3.1 compares the model-measurement statistics for all of the NIER stations in this 

study: the index of agreement (IOA), the correlation coefficient (r), the mean bias (MB), the 

mean absolute error (MAE), and the root mean square error (RMSE).  IOA is a standardized 

measure of the degree of model prediction error and varies between 0 and 1. A value of 1 

indicates a perfect match, and 0 indicates no agreement at all. The IOA can be defined as 

IOA	 = 	1	 −	
∑(O* 	− 	P*)-

∑(abs(O* 	− 	O1) + abs(P* 	− 	O1))-
 

where O* and P* represents the observed and predicted values, respectively. O1 is the mean of 

observed values for the entire observation samples.  
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The results of the deep learning technique demonstrate acceptable accuracy for the real-

time prediction of the hourly ozone concentration for all stations. The yearly averaged IOA and 

r values of the CNN model were 0.87 and 0.79, respectively, while the values varied between 

0.84 and 0.89 for the IOA and 0.74 and 0.81 for r. The yearly averaged MB, MAE, and RMSE 

were about 1 ppb, 9 ppb, and 12 ppb, respectively. This indicates that the CNN model, overall, 

underestimated the ozone concentration while missing very high-peak ozone episodes. Only 

three of the stations showed slightly positive MB (less than 0.3 ppb) while around half 

experienced negative MB of more than 1 ppb. The reason behind the relatively high MB is that 

the CNN model is unable to capture high-peak ozone concentrations specifically during the 

summertime. 

Table 3.1. Statistical analysis of the CNN ozone forecasting system for the entire year of 2017. 
Station ID IOA* r* MB* (ppb) MAE* (ppb) RSME* (ppb) 
111121 0.85 0.76 -1.41 9.90 13.30 
111123 0.85 0.77 -2.56 9.56 12.91 
111131 0.86 0.77 -0.45 7.56 10.40 
111141 0.86 0.78 -1.45 9.64 12.80 
111142 0.87 0.77 -0.38 7.86 10.78 
111151 0.87 0.78 -0.83 7.96 10.67 
111152 0.88 0.80 -0.57 7.44 10.07 
111161 0.86 0.77 -1.38 8.34 11.29 
111171 0.87 0.79 -0.53 9.17 12.23 
111181 0.84 0.76 -2.23 9.86 13.38 
111191 0.85 0.74 0.19 8.76 11.43 
111201 0.87 0.78 -0.37 9.12 12.22 
111212 0.88 0.81 -1.31 9.71 13.34 
111221 0.89 0.81 -0.49 7.84 10.52 
111231 0.87 0.81 -0.78 8.80 12.28 
111241 0.88 0.80 -1.50 9.28 12.67 
111251 0.89 0.81 -0.31 8.65 11.69 
111261 0.87 0.78 0.31 7.49 10.12 
111262 0.87 0.80 -1.38 8.87 11.88 
111273 0.88 0.80 -0.57 9.22 12.43 
111274 0.88 0.80 -1.10 8.89 12.05 
111281 0.88 0.80 -1.39 9.17 12.35 
111291 0.85 0.76 -2.18 10.93 14.46 
111301 0.88 0.79 0.30 8.08 11.04 
111311 0.87 0.79 -1.12 10.48 13.99 

Average 0.87 0.79 -0.94 8.90 12.01 
* IOA is the index of agreement, r is the Pearson correlation coefficient, MB is the mean bias, MAE is the 
mean absolute error, and RMSE is the root mean squared error. 
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The CNN model generally predicted the ozone concentrations of the stations located 

south of the Han River with higher IOA and r (see the map plots of each statistical analysis in 

Figure 3.2). The topology of the region south of the river is typically flat while that north of the 

region has a few elevated areas; thus, ozone formation in the southern region is more closely 

related to the variability of meteorological parameters than the northern region. The CNN 

model, therefore, is able to map a more accurate function to predict the ozone concentration in 

the southern region. In addition, the dominant wind direction is from the West and the 

Southwest (see the monthly pollution-rose diagram of Figure 3.3), both of which are influenced 

by the Yellow Sea. This dominant pattern results in a meteorology-dependent condition of the 

ozone concentrations in the southern part of the river and more variable ozone concentrations 

within the northern region.  
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Figure 3.2. Spatial distribution of (a) Index of Agreement (IOA), (b) Pearson correlation coefficient (r) 
of CNN prediction for NIER stations in Seoul. 
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Figure 3.3. Pollution rose of ozone observation in a different month of the year 2017 averaged over all 
Seoul stations. 

Figure 3.4 represents the daily prediction bias in different months of all 25 stations. It 

is observed that the model bias varied more widely during the warm months (June-September) 

with more outliers. One explanation for this finding is that the wind pattern changed during 

these months (see Figure 3.3) with relatively hot and humid days and occasional precipitation 

events. Most of the precipitation in Seoul occurs during the summer monsoon period between 

June and September, as a part of the East Asian monsoon season (see Figure 3.5 showing 

weekly percipitation level in 2017). Variable wind patterns along with scattered rain showers 

account for uncertainty in the CNN predictions during these months, leading to a larger bias 
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range. Another explanation is that daytime ozone concentrations differed significantly from 

nighttime concentrations (see Figure 3.6 showing the difference between daytime and nighttime 

ozone in different months of 2017). This large difference caused a gap in the training process 

of the CNN model as it had less time to adjust the training process under such circumstances.   

 
Figure 3.4. Difference between the ozone observation and the results of CNN ozone prediction systems 
for all 25 stations in Seoul. 

 
Figure 3.5. Precipitation levels in different weeks of the year 2017. 
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Figure 3.6. Scatter plot of comparison between CNN prediction and observation in different seasons 
and during day and night averaged over all Seoul stations. 

 

3.3.2 CNN model prediction performance analysis 

The daily variations of the IOA and r of the CNN forecasting system are shown in Figure 

3.7. The figure shows that the variability of both parameters was higher during the cold months 

as well as in July. During the winter, most of the input parameters, the ozone concentrations, 

and the weights inside the CNN model that were trained to capture these extreme examples are 

at their lowest levels. During the cold months of the winter, the low (or near minimum) values 

in the weight matrix accounted for variable prediction performance. For July, however, the 

reason behind the variable prediction performances was the higher ozone concentrations during 

that month. Maximum concentrations in nearly one-third of the days in July 2017 exceeded 90 

ppb level – the highest of all months in 2017.  



 

 23 

 

 
Figure 3.7. (a) Daily index of agreement and (b) the correlation coefficient of CNN forecasting systems 
averaged over the 25 stations in Seoul, South Korea. 

Figure 3.8. shows the time-series comparison of daily mean and daily maximum ozone 

concentrations between the observed and predicted CNN values. The CNN successfully 

captured a trend in ozone for the entire year for all stations despite the noticeably different 

ozone trends (see Figure 3.8(a)). For example, the ozone concentration at stations 111131 (the 

third station from top left) and 111311 (the last station at the bottom right) followed different 

trends throughout the year 2017. Nevertheless, the CNN model predicted acceptable, similar 

trends for both stations (see Table 3.1). The CNN model, however, significantly underpredicted 

(b) 

(a) 
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the maximum daily ozone concentrations during high ozone months (see Figure 3.8(a)). The 

model also “mispredicted” (predicting high maximum ozone concentrations even though 

observations revealed relatively low concentrations, and vice versa) concentrations on many 

days during the warm months because of the rapid change in weather conditions. Since we 

trained the CNN model based on the information of the previous day, the model was unable to 

capture the aforementioned change. Nevertheless, for the training for the CNN model, we did 

not use several important meteorological parameters such as cloud fraction and solar radiation, 

which could represent the mentioned weather changes; continuous measurements of these 

parameters were unavailable for the city of Seoul for the time period of this study. 

The results of the monthly IOA for all NIER stations is shown in Figure 3.9. They show 

that the model was generally consistent in its predictions throughout the year. For each station, 

however, model performance varied from month-to-month. The reason for this variation was 

the availability of only one meteorological station (KMA station #108) in the city of Seoul for 

use as input, indicating that the meteorological inputs of the model were the same for all 

stations, resulting in variability in the prediction performance. In addition, we used only one 

ozone precursor (NO2) as the emission representation for the input parameters, indicating that 

the CNN model had to rely on the quality of meteorological data from one meteorology station 

for the entire city.   
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Figure 3.8. (a) Daily mean and (b) daily maximum of the observations and the CNN prediction for the 
NIER stations in Seoul. 

 

(a) 
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Figure 3.9. A monthly index of agreement for the NIER stations in Seoul; the larger the size of 
representing a circle, the higher the value is. 

 

3.3.3 Comparison of CNN model performance to other neural networks 

This study discussed a successful application of the deep learning approach, deep CNNs, 

in real-time prediction of an air pollutant using the previous day’s air quality and weather 

conditions. However, there are no available or a limited number of studies which implemented 

IOA 

37.65 
 
37.60 
 
37.55 
 
37.50 
 
37.45 
 

126.8    126.9   127.0     127.1 
 

126.8    126.9   127.0     127.1 
 

126.8    126.9   127.0     127.1 
 

37.65 
 
37.60 
 
37.55 
 
37.50 
 
37.45 
 

37.65 
 
37.60 
 
37.55 
 
37.50 
 
37.45 
 

37.65 
 
37.60 
 
37.55 
 
37.50 
 
37.45 
 

La
tit

ud
e 

 

Longitude  



 

 27 

deep CNNs for time series forecasting. Here, the performance of common neural network 

models was compared with the CNN model. The neural network models being compared 

include a long short-term memory (LSTM) model as an RNN, an MLP model as a traditional 

Artificial Neural Network (ANN), and a Stacked Autoencoder (SAE) model. Table 3.2 shows 

the specifications of all neural network models being used in this study.  

Table 3.3 compares the performance of the neural network models for ozone forecasting 

with four different performance measures. These measures include overall accuracy (IOA and 

r), prediction bias (MAE and standard deviation) at ozone peaks, prediction bias (MAE) at 

hourly ozone concentrations during daytime and nighttime, and computational run time for 

training and predicting. For real-time ozone forecasting, the CNN model performed better with 

yearly IOA and r greater than the other neural network models. In terms of the relative run time, 

the CNN model was surpassed by ANN. The LSTM model was the second best performing 

relatively better than both SAE and ANN for the accuracy and bias measures. However, the 

LSTM model was the slowest model to be trained, more than 60 times slower than the CNN 

model used for this study. Details on the advantages of using the CNN model can be found in 

terms of overall accuracy (Figure 3.10), capturing better daily ozone peaks in most months 

(Figure 3.11), and predicting the nighttime ozone concentrations with better prediction biases 

(Figure 3.12). 

Table 3.2. Specifications of neural network models compared in this study.  
Model Hidden/convolutional layer(s) structure† Number of epochs† Optimizer‡ 
CNN 32/32/32/32/32/256* 100 Adam  
ANN 64 100 SGD  
SAE 64/32/16/32/64 100 Adam 
LSTM 64/32 350 Adam 

† Optimized using trial and error tests. 
‡ Both Adam and stochastic gradient descent (SGD) were explained in [58]. 
* Convolutional layers with filter size 32 and kernel size 2, following with a fully connected hidden layer with 
size 264. 
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Table 3.3. Comparison of four neural network models as a real-time hourly ozone prediction model. All 
values are based on average for all 25 NIER stations across Seoul. The bold font indicates the best 
performing model in each column. 
Model Yearly IOA/r MAE/SD† of bias at 

ozone peaks in ppb 
MAE in ppb 
daytime/nighttime 

Relative run 
time‡ 

CNN 0.87/0.79 12.7/11.5 10.3/  7.5     33.4 
ANN 0.79/0.70 14.9/12.9 11.8/10.1       1.0 
SAE 0.81/0.72 14.8/13.1 11.6/  9.6     39.4 
LSTM 0.82/0.74 14.3/12.6 11.5/  9.1 2227.3 

† Standard Deviation 
‡ Unitless relative computational run time compared with the fastest model, here ANN. 

 
Figure 3.10. Box plot of daily IOA of different NIER stations across Seoul comparing four neural 
network models. The red vertical lines indicate IOA=0.8 as a comparison measure. 

 
Figure 3.11. Box plot of daily maximum ozone in different months of the year 2017 comparing four 
neural network models, averaged over all NIER stations. The red vertical lines indicate monthly mean 
of observed daily maximum ozone concentrations as a comparison measure. 
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Figure 3.12. Weekly mean time-series of ozone concentrations in different NIER stations across Seoul 
comparing four neural network models.  

 

3.3.4 CNN model diagnosis 

Although the CNN model can successfully predict hourly ozone concentrations with 

reasonable accuracies and within less than a minute of processing time, several issues deserve 

further investigation. One limitation of this study was the underprediction of the peak ozone. 

As shown in Figure 3.8(a), the CNN model underpredicted all observed ozone concentrations 

over 80 ppbv. This large ozone bias could be attributed to the local emissions or the 

meteorological parameters that were not incorporated into the model. These biases could be 

mitigated using big data (e.g., using a significantly larger period for training the model) 

combined with deep learning. Using big data, a more efficient learning environment (including 

more training examples, more input variables, larger input size, and so on) in which to 

efficiently train the deep learning algorithm would be available (61). Another shortcoming of 

this approach is the lack of standard procedures for determining an optimal network architecture 

(e.g., the number of hidden layers/units, learning parameters), which is typically determined 
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through trial and error and can significantly affect the performance of the model. As these 

hyper-parameters have internal dependencies, tuning them is prohibitively costly (62).  

Another characteristic of CNN, like any statistical approach, is data sensitivity. Data 

sensitivity indicates that the quality of output directly depends on the input parameters. In light 

of the experience presented in this study, in which the ozone concentrations during the daytime 

and nighttime were separated, the performance of the CNN model differed. The monthly IOA 

of NIER stations calculated during the daytime and the nighttime is shown in Figures 3.13 

(daytime) and 3.14 (nighttime). The differences between the IOA values for the daytime and 

the nighttime ranged from 0.05 to more than 0.3. The reason behind this notable difference is 

related to the difference in the values of input parameters during the day and night. All inputs 

(except for the relative humidity, NO2, and the wind field) were at their daily minimum levels. 

Because of the normalization process, these values were usually close to zero in the input data. 

Thus, the model relied only on the relative humidity, NO2, and the wind field for its predictions, 

which led to a significant reduction in the model performance. For instance, the model had a 

significant underprediction during the nighttime when the wind blew from the South, while it 

generally overpredicted the ozone for the same wind directions during the daytime (see Figure 

3.15 showing categorial comparison of daytime and nighttime ozone with respect to wind 

speed). 
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Figure 3.13. A monthly index of agreement for the NIER stations in Seoul during the daytime. 
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Figure 3.14. A monthly index of agreement for the NIER stations in Seoul during the nighttime. 
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Figure 3.15. Mean bias of CNN prediction in categorial comparison during daytime and nighttime. The 
wind speed is in m/s. 

Another drawback of this study is that we trained the CNN model using a limited 

number of variables from the previous day. Therefore, unlike the physical models, the CNN 

model was unable to take a physical phenomenon into account unless a proper indicator was 

used within the inputs. For example, Figure 3.16 shows the mean bias of the CNN prediction 

in a categorical comparison using the relative humidity and the surface temperature. In a hot 

(high temperature) and humid (high relative humidity) condition, the model showed a 

significant overestimation (red areas in Figure 3.16). This condition could have reduced the rate 

of the ozone formation and expressed by the presence of cloud fraction, a parameter that is 

lacking in the current CNN model. By contrast, a hot and relatively dry (lower than average 

relative humidity) condition can contribute to ozone formation during the daytime with the 

presence of its precursors (from local sources). In this condition, the model noticeably 

underestimated the ozone (blue areas in Figure 3.16) owing to the lack of information about the 

local sources. 
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Figure 3.16. Mean bias of the CNN prediction in a categorical comparison between the daytime and the 
nighttime. The relative humidity is in percentages, and the surface temperature is in degrees Celsius. 

 

The optimization algorithm in the CNN model develops an adaptive architecture to 

represent data and shows the influence of each feature (63). A deep learning model, however, 

can only be trained with historical data for its feature extraction process. Thus, the sensitivity 

of the input parameters of the CNN model to the output might have been imbalanced because 

of the significant difference in the historical examples, one of which appears in Figure 3.17, 

indicating that the trend in ozone concentration changed with the wind direction from 2014 to 

2017. Such anomalies in the trend can result in imbalanced prediction sensitivity at different 

levels of input parameters. Figure 18 shows the annual mean of the CNN prediction at various 

category levels of four input parameters: wind speed, temperature, NO2, and relative humidity. 

