FIXED POLNI THEOREMS IN ANALYSIS

A Thesis
Presented to
the Faculty of the Department of Mathematics University of Houston

In Partial Fulfillment of the Requirements for the Degree Master of Science

by
Betty uane Barr
J anuary 1969

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to those members of the Mathematics Faculty and Staff whose suggestions proved invaluable. In particular, I thank my advisor, Dr. C. L. Wiginton, for his many hours of patient guidance. I would also like to acknowledge the financial support given by NASA Grant NsG(T)-52 \#4.

An Abstract of a Thesis
Presented to
the Faculty of the Department oi Mathematics
University of Houston

In Partial Fulfillment of the Requirements for the Degree Master of Science

by
Betty Jane Barr
January 1969

ABSTRACT

A survey of fixed point theorems in analysis is given from their initiation to the present. The many and varted operators and spaces which occur are classified into a logical armangement. An analysis is made of certain classical as well as very recent general theorems, and a generalization of one of the modern theorems is proved. The application of fixed point theorems to the proof of existence and uniqueness of solutions to differential and integral equations is illustrated by several examples. Many conjectures and suggestions for further research are interspersed with the ordered arrangement of the fixed point theorems in analysis which appear in the literature.

TABLE OF CONTENTS

CHALTERPAGE
I. INTRODUCTION 1
II. BACKGROUND 4
Definitions 4
Facts 21
Relations 25
III. CLASSTCAI THEOREMS 32
The Brouwer Theorem 32
The Benach-Cacciopoli Theorem 39
The Schauder-iychonoif Theorem 41
The Kakutani Theorem 51
IV. MODERN THEOREMS 56
A New Result 57
Petryshyn's Result 62
Guedes de Figueiredo's Result 65
V. APPLICATIONS 67
VI. THE PRESENT STATUS AND SUGGESTIONS FOR
FURTHER RESEARCH 74
BIBLIOGRAPHY 99

LIST OF FIGURES

FIGURE PAGE
1 1. Spaces 30
2. Operators 31

CHAPTER I

INTRODUCTION

An element x is said to be a fixed point of a function f from a set A into itself provided that $f(x)=x$. Fixed points are of interest both to the topologist and to the analyst. The topologist is usually concerned with the topological properties of spaces on which continuous mappings have fixed points, and in particular with the structure of the fixed point set. The analyst, on the other hand, seeks to establish the existence of fixed points for various types of functions and families of functions. He tries to find a constructive method for obtainjing or approximating a fixed point in order to apply his results to differential and integral equations. The analyst rarely works in a space which is more general than a topological vector space or a metric space. The topologist, however, may be concerned with a general topological space.

The study of fixed points has a long and full history. An excellent survey of fixed points from the topological point of view is given by Van Der Walt [34].* Cronin [10] presents an introduction to fixed points and topological

[^0]degree. One purpose of this thesis is to provide a review from the viewpoint of the analyst.

In 1912 Brouver proved his classical theorem on the existence of a fixed point for a continuous map of the closed unit ball in Euclidean n-space into itself. In 1922 Banach formulated his contraction principle, and in 1927 Schauder proved the existence of a fixed point for a continuous map from a convex set C into a compact subset of C in a Banach space. This was generalized by Tychonoff in 1935 to locally convex topological vector spaces. Kakutani, in 1938, established a fjxed point theorem for groups of equicontinuous linear mappings on compact, convex subsets of locally convex topological vector spaces.

Since these first fundamental theorems, an enormous number of fixed point theorems have been proved by introducing variations in the types of spaces and types of operators considered. Ideally, these theorems would range from the very specific to the most general in some simple order, allowing classification as one or two very general theorems and thejir numerous corollaries. Unfortunately, such a simple ordering is not yet possible.

The current research on fixed points, being most prolific, has resulted in a great many types of spaces and an even greater variety in conditions on operators without any easily discernable relationship linking them all together.

Nevertheless, some idea of the gencral state of affairs is essential to further progress, in particular in the direction of finally obtaining the ideal--the most general fixed point theorem. In addition, such a knowledge would be most beneficial to those who seek to apply fixed point theorems in the area of differential and integral equations.

Therefore, this investigation attempts to present a view of the current situation in the study of fixed points in analysis. Chapter II contains the definitions of the types of spaces, operators, and sets encountered in the research on fixed points, in some cases attempting to alleviate ambiguity by coining a new term for different concepts which appear in the literature with the same name. Also in Chapter II is found a statement of the various relations known to exist between the spaces and operators, as well as the facts assumed without proof which are used in the succeeding chapters. Proofs of the classical Brouver, Banach-Cacciopoli, Schauder-Tychonoff, and Kakutani theorems are presented in Chapter III. Chapter IV contains what appear to be the most general of the modern theorems, those of Petryshyn and Guedes de Figueiredo. Chapter V is devoted to examples of the various applications of fixed point theorems. Suggestions for further research, as well as a classification and statement of the fixed point theorems found in the literature are presented in Chapter VI.

CHAPTER II

BACKGROUND

This chapter provides the necessary background for the succeeding chapters. It includes definitions of the terms encountered in the literature on fixed points and a statement of the lesser known facts which are assumed without proof in the remainder of the investigation. In adijtion, the final section of the chapter gives a number of the relations known to exist between the spaces and operators. Some of these relations are illustrated, for ease of reference, in Figures 1 and 2 at the end of the chapter.

DEFINITIONS
I. Spaces
2.1 A pair (V,U) is said to be a topological space provided that V is a nonempty set and U is a collection of subsets of V satisfying:

1. V and \varnothing belong to U.
2. The intersection of any finite number of members of U is a member of U.
3. The union of any collection of members of U is a member of U.
2.2 A topological space (V,U) is sald to be a Handorff space provided that for any two distinct points x, y in V there exist sets $U_{x}, \mathrm{~J}_{\mathrm{y}}$ in U such that x is in U_{x}, y is in U_{y}, and $U_{x} \cap U_{y}=\varnothing$.
2.3 A triple ($V,+, \cdot)$ is said to be a vector space (linear space) over the field F provided that V is a set, + is a binary operation on V, and \cdot is a function from $\mathrm{F} \times \mathrm{V}$ into V satisfying the following:
4. ($V,+$) is an abelian group.
5. $a(b x)=(a b) x$ for all a, b in F and x in V.
6. $1 \mathrm{x}=\mathrm{x}$ for all x in V .
7. $(a+b) x=a x+b x$ for $a l l a, b$ in F and x in V. 5. $a(x+y)=a x+$ ay for all a in F and x, y in V. Note that in the remainder of this investigation, as in the literature on fixed points, F is assumed to be either the real or the complex numbers.
2.4 A topological space X on which a structure of vector space over F is defined is a topological vector space (linear topological space) provided that: 1. X is a Hausdorff space.
8. The map $(\mathrm{x}, \mathrm{y}) \rightarrow \mathrm{x}+\mathrm{y}$ from $\mathrm{X} \times \mathrm{X}$ into X is continuous.
9. The map $(a, x) \rightarrow a x$ from $F \times X$ into X is continuous.
2.5 A metric space (X, d) is a pair where X is a nonempty set and d is a nonnegative real-valued function on
$\mathrm{X} \times \mathrm{X}$ which satisfies:
10. $d(x, y)=0$ jf and only if $x=y$.
11. $d(x, y)=d(y, x)$.
12. $d(x, y) \leq d(x, z)+d(z, y)$.
2.6 A metric space X in which every fundamental sequence converges to a point in X is said to be somplete.
2.7 A vector space X is a normed space if there exists a real number $\|x\|$ associated with each x in X which satisfies:
13. $\|x\|>0$ if $x \neq 0$.
14. $\|a x\|=|a|\|x\|$.
15. $\|x+y\| \leq\|x\|+\|y\|$.
2.8 A normed linear space which is complete is a Banach space.
2.9 An infinite dimensional Banach space X is said to be a PB space if it has the property that there exist a sequence $\left\{X_{n}\right\}$ of finite dimensional subspaces of X and a sequence $\left\{P_{n}\right\}$ of projections such that $\overline{U X_{n}}=X$, and for all $n P_{n} X=X_{n}, X_{n+1} \supseteq X_{n}$, and for some $K>0,\left\|P_{n}\right\| \leq K$. Note that in the remainder of this investigation, in the context of a PB space, $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{P}_{\mathrm{n}}\right\}$ will denote the subspaces and projections of the definition.
2.10 A Banach space X is said to be a GB. space if there exist a family of finite dimensional subspaces $\left\{\mathrm{F}_{\alpha}\right\}$
and a family of projections $\left\{\mathrm{P}_{\alpha}\right\}$ such that $P_{\alpha} X=F_{\alpha},\left\|P_{\alpha}\right\|=1$, given any two subspaces there is a third which contains both, and the union of the $\left\{F_{\alpha}\right\}$ is dense in X. Note that in the remainder of this investigation, in the context of a $G B$ space, $\left\{F_{\alpha}\right\}$ and $\left\{P_{\alpha}\right\}$ will denote the subspaces and projections of the definition.
2.11 A vector space X is an inner product space provided that there is a function defined on $\mathrm{X} \times \mathrm{X}$ whose range is contained in the field of scalars and which satisfies the following:

1: $(a x, y)=a(x, y)$.
2. $(x+y, z)=(x, z)+(y, z)$.
3. $(x, y)=(\bar{y}, x)$.
4. $(x, x)>0$ if $x \neq 0$.
2.12 A Hilbert space is a complete inner product space.
2.13 A space which contains a countable, dense set is said to be separable.
2.14 A locally convex space is a topological vector space which has a basis of convex sets.
2.15 A metric space X is said to be ε-chainable if for every a, b in X there exists a finite set of points $\left\{a=x_{0}, x_{1}, \ldots, x_{m}=b\right\}$ such that $d\left(x_{i-1}, x_{i}\right)<\varepsilon$ for $i=1, \ldots, m$.
2.16 A normed linear space is strictly convex if it has
the property that if $\|x+y\|=\|x\|+\|y\|$ and $y \neq 0$ then there is a number t such that $x=t y$. 2.17 If V is a vector space over F, then the conjugate (dual) space of V is the vector space V^{*} whose nembers are the continuous linear functionals defined on V with range contained in F. If V is a normed space, then V^{*} is a Banach space under the norm $\|T\|=\sup \{\|T x\|:\|x\| \leq 1\}$.
2.18 Let X be a Banach space and X^{*} and $X^{* *}$ its first and second conjuçate spaces. If x_{0} is in X then F, defined by $F(f)=f\left(x_{0}\right)$, is a contiruous linear functional defined on X^{*}. X is said to be reflexive if every element of $\mathrm{X}^{* *}$ is of this form.
2.19 A normed linear space is uniformly convex if for any $k>0$ there exists $h>0$ such that $\|x-y\|<k$ if $\|x\|<1+h,\|y\|<1+h$ and $\|x+y\|>2$.
2.20 A locally convex topological vector space is said to satisfy condition E if the closed convex hull of any compact set is compact.
2.21 The X^{*} topology of a locally convex topological vector space X is the topology obtained by taking as a basis all sets of the form
$N(p, A, K)=\{q$ in $X:|f(p)-f(q)|<K$ for f in $A\}$ where A is a finite subset of X^{*} and $K>0$.
$2.22 \mathrm{C}^{\mathrm{n}}[\mathrm{a}, \mathrm{b}]$ is the complete metric space consisting of
the set of all n-times differentiable real-valued functions on $[a, b]$ with $d(f, g)=\sup \{|f(x)-g(x)|:$ $\mathrm{x} \varepsilon[\mathrm{a}, \mathrm{b}]\} . \mathrm{C}[\mathrm{a}, \mathrm{b}]$ is the complete metric space of continuous real-valued functions on [a,b] uncier the above metric.
$2.23 \mathrm{I}_{2}[0,1]$ is the collection of all square integrable functions on $[0,1]$.
$2.24 I_{2}$ is the Hilbert space whose elements are sequences of real numbers, $x=\left(x_{1}, \ldots, x_{n}, \ldots\right)$, which saisisfy the condition $\sum_{n}\left|x_{n}\right|^{2}<\infty$, and where $(x, y)=\sum_{n} x_{n} y_{n}$.
2.25 Euclidean n-space ($\underline{\mathrm{E}}^{\mathrm{n}}$) is the normed linear space of n-tuples of real numbers over the reals with norm $\left\|\left(a_{1}, \ldots, a_{n}\right)\right\|=\left(\sum_{1}^{n}\left|a_{i}\right|^{2}\right)^{\frac{3}{2}}$.
2.26 Unftary n-space is the normed linear space of n-tuples of complex numbers over the complex numbers with the $\operatorname{norm}\left\|\left(a_{1}, \ldots, a_{n}\right)\right\|=\left(\sum_{1}^{n}\left|a_{i}\right|^{2}\right)^{\frac{1}{2}}$.
II. Operators
2.27 A map T from a Banach space X into itself is said to be accretive if for all u, v in X, w in $J(u-v)$, $w(T u-T v) \geq 0$, where for each x in $X, J(x)$ is the convex subset of X^{*} given by
$J(x)=\left\{w\right.$ in $\left.X^{*}: w(x)=\|x\|^{2},\|w\|=\|x\|\right\}$.
2.28 Let T be a bounded Inear operator mapping a Banach space X into itself. Then T is said to be asymptotically convergent if $\left\{T^{k} \mathrm{X}\right\}$ converges for each x in X . The map T is said to be asymptotically recular if for each x in $X,\left\{T^{n+1} x-T^{n} x\right\} \rightarrow 0$.

The map T is weakly asymptotically regular if the above convergence is weak.
2.29 Let X be a normed linear space. An operator I^{\prime} is said to be bounded if there exists a scalar M such that $\|T x\| \leq M\|x\|$ for $2 l l x$ in X. T is locally bounded if $\left\{T x_{n}\right\}$ is bounded whenever $\left\{x_{n}\right\}$ is fundamental.
2.30 Let X be a normed linear space, T a mapping from $D(T) \subseteq X$ into $X . T$ is said to be closed if $\left\{x_{n}\right\} \subseteq D(T),\left\{x_{n}\right\} \rightarrow x,\left\{T x_{n}\right\} \rightarrow y$, then $T x=y$. T is demiclosed if $\left\{x_{n}\right\} \subseteq D(T),\left\{x_{n}\right\} \rightarrow x$, $\left\{T x_{n}\right\} \xrightarrow{W} y$, then $T x=y . T$ is strongly closed if $\left\{x_{n}\right\} \subseteq D(T),\left\{x_{n}\right\} \xrightarrow{W} x$, and $\left\{T x_{n}\right\} \rightarrow y$, then $T \mathrm{x}=\mathrm{y}$.
2.31 An operator T mapning a metric space X into itself is said to be compact if it maps every bounded set onto a set with a compact closure.
2.32 An operator T mapping a Hilbert space X into itself is said to be demicompact if it has the property that whenever $\left\{x_{n}\right\}$ is a bounded sequence and $\left\{T x_{n}-x_{n}\right\}$ is strongly convergent, then there
exists a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ which is strongly convergent.
2.33 An operator A in a PB space X is said to be P compact if $\mathrm{P}_{\mathrm{n}} \mathrm{A}$ is continuous in X_{n} for all large n and if for any $p>0$ and any bounded sequence $\left\{x_{n}\right\}$ with x_{n} in X_{n} the sequence $\left\{P_{n} A x_{n}-p x_{n}\right\}$ is strongly convergent then there exists a strongly convergent subsequence $\left\{x_{n_{1}}\right\}$ and x in X such that $\left\{x_{n_{i}}\right\} \rightarrow x$ and $\left\{P_{n_{i}} A x_{n_{i}}\right\} \rightarrow A x$.
2.34 An operator A in a $P B$ space is said to be quasicompact if A satisfics the following:

1. A is bounded.
2. $\left\{x_{n}\right\} \rightarrow x$ implies that $\left\{P_{m} A x_{n}\right\} \rightarrow P_{m} A x$ for $m=1,2, \ldots$
3. If for some $h>0$ the sequence $\left\{A x_{n}+h x_{1}\right\}$ where $\left\{x_{n}\right\}$ is bounded is strongly convergent, then there exists a strongly convergent subsequence $\left\{\mathrm{x}_{\mathrm{n}_{\mathrm{i}}}\right\}$.
4. If for some $h>0$ the sequence $\left\{P_{n} A x_{n}+h x_{n}\right\}$ where $\left\{x_{n}\right\}$ is bounded is strongly convergent with x_{n} in X_{n} then there exists a strongly convergent subsequence $\left\{x_{n_{i}}\right\}$.
2.35 In a topological space X a function is said to be continuous if the inverse image of open sets is open.
2.36 Let X be a normed linear space, T an operator in X. T is completely continuous if it is both continuous and compact. T is demicontinuous if $\left\{x_{n}\right\} \rightarrow x$ implies that $\left\{T x_{n}\right\} \xrightarrow{W} T x . \quad T$ is weakly continuous if $\left\{x_{n}\right\} \underset{\longrightarrow}{W}$ implies that $\left\{\mathrm{T}_{\mathrm{n}}\right\} \underset{\longrightarrow}{W} \mathrm{Tx}$. T is strongly continuous if $\left\{x_{n}\right\} \xrightarrow{W} x$ implies that $\left\{T x_{n}\right\} \rightarrow T x . T$ is finitely continuous if it is demicontinuous on finite dimensional subspaces of $X . T$ is hemicontinuous if it is demicontinuous on line segments in X.
2.37 Let X be a metric space, T an operator on $X . T$ is a strict contraction with constant k (class P_{0}) if $0<k<l$ and $d(T x, T y) \leq k d(x, y)$ for all x, y in its domain. T is strictly nonexpansive if $d(T x, T y)<d(x, y)$ for all x, y in its domain. T is nonexpansive (class P_{1}) if $d(T x, T y) \leq d(x, y)$ for all x, y in its domain. T is Iocally contractive if for all x in X there exists $\mathrm{k}>0$ and $a, 0 \leq a<1$, which may depend on x, such that p, q in $N_{k}(x)$ implies that $d(T p, T q) \leq a d(p, q)$. T is uniformly (k, a) locally contractive if it is locally contractive and both k and a do not depend on $x . T$ is k-contractive if there exists a $k>0$ such that $0<d(p, q)<k$ implies $\alpha(T p, T q)<\alpha(p, q)$ and T satisfies condition 3.

