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ABSTRACT

A survey of fixed point theorems in analysis is
given from their initiation to the present. The many and
varied operators and spaces which occur are classified in-
te a logical arrangement. An analysis is made of certain
classical as well as very recent general theoiems, and a
generalization of one of the modern theorewmns is proved.
The application of fixed point theorems to the proof of
existence and uniqueness of solutions to differential and
integral equations is illustrated by several examples.

Many conjectures and suggestions for further research are

interspersed with the ordered arrangement of the fixed point

theorems in analysis which appear in the literature.
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CHAPTER I

INTRODUCTION

An element x 1s said to be a fixed polnt of a fuﬁc—
tion f from a set A into itself provided that f(x) = x.
Fixed points are of iﬁterest both to the topologist and to
the analyst. The topologist is usually concerned with the
topological prepertles of spaces on which continuous map-
pings have fixed points, and in particular with the struc-
ture of the fixed point set. The analyst, on the other
hand, seeks to establish the existence of fixed polnts for
various types of functions and families of fﬁnctions. He
tries to find a constructive method for obtaining or ap-
proximating a fixed point in order to apply his results to
differential and integral equations. The analyst rarely
works in a space which is more general than a topological
vector space or a metric space. The topologist, however,
may be concerned with a general topological Space.

The study of fixed points has a long and full history.
An excellent survey of fixed points from the topological
point of view is given by Van Der Walt [34].% cCronin [10]

presents an introduction to fixed points and topological

*Throughout this paper a bracketed number refers to
the corresponding reference in the bitliography.



degrce. One purpose of this thesis 1s to provide a review
from the viewpoint of the analyst.

In 1912 Brouwer proved his classical theorem on the
existence of a fixed point for a continuous map of the closed
unit ball in Euclldean n-space into itself. In 1922 Banach
formulated his contraction principle, and in 1927 Schauder
proved the existence of a fixed point for a continuous map
from a convex set C into a compact subset of C in a Banach
space. This was generalized by Tychonoff in 1935 to locally
convex topological vector spaces. Kakutani, 1n 1938, estab-
lished a fixed point theorem for groups of equicontinuous
linear mappings on compact, convex subsets of locally con-
vex topological vector spaces.

Since these first fundamental theorems, an enormous
number of fixed point theorems have been proved by intro-
ducing variations in the types of spaces and types of oper-
ators considered. Ideally, these theorems would range from
the very specific to the most general in some simple order,
allowing classification as one or two very general theorems
and their numerous corollaries. Unfortunately, such a simple
ordering is not yet possible.

The current research on fixed points, being most pro-
lific, has resulted in a great many tyves of spaces and an
even greater variety in conditions on operators without any

easily discernable relationship linking them all together.



Nevertheless, some idea of the general state of affairs is
essential to further progress, in particular in the direc-
tion of finally obtaining the i1deal--the most general fixed
point theorem. 1In addition, such a knowledge would be most
beneficial to those who seek to apply flxed point theorems
in the area of differential and integral eguations.
Therefore, this investigation attempts to present a
view of the current situation in the study of fixed points
in analysis. Chapter II contains the definitions of the
types of spaces, operators, and sets encountered in the re-
search on fixed points, in some cases attempling to alleviate
ambiguity by coining a new term for different concepts which
appear in the literature with the same name. Also in Chap-
ter II is found a statement of the various relations known
to exist between the spaces and operators, as well as the
facts assumed without proof which are used in the succeeding
chapters. Proofs of the classical Brouwer, Banach-Cacciopoli,
Schauder-Tychonoff, and Kakutani theorems are presented in
Chapter III. Chapter IV contains what appear to be the most
genefal of the modern theorems, those of Petryshyn and Guedes
de Figuelredo. Chapter V is devoted to examples of the vari-
ous applications of fixed point theorems. Suggestions for
further research, as well as a classification and statement
of the fixed point theorems found in the literature are pre-

sented in Chapter VI,



CHAPTER II
BACKGROUND

This chapter provides the necessary background for
the succeeding chapters. It includes definitions of the
terms encountered in the literature on fixed points and a
statement of the lesser known facts which are assumed with-
out proof in the remainder of the investigation. In addi-
tion, the final section of the chapter gives a number of
the relations known to exlst between the spaces and operators.
Some of these relations are illustrated, for ease of refer-

ence, in Figures 1 and 2 at the end of the chapter.
DEFINITIONS

I. Spaces

2.1 A pair (V,U) is said to be a topological space

provided that V i1s a nonempty set and U is a col-

lection of subsets of V satisfying:

l. V and ¢ belong to U.

2. The intersection of any finite number of mem-
bers of U is a member of U,

3. The union of any collection of members of U

is a member of U,



2.2

2.3

2.4

2.5

5

A topological space (V,U) is sald to be a Hausdorff

space provided that for any two distinct points
X,y In V there exist sets UX,Uy in U such that x 1is
in Uy, y is in Uy, and Uy N Uy = (.

A triple (V,+,-) is saild to be a vector space (linear

space) over the field F provided that V is a sect, +
is a binary operation on V, and - is a function from
F x V into V satisfying the following:

1. (V,+) is an abelian group.

2. a(bx) = (ab)x for all a,b in F and x in V.,

3. 1x = x for all x in V.

4, (atb)x = ax + bx for all a,b in F and x in V,

5. a(x+y) ax + ay for all a in F and x,y in V.
Note that in the remainder of this investigation,
as in the literature on fixed points, F is assumed
to be elther the real or the complex numbers.

A tcpological space X on which a structure of vec-

tor space over F is defined is a topological vector

space (linear topologlical space) provided that:

1. X is a Hausdorff space.

2. The map (x,y) » x +y from X x X into X is
continuous.

3. The map (a,x) » ax from F x X into X is con-
tinuous.,

A metric space (X,d) is a pair where X is a nonempty

set and d 1s a nonnegative real-valued function on



2.7

2.8

2.9

2.10

X x X vhich satisfies:

1. d(x,y) 0 if and only if x = y.

2. d(x,y) = d(y,x).
3. d(x,y) £ d(x,z) + d(z,y).
A metric space X in which every fundamental seguence

converges to a point in X is said to be complete.

A vector space X 1s a normed space if there exists

a real number ||x|| associated with each x in X

which satisfies:

1. |lx|| > 0if x # 0.
2. ax]| = laf ||x]].
3. = +yll = [xl+[lvll.

A normed linear space which i1s complete is a Banach
space.

An infinite dimensional Banach space X is said to
be a PB space if 1t has the property that there
exist a sequence {X,} of finite dimensional sub-
spaces of X and a sequence {P,} of projections such
that U X, = X, and for all n PpX = X,, Xp4q 2 Xp,
and for some K > 0, ||Phl| £ XK. Note that in the
remainder of this investigation, in the context of
a PB space, {X,} and {Pn} will denote the subspaces
and projections of the definition.

A Banach space X is said to be a GB-space 1f there

exist a family of finite dimensional subspaces {Fa}



and a family of projectlons {Pa} such that

PoX = Fo, |[Pgl] = 1, given any two subspaces there
is a third which contains both, and the union of

the {Fa} is dense 1n X. Note that in the remainder
of this investigatlion, in the context of a GB space,
{Fa} and {Pa} will denote the subspaces and projec-
tions of the definition,

2.11 A vector space X is an inner product space provided

that there 1s a function defined on X x X whose
range is contained in the field of scalars and
which satisfies the following:

1. (ax,y) = a(x,y).

2. (x+y,z) = (x,z) + (v,z).

3. (x,y) = 7,%).

y, (x,x) >0 if x # 0,

2.12 A Hilbert space is a complete inner product space.

2.13 A space which contains a countable, dense set is
said to be separable.

2.14 A locally convex space 1s & topological vector

space which has a basis of convex sets,

2.15 A metric space X is said to be e-chainable if for

every a,b in X there exists a finife set of points

{a = xg,%xy,..0,x = Db} such that d(x;_,,x;) < ¢

m
for 1 = 1,...,m.

2.16 A normed linear space is strictly convex if it has




2.18

2.21

2.22

the property that if ||x + y|| = [|x|[+|]y|]| ana
y # 0 then there is a number t such that x = ty.
If V 1s a vector space over F, then the conjugate

(dual) space of V is the vector space V¥ whose mem-

bers are the continuous linear functionals defined
on V with range contained in F. If V 1s a normed
space, then V* is a Banach space under the norm
[Tl = sup{|Tx|[:[[x]] = 1}.

Let X be a Banach space and x¥ ana x** its rirst

and second conjugate spaces. If X, is in X then

F, defined by F(f) = f(xo), is a continuous 1linear
functional defined on X*. X is said to be reflexive

if every element of X** is of this form,

A normed linear space is uniformly convex if for

any k > 0 there exists h > 0 such that ||x - y|| <k
if [{x|] <1 +nh, [{y[l <1+ hand [[x+y]|]>2.
A locally convex topological vector space is said

to satisfy condition E if the closed convex hull

of any compact set is compact.

The {i topology of a locally convex topological
vector space X is the topology obtained by taking

as a basils all sets of the form

N(p,A,X) = {q in X: |[f(p) - f(q)| < K for f in A}
where A is a finite subset of X* and X > 0.

CNfa,b] is the complete metric space consisting of



II.

the set of all n-times differentiable real-valued

functions on [a,b] with d(f,g) = sup{|f(x) - g(x)]:
x ¢ [a,b]}. Cla,b] is the complete metric space of
continuous real-valued functions on {a,b] under the

above netric.

2.23 L,[0,1] 1s the collection of all square integrable
functions on [0,1].
2.2h 1, 1s the Hilbert space whose elements are sequences
of real numbers, x = (X,,...,Xy,...), Which satisfy
the condition I |x,|? < =, and where (x,y) = Ix,y,.
n n
2.25 Euclidean n-snace (Eﬁ) is the normed linear space
of n-tuples of real numbers over the reals with
n
norm |[|(a,,...,ay)|]| = (E |ai|2)%.
2.26 Unitary n-space is the normed linear space of n-~tuples
of complex numbers over the complex numbers with the
n 1
norm |[(a,,...,a) ][] = (i lailz)ﬁ.
Operators

2.27 A map T from a Banach space X into 1tself 1is sald

to be accretive if for all u,v in X, w in J(u-v),
w(Tu-Tv) 2 0, where for each x in X, J(x) is the
convex subset of X* given by

J(x) = {win X* : w(x) = |1x]1%, Vlwll = |ix]]}.



10
2.28 Let T be a bounded linear operator mapping a
Banach space X into itself. Then T is sald to

be asymptotically convergent if {Tkx} converges

for each x in X. The map T is sald to be asymp-

totically repgular if for each x in X, {Th+lx _ qhyy, 0,

The map T is weakly asyvmptotically regular if the

above convergence is weak.
2.29 Let X be a normed linear space. An operator T
is said to be bounded if there exists a scalar
M such that [[Tx}|| £ M||x]|]| for 211 x in X. T is

locally bounded if {Tx,} is bounded whenever {xp,}

is fundamental.

2.30 Let X be a normed linear space, T a mapping from
D(T) ¢ X into X. T is said to be closed if
{xpn}
T is demiclosed if {x,} < D(T), {x,} + x,

N

D(T), {xp} » x, {Txy} + y, then Tx = y.

{Tx,} ¥ ¢, then Tx = y. T is strongly closed

if {xpn} © D(T), {x,} ¥ x, and {Tx,} + vy, then
Tx = y.

2.31 An operator T mapplng a metric space X into it-
self 1is sald to be compact if it maps every bound-
ed set onto a set with a compact closure.

2.32 An operator T mapping a Hilbert space X into it-

self is said to be demicompact if it has the

property that whenever {x,} is a bounded sequence

and {Txp - xp} is strongly convergent, then there



2.33

2.34

2.35

11
exlsts a subsequence {Xni} of {xn} which is
strongly convergent.

An operator A in a PB space X is said to be
P compact if PnA is continuous in Xn for all
large n and if for any p > 0 and any bounded se-

quence {xn} with x, in X, the sequence

n
{PnAxn - pxn} is strongly convergent then there
exists a strongly convergent subsequence {Xni}
and x in X such that {x,;} »~ x and {PniAXni} + Ax.
An operator A in a PB space is said to be quasi-
compact if A satisfies the following:

1. A is bounded.

2. {xy} + x implies that {PyAxpn} - P AX for
m= 1,2,....

3. If for some h > 0 the sequence {Axp + hxp}
where {xn} is bounded is strongly convergent,
then there exists a strongly convergent sub-
sequence {xp;}.

4. If for some h > G the sequence {PpAx, + hx,}
where {x,} is bounded is strongly convergent
with x, in X, then there exists a strongly
convergent subsequence'{xni}.

In a topological space X a function is said to

be continuous if the inverse image of open sets

is open.



2.36

2.37
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Let X be a normed linear space, T an operator in

X. T is completely continuous if it is both

continuous and compact. T 1s demicontinuous if

{x,} » x implies that {Txn} ¥ Tx. T is weakly

continuous if {x,} ¥ x implies that {Txp} ¥ Tx.

T is strongly continuous if {x,} W x implies

that {Txp} » Tx. T is finitely continuous if it

is demicontinuous on finite dimensional subspaces

of X. T is hemicontinuous if it is demicontinuous.

on line segments in X.
Let X be a metric space, T an operator on X, T is

a strict contraction with constant 5_(c1ass Po)

if 0 < k < 1 and a(Tx,Ty) £ kd(x,y) for all x,y

in its domain. T is strictly nonexpansive if

d(Tx,Ty) < d(x,y) for all x,y in its domain.

T is nonexpansive (class P,) 1f d(Tx,Ty) £ d(x,y)

for all x,y in its domain. T is I locally con-

tractive if for all x in X there exists k > O
and a, 0 £ a < 1, which may depend on x, such

that p,q in Ny (x) implies that d(Tp,Tq) = ad(p,q).