Because of the aforementioned limitation, the model prediction with respect to a change in the 

category level is less sensitive than the observation on the same day of the week.  



 

 35 

 

Figure 3.17. The change in ozone concentration trends in different wind directions in station 111121. 
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Figure 3.18. The annual mean of the CNN prediction in a categorical comparison between days of the 
week. NO2 is in ppb (a), the wind speed is in m/s (b), the surface temperature is in degrees Celsius (c), 
and the relative humidity is in percentages (d). 
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3.3.5 CNN limitations 

While the model maintained a proper level of the prediction accuracy, it was prone to 

two main limitations: (i) varying performance in different time of the year (see Figure 3.19 

showing boxplot of daily IOA of CNN model in different weeks); and (ii) higher relative bias 

(as shown in times-series in Figure 3.20) and lower modeling performance during the nighttime 

as compared with the daytime (see Figures 3.13-14). In general, the varying, time-dependent 

modeling performance can be explained by wavelet transform (64), while significant difference 

between the modeling performance during daytime and nighttime is regarding the undertrained 

CNN model. 

 
Figure 3.19. Box plot of daily IOAs of the CNN model in different weeks of 2017, averaged over 25 
stations in Seoul. 

 
Figure 3.20. Time series showing daily CNN model predictions (in red) and observed ozone 
concentrations (in black) during the daytime and the nighttime, averaged over 25 stations in Seoul, South 
Korea. 
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3.3.5.1 Time-dependent model performance: 

 The performance of the CNN model is directly dependent on well the model 

understands the relationship between the inputs (meteorology and ozone precursors) and output 

(ozone concentration). While emission sources from volatile organic compounds (VOCs) and 

NOx are relatively constant in time, meteorological variables governs the variation of the ozone 

in different through the year. Temperature, wind speed, and relative humidity (RH) are among 

the most important meteorological parameters affecting ozone variation.  

In order to obtain better understanding of model performance in different time of the 

year, wavelet transform was used to explain the importance of the different ‘modes’ in the time-

series. Wavelet transformation decomposes a signal into a scale frequency space, allowing the 

determination of the relative contributions of the different temporal scales present within a 

signal (65). Wavelet decompositions are powerful tools in analyzing the variation in signal 

properties across different resolutions of geophysical variables (65-67). The wavelet transform 

overcomes the inability of the Fourier transform to represent a signal in the time and frequency 

domain at the same time by using a fully scalable modulated window that is shifted along the 

signal (see Figure 3.21 for schematics of different decomposing methods). For every position, 

the spectrum is calculated. After repeating the process, each time with a different window size, 

the result is a collection of time-frequency representations of the signal, all with different 

resolutions. Data are separated into multiresolution components; each component is studied 

with a resolution that matches its scale (65-67). The high-resolution components capture the 

fine scale features in the signal, whereas the low-resolution components capture the coarse scale 

features.  
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Figure 3.21. Schematics comparing wavelet transform to Fourier transform (FT). 

Wavelet analysis represents any arbitrary (nonlinear) function by a linear combination 

of a set of wavelets or alternative basis functions, making them very suitable to be used both as 

an integration kernel for analysis to extract information about the process and as a basis for 

representation or characterization of the processes (68). Figure 3.22 shows the hourly ozone 

time series of a monitoring station in downtown Seoul (NIER stations #111121) with its the 

wavelet transform for the year 2017. Here, wavelet transform shows a strong wavelet power 

levels associated with period=24 and period=168 in the middle of the year indicating dominant 

daily (24 hours) and weekly variation (168 hours).    

 
Figure 3.22. Time series and wavelet transform analysis of ozone concentrations from the NIER stations 
#111121 in Seoul, South Korea. Index at the x-axis as well as the period are in hours. 
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Figure 3.23 shows the wavelet power transform of aforementioned meteorological 

variables for 2017. In this figure, both index and period are in hour since the hourly time-series 

was used to calculate the wavelet powers. The figure also locates five different time periods 

indicating significant performance variations. From Figure 3.19, the CNN model 

underperformed during weeks 3-9 as well as weeks 44-51, showed as ‘Worst CNN results’ in 

Figure 3.23. For weeks 14-22 and 42-44, the CNN model showed the best forecasting results. 

Between weeks 29 and 33, the CNN model predictions encountered a significant under-

estimation indicated as ‘Large under-prediction’ in Figure 3.23. This figure shows strong 

wavelet powers for 24-hourly (daily) period for all variables. This is due to strong diurnal 

variation of such parameters controlled by the sunlight. The wavelet powers for wind speed 

were generally larger than RH, while the temperature showed lower, but more consistent daily 

modes. This is important since the CNN model can detect the specific ‘patterns’ in temperature 

better than wind speed and RH. Thus, when the daily modes are stronger in temperature, it is 

likely that the CNN model performs better. In contrast, when the daily modes of meteorological 

variables are relatively weak, the CNN model performs poorly (see Figure 3.23).  

Another reason for the poor performance of the CNN model in the selected time period 

is the relatively large coarse modes (period > 24 hours). The CNN model was only received the 

information from the last day, hence, was unable to address the bidaily and weekly trends within 

the input data. For instance, for the time period with large underpredictions, the coarse modes 

in wind speed were even larger than daily mode. Thus, employing longer history is required to 

properly explain the relation between wind speed and ozone. Figure 3.24 compares the average 

wavelet powers in different periods (from daily to weekly modes) of CNN prediction and 

observation data. It shows, the powers for both time-series match for the periods around 24 
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hours. However, after 32 hours, the wavelet power of the CNN model shrinks to a relatively 

constant power, while, for the observation, it reaches local extremums in around 3, 5, and 7 

days. 

 

 

  
 
 
Figure 3.23. Wavelet power transform of (a) temperature, (b) wind speed, and (c) RH% for 2017 in 
Seoul, South Korea. 
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Figure 3.24. Wavelet power for various time periods (modes) for CNN predictions and observations. 

 

3.3.5.2 Low modeling performance during nighttime: 

As mentioned before, the CNN ozone forecasting system faced a significant modeling 

bias in estimating air quality concentrations during the nighttime. This bias resulted more a 

reduction in prediction accuracy by more than 20% in nighttime compared with that in daytime. 

A similar issue also can be seen in CTMs even with complex physical and chemical equations 

in explaining diurnal variation of ozone concentration. 

 One reason for this bias was likely due to variation of the meteorological inputs during 

the nighttime. While their absolute values were generally higher during the daytime, the relative 

frequency of their variations were more pronounced during the nighttime. This caused a 

discontinuity in learning process in the CNN model. Since both daytime and nighttime hours 

were presented as inputs, the CNN model minimized a cost function that contained ‘normalized’ 

errors in both daytime and nighttime (cost function was mean squared errors or 24-hour ozone 

predictions at each step). On the other hand, the daytime hours are generally more that nighttime 
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ones. Also, the accumulation of NO2 concentration for these extreme cases was mainly due to 

stagnant atmospheric condition with wind speed near its yearly minimum values. Given these 

facts, the CNN model was prone to a characteristic bias in nighttime ozone estimation. A 

customized cost function could be a potential solution to this limitation and requires further 

investigations.    

Another reason in reducing the CNN model performance during the nighttime is 

misinterpretation of extreme conditions of input parameters. Figure 3.25 shows scatter plots 

comparing CNN predictions and observation by the levels of two important ozone precursors 

(NO2 concentrations) and meteorological variable (RH%) separated for daytime and nighttime. 

NO2 concentration was generally higher during the nighttime when the ozone concentration 

was near zero for extreme NO2 values due to proper condition for ozone depletion with the 

absence of sunlight. However, the CNN model was unable to capture this relationship and 

overestimated these cases (See Figure 3.25a).    

In contrast to the mentioned overestimated events, Figure 3.25b shows underestimation 

of nighttime ozone when the level of RH% was generally high, mostly during the warm days. 

There are two reasons for such underestimated events. First, high (or low) levels of RH% and 

surface pressure generally occur around the same time in early morning (or late afternoon) when 

the planetary boundary layer (PBL) is at its lowest (or highest) level during the day. With these 

extreme conditions, the earlier sunrise (or later sunset) in summer months prepares a proper 

condition to elevate the ozone concentrations. These events normally occur only during short 

period of time, resulting in undertraining the CNN model to capture these relations. 
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Figure 3.25. Scatter plots comparing CNN predictions and observations with respect to levels 
of (a) NO2 concentrations and (b) RH%. 
 
3.3.6 Summary 

We discussed the application of deep convolutional neural networks (CNN) for the real-

time prediction of ozone concentrations in Seoul, South Korea and trained the model to predict 

hourly ozone concentrations for the next day using the observations of NOx, ozone and 

meteorological variables from the previous day. We evaluated the model for the entire year of 

2017. This work has shown that the deep learning approach can predict hourly concentrations 

with sufficient accuracy (IOA=0.84-0.89, r=0.74-0.81) by modeling the relationship between 
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local meteorological and species concentrations in an urban environment. The CNN model, 

which showed consistent prediction results across the city of Seoul, reasonably predicted daily 

and monthly trends of ozone concentrations throughout the year. However, the model generally 

underpredicted the maximum daily ozone, particularly during the summer. This is due to several 

important meteorological parameters, such as cloud fraction and solar radiation, were 

unavailable for the training period in this study. The CNN model was generally under-trained 

for forecasting the high ozone peaks during the hot summer days of 2017. 

The study also demonstrated that the predictions of the CNN model were generally more 

accurate (higher IOA and r values with a lower mean bias) for the southern region of the Han 

River since the topography was more consistent and resulted in a more accurate interpretation 

of the input parameters. Furthermore, the CNN predictions of daytime ozone concentrations 

were generally more accurate than those of nighttime concentrations with differences in IOA 

between 0.05 and 0.30. We attribute this discrepancy to the occurrence of most of the daily 

maximum input variables during the daytime. We compared the performance of the deep CNN 

model with other common neural network models such as the shallow artificial neural network 

(ANN), long short-term memory (LSTM), and deep stacked autoencoder (SAE). The CNN 

model performed better than other neural network models in terms of overall accuracy (around 

5% better IOA values than LSTM), smaller bias at daily ozone peaks (1.5 ppb lower that 

LSTM), and smaller MAE during the nighttime (2.2 ppb lower than LSTM). The CNN model 

also predicted the hourly ozone concentrations faster that both LSTM and SAE. 

The CNN model not only predicts real-time ozone concentration with favorable 

statistics but also generates the result within less than a minute of initiating the model. Beyond 

surveying the advances of using a deep CNN, we showed the limitation of such methods for 
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real-time air quality forecasting. For instance, a proper number of input variables (predictors) 

should be used with a sufficiently large amount of training data. However, if an important 

predictor of ozone concentration is missing (e.g., cloud fraction and solar radiation), it will 

influence the sensitivity of the model to the other input variables, which may lead to 

“misprediction.” Regarding underperformed for the cold months as well as during the high 

ozone episodes, I found that the fine wavelet modes (daily and hourly) were relatively weaker 

that the rest of the year. Also, when the coarse modes were strong, the CNN model prone to 

predicting with large errors. I also found that the model’s underperformance in nighttime hours 

was due to undertraining the model, and extreme values of input parameters during the 

nighttime.     

The proposed approach in this paper can be applied to and yield a high prediction 

accuracy for ozone or other pollutants in other metropolitan areas. In addition, the deep learning 

approach can potentially be used for a multiple-day forecast of air pollution or air quality index. 

Fast and accurate air quality prediction using the deep CNN model could be used to reduce the 

adverse health effects of urban air pollution. Given the computational efficiency of the CNN 

algorithm, deep learning could supplement deterministic models to more rapidly and accurately 

forecast air pollution concentrations. I expect that this study will not only provide a more 

comprehensive understanding of CNNs but also facilitate future research activities and 

applications within the field of atmospheric sciences. 
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CHAPTER 4. A DATA ENSEMBLE APPROACH FOR REAL-TIME AIR 

QUALITY FORECASTING USING EXTREMELY RANDOMIZED 

TREES AND DEEP NEURAL NETWORKS 

 

4.1 Introduction 

Following previous chapter for designing a CNN model for a real-time hourly ozone 

forecasting system in Korea, this chapter aims to develop the ensembles of various machine 

learning models for real-time hourly ozone forecasting in Seoul, Korea. Chapter 4 present an 

ensemble model that integrates two regression models: low- and high-ozone peak models. Since 

the number of high-ozone peak episodes is significantly lower than that of low-ozone episodes, 

the ML model is “undertrained” for predicting days with ozone concentrations over 90 ppb. 

Compared to each of the aforementioned models, the ensemble model, which accounts for the 

global and local regression characteristics of both low- and high-ozone peak episodes, is a more 

accurate parametric model. Therefore, its parameters are determined by the dynamic 

characteristics of the hourly ozone concentrations categorized by their maximum values. We 

use a combination of two advanced ML models—the deep neural network (DNN) (31) and 

extremely randomized trees (Extra-Trees method) (69, 70)—as the base models for each step 

in the ML ensemble model. We also develop two generalized models by i) merging all samples 

from all sources, and ii) uniformly distributing the samples based on target ozone peaks. In 

addition, we develop regularized models that establish the training by focusing more on 

episodes with high-ozone peaks greater than the threshold (90 ppb). Through various 
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comparison metrics and statistical indices, we verify the effectiveness and robustness of our 

ensemble models with the base ML models. 

 

4.2 Materials and Methods 

The goal of the ensemble methods is to combine the predictions of several base predictive 

models built with a given learning algorithm to improve the generalizability/robustness over a 

single predictive model. Thus, we combined several independent machine learning models to 

produce a powerful ensemble model for predicting hourly ozone concentrations, particularly 

for capturing the relatively higher daily ozone peaks. In this regard, we used two machine 

learning algorithms, the extra-trees method and DNN models, for our ensemble approach. In 

our proposed models, we focused on preparing proper training samples with regard to their 

numbers and distributions. That is, we designed the training dataset for each ensemble approach 

to either generate more accurate predictions or capture more enhanced ozone peaks. 

 

4.2.1 Extra-Trees method 

Decision trees predict the value of a discrete dependent variable with a finite set of values 

(referred to as a “class”). They use the values of a set of independent variables (called 

“attributes”), which may be either continuous (for regression problems) or discrete (for 

classification problems). Decision tree algorithms, also referred to as the top-down induction 

of decision trees, entail a divide-and-conquer approach (71). Whereas continuous attributes 

consist of a threshold at which point the (sub)tree splits into two “branches,” discrete attributes 

have “branches” created for each possible value of an attribute. The final subsets, referred to as 
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“leaves,” are labeled with a class. While a limited number of studies have used decision tree 

methods for air quality forecasting (11, 12), none used advanced decision trees techniques such 

as extremely randomized trees, that is, the extra-trees method, for such a purpose.  

Several studies have attempted to overcome the inadequacies of the conventional decision 

trees (e.g., their sub-optimal performance and lack of robustness) (72). One popular approach 

used the extremely randomized trees model to create an ensemble of trees.  This method (69, 

70), a perturb-and-combine technique designed explicitly for decision trees algorithm, creates 

a variety of classifiers by introducing randomness in their construction. In extremely 

randomized trees, randomness goes one step farther in the way “splits" are computed. Like the 

random forest algorithm, the extremely randomized trees method uses a random subset of 

candidate features. Instead of searching for the most discriminative thresholds, however, it 

randomly obtains thresholds for each candidate feature and selects the best randomly-generated 

threshold as the splitting rule, which usually allows further reduction of the variance of the 

model at the expense of a slight increase in the bias. 