T is II locally contractive if it is continuous and there exists a real-valued function \varnothing defined on the nonnegative reals which is upper semicontinuous and satisfies $\emptyset(0)=0, ~ \varnothing(r)<r$ for $r>0$, such that there exists a positive integer $n(x)$ where x is in X such that $d\left(T^{n(x)} p_{p} \mathrm{~T}^{n(x)} q\right) \leq \emptyset(d(p, q))$ for all p, q in $\left\{T^{k}{ }_{x}\right\}$. T is locally iteratively contractive if it is continuous and there exists a real-valued function \varnothing defined on the nonnegative reals which is upper semicontinuous and satisfies $\emptyset(0)=0$, $\phi(s) \leq \varnothing(t)$ whenever $s \leq t$, and $\sum_{j=0}^{\infty} \phi^{j} t<\infty$ for all $t>0$, such that there exists a positive integer $n(x)$ where x is in X such that $\alpha\left(T^{n(x)} p_{p} T^{n(x)} q\right) \leq \varnothing(\alpha(p, q))$ for all p, q in $\left\{T^{k} x\right\}$.
2.38 Let X be a normed linear space, T an operator on X. T is strictly pseudocontractive with constant $\underline{k}\left(c l a s s P_{2}\right)$ if $k<1$ such that $\|T x-T y\|^{2}$ $\leq\|x-y\|^{2}+k\|(I-T) x-(I-T) y\|^{2}$ for all x, y in $X . T$ is I pseudocontractive (class P_{3}) if $\|T x-T y\|^{2} \leq\|x-y\|^{2}+\|(I-T) x-(I-T) y\|^{2}$ for all x, y in $X . T$ is II pseudocontractive if for all x, y in x and all $r>0$, $\|x-y\| \leq\|(1+r)(x-y)-r(T x-T y)\|$.
2.39 An operator T from a Banach space X into its dual. X^{*} is said to be demi-invertible if i^{-1} exists and is a demicontinuous map from X^{*} into X.
2.40 Let X be a topological vector space, C a compact convex subset of X, T map C into X. T is inner if $T(C) \subseteq C . T$ is inward if for all x in $C, T(x)$ is in inw (x). T is outward if for all x in C, $T(x)$ is in ouw (x). T is weakly inward if for all x in $C T(x)$ is in weak inw (x). T is weakly outward if for all x in $C T(x)$ is in weak oun (x). If X is also strictly convex and normed, T is nowhere normal outward if $T(x)$ belongs to the normal outward set of x for no x in C.
2.41 A map T from a bounded, closed convex subste C of a $G B$ space X into X is said to be a G operator if: 1. $P_{\alpha} T: C \cap F_{\alpha} \rightarrow F_{\alpha}$ is continuous for all α. 2. The solvability of $\mathrm{P}_{\alpha} \mathrm{Tx}=\mathrm{x}$ in F_{α} for all but a finite number of α implies the solvability of $T x=x$ in X.
2.42 An operator T mapping a Banach space X into its dual X^{*} is said to satisfy the k-condition if T is demi-invertible and there exists a constant $k>0$ such that for all x in $X \mid(T x-T(0)(x) \mid$ $\geq k\|x\|^{2}$.
2.43 An operator T mapping a metric space X into itself is said to satisfy condition 3 if there exists an x in X such that $\left\{\mathrm{I}^{n}(\mathrm{x})\right\}$ has a convergent subsequence.
2.44 Let X be a Banach space, T a mapping of X into X^{*}. T is said to be monotone if for all x, y in $X, \operatorname{Re}(T x-T y)(x-y) \geq 0 . T$ is strongly monotone if for all x, y in X and some $a>0$ $\operatorname{Re}(T x-T y)(x-y) \geq a\|x-y\|^{2}$. T is semimonotone if it is obtained from a map f $f: X \times X \rightarrow X^{*}$, that is $T(x)=f(x, x)$, such that f is monotone in the first variable and strongly continuous in the second.
2.45 Let X be a Hilbert space, T a mapping of X into itself. I' is monotone increasing on rays if $\operatorname{Re}(T(s x), x)$ is a monotone increasing function of the real variable s for all x and all sufficiently large $s . T$ belongs to class M if.it is finitely continuous and for all x, y in $X(T x-T y, x-y) \geq 0$. T belongs to class M_{0} (strongly monotone) if for all x, y in X and some $a>0$ $\operatorname{Re}(T x-T y, x-y) \geq a| | x-y \|^{2}$. T belongs to class M_{1} if there exists a continuous, strictly increasing function $c(r)$ on the nonnegative reals with $c(0)=0$ such that $(T x-T y, x-y) \geq c(| | x-y| |)$ for
all. x, y in X . T is in class M_{2} if there exjsts a constant $a, 0<a<1$ such that $(T x-T y, x-y) \geq a| | T x-T y \|^{2}$ for all x, y in X. T is in class M_{3} (monotone) if $\operatorname{Re}(\mathrm{Tx}-\mathrm{Ty}, \mathrm{x}-\mathrm{y}) \geq 0$ for all x, y in X.
2.46 In a Banach space X with duality map J a nonlinear map T is said to be J monotone if $(J(x-y))(A x-A y) \geq 0$ for all x, y in X.
2.47 A map T in a normed linear space X is said to be a reasonable wanderer if starting at x_{0} in X,
$\sum_{n=0}^{\infty}| |^{n+1} x_{0}-T^{n} x_{0} \|^{2}<\infty$.
2.48 In a vector space a map T is said to lie on

Ray(U) if there exists $t>0$ such that $T=I+t(U-I)$.
2.49 In a metric space X a map T is said to be Lipschitz (belong to class Lip) with constant L if there exists $L>0$ such that $d(T x, T y) \leq \operatorname{Ld}(x, y)$ for all x, y in X.
2.50 Let C be a closed, convex subset of a Hilbert space X. Then for each x in X the $m a n R_{C} x$ is defined as the closest point to x in C.
2.51 Let $\mu(r)$ be a nondecreasing continuous realvalued function defined for $0 \leq r<\infty$ such that $\mu(0)=0$ and $\mu(r) \rightarrow \infty$ as $r \rightarrow \infty$. Then μ is a
gauge function.
2.52 Let X be a Banach space. A duality map in X with gauge function μ is a map J from X to the power set of X^{*} such that $J(0)=\{0\}$ and for $x \neq 0$, $J x=\left\{y^{\prime}\right.$ in $X^{*}: y^{\prime}(x)=\|x\|\left\|y^{\prime}\right\|,\left\|y^{\prime}\right\|$ $=\mu(| | x| |)\}$.
2.53 Let 0 be an interior point of a convex subset C of a topological vector space X. For each x in X let $A(x)=\{a: a>0, x \varepsilon a C\}$. Define the functional q on X by $q(x)=\operatorname{lnf} A(x)$. q i.s the Minkowski functional on C.
2.54 In a metric space X the Picard iterates of an operator T are given by $x_{1}=T x_{0}$, $x_{2}=T x_{1}=T^{2} x_{0}, \ldots, x_{n}=T x_{n-1}=T^{n} x_{0}, \ldots$, where x_{0} is an arbitrary point in X.
III. Sets
2.55 A set B in a topological vector space X is bounded if given any neighborhood V of the origin there exists a positive real number k such that $a \mathrm{a} \subseteq \mathrm{V}$ provided $|\mathrm{a}| \leq \mathrm{k}$.
2.56 A set C is compact if every open cover has a finite subcover.
2.57 A set C in a vector space X is convex if for any x, y in C and $a, b \geq 0$ such that $a+b=1$,
$a x+b y$ is in C.
2.58 Jet X be a normed linear space, S a subset of X. We denote the diameter of S by $\delta(S)=\sup \{| | x-y| |: x, y$ in $S\}$. A point x in S is a diametral point of S provided that $\sup \{||x-y||: y$ in $S\}=\delta(S)$.
2.59 Let M be any set in the metric space X and let $\varepsilon>0$. The set A in X is said to be an ε net. with respect to M if for each x in M there exists an a in A such that $d(a, x)<\varepsilon$.
2.60 A family G of functions on a topological vector space X is equicontinuous on a subset C of X if for every neighborhood V of the origin in X there exists a neighborhood U of the origin such that if k_{1}, k_{2} are in C with $k_{1}-k_{2}$ in U then $T\left(k_{1}\right)-T\left(k_{2}\right)$ is in V for each T in G.
2.61 Let T be a map of the metric space $X, T(Y) \subseteq Y \subseteq X$. Then y in Y is said to belong to the \mathbb{T} closure of $\underline{Y}, \underline{y} Y^{T}$, if there exists an x in Y and a sequence of positive integers $\left\{n_{i}\right\}\left(n_{1}<n_{2}<\ldots\right)$ such that $\left\{T^{n_{i}}\right\} \rightarrow y$. The set X^{T} is called the T closure.
2.62 Let X be a topological vector space, C a compact convex subset of X, x in C. Then. inw $(x)=\{z: \quad z=(1-a) x+$ ay for y in C and $a \geq 0\}$.
ouw $(x)=\{z: \quad z=(1-a) x+$ ay for y in C and $a \leq 0\}$.
weakly inw $(x)=$ inw (x).
weakly ouw $(x)=\widehat{\text { ouw }(x)}$.
If X is also strictly convex and normed, then the normal outward set of x is the set of all points y distinct from x such that
$||y-x||=\inf _{z \in C}| | y-z| |$.
2.63 Let X be a vector space, T an operator in X. Then for x in X the linear variety spanined by $\left\{T^{n} x\right\}$ is given by
$\underline{L(x)}=\left\{y: y=\sum_{l}^{m} a_{i} T^{i} x, \sum_{l}^{m} a_{i}=1, m=1,2, \ldots\right\}$.
2. 64 Let X be a normed linear space, A, B subset: of X with B bounded. Define
$r_{x}(B)=\sup \{| | x-y| |: y$ is in $B\}$.
$r(B, A)=\inf \left\{r_{x}(B): x\right.$ is in $\left.A\right\}$.
$C(B, A)=\left\{x\right.$ in $\left.A: r_{x}(B)=r(B, A)\right\}$.
$r(B)=\inf \left\{r_{x}(B): x\right.$ is in $\left.B\right\}$.
$B_{C}=\left\{x\right.$ in $\left.B: r_{x}(B)=r(B)\right\}$.
Then a convex set K in X is said to have a normal structure if for each bounded convex subset L of K which contains more than one point, there exists at least one point in L which is not a diametral point. A bounded closed convex subset K of X is
said to have complete normal structure (C.N.S.) if every closed convex subset W of K which contains more than one point satisfies:
(*) For every decreasing net $\left\{W_{\alpha}: \alpha \varepsilon A\right\}$ of subsets of W which have the property that $r\left(W_{\alpha}, W\right)=r(W, W)$ for all α, it is the case that the closure of $U_{\alpha} C\left(W_{\alpha}, W\right)$ is a nonempty proper subset of W. If condition (*) in the above is replaced by a similar condition where only countable nets, that is sequences, are considered, K is said to have countable normal structure.
2.65 A subset M of a metric space X is totally bounded if X contains a finite ε-net with respect to M for each $\varepsilon>0$.
2.66 An n-simplex is a set which consists of $n+1$ linearly independent points $p_{0}, p_{1}, \ldots, p_{n}$ of a Euclidean space of dimension greater than n together with all points of the type $x=\sum_{i=0}^{n} a_{i} p_{i}$ where $a_{i} \geq 0$ for each i and $\sum_{i=0}^{n} a_{i}=1$.
2.67 The Hilbert cube is the subset of l_{2} consisting of all sequences $\left[\left\{x_{n}\right\}\right]$ such that $\left|x_{n}\right| \leq(1 / n)$ for each n.
2.68 Let X be a topological vector space, S a subset of X. Then $C(S)$ is the set of 2.11 bounded and
continuous scalar valued functions defined on S. 2.69 Let X be a metric space. The ball $\mathrm{Br}_{\mathrm{r}}(\mathrm{a})$ is the set $B_{r}(a)=\{x$ in $X: d(x, a) \leq r\}$. The sphere $S_{r}(a)$ is the set $S_{r}(a)=\{x$ in $X: d(x, a)=r\}$. The neighborhood $\mathrm{N}_{\mathrm{r}}(\mathrm{a})$ is the set $N_{r}(a)=\{x$ in $X: d(x, a)<r\}$. If $a=0$ it is customary to write $B_{r}(0)=B_{r}$, and so forth. 2.70 A set A is said to have the fixed point property for a specified class of mappings provided that every map of A into itself which belongs to the class has a fixed point in A.

FACTS
2.1 If f is a function of the two real variables x and y and its two first partial derivatives f_{x} and f_{y} exist in a region R and the mixed partial $f_{x y}$ exists in R and is continuous at the point $\left(x_{0}, y_{0}\right)$ of R, then the mixed partial derivative $f_{y x}$ exists at $\left(x_{0}, y_{0}\right)$ and is equal to $f_{x y}$ at that point [28].
2.2 Let $X(t)=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be an $n \times n$ matrix with columns X_{1}, \ldots, X_{n} whose entries are scalar valued differentiable functions of the variable t. Then

$$
\begin{aligned}
\frac{d}{d t} \operatorname{det} x(t) & =\operatorname{det}\left(\frac{d}{d t} x_{1}, x_{2}, \ldots, x_{n}\right) \\
& +\operatorname{det}\left(x_{1}, \frac{d}{d t} x_{2}, \ldots, x_{n}\right) \\
& +\ldots+\operatorname{det}\left(x_{1}, \ldots, \frac{d}{d t} x_{n}\right) \quad[19] .
\end{aligned}
$$

2.3 Unitary n-space is isometric to Euclidean $2 n$ space [13].
2.4 (Weierstrass Approximation Theorem) If f is continuous on a closed and bounded set I and if $\varepsilon>0$, then there exists a polynomial $P(x)$ such that for all x in $I,|f(x)-P(x)|<\varepsilon[28]$.
2.5 'A closed and bounded subset of a finite dimensional normed linear space is compact [26].
2.6 If $\left\{S_{n}(x)\right\}$ is a sequence of functions defined for x in a deleted neighborhood J of $x=c$ and if

1. $S_{n}=\lim _{x \rightarrow c} S_{n}(x)$ exists and is finite for each n.
2. $f(x)=\lim _{n \rightarrow \infty} S_{n}(x)$ exists and is finite for each x in J.
3. The convergence in 2 is uniform.