T is uniformly (k,a) locally contractive 1f it is
locally contractive and both k and a do not de-

pend on x. T is k-contractive 1if there exists

a k > 0 such that 0 < d(p,q) < k implies

d(Tp,Tq) < d(p,a) and T satisfies condition 3.



2.38

T is II locally contractive if it is continuous

and there exists a real-valued fuﬁction @ defined
on the nonnegative reals which is upper semi-
continuous and satisfies @g(0) = 0, g(r) < r for

r > 0, such that there cxists a pbsitive integer
n(x) where x is in X such that

d(Tn(x)p,Tn(X)q) < g(a(p,q)) for all p,q in

{Tkx}. T is locally iteratively contractlive if

it is continuous and there exists a real-valued
function ¢ defined on the nonnegative reals which

is upper semicontinuous and satisfies ¢(0) = 0,

Z(s) £ g(t) whenever s £ t, and Eﬁjt < o for all

J=0
t > 0, such that there exists a positive integer

n(x) where x is in X such that
a(rn(x)p en(x)qy < g(a(p,q)) for all p,q in {7¥x}.
Let X be a normed linear space, T an operator on

X. T 1s strictly pseudocontractive with constant

k (class P,) if k < 1 such that ||Tx - Ty|]|?
S x - yl1%* x| [(T-T)x - (I-T)y]||? for all x,y

in X. T is I pseudocontractive (class P,) if

Hox = oy (12 < [l = gl ® + [[(@-D)x - (I-T)y]]?

for all x,y in X. T is II pseudocontractive if

for all x,y in X and all r > 0O,

Ilx - y{| £ |1(2+r)(x-y) - r(Tx-Ty)
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2.41

2.42
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An operator T from a Banach space X into 1ts dual

X¥ 1s said to be demi-invertible if T-! exists

and is a demicontinuocus map from x¥* into X.

Let X be a topological vector space, C a compact
convex subset of X, T map C into X. T is inner
if T(C) € C. T is inward if for all x in C, T(x)
is in inw (x). T is outward if for all x in C,

T(x) is in ouw (x). T is weakly inward if for

all x in C T(x) is in weak inw (x). T 1s wecakly
outward if for all x in C T(x) is in weak ouw (x).
If X is also strictly convex and normed, T is

nowhere normal outward if T(x) belongs to the

normal outward set of x for no x in C.
A map T from a bounded, closed convex subset C of
a GB space X into X is said to be a G operator if:
1. PyT: CN Fg =+ Fy 1s continuous for all a.
2. The solvability of P4Tx = x in Fy for all
but a finite number of o implies the solva-
bility of Tx = x in X.
An operator T mapping a Banach space X into its

dual X¥ is said to satisfy the k-condition if T

is demi-invertible and there exists a constant
k > 0 such that for all x in X |(Tx-T(0)(x)]

2 k||x}]2.
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An operator T mapping a metric space X into it-
self is said to satisfy condition 3 if there
exists an x in X such that {I'"(x)} has a conver-
gent subsequence.
Let X be a Banach space, T a mapping of X into
X*¥. T is said to be monotone if for all x,y

in X, Re(Tx-Ty)(x-y) 2 0. T is strongly mono-

tone if for all x,y in X and some a > O

Re (Tx-Ty)(x-y) 2 & ||x - y||?. T is semi-
monotone if it is obtained from a map f

f: X x X » X¥, that is T(x) = f(x,x), such
that f is monotone in the first variable and
strongly continuous in the second.

Let X be a Hilbert space, T a mapping of X into

itself. T 1s monotone increasing on rays if

Re(T(sx),x) is a monotone increasing function of
the real variable s for all x and all sufficlently
large s. T belongs to class M if it is finitely
continuous and for all x,y in X(Tx-Ty, x-y) 2 0.

T belongs to class My, (strongly monotone) if for

all x,y in X and some a > 0

Re(Tx-Ty,x-y) 2 allx - y|[?. T belongs to class
M; if there exists a continuous, strictly increas-
ing function c¢(r) on the nonnegative reals with

¢(0) = 0 such that (Tx-Ty,x-y) 2 c(]||x-y|]|) for
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2.h47

2.48

2.49

2.50

2.51
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all x,y in X. T 1is in class M, if there exists
a constant a, 0 < a < 1 such that
(Tx-Ty,x-y) 2 al|Tx - Ty||? for all x,y in X. T
is in class M, (monotone) if Re(Tx-~-Ty,x-y) 2 0
for all x,y in X,
In a Banach space X with duality map J a nonlinear

map T is said to be J monotone if

(J(x-y))(Ax-Ay) 2 0 for all x,y in X,
A map T in a normed linear space X 1is said %o be

a reasonable wanderer if starting at x, in X,

IrI\n+1x

W~ 8

| o - T |2 < o,
n=0
In a vector space a map T 1s said to lie on
Ray (U) if there exists t > 0 such that

T =1+ t(U-I).

In a metric space X a map T is said to be

Lipschitz (belong to class Lip) with constant L

if there exists L > 0 such that

d(Tx,Ty) 2 Ld(x,y) for all x,y in X.

Let C be a closed, convex subset of a Hilbert
space X. Then for each x in X the T§Q~EQ§ is
defined as the closest point to x in C.

Let u(r) be a nondecreasing continuous real-
valued function defined for 0 X r < « such that

u(0) = 0 and u(r) » » as r + », Then p is a
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2.56
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" gauge function.

Let X be a Banach space. A dvality map in X

with gauge function p is a map J from X to the

power set of X¥ such that J(0) = {0} and for

x #0,

Ix = {y' in X"y = [|x|{{ly* ][0yl

= u(|{x|])}. '

Let 0 be an interior point of a convex subset

C of a topological vector space X. For each

X in X let A(x) = {a : a > 0, x € aC}. Define
the functional g on X by g(x) = inf A(x). gq is

the Minkowski functional on C.

In a metric space X the Picard iterates of an

operator T are given by x, = Tx ,
X, = Tx, = T3%x X, = Tx = Tlx
2 l 0’ "Q, n n._l 0, * & @ ’

where x, is an arbitrary point in X.

A set B in a topological vector space X is
bounded if given any neighborhood V of the ori-
gin there exists a positive real number k such
that aB ¢ V provided |a| £ k.

A set C is compact if every open cover has a
finite subcover.

A set C in a vector space X is convex if for

any x,y in C and a,b 2 0 such that a + b = 1,
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ax + by is in C,
2.58 Let X be a normed linear space, SAa subset of X.
We denote the dlameter of S by
8(s) = sup {|]x - y||: x,y in S}. A point x in

S 1s a diametral point of S provided that

sup {|{x - y|l: ¥y iIn S} = &(S).
2.59 Let M be any set in the metric space X and let

€ > 0. The set A in X i1s said to be an € net

with respect to M if for each x in M there cxlsts

an a in A such that d(a,x) < €.
2.60 A family G of functions on a topological vector
space X is equlcontinuous on a subset C of X if

.

for every neighborhood V of the origin in X

there exlists a neighborhood U of the origin such

that if k,, k, are in C with k, - k, in U then

2
T(kl) - T(kz) is in V for each T in G.

2.61 Let T be a map of the metric space
.X, T(Y) Y £X. Theny in Y is said to belong
to the T closure of Y, Z_E_XEJ if there exists an
x in Y and a sequence of positive integers
{ni} (n,;<n,<...) such that'{Tnix}.* y. The set
z? is called the T closure.

2.62 Let X be a topological vector space, C a compact

convex subset of X, x in C. Then -

inw (x) = {z : 2z = (l-a)x + ay for y in C and a > 0}. .



2.63

2.64

ouw (x) = {z : 2z = (1-a)x + ay for y in C and

a < 0}.
weakly inw (x) = inw (x).
weakly ouw (x) = ouw (x).

If X is also strictly convex and normed, then the

normal outward set of x is the set of all points

y distinct from x such that

lly - x|| = inf ||y - 2[].
zeC

Let X be a vector space, T an operator in X.

Then for x in X the linear variety spanned by

{T"x} is given by

| mo,oom
L(x) = {y : y=128Tx, Zag = 1, m = 1,2,...}.
1 1 -

Let X be a normed linear space, A,B subsets of X
with B bounded. Define

ry(B) = sup {||x - y|| : y is in B}.

i

r(B,A) = inf {ry(B) : x is in A}.

C(B,A)

{x in A : ©r4(B) = r(B,A)}.

r(B8) = inf'{rX(B) : x is in B}.

Be-= {x in B : ry(B) = r(B)}.

Then a convex set K in X 1s said to have a normal
structure if for each bounded convex subset L of
K which contalns more than one point, there exists
at least one point in L which is not a diametral

point. A bounded closed convex subset K of X is
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said to have complete normal structure (C.N.S.)

if every closed convex subset W of K which con-
tains more than one point satisfies:

(¥) For every decreasing net {wW, : o € A} of
subsets of W which have the property that

r(We,W) = r(W,W) for all o, it 1s the case that
the closure of g C(W,,W) is a nonempty proper
subset of W, If condition (¥) in the above is
replaced by a similar condition where only count-
able nets, that is sequences, are considered, K

is said to have countable normal structure.

A subset M of a metric space X is totally bounded

if X contains a finite e-net wlth respect to M
for each € > 0.

An n-simplex is a set which consists of n + 1
linearly independent points PysPyseeesPp of a

Euclidean space of dimension greater than n
: n
together with all points of the type x = I a; Py
n
where a5 2 0 for each i and I a; = 1.
i=0

The Hilbert cube is the subset of 1, consisting

of all sequences [{xy}] such that |x4| < (1/n)

for each n.
Let X be a topological vector space, S a subset

of X. Then C(S) is the set of ali bounded and
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continuous scalar valued functions defined on S.

Let X be a metric space. The ball Bp(a) is the

set Bp(a) = {x in X : d(x,a) £ r}. The sphere

Sp(a) is the set Sp(a) = {x in X : d(x,a) = r}.

The neighborhood Np(a) is the set

Np(a) = {x in X : d(x,a) < r}. If a =0 it is
customary to write B,(0) = Bp, and so forth.

A set A is said to have the fixed point property

for a specified class of mappings provided that
every map of A into itself which belongs to the

class has a fixed point in A.
FACTS

If £ is a function of the two real variables x
and y and its two first partial derivatives fy
and fy exist in a region R and the mixed partial
fxy exists in R and 1s continuous at the point
(X4,¥,) of R, then the mixed partial derivative
fyx exists at (x,,¥,) and is equal to fxy at
that point [28].

Let X(t) = (X;,X;,...,X,) be an n X n matrix
with columns X,,...,X, whose entries are scalar
valued differentiable functiohs of the variable

t. Then



2.5

2.6

22

£ det X(t) = det(FE X, %, 5. -,Xn)

a

+ det (X, , = X, 5.0 0,Xp)

+...+ det(X 4 %) [19]
LI ) \1,¢¢c,dt n .

Unitary n-space is isometric to Euclidean 2n
space [13].

(Weierstrass Approximation Theorem) If f is
continuous on a closed and bounded set I and if
€ > 0, then there exists a polynomial ?(x) such
that for all x in I, [f(x) - P(x)| < ¢ [28].

‘A closed and bounded subset of a finite dimen-
sional normed linear space is compact [26].

If {S,(x)} is a sequence of functions defined
for x in a delefed neighborhood J of x = ¢ and

if

l. S, = lim Sn(x) exists and is finite for each n.
Xrc

2. f(x) = 1im S, (x) exists and is finite for each
n-Y*e
x in J.
3. The convergence in 2 1s uniform.

Then:

4., 1im S, exists and is finite,.
n->o '

5. 1lim f(x) exists and is finite.
X»>c
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6. The limits in 4 and 5 are equal [28].
(Cauchy-Schwartz inequality) In én inner-product
space |(f,2)] < [Ifllllg]|] with equality if ana
only if f and g are linearly dependent [28].
If m functions of n variables where m < n are
functionally dependent in a region R then every
mth order Jacobian of the m functions with re-
spect to m of the variables vanishes identically
in R [28].
If £(x,y) and fy(x,y) exist and are continuous
on a £ Xx £b, ¢ £y £d, then the function

d

F(x) = Jf(x,y)dy is differentiable fcr

c

d
a < x £b and FX(X’y) = ffx(x,y)dy [28]-
C

(Zorn's Lemma) A partially ordered system has a
maximal element if every totally ordered subset
has an upper bound [13].

(Tychonoff) A Cartesian product of compact spaces
is compact in its product topology [13].

Let X,Y be topological spaces, F: X - ¥, Then f
is continuous if and only if A& X implies that
£(K) < T(A) [13].

A compact subset of a topological vector space is

bounded [13].
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Let V be a convex set containing zero as an in-
terior point in a topological vector space X and
let q = qy be the Minkowskil functional on V.
Then
1. q(x) 2 0.
2. qfax) = aq(g) for a 2 0.
3. The set of interior points of V 1s character-
ized by the condition q(x) < 1 and the set
of boundary points by the condition
a(x) = 1 [13].
In a topological vector space X, the Intersection

of convex sets is convex, if K

.

1» K, are convex
and T 1s a linear map of X, then aK,, K, + K,,
and TK, are all convex [13].

The Hilbert cube is compact [13].

If C is a compact subset of a metric space X and

x 1s in X then there exists a point ¢ in C such

that ||x - ¢|| = inf ||y - x|| [33].
yeC

Let S be a compact subset of a topological vector
space X and let K be a bounded set in C(S). If

K is compact, then for every € > 0 there exists

a neighborhood U of the origin in X such that
[£(t) - £(s)| < € for all f in K and all s,t in

S such that t - s is in U [13].
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2.19 If p and q are distinct points of a locally con-
vex topological vector space X then there exists
a continuous linear functionsl f defined on X
such that f(p) # f(q) [13].
RELAT IONS

Spaces

2.1 A normed vector space is a locally convex topolo-
gical vector space [12].

2.2 A finite dimensional normed linear space is re-
flexive [13].

2.3 A Hilbert space is reflexive [13].

2.4 A finite dimensional Banach space is strictly
convex if and only if it is uniformly convex,
but an infinite dimensional space can be
strictly convex without being uniformly convex
(23].