 

4.2.2 Data 

To model the ozone concentration time series, we used several predictors, including the 

hourly observed values of O3 and NOx concentrations (as recorded by South Korea’s National 

Institute of Environmental Research, or NIER), surface temperature, relative humidity, wind 

speed, direction, dew-point temperature, surface pressure, and precipitation (as recorded by the 

Korean Meteorological Administration, or KMA) as input. Each input parameter had a size of 

24, representing the previous day’s hourly values. In addition, to address seasonal and weekly 

variations of ozone concentration, seasons (spring, summer, autumn, winter) as well as 
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weekday/weekend were one hot-encoded as input for each model (one hot-encoding is a process 

by which categorical variables are converted into an integer form for a regression prediction by 

machine learning algorithm). The locations of the air and meteorology stations can be found in 

Figure 3.1 in Chapter 3. Similar to the CNN modeling approach in Chapter 3, I used several 

predictive techniques to forecast the hourly surface ozone concentrations for the year 2017 and 

selected the historical surface measurement data from 2014 to 2016 to train the model. Such a 

training period provided a broad history for fitting the relationship between the input variables 

and the ozone concentrations. To treat the missing observation data, I applied SOFT-IMPUTE 

by Mazumder et al. (59) to the raw observation data. SOFT-IMPUTE is a missing data treatment 

approach that iteratively replaces missing elements with those obtained from a soft-thresholded 

singular-value decomposition by taking all available data (spatially and temporally) into 

account.  

 

4.2.2.1 Data preparation  

The ensemble methods presented in this study entail a “cutoff” value determined by the 

daily maximum ozone concentration, which distinguishes between the data samples for the 

high-and low-ozone peak models. In Seoul, a maximum hourly ozone concentration above 90 

ppb indicates a “poor” air quality level that imposes a severe health hazard to the urban 

population. Therefore, to prepare our data for analysis, we chose a daily maximum ozone 

concentration of 90 ppb as the cutoff point.  

To construct the data sample for both models, I gathered and merged three years of 

training data (2014 to 2016) from all of the stations. Then, I counted the number of days with a 

maximum target ozone value equal to or greater than the 90 ppb cutoff value for the high-ozone 
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peak training dataset and the remaining data for the low-ozone peak training dataset. I used 

these datasets in the first ensemble sub-model. 

 

4.2.3 Modeling approaches 

Figure 4.1 schematically illustrates the models proposed in this study. For the ensemble 

modeling approach, I used three combinations of the extra-trees method and the deep neural 

network, the former for constructing two generalized models (station-independent models) 

following two modeling approaches, “merge” and “uniform.” The characteristics of the extra-

trees method are more amenable to the construction of such generalized models than those of 

the DNN. In addition, compared to DNN, the extra-trees method requires less computational 

time and little fine-tuning of the hyper-parameters. To capture more accurate daily high ozone 

peaks, I proposed a regulation process that ensured that the model focused more on the high 

peaks and distributed the training data in such a way that 50% of the data included high-ozone 

peaks (above 90 ppb) and the remaining data were uniformly distributed among all other bins 

of the ozone concentrations (see Section 3-2). 

 

4.2.3.1 Ensemble model:  

The proposed ensemble models included two sub-models. The first used the low- and 

high-peak datasets (as discussed in Section 2-4) separately to predict hourly ozone 

concentrations. The low-and high-ozone peak models are trained by the corresponding low- 

and high-ozone peak training sets. The second sub-model used a uniformly distributed training 

dataset to predict the final hourly ozone concentrations. I used a uniformly distributed training 

dataset to train the ensemble model in order to ensure that the model accounted for the outputs 
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of both the low- and high-peak models. Such an approach precluded any inclination towards 

the low-ozone peaks during the training process that results from the relative abundance of low-

ozone peak days compared to the lower number of high-ozone peak days. Thus, I used three 

combinations of the extra-trees regression model and a deep neural network that represent the 

following sub-models: the DNN-DNN, the ExtraTree-DNN, and the ExtraTree-ExtraTree. 

Table 4.1 summarizes the modeling approaches in this study, including the proposed ensemble 

models.  

 
Figure 4.1. Schematic of the proposed modeling approaches (inputs are meteorological parameters and 
air pollution concentrations).  For the ensemble approach, we used three combinations of the extra-trees 
decision trees and deep neural networks. The extra-trees model was used for the merged and uniform 
modeling approaches. 

Training Dataset: 
All NIER stations merged together 

Jan. 2, 2014 – Dec. 31, 2016 

Low-ozone peak model 

Ensemble modeling  
approach 

Hourly training data with 
daily ozone peak above 90 

ppb: 
1,270 examples  

Hourly training data with 
daily ozone peak below 90 

ppb: 
26,105 examples 

Uniform distribution  
in all concentration sub-

categories 

High-ozone peak model 

24-hour low peak output 24-hour high peak output 

Final hourly ozone prediction: 
Each NIER station 

Hourly training data from all stations: 
27,375 examples 

Merge modeling  
approach 

Uniform distribution  
in all concentration 

sub-categories  

Uniform modeling  
approach 
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Table 4.1. Summary of the models being used in this study. 

Model Category Model Name ML Algorithm Model ID 

Base models Extra-Tree Extra-Trees method Extra-Tree 
DNN DNN DNN 

Single models 
Merge Extra-Trees method Merge 
Uniform  Extra-Trees method Uniform 
Biased Uniform Extra-Trees method Uniform_Regularized 

Ensemble models  

ExtraTree-ExtraTree  Extra-Trees method ExtraTree_ExtraTree 

ExtraTree-DNN  Extra-Trees method 
and DNN 

ExtraTree_DNN 

DNN-DNN  DNN DNN-DNN 

Ensemble models 
with regularization 
approach  

Regularized ExtraTree-
ExtraTree  

Extra-Trees method ExtraTree_ExtraTree_ 
Regularized 

Regularized ExtraTree-
DNN  

Extra-Trees method 
and DNN 

ExtraTree_DNN_ 
Regularized 

Regularized DNN-DNN  DNN DNN_DNN_ Regularized 
 

4.2.4 Uniform model 

Using the aforementioned uniformly distributed training dataset, I employed the extra-

trees regression model to predict hourly ozone concentrations.  The difference between the 

uniform and ensemble models is that within the uniform model, only one model (the Extra-

Trees model) is used for the hourly prediction instead of the two-step modeling process 

involved in the ensemble models. The uniformly distributed training dataset may improve 

accuracy levels in each distribution bins, including the bin of higher maximum daily ozone 

concentrations. To create a uniform distribution of the data for the second ensemble sub-model, 

I collected all samples from the high-ozone peak datasets with an equal number of samples 

from the low-ozone peak dataset within a certain type of sub-categories. To ensure uniform 

coverage of maximum ozone values below the cutoff, we uniformly selected samples from the 

low-peak dataset from four bins with the following daily maximum ozone values: 0-25, 25-50, 
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50-70, and 70-90 ppb. Hence, the number of samples with a daily maximum ozone 

concentration of 90 ppb and above was equal to these four bins. 

4.2.5 Merge model 

For this model, I used a merged dataset in which all data samples collected from all 

stations in Seoul were concatenated. Even though using the merged dataset dramatically 

increased the number of input data, the meteorological input parameters remained the same for 

all of the stations on any given day. After all, only one meteorological station (KMA station 

#108) was available during the time period of this study. 

 

4.2.6 Data regularization approach 

I adopted this methodology to ensure a more pronounced representation of the high-

ozone peaks in the training dataset, and to address the issue of “under-sampling” of high-ozone 

episodes [3], which resulted in underpredictions of such episodes, we applied a regularization 

process. Note that, the regularization process in this study is only for constraining training and 

testing datasets in terms of presenting more samples with higher ozone concentration. Hence, 

the process is different from the regularization process for optimizing a machine learning 

algorithm. As a result, I was able to add more samples with the highest daily maximum ozone 

concentrations to the bin in the uniform model. The training dataset contained an equal number 

of samples from the low-ozone episodes (samples with daily maximum ozone of less than 90 

ppb) and high-ozone episodes (samples with daily maximum ozone of more than 90 ppb). For 

the samples in the low-ozone episode category, I further distributed the dataset into uniform 

sub-categories, described in Section 3-2. This model is referred to as the “biased uniform” 

model (the figures refer to it as the “regularized uniform model”). As this approach, however, 
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could have resulted in an overprediction for low-ozone peak episodes, we implemented a 

regularization process within the proposed ensemble models to balance the trade-off between 

the underprediction of high-ozone episodes and the overprediction of low-ozone episodes. To 

decrease the biased weight of the model towards high peaks, I trained an ensemble of the low-

ozone peak model and the biased uniform model. The low-ozone peak model balances the over-

trained high-ozone peak predictions rendered by the biased uniform model. This model is called 

the “data-regularized ensemble” (e.g., the regularized DNN-DNN model) (see Table 4.1).  

 

4.2.7 Model configuration 

For the DNN models, I used a deep architecture with two fully-connected hidden layers 

consisting of 370 hidden units in the first layer and 120 in the second. I employed a rectified 

linear unit (ReLU) as the activation function in each layer and applied it to the normalized input 

data (since ReLU passes only values greater than zero).  For the deep neural network models, I 

used 80% of the randomly selected data samples for training the model and the remaining 20% 

for the cross-validation process; the ratio was the result of a trial/error experience within the 

hyperparameter tuning. After each epoch, I monitored the performance of the model to ensure 

that the training process stopped with minimal validation loss to prevent overfitting. For the 

extra-trees models, we used 355 trees with a depth of 20. It is worth noting that we determined 

the hyper-parameters for both models after conducting comprehensive trial-and-error 

experiments. I implemented the deep learning algorithm in the Keras environment with the 

TensorFlow backend (60) and the extra-trees method in the Scikit-learn environment (73).  

For all models, including the ensembles (i.e., the DNN model, the Extra-Trees 

regression model, the uniform model, and the merged model), I used a three-year training period 
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of 2014-2016 and then used the trained models to generate predictions for all 25 stations across 

Seoul for the year 2017. For any given station, the ozone concentration of each day (24 hours) 

is predicted by these models using input observations from the previous day (see section 3-2). 

Since the training data of the ensemble, uniform, and merged models included samples from all 

the stations, I trained them only once to build a generalized predictive model. So, each of these 

generalized models was used to predict all 25 stations at ones. I also trained two station-specific 

DNN and extra-trees models for each station using only one station’s input and output data. I 

compared the results of these station-specific models to those of generalized models.  

One immediate advantage of using the generalized models over station-specific models 

is the computational time. For predicting a network of monitoring stations similar to Seoul with 

25 stations, the generalized model will be trained ones (for a few minutes), and predict for all 

stations within less than a second. For station-specific, on the other hand, each machine learning 

modes will be trained individually, and predict the ozone concentration afterward. While the 

training process of one station-specific (i.e., DNN model) takes less than 10% of one 

generalized model (DNN-DNN ensemble model), the overall processing time to predict all 25 

stations will be around three times faster using a generalized model. 

 

4.3 Results and Discussion 

4.3.1 General statistical comparison 

For the evaluation of the models, we used the index of agreement (IOA) to compare the 

performance of different models. Figure 4.2 presents a comparison of the model-measurement 

statistics averaged over all the NIER stations for all of the proposed models in this study. This 
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figure shows a box plot of the daily index of agreement (IOA) for each month of 2017 for all 

models. As shown, the performance of the models varies from month to month. Generally, the 

ensemble models provided more accurate predictions with greater daily IOAs in a majority of 

the months, particularly during the high ozone months (April-September). Since the number of 

days with lower ozone peaks is significantly higher than that with higher ozone peaks, the 

original models were relatively undertrained for predicting high ozone episodes. The ensemble 

models, by contrast, take both low and high ozone episodes into account by assigning equal 

importance in the second step. The regularized models also generated more accurate predictions 

than their original counterparts (including the ensemble and uniform models). The 

regularization process provided more samples for predicting days with high ozone peaks (over 

90 ppb). As a result, the prediction biases of such days decreased, and the IOA increased. 

The monthly median of the daily IOA of all models (black dots in Figure 4.2) was close 

to or greater than 0.8 between March and October, indicating the satisfactory performance of 

the models during these months. During 2017, the best performance was observed in May and 

September, with the highest monthly mean (blue dots in Figure 4.2) and monthly median of 

daily IOA between 0.83-0.88. The worst performance was observed during the winter months 

(i.e., December, January, and February,) with the lowest mean and median of daily IOA=0.56-

0.75. In July, although most models found that the monthly median of the daily IOA exceeded 

0.8, the range of the daily IOA was relatively wide, resulting from the “misprediction” of days 

with relatively high or low ozone peaks that the model significantly underpredicted and 

overpredicted.  Since July is the onset of the monsoon season in the Korean Peninsula, this 

anomaly can be explained by the scattered rain and thunderstorms during this month. Figure 

3.5 from Chapter 3 illustrates the hourly level of precipitation during the different weeks of 
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2017. The figure shows that the precipitation level increased dramatically during the weeks of 

July.  

 
Figure 4.2.  Box plot of the daily IOA of various real-time ozone forecasting systems for the months of 
2017, averaged over 25 NIER stations in Seoul, South Korea. Blue dots represent the mean and black 
dots the median. The red vertical lines indicate IOA=0.8 as a reference for comparing the models in 
different months.  

Figures 4.3 and 4.4 illustrate Taylor diagrams showing the performance of all of the 

models used in this study during different months (Figure 4.3) and under different conditions 

(Figure 4.4). The diagram shows how the statistics of the performance of the three 

complementary models vary simultaneously. Generally, the closer the point is to the “observed” 

value (shown with the point on the horizontal axis), the better the performance of the model is. 

These statistics are the correlation coefficient (r), the standard deviation (sigma), and the 



 

 59 

centered root-mean-square error. Figure 4.3 shows that, like the IOA, the correlation coefficient 

and the RMSE were comparable, except during July, among all models. The standard deviation, 

however, varied markedly among the models, particularly between April and August. Among 

all models, the ensemble models, compared to the base models (DNN and Extra-Trees), 

provided greater IOA, confirming the effectiveness of the ensemble process. Similar to the IOA, 

the sigma of the regularized models, unlike the original models, was closer to the observed 

values. During July, both DNN-DNN models (the original and the regularized) provided lower 

IOA than the other models. One explanation for this finding is that the DNN model may have 

“overstretched” the results of the high-ozone peak model while capturing the very high ozone 

episodes in the second step of the ensemble process. This overstretching process could have led 

to several overestimated predictions during the summer months [3]. Another explanation might 

be related to the many overpredictions of the DNN ensemble models during the night (for DNN-

DNN) and late afternoon (for DNN-DNN regularized).  
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Figure 4.3. Taylor diagram showing the performance of various real-time ozone forecasting systems 
during different months averaged over 25 NIER stations in Seoul. The model-measurement statistics 
shown here are the Pearson correlation (r), the standard deviation (sigma), and the centered RMSE. 
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Figure 4.4. Taylor diagram showing the performance of various real-time ozone forecasting systems 
during daytime/nighttime and rainy/dry days averaged over 25 NIER stations in Seoul. The model-
measurement statistics shown here are the Pearson correlation (r), the standard deviation (sigma), and 
the centered RMSE. 

The Taylor diagram in Figure 4.4 compares the performance of all the models during 

the daytime and the nighttime on dry and rainy days for all of 2017. All models provided greater 

IOA not only during the daytime than during the nighttime but also during dry days than during 

rainy days. One explanation for this finding is that during the nighttime (and/or the rainy days), 

levels of the input predictors (meteorological parameters and air pollutants) were considerably 

lower than their corresponding values during the daytime (and/or dry days). Figure 4.5, diurnal 

variation of ozone, shows that the ozone concentrations were significantly lower during rainy 

days than during dry days. In addition, the number of dry/daytime hours was higher than the 

number of rainy/nighttime hours. Thus, we conclude that the models were “biased” when 
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predicting higher values; that is, they more accurately predicted higher values than lower 

values. Another explanation could have been the lack of certain important predictors, such as 

the cloud fraction, solar radiation, and ozone precursors. These parameters were not measured 

in Seoul during the time period of this study (2014-2017).  

 
Figure 4.5. Average hourly mean ozone concentrations in 2017 for different models on dry/rainy 
days. 

 
4.3.2 Model performance for capturing maximum daily values 

Figure 4.6 compares the performance of all modeling approaches with respect to the 

daily maximum ozone for the different months of 2017. The results of nearly all models exhibit 

a notable underprediction of high ozone peaks during all months. For the winter months (i.e., 

December, January, and February), this underprediction by the proposed models follows a 

similar trend. The figure shows that the base models (Extra-Trees and DNN) predicted peak 

ozone more accurately during these months. For the rest of the year, the DNN-DNN ensemble 

model was the most accurate at capturing high ozone peaks. This relative success, however, led 

to several mispredictions of the high peaks.  Figure 4.6 illustrates the range of the predicted 
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peaks, which were lower than the observed values, indicating that the predictions of the ozone 

peaks during the ozone season (April-September) by the ensemble model were less variable 

than the target values. As a result, although a greater number of days with high ozone peaks 

were estimated accurately, several “false alarm” predictions actually occurred.  