Then:
4. $\lim _{n \rightarrow \infty} S_{n}$ exists and is finite.
5. $\lim f(x)$ exists and is finite. $x \rightarrow c$
6. The limits in 4 and 5 are equal [28].
2.7 (Cauchy-Schwartz inequality) In an inner-product space $|(f, g)| \leq\|f\|\|g\|$ with equality if and only if f and g are linearly dependent [28].
2.8 If m functions of n variables where $m \leq n$ are functionally dependent in a region R then every m th order Jacobian of the m functions with respect to m of the variables vanishes identically in R [28].
2.9 If $f(x, y)$ and $f_{x}(x, y)$ exist and are continuous on $a \leq x \leq b, c \leq y \leq d$, then the function d $F(x)=\int_{c} f(x, y) d y$ is differentiable for $a \leq x \leq b$ and $F_{x}(x, y)=\int_{c}^{d} f_{x}(x, y) d y[28]$.
2.10 (Zorn's Lemma) A partially ordered system has a maximal element if every totally ordered subset has an upper bound [13].
2.11 (Tychonoff) A Cartesian product of compact sraces is compact in its product topology [13].
2.12 Let X, Y be topological spaces, $F: X \rightarrow Y$. Then f is continuous if and only if $A C X$ implies that $f(\bar{A}) \subseteq \bar{f}(\bar{A})[13]$.
2.13 A compact subset of a topological vector space is bounded [13].
2.14 Let V be a convex set containing zero as an interior point in a topological vector space X and let $q=q_{V}$ be the Minkowski functional on V. Then

1. $q(x) \geq 0$.
2. $q(a x)=a q(x)$ for $a \geq 0$.
3. The set of interior points of V is characterized by the condition $q(x)<1$ and the set of boundary points by the condition $q(x)=1[13]$.
2.15 In a topological vector space X, the intersection of convex sets is convex, if K_{1}, K_{2} are convex and T is a linear map of X, then $a K_{1}, K_{2}+K_{2}$, and TK_{1} are all convex [13].
2.16 The Hilbert cube is compact [13].
2.17 If C is a compact subset of a metric space X and x is in X then there exists a point c in C such that $\|x-c\|=\inf _{y \varepsilon C}\|y-x\|$ [33].
2.18 Let S be a compact subset of a topological vector space X and let K be a bounded set in $C(S)$. If K is compact, then for every $\varepsilon>0$ there exists a neighborhood U of the origin in X such that $|f(t)-f(s)|<\varepsilon$ for all f in K and all s, t in S such that $t-s$ is in U [13].
2.19 If p and q are distinct points of a locally convex topological vector space X then there exists a continuous linear functional f defined on X such that $f(p) \neq f(q)[13]$.

RELATIONS
I. Spaces
2.1 A normed vector space is a locally convex topological vector space [12].
2.2 A finite dimensional normed linear space is reflexive [13].
2.3 A Hilbert space is reflexive [13].
2.4 A finite dimensional Banach space is strictly convex if and only if it is uniformly convex, but an infinite dimensional space can be strictly convex without being uniformly convex [23].
2.5 Hilbert space is uniformly convex [23].
2.6 Any uniformly convex Banach space is reflexive [23].
2.7 The following are $G B$ spaces:

1. Hilbert spaces.
2. Banach spaces with monotone Schauder bases.
3. $C[0,1][21]$.
2.8 A compiete locally convex topological vector
space satisfies condition E [18].
2.9 Every bounded decreasing net of nonempty closed convex subsets of X has a nonempty intersection is a necessary and sufficient condition that a Banach space be reflexive [25].
2.10 In compact metric spaces condition 3 is always satisfied [15].
2.11 Separable $G B$ spaces are $P B$ spaces [21].
2.12 The normed linear space X is reflexive if and only if the unit ball is weakly compact [33].
II. Operators
2.13 A linear operator in a normed space is bounded if and only if it is continuous [26].
2.14 The class of P compact operators with $n<0$ contains, among others, the following when de-fined in a $P B$ soace X :
4. Closed, precompact.
5. Completely continuous and strongly continuous.
6. Quasicompact.
7. Continuous, demicontinuous, and weakly continuous monotone increasing operators in a Hilbert space [29].
2.15 The class of P compact operators with $p>0$ includes the following in a PB space:
8. Closed, precompact.
9. A if $-\Lambda$ is quasicompact.
10. Continuous, demicontinuous, and weakly continuous monotone decreasing operators in a Hilbert space [29].
2.16 The following are true in a Hilbert space X :
11. U is in P_{3} if and only if $I-U$ is in M_{3}.
12. U is in P_{2} if and only if I-U is in M_{2}.
13. U is in $P_{0}\left(P_{1}\right)$ implies that $I-U$ is in $M_{2} \subseteq M_{3}$.
14. U is in P_{3} implies that $\operatorname{Ray}(U) \subseteq P_{3}$; U is in P_{2} implies that $\operatorname{Ray}(U) \subseteq P_{2}[9]$.
2.17 U is strictly pseudocontractive if and only if there is a W in Ray (U) such that W is nonexpansive [9].
2.18 Let X be a $G B$ space. Then the following are G operators:
15. X separable, every completeiy continuous operator mapping a closed bounded convex set into X.
16. X separable, every strongly continuous operator mapping a closed bounded convex set into X.
17. X separable, P compact operators.
18. X separable and reflexive, every weakly
continuous operator mapping a closed bounded convex set into X.
19. X reflexive, X^{*} strictly convex, and the duality map J both continuous and weakly continuous, every operator of the form I-A where A is J monotone and demicontinuous, and every nonexparisive operator [21].
2.19 In a reflexive Banach space strong continuity implies complete continuity [21].
2.20 If X is a convex, complete metric space then every map f of X into itself which is (k, a) uniforrily locally contractive is also a strict contraction with the same constant a [14].
2.21 If U is a nonexpansive map of a Banach space X and $T=I-U$, then T is an accretive map in X [7].
2.22 Let X be a Hilbert space, U an operator in X, $T=I-U . \quad U$ is $I I$ pseudocontractive if and only if T is accretive [7].
2.23 A closed linear map whose domain is a complete metric space and whose range is a subset oif a complete metric space is continuous [33].
2.24 If T is a continuous linear operator with closed domain then T is closed [33].
2.25 A compact linear operator is continuous and
thus completely continuous [33].

III. Sets

2.26 A subset of a reflexive space is weakly compact if and only if it is bounded [13].
2.27 A necessary and sufficient condition that a subset of a complete metric space be compact is that it be closed and totally bounded [26].
2.28 A boundica, closed convex subset of a unifomly convex Banach space has complete normal structure [2].
2.29 A compact convex subset of a Banach space has complete normal structure [2].

FIGURE 1

CHAPTER III

CTASSICAL THEOREMS

It is the purpose of this chapter to give comite proofs for several well known and very fundamental theorems. These theorems initiated the study of fixed points, and practically all succeeding research has been and cortirucs to be directed toward their generalization or modification.

THE BROUWER THEORLI

The classical Brouwer theorem remains of fundanentsl importance in fixed poirit theory. Even the most modern theorems, with the notable exception of those dealing with con'ractions, ultimately rely on Brouwcr's result. It is usually stated in one of two equivalent forms:

1. A continuous map of the closed unit ball in E^{n} into itself has a fixed point.
2. A continuous map of an n-simplex in E^{n} iritio itself has a fixed point.

Proofs of the theorem range from the purely topological using algebraic topology and the concept of degree of a function as in Dugundji [12], to varying mixtures of topology and analysis, using results from combjnatorial topology as in Kantorovitch [24] and Graves [20], to the
purely analytical, using theorems of differential and integral equations as in Dunford and Schwartz [13]. Since this thesis is concerned with the viewpoint of analysis, this latter approach is used below.

Lemma 3.1. Let f be an infinitely differentiable function of the $n+1$ variables x_{0}, \ldots, x_{n} with values in E^{n}. Let D_{i} denote the determinant of the $n \times n$ matrix

$$
M=\left(f_{x_{0}}, \ldots, f_{x_{i-1}}, f_{x_{i+1}}, \ldots, f_{x_{n}}\right)
$$

whose columns are the n partial derivatives
$f_{x_{0}}, \ldots, f_{x_{i-1}}, f_{x_{i+1}}, \ldots, f_{x_{n}}$.

Then

$$
\sum_{i=0}^{n}(-1)^{i} \frac{\partial}{\partial x_{i}} j_{i}=0
$$

Proof: For every pair i,j of unequal integers between 0 and n, let $C_{i j}$ denote the determinant of the matrix whose first column is $f_{X_{i}}$ and whose remaining columns are $f_{x_{0}}, \ldots, f_{x_{n}}$ arranged in order of increasing indices and where $f_{x_{i}}$ and $f_{x_{j}}$ are omitted. Since $f_{x_{i} x_{j}}=f_{x_{j} x_{i}}, C_{i j}=C_{j i}$. Furthermore, using fact 2.2 of Chapter II and the rules for interchanging columns in determinants, we have

$$
\begin{aligned}
\frac{\partial}{\partial x_{i}} D_{i} & =\operatorname{det}\left(f_{x_{0} x_{i}}, f_{x_{1}}, \ldots, f_{x_{i-1}}, f_{x_{i+1}}, \ldots, f_{x_{n}}\right) \\
& +\operatorname{det}\left(f_{x_{0}}, f_{x_{1} x_{i}}, \ldots, f_{x_{i-1}}, f_{x_{i+1}}, \ldots, f_{x_{n}}\right)+\ldots \\
& +\operatorname{det}\left(f_{x_{0}}, f_{x_{1}}, \ldots, f_{x_{1-1}}, f_{x_{i+1}}, \ldots, f_{x_{n} x_{i}}\right) \\
& =\sum_{j<i}(-1)^{j} c_{i j}+\sum_{j>i}(-1)^{j-1} C_{i j} .
\end{aligned}
$$

Hence,

$$
(-1)^{i} \frac{\partial}{\partial x_{i}} D_{i}=\sum_{j=0}^{n}(-1)^{i+j} C_{i j} \sigma(i, j)
$$

where

$$
\sigma(i, j)=\left\{\begin{array}{r}
1 \text { if } j<i \\
0 \text { if } j=i \\
-1 \text { if } j>i
\end{array}\right.
$$

Thus,

$$
\sum_{i=0}^{n}(-1)^{i} \frac{\partial}{\partial x_{i}} \quad D_{i}=\sum_{i, j=0}^{n}(-1)^{i+j} C_{i, j} \sigma(i, j)
$$

However, by interchanging the summation indices,

$$
\begin{aligned}
& \sum_{i=0}^{n}(-1)^{i} \frac{\partial}{\partial x_{1}} D_{i}=\sum_{j=0}^{n}(-1)^{j} \frac{\partial}{\partial x_{j}} D_{j} \\
= & \sum_{i, j=0}^{n}(-1)^{i+j} C_{j i} \sigma(j, i) .
\end{aligned}
$$

Thus

$$
\sum_{i, j=0}^{n}(-1)^{i+j} C_{i, j} \sigma(i, j)=\sum_{i, j=0}^{n}(-1)^{j+i} C_{j i} \sigma(j, i) .
$$

But $C_{i j}=C_{j i}$ and $\sigma(i, j)=-\sigma(j, i)$. Hence

$$
\sum_{i, j=0}^{n}(-1)^{i+j} C_{i j} \sigma(i, j)=(-1) \sum_{i, j=0}^{n}(-1)^{i+j} C_{i j} \sigma(i, j) .
$$

Therefore,

$$
\sum_{i=0}^{n}(-1)^{i} \frac{\partial}{\partial x_{i}} D_{i}=\sum_{i, j=0}^{n}(-1)^{i+j} C_{i j} \sigma(i, j)=0,
$$

which completes the proof.

Theorem 3.2 (Brourer): If T is a continuous mapping of the closed unit ball B of E^{n} into itself, then there is a point y in B such that $T(y)=y$.

Proof: The case of complex scalars is a consequence of the case of real scalars. This follows from the fact that unitary n-space is isometric to Euclidean 2n-space, and the unit balls in these spaces correspond in a natural way.

Further, it is surficient to consider the infinitely differentiable case. The Weierstrass Approximation Theorem (Fact 2.4) for continuous functions of n variables implies that the continuous map T of B into itself is the uniform
limit of a sequence $\left\{\mathrm{T}_{\mathrm{k}}\right\}$ of infinitely differentiable mappings of B into itself. Suppose that the theorem has been proved for infinitely differentiable maps. Then for each integer k there is a point y_{k} in B such that $T_{k}\left(y_{k}\right)=y_{k}$. Since B is a closed and bounded subset of E^{n} it is compact, and thus some subsequence $\left\{y_{k_{j}}\right\}$ converges to a point y in B. Since $\left\{\mathrm{T}_{\mathrm{k}_{i}}(\mathrm{x})\right\}$ converges to Tx uniformly on B ,

$$
\begin{aligned}
& T(y)=\lim _{i \rightarrow \infty} T_{k_{i}}(y)=\lim _{i \rightarrow \infty}\left(\lim _{i \rightarrow \infty} T_{k_{i}}\left(y_{k_{i}}\right)\right)=\lim _{i \rightarrow \infty} \lim _{i \rightarrow \omega} y_{k_{i}} \\
= & y .
\end{aligned}
$$

Thus we suppose that T is an infinitely differentiable map of B into itself and, by way of contradiction, that $T(x) \neq x$ for all x in B. Let $a=a(x)$ be the larger root of the quadratic equation $|x+a(x-T(X))|^{2}=1$. Then

$$
\begin{aligned}
1 & =(x+a(x-T(x)), x+a(x-T(x))) \\
& =|x|^{2}+2 a(x, x-T(x))+a^{2}|x-T(x)|^{2}
\end{aligned}
$$

We show that such an a does exist for x in B.
By the quadratic formula

$$
\begin{align*}
& |x-T(x)|^{2} a=(x, T(x)-x) \\
+ & \left\{(x, x-t(x))^{2}+\left(1-|x|^{2}\right)|x-T(x)|^{2}\right\}^{\frac{1}{2}} \tag{1}
\end{align*}
$$

Since $|x-T(x)| \neq 0$ for x in B, the discriminant $(x, x-T(x))^{2}+\left(1-|x|^{2}\right)|x-T(x)|^{2}$ is positive when $|x| \neq 1$. If $|x|=1$ then if $(x, x-T(x))=0$ we would have

$$
|(x, T(x))|=|(x, x)|=|x|^{2}=1
$$

However $1=|(x, T(x))| \leq|x|\left|T^{\prime}(x)\right| \leq 1 \cdot 1=1$. Thus we must have $|(x, T(x))|=|x||T(x)|$ ard hence $T(x)$ and x are linearly dependent, that is $T(x)=k x$ for some scalar k. Then $1=|(x, T(x))|=|(x, k x)|=|k||x|^{2}=|k|$, and hence $T(x)=x$, contrary to our assumption. Thus $(x, x-T(x)) \neq 0$ for $|x|=1$. Therefore the discriminant is always positive in B, and a does exist.

Furthermore, since the square root function is an infinitely differentiable function of t for positive t, and since $|x-T(x)| \neq 0$ for x in B, it follows from (1) that $a(x)$ is an infinitely differentiable function of x in B. Moreover, from (1) we have $a(x)=0$ for $|x|=1$.