2.5 Hilbert space is uniformly convex [23].

2.6 Any uniformly convex Banach space is reflexive
(23].

2.7 The following are GB spaces:
1. Hilbert spaces.
2. Banach spaces with monotone Schauder bases.
3. c[0,1] [21].

2.8 A compiete locally convex topological vector
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space satisfies condition E [18].

2.9 Every bounded decreasing net of nonempty closed
convex subsets of X has a nonempty intersection
is a necessary and sufficient condition that a
Banach space be reflexive [25].

2.10 In compact metric spaces condition 3 is always
satisfied [15].l

2.11 Separable GB spaces are PB spaces [21].

2.12 The normed linear space X is reflexive 1if and

only if the unit ball is weakly compact [33].

Operators

.

2.13 A linear operator in a normed space is bounded
if and only if it is continuous [26].
2.14 The class of P compact operators with o < 0
contains, among others, the following when de-
fined in a PB svace X:
1. Closed, precompact.
2. Completely contlnuous and strqngly continuous.
3. Quasicompact.
I, Continuous, demicontinuous, and weakly con-
tinuous monotone increasing operators in a
Hilbert space [29].
2.15 The class of P compact operators with p > 0 in-

cludes the following in a PB space:
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1. Closed, precompact.

2. A if ~A 1s quasicompact.

3. Continuous, demicontinuous, and weakly con-
tinuous monotone decreasing operators in a
Hilbert space [29].

2.16 The following are true in a Hilbert space X:
1. U is in P, if and only if I-U is in M,.

2. Udils in P, if and only if I-U is in Mz.

2

3. Uis in P, (P,) implies that I-U is in

0

M, & M,.

4. U is in P, implies that Ray(U) < P35

U is in P, implies that Ray(U) <€ P_ [9].

2
2.17 U is strictly pseudocontractive if and only if

2

there is a W in Ray(U) such that W is nonexpansive
[91J.
2.18 Let X be a GB space. Then the following are G

operators:

1. X separable, every completely continuous
operator mapping a closed bounded convex
set into X.

2. X separable, every strongly continuous
operator mapping a closed bounded convex
set into X.

3. X separable, P compact operators.

k., X separable and reflexive, every weakly
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continuous operator mapping a closed bounded
convex set into X.

5. X reflexive, X¥ strictly convex, and the
duality map J both continuous and weakly
continuous, every operator of the form I-A
where A is J monotone and demicontinuous, and
every nonexpansive operator [21].

In a reflexive Banach space strong continuity im-

plies complete continuity [21].

If X is a convex, complete metric space then

every map f of X into 1tself which is (k,a) uni-

formly locally contractive is also a strict con-

traction with the same constant a [14].

If U is a nonexpansive map of a Banach space X

and T = I - U, then T is an accretive map in

X [7].

Let X be a Hilbert space, U an operator in X,

T =1I-U, Udis II pseudocontractive if and

only if T is accretive £71.

A closed linear map whose domain is a complete

metric space and whose range 1s a subset of a

complete metric space is continuocus [33].

If T is a continuous linear operator with closed

domain then T is closed [33].

A compact linear operator is continuous and
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thus completely continuous [33].

A subset of a reflexive space 1is weakly compact
if and only if it is bounded [13].

A necessary and sufficient conditlon that a
subset of a complete metric space be compact

is that it be closed and totally bounded [26].
A bounded, closed convex subset of a uniformly
convex Banach space has complete normal struc-~
ture [2].

A compact convex subset of a Banach space has

complete normal structure [2].
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CHAPTER I1II
CLASSICAL TIHEOREMS

It is the purpose of thils chapter to give complefe
proofs for several well known and very fundamental Lheorcms.

These theorems initiated the study of fixed points, ana

practically all succeedlng research has been and continues

to be directed toward their generalization or modification.

THE BROUWER THEORLM
The classlcal Brouwer theorem remains of fundamentsal
importance in fixed polrnt theory. Even the most modern
theorems, with the notable exception of those dealing with
contractions, ultimately rely on Brouwci's result. It is
usually stated in one cof two eguivalent forms:
1. A continuous map of the closed unit ball in EP into
itself has a fixed point.
2. A continuous map of an n-simplex in ED into itself has
a fixed point.
Proofs of the theorem range from the burely topolo-
gical using algebraic topology and the concept of degree
of a function as in Dugundji [121, to varying mixtures of

topology and analysis, using results from combinatorial

topology as in Kantorovitch [24] and Graves [20], to the
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purely analytical, using theorems of differential and inte-

gral equations as in Dunford and Schwartz [13]. Since this
thesis is concerned with the viewpoint of analysis, this

latter approach is used below.

Lemma 3,1. Let f be an infinitely differentiable function
of the n + 1 variables X,,...,X, Wwith values in E". Let

Di denote the determinant of the n X n matrix

IV[ = (fxo,o.u, fxi—-l’ fxi'i‘l,.'., fXYl)

3

whose columns are the n partial derivatives

fx seves f VR S

Xji-y? i+41 Xn
Then
n
P
p (-1 2oy =0
i=0 1

Proof: For every pair 1,j of unequal integers between 0 and

n, let Ci' denote the determinant of the matrix whose first

J

column is inx, and whose remaining columns are
. J

fxa""’ fy arranged in order of increasing indices and
n

where fy, and ij are omitted. Since inxj = ijxi’ Cij = Cji

Furthermore, using fact 2.2 of Chapter II and the rules for

interchanging columns in determinants, we have



3
g D17 9o (s Txs oes Txg s Dxgyys oo
Haet(fy , Ty pos vees Txy o Ty s voes
+ det(fxo, fxl, cens fxi_l’ fxi+1’ e
= » (e, + z (-1)37c,,.
J<i lJ_ J>1i 1J
Hence,
(-1 2 by = 3 (-1 ey jo(1,3)
where 1if j < 1
o(i,3) ={ 0 if 5 = 4
-1 if j > 1i.
Thus,
n s n
3
I (-1)'5— b = £ (-1 e, 01,5,
i=0 i i,3=0 +dJ

However, by interchanging the summation indices,

n
(-0 oy = TG gy

n o~

- 1+] .
= 1 (-1, 00,1).
1,3=0 B

“r

34



Thus
n . n .
I (-1Meg00,5) = T (-1 Pegio(g,1),
i,j=0 ) i,J=0 ,
But Cij = Cji and o(i,j) = -0(J,1). Hence
n P n .
I (-DMeg 001,50 = (1) 0 e oL,
1,§=0 | 1,§=0
Therefore,
n n
D (-0 g0 = 8 (DM e, = o,
1=0 i i,5=0

which completes the proof,

Theorem 3.2 (Brouwer): If T is a continuous mapping of

the closed unit ball B of E into itself, then there is a

point y in B such that T(y) = y.

Proof: The case of complex scalars is a conéequence of the
case of real scalars. This follows from the fact that
unitdary n-space 1s isometric to Euclidean 2n-space, and the
unit balls in these spaces correspond in a natural way.
Further, it 1is sufficient to consider the infinitely
differentiable case. The Welerstrass Approximation.Theorem
(Fact 2.4) for continuous functions of n variables implies

that the continuous map T of B into itself is the uniform
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1limit of a sequence {Tk} of infinitely differentiable map-

pings of B into itself. Suppose that the theorem has been
proved for infinitely differentiable maps. Then for each
integer k there is a point y, in B such that T (Vi) = Vi -
Since B is a closed and bounded subset of EP it is compact,
and thus some subsequence {yki} converges to a point y in
B. Since {Tki(x)} converges to Tx uniformly on B,

T(y) = 1im Ty, (y) = 1im (1im T, (yx:)) = 1lim Llim y,,

i+ 1o i~ 140 j-res

Thus we suppose that T is an infinitely differenti-
able map of B into itself and, by way of contradiction, that
T(x) # x for all x in B. Let a = a(x) be the larger root of

the quadratic equation |x + a(x-T(X))|? = 1. Then

1 (x+a(x-T(x)), x+a(x-T(x)))

= |x|? + 2a(x, x-T(x)) + a?|x - T(x)]?2.

We show that such an a does exist for x in B.
By the quadratic formula

|x - T(x)|%a = (x, T(x) - x)

+{(x, x-t(x))? + (1-]|x|2)[x - T(x)|2}". (1)

Since lx - T(x)[ # 0 for x in B, the discriminant
(x, x-T(x))? + (1-|x|?)[x - T(x)|* is positive when |x| # 1.
If |x| = 1 then if (x, x-T(x)) = 0 we would have

| TG | = [(x,x) | = [x]? = 1.
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However 1 = | (x, T (x| £ |x|]T(x)] £ 11 = 1. Thus we must
have |[(x,T(x))| = |x||T(x)| and hence T(x) and x are linear-
ly dependent, that 1s T(x) = kx for some scalar k. Then
1= | (x,T(x))] = |(x,kx)| = [k||x|? = |k[, and hence T(x) = x,
contrary to our assumption. Thus (x,x-T(x)) # 0 for |x]| = 1.
Therefore the discriminant is always positive in B, and a
does exist.

Furthermore, since the square root function is an in-
finitely differentiable function of t for positive t, and
since |x - T(x)| # 0 for x in B, it follows from (1) that
a(x) is an infinitely differentiable function of x in B.
Moreover, from (1) we have a(x) = 0 for |x| = 1.

Now }or each real number t define f(t,x) = x
+ ta(x)(x-T(x)). Then f is an infinitely differentiable
function of the n + 1 variables t, x,, ..., X, with values
in EP, Since a(x) = 0 for |x| = 1, we have
fﬁ(t,x) = a(x)(x-T(x)) = 0 for |x| = 1. Also £(0,x) = x,
and from the definition of a,

IF(L,x)]| = |x + a(x)(x-T(x))| = 1 for all x in B. Denote
the determinant of the matrix M(t,x) whose columns are the

vectors fx,(t’x)’ cees Ty (t,x) by D (t,x) and consider
I(t) = J Dy (t,x) dx,; .. .0x,.
B

Now D,(0,x) = 1 since M(0,x) is the identity. Hence
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I(0) = f dx,...dx, # O.
B

Since f(1,x) satisfies the nontrivial functional dependence

|£(1,x)| = 1, it follows from fact 2.8 that the Jacobian de-
terminant Dy(1,x) is identically zero, hence I(1l) = 0. .Thus,
if we can show that I'(t) = 0, we will have the contradiction

that I(t) is constant in B. Now

4

I'(¢) = f T D, (t,x) dx ) ... dx,.
B

From the lemma,

- 1
5 (-1) 2 Dy = 0, or
i=0 OXy

d . i-y 9
3X, D, = (-1) 9X4 Dy .

t™~™ s

i=1

Hence, letting x, = t, we get

where Di(x,t) is the determinant of the matrix whose columns
are the vectors
ft(t,x), fxl(t,x),..., fxi—x’ in+1,..., fxn(t,x).

Thus I'(t) is a sum of integrals of the form

+ f _27 D; (x,t)dx, ...dx,. (2)

B 9%i
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We will now express the integrand in terms of n - 1
coordinates, omitting the ith, and then perform the inte-
gration on this coordinate. Let B; denote the unit ball in
the space of n - 1 variables x,,..., X§_y5 Xi4y3++5 ¥
Let xi+ denote the positive square root
{1 - G+ ook xd_ o+ xdy) + x;)}% and x;” denote the
corresponding negative_squafe root. Let pz denote the point
whose jth coordinate 1is X5 if 1 # J and is x; if i = 3. Let
py denote the point whose jth coordinate is X3 if 1 # 5, and

is x3 if 3 = j. Then, carrying out the integratlion on x4,

(2) reduces to

+ é Di(t,pi) d¥,...0xq4_,d%44,...4dXq
i

+ S Dy (b,pY) dxy...dxg_d%Xq4, .. .dX,.
By
However |pi| = |pj| = 1, and since f (t,x) = 0 for [x| = 1,
it follows from the definition of D; that these integrals
are zero. Hence I'(t) = 0 and we have the desired contra-
diction.
Thus T does have a fixed point in B, and the proof

of the Brouwer theorem is complete,

THE BANACH-CACCIOPOLI THEOREM
Probably the most fruitful of the early theorems
from the standpoint of applications is the Banach-Cacciopoli

contraction principle. The basic idea of the proof, that of
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taking Picard iterates, has been widely used in the more
modern theorems. These have sought to relax the conditicns
imposed on the operator while retaining the practical use-
fulness of the older theorem by giving a constructive method

of approximating the fixed point.

Theorem 3.3 (Banach-Cacciopoli): Let (R,d) be a complete

metric space, C a closed subset of R, A a mapping of C into
itself for which there exists a k, 0 £ k < 1, such that
d(Ax,Ay) £ kd(x,y) for any two points x,y in C. Then A has
a unique fixed point in C which may be obtained as the limit

of the sequence of Picard iterates [26].

Proof: Let-‘x0 be an arbitrary point in C. Set X, = Axo,
x, = Ax, = A’x,, and so in general let x, = Ax,, = Alx.
We shall show that this sequence of Picard iterates is
fundamental.

First, note that d(APx,,A™x ) g k"d(x ) for

0 *Xm-n
any myn with n £ m. This follows by induction on n. If
n =0, d(x,,AMx,) = d(x,,x,) £ alxy,x,).