Figure 4.6 also reveals that the merged model performed the worst during most of the 

months. This finding relates to the redundancy within the inputs of the merged model. Since 

we measured the meteorological variables in Seoul at only one official station (KMA station 

#108), seven input variables (out of nine) were the same for all 25 station locations across the 

Seoul area. This redundancy caused a deficiency in the training process of the machine learning 

model. 
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Figure 4.6. Box plot of the daily maximum ozone for various real-time ozone forecasting systems during 
each month of 2017. The values are averaged over 25 NIER stations in Seoul. Blue dots represent the 
mean and black dots the median. The red vertical lines indicate the monthly mean for the daily ozone 
maximums (or maxima) as a reference for comparing the models in different months. 

Figure 4.7 shows the performance of the models with respect to the range of daily 

maximum ozone during the different seasons. Most of the underpredictions occurred on days 

in which the ozone peak exceeded 70 ppb. The underpredictions were more pronounced during 

the fall (i.e., September, October, and November). After all, the frequency of high peak episodes 

was less during the fall than during the spring (i.e., March, April, and May) and summer (i.e., 

June, July, and August).  Hence, the models were undertrained for such high peak episodes. 

Almost all of the ensemble models, however, showed improvement by minimizing the 
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underprediction of the high peaks, especially during the summer and the fall. Compared to the 

base models, the ensemble models displayed an improvement of as much as ~30 ppb on some 

days and ~16 ppb in some months. Among the ensemble models, the DNN-DNN models 

produced a higher IOA than others when the ozone peaks exceeded 70 ppb.  For the low-ozone 

episodes (i.e., with maximum daily ozone of less than 50 ppb), the base models yielded a higher 

IOA. 

Figure 4.8 compares the statistical performance (i.e., the IOA and the correlation 

coefficient r) of the various models with regards to the range of daily maximum ozone values. 

Both the IOA and r in all of the models exhibited higher values for the higher ozone peaks. One 

explanation for this finding is that for ozone concentration peaks with higher values during the 

daytime (i.e., higher than 70 ppb), the daily time series usually follows a smooth pattern (at 

some level with periodic behavior) with predictable locations of daily highs and lows. After all, 

stable meteorological conditions led to the efficient formation of more ozone during the daytime 

and ozone dilution during the nighttime. Thus, the ozone concentration could be more 

effectively explained by current meteorological parameters, which led to a more accurate hourly 

prediction, and hence, higher IOA and r values for these days. For low ozone episodes, by 

contrast, the time series varies more frequently without any notable pattern, which results in 

lower model performance. As a result, the models generally yielded a higher IOA during the 

spring and the summer than they did during the fall and the winter. 
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Figure 4.7. Box plot of the daily maximum ozone for various real-time ozone forecasting systems with 
respect to the ranges of daily maximum ozone for all seasons in 2017. The values are averaged over 25 
NIER stations in Seoul. Blue dots represent the mean and black dots the median. The red vertical lines 
indicate the monthly mean for the daily ozone maximums (or maxima) as a reference for comparing the 
models in different ranges of the daily maximum ozone. 

NA NA 
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Figure 4.8. Statistical performance of all the modeling approaches with respect to the ranges of daily 
maximum ozone for 2017. The values are averaged over 25 NIER stations in Seoul. Blue dots represent 
the mean and black dots the median. The red vertical lines indicate IOA=0.8 and r=0.8 as a reference 
for comparing the models. 

 

4.3.3 Categorical analysis for selecting the best model 

The ensemble forecasting models have clear advantages over the base models. Since I 

used samples from all stations for the uniformization process, all of the ensemble models are 

generalized models, suggesting that one model can predict hourly ozone for all of the stations. 

The immediate advantage of a generalized model over the station-specific model relates to its 

shorter computation time. As a result, the generalized models are favorable for applications 
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requiring prediction for multiple locations with similar characteristics. Although ensemble 

approaches have their own advantages and limitations, their suitability depends on the decision 

time period (e.g., month, season). If used appropriately, these approaches enable a more robust 

decision-making process, whether they are used individually or in combination. Thus, I 

developed an algorithm for selecting the most suitable models based on a categorical analysis 

of the training dataset. 

As mentioned in Section 4.3.2, the performance of the models differed during different 

months. By investigating the training dataset, however, I suggested the use of one model over 

others for any given month. In order to find the optimal model, I calculated the percentage of 

the frequency of the daily maximum ozone concentration divided into five category levels for 

each month. These are the same sub-categories used in creating uniform distribution and 

regularization processes (See Section 4.2.4). Table 4.2 presents the percentage of the frequency 

of each category for each month calculated based only on the training dataset (2014-2016). 

Since the goal was to propose a real-time forecasting system, I drew no samples from the testing 

dataset (2017) for this analysis. As expected, I found a few dominant categories whose ozone 

concentrations were lower during the fall and winter than during the spring and summer.  

Table 4.2. Percentage of the frequency of the daily maximum ozone concentration for several categories 
of the ozone magnitude based on the training dataset. The numbers shown as the reference in each bin 
are ozone concentrations in ppb. With a threshold of 10%, the dominant bins are shown in each month 
in gray-shaded cells.  

Categories (in 
ppb) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Train < 25 61 22 5 1 0 0 8 2 4 11 44 70 
Train 25-50 39 75 69 44 16 16 35 38 52 74 53 30 
Train 50-70 0 3 24 41 44 38 27 29 30 14 3 0 
Train 70-90 0 0 3 12 27 30 20 21 12 1 0 0 
Train > 90 0 0 0 2 14 16 10 10 2 0 0 0 
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Table 4.3 presents the monthly IOA of the models in different months and those that 

exhibited the best performance each month. During the cold months (winter and fall), the base 

models (particularly the Extra-Tree model) exhibited a higher IOA, but during the warm months 

(spring and summer), the regularized models were comparably better. For the training data with 

fewer dominant categories, the Extra-Tree model was capable of extracting information from 

the input features. By contrast, the ensemble models, which used the high-ozone peak model in 

their second step, overstretched the results. No high-ozone peak episodes, however, occurred 

during the cold months. As a result, this extra process degraded the results of the base models. 

During the warm months (March to September), the smallest bin (an ozone concentration of 

less than 25 ppb) was a non-dominant category. In addition, the relative hourly values of the 

input variables were usually higher during these months, which accounts for the nonlinearity of 

the relationships between the inputs and outputs. I, therefore, conclude that one can obtain more 

accurate predictions using a more complicated method (i.e., the ensemble model).  

Table 4.3. Monthly IOAs of the modeling approaches compared to that of the model selected by the 
categorical analysis of the training dataset. Here, “ET” represents the Extra-Trees model and ‘R’ the 
regularized model. For each month, the models with the highest monthly IOAs are indicated by bold 
font, and the best models found by the categorical analysis appear individually in a box cell. 

Models Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
ET 0.80 0.79 0.83 0.82 0.83 0.82 0.78 0.84 0.83 0.82 0.78 0.79 
DNN 0.75 0.77 0.84 0.85 0.85 0.82 0.78 0.85 0.82 0.81 0.77 0.76 
Merge 0.79 0.79 0.83 0.82 0.83 0.82 0.77 0.85 0.84 0.82 0.76 0.79 
Uniform  0.78 0.76 0.83 0.83 0.84 0.84 0.79 0.84 0.85 0.82 0.77 0.78 
Uniform R 0.75 0.73 0.83 0.84 0.85 0.85 0.80 0.82 0.85 0.82 0.77 0.79 
ET-ET R 0.80 0.79 0.83 0.84 0.85 0.85 0.80 0.85 0.85 0.81 0.76 0.77 
ET_DNN R 0.78 0.76 0.82 0.85 0.86 0.85 0.79 0.83 0.86 0.81 0.77 0.78 
DNN_DNN R 0.72 0.76 0.84 0.85 0.86 0.86 0.68 0.81 0.86 0.82 0.74 0.68 
ET-ET 0.79 0.77 0.83 0.83 0.85 0.84 0.78 0.84 0.84 0.82 0.75 0.78 
ET_DNN 0.78 0.78 0.83 0.84 0.85 0.85 0.78 0.85 0.85 0.81 0.74 0.75 
DNN_DNN  0.70 0.76 0.83 0.84 0.85 0.84 0.68 0.82 0.86 0.81 0.77 0.72 
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In light of the above findings, we proposed an algorithm to select the best model for 

each month using categorical analysis only, independent of the station location. Figure 4.9 

presents a flowchart of the proposed algorithm.  I chose the Extra-Trees model to represent the 

base models and the regularized ensembles of ExtraTrees-ExtraTrees and DNN-DNN because 

their performance was more robust in different months than that of the other models (see Table 

4.3). Following the algorithm proposed in Figure 4.9, we created a time-series of the “best 

model” for all of 2017. Figure 4.10, which shows the weekly mean and max time series of the 

“best model” prediction for all stations in Seoul, illustrates the reasonable performance of the 

best model in most of the stations. Compared to the selected models, the optimal model yielded 

higher values of yearly IOA (with an increase in the IOA value of 0.3% to 2.4%), and compared 

to the base models (Extra-Trees and DNN), the optimal model showed an increase in the yearly 

average IOA at almost all stations. 

 

4.4 Summary 

The worldwide deterioration of air quality poses a unique challenge for decision-makers 

in their efforts to reduce the effects of air pollution on human health. Effectively addressing this 

situation requires a fast, comprehensive, and reasonably accurate forecasting system that will 

support robust decision-making processes. To serve this purpose, I have developed a total of 

eleven machine-learning, real-time hourly ozone forecasting models using multiple techniques, 

including the ensemble approach, uniformization, and regularization. I trained these models to 

predict hourly ozone concentrations for the following day using observations of NOx, ozone, 

and meteorological variables from the previous day.   
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Figure 4.9. The proposed flowchart for selecting the best model based on the percentage of the 
frequency of the daily maximum ozone concentration for each month obtained from the training dataset. 
P(A-B) represents the percentage of the frequency of daily maximum ozone equal to or greater than A 
ppb and less than B ppb. 
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Figure 4.10. Weekly mean (top) and max (bottom) time series of the best model selected using the 
algorithm proposed in Figure 4.9 for all 25 NIER stations in Seoul. 

To develop the base models, I used two powerful machine-learning models: the 

extremely randomized decision tree (or Extra-Trees) and a deep neural network (DNN). I 

designed, trained, and tested the base models to predict the hourly ozone concentration at each 

station based on its input and output variables. Both models showed reasonable performance, 

with yearly IOAs in the range of 0.83 to 0.89, and yearly correlation coefficients in the range 

of 0.72 to 0.80. High ozone episodes, however, were significantly underpredicted, especially 

during the high ozone season (April-September). One explanation for this underprediction was 
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the considerably fewer occurrences of high ozone episodes than low ozone episodes. Therefore, 

the base models were relatively undertrained to predict days with high ozone peaks (more than 

90 ppb). 

To address the underprediction issue of the single-model forecasts, I combined these 

two models in the form of the non-regularized and regularized ensemble models to conduct six 

two-step data ensemble models.  In the first step of the ensemble modeling approach, I trained 

two models (low-ozone and high-ozone peak models) using the prepared sample inputs 

according to the daily maximum values of the target ozone (i.e., observed ozone) and then 

organized the sample inputs in a uniform distribution of ozone peaks by assigning an equal 

number of samples to each of the five ranges of ozone concentrations. In the second step, I 

combined the results of the two models from the first step and predicted the final hourly ozone 

concentrations for the following day. For the regularization process, I added more training 

samples targeting daily maximum ozone over 90 ppb. The results of the ensemble models 

showed sensible improvements in the IOA of as much as 0.05 during the high ozone season and 

reduced the underprediction bias by as much as 31 ppb. In July, however, the DNN-based 

ensemble models performed poorly for some stations. Generally, the deployment of ensemble 

models showed clear advantages over the base models. The advantages were more pronounced 

when higher values of ozone concentrations were expected. In addition to their statistical 

advantages, the ensemble models performed faster than the base models for predictions in 

multiple locations. Because of their robust performance, the ensemble models are more suitable 

for applications to urban areas with multiple observation stations. 

I also developed three more generalized models in which we employed only the Extra-

Trees method to predict outputs using three different training datasets. One training dataset 
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consisted of a pool of input samples that we merged from all of the samples collected across all 

of the stations. Compared with the station-specific Extra-Trees model, this model 

underperformed both in terms of the yearly IOA (with an average 0.02 IOA reduction) and bias 

for high-ozone peaks (with an average 5 ppb absolute bias increase). For the other two models, 

I used regularized and a non-regularized uniformly distributed training dataset. The results 

showed that the performance of the uniform models was similar to that of the station-specific 

model, with marginal improvement in the IOA in most of the stations during the high ozone 

season (April-September). I also found that the model performance significantly decreased 

when the target day was rainy, the result of undertraining the machine learning model because 

of fewer rainy days than dry days in the training dataset. The decrease in the correlation 

coefficient was even more noticeable during the nighttime (from ~0.7 to ~0.3) than it was during 

the daytime (from 0.8 to 0.65).  

By performing a categorical analysis based on the training dataset, I ultimately proposed 

an algorithm for selecting the most suitable model for each month. Utilization of the proposed 

algorithm resulted in greater accuracy (up to 0.045 in station-wise yearly IOA) by enabling the 

use of a customized, more sophisticated modeling approach.  

I attribute the superiority of the proposed ensemble approaches in this study to the 

machine-learning architecture and the data-ensemble technique. While the former can 

effectively extract the nonlinear, stochastic nature of the atmosphere, the latter can modify the 

notable prediction bias caused by an improper training dataset for a target objective (i.e., 

capturing higher ozone peaks). Machine-learning ensemble models delivered reasonable 

accuracy for real-time hourly prediction with less (around three times) computation time 

compared to the station-specific machine-learning models. The days with high ozone peaks, 



 

 75 

however, were still significantly underpredicted on some days (see Figure 4.7) for several 

reasons: (1) The number of samples (collected from the NIER monitoring stations) was limited 

to a four-year collection. Usually, a larger training set will result in a more accurate model. (2) 

In a rapidly changing city such as Seoul, the pollutant levels and trends change over time, 

generally the result of changes in the traffic volume, regulations, and related policies. Therefore, 

the target year in this study (i.e., 2017) might have differed from that of the training dataset 

(i.e., 2014-2016). (3) Because of the insufficient availability of predictors (from NIER 

monitoring stations), high ozone peaks were not adequately addressed. For instance, the cloud 

fraction, solar radiation, and the planetary boundary layer (PBL) height along with ozone 

precursors such as OH are among the essential predictors of ozone levels, particularly high-

ozone episodes [7-8]. To address this issue, one could use the results of physical models such 

as CMAQ as input variables, especially during the ozone season. This will be potentially 

discussed in the next Chapter. 
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CHAPTER 5. CMAQ-CNN: A NEW-GENERATION OF POST-

PROCESSING TECHNIQUES FOR CHEMICAL TRANSPORT 

MODELS USING DEEP NEURAL NETWORKS  

5.1 Introduction 

The last several decades have witnessed a number of advances in chemistry transport 

models (CTM) for estimating regional air quality forecasts. These advancements have 

improved the accuracy of air quality advisory plans and promoted research in the physical 

understanding of the ambient atmosphere (11). Through complex computation schemes and 

specific initial and boundary conditions, CTM models simulate ambient air pollution 

concentrations by considering emission, transport and deposition mechanism, and other 

physical processes (17). CTMs provide temporally and spatially customized forecasts of 

regional air quality episodes of pollutants that are not monitored and use a physically-based 

knowledge of atmospheric processes that cannot be conducted by other modeling approaches 

(e.g., statistical approaches). As a result, they do not require a large quantity of measured data 

to attain reasonable forecasting accuracy. 