Now for each real number t define $f(t, x)=x$ $+\operatorname{ta}(x)(x-T(x))$. Then f is an infinitely differentiable function of the $n+1$ variables t, x_{1}, \ldots, x_{n} with values in E^{n}. Since $a(x)=0$ for $|x|=1$, we have $f_{t}(t, x)=a(x)(x-T(x))=0$ for $|x|=1$. Also $f(0, x)=x$, and from the definition of a, $|f(1, x)|=|x+a(x)(x-T(x))|=1$ for all x in B. Denote the determinant of the matrix $M(t, x)$ whose columns are the vectors $f_{x_{1}}(t, x), \ldots, f_{x_{n}}(t, x)$ by $D_{0}(t, x)$ and consider

$$
I(t)=\int_{B} D_{0}(t, x) d x_{1} \ldots d x_{n} .
$$

Now $D_{0}(0, x)=1$ since $M(0, x)$ is the identity. Hence

$$
I(0)=\int_{B} d x_{1} \ldots d x_{n} \neq 0 .
$$

Since $f(l, x)$ satisfies the nontrivial functional dependence $|f(1, x)|=1$, it follows from fact 2.8 that the Jacobian determinant $D_{0}(1, x)$ is identically zero, hence $I(1)=$.0 . Thus, if we can show that $I^{\prime}(t)=0$, we will have the contradicion that $I(t)$ is constant in B. Now

$$
I^{\prime}(t)=\int_{B} \frac{d}{d t} D_{0}(t, x) d x_{1} \ldots d x_{n}
$$

From the lemma,

$$
\begin{aligned}
& \sum_{i=0}^{n}(-1)^{1} \frac{\partial}{\partial x_{i}} \quad D_{i}=0, \text { or } \\
& \frac{\partial}{\partial x_{0}} D_{0}=\sum_{i=1}^{n}(-1)^{i-1} \frac{\partial}{\partial x_{i}} D_{i} .
\end{aligned}
$$

Hence, letting $x_{0}=t$, we get

$$
\frac{\partial}{\partial t} D_{0}(x, t)=\sum_{i=1}^{n}(-1)^{i-1} \frac{\partial}{\partial x_{i}} D_{i}(x, t),
$$

where $D_{i}(x, t)$ is the determinant of the matrix whose columns are the vectors
$f_{t}(t, x), f_{x_{1}}(t, x), \ldots, f_{x_{i-1}}, f_{x_{i+1}}, \ldots, f_{x_{n}}(t, x)$.
Thus $I^{\prime}(t)$ is a sum of integrals of the form

$$
\begin{equation*}
\pm \int_{B} \frac{\partial}{\partial x_{i}} D_{i}(x, t) d x_{1} \ldots d x_{n} . \tag{2}
\end{equation*}
$$

We will now express the integrand in termis of $n-1$ coordinates, omitting the $i^{\text {th }}$, and then perform the integration on this coordinate. Let B_{i} denote the unit ball in the space of $n-1$ variables $x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}$. Let $\mathrm{x}_{\mathrm{i}}{ }^{+}$denote the positive square root
$\left\{1-\left(x_{1}^{2}+\ldots+x_{i-1}^{2}+x_{i+1}^{2}+\ldots+x_{n}^{2}\right)\right\}^{\frac{1}{2}}$ and $x_{i}-$ denote the corresponding negative square root. Let p_{i}^{+}denote the point whose $j^{\text {th }}$ coordinate is x_{j} if $i \neq j$ and is x_{i}^{+}if $i=j$. Let p_{i} denote the point whose $j^{\text {th }}$ coordinate is x_{j} if $i \neq j$, and is x_{j} if $j=j$. Then, carrying out the integration on x_{i}, (2) roduces to

$$
\begin{aligned}
& \pm \int_{B_{i}} D_{i}\left(t, p_{i}^{+}\right) d x_{1} \ldots d x_{i-2} d x_{i+1} \ldots d x_{n} \\
& \pm \int_{B_{i}} D_{i}\left(t, p_{i}^{-}\right) d x_{1} \ldots d x_{i-1} d x_{i+1} \ldots d x_{n}
\end{aligned}
$$

However $\left|p_{i}^{+}\right|=\left|p_{i}^{-}\right|=1$, and since $f_{t}(t, x)=0$ for $|x|=1$, it follows from the definition of D_{i} that these integrals are zero. Hence $I^{\prime}(t)=0$ and we have the desired contradiction.

Thus T does have a fixed point in B, and the proof of the Brouwer theorem is complete.

THE BANACH-CACCIOPOLI THEOREM

Probably the most fruitful of the early theorems
from the standpoint of applications is the Banach-Cacciopoli contraction principle. The basic idea of the proof, that of
taking Picard iterates, has been widely used in the more modern theorems. These have sought to relax the conditions imposed on the operator while retaining the practical usefulness of the older theorem by giving a constructive method of approximating the fixed point.

Theorem 3.3 (Banach-Cacciopoli): Let (R, d) be a complete metric space, C a closed subset of R, A a mapping of C into itself for which there exists a $k, 0 \leq k<l$, such that $d(A x, A y) \leq k d(x, y)$ for any two points x, y in C. Then A has a unique fixed point in C which may be obtained as the limit of the sequence of Picard iterates [26].

Proof: Let x_{0} be an arbitrary point in C. Set $x_{1}=A x_{0}$, $x_{2}=A x_{1}=A^{2} x_{0}$, and so in general let $x_{n}=A x_{n-1}=A x_{0}$. We shall show that this sequence of Picard iterates is fundamental.

First, note that $d\left(A^{n} x_{0}, A^{m} x_{0}\right) \leq k^{n} d\left(x_{0}, x_{m-n}\right)$ for any m, n with $n \leq m$. This follows by induction on n. If $n=0, d\left(x_{0}, A^{m_{x_{0}}}\right)=d\left(x_{0}, x_{m}\right) \leq d\left(x_{0}, x_{m}\right)$.
Suppose that for $n=j$ and for any m with $j \leq m$ we have

$$
d\left(A^{j} x_{0}, A^{m} x_{0}\right) \leq k^{j} d\left(x_{0}, x_{m-j}\right) .
$$

Now consider $n=j+l$. If $j+l \leq m$ then $j \leq m-1$ and hence $d\left(A^{j+1} x_{0}, A^{m} x_{0}\right) \leq k d\left(A^{j} x_{0}, A^{m-1} x_{0}\right) \leq k\left(k^{j} d\left(x_{0}, x_{m-1-j}\right)\right)$

$$
=k^{j+1} d\left(x_{0}, x_{m-(j+1)}\right) \text {, completing the }
$$

the induction. Hence

$$
\begin{aligned}
& d\left(x_{n}, x_{m}\right)=d\left(A^{n_{0}}, A^{m} x_{0}\right) \leq k^{n} d\left(x_{0}, x_{m-n}\right) \\
\leq & k^{n}\left\{d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{2}\right)+\ldots+d\left(x_{m-n-1}, x_{m-n}\right)\right\} \\
\leq & k^{n} d\left(x_{0}, x_{1}\right)\left(1+k+k^{2}+\ldots+k^{m-n-1}\right) \\
\leq & \frac{k^{n} d\left(x_{0}, x_{1}\right)}{(1-k)} .
\end{aligned}
$$

Since $k<1$ this quantity becomes arbitrarily small for sufficiently large n. Thus the sequence is fundamental, and since R is complete, $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{x}_{\mathrm{n}}=\mathrm{x}$ exists. Moreover, since A maps C into itself, $\left\{\mathrm{x}_{\mathrm{n}}\right\} \subseteq C$. Since C is closed, x is in C. By virtue of the continuity of A, $A x=A\left(\lim _{n \rightarrow \infty} x_{n}\right)=\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} x_{n+1}=x$.

Thus the existence of a fixed point and the convergence of the Picard iterates to it are established.

To see that the point is unique, suppose that $A x=x$ and $A y=y$. Then $d(x, y)=d(A x, A y) \leq k d(x, y)$ where $k<1$. Thus we must have $d(x, y)=0$, and therefore $x=y$.

THE SCHAUDER-TYCHONOFF THEOREM

The initial work on generalizing the Brouwer Theorem was done in the direction of weakening the conditions on the space under considcration. In 1922 Birkhoff and Kellogg [3] extended Brouwer's result to continuous self mappings of compact convex subsets of certain function spaces such as $\mathrm{L}_{2}[0,1]$ and $\mathrm{C}^{\mathrm{n}}[0,1]$. Schauder [34] obtained the following
results in 1930:

1. A compact, convex subset of a Banach space has the fixed point property for continuous mappings.
2. A convex, weakly compact subset of a separable Banach space has the fixed point property for weakly continuous mappings.

At present, the most general theorem for continuous mappings, from the point of view of vector spaces, is that proved by Tychonoff in .2935 for compact, convex subsets of locally convex topological vector spaces. Its heavy eliance on the ideas used by Schauder in his proofs cause it to be frequently referred to as the Schauder-Tychonoff theorem. The proof given below is based on that found in [13].

Lemma 3.4: The Hilbert cube has the fixed point property for continuous mappings.

Proof: Let T be a continuous map from the Hilbert cube C into itself, and let $P_{n}: C \rightarrow C$ be the map given by $P_{n}\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots\right)=\left(x_{1}, \ldots, x_{n}, 0,0, \ldots\right)$. The set $C_{n}=P_{n}(C)$ is clearly homeomorphic to the closed unit ball in E^{n}. Since P_{n} and T are both continuous, $P_{n} T: C_{n} \rightarrow C_{n}$ is continuous, and thus by the Browser Theorem has a fixed point y_{n} in $C_{n} \subseteq c$. Thus

$$
\left|y_{n}-T\left(y_{n}\right)\right|=\left|P_{n} T\left(y_{n}\right)-T\left(y_{n}\right)\right| \leq \sqrt{\sum_{i=n+1}^{\infty} 1 / i^{2}} .
$$

Now since C is compact, $\left\{y_{n}\right\}$ has a convergent subsequence, say $\left\{y_{n_{i}}\right\} \rightarrow y$ in C. Let $\varepsilon>0$. Then there exists an integer N such that $\sum_{i=n+1}^{\infty} 1 / i^{2}<\varepsilon^{2} / 9$ for $n \geq N$. Thus

$$
\left|y_{n}-T\left(y_{n}\right)\right|<\left(\varepsilon^{2} / 9\right)^{\frac{1}{2}}=\varepsilon / 3 .
$$

Also, since $\left\{y_{\mathrm{n}_{\mathrm{i}}}\right\} \rightarrow \mathrm{y}$ and T is continuous, $\left\{\mathrm{Ty}_{\mathrm{n}_{\mathrm{i}}}\right\} \rightarrow T y$, so there exists an integer N_{1} such that $\left|\mathrm{Ty}_{\mathrm{n}_{\mathrm{i}}}-T y\right|<\varepsilon / 3$ for $n_{i} \geq N_{1}$. Likewise, there exists an integer N_{2} such that for $n_{i} \geq N_{2},\left|y_{n_{i}}-y\right|<\varepsilon / 3$. Let N_{3} be the maximum of N, N_{1}, N_{2}. Then since

$$
\begin{aligned}
& \sum_{i=N_{3}+2}^{\infty} 1 / i^{2} \leq \sum_{i=N+1}^{\infty} 1 / i^{2}<\varepsilon^{2} / 9, \text { we have for } n_{i}=N_{3}+1 \\
& \|T(y)-y\| \leq\left\|T(y)-T\left(y_{n_{i}}\right)\right\|+\left\|T\left(y_{n_{i}}\right)-y_{n_{i}}\right\| \\
+ & \left\|y_{n_{i}}-y\right\|<\varepsilon / 3+\varepsilon / 3+\varepsilon / 3=\varepsilon .
\end{aligned}
$$

However, ε was arbitrary, and thus we must have $T(y)=y$. Therefore, T has a fixed point in C.

Lemma. 3.5: Any closed convex subset K of the Hilbert cube C has the fixed point property for continuous mappings.

Proof: Since C is compact and K is closed, K is compact. Thus by fact 2.17 to each point p in C there is a point $N(p)$ in K such that $\|N(p)-p\|=d=\inf _{k \in K}\|k-p\|$.

To see that this point is unique, observe first that if p is in K, then $0=\|p-p\|<\|p-k\|$ for all k in $K /\{p\}$.

Thus we may suppose that p is not in K, and suppose that k_{1}, k_{2} are in k such that $\left\|k_{1}-p\right\|=\left\|k_{2}-p\right\|=d$. Since K is convex, $\frac{1}{2}\left(k_{1}+k_{2}\right)$ is in K. Thus
$\left|\left|p-\frac{1}{2}\left(k_{1}+k_{2}\right)\right|\right| \leq \frac{1}{2}| | p-k_{1}| |+\frac{1}{2}| | p-k_{2}| |=d$, while on the other hand $\left\|p-\frac{1}{2}\left(k_{1}+k_{2}\right)\right\| \geq d$. Consequently, $\left|\left|p-\frac{1}{2}\left(k_{1}+k_{2}\right)\right|\right|=d$. Therefore, $\left|\left|p-\frac{1}{2}\left(k_{1}+k_{2}\right)\right|\right|=\frac{1}{2}| | p-k_{1}| |+\frac{1}{2}| | p-k_{2}| |$. But since a Hilbert space is strictly convex, and since $p-k_{1} \neq 0$, $p-k_{2}=t\left(p-k_{1}\right)$ for some $t \geq 0$. Thus $d=\left\|p-k_{2}\right\|=t| | p-k_{1} \|=t d$. Hence $t=l$, and we have $k_{1}=k_{2}$. Thus the function $N(p)$ from C to K is well-defined. We now show that N is continuous. Suppose that there exists a point p at which N is not continuous. Then we can construct a sequence $\left\{p_{n}\right\}$ which converges to p and such that no subsequence of $\{N(p n)\}$ converges to $N(p)$. However, since K is compact, $\left\{N\left(p_{n}\right)\right\}$ has a convergent subsequence $\left\{N\left(p_{n_{i}}\right)\right\} \rightarrow q$ in K and $q \neq N(p)$. However,
$\left\|p_{n_{i}}-N\left(p_{n_{i}}\right)\right\| \leq\left\|p_{n_{i}}-N(p)\right\| \leq\left\|p_{n_{i}}-p\right\|+\|p-N(p)\|$.
Hence,

$$
\begin{aligned}
\|p-q\| & =\left\|p-p_{n_{i}}+p_{n_{i}}-N\left(p_{n_{i}}\right)+N\left(p_{n_{j}}\right)-q\right\| \\
& \leq\left\|p-p_{n_{i}}\right\|+\left\|p_{n_{i}}-N\left(p_{n_{i}}\right)\right\|+\left\|N\left(p_{n_{i}}\right)-q\right\| \\
& \leq 2\left\|p-p_{n_{i}}\right\|+\|p-N(\underline{p})\|+\left\|N\left(p_{n_{i}}\right)-q\right\|
\end{aligned}
$$

However, since $\left\{p_{n_{i}}\right\} \subseteq\left\{p_{n}\right\} \rightarrow p,| | p-p_{n_{i}} \|$ can be made arbitrarily small, and since $\left\{\mathbb{N}\left(p_{n_{i}}\right)\right\} \rightarrow q,\left\|N\left(p_{n_{i}}\right)-q\right\|$ can be made arbitrarily small. Thus $\|p-q\| \leq\|p-N(p)\|$ and we must have $q=N(p)$ since q is in K and $N(p)$ is the unique nearest point of K to p. We have a contradiction, and therefore N is continuous.

Now if $T: K \rightarrow K$ is continuous, then $T N: C \rightarrow K$ is continuous, and thus by lemma 3.4 TN has a fixed point in C. Suppose that $p^{*}=T i{ }^{\left(p^{*}\right)}$. Then since $T N\left(p^{*}\right)$ is in K, p^{*} is in K and thus $N\left(p^{*}\right)=p^{*}$. Therefore $T\left(p^{*}\right)=p^{*}$.

Lemma 3.6: Let K be a compact convex subset of a locally convex topological vector space X. Let $T: K \rightarrow K$ be continuous. If K contains at least two points, then there exists a proper closed convex subset K_{1} of K such that $T\left(K_{1}\right) \subseteq K_{1}$.

Proof: Without loss of generality, we let K have the $X *$ topology since the identity map from X with the original topology to X with the X^{*} topology is continuous, and thus, since K is compact, a homeomorphism of K. Therefore, changing to the X^{*} topology does not affect the hypothesis of the lemma.