-

Suppose that for n = j and for any m with j < m we have
a(adxy ,AMx,) < kIalxy,x, ).
Now consider n = §J + 1. If j+ 1 <m¢then j <m- 1 and

hence d(Ad*'x, ,aA™x,)

A

kd(AJxo,Am_lXo) < k(kjd(xo,xm_l_J))

kj+1d(x°’xm-(j+1))’ cémpleting the

the induction. Hence



dx,,x ) = a(AMx, ,A™xy) < kKPa(x,,%pn.p)

n>’m

< kn{d(XO’xl) + d(Xl,XZ) toae. t d(xm~n—1’xm—n)}
< knd(xo,x1)< 1+ k + k% + ... + km—n~x)
< KMd(xg,x,)

(1-k)

Since k < 1 this quantity becomes arbitrarily small
for sufficiently large n. Thus the sequence is fundamental,

and since R is complete, 1lim x, = x exists. Moreover, since
n-reo

A maps C into itself, {x,} € C. Since C is closed, x is
in C. By virtue of the continuity of A,

Ax = A(lim x) = lim Axy = lim X;; = X.
n-o n-—+o e

Thus the existence of a fixed point and the convergence
of the Picard iterates to it are established,

To see that the point is unique, suppose that
Ax = x and Ay = y. Then d(x,y) = a(Ax,Ay) < kd(x,y) where

k < 1. Thus we must have d(x,y) = 0, and therefore x = y.

THE SCHAUDER-TYCHONOFF THEOREM
The initial work on generalizing the Brouwer Theorem
was done in the direction of weakening the conditions on
the space under consideration. In 1622 Birkhoff and Xellogg
[3] extended Brouwer's result to continuous self mappings of
compact convex subsets of certain function spaces such as

L,[0,1] and C™[0,1]. Schauder [34] obtained the following
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results in 1930:

1. A compact, convex subset of a Banach space has

the fixed point property for continuous mappings.

2. A convex, weakly compact subset of a separable

Banach space has the fixed point property for
weakly continuous mappings.

At present, the most éeneral theorem for continuous
mappings, from the polnt of view of vector spaces, is that
proved by Tychonoff in 1935 for compact, convex subsets of
locally convex topological vector spaces. Its heavy reli-
ance on the ideas used by Schauder in his proofs cause it
to be frequently referred to as the Schauder-Tychonoff
theorem. The proof given below is based on that found in
(13].

Lemma 3.4: The Hilbert cube has the fixed point property

for continuous mappings.

Proof: Let T be a continuous map from the Hilbert cube C
into itself, and let P, C » C be the map given by

Po(x; ..., Xy xn+1,...) = (X;5+445 X, 0, 0, ...). The

set Cn = Pn(C) is clearly homeomorphic to the closed unit
ball in EB. Since Pn and T are both continuous,

p,T: C_ = Cn is continuous, and thus by the Brouwer Theorem

n

has a fixed point y

Y, in Ch S C. Thus

lyn - T(p) | = [PpT(y,) - TG)| €7 § 1712,
i=n+1
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Now since C is compact,'{yn} has a convergent subsequence,
say {yni} + y in C. Let € > 0. Then there exists an in-
teger N such that % 11/12 < €2/9 for n > N. Thus
i=n+t

lyy = Tyl < (e2/9)% = e/3.

Also, since {yni} + y and T is continuous, {Tyni} + Ty,
so therc exists an integer N, such that [Tyni - Ty| < €/3
for ny 2 N;. Likewlse, there exists an integer N, such
that for ni 2 Np, |yn; - y| < €/3. Let N, be the maximum

of N, Ny, N,. Then since

[o0] o0
¥ 1/i* ¢ L 1/1% < e?/9, we have for n; = N,+1,
i=N_ +2 i=N+1

llT(Y) - YIl < IlT(Y) - T(yni)ll + IIT(yni) - ynill
vy, -y [l <e/3 4 e/3 +¢e/3 = ¢,

However, € was arbitrary, and thus we must have T(y) = y.

Therefore, T has a fixed point in C.

Lemma. 3.5: Any closed convex subset XK of the Hilbert cube

C has the fixed point property for continuous mappings.

Proof: Since C is compact and K is closed, K is compact.
Thus by fact 2.17 to each point p in C there is a point

N(p) in K such that ||N(p) - p|] = 4@ = inf||kx - p||.
keK
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To see that this point is unique, observe first that if p is
in X, then 0 = |[p - p|| < |{p ~ k|| for all k in K/{p}.
Thus we may suppose that p is not in K, and suppose that
k,,k, are in K such that ||k: - p|| = ||k2 - p|| = d. Since
K is convex, %(k1+k2) is in XK. Thus
[Ip - %0, 4,011 £ 5l1p - k] + 5l 1p = kzl] = a, wnile on
the other hand ||p - %(k,+k,)|| 2 d. Consequently,
|lp - %(k,+k,)|| = 4. Therefore,
|lp = %(k,+k,) || = %|lp - k, || + %||p - k,||. But since a
Hilbert space is strictly convex, and since p - k, 70,
p - k, = t(p—kl) for some t 2 0., Thus
a=|lp-%k,||] =¢t||lp~-k,|| =td. Hence t = 1, and we have
ky = k,. Thus the function N(p) from C to K is well-defined.

We now show that N is continuous. Suppose that there
exists a point p at which N is not continuous. Then we can
construct a sequence {p,} which converges to p and such that
no subsequence of {N(pn)} converges to N(p). However, since
K is compact, {N(p,)} has a convergent subsequence

{N(pni)} + q in K and q # N(p). However,

|Ipn; = Nong) |1 < [lpng = NI < {lpng - ol + [lp - N ],

Hence,

1

e - all = [lp - pay *+ Py - N(pny) + Nlpp;) - all

A

[Ip = pngll + lpny = Nong) || + [[N(pnyg) - al|

A

2[lp = pngtl + Mo = M| + [[N(pn1) - all.



However, since {pp,} S {pn} > p, |lp -ppyl| can be made
arbitrarily small, and since {N(pp;)} ~ a, |[N(pny) - all
can be made arbitrarily small. Thus |[|p - a|] 2 ||p - N(p)|]|
and we must have q = N(p) since q is in K and N(p) is the
unigque nearest point of X to p. We have a contradiction,
and therefore N is continuous.

Now if T: K » K is continuous, then TN:C » K is
continuous, and thus by lemma 3.4 TN has a fixed point in
C. Suppose that p¥ = TH{(p¥*). Then since TN(p%*) is in K,

L4

p¥ is in K and thus N(p¥) = p¥. Therefore T(p¥) = p¥*.

Lemma 3.6: Let K be a compact convex subset of a locally
convex topological vector spase X. Let T:K = K be con-
tinuous. IfAK contains at least two points,‘then there
exists a proper closed convex subset K, of K such that

T(X,) < K,.

Proof: Without loss of generality, we let K have the X*¥
topology since the identity map from X with the original
topology to X with the X¥* topology is continuous, and thus,
since K is compact, a homeomorphism of K. Therefore, chang-
ing to the X¥ topology does not affect the hypothesis of
the lemma.

Vie will say that a set of continuous linear function-
als F is determined by another set G if for each f in F and

€ > 0, there exists a neighborhood
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N(O;Y,G) = {x: Jg(x)|] <8, g in v} where y is a finite sub-

set of G, with the property that if p,q are in K and p - @

is in N(0,y,8) then |f(Tp) f{tq)| < €. Clearly, if F is

g(q) for all g in G implies

i

determined by G, then g(p)
that f(p) = f(q) for all f in F.

We begin the proof by showing that each continuous
linear functional f is detérmined by some denumerable set of
functionals G = {gm}.‘ Since X is a topological group, K a
compact subset of X, and {fT} a bounded, conditionally com-
pact subset of C(XK), it follows from fact 2.18 that for

each integer n there exists a neighborhood N(O,Yn,B where

n)
Yn 1s a finite set of continuous linear functionals and
8p > 0 such that if p,q are in K and p - q in N(O,vq,6,),

then [f(Tp) - £(Tg)| < 1/n. Let G =U ¥
n=1

ne Then f is ce-

termined by G.
Thus if F is a denumerable subset of X%, and if for
each f in F, Gp is the denumerable set which determines f,

then the set G = U Gf is a denumerable set which determines
fer

F. Moreover, each continuous linear functional { can be in-
cluded in a denumerable self-determined set G of continuous
functionals, since if f is determined by the denumerable set
G,, G, by the denumerable set G,, G, by G;, and so forth,

oo
then G = {f}u U Gi is self-determined and denumerable.
i=1

We will show that if G = {g;} is a denumerable,
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self-determined set such that for some &3 in G, p,q in K,
gj(p) # gz(a), then G' = {k;g;}, where {k;} is a set of
positive scalars, has the same properties as G. Clearly,
G' is denumerable and kjgj(p) # kjgj(q). To see that it is
self-determined, let kigy be in G' and € > 0. Then since
e/k; > 0, gy in G and G is self-determined, therc exists a
neighborhood N(0,y,8) where y = {gmh} is a finite subset of
G and if s,t are in K with s - t in N(0,v,68) then
lgs (Ts) - g3 (Tt)| < e/ky. Let y' = {kmhgmh} and
§' = min {kmh}d, and consider the neighborhood N(O,y',d8').
If s,t are in X and s - ¢t is in N(0,vy',8'), ﬁhen
|kmhgmh(s~t)| < &' for all kmyfp, in y'. Thus, for all gy,
in vy Igmh(s~t)| < (8"/kmy) = (min {kpy }/km )$ £ 8. Hence
s - t is in N(0,v,8) and thus |g;(Ts) - gi(Tf)l < (e/ky).
Therefore |kigi(Ts) - kjgi(Tt)| < €. Thus G' is self-
determined.

Now suppose that K contains two distinct points p
and q. Then there exists an f in X% such that f(p) # f(q).
Let G = {g;} be a denumerable self-determined set of contin-
uous linear functionals containing f. Since K is compact,
g1 (K) is a compact set of scalars for each 1 and hence closed
and bounded. Since, by the above, we can multiply each gy
by an appropriate constant without changing the properties
of G, we may assume that |[gj(K)| < (1/i).

We will show that the map H:K + 1, defined by
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H(k) = (g,(k),g,(k),...) is a continuous map of K onto a
compact, convex subset K, of the Hilbert cube C which con-

tains at least two points. Since |gy(X)| < 1/i, K, < C.

Since f is in G, p and q in K, and f(p) # f£(a),

H(p) = {g5(p)} # {g;(a)} = H(q), so K, has at least two
points., Now let U be a neighborhood of ({gg(k)}) in K, »
that is

U= {({g; (M) : (.§1|gi(k> - g1 (n)[2)% < el
i=

Now since !gi(K)! < 1/1i,

-—

lgi (k) = g3(h)| < lgg (k)| + fege(h)| < (1/1) + (1/1) = (2/1).

[} .
Pick N such that £ (b4/i%?) < (e*/2). Consider the neigh-
i=N+1

borhood of k given by
V= {h: |g;(k) - gg(h)| <(e/V2N) for i = 1,2,...,N}.

If h is in V, H(h) = {gi(h)} has the property that

o N
(I lgg(k) - ge(h)][2)% = (T |g;(k) - gy(h)|?
i=1 i=1 :

bT [y l) - gy (m)|2)E
j=N+1 * 1 ()]
< ((Ne?/2N) + (e2/2))% = (e2)% = ¢,
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Thus H(h) is in U. Hence H is continuous, and since K is

compact, H(X) = K, is compact. Finally, observe that since

0
each g4 is linear, H is linear so the convexity of K implies
the convexity of K,.

Now let T, = HTH™! : K, » K,. We will show that T, is
well-defined and continvous. Let {g;(k)} be in K , and sup-
pose that k,,k, are in H*‘fgi(k)], that is gy (k;) = g;(k,)
for all 1. Then since G is self-determined, by our eariier
remark we have that g;(Tk,) = gi(Tkz) for all i. Thus
HTk, = HTk,, that is HPH"‘{gi(k)} = HTH"'{g; (k) }.  Hence
Ty is well defined. Now let b, be 1n K, and € > 0. Choose

i~

N such that ¥ (1/i%) < €., Then since G is self-determined,
C1=N+1

there exists 6 > 0 and m such that if

Igj(p) - gj(q)l <8 for j = 1,...,m then

[gi(Tp) - gi(Tq)l < (e/N)* for i = l1,...,N. Thus if
[b -~ by| < 6 and if p and g are any points in K with

b = {g;(p)} and b, = {g;(a)}, then since

lgj(p) - g3 2 (z_legy) - gj(q)lz)% < &, we have for
i=1

i=1,...N,

lg; (Tp) - g1(Ta)| < (e/N)%. Thus

HTo®) = Ty(og)]]?

| |HTH™}(b) - HTH™ ! (by)]| |2

N _
iillgi(Tp) - gy (TQ)|? + 2

A

r (1/1i?)
i=N+1

< 3e,



Thué Ty, is continuous.

Therefore, by lemma 3.5, T, has a fixed point k, in
K,. Hence, TH™(k,) ¢ H™'T,(k,) = H™'(k,). Setting
K, = H"(ko) we note that K1 is a proper subset of K since
H(p) # H(q) implies that either p or g does not belong to K, .
Also, as the inverse image of the closed set {k,}, K, is
closed. T(K,) = TH™'(k,) ¢ H™!'(k,) = K,. Finally, if
k

1 X, are in K, and a,b 2 0 such that a + b = 1, then we

have

H(ak,+bk,) ={gq(ak,+bk,)} = {agj(k,)} + {bgi(k,)}"

it

a{g, (k)} + blg; (k,)} = al(k,) + bl(k,)

i}

(a+b)k° = k.

Thus ak, + bk, is in K,, and hence K, 1s convex.
Therefore, K, has the desired properties, and the

proof of the lemma is complete.

Theorem 3.7 (Schauder-Tychonoff): A continuous map T:X » K

of a compact, convex subset K of a locally convex topological

vector space has a fixed point in K.