 Regarding the operational real-time air quality forecasts, however, CTMs have several 

drawbacks. For one, they demand sound knowledge of pollution sources and processes 

governing their evolution in the atmosphere (11). Thus, understanding the sources of bias and 

developing strategies for mitigating them is both complex and costly. In addition, because of 

imperfect simulation settings and simplified physical processes, CTMs exhibit significant 
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model-measurement errors, especially during high concentration episodes (10). Finally, the 

accuracy of CTMs depends on the accuracy of meteorological predictions, emission estimates, 

initial and boundary conditions, and other model inputs (55). Thus, biases in such parameters 

and uncertainties in CTM inputs can propagate into the final predictions. Particularly in 

predictions of ozone concentrations as secondary air pollution, which are sensitive to 

meteorological parameters and chemical precursors, such biases can result in considerable 

inaccuracy (13). To reduce model errors, therefore, most operational air quality forecasting 

systems require some level of post-processing before unveiling forecasts as a complementary 

reference to health advisory decision making (6, 15, 74).   

The only representation of real-world atmospheric conditions is observed 

measurements. Thus, any post-processing approach should ensure that CTM forecasts are 

verified against observed measurements. When a long history of observations is used, the use 

of a data-driven bias correction model may produce more accurate forecasting by CTM (6, 15, 

74).  Common forms of such bias correction models are multi-variable linear regression models, 

usually referred to as model output statistics (MOS) corrections (74). To bias-correct a certain 

air pollutant, these models use long histories of CTM outputs and observations, preferably from 

a range of important factors such as meteorological parameters (75). Real-world applications 

of these models, however, are limited in several ways. Results from the linear structure of these 

models; that is, they are reliable for only the post-processing of regional forecasts; they cannot 

be generalized to an entire domain (75) (i.e., the continental United States, as studied here). In 

addition, to generate stable corrections, these models require no change in modeling processes 

(75).  
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In the past few years, however, CTM modeling processes have significantly improved, 

owing to the enhancement of our understanding of secondary processes in the atmosphere (18) 

(thanks to several comprehensive measurement campaigns) and advancements in the modeling 

of the feedback between weather and chemical processes (19) (i.e., two-way modeling). 

Another limitation of these models is that they bias correct CTM outputs using variables that 

are independent from the modeling biases. Bias correction (i.e., the process that attempt to 

address bias) and the modeling process (i.e., the process that generates the bias) are not 

physically connected, which is particularly important when CTMs perform accurately; thus, the 

post-processing level should be adjusted accordingly to avoid adverse effects (75) (i.e., 

producing less reliable forecasts than the original ones). To produce more accurate bias-

corrected forecast, these models also rely on high-quality observations, which are limited in 

time, sparsely distributed in space, costly to collect, and contain a notable portion of missing 

values. Hence, bias correction is limited to modeling grids in which a long-running monitoring 

station is available (76, 77). Finally, even if historical observations take the form of “big data” 

for developing bias-correction models, the level of improvement in final forecasts has peaked 

(mostly due to the above-mentioned limitations), as several significant biases in high 

concentration episodes have not yet been addressed (See Chapters 3 and 4).  

Precisely focused on addressing the limitations and the challenges that methods of 

forecasting ambient air quality in the real-time entail, I introduce a new generation of post-

processing tools for real-time air quality forecasts that employ the physical process of a 

numerical model in conjunction with an advanced deep learning algorithm. Deep learning 

algorithms can be trained to approximate smooth, highly nonlinear functions, rendering them 

capable of analyzing nonlinear processes in the atmosphere. Here, I explore the use of a deep 
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convolutional neural network (CNN) model (44) to develop a fast, robust, and accurate real-

time bias-correction system. Such a system will enhance the predictions of state-of-the-art air 

quality forecasting models—the community multi-scale air quality model (CMAQ) (17) and 

the weather research and forecasting (WRF) (78)—that will benefit public users, scientific 

communities, and the federal government24. The proposed model, the CMAQ-CNN model, 

overcomes the limitations of conventional methods, supported by the results of this study. 

 

5.2 Materials and Methods 

Figure 5.1 displays the conceptual framework of the CMAQ-CNN model. To model the 

atmosphere as a physical system, we generally use numerical models that estimate the state of 

the atmosphere by taking multiple parameters into account. These parameters are estimated by 

the model itself at a previous step (e.g., vertical wind and trace gas precursors), other input 

parameters (e.g., the planetary boundary layer, a.k.a. PBL), or empirical or semiprimal schemes 

(e.g., aerosol chemistry). A computer simulation generates results for a 3D modeling domain 

in continuous time steps while it verifies them against observational data. Although this is a 

complex, knowledge-intensive process, the numerical model relies on simplified physics and 

thus produces inaccurate estimates of air pollution. With artificial intelligence (AI), we simplify 

the process by training the AI model with parameters from the numerical model (outputs of 

WRF and CMAQ) as input to map actual air pollution concentrations (here, ozone) from the 

observational network. In this way, we combine the physical intelligence of the WRF and 

CMAQ models while adding continuous feedback to the modeling process. Thus, the AI model 

(here, deep CNN) learns the dynamic of the model errors through an accelerated training-testing 
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process. The simultaneous use of meteorology and chemistry models in the WRF-CMAQ 

model represents a significant advancement in the routine operational real-time air quality 

forecasting system, considerably enhancing our understanding of the underlying complex 

interplay of meteorology, emissions, and chemistry. Thus, this approach increases the 

likelihood of producing accurate, reliable estimates of critical variables in the atmosphere.  

 
 
 
 
 
 
 
 
 
 

Figure 5.1. Conceptual framework of this study. 

 

5.2.1 Numerical modeling module: WRF-CMAQ  

Because of the increasing maturity of the physical processes and available data 

infrastructure (e.g., emission models, initial and boundary conditions) of CMAQ, we selected 

it to generate robust regional air quality predictions. Developed by the U.S. Environmental 

Protection Agency (EPA), CMAQ is a sophisticated atmospheric dispersion model with an 
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active open-source development platform that combines current knowledge of the atmospheric 

sciences25. Representing several fields of physical and chemical sciences, the CMAQ-CNN 

model will likely become a prevalent forecasting system. To predict the meteorological 

parameters in the CMAQ-CNN model, this paper uses the National Center for Atmospheric 

Research (NCAR) Weather Research and Forecasting model (WRF) as the numerical weather 

prediction model and to develop our bias-correction model; we chose WRF because of its well-

known history in both research and operational applications. We used the modeling data 

prepared by Choi et al. (2016) (79), Souri et al. (2017) (80), and Jeon et al. (2018) (81), who 

explained the configurations of both models in detail. This study focused on the months 

between April and October (215 days), considered the “ozone season,” because of the more 

frequent higher ozone concentration events across the United States. We validated the modeling 

results against several observational sources, including the EPA AirNow network and the Texas 

Commission on Environmental Quality (TCEQ) Continuous Ambient Monitoring Station 

(CAMS) network. 

 

5.2.2 Artificial intelligence module:  Deep CNN 

We used a five-layer CNN model with a number of filters and kernel sizes of 64 and 2, 

respectively, selected via a comprehensive validation process. We implemented the deep 

learning algorithm in the Keras environment with the TensorFlow backend (60) with Adam 

(63)  as the optimizer function and adopted a cross-validation process with 20% randomly 

selected testing data to monitor the training process of the CNN model. Assuming the CNN 

was fully trained by the provided sample data, we stopped the training process when the 

validation loss was minimized. To create the output data, we selected 1,217 monitoring stations 
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across the United States operated by the EPA, which monitored hourly ozone concentrations 

between 2011 and 2014. For the training/testing/validation dataset, we prepared each sample 

based on the information collected on each day, that is, outputs from the WRF and CMAQ 

models and observations. Table 5.1 lists the 33 input variables from the WRF and 13 input 

variables from the CMAQ used in the CNN model. Therefore, more than 780,000 (215 days in 

three years for 1,217 stations) samples were available to train the CNN model with 1,104 

(33+13 variables for 24 hours per day) input features. Since the target was to predict (or bias 

correct) the entire day (24 continuous hours), we applied SOFT-IMPUTE (59) to the raw 

measured data to create a complete hourly dataset and then selected three years of modeling 

and observational history (2011-2013) to train and test the CNN model. To validate the bias-

correction capability of CMAQ-CNN modeling system, we select modeling and observational 

history from 2014.  

 

5.3 Results and Discussion 

5.3.1 CMAQ-CNN Portability and generalizability 

Owing to the inherent properties of neural networks such as low sensitivity to noisy and 

high variational data, they are a promising candidate for developing a portable real-time air 

quality forecasting model. Portability of the model, however, can be problematic when a single 

pre-trained model is applied to the entire U.S. domain; that is, the accuracy of CMAQ-CNN 

might be inconsistent temporally and geographically. To test the portability and generalizability 

of the CMAQ-CNN model, we developed two CNN models. To train the first (noted by 

CNN_Standalone), we used data samples available for each station. Thus, more than 1,000 
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station-specific models were developed to bias correct the entire domain. To train the second 

(noted by CNN_Generalized), we polled all available samples to apply a single trained model 

to all stations across the domain; that is, the second model was a portable, generalized model 

(the term “generalized” refer to the capability of the model to generate stable results within a 

spatial domain, which differs from the term used in the machine learning algorithm.)  

Table 5.1. List of input parameters from the outputs of the WRF and CMAQ models. 

Abb. Variable Name (WRF) Units 
 PRSFC surface pressure Pascal     
USTAR cell averaged friction velocity m/s          
WSTAR convective velocity scale m/s          
PBL PBL height m      
MOLI inverse of Monin-Obukhov length 1/m    
HFX sensible heat flux Watts/m2    
QFX latent heat flux Watts/m2  
RADYNI inverse of aerodynamic resistance m/s          
RSTOMI inverse of bulk stomatal resistance m/s          
TEMPG skin temperature at ground level     k 
TEMP2 temperature at 2 m       k 
Q2 mixing ratio at 2 m        kg/kg 
WSPD10 wind speed at 10 m   m/s          
WDIR10 wind direction at 10 m   deg 
GLW longwave radiation at ground level Watts/m2    
GSW solar radiation absorbed at ground 

level 
Watts/m2    

RGRND solar rad reaching sfc   Watts/m2 
RN nonconvec. pcpn per met TSTEP   cm 
RC convective pcpn per met TSTEP   cm 
CFRAC total cloud fraction     - 
CLDT cloud top layer height (m)    m 
CLDB cloud bottom layer height (m)  m 
WBAR avg. liquid water content of cloud    g/m3   
SNOCOV snow cover       decimal 
VEG vegetation coverage (decimal) decimal 
LAI leaf-area index    - 
SEAICE sea ice (fraction)  - 
WR canopy moisture content     m 
SOIM1 volumetric soil moisture in top cm m3/m3 
SOIM2 volumetric soil moisture in top m m3/m3 
SOIT1 soil temperature in top cm   K 
SOIT2 soil temperature in top m K 
SLTYP soil texture type by USDA category         - 

 

Abb. Variable Name (CMAQ) Units 
NO2 Nitrogen dioxide ppbv 
NO Nitrous oxide ppbv 
O3 Ozone ppbv 
NO3 Nitrates ppbv 
OH Hydroxide ppbv 
HO2 Hydroperoxyl ppbv 
N2O5 Dinitrogen pentoxide ppbv 
HNO3 Nitric acid ppbv 
FORM Formaldehyde ppbv 
ALD2 Aldehyde ppbv 
ISOP Isoprene ppbv 
XYL Xylene ppbv 
TOL Toluene ppbv 

 

 

Figures 5.2 and 5.3 compare the accuracy of the two CNN models as well as their ability 

to post-process CMAQ results. As a result of the high percentage of missing data in 
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observations reported in Oregon and Iowa, the standalone models were severely undertrained, 

so their results were not included in the comparison. Figure 5.2 indicates that while the 

improved accuracy of both CNN models for almost all states was similar, the generalized model 

provided more stable post-processing enhancement in most states. This finding suggests that 

after the generalized model was applied, the greater range of accuracy indicated greater 

improvement than that of the standalone model. The statistics in the Taylor diagrams of Figure 

5.3, which are the correlation coefficient (r), the standard deviation (sigma), and the centered 

root-mean-square error (RMSE), vary simultaneously, revealing the similarity between the two 

CNN models in ozone forecasting in different months. Generally, the closer the point is to the 

“observed” value (shown with a point on the horizontal axis), the stronger the model 

performance is. While the standalone model is slightly closer to the observed values than the 

generalized one (e.g., August), their difference is negligible.  

Once a portable, generalized air quality forecasting model is developed, it will be 

beneficial in various forms: (i) It will reduce the computational time on the order of hundred 

times, a critical period in which high concentration episodes should be predicted; (ii) when new 

observational data (e.g., new locations, new months) are ready, it can be used as a pre-trained 

model, which will reduce the time for its update; (iii) it can be employed for constructing and 

testing other numerical models (e.g., WRF, Lagrangian models); (iv) it analyze nonlinear 

processes and exceptional phenomena (e.g., high ozone episodes) occurring in the atmosphere 

in idealized experiments; (v) it can incorporate customized data assimilation techniques using 

the results of the generalized post-processing model for the modeling grids for which 

observations are not available; and (vi) it is trained by a numerical model variable and contains 
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a valuable source of pre-trained knowledge that can be used in inverse problems. Therefore, we 

chose the generalized CNN model to represent our proposed CMAQ-CNN model. 

 
Figure 5.2. Box plot comparing the performance of the two CNN models (generalized and standalone) 
in enhancing CMAQ daily IAOs in 46 states for the 2014 ozone season.  
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Figure 5.3. Taylor diagram showing the performance of all models in different months of 2014, 
averaged over all monitoring stations in the continental United States. 

 

5.3.2 CMAQ-CNN model performance 

Figure 5.4 compares the box plot of the daily IOAs of the CMAQ and CMAQ-CNN 

models in different states. This figure shows that, generally, the daily IOA improves for all 

states with a model enhancement of more than 0.20 in the absolute daily IOA. The average 

annual IOAs over the US for the CMAQ and CMAQ-CNN were 0.74 and 0.86, respectively, 

representing more than 15% enhancement in the annual relative IOA. The IOA enhancement 

and the accuracy of the CMAQ-CNN model differed in the various states and regions of the 

United States. The CMAQ-CNN was more accurate in the southern and southeastern United 

States but less accurate in the north and northeastern states. Part of the reason is due to the 

relationship between the accuracy of the CMAQ and CMAQ-CNN models.  
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Figure 5.5 shows the range of IOAs of the CMAQ-CNN model at different levels of the 

CMAQ IOA. The results denote a direct relationship between the performance of the two 

models. The more accurate the CMAQ model used as input is, the greater the change in 

accuracy of the CMAQ-CNN model. For a CMAQ IOA ranging between 0.45-0.7, this 

relationship is generally linear. As the influence of the accuracy of CMAQ, however, decays 

for stations with both high and low IOAs, other factors are involved. One important factor is 

the uncertainty of the WRF model in the northern and northeastern United States, which is 

significantly higher for wind fields, solar radiation, and temperatures, among the most 

important predictors of ozone (82). In particular, estimates of night temperatures and daytime 

wind fields in these states, unlike those in the southern and southeastern states, are subject to 

significant model-measurement bias (83). Since surface ozone is more sensitive to the 

meteorological parameters in the south and southeastern regions, this finding is particularly 

important. Thus, a more accurate estimation of meteorological parameters leads to a greater 

understanding of atmospheric conditions for ozone formation or destruction. 
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Figure 5.4. Box plot showing the daily index of agreement (IOA) of the CMAQ and CMAQ-CNN 
models for the 2014 ozone season (April-October). The vertical red lines indicate that IOA=0.8 as a 
reference. 
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Figure 5.5. Box plot showing the range of CMAQ-CNN performance in the range of CMAQ 
performance. 

In Figure 5.6, the performance of the CMAQ model is compared to that of the CMAQ-

CNN model for all states in other statistical measurements using the Taylor diagram. 

Predictions by the CMAQ-CNN model were significantly more accurate for most states with 

relatively stable enhancements. With regard to r and RMSE, Washington, Oregon, and Idaho 

exhibited the worst enhancement levels likely due to the high variability of the WRF and 

CMAQ models resulting from special geographical conditions (e.g., elevation, leaf area index, 

diurnal temperature). Therefore, ascertaining the reason behind CMAQ forecasting bias based 

on a complex environment is challenging. In addition, because of their unique geography of the 

three northwestern states, the CMAQ-CNN model, which was trained for the entire United 

States, was severely “undertrained” to represent these states.  