We will say that a set of continuous linear functionals F is determined by another set G if for each f in F and $\varepsilon>0$, there exists a neighborhood
$N(0, \gamma, \delta)=\{x:|g(x)|<\delta, g$ in $\gamma\}$ where γ is a finite subset of G, with the property that if p, q are in K and $p-Q$ is in $N(0, \gamma, \delta)$ then $|f(T p)-f(t q)|<\varepsilon$. Clearly, if F is determined by G, then $g(p)=g(q)$ for all g in G implies that $f(p)=f(q)$ for all f in F.

We begin the proof by showing that each continuous linear functional f is determined by some denumerable set of functionals $G=\left\{E_{m}\right\}$. Since X is a topological group, K a compact subset of X, and $\{f \Gamma\}$ a bounded, condjtionally conpact subset of $C(K)$, it follows from fact 2.18 that for each integer n there exists a nei.ghborhood $N\left(0, \gamma_{n}, \delta_{n}\right)$ where γ_{n} is a finite set of continuous linear functionals and $\delta_{n}>0$ such that if p, q are in K and $p-q$ in $N\left(0, \gamma_{n}, \delta_{n}\right)$, then $\left|f\left(T^{\prime} p\right)-f\left(T^{\prime}\right)\right|<l / n$. Let $G=\bigcup_{n=1}^{\infty} \gamma_{n}$. Thein f is determined by G.

Thus if F is a denumerable subset of X^{*}, and if for each f in F, G_{f} is the denumerable set which determines f, then the set $G=\underset{f \varepsilon F}{ } G_{f}$ is a denumerable set which determines F. Moreover, each continuous linear functional f can be included in a denumerable self-determined set G of continuous functionals, since if f is determined by the denumerable set G_{1}, G_{2} by the denumerable set G_{2}, G_{2} by G_{3}, and so forth, then $G=\{f\} \cup \bigcup_{i=1}^{\infty} G_{i}$ is self-determined and denumerable.

We will show that if $G=\left\{g_{i}\right\}$ is a denunerable,
self-determined set such that for some \mathcal{E}_{j} in G, p, q in K, $g_{j}(p) \neq g_{j}(q)$, then $G^{\prime}=\left\{k_{i} g_{i}\right\}$, where $\left\{k_{i}\right\}$ is a set of positive scalars, has the same properties as G. Clearly, G^{\prime} is denumerable and $k_{j} g_{j}(p) \neq k_{j} g_{j}(q)$. To see that it j.s self-determined, let $k_{i} E_{i}$ be in G and $\varepsilon>0$. Then since $\varepsilon / k_{i}>0, g_{i}$ in G and G is self-determined, there exists a neighborhood $N(0, \gamma, \delta)$ where $\gamma=\left\{\operatorname{sm}_{h}\right\}$ is a finite subset of G and if s, t are in K with $s-t$ in $N(0, \gamma, \delta)$ then $\left|g_{i}(T s)-g_{i}(T t)\right|<\varepsilon / k_{i}$. Let $\gamma^{\prime}=\left\{k_{m_{h}} g_{n_{h}}\right\}$ and $\delta^{\prime}=\min \left\{k_{m_{h}}\right\} \delta$, and consider the neighborhood $N\left(0, \gamma^{\prime}, \delta^{\prime}\right)$. If s, t are in K and $s-t$ is in $N\left(0, \gamma^{\prime}, \delta^{\prime}\right)$, then $\left|k_{m_{h}} g_{m_{h}}(s-t)\right|<\delta^{\prime}$ for all $k_{m_{h}} g_{m_{h}}$ in γ^{\prime}. Thus, for all $g_{m_{h}}$ in $\gamma\left|\mathrm{Em}_{\mathrm{h}}(\mathrm{s}-\mathrm{t})\right|<\left(\delta^{1} / k_{m_{h}}\right)=\left(\min \left\{k_{m_{h}}\right\} / k_{m_{h}}\right) \delta \leq \delta$. Herice $s-t$ is in $N(0, \gamma, \delta)$ and thus $\left|g_{i}(T s)-g_{i}(T t)\right|<\left(\varepsilon / k_{i}\right)$. Therefore $\left|k_{i} g_{i}(T s)-k_{i} g_{i}(T t)\right|<\varepsilon$. Thus G^{\prime} is selfdetermined.

Now suppose that K contains two distinct points p and q. Then there exists an f in X^{*} such that $f(p) \neq f(q)$. Let $G=\left\{g_{i}\right\}$ be a denumerable self-determined set of continuous linear functionals containing f. Since K is compact, $g_{i}(K)$ is a compact set of scalars for each i and hence closed and bounded. Since, by the above, we can multiply each g_{i} by an appropriate constant without changing the properties of G, we may assume that $\left|g_{i}(K)\right| \leq(1 / i)$.

We will show that the map $H: K \rightarrow I_{2}$ defined by
$H(k)=\left(g_{1}(k), g_{2}(k), \ldots\right)$ is a continuous map of K onto a compact, convex subset K_{0} of the Hilbert cube C which contans at least two points. Since $\left|g_{i}(K)\right| \leq 1 / i, K_{0} \subseteq C$. Since f is in G, p and q in K, and $f(p) \neq f(q)$, $H(p)=\left\{g_{i}(p)\right\} \nexists^{\prime}\left\{g_{j}(q)\right\}=H(q)$, so K_{0} has at least two points. Now let U be a neighborhood of $\left(\left\{g_{j}(k)\right\}\right)$ in K_{0}, that is
$U=\left\{\left(\left\{g_{i}(h)\right\}\right):\left(\sum_{i=1}^{\infty}\left|g_{i}(k)-g_{i}(h)\right|^{2}\right)^{\frac{1}{2}}<\varepsilon\right\}$.

Now since $\left|g_{i}(K)\right| \leq 1 / i$,
$\left|g_{i}(k)-g_{i}(h)\right| \leq\left|g_{i}(k)\right|+\left|g_{i}(h)\right| \leq(1 / i)+(1 / i)=(2 / i)$. Pick N such that $\sum_{i=N+1}^{\infty}\left(4 / i^{2}\right)<\left(\varepsilon^{2} / 2\right)$. Consider the neighborhood of k given by

$$
V=\left\{h:\left|g_{i}(k)-g_{i}(h)\right|<(\varepsilon / \sqrt{2 N}) \text { for } i=1,2, \ldots, N\right\}
$$

If h is in $V, H(h)=\left\{g_{i}(h)\right\}$ has the property that
$\left(\sum_{i=1}^{\infty}\left|g_{i}(k)-g_{i}(h)\right|^{2}\right)^{\frac{1}{2}}=\left(\sum_{i=1}^{N}\left|g_{i}(k)-g_{i}(h)\right|^{2}\right.$

$$
\begin{aligned}
& \left.+\sum_{i=N+1}^{\infty}\left|g_{i}(k)-g_{i}(h)\right|^{2}\right)^{\frac{1}{2}} \\
& <\left(\left(N \varepsilon^{2} / 2 N\right)+\left(\varepsilon^{2} / 2\right)\right)^{\frac{3}{2}}=\left(\varepsilon^{2}\right)^{\frac{1}{2}}=\varepsilon .
\end{aligned}
$$

Thus $H(h)$ is in U. Hence H is continuous, and since K is compact, $\mathrm{H}(\mathrm{K})=\mathrm{K}_{0}$ is compact. Finally, observe that since each g_{i} is linear, H is linear so the convexity of K implies the convexity of K_{0}.

Now let $T_{0}=H T H^{-1}: K_{0} \rightarrow K_{0}$. We will show that. T_{0} is well-defined and continuous. Let $\left\{g_{i}(k)\right\}$ be in K_{0}, and suppose that k_{1}, k_{2} are in $H^{-1}\left\{g_{i}(k)\right\}$, that is $g_{i}\left(k_{1}\right)=g_{i}\left(k_{2}\right)$ for all i. Then since G is self-determined, by our earlier remark we have that $\mathrm{g}_{\mathrm{i}}\left(\mathrm{Tk}_{1}\right)=\mathrm{g}_{\mathrm{i}}\left(\mathrm{Tk}_{2}\right)$ for all i . Thus $\operatorname{HFk}_{1}=\operatorname{HTk}_{2}$, that is $\operatorname{HRH}^{-1}\left\{g_{j}(k)\right\}=\operatorname{HTH}^{-1}\left\{g_{i}(k)\right\}$. Hence T_{0} is well defined. Now let b_{0} be in K_{0} and $\varepsilon>0$. Choose N such that $\sum_{i=N+1}^{\infty}\left(1 / i^{2}\right)<\varepsilon$. Then since G is self-determined, there exists $\delta>0$ and m such that if

$$
\left|g_{j}(p)-g_{j}(q)\right|<\delta \text { for } j=1, \ldots, m \text { then }
$$

$$
\left|g_{i}(T p)-g_{i}(T q)\right|<(\varepsilon / N)^{\frac{1}{2}} \text { for } i=1, \ldots, N \text {. Thus if }
$$

$$
\left|b-b_{0}\right|<\delta \text { and if } p \text { and } q \text { are any points in } K \text { with }
$$

$$
b=\left\{g_{i}(p)\right\} \text { and } b_{0}=\left\{g_{i}(q)\right\} \text {, then since }
$$

$$
\left|g_{j}(p)-g_{j}(q)\right| \leq\left(\sum_{i=1}^{\infty}\left|g_{j}(p)-g_{j}(q)\right|^{2}\right)^{\frac{1}{2}}<\delta, \text { we have for }
$$

$$
i=1, \ldots N
$$

$$
\left|g_{i}(T p)-g_{i}(T q)\right|<(\varepsilon / N)^{\frac{1}{2}} \text {. Thus }
$$

$$
\left\|T_{0}(b)-T_{0}\left(b_{0}\right)\right\|^{2}=\left\|H H^{-1}(b)-H T H^{-1}\left(b_{0}\right)\right\|^{2}
$$

$$
\leq \sum_{i=1}^{N}\left|g_{i}(T p)-g_{i}(T q)\right|^{2}+2 \sum_{i=N+1}^{\infty}\left(1 / i^{2}\right)
$$

$$
<3 \varepsilon
$$

Thus T_{0} is continuous.
Therefore, by lemna 3.5, T_{0} has a fixed point k_{0} in K_{0}. Hence, $\mathrm{TH}^{-1}\left(\mathrm{~K}_{0}\right) \subseteq H^{-1} \mathrm{~T}_{0}\left(\mathrm{~K}_{0}\right)=H^{-1}\left(\mathrm{~K}_{0}\right)$. Setting $K_{1}=H^{-1}\left(k_{0}\right)$ we note that K_{1} is a proper subset of K since $H(p) \neq H(q)$ implies that either p or q does not belonc to K_{1}. Also, as the inverse image of the closed set $\left\{k_{0}\right\}, K_{1}$ is closed. $T\left(K_{1}\right)=T H^{-1}\left(k_{0}\right) \subseteq H^{-1}\left(k_{0}\right)=K_{1}$. Finally, if k_{1}, k_{2} are in k_{1} and $a, b \geq 0$ such that $a+b=1$, then we have

$$
\begin{aligned}
H\left(a k_{1}+b k_{2}\right) & =\left\{g_{i}\left(a k_{1}+b k_{2}\right)\right\}=\left\{a g_{i}\left(k_{1}\right)\right\}+\left\{b g_{i}\left(k_{2}\right)\right\} \\
& =a\left\{g_{i}\left(k_{1}\right)\right\}+b\left\{g_{i}\left(k_{2}\right)\right\}=a H\left(k_{1}\right)+b H\left(k_{2}\right) \\
& =(a+b) k_{0}=k_{0} .
\end{aligned}
$$

Thus $a k_{1}+b k_{2}$ is in K_{1}, and hence K_{1} is convex. Therefore, K_{1} has the desired properties, and the proof of the lemna is complete.

Theorem 3.7 (Schauder-Tychonoff): A continuous map T:K $\rightarrow K$ of a compact, convex subset K of a locally convex topological vector space has a fixed point in K.

Proof: By Zorn's Lemma there exists a minimal convex, closed subset K_{1} of K with the property that $T K_{1} \subseteq K$. By lemma 3.6 this minimal subset contains only one point. Thus this point is a fixed point of T.

THE KAKUTANI THEOREM

Another older theorem which is of some importance in the development of fixed point theory was proved by Kakutani in 1938. This is one of the earliest of the small but significant number of theorems which are concerned with famlies of mappings. These establish the existence of a fixed poini, not simply for one function, but for a collection of functjons which satisfy certain properties. Kakutani's rasult is particularly interesting because, unlike the other theorems on families, there is no requirement that the functions conmute. The reliance of his proof on Zorn's Lemma is typical of the theorems on families.

Theorem 3.8 (Kakutan1): Let K be a compact, convex subset of a locally convex topological vector space X and let G be a grour of linear mappings which is equicontinuous on K and such that $G(K) \subseteq K$. Then there exists a p in K such that $G(P)=p[13]$.

Proof: By Zorn's Lemma K contains a minimal nonvoid compact convex subset K_{1} such that $G\left(K_{2}\right) \subseteq K_{1}$. If K_{1} has just one point we are through. If not, consider $K_{1}-K_{1}=\left\{k_{1}-k_{2}: k_{1}, k_{2}\right.$ are in $\left.K_{1}\right\}$. Since K_{1} is compact, $K_{1} \times K_{2}$ is compact, and since subtraction is contiruous $K_{1}-K_{1}$ is compact. Since K_{1} has more than one point, $K_{1}-K_{1}$ contains some point other than the origin. Now X is Hausdorff
and thus there exists a neighborhood V_{1} of the origin such that $K_{1}-K_{1} q V_{1}$. By the equicontinuity of G on K_{1} and the local convexity of X, there exists a convex neighbornood U_{1} of the origin such that k_{1}, k_{2} in K_{1} and $k_{1}-k_{2}$ in U_{1} imply $G\left(k_{1}-k_{2}\right) \subseteq V_{1}$. Let $U_{2}=g\left(U_{1}\right)$. Observe that U_{2} has the following properties:

1. U_{2} is convex since U_{1} is convex and the members of G are linear.
2. U_{2} contains the origin since U_{i} contains the origin and the members of G are lincar.
3. U_{2} is open since U_{1} is open and G is a group, all of whose members are continuous.
4. $G\left(U_{2}\right)=U_{2}$ since G is a group.
5. $G\left(\overline{U_{2}}\right) \subseteq \overline{G\left(U_{2}\right)}=\overline{U_{2}} \subseteq G\left(\overline{U_{2}}\right)$, and thus $\overline{U_{2}}=G\left(\overline{U_{2}}\right)$, since each function in G is continuous and the identity map is in G.

Now let $d=\inf \left\{a: a>0, K_{1}-K_{1} \subseteq a_{2}\right\}$. We will show that d exists and is positive. By 2 and 3 above, U_{2} is a neighborhood of zero. Moreover, since $K_{1}-K_{1}$ is compact it is bounded. Thus there exists a b > 0 such that $K_{1}-K_{1} \subseteq b^{\prime} U_{2}$ for all $\left|b^{\prime}\right| \leq b$. Hence the set is nonempty and therefore d exists. We will show that d is strictly positive. Let $a>0$ be such that $K_{1}-K_{1} \subseteq a U_{2}=a G\left(U_{1}\right)$. Let $k_{1}-k_{2}$ be in $K_{1}-K_{1}$. Then $k_{1}-k_{2}=a g(u)$ for some g in G and u in U_{1}. Since G is a group, g^{-1} is in G and is linear. Thus
$g^{-1}\left(k_{1}-k_{2}\right)=g^{-1}(a g(u))=a g^{-1}(g(u))=$ au which is in $a U_{1}$. However, if $a \leq l$, then since U_{1} is a convex neighborhood of zero, au would belong to U_{1}. Thus $g^{-1}\left(k_{1}-k_{2}\right)$ is in U_{1}. Hence, by the linearity of $g^{-1}, g^{-1}\left(k_{1}\right)-g^{-1}\left(k_{2}\right)$ is in U_{1}. However, since $G\left(K_{1}\right) \subseteq K_{1}, g^{-1}\left(k_{1}\right)$ and $g^{-1}\left(k_{2}\right)$ are in K_{1}. Thus, by the construction of $U_{1}, G\left(g^{-1}\left(k_{1}\right)-g^{-1}\left(k_{2}\right)\right) \subseteq V_{1}$. Therefore, $g g^{-1}\left(k_{1}\right)-g g^{-1}\left(k_{2}\right)=k_{1}-k_{2}$ is in V_{1}. But $k_{1}-k_{2}$ was arbitrary in $K_{1}-K_{1}$. Thus we have $K_{1}-K_{1} \subseteq V_{1}$, a contradiction. Therefore we must have a >1 for ail 2 in our set, and thus $d \geq 1>0$.