Proof: By Zorn's Lemma there exists a minimal convex, closed
subset K, of K with the property that TK, € K. By lemma 3.6

this minimal subset contains only one point. Thus this point

is a fixed point of T.
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THE KAKUTANI THEOREM

Another older theorem which is of some importarice in
the development of fixed point theory was proved by Kakutani
in 1938. This 1i1s one of the earliest of the small but sig-
nificant number of theorems which are concerned with families
of mappings. These establish the existence of a fixed point,
not simply for one fuhction, but for a collection of func-
tions which satisfy certain properties. Kakutani's result is
particularly interesting'because, unlike the other thecrems
on families, there is no requirement that the functions con-
ﬁute. The reliance of his proof on Zorn's Lemma is typical

of the theorems on families.

Theorem 3.8 (Kakutanl): Let K be a compact,‘convex subset of

a locally convex topological vector space X and let G be a
grour. of linear mappings which is equicontinuous on K and

such that G(X) ¢ K. Then there exists a p in K such that

G(P) = p[131].

Proof': By Zorn's Lemma K contains a minimal nonvoid compact

convex subset K, such that G(K1> €K If X, has just one

l.

point we are through. If not, consider
K, - K, = {k;, - k, ¢ k,;, k, are in K,;}. Since K, is compact,

K, x K, is compact, and since subtraction is continuous K; - K,
is compact. Since K, has more than one point, K, - K, con-

tains some point other than the origin. Now X is Hausdorff
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he
and thus there exists a neighborhood V; of the origin such
that XK, - K, ¢ V,. By the eguicontinuity of G on K, and

the local convexity of X, there exists a convex neighboriiood
U, of the origin such that k,,k, in K; and k, - k, in U, im-
ply G(k,-k,) &V,. Let U, = g(U,). Observe that U, has the
following properties:

1. U, is convex sincé U, is convex and the members

of G are linear.

2. U, contains the origin since U, contains the

origin and the members of G are lincar,

3. U, is open since U, is open and G is a group, all

of whose members are continuous.

b, a(U,) = U, since G is a group.

5. G(T,) ¢ G(U,) = U, £G(U,), and thus T, = ¢(T)),

since each function in G is continuous and the
identity map is in G.

Now let d = inf{a : a > 0, K; - K; € aU,}. We will
show that d exists and is positive. By 2 and 3 above, U, is
a nelghborhood of zero. Moreover, since XK, - K, is compact
it ié bounded. Thus there exists a b > 0 such that
K, - K, © b'U, for all |b'| < b. Hence the set is nonempty
and therefore d exists. We will show that d is strictly
positive. Let a > 0 be such that K, - K, € aU, = aG(U,).
‘Let k, - k, be in K, - K,. Then k;, - k, = ag(u) for scme
g In G and u in U,. Since G is a group, g~! is in G and is

linear. Thus
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g7 (k,-k,) = g~ '(ag(u)) = ag™'(g(u)) = au which is in aU,.
However, if a < 1, then since U, is a convex neighborhood
of zero, au would belong to U,. Thus g"‘(kl—kz) is in U,.
Hence, by the 1linearity of g’l, g’l(kl) - g‘lkkz) is in U,.
However, since G(XK,) € K,, g~ '(k,) and g~'(k,) are in K,.
Thus, by the construction of U,, G(g~'(k,) - g7'(k,)) £ V,.
Therefore, gg~'(k,) - gg~'(k,) = k, - k, is in V. But

k, - k, was arbitrary in K1 - Kx' Thus we have K1 - K <V

1 1?2

a contradiction. Therefore we must have a > 1 for all a
in our set, and thus d 2 1 > 0,

Now let U = dU,. Note that since d is positive, the
following proverties of U follow from the corresponding
properties of U,:

1. U is open.,.

2. U 1is convex.

3. 0 is in U,

4. &(U) = G(d0,) = 4aG(U,) = aU, = U.

We show next that K, - X, ¢ (1-¢)U for 0 < ¢ < 1.
Let x be in (1-¢)U, that is x = (l-c)y where y is in U.

Let qu be the Minkowskl functional on U. Then qu(x)

n

qu(l-¢)y = (1-c)qu(y). However, y is in U so qu(y) < 1.
Thus 0 < qu(x) = (1-c)qu(y) ¢ (1-c¢) < 1 - %c. Therefore
there exists p < 1 - (¢/2) such that x is in pU. However,
-0 <p <1~ (c/2) <1 implies that p/(1 -%c¢c) < 1. Thus,

since U is convex containing 0,(p/(1-%c))U ¢ U. Hence
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pU € (1-%c)U. Therefore x is in (1-%c¢)U. Thus we have
(1-¢)T € (1-%c)U. Then K, - K, € (1-c)U < (1-%c)U
= (1-%c)dU, implies that (1-%c)d 2 d, a contradiction.

Thus K, - K, § (1-¢)U.
Also note that K, - K, <€ (1+c)U for 0 < ¢ < 1, since
(L+tec)d > d gives, by definition, K, - K, ¢ (l+c)dU, = (1l+c)U.
Now, since 0 is in U, the family of open sets
{-%U + k : keK;} is an open cover of the compact set K,.
Let {-%U + k,, -%U + k,,..., -%U + k,} be a finite subcover.
Let p = (1/n)(k,+...4k,). Then since X, is convex, p is in

K,. Now if k is in K;, then k; - k is in %U for some

1

IN

i ¢ n. S8Since kj - k is in (14c)U for 1 < i £ n and all

.

0 < ¢ <1, we have

o)
i

(1/n)(k1+...+kn-nk+nk) = (l/n)(ki~k+ L kj—k) + k. Thus
31

p is in (1/n)(3U+(n-1) (1+c)N+k. Let ¢ = (1/4(n-1)). Then

p is in

i}

(1/n) GsU+(n-D(1+(1/4(n-1)))U) + k = (1/n)(BU+nU-(3/4)U) + k

(1/n) (nU-%U) + k

(l-(l/“n)jU + k

for each k in K,.
Thus p - k is in (1-(1/4n))U for each k in K;. Hence p ~ k
is in (1-(1/4n)U, that is, p is in (1-(1/4n))TU + k for each

k in K;. Let K, = KN N ({1-(1/4n))U+k). Then p is in
keK,

K, so K, 1s nonvold. However, if K, = K, then
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Ki ¢ n (1-1/Un)T + k. Hence for any k, ,k, in K, we have
keK
1

k, is in (1-1/4n)U + k,, or k, - k, is in (1-1/4n)U. Thus
K, - XK, £ (1-1/4n)U, where 0< (1/4n) < 1, a contradiction.
Thus K, is a proper subset of K,. However, K, i1s the inter-
section of closed sets and hence is closed. Also, since

K, 1s convex and U is convex, K, is convex. Finally,

G(K,) © G(X,) N N 6((1-1/Mn)T+k) € K,N N (1-1/4n)GU + Ck

S K, NN (1-1/4n)U0 + k = X,.
kekK,
Thus K, is a proper, nonempty, closed, convex subset of
K, with the property that G(K,) < K, which is a contra-
diction to the minimality of K,.
Therefore we must have that X; consists of a single

point, which is thus a common fixed point of G.



CHAPTER IV
MODERN THEOREMS

Current research in the area of fixed point theorems
has exploded in so many directions that selecting the most
general of the modern theorems is virtually impossible.
Nevertheless, two very recently published results are most
interesting, both with regard to their generality and to
their relationship with each other. Petryshyn's P compact
operator [29, 30] and Guedes de Figueiredo's G operator [21]
are both attempts to find the most general existence thcorem
for fixed points by introducing new spaceé and operators.

An examination of the relations listed in Chapter II reveals
that they both have partially accomplished their goal.

Nevertheless, much remains to be done. Necessary and
sufficient conditions for a space to be PB or GB should be
established. Guedes de Flgueiredo mentions that all the
Banach spaces which he has investigated were, in fact, GB
spaces. He asks for a proof, or a counter-example, of the
proposition that all Banach spaces are GB spaces. If they
were, the power of his results would indeed be formidable.

However, it is not even clear that every PB space is

a GB space because of the requirement that the projections

have a norm of unity. Likewise, because of Petryshyn's
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reqﬁirement on countability, it is doubtful that every GB
space is a PB space. The similarities in the two definitions
seem to indicate that further investigation in this direction
would be frultful. In particular, an interesting conjecture
is that a new space could be defined which includes both the
PB and the GB spaces and in which, by sultable modifications
in the proofs, both Petrysﬁyn‘s and Guedes de Figuelrcdo's

results would remailn valid.
A NEW RESULT

One step toward generalizing their results 1is taken
in Theorem 4.2 which extends Petryshyn's Theorem 1 [29]

from a ball to a bounded closed convex set, and which in-

cludes Guedes de Figueiredo's Theorem 2 [21] as a corollary.

Lemma 4.1: Let X be a finite dimensional Banach space, let
C be a bounded closed convex subset of X which contains the
origin as an interior point. Then a function R can be de-
fined on X which has the following properties:
1. R maps X onto C.
2. R(x) = x if x is in C
and R(x) = tx for some t, 0 < t < 1 if x is not
in C,.
3. R(x) is on the boundary of C if x is not in C.

4, R is continuous.
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Proof: For x in X consider the set 8, = {tx : t 2 01}.

Then S, is closed and convex, Sy M C is nonempty, closed,

X
bounded, and convex, Since X is finite dimensional, Sy nce
is compact.

We begin by showing that if x is in X then there

exists a unique point R(x) in Sy N C such that

||x - Rx)|]| = inf[*y_— x|| = @&. By the compactness of
yeSx!IC

8¢ N C we know that such a point does exist. To see the
uniqueness, observe that if x 1s in C then x is in Sy N ¢
and ||x - x|| = 0 <||x - y|| for all y in Sx N C and y # x.
If x is not in C, suppose that x, = tx and x, = sx are in
SN Cand ||x - x,|| = ||x - x,]| = d. Now since x is not
in C and C is convex conftaining zero, we must have t < 1
and s <1, Thus 1 -t > 0 and 1 - s > 0., Moreover,

|1 - o] [x]]

i
1l

[1x = ex}i = |[x = =, /[ = |[[x - x,[]

|1 - s 11x]].

i
11

[1x - sx||
But ||x]|| # 0 since x is not in C. Thus we must have
l1-t=|1-¢t] =]1-s]=1-s, and therefore s = t.

Hence x, = x and the function R(x) so defined is single

23
valued and maps X onto C.

Observe that if x is in C, R(x) = x and if x is not
in C, R(x) = tx where 0 < t < 1,

To see that if x i3 not in C then R(x)_is in the

boundary of C, suppose, by way of contradiction, that R(x)

is in the interior of C. Then there exists an a > 0 such
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tha£ Na(R(x)) C Int C. Let R(x) = tx and consider the
point y = (t+(%a/|[x|[))x. Then
|| (e+(as] Ix]I))x = ex|| = [[Gas| [x][)x]]

| {Rx ~ vl
= ka < a.

Thus y is in Na(Rx) ¢ Int C, and since C is convex containing

0 and x is not in C, (t+%a/||x||) < 1. However,

[1x - e+Castlxl M=l = |1 - e+Caa/| [x] )] |]x]]

il

[z - vl

(1 -(e+Gasd x| DN Ix]] < (1-t) ] [x] ]

||x - Rx||, a contradiction to the definition

of R(x). Thus if x is not in C, R(x) is in the boundary of C.
We show that R is continuous in X. Suppose, by way

of contradiction, that it is not continuous at a point p in

X. Then there exists a sequence {pp} converging to p such

that no subsequence of {R(pp)} converges to R(p). If any

subsequence {Pni} were contained in C, then since C is closed

and {pni} + p, p would belong to C. However, in such a case

{R(pni)} = {pni} + p = R(p) which gives a contradiction.

Thus all but a finite number of {p,} do not belong to C, so

that p is not in the interior of C. However, {R(pp)}< C

which is compact, and therefore a subsequence, which without

loss of generality we call {R(p,)}, converges to a point g

in C and q # R(p). Since at most a finite number of the

{pn} are in C, a subsequence which we again call {p,} can be

chosen so that {ph}< Xx/c and {R(p,)} + q. Since {R(pp)}

1s contained in the boundary of C, g is in the boundary of C.
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Howéver, R(py) = tppp for some ty in [0,1]. Thus the se-
quence {t,} € [0,1] has a convergent subsequence {tn;}-t.
Now {pni}-+p since {pp}+p, and thus {tnipni} + tp. How-
ever‘{tnipni} = {R(pni)} + g since {R(p,)} » q. Thus we
must have g = tp. In addition, R(p) = kp for some 0 < k < 1.

If t < k, we show that q is in the interior of C, a
contradiction to cur Qbser&ation that g was on the boundary.
Since p is not in the interior of C, R(p) # 0, and thus
k > 0. Since 0 is in the interior of C, there exists an
a > 0 such that Nz(0) &£ C. Observe that
q = tp = (¢t/k)kp = (t/k)R(p) = sR(p) and s < 1 since t < k.
Then (l-s)a > 0. We will consider N(l—s)a(Q)' Let y be in

N(lns)a(Q)’ Then |ly - qf| = [ly - sR(P)|| < (2-8)a.

Let w

| fwl]

(1/1-8)y - (s/1-s)R(p). Then
[[(1/1-8)y - (s/1-s)R(p)|| = |(1/1-8)| ||y - sR(p)||

| (1/1-s)| (1-s)a = a.

A

Thus w is in Na(O) S C. Therefore since R(p) is in C,

y = (1-s) w + sR(p) where 0 < s < 1, and C is convex, y is

in C. Hence N(l—s)a(Q) < C. Thus g is in the interlor of

C, and we have the desired contradiction. We conclude that
t ¢ k.

Therefore, since q ¥ R(p), we must have t > k. But

]
!

then [[p - qll = |[p - tpll = Q-t)l{p || < -x)||p[|
llp - ke[| = [lp - R, -

a contradiction to the definition of R(p).