  
 
 
 



 

 90 

 
Figure 5.6. Taylor diagram showing the performance of the CMAQ and CMAQ-CNN models in 
different months of 2014 averaged over all AQS stations in the continental US. 

 

5.3.3 CMAQ-CNN dynamical bias-correction 

Figure 5.7 compares the estimates of high ozone episodes of the CMAQ model to those 

of the CMAQ-CNN model during the ozone season of 2014 across the United States. Results 

of the CMAQ model exhibit a notable overprediction of high ozone peaks in nearly all states 

during all months. This trend is more pronounced in the eastern half of the United States than 
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in the western half. The CMAQ-CNN model, by contrast, accurately addressed such 

overprediction biases in the western states with a sustainable prediction of high ozone peaks. 

This finding was independent of the relatively large monthly variations of CMAQ estimations 

in the south and southeastern states (e.g., Carolinas). Figure 5.8 shows a variation in daily IOA 

changes after the CMAQ-CNN model was applied to all states in different months of the 2014 

ozone season. This figure shows that the CMAQ-CNN model used the CMAQ low biased 

prediction to adjust its bias-correction scheme for the western states (e.g., California, Utah, and 

Nevada), boosting its accuracy sustainably. Figure 5.8 depicts a trend similar to that in Figure 

5.7; in other words, variable performance of the model from month to month in different states.  

Both Figures 5.7 and 5.8 display some variation in model performance from month to 

month. In general, the CMAQ-CNN model provided more accurate predictions with higher 

daily IOAs in the majority of the months, particularly high ozone months (June-September). 

This finding was not unexpected. For one, the uncertainty of CMAQ and WRF output is 

generally higher during cold months than warm months (84), known as the “cold bias.” Since 

the CMAQ-CNN model used CMAQ outputs as input parameters, their uncertainty was not 

explicitly included in the CMAQ-CNN modeling system, resulting in no footprint of the 

variation in the input uncertainty in the CMAQ-CNN model. In addition, cloud cover is seasonal 

and impacts the quality of estimated ozone precursors (by CMAQ) as well as meteorological 

parameters (by WRF) (85). While the cloud fraction is an input parameter, its impact varies 

seasonally and geographically. This study, however, explored neither seasonality nor spatial 

relationships between stations. The relatively significant uncertainty propagated through the 

bias-correction process showed some degree of inconsistency in the bias-correction level. For 

instance, the CMAQ-CNN model showed a more than 10% difference when applied in two 
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neighboring stations in the Houston area with the same CMAQ IOA performance, necessitating 

further studies that develop seasonally- and spatially-specific models to identify such uncertain 

input parameters.  

 
Figure 5.7. Monthly mean of maximum ozone for the 7 months of the ozone season (April-October) in 
2014.  
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Figure 5.8. Changes in the daily index of agreement (IOA) of the CMAQ-CNN model for the 2014 
ozone season (April-October). The vertical red lines represent no changes in the IOA as a reference. 
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Another reason why we expected the CMAQ-CNN model to provide more accurate 

predictions with higher daily IOAs during high ozone months was that the sample data we 

reconstructed from queuing hourly diurnal values (24 hours for each input parameter for each 

day for each station). This arrangement directed a learning process based on a repetitive, smooth 

variation of hourly ozone concentration. Depending on meteorological conditions, emissions 

patterns, and formation/destruction processes, ozone concentrations typically follow a diurnal 

pattern with minimum values before sunset and peaks in the afternoon. When we compared the 

warm and cold months, we found that the shape of diurnal ozone concentrations differed 

significantly. The ozone formation (and destruction) process performed better during the warm 

months than during the cold months, leading to less variability in the diurnal pattern. Lastly, 

the hourly variation of ozone concentrations was closely associated with the mesoscale 

circulation (e.g., sea/land breeze) and the availability of NOx (86). During the warm months, 

the sea/land breezes are stronger than in cold months because of the greater temperature 

differences between the land and the ocean or between two landmasses. Stronger breezes lead 

to stronger winds with less directional variation. Higher wind speed values can boost the 

accuracy of a machine learning-based forecasting model (as mentioned previously In Chapter 

3 and 4), which carries out a more robust transport process of ozone precursors and thus a more 

homogeneous ozone formation/destruction process. 

 

5.3.4 CMAQ-CNN performance dependencies 

The performance of the CMAQ-CNN model widely depends on the performance of the 

CMAQ base model. Influenced by the significant overprediction of the CMAQ model during 

the warm months, the CMAQ-CNN model overpredicted ozone peaks in most cases during the 
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warm months (June-September), shown in Figure 5.9, which displays a scatterplot of both the 

CMAQ and CMAQ-CNN models. During April and October, both models slightly 

underpredicted ozone peaks, the results of unbalanced data incorporated into the training 

process of the CNN model, which led to inconsistent training targeting accurate forecasts for a 

range of daily ozone peaks.  Figure 5.10 shows changes in the IOA after we applied the CMAQ-

CNN model to different levels of daily ozone peaks. Most positive changes were prevalent on 

days with daily ozone peaks of more than 70ppb and the absolute daily IOA increased more 

than 10%. For days with lower ozone peaks, such positive changes were significantly less 

pronounced. Although predictions of more accurate high ozone episodes were positive in the 

context of air pollution modeling, “mispredictions” of low ozone days reduce the reliability of 

the model, requiring further investigation. 

 

 
Figure 5.9. Scatter plots of the CMAQ and CMAQ-CNN models in different months in 2014. 
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Figure 5.10. Heatmap showing changes in the IOA of the CMAQ-CNN model for different levels of 
daily observed ozone peaks. 

Figure 5.11 the direct relationship between changes in the IOA after application of the 

CMAQ-CNN model and those of the CMAQ model. Although this relationship follows a 

mostly linear trend, the nonlinearity of CMAQ IOA was extreme for those days with IOA less 

than those with 0.7 (similar to that in Figure 5.5). Also, in this figure, 𝑦 + 𝑥 = 1 (where 𝑦 

represents changes in the IOA and 𝑥 represents CMAQ IOA) represents the results of an ideal 

post-processing model. Comparably,  𝑦 + 𝑥 = 0.91	can be drawn for the CMAQ-CNN model 

as a representation of the relatively strong likelihood of IAO enhancement. 
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Figure 5.11. Relationship between changes in the IOA of the CMAQ-CNN model and those of the 
CMAQ model.  

Figures 5.12 and 5.13 show the geographical distribution of yearly IOA and changes in 

the correlation coefficient, the percentage of missing data in observations, and the density of 

the population (provided by the US Census Bureau) by county across the United States. As 

expected, the distribution of changes in both the IOA and r was similar to geographically (see 

Figure 5.12). Generally, when observations had a lower percentage of missing data, their 

accuracy was greater even though they exhibited no clear correlation (see Figures 5.12a and 

5.13a). After all, the spatial generalization of the CMAQ-CNN model was trained by a constant 

level of sample quality. Figure 5.14 illustrates this finding more clearly. The figure compares 

the normalized values of the CMAQ and CMAQ-CNN models, represented by the percentage 

of missing data in the various states. The CMAQ-CNN model shows consistent performance 

for all states independent of the quality of observed data. Changes in the IOAs and r show closer 

agreement when compared with the population density (see Figures 5.12a and 5.13b) because 

the more NOx emissions there are in highly populated areas, the more accurate the estimates of 

ozone precursors of the CMAQ model are. Even though the CMAQ model might encounter 

𝑦 + 𝑥 = 1 

𝑦 + 𝑥 = 0.91 
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significant bias in these regions, the higher quality of ozone precursors—available as input in 

the CMAQ-CNN model—ensures a better understanding of the ozone chemistry, which 

particularly important when a pool of meteorological and chemical variables is incorporated 

into the CNN model to address CMAQ biases.  

 
Figure 5.12. County-level changes in (a) the yearly IOA by CMAQ-CNN model; (b) the yearly 
correlation by the CMAQ-CNN model. 

 

(a) 

(b) 
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Figure 5.13 County-level changes in (a) the percentage of total missing data points in the observational 
data; and (b) the population density. 

(a) 

(b) 
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Figure 5.14. Scatterplot comparing the normalized values of the CMAQ and CMAQ-CNN models for 
different percentages of missing values. 

 

5.4 CMAQ-CNN model diagnoses 

It was clear that the success chance of the CMAQ-CNN model to produce accurate 

results was vastly related to the quality of CMAQ forecasts; when CMAQ forecasted ozone 

with a yearly IOA more than 0.5, the IOA of CMAQ-CNN model was more than 0.8 for most 

cases. However, the level of such success was generally unrelated to the level of CMAQ 

accuracy. For instance, the CMAQ-CNN model was unable to produce a yearly IOA=0.8 even 

though the CMAQ IOA was more than 0.7 (e.g. EPA #101 Tennessee: CMAQ IOA=0.7; 

CMAQ-CNN IOA=0.78). Also, in some cases, the yearly IOA after post-processing approach 

was less than 0.7 (e.g. EPA #1011 California: CMAQ-CNN IOA=0.63). Here, we used the 
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distance analysis from dynamic time warping (DTW) to explain (i) why CMAQ-CNN works 

satisfactory for some stations than others, and (ii) why it performed poorly in some stations. 

To assess similarity between two time-series, DTW works by expanding or contracting 

a given time-series to minimize the difference between two time-series (87). Its advantage over 

Euclidean distance, a conventional distance analysis method, highlights when there is a shift 

(e.g. time lag) between two time-steps in two time-series (see Figure 5.15 comparing DTW 

with Euclidian distance). The Euclidean distance takes any pairs of data within the time-series 

and compares them to each other. DTW, on the other hand, calculates the smallest distance 

between all points, hence, matching one time-step to many counterpart steps on the linked time-

series (see Figure 5.15). Due to its non-linear mapping capability, it is widely used in various 

domains, from time-series classification, to bioinformatic, engineering, health signal 

processing, and speech recognition (87).  

DTW has the benefit that two time-series of the same shape will be classed as similar 

even if each time-series has different absolute values or if one time-series contains large 

variability. Figure 5.16 compares the DTW distance between the observation time-series and 

two prediction models for an ozone monitoring station in Texas. DTW detects the differences 

between CMAQ estimation and observation with highest difference in the middle of 2014. 

 
Figure 5.15. Comparison of time steps based on the DTW (black) and Euclidean distance (red) analysis. 
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Figure 5.16. Distance plot calculated by DTW comparing similarities (red line) between observations 
and two prediction models (CNN in the top right and CMAQ in the top left panels). 

 

5.4.1 Satisfactory post-processing scenarios 

Figure 5.17 shows the time-series of CMAQ, CMAQ-CNN, and observed daily ozone 

concentrations in three EPA stations. These stations were selected since the IOA accuracy of 

CMAQ-CNN model was wither more than 0.9 (Figures 5.17a and 5.17b) or 20% more than 

CMAQ (Figure 5.17c). Figure 5.18 compares the DTW distance analysis of CMAQ and 

CMAQ-CNN for the same stations. These are three typical cases of satisfactory improvement 

by CMAQ-CNN post-processing approach: 

 

Dynamic Time Warping (DTW) 
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Figure 5.17. Comparison of the time series of CMAQ and CMAQ-CNN predictions for EPA stations 
(a) #3001 (California), (b) #33 (Florida), and (c) #4 (Vermont). 

(a) 

(b) 

(c) 
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Figure 5.18. Comparison of the distance analysis of CMAQ and CMAQ-CNN predictions for EPA 
stations (a) #3001 (California), (b) #33 (Florida), and (c) #4 (Vermont). 

 

(a) 

(b) 

(c) 
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Figures 5.17-18(a): The ozone observation in this California location was higher during the beginning 

of the ozone season followed by a relatively steady values ranges between 20-

40ppb. CMAQ, however, significantly overestimated daily ozone concentrations 

after May. The overestimation was more pronounced for the end of the ozone 

season, resulted in an overall IOA accuracy of 0.73. The DTW distance analysis 

shows a consistent distance between CMAQ predictions and observed values. This 

consistency helped the CMAQ-CNN model understands the bias trends in CMAQ 

and boost the prediction accuracy by 0.17, even though the large distance from 

CMAQ predictions (mean distance=0.52) mirrored as a relatively significant 

overestimation in CMAQ-CNN post-processed results.  

Figures 5.17-18(b): Here, the trend in ozone concentration followed a U-shaped curve in ozone season 

due to strong summer winds coming from the large bodies of water near Florida 

(North Atlantic Ocean and the Gulf of Mexico). For this station, CMAQ accurately 

predicted this trend thought the ozone season with a relatively constant bias in 

July-September. As a result, the overall IOA accuracy was 0.84 for CMAQ 

prediction. The CMAQ, also, showed a consistency in the DTW analysis with two 

distance gaps in July and September (beginning and the end of the CMAQ 

overestimation period). The CMAQ-CNN model used the decent performance of 

the base model in its post-processing algorithm and further improved the CMAQ’s 

IOA accuracy by around 10%.  

Figures 5.17-18(c): The trend of observed ozone followed a steadily decreasing trend in this northeast 

state, due to significantly cooler summer and fall months. That along with the 

smaller availability of ozone emission sources around of this station resulted in 

lower level in the ozone formation during the ozone season. However, the CMAQ 

model overestimated the ozone by more than 50% for the most the season with a 
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relatively large mean DTW distance (0.62). However, the CMAQ-CNN model 

was able to address this issue due to the consistency of the bias trend in CMAQ 

predictions (see left panel for DTW distance). Thus, the overall IOA accuracy 

improved by 0.2.  

The key ingredient in a satisfactory post-processing result using the CMAQ-CNN model 

was the regularity of the bias trend in CMAQ as the base model for training the CNN model. 

As shown by the DTW distance analysis, when the DTW distance of CMAQ predictions from 

observed values was consistent throughout the ozone season, the CNN model was able to 

improve the CMAQ results to a reliable level (IOA>0.8). We have tested this hypothesis by 

considering typical unsatisfactory scenarios using the CMAQ-CNN post processing approach. 

 

5.4.2 Unsatisfactory post-processing scenarios 

Figure 5.19 compares the time-series of ozone observation with two models, CMAQ 

and CMAQ-CNN, for three selected EPA stations. For all of these stations, the CMAQ-CNN 

model failed to reach a reliable IOA accuracy level of 0.8, even though it improved the accuracy 

of the CMAQ model in all cases. Figure 5.20 represents the DTW distance analysis between 

two models and the ozone observation for the same stations. These are three typical cases of 

unsatisfactory improvements by the CMAQ-CNN model:  

Figures 5.19-20(a): The ozone trend in this station fluctuated through the ozone season with frequent 

spikes in May, July, and October mostly due to biomass burning (Choi et al., 

2016). While the CMAQ model predicted the ozone with a relatively small bias 

(IOA=0.7), the bias trend varied time to time—meaning that the under- and over-

prediction trends were changed frequently. A footprint of this can be seen in the 

DTW analysis as changing in the path of distance trend. This inconsistency was 
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mirrored in the equivalent DTW analysis for the CMAQ-CNN model as a 

consistent distance trend, resulted in unsatisfactory IOA accuracy level 

(IOA=0.78) with an increased mean DTW distance (0.89 compared with 0.74 for 

CMAQ time-series).  

Figures 5.19-20(b): The ozone trend in this California location was relatively constant concentration 

generally ranged between 10-30ppb. The CMAQ model significantly 

overpredicted the ozone concentration for the entire time period. This was mostly 

due to proximity of this station to the Pacific Ocean (San Diego county) that 

controls the variation of daily ozone concentration (Pan et al, 2017). The DTW 

distance analysis shows a significant, yet steady, spike in distance between CMAQ 

and the observation. Thus, even though the CMAQ-CNN significantly improved 

the accuracy of CMAQ model (IOA=0.63 compared to CMAQ IOA=0.44), such 

a severe distance was the reason for underperforming the post-processing 

approach. That also was mirrored a consistent distance in the CMAQ-CNN’s 

distance trend (see the right panel). 

Figures 5.19-20(c): In this station, the ozone concentration followed an infrequent trend with lows and 

highs spread indiscriminately across the ozone season. That is because several 

factors were affecting the air pollution in this region, including biomass burning, 

strong frontal system, etc. As a result, the CMAQ model underperformed with 

large overestimation for the most of time-period (IOA=0.55). The bias of CMAQ 

model also did not follow a clear trend as shown in the DTW distance analysis. 