Nov: let $U=\mathrm{dU}_{2}$. Note that since d is positive, the following pronerties of U follow from the corresponding properties of U_{2} :

1. U is open.
2. U is convex.
3. 0 is in U.
4. $G(\bar{U})=G\left(\overline{\mathrm{CU}_{2}}\right)=d G\left(\overline{U_{2}}\right)=d \overline{U_{2}}=\bar{U}$.

We show next that $K_{1}-K_{1} \ddagger(1-c) U$ for $0<c<1$. Let x be in (1-c) \bar{U}, that is $x=(1-c) y$ where y is in \bar{U}. Let qu be the Minkowski functional on U. Then $q u(x)$ $=q u(1-c) y=(1-c) q u(y)$. However, y is in \bar{U} so $q u(y) \leq 1$. Thus $0<q u(x)=(1-c) q u(y) \leq(1-c)<1-\frac{1}{2} c$. Therefore there exists $p<1-(c / 2)$ such that x is in $p u$. However, $0<p<1-(c / 2)<1$ implies that $p /\left(1-\frac{1}{2} c\right)<1$. Thus, since U is convex containing $0,\left(p /\left(1-\frac{1}{2} c\right)\right) U \subseteq U$. Hence
$\mathrm{pU} \subseteq\left(1-\frac{1}{2} c\right) \mathrm{U}$. Therefore x is in $\left(1-\frac{1}{2} c\right) \mathrm{U}$. Thus we have $(1-c) \bar{U} \subseteq\left(1-\frac{1}{2} c\right) U$. Then $K_{1}-K_{1} \subseteq(1-c) \bar{U} \subseteq\left(1-\frac{1}{2} c\right) U$ $=\left(1-\frac{1}{2} c\right) \mathrm{dU}_{2}$ implies that $\left(1-\frac{1}{2} c\right) \mathrm{d} 2 \mathrm{~d}$, a contradiction. Thus $K_{1}-K_{1} \ddagger(1-c) \bar{U}$.

Also note that $K_{1}-K_{1} \subseteq(1+c)$ for $0<c<1$, since $(1+c) d>d$ gives, by definition, $K_{1}-K_{1} \subseteq(1+c) d U_{2}=(1+c) U$. Now, since 0 is in U, the family of open sets $\left\{-\frac{1}{2} U+k: k \varepsilon K_{1}\right\}$ is an open cover of the compact set K_{1}. Let $\left\{-\frac{1}{2} U+k_{1},-\frac{1}{2} U+k_{2}, \ldots,-\frac{1}{2} U+k_{n}\right\}$ be a finite subcover. Let $p=(1 / n)\left(k_{1}+\ldots+k_{n}\right)$. Then since K_{1} is convex, p is in K_{1}. Now if k is in K_{1}, then $k_{i}-k$ is in $\frac{1}{2} U$ for some
 $0<c<1$, we have $p=(1 / n)\left(k_{1}+\ldots+k_{n}-n k+n k\right)=(1 / n)\left(k_{i}-k+\sum_{j \neq 1} k_{j}-k\right)+k$. Thus p is in $(1 / n)\left(\frac{1}{2} U+(n-1)(1+c) U\right)+k$. Let $c=(1 / 4(n-1))$. Then p is in
$(1 / n)\left(\frac{1}{2} \mathbb{U}+(n-1)(1+(1 / 4(n-1))) U\right)+k=(1 / n)\left(\frac{1}{2} U+n U-(3 / 4) U\right)+k$

$$
\begin{aligned}
& =(1 / n)\left(n U-\frac{1}{4} U\right)+k \\
& =(1-(1 / 4 n)) U+k
\end{aligned}
$$

for each k in K_{1}.
Thus $p-k$ is in $(1-(1 / 4 n))$ for each k in K_{1}. Hence $p-k$ is in $(1-(1 / 4 n) \bar{U}$, that is, p is in $(1-(1 / 4 n)) \bar{U}+k$ for each k in K_{1}. Let $K_{2}=K_{1} \cap \underset{k \in K_{1}}{\cap}((1-(1 / 4 n)) \overline{\mathrm{U}}+\mathrm{k})$. Then p is in K_{2} so K_{2} is nonvoid. However, if $K_{2}=K_{1}$ then
$K_{1} \subseteq \cap_{k_{\varepsilon} K_{1}}(1-1 / 4 n) \overline{\mathrm{U}}+k$. Hence for any k_{1}, k_{2} in K_{1} we have k_{1} is in $(1-1 / 4 n) \bar{U}+k_{2}$, or $k_{1}-k_{2}$ is in $(1-1 / 4 n) \bar{U}$. Thus $K_{1}-K_{1} \subseteq(1-1 / 4 \mathrm{n}) \overline{\mathrm{U}}$, where $0<(1 / 4 \mathrm{n})<I$, a contradiction. Thus K_{2} is a proper subset of K_{1}. However, K_{2} is the intersection of closed sets and hence is closed. Also, since K_{1} is convex and U is convex, K_{2} is convex. Finally, $G\left(K_{2}\right) \subseteq G\left(K_{1}\right) \cap \cap_{k \in K_{1}} G((1-1 / / n) \bar{U}+k) \subseteq K_{1} \cap \cap_{k \in K_{1}}(1-1 / 4 n) G \bar{U}+G k$

$$
\subsetneq K_{1} \cap \cap_{k \varepsilon K_{1}}^{\cap}(1-1 / 4 n) \bar{U}+k=K_{2} .
$$

Thus K_{2} is a proper, nonempty, closed, convex subset of K_{1} with the property that $G\left(K_{2}\right) \subseteq K_{2}$ which is a contradiction to the minimality of K_{1}.

Therefore we must have that K_{1} consists of a single point, which is thus a common fixed point of G.

CHAPTER IV

MODERN THEOREMS

Current research in the area of fixed point theorems has exploded in so many directions that selecting the most general of the modern theorems is virtually impossible. Nevertheless, two very recently published results are most interesting, both with regard to their generality and to their relationship with each other. Petryshyn's P compact operator [29, 30] and Guedes de Figueiredo's G operator [21] are both attempts to find the most general existence theorem for fixed points by introducing new spaces and operators. An examination of the relations listed in Chapter II reveals that they both have partially accomplished their goal.

Nevertheless, much remains to be done. Necessary and sufficient conditions for a space to be PB or GB should be established. Guedes de Figueiredo mentions that all the Banach spaces which he has investigated were, in fact, GB spaces. He asks for a proof, or a counter-example, of the proposition that all Banach spaces are GB spaces. If they were, the power of his results would indeed be formidable. However, it is not even clear that every PB space is a $G B$ space because of the requirement that the projections have a norm of unity. Likewise, because of Petryshyn's
requirement on countability, it is doubtful that every $G B$ space is a PB space. The similarities in the two definitions seem to indicate that further investigation in this derection would be fruitful. In particular, an interesting conjecture is that a new space could be defined which includes both the PB and the GB spaces and in which, by suitable modifications in the proofs, both Petryshyn's and Guedes de Figueiredo's results would remain valid.

A NEW RESULT

One step toward generalizing their results is taken in Theorem 4.2 which extends Petryshyn's Theorem l [29] from a ball to a bounded closed convex set, and which includes Guedes de Figueiredo's Theorem 2 [21] as a corollary.

Lenma 4.l: Let X be a finite dimensional Banach space, let C be a bounded closed convex subset of X which contains the origin as an interior point. Then a function R can be defined on X which has the following properties:

1. R maps X onto C .
2. $R(x)=x$ if x is in C and $R(x)=t x$ for some $t, 0<t<1$ if x is not in C.
3. $R(x)$ is on the boundary of C if x is not in C.
4. R is continuous.

Proof: For x in X consider the set $\mathrm{S}_{\mathrm{x}}=\{$ tx : $\mathrm{t} \geq 0\}$. Then S_{x} is closed and convex, $\mathrm{S}_{\mathrm{X}} \cap \mathrm{C}$ is nonempty, closed, bounded, and convex. Since X is finite dimensional, $S_{x} \cap \mathrm{C}$ is compact.

We begin by showing that if x is in X then there exists a unique point $R(x)$ in $S_{x} \cap C$ such that $\|x-R(x)\|=\inf _{y \varepsilon S_{x} \eta_{C}} \mid y_{c}-x \|=d$. By the compactness of $s_{x} \cap C$ we know that such a point does exist. To see the uniqueness, observe that if x is in C then x is in $S_{X} \cap C$ and $\|x-x\|=0<\|x-y\|$ for all y in $S_{x} \cap C$ and $y \neq x$. If x is not in C, suppose that $x_{1}=t x$ and $x_{2}=s x$ are in $s_{x} \cap C$ and $\left\|x-x_{1}\right\|=\left\|x-x_{2}\right\|=d$. Now since x is not in C and C is convex containing zero, we must have $t<l$ and $s<l$. Thus $l-t>0$ and $l-s>0$. Moreover,

$$
\begin{aligned}
\|1-t\|\|x\| & =\|x-t x\|=\left\|x-x_{1}\right\|=\left\|x-x_{2}\right\| \\
& =\|x-s x\|=|1-s|\|x\|
\end{aligned}
$$

But $\|x\| \neq 0$ since x is not in C. Thus we must have $1-t=|1-t|=|1-s|=l-s$, and therefore $s=t$. Hence $x_{1}=x_{2}$, and the function $R(x)$ so definea is single valued and maps X onto C.

Observe that if x is in $C, R(x)=x$ and if x is not in $C, R(x)=t x$ where $0<t<1$.

To see that if x is not in C then $R(x)$ is in the boundary of C, suppose, by way of contradiction, that $R(x)$ is in the interior of C. Then there exists an $a>0$ such
that $N_{a}(R(x)) \subseteq$ Int C. Let $R(x)=t x$ and consider the point $y=\left(t+\left(\frac{1}{2} a /\|x\|\right)\right) x$. Then

$$
\begin{aligned}
\|R x-y\| & =\left\|\left(t+\left(\frac{1}{2} a /\|x\|\right)\right) x-t x\right\|=\left\|\left(\frac{1}{2} a \cdot /\|x\|\right) x\right\| \\
& =\frac{1}{2} a<a .
\end{aligned}
$$

Thus y is in $N_{a}(R x) \subseteq$ Int C, and since C is convex containing 0 and x is not in $C,\left(t+\frac{1}{2} a /\|x\|\right)<1$. However, $\|x-y\|=\left\|x-\left(t+\left(\frac{1}{2} a /||x||\right)\right) x\right\|=\left\|1-\left(t+\left(\frac{1}{2} a /\|x\|\right)\right)\right\| x \|$

$$
\begin{aligned}
& =\left(1-\left(t+\left(\frac{1}{2} a /\|x\|\right)\right)\right)\|x\|<(1-t)\|x\| \\
& =\|x-\operatorname{Rx}\|, \text { a contradiction to the definition }
\end{aligned}
$$

of $R(x)$. Thus if x is not in $C, R(x)$ is in the boundary of C.
We show that R is continuous in X. Suppose, by way of contradiction, that it is not continuous at a point p in X. Then there exists a sequence $\left\{p_{n}\right\}$ converging to p such that no subsequence of $\left\{R\left(p_{n}\right)\right\}$ converges to $R(p)$. If any subsequence $\left\{p_{n_{i}}\right\}$ were contained in C, then since C is closed and $\left\{p_{n_{i}}\right\} \rightarrow p, p$ would belong to c. However, in such a case $\left\{R\left(p_{n_{i}}\right)\right\}=\left\{p_{n_{i}}\right\} \rightarrow p=R(p)$ which gives a contradiction. Thus all but a finite number of $\left\{p_{n}\right\}$ do not belong to C, so that p is not in the interior of c. However, $\left\{R\left(p_{n}\right)\right\} \subseteq c$ which is compact, and therefore a subsequence, which without loss of generality we call $\left\{R\left(p_{n}\right)\right\}$, converges to a point q in C and $q \neq R(p)$. Since at most a finite number of the $\left\{p_{n}\right\}$ are in C, a subsequence which we again call $\left\{p_{n}\right\}$ car be chosen so that $\left\{p_{n}\right\} \subset X / C$ and $\left\{R\left(p_{n}\right)\right\} \rightarrow q$. Since $\left\{R\left(p_{n}\right)\right\}$ is contained in the boundary of C, q is in the boundary of C .

However, $R\left(p_{n}\right)=t_{n} p_{n}$ for some t_{n} in $[0,1]$. Thus the sequence $\left\{t_{n}\right\} \in[0, l]$ has a convergent subsequence $\left\{t_{n_{\dot{1}}}\right\} \rightarrow t$. Now $\left\{p_{n_{i}}\right\} \rightarrow p$ since $\left\{p_{n}\right\} \rightarrow p$, and thus $\left\{t_{n_{i}} p_{n_{i}}\right\} \rightarrow$ tp. How$\operatorname{ever}\left\{t_{n_{\dot{i}}} p_{n_{i}}\right\}=\left\{R\left(p_{n_{i}}\right)\right\} \rightarrow q$ since $\left\{R\left(p_{n}\right)\right\} \rightarrow q$. Thus we must have $q=t p$. In addition, $R(p)=k p$ for some $0<k<l$. If $t<k$, we show that q is in the interior of c, a contradiction to our observation that q was on the boundary. Since p is not in the interior of $C, R(p) \neq 0$, and thus $k>0$. Since 0 is in the interior of C, there exists an $a>0$ such that $N_{a}(0) \subseteq C$. Observe that $q=t p=(t / k) k p=(t / k) R(p)=s R(p)$ and $s<1$ since $t<k$. Then (l-s)a >0. We will consider $N_{(1-s) a}(q)$. Let y be in $N_{(1-s) a}(q)$. Then $\|y-q\|=\|y-s R(p)\|<(1-s) a$. Let $w=(1 / 1-s) y-(s / l-s) R(p)$. Then

$$
\begin{aligned}
\|w\| & =\|(1 / 1-s) y-(s / 1-s) R(p)\|=|(1 / 1-s)|\|y-s R(p)\| \\
& <|(1 / 1-s)|(1-s) a=a .
\end{aligned}
$$

Thus w is in $N_{a}(0) \subseteq C$. Therefore since $R(p)$ is in C, $y=(1-s) w+s R(p)$ where $0<s<1$, and C is convex, y is in C. Hence $N(I-s) a(q) \subseteq C$. Thus q is in the interior of C, and we have the desired contradiction. We conclude that $t k k$.

Therefore, since $q \neq R(p)$, we must have $t>k$. But then $\|p-q\|=\|p-t p\|=(1-t)\|p\|<(1-k)\|p\|$

$$
=\|p-k p\|=\|p-R(p)\|,
$$

a contradiction to the definition of $R(p)$.
Therefore no such p exists and R is continuous in X.

This completes the proof of the lemma.

Theorem 4.2: Let X be a finite dimensional Banach space, let C be a bounded, closed, convex subset of X which has zero as an interior point. Let A be a continuous mapping of C into X, and let k be any constant. Then there exists at least one element u in C such that

$$
\begin{equation*}
A u-k u=0 \tag{1}
\end{equation*}
$$

provided that the mapping A satisfies either the condition (π, k, \leq): If for some x on the boundary of C the equation $A x=b x$ holds, then $b \leq k$.
or the condition
(π, k, z): If for some x on the boundary of C the equation $A x=b x$ holds, then $b \geq k$.

Proof: Suppose that A satisfies (π, k, s) and let $T x=A x-k x+x$. Define $R(x)$ on X as in lemuna 4.1. Since both T and R are continuous, it follows that $S x=R T(x)$ is a continuous mapping of C into itself. Thus by the SchauderTychonoff Theorem, S has a fixed point u in C.