Lt}
i

Therefore no such p exists and R is continuous in X.
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This completes the proof of the lemma.

Theorem U4.2: Let X be a finite dimensional Banach space,

let C be a bounded, closed, convex subset of X which has
zero as an interior point. Let A be a continuous mapping
of C into X, and let k be any constant. Then therz exists

at least one element u in G such that
Au - ku = 0 (1)

provided that the mapping A satisfies either the condition
(m,k,g): If for some X on the boundary of C the équation
Ax = bx holds, then b £ k.

or the condition

(w,k,2): If for some X on the boundary of C the equation

Ax = bx holds, then b 2 k.

Proof: Suppose that A satisfies (m,k,<) and let

Tx = AXx ~ kx + x. Define R(x) on X as in lemma 4.1. Since
both T and R are continuous, it follows that Sx = RT(x) is

a continuous mapping of C into itself. Thus by the Schauder-
Tychonoff Theorem, S has a fixed point u in C.

We will show that v is also a fixed point of T. Sup-
pose that u is in the interior of C, u = RT(u) = Su. By
the lemma, if x is not in C, then R(x) 1s in the boundary
of C. Thus we must haﬁe T(u) in C, and hence u = RT(u) = T(u).

If v 1is in the boundary of C and u is not a fixed point of

T, then T(u) does not belong to C. Thus u = R{T(u)) = tT(u)
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il

where 0 < t < 1, Hence T(u) (1/t)u where 1 < (1/t). By

definition of T, (1/t)u = Tu = Au - ku + u, so

Au = ((1/t)-1+k)u for u in the boundary of C and

a = ((1/t)-1+k) > k, a contradiction to the condition

(m,k,<). Thus u must be a fixed point of T, and therefore

u="Tu= Au - ku + u., Hence Au = ku and (1) is satisfied.
Now suppose that A satisfies condition (w,k,2).

Define ﬁhe operator B by Bx = 2kx - Ax. Then B is a con-

tinuous map of C into X. Moreover, if for some x in the

boundary of C the equation Bx = ax holds, then ax = 2kx -~ Ax,

and thus Ax = (2k-a)x. Hence by condition (mw,k,2),

2k - a 2 k, and so k 2 a. Therefore D satisfies conditicn

(r,k,<) so that we can apply the above result to B and conclude

that there exists u in C such that ku = Bu = 2ku - Au,

Thus Au = ku, and equation (1) is satisfied, completing the

proof of the theorem.

Remark: If in condition (7,k,<)(or in condition (7,k,2)),
we require that a < k (or that a > k), then an element u

which satisfies equation (1) must lie in the interior of C.

PETRYSHYN'S RESULT
Lemma 4.3: Suppose that A is a P compact operator mapping
the PB space X into itself. Suppose further that for given
r >0 and k > 0 the operator A satisfies both of the follow-

ing conditions:
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(h) There exists a number c(r) > 0 such that if, for any n,

P Ax = hx holds for x in S, with h > 0, then h < c(r).

(w,k) If for some x in Sy the equation Ax = ax holds then
a <Kk.
Then there exists an integer n; > 0 such that if n 2 n,

and P,Ax = bx for some x in S, N X,, then b < k.

Proof: Suppose, by way of contradiction, that no such n,
exlsts., Then we could find a sequence {x,} with x, in

Xm, N S, and a sequence of numbers {bpl} such that.

P AX, = bnx, and b, 2 k. (1)

.

Hence condition (h) implies that ||Pp Ax,|| = byr < c(r)r,
Thus by e [k, c¢(»)] for each n. But this is a closed and
bounded subset of the real line and hence compact. Thus
{bn} has a convergent subseqguence, say

'{bni} + b e [k,e(r)]. Combining this result with (1) we get
lleniAXni - bxnill = I[(bni‘b)xnill = |(bpy-bir|+0. (2)

Since A is P compact, (2) implies the existence of a strongly
convergent subsequence, which we denote by {xn}, and an ele-
ment x in S, N X such that {x,} » x and {PmnAxn} + Ax. This
fact and (2) imply that

[1Ax - bx|| < [[Ax - PpyAxpl] + [[Pp Ax, - bxp]]

+ ||bx, - bx|]| » 0.
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Thus Ax - bx = 0 for x in Sr and b > k, contrary to condition

(m,k), vhich finishes the proof of the lemma.

Theorem 4.4: Suppose that A satisfies the hypothesis of

lemma %.,3. Then there exists at least one element u in

By/Sp such that Au -~ ku = 0.

Proof: By the definition of P compact, there exists N,

such that n 2 N, implies that PpA is continuous in Xp.

By lemma 4.3 there exists Ny such that n > N, and

P,Ax = bx for x in S, N X, implies that b < k. Let N be

the maximum of N, and N,. Now Bp N X, is the ball of

radius r centered at the origin in the finite dimensional
space X,, and for all n 2 N. P,A is continucus ih X, end
satisfies condition (m,k,<) of theorem 4.2, . Thus by that
theorem and the remark following it, there exists an element
u, in Bp N X, such that PpAu, - kuy = 0, k > 0, |lun|| < r.
Therefore, agaln by the P compactness of A, there exists a
subsequence {uni} and an element u in Br suph that {uni}+ u
and {PniAuni} + Au. Therefore

| |Au - ku|| < ||Au - PniAunill + I[PniAuni ~ kupy ||

+ ||kupg - kul]| » 0.
Thus Au = ku. Finally, u is in B./S, since the assumption

that u is in S, would contradict condition (m,k).
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CUEDES DE FIGUEIREDO'S RESULT

Lemma U4.5: Let E be a GB space, J a duality map in E with
gauge function u. Then for any x in F  the following in-
clusion holds: Pl{Jx) T Jx, where P! 1s the adjoint of

1 %
Py in E¥%,

Proof: ILet y' be in Jx. Then we have

xRy T 2 Plyt(x) = v (P (x)) = yr(x) = |{x|uCl{x]]).
Thus |[P&v'|] 2 u(|[x||). On the other hand,

Hegy I < vt = wCHix[De Thus [[Piy*[] = u(]]x[]} ana
Ply'(x) = [|x|]lu(]|x]|). Hence Ply' is in Jx, and we have

the desired result.

Theorem 4.6: Let E be a finite dimensional Banach space.

Let y be a gauge function and let T: C » E be a continuous
mapping from a bounded closed convex subset C of E into E,
where zero is in the interior of C. Suppose that for every
x in the boundary of C there exists v' in E¥ such that
vi(x) = ||x]|[uC]]x]]) and v'(Tx) < |Ix]|e(]||x]!). Then T

has a, fixed point in C.

Proof: Let x be 1n the boundary of C and suppose that
Tx = ax. Suppose that a > 1. Then
0 = v'(ax - Tx) = v'(ax) - v'(Tx) = av'(x) - v'Tx
z allx|{eC]Ix]]) - IxlluCl]x]|!) > 0, which is a contra-

diation. Thus a < 1, and T satisfies condition (7,1,<) of
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theorem 4.2. Therefore T has a fixed point in C.

Theorem 4.7: ILet E be a GB space. Let T:C - E be a G

operator where C is a bounded closed convex subset of E,
and the origin belongs to the interior of C N F, for all
but a finite number of a. Let J be a duality mapping in
E with gauge function u. If IJx(Tx) < ||x|{u(]{|x||) for
every x in the boundary of C, then T has a fixed point in

C.

Proof: Consider for each a the mapping T, = P T.. Such a map
is continuous because T 1s a G operator.

Let x be 1in the boundary of CN F . We establish the
existence éf a v!' in E¥%* which satisfies the condition of
theorem 4.6. Let y' be any element of Jx S E¥, Set
v' = y'|Fy. Then v' is in F ¥ and we have
vi(x) = ||Ix|[uwC]]|x]]). Now
v (T x) = y'"(Tyx) = y'(PyTx) = P,'y'Tx where P ' 1s the
adjoint of P. Since Ply' is in Jx by lemma 4.5, by hypo-
thesis we have v'(Tqx) = Po'y'(Tx) < [[x||u(||x]]). Thus
v' satisfies the condition of theorem 4.6.

Hence, by that theorem, for all « the'equation
Tyx = x 1s solvable in Fy. Since T is a G operator 1t fol-
lows that T has a fixed point in C, and this completes the

proof of the theorem.



CHAPTER V
APPLICATIONS

Fixed point theorems have many applications 1in the
area of functional analysis and applied mathematics. In
particular, they have proved to be a useful technique for
establishing the existence, and in some cases the unique-
ness, of solutions to differential and integral equations,
When the proof of a fixed point theorem is constructive, it
provides a method for obtaining an approximate solution to
an operator equation,.

Given a particular problem, the geheral procequre
for proving the existence of a solution is to replace the
original equation with an equivalent equation which defines
an operator mapping a function space into itself. In order
to prove the existence of a solution to the briginal prob~
lem, it is then necessary to find an invariant function,
that is a fixed point, of the operator. Thus if the opera-
tor and the function space can be shown to satisfy the hyvo-
thesls of one of the known fixed point theorems, the exist-
ence is proved, |

From this standpoint, the fixed point theoren is
even more valuable if its proof provides a technique for

constructing the fixed point. 1In this regard, the theorems
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on éontraction mappings are particularly important. While
the existence of a fixed point may follow from a more
general theorem, the properties of contraction type mappings
seem to lend themselves most readily to constructive proofs.
The Banach-Cacciopoli Theorem whose proof was given in
Chapter III was the ecarliest of the contraction theorems.
Much current research, in ﬁarticular by Browder and Edel-
stein, has been devoted to generalizing the idea of a strict
contraction while retaining enough control over the cperator
to be able to construct a fixed point. An indication of the
modern interest in contraction theorems may be found by
examining the 1ist in Chapter VI,

The‘procedure used in applying fixed point theorcms
is illustrated in the proofs of the theoremé of Picard,
Cauchy, and Poincaré, together with applications to Fred-

holm and Volterra integral equations.

Theorem 5.1: (Picard) Consider the differential equation

g% = f(x,y), where f(x,y) satisfies the Lipschitz condi-

tion |f(x,y,) - £f(x,y,)| £ M|y, - v,|. Then, on the inter-

val |x - x,| £ d, there exists a unique solution y(x) of

the equation which satisfies the condition y(x,) =y, [27].

Proof: We replace the differential equation by the integral

X
equation y = y, + f f£(t,y)dt.
X

0
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We shall consider the right hand side of the integral
equation as an operator defined on Cla,b] where a < x, < b:
X
A(g) =y, + /f(t,g)at.
X
Since the operation of integration is a contlnuous function
of the upper 1limit, the operator transforms points of C into
C. Estimating d(Agl,Agz) welhave
X
a(Ag, ,Ag,) = max|Ag, - Ag,| = max |/ f(t,g ) - £(t,g,)dat|
X
< M max |g, - g.] [x - %],
1f we take |x - x,| £ k/M where k < 1, then
d(Ag, ,Ag,) < kd(g,,s,),
and hence a unique solution of the equation A(g) = g exists
by the Banach-Cacciopoli Theorem., This solves the given
differential equation. It follows from the same theorem
that the solution can be approximated by iterating the oper-

ator A starting with any continuous function.

Theorem 5.2: (Cauchy) Consider the differential equation

%%-=-f(x,y) where f(x,y) is analytic at the point (x,,y,).
Then there exists a unique solution y(x) which can be ex-
panded in powers of x - X, in some neighborhcod of the point

Xy, and which satisfies the condition y(x,) =y, [27].

Proof: Let f(x,y) = Zaaﬁxo‘yB in the domain |x - x,| < ¢

ly -~ yo! < €. Let M = max l%§lfor |x - x| < €' <&,
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Iy - yol < g' < g. Consider the set of analytic functions
C which are holomorphic in the circle (x-x,)* + (y-y,)? = r?

of radius r = min{k/M,e?} where k is some fixed number less

than one. If we define d(g,,s,) = max|g, - 82’ for g,,8,
in C, then C is a complete metric space.

We replace the differential equation by the integral
equation: |

X
y =y, + J £(t,y)dt.
X

0
Consider the right side of the equation as an operator A de-
fined on C.

Estimating d(A(g,),A(g,)) we have

.

d(A(g,),A(g,))

il

X
max | £ (£(t,g,) - £(t,2,))dt]

- g,]dt < Mmaxlg, - g,||x - x,]-

A
-
3
Q
>

-

&

Taking |x - x,| ¢ «/M, we have d(A(g,),A(g,)) < kd(g,,g,).
Consequently we can apply the Banach-Cacciopoll Theorem to
prove A has a fixed point in C and thus has the desired expan-

sion. This completes the proof.

Theorem 5.3: (Polncaré) Suppose that in the equation

§§-= f(x,y,A), the function f(x,y,A) can be expanded in a

power series ZaaBYxayBAY in x, y and A which converges in
the region |x| < e, |y| < €, |A] < €. Then there exists a

solution of the form
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y o= u,(x) + du,(x) 4.0+ Mug(x) +0..0 [27].

Proof: Let M = max |g§1 and consider the set of functions
C = {g(x,\) = ZCGBXGKB}, which are analytic in the domain
|x| < min {x/M,e}, [A] < min {k/M,e} where k < 1., This set
i1s a complcte metric space if the distance is taken as
max|g, (x,3) - g,(x,2)].
Consider the operator A(g) = ?ZaaBY t%BAY3t. Then
A(g) is also a function in the set C? Estimating a(A(g,),A(e,))
as in Cauchy's Theorem, we obtain
d(A(gl),A(gz)) < kd(g,®,), which, again using the Banach-

Cacciopoli Theorem, proves Poincaré's Theorem.