The CMAQ-CNN model improved the prediction results by more than 10% with 

a reduced DTW distance (0.27 vs 0.35 for CMAQ time-series). However, the 

varying ozone trend in accompany with inconsistency in prediction bias trend 
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resulted in low overall IOA accuracy of the CMAQ-CNN for this station 

(IOA=0.67). 

 

 

 
Figure 5.19. Comparison of the distance analysis of CMAQ and CMAQ-CNN predictions for EPA 
stations (a) #101 (Tennessee), (b) #1011 (California), and (c) #9008 (Oklahoma). 

(b) 

(c) 

(a) 
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Figure 5.20. Comparison of the distance analysis of CMAQ and CMAQ-CNN predictions for EPA 
stations (a) #101 (Tennessee), (b) #1011 (California), and (c) #9008 (Oklahoma).  

(a) 

(b) 

(c) 
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As oppose to the satisfactory cases, the main reason behind the unsatisfactory post-

processing results using the CMAQ-CNN model was the inconsistency in bias trend shown by 

the DTW distance analysis. Other influential factor was the variability of observed ozone 

concentration. The frequent variation in observation data make it more complicated for the 

CMAQ-CNN model to be trained to address the bias in the CMAQ model. The geographical 

location of a station was also an important factor in the improvement level of the post-

processing approach. The proximity to the large body of water, or the sources from biomass 

burning in the ozone season is among the influential geographical features. Also, as can be seen 

in Figures 5.19-5.20, the DTW distances of CMAQ-CNN predictions from the observed ones 

followed a consistent trend, hence, according to the statements of Figures 5.17-5.18, a 

secondary post-processing model might be a possible solution to boost the prediction accuracy. 

 

5.5 Summary 

To tackle air quality forecasting problems, a number of studies have recently proposed 

deep learning models, particularly CNNs. In this chapter, I extend of the capability of CNNs to 

handle the biases of a particular type of physics-based numerical model, chemical transport 

models (CTMs). Current methods for overcoming such biases have several limitations: They 

are not portable; they rely on a long history of quality observations; they cannot be spatially 

generalized, nor do they incorporate any knowledge from the model in the bias-correction 

process; and they underestimate high concentration episodes. By introducing a new generation 

of post-processing techniques, I have addressed these limitations in our proposed model, 

namely, CMAQ-CNN. 
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I found that the CMAQ-CNN is capable of being a portable, generalized model and that 

a single trained model can be applied to an entire modeling domain (here, hourly ozone 

forecasting across the continental United States). Results, from different points of view, showed 

that the CMAQ-CNN model enhanced the performance of CMAQ in most cases. It improved 

accuracy (i.e., the daily IOA) by 15% and mitigated the significant overprediction problem of 

CMAQ, especially during the warm months (June-September). The model also dynamically 

handled CMAQ biases. The level of bias correction of CMAQ-CNN was consistent with and 

independent of the level and consistency of the CMAQ overprediction.  After post-processing, 

we found a direct relationship between the quality of WRF and CMAQ forecasting and changes 

in the IOAs. Nevertheless, we found no clear relationship between the quality of observations 

(the percentage of missing data) and changes in the IOA, resulting from the generalization of 

the model. With regard to the geographical distribution, the forecasts of the CMAQ-CNN model 

were more accurate for regions with denser populations because of its richer description of 

ozone precursors in the presence of more NOx emissions. 

The results showed that the improvement level was dependent to the DTW distance of 

the CMAQ model to the observations. When the calculated distance followed a consistent trend, 

the post-processing model was able to address the CMAQ’s bias independent from its accuracy 

level or error range. However, when such consistency was absent, or observed ozone varied 

frequently, the errors in the CMAQ model were mirrored in the results of the prost-processing 

model. 

This study primarily focused on developing a post-processing tool for a CTM model. I 

combined the advantages of CTM to the understanding of complex physics and chemistry in 

the atmosphere with the portability of CNN in the construction of a generalized post-processing 
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model. I found that consistent error patterns are critical to the development of an effective and 

reliable post-processing model bias reduction tool for future air quality forecasts. Thus, if 

modeling processes are consistent, the same approach can be used for other physics- or 

chemistry-based numerical models. It is expected that the approach proposed in this study will 

assist the end-users of numerical models with identifying forecasting errors.  
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CHAPTER 6. A HYBRID HURRICANE FORECASTING SYSTEM: 

DEEP LEARNING ENSEMBLE APPROACH AND KALMAN FILTER  

6.1 Introduction 

As hurricanes are complex phenomena, so is crucial the accurate forecasting of their 

trajectories and intensities. Certain regions depend on accurate forecasts to execute their 

disaster preparedness plans and reduce the impact of hurricanes on both people and property. 

The Gulf Coast, for instance, is prone to tropical storms and hurricanes, as evidenced by Katrina 

in Louisiana in 2005, Harvey in Texas, and Irma in Florida, both in 2017. As such hurricanes 

result in significant loss of life and property, it is imperative that communities living in the path 

of a hurricane receive forewarning to evacuate and mitigate potential damage to property. 

Timely and accurate forewarning relies on accurate forecasting of the path of a hurricane. As 

the evolution of a hurricane, however, depends on many factors at different scales, altitudes and 

time, modeling them can pose extreme challenges (88).  

Current dynamical hurricane models use mathematical equations that govern the 

behavior of the atmosphere at every point on the globe. Common hurricane models, including 

the Hurricane Weather Research Model (HWRF) (89), are deterministic and solve energy and 

momentum balance equations to predict the spatiotemporal evolution of a hurricane. Although 

the accuracy of the model predictions of hurricanes has improved in the last several decades, 

models still produce a significant number of track and intensity errors (90). The challenge of 

forecasting hurricanes stems from many complex factors and interactions such as those among 

ocean temperatures, wind shear, pressure systems, and topography (91). The lack of accuracy 

was evident when it failed to predict the path of Hurricane Harvey when it stalled near the coast 
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of Texas and made two landfalls in August-September 2017 (92). Figure 6.1 illustrates the 

prediction of the track of Hurricane Harvey by several models less than two days before it made 

landfall, indicating significant modeling bias. Hurricane models have a history of unreliable 

predictions of the maximum sustained wind speed of a cyclone, or intensity (93). One 

explanation for their unreliability is their inability to observe intensity as a cyclone expands 

over a wide geographical area with an irregular intensity profile (94). Alternatively, statistical 

models, which run mathematical equations on a grid with a shortlist of physical predictors, 

generate more reliable predictions in a relatively short time frame (95). These models, however, 

are unable to adequately interpret the spatiotemporal relationships in a grid system, rendering 

them unreliable for accurate track forecasting (96). 

 
Figure 6.1. Track forecast of Hurricane Harvey from different Hurricane models less than two days 
before landfall. Figure produced by Levi Cowan and is available at tropicaltidbits.com. 
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Acknowledging these limitations, I have investigated the potential use of deep learning 

(DL) algorithm that ensembles the results of different hurricane modeling techniques. Despite 

successful applications to geospatial and medical image analysis, only a few studies that applied 

DL for hurricane tracks have been published. In one study, Racah et al. (2017) (97) presented a 

spatiotemporal convolutional encoder-decoder model to detect extreme climate events. 

Alemany et al. (2018) (98) used a fully connected recurrent neural networks (RNN) model to 

predict the trajectory of the hurricane, and Kim et al. (2019) (99) proposed a prediction method 

for route trajectories using an incremental neural network model. These studies, however, 

involved a number of limitations. For one, the regional maps (for physical input images) of their 

models were spatially fixed, posing several problems. One is that a tracked storm must remain 

in a region, forcing the selection of a vast region with a coarse spatial resolution, which may 

nonetheless account for the influence of regional physical phenomena such as a nearby pressure 

system on a hurricane.  

To overcome the above shortcomings, our proposed hybrid model adopts two advanced 

statistical approaches, deep learning and Kalman filters, which use the outputs of several 

regional and global dynamical models for 24-hour advance prediction. My proposed model 

involves multiple independent steps for predicting the track and the intensity of a cyclone. With 

each individual sub-model, the model is capable of identifying important factors that 

significantly influence the modeling bias and estimating a bias-corrected forecast. One 

limitation of DL models used as hurricane models is that they do not accurately address sub-

grid phenomena inherent in the models. This issue, in some cases, significantly reduces the 

accuracy of the track forecast when two sub-models are combined. Therefore, I used an 

ensemble Kalman filter (EnKF) (100) to combine tracking sub-models and their results, further 
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improving the track forecasts EnKF uses a recursive mathematical framework that provides a 

computationally efficient solution that can easily adapt to any adjustment using given 

observations (101). This study focuses on the capability of the proposed model to improve the 

outputs of the direct hurricane model, even in cases of uncertain forecasts. Thus, I chose 2017 

to validate our model and Hurricane Harvey as a case study. 

 

6.2 Materials and Methods 

The conceptual framework of this paper appears in Figure 6.2. To model the atmosphere 

as a physical system, we generally use numerical models that estimate the state of the 

atmosphere by taking several factors into account. These factors are estimated by each model 

with its specific modeling configuration (e.g. ocean-atmospheric interaction scheme). A 

computer simulation generates results for a modeling domain in continuous time steps while it 

verifies them against observational data. However, every dynamical model is subjected to 

several limitations caused by either restriction in numerical modeling or computer simulation. 

For example, a simplified physical interpretation of a modeling configuration based on limited 

knowledge of an ocean-atmospheric interaction causes severe uncertainty in the modeling of 

the formation of a cyclone. Girded time-space modeling schemes in a computer simulation also 

cause unavoidable biases that may propagate bias at each step (102).  
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Figure 6.2. Conceptual framework of this study. 

One solution to this problem is to use the results of multiple models by implementing 

an ensemble approach. An approach such as CNN, the machine learning ensemble approach, 

namely the University of Houston (UH) MLE model, used in this study, combines the strengths 

of hurricane models and advanced statistical techniques, so, it is more likely to produce more 

accurate results than either method alone. Unfortunately, ensemble models may not be effective 

in addressing random errors in the base models (ensemble inputs) (103). In physics-based 

numerical modeling systems, errors are caused by incomplete physical implementation, so they 

are not randomly generated (104). Ensemble models may be unable to fully address such errors 

occurring in all models. However, as they are equipped with the likelihood of an occurrence of 

an event, however, they are valuable, and their reliability increases when they are provided 

sufficient data (103).  
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Figure 6.3 displays the schematics of the proposed ensemble hurricane forecasting 

model. We propose using the results of eight different global and regional models as inputs of 

the ensemble model. These models referred to as the Automated Tropical Cyclone Forecasting 

System (ATCF) by the National Hurricane Center (NHC), which frequently updates their 

results. Table 6.1 provides a summary of these models. We acquired our hurricane data, 

comprised of latitude and longitude coordinates, wind speed, and pressure from International 

Best Track Archive for Climate Stewardship (IBTrACS), and the sea-surface temperature (SST) 

from the Global Forecast System (GFC). The IBTrACS provides the most complete tracking 

data of global tropical cyclones that have occurred since 1851, and the NHC houses the largest 

collection of observational data of hurricanes and tropical storms within the North Atlantic and 

Eastern Pacific that have occurred since the 1950s. The data were gathered from both 

hemispheres, and the number of records per storm varies from 2 to around 120 time-steps for 

different tropical cyclones. Figure 6.4 shows the historical tropical cyclones archived by 

IBTrACS in the North Atlantic and Eastern Pacific. Operated by the National Centers for 

Environmental Prediction (NCEP), GFS provides SST data at a resolution of 0.5° for 

operational proposes. I collected a 14-year history of hurricane tracking model data from 2003 

to 2016, which contained a complete set of modeling results. 
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Figure 6.3. Schematic of the proposed hurricane forecasting system. 

Table 6.1. Summary of global and regional dynamical models for track, intensity, and wind radii. 

ATCF* ID Model Name Horizontal 
Resolution 

Cycle/Run 
Period 

NHC Forecast 
Parameters 

NVGM/NVGI Navy Global 
Environmental Model 

Spectral (~31 
km) 

6 hr (144 hr) Track and 
intensity 

AVNO/AVNI 
GFSO/GFSI 

Global Forecast System Spectral (~13 
km) 

6 hr (180 hr) Track and 
intensity 

EMX/EMXI/EMX2 European Centre for 
Medium-Range Weather 
Forecasts 

Spectral (~9 km) 12 hr (240 hr) Track and 
intensity 

EGRR/EGRI/EGR2 U.K. Met Office Global 
Model 

Gridpoint (~10 
km) 

12 hr (144 hr) Track and 
intensity 

CMC/CMCI Canadian Deterministic 
Prediction System 

Gridpoint (~25 
km) 

12 hr (240 hr) Track and 
intensity 

HWRF/HWFI Hurricane Weather 
Research and Forecast 
system 

Nested 
Gridpoint (18-6-
2 km) 

6 hr (126 hr) Track and 
intensity 

CTCX/CTCI NRL COAMPS-TC w/ 
GFS initial and boundary 
conditions 

Nested 
Gridpoint (45-
15-5 km) 

6 hr (126 hr) Track and 
intensity 

HMON/HMNI Hurricane Multi-scale 
Ocean-coupled Non-
hydrostatic model 

Nested 
Gridpoint (18-6-
2 km) 

6 hr (126 hr) Track and 
intensity 

Model 1 

Model 2 
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Figure 6.4. Historical North Atlantic and Pacific tropical cyclone archive collected by International Best 
Track Archive for Climate Stewardship (IBTrACS) since the 1950s. 

 

6.2.1 CNN ensemble modeling 

I implemented CNN in the proposed hurricane forecasting model. Inspired by biological 

processes, In CNN (see Figure 6.4), the convolutional layer applies a convolution operation to 

the input and passes the results to the next layer. In the fully connected layer, every neuron in 

the last convolutional layer is linked to every neuron in the output layer. Implementing CNN 

for accurate hurricane track forecasting, however, requires a large number of track images. As 

Figure 6.4 shows, the available history of hurricanes might be insufficient to fully train a CNN 

ensemble model. Thus, I proposed a multi-step modeling approach that individually predicts 

several hurricane parameters. CNN1 predicts hurricane wind intensity. Using two CNN models, 

I broke down the track forecast as a two-dimensional problem (image forecasting) into two one-

dimensional problems (time-series forecasting) by forecasting the direction of a hurricane (0-
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360 degrees) (CNN2) and travel distance (number of miles that a hurricane travels in each step) 

(CNN3).  

 

6.2.2 Ensemble Kalman Filter post-processing 

I explored the advantages of using EnKF to post-process our deep-learning hurricane 

forecasting system. In particular, by reducing the bias of the deep learning model, I was able to 

track the path of a hurricane over time. While Kalman filters and their extensions are commonly 

used for prediction, data fusion, and bias correction (105-107), they have primarily been applied 

to objects with known or fixed dynamics. The EnKF, however, is a Monte Carlo-based 

implementation of the Kalman filter for extremely high-dimensional, possibly nonlinear, and 

non-Gaussian state estimation problems. Its ability to handle state dimensions in high order has 

made the EnKF a popular algorithm in several geoscientific disciplines (107).  

The use of the EnKF as a scalable algorithm was vital for the proposed deep-learning 

hurricane tracking model for several reasons. (i) The deep-leaning hurricane forecast contains 

two sub-models that predict the path of a hurricane. Such a sub-modeling prediction approach 

requires a proper, independent compilation algorithm such as the EnKF to fuse produced results 

with various scales (degree and miles) of bias and values. (ii) Despite the use of a large amount 

of data in our deep learning models, unavailable critical factors affect the precise prediction of 

a hurricane. Thus, dynamically observing the characteristic bias of the forecasting model and 

correcting it at each prediction step requires a post-processing technique. And (iii) the EnKF 

will reduce the processing time of the hurricane forecasting system to make sense of the ever-

increasing amount of both measured and modeled input data. Here, instead of running the multi-
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step deep learning procedure after the occurrence of each hurricane, the EnKF systematically 

modified the trained deep learning models after each measurement update. 

In this study, the EnKF estimated the track prediction error and then subtracted by the 

forecast from CNN2 (direction) and CNN3 (travel distance). The linear updating scheme used 

in the EnKF is useful for small displacements of forecasted hurricanes from their actual 

positions; this situation is operationally relevant since the position of a hurricane is often 

frequently estimated in near real-time by different sources of modeling data. The EnKF used 

all tropical cyclones in the North Atlantic in 2019 except targeted cyclones, indicating that for 

each cyclone, the EnKF updated the positions based on the model-measurement errors of all 

other 2019 cyclones.  