We will show that v is also a fixed point of T. Suppose that u is in the interior of $C, u=\operatorname{RT}(u)=S u$. By the lemma, if x is not in C, then $R(x)$ is in the boundary of C. Thus we must have $T(u)$ in C, and hence $u=\operatorname{RT}(u)=T(u)$. If u is in the boundary of C and u is not a fixed point of T, then $T(u)$ does not belong to C. Thus $u=R(T(u))=\operatorname{tT}(u)$
where $0<t<1$. Hence $T(u)=(1 / t)$ u where $I<(I / t)$. By definition of $T,(l / t) u=T u=A u-k u+u$, so $A u=((1 / t)-1+k) u$ for u in the boundary of C and $a=((1 / t)-1+k)>k$, a contradiction to the condition (π, k, \leq). Thus u must be a fixed point of T, and therefore $u=\Gamma u=A u-k u+u$. Hence $A u=k u$ and (I) is satisfied. Now suppose that A satisfies condition (r, k, z). Define the operator B by $B x=2 k x-A x$. Then B is a contirnuous map of C into X. Moreover, if for some x in the boundary of C the equation $B x=a x$ holds, then $a x=2 k x-A x$, and thus $A x=(2 k-a) x$. Hence by condition (π, k, \geq), $2 k-a \geq k$, and so $k \geq a$. Therefore B satisfies condition (π, k, \leq) so that we can apply the above result to B and conclude that there exists u in C such that $k u=B u=2 k u-A u$. Thus $A u=k u$, and equation (1) is satisfied, completing the proof of the theorem.

Remark: If in condition (π, k, \leq) (or in condition (π, k, \geq)), we require that $a<k$ (or that $a>k$), then an element u Which satisfies equation (l) must lie in the interior of C.

PETRYSHYN'S RESULT

Lemma 4.3: Suppose that A is a P compact operator mapping the $P B$ space X into itself. Suppose further that for given $r>0$ and $k>0$ the operator A satisfies both of the following conditions:
(h) There exists a number $c(r)>0$ such that if, for any r_{1}, $P_{n} A x=h x$ holds for x in S_{r} with $h>0$, then $h \leq c(r)$. (π, k) If for some x in S_{r} the equation $A x=$ ax holds then $a<k$.

Then there exists an integer $n_{0}>0$ such that if $n \geq n_{0}$ and $P_{n} A x=b x$ for some x in $S_{r} \cap X_{n}$, then $b<k$.

Proof: Suppose, by way of contradiction, that no such n_{0} exists. Then we could find a sequence $\left\{x_{n}\right\}$ with x_{n} in $X_{m_{n}} \cap S_{r}$ and a sequence of numbers $\left\{b_{n}\right\}$ such that

$$
\begin{equation*}
\mathrm{P}_{\mathrm{m}_{\mathrm{n}}} A \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}} \quad \text { and } \quad \mathrm{b}_{\mathrm{n}} \geq \mathrm{k} \tag{I}
\end{equation*}
$$

Hence condition (h) implies that $\left|\left|P_{m_{n} A x_{n}}\right|=b_{n} r \leq c(n) r\right.$. Thus $b_{n} \varepsilon\left[k, c\left(n^{\prime}\right)\right]$ for each n. But this is a closed and bounded subset of the real line and hence compact. Thus $\left\{b_{n}\right\}$ has a convergent subsequence, say $\left\{b_{n_{i}}\right\} \rightarrow b \varepsilon[k, c(r)]$. Combining this result with (1) we get

$$
\begin{equation*}
\left|\left|P_{m_{n_{i}}} A x_{n_{i}}-b x_{n_{i}}\right|\right|=\left|\left|\left(b_{n_{i}}-b\right) x_{n_{i}}\right|\right|=\left|\left(b_{n_{i}}-b\right) r\right| \rightarrow 0 \tag{2}
\end{equation*}
$$

Since A is P compact, (2) implies the existence of a strongly convergent subsequence, which we denote by $\left\{x_{n}\right\}$, and an element x in $S_{r} \cap X$ such that $\left\{x_{n}\right\} \rightarrow x$ and $\left\{P_{m_{n}} A x_{n}\right\} \rightarrow A x$. This fact and (2) imply that

$$
\begin{aligned}
||A x-b x|| & \leq \| A x-P_{m_{n}} A x_{n}| |+\left|\left|P_{m_{n}} A x_{n}-b x_{n}\right|\right| \\
& +\| b x_{n}-b x| | \rightarrow 0
\end{aligned}
$$

Thus $A x-b x=0$ for x in S_{r} and $b \geq k$, contrary to condition (π, k), which finishes the proof of the lemma.

Theorem 4.4: Suppose that A satisfies the hypothesis of lemma 4.3. Then there exists at least one element u in $\mathrm{B}_{\mathrm{r}} / \mathrm{S}_{\mathrm{r}}$ such that $\mathrm{Au}-\mathrm{ku}=0$.

Proof: By the definition of P compact, there exists N_{1} such that $n \geq N_{1}$ implies that $P_{n} A$ is continuous in X_{n}. By lemma 4.3 there exists N_{0} such that $n \geq N_{0}$ and $P_{n} A x=b x$ for x in $S_{r} \cap X_{n}$ implies that $b<k$. Let N be the maximum of N_{1} and N_{0}. Now $B_{r} \cap X_{n}$ is the ball of radius r centered at the origin in the finite dimensional space X_{n}, and for all $n \geq N . P_{n} A$ is continuous in X_{n} and satisfies condition ($\pi, k,<$) of theorem 4.2. Thus by that theorem and the remark following it, there exists an element u_{n} in $B_{r} \cap X_{n}$ such that $P_{n} A u_{n}-k u_{n}=0, k>0,\left\|u_{n}\right\|<r$. Therefore, again by the P compactness of A , there exists a subsequence $\left\{u_{n_{i}}\right\}$ and an elenent u in B_{r} such that $\left\{u_{n_{i}}\right\}+u$ and $\left\{P_{n_{i}} A u_{n_{i}}\right\} \rightarrow A u$. Therefore

$$
\begin{aligned}
\|A u-k u\| & \leq\left\|A u-P_{n_{i}} A u_{n_{i}}\right\|+\left\|P_{n_{i}} A u_{n_{i}}-k u_{n_{i}}\right\| \\
& +\| k u_{n_{i}}-k u| | \rightarrow 0
\end{aligned}
$$

Thus $A u=k u$. Finally, u is in B_{r} / S_{r} since the assumption that u is in S_{r} would contradict condition (π, k).

GUEDES DE FIGUETREDO'S RESUJT

Lemma 4.5: Let E be a GB space, J a duality map in E with gauge function μ. Then for any x in F_{α} the following inclusion holds: $P_{\alpha}^{\prime}(J x) \subseteq J x$, where P_{α}^{\prime} is the adjoint of P_{α} in E^{*}.

Proof: Jet y^{\prime} be in Jx. Then we have
$\|x\|\left\|P_{\alpha^{\prime}} y^{\prime}\right\| \geq P_{\alpha}^{\prime} y^{\prime}(x)=y^{\prime}\left(P_{\alpha}(x)\right)=y^{\prime}(x)=\| x| | \mu(| | x| |)$. Thus $\left\|P_{\alpha}^{\prime} V^{\prime}\right\| \geq \mu(\|x\|)$. On the other hand, $\left\|P_{\alpha}^{\prime} y^{\prime}\right\| \leq\left\|y^{\prime}\right\|=\mu(\|x\|)$. Thus $\left\|P_{\alpha}^{\prime} y^{\prime}\right\|=\mu(\|x\|)$ and $P_{\alpha}^{\prime} y^{\prime}(x)=\|x\| \mu(\|x\|)$. Hence $P_{\alpha}^{\prime} y^{\prime}$ is in $J x$, and we have the desired result.

Theorem 1.6: Let E be a finite dimensional Banach space. Let μ be a gauge function and let $T: C \rightarrow E$ be a continuous mapping from a bounded closed convex subset C of E into E, where zero is in the interior of C. Suppose that for every x in the boundary of C there exists V^{\prime} in E^{*} such that $v^{\prime}(x)=\| x| | \mu(| | x| |)$ and $v^{\prime}(T x) \leq \| x| | \mu(| | x| |)$. Then T^{\prime} has a. fixed point in C.

Proof: Let x be in the boundary of C and suppose that $\mathrm{Tx}=$ ax. Suppose that $\mathrm{a}>1$. Then
$0=v^{\prime}(a x-T x)=v^{\prime}(a x)-v^{\prime}(T x)=a v^{\prime}(x)-v^{\prime T} T$
$\geq a| | x| | \mu(| | x| |)-\|x\| \mu(| | x| |)>0$, which is a contradiation. Thus $a \leq 1$, and T satisfies condition ($\pi, 1, \leq$) of
theorem 4.2. Therefore T has a fjxed point in C.

Theorem 4.7: Let E be a $G B$ space. Let $T: C \rightarrow E$ be a G operator where C is a bounded closed convex subset of E, and the orjgin belongs to the interior of $C \cap F_{\alpha}$ for all but a finite number of α. Let J be a duality mapping in E with gauge function μ. If $J x(T x) \leq\|x\| \mu(\|x\|)$ for every x in the boundary of C, then T has a fixed point in C.

Proof: Consider for each α the mapping $T_{\alpha}=P_{\alpha} T$. Such a map is continuous because T is a G operator.

Let x be in the boundary of $C \cap F_{\alpha}$. We establish the existence of a^{\prime} in E^{*} which satisfies the condition of theorem 4.6. Let y^{\prime} be any element of $\mathrm{Jx} \subseteq \mathrm{E}^{*}$. Set $v^{\prime}=y^{\prime} \mid F_{\alpha}$. Then v^{\prime} is in F_{α}^{*} and we have $v^{\prime}(x)=\|x\| \mu(\|x\|)$. Now $v^{\prime}\left(T_{\alpha} x\right)=y^{\prime}\left(T_{\alpha} x\right)=y^{\prime}\left(P_{\alpha} T x\right)=P_{\alpha} y^{\prime} T x$ where P_{α} is the adjoint of P. Since $P_{\alpha}^{\prime} y^{\prime}$ is in $J x$ by lemma 4.5, by hypothesis we have $V^{\prime}\left(T_{\alpha} X\right)=P_{\alpha} y^{\prime}(T x) \leq\|x\| \mu(| | x| |)$. Thus v^{\prime} satisfies the condition of theorem 4.6.

Hence, by that theorem, for all α the equation $T_{\alpha} \mathrm{x}=\mathrm{x}$ is solvable in F_{α}. Since T is a G operator it follows that T has a fixed point in C, and this completes the proof of the theorem.

CHAPJER V

APPLICATIONS

Fixed point theorems have many applications in the area of functional analysis and applied mathematics. In particular, they have proved to be a useful technjque for establishing the existence, and in some cases the uniqueness, of solutions to differential and intecrral equations. When the proof of a fixed point theorem is constructive, it provides a method for obtaining an approximate solution to an operator equation.

Given a particular problem, the genexal procedure for proving the existence of a solution is to replace the original equation with an equivalent equation which defines an operator mapping a function space into itself. In order to prove the existence of a solution to the original problem, it is then necessary to find an invariant function, that is a fixed point, of the operator. Thus if the operator and the function space can be shown to satisfy the hypothesis of one of the known fixed point theorems, the exist.. ence is proved.

From this standpoint, the fixed point theorem is even more valuable if its proof provides a technique for constructing the fixed point. In this regard, the theorems
on contraction mappings are particularly important. While the existence of a fixed point may follow from a more general theorem, the properties of contraction type mappjngs seem to lend themselves most readily to constructive proofs. The Banach-Cacciopoli Theorem whose proof was given in Chapter III was the carliest of the contraction theorems. Much current research, in particular by Browder and Edelstein, has been devoted to generalizing the idea of a strict contraction while retaining enough control over the operator to be able to construct a fixed point. An indication of the modern interest in contraction theorems may be found by examining the list in Chapter VI.

The procedure used in applying fixed point theorems is illustrated in the proofs of the theorems of Picard, Cauchy, and Poincaré, together with applications to Fredholm and Volterra integral equations.

Theorem 5.1: (Picard) Consider the differential equation $\frac{d y}{d x}=f(x, y)$, where $f(x, y)$ satisfies the Lipschitz condition $\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right| \leq M\left|y_{1}-y_{2}\right|$. Then, on the interval $\left|x-x_{0}\right| \leq d$, there exists a unique solution $y(x)$ of the equation which satisfies the condition $y\left(x_{0}\right)=y_{0}$ [27].

Proof: We replace the differential equation by the integral
equation $y=y_{0}+\int_{x_{0}}^{x} f(t, y) d t$.

We shall consider the right hand side of the integral equation as an operator defined on $C[a, b]$ where $a<x_{0}<b:$

$$
A(g)=y_{0}+\int_{x_{0}}^{x} f(t, g) d t .
$$

Since the operation of integration is a continuous function of the upper limit, the operator transforms points of C into C. Estimating $d\left(\mathrm{Ag}_{1}, \mathrm{Ag}_{2}\right)$ we have

$$
\begin{aligned}
d\left(A g_{1}, A g_{2}\right) & =\max \left|A g_{1}-A E_{2}\right|=\max \left|\int_{x_{0}}^{x} f(t, g)-f\left(t, g_{2}\right) d t\right| \\
& \leq M \max \left|g_{1}-g_{2}\right|\left|x-x_{0}\right|
\end{aligned}
$$

If we take $\left|x-x_{0}\right| \leq k / M$ where $k<I$, then

$$
d\left(\mathrm{Ag}_{1}, \mathrm{Ag}_{2}\right) \leq k d\left(\mathrm{~g}_{1}, \mathrm{~g}_{2}\right),
$$

and hence a unique solution of the equation $A(g)=g$ exists by the Banach-Cacciopoli Theorem. This solves the given differential equation. It follows from the same theorem that the solution can be approximated by iterating the operator A starting with any continuous function.

Theorem 5.2: (Cauchy) Consider the differential equation $\frac{d y}{d x}=f(x, y)$ where $f(x, y)$ is anaiytic at the point $\left(x_{0}, y_{0}\right)$. Then there exists a unique solution $y(x)$ which can be expanded in powers of $x-x_{0}$ in some neighborhcod of the point x_{0}, and which satisfies the condition $y\left(x_{0}\right)=y_{0}$ [27].

Proof: Let $f(x, y)=\sum_{a} \alpha_{\alpha} x^{\alpha} y^{\beta}$ in the domain $\left|x-x_{0}\right|<\varepsilon$ $\left|y-y_{0}\right|<\varepsilon$. Let $M=\max \left|\frac{\partial f}{\partial y}\right|$ for $\left|x-x_{0}\right| \leq \varepsilon^{\prime}<\varepsilon$,
$\left|y-y_{0}\right| \leq \varepsilon^{\prime}<\varepsilon$. Consider the set of analytic functions C which are holomorphic in the circle $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}$ of radius $r=\min \left\{k / \mathbb{M}, \varepsilon^{2}\right\}$ where k is some fixed number less than one. If we define $d\left(g_{1}, g_{2}\right)=\max \left|g_{1}-g_{2}\right|$ for g_{1}, g_{2} in C, then C is a complete metric space.

We replace the differential equation by the integral equation:

$$
y=y_{0}+\int_{x_{0}}^{x} f(t, y) d t
$$

Consider the right side of the equation as an operator A defined on C.

Estimating $\alpha\left(A\left(g_{1}\right), A\left(g_{2}\right)\right)$ we have
$d\left(A\left(g_{1}\right), A\left(g_{2}\right)\right)=\max \left|\int_{x_{0}}^{x}\left(f\left(t, g_{1}\right)-f\left(t, g_{2}\right)\right) d t\right|$

$$
\leq \int_{x_{0}}^{x} \max \left|\frac{\partial f}{\partial g}\right|\left|g_{1}-g_{2}\right| d t \leq M \max \left|g_{1}-g_{2}\right|\left|x-x_{0}\right| .
$$

Taking $\left|x-x_{0}\right| \leq k / M$, we have $d\left(A\left(g_{1}\right), A\left(g_{2}\right)\right) \leq \kappa d\left(g_{1}, g_{2}\right)$. Consequently we can apply the Banach-Cacciopoli Theorem to prove A has a fixed point in C and thus has the desired expansion. This completes the proof'.