Theorem 5.4: There exists a unique solution for the Fred-

holm nonhomogeneous linear integral equation of the
b
second kind: f(x) = ASK(x,y)f(y)dy + ¢(x)
a
where K(x,y) and ¢(x) are given continuous functions for
a <£x<b,acgy <band f(x) is the function sought, pro-

< M [26].

vided that |A| < 1/M(b-a) where |K(x,y)]

Proof: Consider the mapping g = Af, that is

b .
g(x) = AfK(x,y)f(y)dy + ¢(x), of the complete metric space
a

Cla,b] into itself. We obtain
a(g,,g,) = max|g, (x) - g,(x)| < {A|M(b-a)max|f, - f,].

Consequently, the mapping A is a strict contraction for
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|A] < 1/M(b-a), and thus by the Banach Theorem, the Fredholm
equation has a unique continuous solution. The successive
approximations to this solution:
fo(x), £,(x), ..., fp(x),... have the form

b
fr(x) = AfK(x,y)fn_l(y)dy + ¢(x). An arbitrary continuous

a

function may be chosen for f,(x).

Theorem 5.5: There exists a unique solution to a nonlinear

b )
equation of the form f(x) = ASK(x,y,f(y))dy + ¢(x) where
a .
K and ¢ are continuous, and K satisfies the condition

|K(x,y,2,) - K(x,y,2,)| < M|z, -~ z,|, provided that

x| < 1/M(b-a) [26].

Proof: For |A| <1/M(b-a), the mapping g = Af of the com-

plete metric space Cla,b] into itself given by the formula

b
g(x) = AMK(x,y,f(y))dy + ¢(x) is a strict contraction since
a : :

we have max|g (x) - g,(x)] < [A|M(b-a)max|f, - £,].

Theorem 5.6: For the Volterra type integral equation

p'e
f(x) = XMK(x,y)f(y)dy + ¢(x) where K and ¢ are continuous,
a

the existence of a solution 1s guaranteed regardless of

the value of the parameter A [26].



Proof: Consider the mapping
X
g(x) = MK(x,y)f(yldy + ¢(x) = Af,
a
defined on the complete metric space Cla,b]. If f,,f, are
two continuous functions defined on the closed interval [a,b]
X
then |Af, - Af, | = AK(x,y)(£,(y) - £,(yNdy < |[A|Mm(x-a)
a
where M = max|K(x,y)| and m = max|f, - f,].
Thus, by substituting Af and integrating, we gct

|A2f, - A%f,|

in

[A]2M*m((x~-a)?/2). 1In general

IN

jane, - Alr | A" (x-2)/nt) < A m((b-2)/nt).
For arbitrary A, the number n can be chosen so large

that MPX | ((b-2)?/n!) < 1. Thus the mapping A™ will be a

strict contraction. Consequently, the Volterra integral

equation has a solution for arbitrary A and this solution is

unique.



CHAPTER VI

THE PRESEN[ STATUS AND SUGGESTIONS

FOR FURTHER RESEARCH

The purpose of this chapter is to state those fixed
point theorems which have appeared in the literature, arrang-
ing them to give a clear view of the present state of afl-
fairs. This 1listing demonstrates two main points--there is
a tremendous amount of current interest in fixed polnts with
research in a great many directions, and the ideal fixed
point theorem which would include most of the other theorems
as corollaries has not yet been proved.

The theorems are arranged, first, according to type
of operator. Theorems on the same type of operator are then
listed according to type of space in order of decreasing
generality. It was discovered in this investigation that a
number of the theorems which have appeared independently in
the literature follow, in fact, as corollaries from others
and these are listed as such. Caution should be used, how-
ever, in drawing conclusions about this duplication. Cer-
tain of the more general theorems use the results of the
corollaries in their proof. In addition, some of the corol-
laries are more useful for applications than the general

theorem since they provide a constructive method of
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approximating the fixed point. This, as was pointed out in
the preceding chapter, is particularly true of the contrac-
tion theorems. The theorems on families of operators are
listed separately.

Incorporated in the presentation of the theorems are
appropriate suggestions for further research. Somc of the
theorems whose hypotheses are related seem to indicate that
a new theorem which includes all of them could be proved.
An investigation of the "sharpness" of each theorem wculd
be profitable, attempting to weaken each part of the hypo-
thesis or strengthen the conclusion, or to construct an

example showing the theorem cannot be improved.
EXISTENCE THEOREMS FOR SINGLE MAPPINGS

I. P Compact Operators
A. Suppose that T is a P compact operator in a PB
space X. OSuppose further that for given r > 0
and k > 0 the operator T satisfies both of the
following conditions:
(h) There exists a number c(r) > 0 such that

hx holds for x in S

Hi

if, for any n P,Tx

with h > 0, then h £ c(r).

(nk) If for some x in Sr the equation Tx ax
holds then a < k.’

Then there exists at least one element u in
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Bp/Sp such that Tu - ku = 0 [30].

Comment: Using theorem 4.2, it might be possible to

generalize this resuvlt to a closed, bcunded, con-
vex set C which contains the origin as an interior
point. An easler characterization of a PB space
and a P compact operator would be most useful.
Corollaries: |
1. The assertlon of the above remains true 1if
condition (h) is replaced by any one of thlLe
following stronger conditions whose degren
of generality increases in the given order:
a. T is bounded [29].
b. For any given r > 0 the sct T(Sp) is
bounded [30].
¢. X is a Hilbert space and for any given
r >0 (T"x,x) < c||x]|] for all x in Sp
and some ¢ > 0 [30].

2. The following theorems, in a PB space X, are

corollaries [29]:

a. (Schauder) If T is a completely continu-
ous mapping of Br into By, then T has a
fixed point in Br‘

b. (Rothe) If T is a completely continuous
mapping of B, into X such that T(S,) & Bp,

then T has a fixed point in B..
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c. (Altman) If T is a completely continuous

mapping of B, into X such that

[lTx - x[|* < [|Tx|[* - [|x|]* for all

x in S,, then T has a fixed point in B
d. (Krasnoselsky) If X is a Hilbert space,

T a completely continuous mapping of Bp

into X such that (Tx,x) < |]x||? for all

x in S then T has a fixed polnt in B,.

rs

e, (Kaniel) If T is a quasicompact mapding
of B, into X such that Tx + Ax # 0 for

all x in S

Sp, and any A >yu >0, then there

exlsts an element u in B, such that

Tu + pu = 0,
Suppose that T is a P Compact operétor in a PR
space X. Suppose further that there exists a

sequence of spheres {S,.} with r_ =+ «® as p + <«
I’p 3

p
and two sequences of positive numbers

¢ *> ®©® as 1, *> ®

= c(rp) and kp = k(rp) with k D

p p
such that the following conditions hold:

(Af) VWhenever for any given f in B, and any n

the equation P, Tx - Ax P,f holds for x in

IA

0p‘

(rp)  ||Tx - nx[] 2 k, for any n 2 u>0 and any

Srp with L > 0, then A
x in Srp- Then for every f in X there exists

an element u in X such that Tu - uu = f [30].



Corollary:

1. The above assertion remains valid if condi-
tion (Af) is replaced by the stronger condi-
tion that T is bounded [29].

Let X be a PB space, T a bounded P compact opera-

tor in X, Then for any f in X there exists a

ball B, and a nuﬁber u(r) > 0 such that the equa-

tion Tx - ux = f has a solution u in B, for every

constant u > u(r) [29].

Let T and U be two bounded P compact operators

mapping the ball B, in a PB space X into X. If

X is a Hilbert space and if for all x in S,

(Tx,x) < |Ix]]? and [|7x - Ux|| < ||x - Tx||, then

U has a fixed point in B, [29].

IT. G Operators

A.

Commeng:

Let X be a GB space, C a bounded closed convex
subset of X containing zero as anbinterior polint,
T:C » X a G operator. Let J be a duality map in

X with gauge p. If Jx(Tx) < ||x||y(l|x||) for all
x on the boundary of C, then T has a fixed point
in C [21].

A simpler characterization of G operators as well
as GB spaces is needed; and an investigation of
their relation to PB sphces and operators should

be made.
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Corollaries:

The following theorems, in a GB space X, are

corollaries., Let C be a bounded closcd convex

set in X which has zero as an Interior point

[21].

1. (Schauder) If X is separable, T a completely
continuous operator mapping C into itself,
then T has a fixed point in C.

2. (Schauder) Let X be reflexive and separable,
T a weakly continuous mapping of C into itself;
Then T has a fixed polnt in C.

3. (Rothe) If X is separable, T a completely con-

- tinuous operator mapping C into X sﬁch that
the boundary of C is mapped by T into C, then
T has a fixed point in C.

i, (Petryshyn) If X is separable, T:C -+ X is P
compact, and i1f J is a duality mapping in X
with gauge u such that Jx(Tx) < [|x||u(][x]])
for every x in the boundary of C, then T has
a fixed point in C.

5. If X is separable and reflexive, T:C =+ X
weakly continuous, and if J is a d@ality
mapping in X with gauge u such that for every
X in the boundary of C
Ix(Tx) < ||x||u(l|{x]]), then T has a fixed

point in C.
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6. (Browder-Guedes de Figueiredo) ILet X be re-
flexive, X¥ strictly convex, and the duvality
map J both continuous and weakly continuous.
If T is demicontinuous mapping C into X such

that T

il

I - A where A is J monotone, and if

Jx(Tx)

IA

[1x||uC][x]]|) for all x in the boundary
of C, then T hés a fixed point in C.

7. (Browder) Let X be reflexive, X* strictly con-
vex and the duality map J both continuvous and
weakly continuous. If T:C » C is nonexpansive,
then T has a fixed point in C.

Comment: It would be interesting to find practical applica-
tions for each of the above theorems,
IIT. Class M
A. Let B, be a closed ball in a Hilbert space X,

T =1~ f where £ is in Class M., If T maps Sp

into Br then T has a fixed point in B, [5].

B. Let C be a bounded closed convex subset with

nonempty interior of a Hilbert space X,

T =1 - f where £ is in Class M. Suppose that

there exists an € > 0 such that ||Tu - u|l| 2 €

for all u in the boundary of C. Suppose that

T, =1~ f, where f; is in Class M.and for u

in the boundary of C |[Pu - T,ul|| < ||Tu - ul].

Then if T has a fixed point in C, T, will have a
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fixed point in C [5].
C. Let B, be a closed ball in a Hilbert space X,
T =1 - f wherc f is in Class M. Suppcse that
for each d > 0 there exists €(d) > 0 such that
for uin S,, d £ t < 1,||fu - tr(-w) || 2 (a).
Then T has a fixed point in B, [5].
IV. Hemicontinuous
A. Iet T be a hemicontinuous map of the ball B, in
a Hilbert space X into X. Suppose that for all
u,v in Bp, Re(Tu-Tv, u-v) < [[u - v[[? while for
|lul| = », Re(Tu,u) < ||u|l|?. Then T has a fixed
point in B, [4].
V. Weakly Continuous
A, Let C be a closed convex subset of a Banach space
X and T:C » C a weakly continucus mapping such
that T[C] is separable and the weak closure of
T[(C] is weakly compact. Then T has a fixed point
in C [34].
Corcllary:
‘ 1., A convex, weakly compact subset of a separable
Banach space has the fixed point property for
weakly continuous maps [34,27].
B. Let T be a weakly continuous operator on the
separable Hilbert space.X. If there exists a posi-

tive constant r such that Re(Tx,x) < ||x]||? for
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all x in S, then T has a fixed point in B [32].

C. Let T be a weakly continuous operator on a separ-

able Hilbert space which 1s monotone increasing

on rays. Then T has a fixed point [32].

VI. Continuous

A. (Schauder-Tychonoff) Let T be a continuous map of

a compact convex subset C of a locally convex

topological vector space into itself, Then T has

a fixed point in C [34,3].

Corollaries:

1.

A continucus map T of a convex compact set C
in a Banach space into itself has a fixed point
in € [24,34,31,27].

A continuous self-map of the Hilbert cube has
a fixed point [13].

Any convex, closed subset of the Hilbert cube
has the fixed point property for continuous
maps [13].

If T is a continuous map of a k-dimensional
simplex into itself, then T has a fixed point
[20].

(Brouwer) A continuous operator T mapping the
closed unlt ball in E jinto itself has a fixed
point [24,13,31,27]"°

Any closed, bounded convex subset of E" has
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the fixed point property for continuous maps
(31].

Let X be a locally convex topological vector space
satisfying condition E. Suppose C is a nonvoid
closed convex subset of X and T is a continuous
map of C into itself such that T[C] is compact.

Then T has at least one fixed point [18].

1. A continuous operator T mapping a closed
convex set C in a Banach space into a compact
"set A £C has a fixed point [24,27].

Let T be a continuous self map of the Banach space

K
Hem = = vl
[T < .

X which satisfies ||TKx - TFy|| <
[+
for k = 1,2,.... Suppose that g

Then T has a unique fixed point x, in X and the
sequence of Picard iterates converges to x, [35].

Picard iterates are used so frequently in fixed

point theorems it would be interesting to take a

'slightly different point of view: Find necessary

-and sufficient conditions on the space and operator

for the Picard iterates ta converge. This could be
accomplished by fixing the space and varying the
operator then fixing the operator and varylng the
space. |

Let T be a continuous map in a separable real
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Hilbert space X such that for some c,> 0
((I-T)x-(T-T)y,x-y) 2 c,||x - y!|? for all x,y
in X, Then T has a fixed point in X [9].
Let X be a finite dimensional Banach space, T
a continuous map of Br Into X and u any constant.
Then there exists u in By such that Tu - pyu =0

provided that T satisfies either

(mug) If for some x in S, the equation Tx ax

r
holds then o< u.
or

(mu>) If for some x in Sy the eguation Tx = ax

holds then o 2 u [29].

1. Let T be a continuous operator on the finite
dimensional Hilbert space X. If therc cxists
a positive constant r such that
Re(tx,x) < |[x||? for all x in S, then T has
a fixed point in B, [32].
Let X be a finite dimensional Banach space. Let
# be a gauge function and let T:C + X be a con-
tinuous mapping of the bounded closed convex set
C in X into X. (0 is in the interior of C.)
Suppose that for all x in the boundary of C there
exists v' in X¥ such that v'(x) = ||x||u(][|x|])

and v'(Tx) < ||x||u(]||x]|]). Then T has a fixed
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point in C [21].