 

6.3 Results and Discussion 

6.3.1 Model performance for 2017 Atlantic hurricane season 

I compared the performance of our models to that of the observation benchmark, 

IBTrACS. We also directly compared model errors and modeling skills using root mean squared 

errors (RMSE) with the CLImatology and PERsistence (CLIPER) model3 as the NHC official 

forecast for 2017. Figure 6.5 compares the results of our hurricane forecasting model, namely, 

the University of Houston Machine Learning Ensemble model or UH MLE, with the NHC 

official forecast and selected hurricane forecasting models. The results showed relatively better 

results than the NHC official forecast; intensity forecast errors (Figure 6.5a) decreased by 34% 

and the track forecast errors (Figure 6.5b) by 13%. Also, Figure 6.5c indicates the relative 

advantage of UH MLE over other hurricane models for 2017 North Atlantic tropical cyclones. 
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Figure 6.5. Comparison of (a) the intensity forecasting errors of UH MLE (CNN1) and the NHC official 
forecast, (b) the track forecasting errors of UH MLE (CNN2+CNN3+ENKF), CNN (CNN2+CNN3), 
and the NHC official forecast, and (c) the path and intensity forecasting errors of UH MLE, the NHC 
official forecast, and selected model forecasting errors for the North Atlantic tropical cyclones in 2017.  

The UH MLE predicts the parameters of a hurricane with a more stable range of errors. 

This is particularly beneficial when a forecasting system is used for operational purposes. The 

reason might be that environmental factors (pressure and SST) have been incorporated into the 

ensemble approach, so the model is able to relate the biases of dynamical models to these 

footprints of weather conditions. This finding is more apparent in intensity forecasts, which 

contain more intense relationships between these parameters and the wind field.  

The post-processing by EnKF further improved the track forecast by an average of more 

than 6% and as much as 19%. This proves the capability of the filter at adjusting the noisy 

predictions (CNN models) by a given set of similar observations (i.e. cyclones that formed 

during the same hurricane season in a similar geographical location). Tables 6.2 shows the 

detailed statistics of forecast results from several cyclones. For all cyclones except for Tropical 

Storm Emily, the EnKF showed a scope of improvement. Emily was a rare rapidly-forming, a 
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short-lived tropical storm that originated in the Gulf of Mexico relatively near the western coast 

of Florida. The location of tropical cyclones of the 2017 Atlantic hurricane season can be seen 

in Figure 6.6. Consequently, the dynamical models estimated its track with a highly biased 

forecast (+37 nocturnal miles of the official track error forecast). The CNN models already 

reduced the bias by more than 15 miles, more than 40%. The remaining errors were likely 

randomly generated (i.e., they were the result of unknown sources); hence, use of the post-

processing approach left no room for improvement.   

Table 6.2. Comparing the forecast biases of track and intensity of the UH MLE model and NHC official 
forecast for 2017 North Atlantic tropical cyclones. 

Name 

UH MLE 
track (init.)  

(n miles) 

UH MLE 
track  

(n miles) 

EnKF 
impact  

(n miles) 

EnKF 
improvement  

(%) 

NHC Official 
track 

(n miles) 

UH MLE 
Intensity 

(knots) 

NHC Official 
Intensity 

(knots) 
Tropical Storm    Arlene 20.67 20.03 0.64 <3* 28.22 7.91 9.23 
Tropical Storm        Bret 20.43 19.49 0.94 4.6 19.13 8.52 4.25 
Tropical Storm     Cindy 29.60 27.97 1.63 5.5 36.59 3.68 4.61 
Tropical Storm        Don 32.37 30.35 2.02 6.2 34.11 3.68 4.56 
Tropical Storm     Emily 22.24 22.57 -0.33 -1.5 37.55 9.20 8.43 

Hurricane  Franklin 27.79 23.87 3.92 14.1 26.42 4.74 7.36 
Hurricane        Gert 23.82 23.18 0.64 <3* 32.09 5.91 6.42 

Major Hurricane   Harvey 20.10 19.47 0.63 <3* 26.57 8.71 11.77 
Major Hurricane       Irma 30.91 29.95 0.96 <3* 30.88 3.54 11.29 
Major Hurricane        Jose 19.27 18.67 0.60 <3* 21.72 9.17 13.90 

Hurricane      Katia 25.74 20.86 4.88 19.0 21.50 3.37 8.07 
Major Hurricane         Lee 34.39 30.77 3.62 10.5 36.08 3.21 10.64 
Major Hurricane     Maria 25.95 25.14 0.81 <3* 22.06 9.40 14.86 

Hurricane       Nate 30.97 30.01 0.96 <3* 33.47 4.86 6.97 
Major Hurricane  Ophelia 24.61 21.81 2.80 11.4 19.47 7.81 8.41 

Tropical Storm Philippe 25.84 24.02 1.82 7.0 22.88 4.21 5.75 
Tropical Storm       Rina 24.37 21.57 2.80 11.5 20.90 2.61 12.90 

Average 25.83 24.10 1.73 6.4 27.63 5.91 8.79 
* EnKF exhibited a notable instability in bias-correction, Thus, the average values 5 runs are selected as 
represented results.  
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Figure 6.6. 2017 North Atlantic tropical cyclones, obtained from ropicalatlantic.com. 

As seen in Table 6.2, the UH MLE failed to address several cases with large track 

forecasting errors, Tropical Storm Don, Hurricane Lee, and Hurricane Nate, all highlighted in 

bold font. Although the forecasts for all of these cases were significantly more accurate than 

the NHC official forecasts, the forecast error was over 30 nocturnal miles. This finding could 

have several explanations. For one, the hurricane models (the inputs of our ensemble model) 

estimated the track with larger than average uncertainties caused by either the short lifetime of 

a cyclone (Don), a specific location of the cyclone formation and path (Nate), or complex 

interactions with neighboring pressure systems (Lee). These uncertainties were mirrored in the 

CNN ensemble model. Another explanation is that a limited number of environmental variables 

were used to regulate the dynamical modeling biases, so the CNN models failed to understand 

the cause(s) of errors. Finally, although hurricanes are among the most extreme weather events, 

the training history of CNN models was limited to 14 years of modeling outputs. If more data 

and more environmental variables were used, the CNN models might have been able to contend 
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with some of their inherent biases by incorporating a more comprehensive understanding of 

weather patterns.  

6.3.2 Model performance for Hurricane Harvey 

 I studied Hurricane Harvey as a case study of improvement in forecasting by our 

proposed model. Figure 6.7 compares the results of our modeling approach with observations 

(IBTrACS), and the NHC official forecast at various time steps before and after the first and 

second landfall of Harvey, which intensified on August 24 and made its first landfall on August 

26 in South Texas. The second landfall was on August 30 in the northern part of the Gulf of 

Mexico as a weak tropical storm that caused flooding damage across a wide geographical area 

in the southern regions of the United States (108). The results show significant improvement in 

both the track forecast (by 27%) and the intensity forecast (by 26%) compared to the NHC 

official forecasts. Both before and after landfall, the forecasting results reflected these 

improvements, indicating the robustness of the forecasting product. Improvements were the 

most noticeable after the first landfall and before the second one when Harvey stalled for several 

days (see Figure 6.7). Although, in this case, the dynamical hurricane models were significantly 

uncertain in the forecast 24 hours in advance, our model captured the errors, resulting in more 

accurate forecasts (Figure 6.7c). Also, when Harvey weakened after its first landfall, 

simplification of the hurricane track in the “direction” and “travel distance” improved the 

forecasting results (Figure 6.7b). 
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Figure 6.7. Preliminary results of the UH Machine Learning Hurricane Ensemble Forecasting system 
for the forecasts of (a) the intensity, (b) the distance traveled, and (c) the intensity of Hurricane Harvey 
in 2017. 

 

6.4 Summary 

A hybrid multi-step hurricane forecasting system was developed. First, three CNN 

ensemble models were developed for predicting a hurricane’s wind intensity, distance traveled, 

and direction using the results of eight dynamical hurricane models. These models were trained 

(a) (b) 

(c) 
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using all tropical cyclones in North Atlantic and Pacific before 2017 and tested for those in 

2017. Then, an ensemble Kalman filter was applied to post-process the track forecast of the 

CNN ensemble model. At each step, the hybrid model forecasted all hurricane characteristics 

24 hours in advance. 

The results of the hybrid model showed the statistical advantage over the NHC official 

forecast with approximately 13% better track and 34% wind intensity forecasts. The ensemble 

Kalman filter, as a post-processing step, further improved the accuracy of the CNN ensemble 

model by more than 6%. Hurricane Harvey was considered a case study to explain the 

advancement of the proposed hurricane forecasting model. 
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CHAPTER 7. CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

In this study, various applications of deep learning algorithms, particularly 

convolutional neural networks, were successfully executed in the field of atmospheric sciences, 

including in air quality forecasting, model post-processing, and hurricane tracking. These 

applications showed prediction results with promising accuracies with an easy-to-use, 

computationally-efficient framework and flexible capabilities.  

The first task used a CNN model to forecast hourly ozone concentrations over Seoul, 

South Korea for 2017. Model-measurement comparisons for the 25 monitoring sites for the year 

2017 yielded average indices of agreement (IOA) of 0.84-0.89 and a Pearson correlation 

coefficient of 0.74-0.81, indicating reasonable performance for the CNN forecasting model. 

The forecasting results were found to be generally more accurate for the stations located in the 

southern regions of the Han River, the result of more stable topographical and meteorological 

conditions.  Furthermore, through two separate daytime and nighttime forecasts, I found that 

the monthly IOA of the CNN model is 0.05-0.30 higher during the daytime, resulting from the 

unavailability of some of the input parameters during the nighttime. Although the CNN model 

successfully captured daily trends as well as yearly high and low variations of the ozone 

concentrations, it notably underpredicted high ozone peaks during the summer. The high 

prediction bias was addressed by proposing a data ensemble approach in the next task. 

In the second task, six generalized machine learning (ML) ensemble models were 

developed to predict the real-time hourly ozone concentration of the following day. The 

training, testing, and input variables were similar to those in first task. The ensemble models 
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fused two regression models: a low-ozone peak model and a high-ozone model. For both, 

extremely randomized trees and deep neural networks were used. A regularization approach 

was also adopted that adjusts the model toward capturing higher ozone peaks by resampling the 

training dataset based on the peaks. My results indicated that dopting the proposed ML 

ensemble forecasting method over single-model ML techniques as a part of mainstream practice 

for air quality forecasting will be beneficial for several reasons. For one, the proposed method, 

which captures daily maximum ozone concentrations during the high ozone season (April-

September), reduces the ozone peak prediction error by 5 to 30 ppb. In addition, compared to 

station-specific (independent) ML models with more frequent low-ozone values, models are 

trained with a uniformly distributed dataset, so they are more generalizable in nature. As a 

result, unlike station-specific models, they retain their accuracy (yearly IOA=0.84-0.89) in all 

stations with an IOA increment. The proposed models also make predictions several times 

faster, requiring only one-time training for predicting an entire station network. Based on a 

categorical analysis of the training dataset, an algorithm was proposed for selecting the most 

suitable model for each month. The “best” model further improved the accuracy of both the ML 

ensemble and individual models by up to 2.4 %. This study shows that the ML ensemble 

modeling approach is a fast, reliable, and robust technique that can benefit environmental 

decision makers in urban regions. 

For the third task, a deep CNN was used to map ozone precursors from CMAQ model 

and meteorological parameters from the WRF model (as inputs variables) to observed hourly 

ozone concentrations at a monitoring station (as a target). The results show that the CMAQ-

CNN model significantly improves the performance of the CMAQ model in both accuracy and 

bias. The absolute correlation coefficient is improved by 0.16 on average. The CMAQ-CNN 
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model improves simulated ozone peaks for almost all cases and reduces the bias of CMAQ 

predictions by an average of more than 20 ppb (or 40%). Systematic improvements in CMAQ-

CNN simulations suggest that the deep learning model is effective at reproducing accurate 

estimates of ground-level air quality concentrations. While this study focused on ozone in the 

United States and outputs of CMAQ, the proposed approach can be applied to any measured 

air pollution parameters or numerical model in a mesoscale resolution. 

For the last task, a hybrid hurricane forecasting model was developed for predicting 

hurricane characteristics (track and intensity) 24 hours in advance. Dynamical models produce 

significant model-measurement errors in forecasting hurricanes, the result of the presence of 

both the chaotic growth of errors in the simulations of initial conditions and deficiencies in the 

physics of such models. To improve the prediction of hurricanes, this task proposed a novel, 

hybrid approach that uses a deep-learning approach and an ensemble Kalman filter (EnKF). 

The goal was to forecast the track and wind intensity of hurricanes 24 hours in advance. Using 

the output of dynamical hurricane models and observational data, I first developed a hybrid 

three-step (direction, distance traveled, and intensity) deep learning-based ensemble hurricane 

forecasting model. I used all tropical cyclones in the Atlantic and Pacific Oceans before 2017 

and tested the model for cyclones in 2017. Then, to further reduce the prediction bias of the 

compiled deep learning-based model, I applied EnKF as a post-processing step. The preliminary 

results of the hybrid model for 17 tropical storms in 2017 show statistical advantages (a ~13% 

and ~34% improvement in track and intensity forecast biases, respectively) of official forecasts 

24 hours ahead of the National Hurricane Center (NHC) forecasts. Hurricane Harvey served as 

a case study in this work. 
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Since deep learning algorithms have become popular data analytic techniques, it is 

important for atmospheric scientists to have a balanced perception of their strengths and 

limitations. They can provide a powerful analysis of complex data with well-established 

procedures. However, despite their enormous success in numerous applications, certain issues 

related to their applications in air quality forecasting (AQF) require further discussion. In this 

study, I tried to address significant limitations of CNNs, in two applications presented here: (i) 

a real-time AQF model, and (ii) a post-processing tool in a dynamical AQF model, CMAQ. For 

the first case, I used the wavelet transform to reveal the reasons behind the CNN’s poor 

performance during the nighttime, cold months, and high ozone episodes. I found that when the 

fine wavelet modes (hourly and daily) were relatively weak or the coarse wavelet modes 

(weekly) were strong, the performance of the CNN model was significantly reduced. For the 

second case, I used the dynamic time warping (DTW) distance analysis to compare the post-

processed results with their CMAQ counterparts (as base model). For CMAQ results that had a 

consistent DTW distance from the observation, the post-processing approach properly 

addressed the modeling bias with predicted IOAs more than 0.85. When there was no regularity 

in the DTW distance of CMAQ-vs-observation, the post-processing approach was unlikely to 

perform satisfactorily. These techniques will help researchers to become aware of the 

limitations of deep learning models by considering discrepancies in the input data and their 

temporal trends. 
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7.2 Future work 

While the CNN model can predict the next 24 hours of ozone concentrations within less 

than a minute, I identified several limitations of deep learning models for real-time air quality 

forecasting for further improvement. I suggest that researchers prepare their deep learning 

modeling configuration based on the temporal trends within input parameters, geographical 

locations, and variation frequency of the target pollutant. While my study approach might 

remain valid for other supervised algorithms, I leave a detailed study of other methods as well 

as unsupervised problem for future work. 

Deep neural networks can build accurate air quality forecasting models. However, the 

contributions of the input variables in the prediction model are generally unknown. This is 

especially important in analyzing the sensitivity of the air pollutant (e.g., ozone) to the changes 

of its precursors (e.g., NOx) in an urban environment. I suggest using deep learning to develop 

a ‘dependency’ model to quantify the input sensitivity in dynamical model such as CMAQ. 

This approach can be beneficial in understanding the important factors in selecting efficient air 

quality reduction policy in local or regional scale.      

For future improvement of my hurricane forecasting model/forecasting, I suggest the 

following directions of study: (i) to develop a global hurricane modeling system; (ii) to develop 

an image processing CNN model that uses remote sensing data and a more comprehensive set 

of modeling outputs to generate a direct hurricane forecast; (iii) to apply more environmental 

variables with a longer history for training the deep learning model(s); (iv) to incorporate 

rainfall into the hurricane forecasting approach; and (v) to identify the causes of the biases of 

numerical models in order to tune them for more accurate forecasts.  
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