Comment: As ncted in Chapter IV, both E and F are corol-

laries to the result proved in that chapter. It

would be an interesting study to attempt to relate

all the esoteric conditions to one another and

perhaps synthesize them.

VII., Contraction Operators

A. e-Contractions

l'

Let X be a metric space, T an e-~contractive
self map of X such that there exists an x,
in X for which the sequence {T"(x,)} has a
subsequence converging to a point x% in X.
Then:
a. x¥ is a periodic point of T, that is
there exists k > 0 such that
TR(x¥) = x¥,
b. If X is e-chailnable and x* has a com-
pact neighborhood Np(x*) of radius
p > €, then x*¥ is the unique fixed point

of T [15].

B. Local Iterative Contractions

1.

Let T be a local iterative contracticn on a
complete metric space X. Then T has a unique
fixed point in X. For arbitrary x, in X,

the Picard iterates of x, converge in the met-

ric to the fixed point of T [35].
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II Local Contractions

1.

Let T be a II local contraction on the com-
plete metric space X and ¢ satisfy the addi-

tional condition: Lim inf (t-¢(t)) = a > 0.

troo
Then T has a unique fixed point in X and'the
Picard iterates converge in metric to the

fixed point [35j.

(e,)) Uniform Local Contractions

1.

II

Let X be a complete metric e—chainablé space,
T a map of X into itself which is (é,x) uni-
formly locally contractive. Then there exists
a unique fixed point of T in X [14].

If T is a 1-1(e,)A) uniformly locally expansive
map of a metric space Y onto an s-chalnabtle
complete metric space X contained in Y, then

T has a unique fixed point in X [14].

Pseudocontractions

Let X be a uniformly convex Banach space, B

a closed ball in X, G an open set containing
B. Let T be a II pseudocontraction mapping G
into X such that T maps the boundary of B into
B. Suppose also that T is demlcontinuous and
that either

a. T is uniformly continuous in the strong
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topology on bounded subsets of X.
or
b, X¥ is uniformly convex.
Then T has a fixed point in B [T].
F. I Pseudocontractions

1. Let T be I pseudocontractive and Lipschitz
mapping a llilbert space X into X such that
for socme r > 0 (Tx,x) < ||x||? for all x
in Sp. Then T has a fixed poeint in B, [9].

2. Let T be I pseudocontractive and Lipschitz
mapping a Hilbert space X into itself such
that for some r > 0, Tu - Au # 0 for all u
in Sy and A > 1. Then T has a fixed point
in Bp [91].

Corollary:

a. Let B, be a closed ball centered at the
origin of a Hilbert space X, T a nonexpansive
map of By into X such that for all u in Sp,
A>1, Tu - Au # 0. Then T has a fixed point
in Bp [5].

Comment: It should be noted that Browder uses the word
"pseudocontractive' for both I pseudocontractive
and II pseudocontractive. While all examples
considered appear to be both or neither, it would
be interesting to have a proof of their exact re-

lationship.
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G. Strict Pseudocontractions
1. Let T be a strict pscudocontraction with con-
stant k mapping a ball Br about the origin in
a Hilbert space X into X such that for all u
in Sy and any A > 1, Tu - Au # 0. Let R be
the retract of X onto B,,. Then for any x, in

B, and any y such that 0 < 1 - k <y < 1, the

r
sequence {x,} = {(RT)"x,} given by
Xy = YRTx,_, + (1-Y)xp.-, converges weakly to

a fixed point of T in By. If T is demicompact
then the convergence is strong [9].

2. Let C be a bounded closed convex subset of the
Hilbert space X and let T be a map of C into
C such that T is a strict pseudocontraction
with constant k. Then for any x, in C and any
fixed y such that 1 - k < y < 1, the sequence
{x,} = {T"x,} determined by Xn = YTX,_,
+ (1-Y)xph., converges weakly to a fixed point
of T in C, If T is demicompact then the con-
vergence is strong [9].

H. Nonexpansive Operators

1. Let X be a Banach space, T a nonexpansive self
map of X. For given f in X let Tp(u) = T(u) + £
and suppose Ty is weakly asymptotically regular.

Let {x,} = {T?xo} be the sequence of Picard
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iterates starting at x, and suppose that there
exists an infinite subsequence'{xni}~+y in X.
Then y is a solution of u - Tu = f and the
whole sequence converges strongly to y [8].

2. Let X be a2 strictly convex Banach space, T

a nonexpansive self map of X with nonempty

T-closure.

a. If there exists an x in T-closure such
that [{T"(x)}] is finite dimensional, then
there exists x¥ in the closed convex hull
of {T™(x)} such that T(x¥) = x¥,

b. If there exists an x in the T-closure such
that {1/n g T(x)} contains 2 subsequence
which converges weakly to'some x¥ in X,

E3

then x% is a fixed point of T.
c. If X is also reflexive, and if there
exists an x in T-closure such that {T7(x)}
is bounded then T has a fixed point in X
(16].
The definition of weakly asymptotically regular is
sufficiently similar to the condition on 2.b above
that a relationship appears to exist between the
two. It would be interesting to discover it.

3. Let C be a nonempty closed convex subset of a

reflexive Banach space with normal structure
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and suppose that T is a nonexpansive self map
of C. If there exists p in C such that
{T™(p)} is bounded, then T has a fixed point

in C [25].

If the condition that {T"(p)} be bounded is
replaced by thé stronger condition that C is
bounded, then @he result remains true [25].
Every nonexpansive self map of a nonemnty
bounded closed convex subset C of a uniformly
convex Banach space has a fixed point [8,6],
Let X be a Hilbert space, C a bounded closed
convex subset of X, T a nonexpansive self
map of C.

(1) T has a fixed point x¥ in C and if x¥ is
a unique fixed point then THx, 5 x¥* for
any x, in C [9,5].

(2) 1r TA = ALl + (1-A)T for O < A < 1, then
for-any ¥xo in C, Tl;\lxo E y where y is a
fixed point of T in C. If, in addition,
T is demicompact, then the convergence is
strong [9].

Let C be a closed convex subset of a strictly

convex Banach space, T a nonexpansive self map

of C, and suppose that T(0) < C, & C where C,
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is compact. Then the sequence {F1(x)} where
F:C - C is defined by F(x) = %(T(x) + x)
converges to a fixed point of T [17].

Let X be a uniformly convex Banach space, B

a closed ball in X, G an onen subset of X
containing B. Suppose T is a nonexpansive
map of G inté X which maps the boundary of B
into B. Then T has a fixed point in B [7].
Let X be a uniformly convex Banach space, C

a closed bounded convex subset of X, G an
open subset of X which contains C and such
that C has positive distance from X/G. Sup-
pose T is a nonexpansive map of G into X
which maps the boundary of C into C. Then T
has a fixed point in C [7].

Suppose T 1s a nonexpansive map of a bounded
closed convex subset C of a Hilbert space X
into X. Suppose further that if u lies on
the boundary of C and if u = Rc(Tu), then u is
a fixed point of T. Then T has a fixed point

in C and for any A, 0 < X < 1 and any Xo in

C, the sequence {x, = AR Tx__, + (1-A)xp_,}

1
converges weakly to a fixed point of T in C.
If in addition T is demicompact, the converg-

ence is strong [9].
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8. Let B be a closed ball centered at the origin
of a Hilbert space X, T a nonexpansive map of
B into X such that for u in the boundary of
B, Tu = -T(-u). Then T has a fixed point in
B [9].

9, Let C be a bounded closed convex subset of a
real Hilbert space and let T mapping C into
itself be representable as T = S + U where
S satisfics ||Sx - Sy|| < aql|x - y|| for all
x,y in C, Then T has at Jleast one fixed point
if either of the following conditions is satis-
fied:

a. If q < 1 then U is completely continucus,
b. If q = 1 then U is strongly continuous [36];
I. Strict Nonexpansive Operators

1. Let X be a metric space, T a strictly non-
expansive self map of X such that there exists
an x in X for which {TI(x)} has a subsequernce
converging to a point x¥ in X. Then x¥% is a
fixed point of T [15].

Corollary:

a. If an operator T in a complete metric space
X maps a closed set A onto a compact set
B C and T is strictly nonexpansive on C,

then T has a unique fixed point in C [24,27].
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Strict Contractions

1.

Let T be a continuous self map of the complete
metric space X. Suppose that

a(Tx,Ty) < A(d(x,y))d(x,y) where A(p) is a
nonincreasing function in p and satisfies

0 £ A(p) <1 forp > 0. Then T has a unique

fixed point in X [35].

The requirement that T be continuous is super-

fluous since the condition A(p) < 1 gives

d(Tx,Ty)< d(x,y).

2,

a.

T is a continuous map of a closed subset of a
complete metric space X into itself such that
T is a strict contraction for some intecer

n >0, then the sequence of Picard iterates
converges to a unique fixed point of T in X

[26,18].

If T is a strict contraction with constant k
mapping a closed subset C of a complete metric
space X into itself, then T has a unique fixed
point in C. Moreover, we can obtain the fixed
point x* as the limit of a sequence {xn} where
Xn+1 = T(xp) and x, is any element in C. The
ratio of convergence is given by

alx,,x¥) < (k"/1-k)d(x,x,) [24,26,27].
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Comment: The existence of a fixed point in this case also
follows as a corollary to 1.

3. Let U be an open subset of the Banach space X,
T a strict contraction with constant k mapping
U into itself. Suppose that there exists a
ball Br(xo) contained in U such that
[|Tx, - x,]| £ (1-k)r. Then T has a unique
fixed point in B, [31].

Corollary:

a. In R” let T be a strict contrasction with con-
stant k defined on a clesed neighborhood
N.(y,) and suppose that
||T(y,) - vol| ¢ (1~k)r. Then T has a unique
fixed point in Nn.(y,) [20].

Comment: A close examination of the relations between all
the types of contractions in order to find one kind
of contraction which includes all, or most, of the
others needs to be made. It would perhaps be fruit-
ful to construct examples of sifuaticns in which a
contraction does not have a fixed point. An in-
vestigation of the use of Picard iterates and al-
ternative schemes for approximating the fixed point
of a contraction type operator could be made, with
special attention given to algorithms for speeding

convergence,
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VIII. Nowhere Normal Outward Maps

A.

Let X be a strictly convex normed lincar space,
K a compact convex subset of X and T a nowhere
normal outward map from K into X. Then T has a

fixed point [22].

IX. Veakly Outward and Inward Maps

A.

Comment:

Let X be a topological vector space such that
continuous linear functionals distinguish points.
Let K be a compact convex subset of X.
1. If T:K » X is weakly inward then T has a
fixed point in K [22].
2, If T:K » X is weakly outward then T has a
fixed point and K & T(K) {22].
In all of the preceding theorems a technique which
makes the results easier to apply in a practical
situation is needed. In particular, an easy method
of determining whether the complicated hypotheses

are fulfilled would be extremely useful.

FIXED POINTS OF FAMILIES

I. Cocntinuous

A.

Let X be a topological vector space, C a nonvoid
compact convex subset of X, Suppose G is a set
of continuous maps of C into itself such that:

l, If g is in G, x,y in C and a,b > 0 such that
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a + b =1 then glaxt+by) = ag(X) + be(y).
2. There exists a natural number n and subsets

Gy (0<isn-1) of G such that

{1} = Ghs Gy € ... & Gy = G where 1 is

the identity map of C. To each pair g',g"

in Gj_, there exists an f in Gj such that

gle" = glg'f.

Then there exists X, In C such that

g(xy) = x4, for all g in G [18].
Can any other characterization of the set G be
given? How does G relate to the set of all con-
tinuous functions? Is G a solvable group?
What are the implications if G is abelian or con-
sists of linear functions, or both?
Let C be a compact convex subset of a topological
vector space X. Let F be a commuting family of
continuous linear maps which map C into itself.
Then F has a common fixed point in C [13].
Let C be a compact convex subset of a locally
convex topological vector space X and let G be
a group of linear maps which is equicontinuous on
C and such that g(C) < C. Then G has a common
fixed peint in C [13].
It should be determined if a weaker condition
such as locally compact and bounded could replace

the requirement of compactness.
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II. Contraction

A.

Let X be a Banach space and let C be a nonempty
compact convex subset of X, If F is a nonempty
commutative family of nonexpansive maps of C into
itself then the family has a common fixed point
in C [111].

Suppose C is a weakly compact, convex subset of a
Banach space X and suppose C has complete normal
structure. Let F be a commutative family of non-

expansive maps of C into itself. Then the family

has a common fixed point in C [2].

Corollaries:

l. If F is countable, or if C is separable, then
complete normal structure in the above may be
replaced by countable normal structure [2,1].

2. Let X be a uniformly convex Banach space, F a
commuting family of nonexpansive maps of a
given bounded closed convex subset C of X into
C. Then the family has a common fixed point
in C [6].

Let C be a nonempty closed bounded ccnvex subsetf

of’ a Banach space X, M a compact subset of C.

Let F be a nonempty commutative family of non-

expansive mappings of C into itself with the

property that for some f, in F and_for all x in C

the closure of the set {f?(x)} contains a point
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of M. Then the family has a common fixed point
in M [1].

Suppose C is a nonempty weakly compnact convex
subset of a strictly convex Banach space X. Sup-
pose F 1s a nonempty commutative family of non-
expansive mappings of C into itself such that for
each f in F t{he f closure is nonempty. Then the
family has a common fixed point in X [1].

A closc examination of the structure of each of
the above families is needed, Examﬁles,of cach
type should be constructed, both to exhibit the
theorem and to show that it can or cannot be im-

proved as well as to make it easler to answer

certain conjectures which arise.
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