Theorem 5. 3: (Poincaré) Suppose that in the equation $\frac{d y}{d x}=f(x, y, \lambda)$, the function $f(x, y, \lambda)$ can be expanded in a power series $\sum_{\alpha \beta \gamma^{\prime}} x^{\alpha} y^{\beta} \lambda^{\gamma}$ in x, y and λ which converges in the region $|x|<\varepsilon,|y|<\varepsilon,|\lambda|<\varepsilon$. Then there exists a solution of the form
$y=u_{1}(x)+\lambda u_{2}(x)+\ldots+\lambda^{n} u_{n}(x)+\ldots[27]$.
Proof: Let $M=\max \left|\frac{\partial f}{\partial y}\right|$ and consider the set of functions $C=\left\{g(x, \lambda)=\sum c_{\alpha \beta^{\prime}} x^{\alpha} \lambda^{\beta}\right\}$, which are analytic in the domain $|x|<\min \{k / M, \varepsilon\},|\lambda|<\min \{k / M, \varepsilon\}$ where $k<1$. This set is a complete metric space if the distance is taken as $\max \left|\xi_{1}(x, \lambda)-\xi_{2}(x, \lambda)\right|$.

Consider the operator $A(\xi)=\int_{0}^{x} \sum_{\alpha \beta \gamma} t^{\alpha} g^{\beta} \lambda^{\gamma} d t$. Then $A(g)$ is also a function in the set C. Estimating $d\left(A\left(g_{i}\right), A\left(g_{2}\right)\right)$
as in Cauchy's Theorem, we obtain
$d\left(A\left(\xi_{1}\right), A\left(g_{2}\right)\right) \leq k d\left(g_{1} g_{2}\right)$, which, argain using the BanachCacciopoli Theorem, proves Poincarés Theorem.

Theorem 5.4: There exists a unjque solution for the Eredholm nonhomogeneous linear integral equation of the
second kind: $f(x)=\underset{a}{\lambda} \frac{b}{a}(x, y) f(y) d y+\phi(x)$
Where $Y_{2}(x, y)$ and $\phi(x)$ are given continuous functions for $a \leq x \leq b, a \leq y \leq b$ and $f(x)$ is the function sought, provided that $|\lambda|<1 / M(b-a)$ where $|K(x, y)| \leq M[26]$.

Proof: Consider the mapping $g=A f$, that is
$g(x)=\lambda \int_{a}^{b} K(x, y) f(y) d y+\phi(x)$, of the complete metric space C[a,b] into itself. We obtain
$d\left(g_{1}, g_{2}\right)=\max \left|g_{1}(x)-g_{2}(x)\right| \leq|\lambda| M(b-a) \max \left|f_{1}-f_{2}\right|$.
Consequently, the mapping A is a strict contraction for
$|\lambda|<1 / M(b-a)$, and thus by the Banach Theorem, the Fredholm equation has a unique continuous solution. The successive approximations to this solution: $f_{0}(x), f_{1}(x), \ldots, f_{n}(x), \ldots$ have the form $f_{n}(x)=\underset{a}{\lambda} \int_{a}^{b}(x, y) f_{n-1}(y) d y+\phi(x)$. An arbitrary continuous function may be chosen for $f_{0}(x)$.

Theorem 5.5: There exjsts a unique solution to a nonlinear equation of the form $f(x)=\underset{a}{\lambda} \underset{a}{ }(x, y, f(y)) d y+\phi(x)$ where K and ϕ are continuous, and K satisfies the condition $\left|K\left(x, y, z_{1}\right)-K\left(x, y, z_{2}\right)\right| \leq M\left|z_{1}-z_{2}\right|$, provided that $|\lambda|<1 / M(b-a)[26]$.

Proof: For $|\lambda|<1 / M(b-a)$, the mapping $g=A r$ of the complete metric space $C[a, b]$ into itself given by the formula $g(x)=\underset{a}{i} \underset{a}{b}(x, y, f(y)) d y+\phi(x)$ is a strict contraction since we have $\max \left|g_{1}(x)-g_{2}(x)\right| \leq|\lambda| M(b-a) \max \left|f_{1}-f_{2}\right|$.

Theorem 5.6: For the Volterra type integral equation $f(x)=\underset{a}{\lambda} \mathrm{f}(x, y) f(y) d y+\phi(x)$ where K and ϕ are continuous,
the existence of a solution is guaranteed regardless of the value of the parameter λ [26].

Proof: Consider the mapping
$g(x)=\underset{a}{\lambda} \underset{\int_{K}}{x}(x, y) f(y) d y+\phi(x)=A f$,
defined on the complete metric space $C[a, b]$. If f_{1}, f_{2} are two continuous functions defined on the closed interval [a,b]
then $\left|A f_{1}-A f_{2}\right|=\underset{a}{\lambda} \underset{a}{x}(x, y)\left(f_{1}(y)-f_{2}(y)\right) d y \leq|\lambda| \operatorname{Mm}(x-a)$
where $M=\max |K(x, y)|$ and $m=\max \left|f_{1}-f_{2}\right|$.
Thus, by substituting Af and integrating, we get
$\left|A^{2} f_{1}-A^{2} f_{2}\right| \leq|\lambda|^{2} M^{2} m\left((x-a)^{2} / 2\right)$. In general.

For arbitrary λ, the number n can be chosen so large that $\mathbb{M}^{n}|\lambda|^{n}\left((b-a)^{n} / n!\right)<1$. Thus the mapping A^{n} will be a. strict contraction. Consequently, the Volterra integral equation has a solution for arbitrary λ and this solution is unique.

CIIAPTER VI

THE PRESENI STATUS AND SUGGESTIONS FOR FURTHER RESEARCH

The purpose of this chapter is to state those fixed point theorems which have appeared in the literature, arranging them to give a clear view of the present state of affairs. I'his listing demonstrates two main points--there is a tremendous amount of current interest in fixed points with research in a great many directions, and the ideal fixed point theorem which would include most of the other theorems as corollaries has not yet been proved.

The theorems are arranged, first, according to type of operator. Theorems on the same type of operator are then listed according to type of space in order of decreasing generality. It was discovered in this investigation that a number of the theorems which have appeared independently in the literature follow, in fact, as corollaries from others and these are listed as such. Caution should be used, however, in drawing conclusions about this duplication. Cerm tain of the more general theorems use the results of the corollaries in their proof. In addition, some of the corollaries are more useful for applications than the general theorem since they provide a constructive method of
approximating the fixed point. This, as was pointed out in the preceding chapter, is particularly true of the contraction theorems. The theorems on families of operators are listed separately.

Incorporated in the presentation of the theorems are appropriate suggestions for further research. Some of the theorems whose hypotheses are related seem to indicate that a new theorem which includes all of them could be proved. An investigation of the "sharpness" of each theorem would be profitable, attempting to weaken each part of the hypothesis or strengthen the conclusion, or to construct an example showing the theorem cannot be improved.

EXISTENCE THEOREMS TOR SINGLE MAPPINGS

I. P Compact Operators

A. Suppose that T is a P compact operator in a $P B$ space X. Suppose further that for given $r>0$ and $k>0$ the operator T satisfies both of the following conditions:
(h) There exists a number $c(r)>0$ such that if, for any $n P_{n} T x=h x$ holds for x in S_{r} with $h>0$, then $h \leq c(r)$.
(πk) If for some x in S_{r} the equation $T x=a x$ holds then $a<k$.

Then there exists at least one element u in
$\mathrm{B}_{\mathrm{r}} / \mathrm{S}_{\mathrm{r}}$ such that $\mathrm{Tu}-\mathrm{ku}=0$ [30].
Comment: Using theorem 4.2, it might be possible to generalize this result to a ciosed, bounded, convex set C which contains the origin as an interior point. An easier characterization of a PB space and a P compact operator would be most useful.

Corollaries:

1. The asserition of the above remains true if condition (h) is replaced by any one of the following stronger conditions whose dogren of generality increases in the given order: a. T is bounded [29].
o. For any given $r>0$ the set $T\left(S_{r}\right)$ is bounded [30].
c. X is a Hilbert space and for any given $r>0(T x, x) \leq c| | x| |$ for all x in S_{r} and some $c>0$ [30].
2. The following theorems, in a PB space X , are corollaries [29]:
a. (Schauder) If T is a completely continuous mapping of B_{r} into B_{r}, then T has a fixed point in B_{r}.
b. (Rothe) If T is a completely continuous mapping of B_{r} into X such that $T\left(S_{r}\right) \subseteq B_{r}$, then T has a fixed point in B_{r}.
c. (Altman) If T is a completely continuous mapping of B_{r} into X such that $\left||T x-x|^{2} \leq\|T x\|^{2}-\|x\|^{2}\right.$ for all x in S_{r}, then T has a fixed point in B_{r}.
d. (Krasnoselsky) If X is a Hilbert space, T a completely continuous maprine of B_{r} into X such that $(T x, x) \leq\|x\|^{2}$ for all x in S_{r}, then T has a fixed point in B_{r}.
e. (Kaniel) If T is a quasicompact moppinc of B_{r} into X such that $T x+\lambda x \neq 0$ for all x in S_{r}, and any $\lambda>\mu>0$, then there exists an element u in B_{r} such that $T u+\mu u=0$.
B. Suppose that T is a P Compact operator in a $P B$ space X. Suppose further that there exists a sequence of spheres $\left\{S_{r_{p}}\right\}$ with $r_{p} \rightarrow \infty$ as $p \rightarrow \infty$, and two sequences of positive numbers $c_{p}=c\left(r_{p}\right)$ and $k_{p}=k\left(r_{p}\right)$ with $k_{p} \rightarrow \infty$ as $r_{p} \rightarrow \infty$ such that the following condjtions hold:
(Λf) Whenever for any given f in B_{r} and any n the equation $P_{n} T x-\lambda x=P_{n} f$ holds for x in $S_{r_{p}}$ with $\lambda>0$, then $\lambda \leq c_{p}$.
(mp) $\quad||T x-\eta x|| \geq k_{p}$ for any $\eta \geq \mu>0$ and any x in $S_{r_{p}}$. Then for every f in X there exists an element u in X such that $T u-\mu u=f[30]$.

Corollary:

1. The above assertion remains valid if condition (Λf) is replaced by the stronger condition that T is bounded [29].
C. Let X be a $P B$ space, T a bounded P compact operator in X. Then for any f in X there exists a ball. B_{r} and a number $\mu(r)>0$ such that the equation $T x-\mu x=f$ has a solution u in B_{r} for every constant $\mu \geq \mu(r)$ [29].
D. Let T and U be two bounded P compact operators mapping the ball B_{r} in a $P B$ space X into X. If X is a Hilbert space and if for all x in S_{r}, $(T x, x) \leq\|x\|^{2}$ and $\|T x-U x\| \leq\|x-T x\|$, ther U has a fixed point in B_{r} [29].
II. G Operators
A. Let X be a $G B$ space, C a bourided closed convex subset of X containing zero as an interior point, $T: C \rightarrow X$ a G operator. Let J be a duality map in X with gauge μ. If $J x(T x) \leq\|x\| \mu(\|x\|)$ for all x on the boundary of c, then T has a fixed point in C [21].

Comment: A simpler characterization of G operators as well as $G B$ spaces is needed, and an investigation of their relation to $P B$ spaces and operators should be made.

The following theorems, in a $G B$ space X, are corollaries. Let C be a bounded closod convex set in X which has zero as an interior point [21].

1. (Schauder) If X is separable, T a completely continuous operator mapping C into itseif, then I has a fixed point in C .
2. (Schauder) Jet X be reflexive and separable, T a weakly continuous mapping of C into itself. Then T has a fixed point in C.
3. (Rothe) If X is separable, T a completely continuous operator mapping C into X such that the boundary of C is mapped by. T into C, then T has a fixed point in C.
4. (Petryshyn) If X is separable, $T: C \rightarrow X$ is P compact, and if J is a duality mapping in X with gauge μ such that $J x(T x) \leq||x|| \mu(| | x| |)$ for every x in the boundary of C, then T has a fixed point in C.
5. If X is separable and reflexive, $T: C \rightarrow X$ weakly continuous, and if J is a duality mapping in X with gauge μ such that for every x in the boundary of C $J x(T x) \leq \| x| | \mu(| | x| |)$, then T has a fixed point in C.
6. (Browder-Guedes de Figueiredo) Let X be reflexive, X^{*} strictly convex, and the duality map J both continuous and weakly continuous. If T is demicontinuous mapping C into X such that $T=I-A$ where A is J monotone, and if $J x(T x) \leq||x|| \mu(| | x| |)$ for all x in the boundary of C, then T has a fixed point in C.
7. (Browder) Let X be reflexive, $X *$ strictly con-vex and the duality map J both continuous and weakly continuous. If $\mathrm{T}: \mathrm{C} \rightarrow \mathrm{C}$ is nonexnansive, then T has a fixed point in C.

Comment: It would be interesting to find practical applications for each of the above theorems.
III. Class M
A. Let B_{r} be a closed ball in a Hilbert space X, $T=I-f$ where f is in Class M. If T maps S_{r} into B_{r} then T has a fixed point in B_{1} [5].
B. Let C be a bounded closed convex subset with nonempty interior of a Hilbert space X, $T=I-f$ where f is in Class M. Suppose that there exists an $\varepsilon>0$ such that $||T u-u|| \geq \varepsilon$ for all u in the boundary of C. Suppose that $T_{1}=I-f_{1}$ where f_{1} is in Class M and for u in the boundary of $C\left|\left|T u-T_{1} u\right|\right| \leq||T u-u||$. Then if T has a fixed point in C, T_{1} will have a
fixed point in C [5].
C. Let B_{r} be a closed ball in a Hilbert space X, $\mathrm{T}=\mathrm{I}-\mathrm{f}$ where f is in Class H . Suppose that for each $d>0$ there exists $\varepsilon(d)>0$ such that for u in $S_{r}, d \leq t \leq 1,\|f u-\operatorname{tf}(-u)\| \geq \varepsilon(d)$. Then Thas a fixed point in B_{r} [5].
IV. Hemicontinuous
A. Let T be a hemicontinuous map of the ball B_{r} in a Hilbert space X into X. Suppose that for all u, v in $B_{r}, \operatorname{Re}(T u-T v, u-v) \leq\|u-v\|^{2}$ while for $\|u\|=r, \operatorname{Re}(T u, u) \leq\|u\|^{2}$. Then T has a fixed point in B_{r} [4].
V. Weakly Continuous
A. Let C be a closed convex subset of a Banach space X and $T: C \rightarrow C$ a weakly continuous mapping such that $T[C]$ is separable and the weak closure of $T[C]$ is weakly compact. Then T has a fixed point in C [34].

Corollary:

1. A convex, weakly compact subset of a separable Banach space has the fixed point property for weakly continuous maps $[34,27]$.
B. Let T be a weakly continuous operator on the separable Hilbert space X. If there exists a positive constant r such that $\operatorname{Re}(T x, x) \leq\|x\|^{2}$ for
all x in S_{r} then T has a fixed point in B_{r} [32]. C. Let I be a weakly continuous operator on a separable Hilbert space which is monotone increasing on rays. Then T has a fixed point [32].
VI. Continuous
A. (Schauder-Tychonoff) Let T be a continuous map of a compact convex subset C of a locally convex topological vector space into itself. Then T has a fixed point in $C[34,3]$.

Corollaries:

1. A continuous man T of a convex compact set C in a Banach space into itself has a fixed point in $C[24,34,31,27]$.
2. A continuous self-map of the Hilbert cube has a fixed point [13].
3. Any convex, closed subset of the Hilbert cube has the fixed point property for continuous maps [13].
4. If T is a continuous map of a k-dinensional simplex into itself, then T has a fixed point [20].
5. (Brouwer) A continuous operator T mapping the closed unit ball in E^{n} into itself has a fixed point [24,13,31,27].
6. Any closed, bounded convex subset of E^{n} has
the fixed point property for continuous maps [31].
B. Let X be a locally convex topological vector space satisfying condition E. Suppose C is a nonvoid closed convex subset of X and T is a continuous map of C into itself such that $T[C]$ is compact. Then T has at least one fixed point [18].

Corollary:

1. A continuous operator T mapping a closed convex set C in a Banach space into, a compact set $A \subseteq C$ has a fixed point [24,27].
C. Let T be a continuous self map of the Banach space \dot{X} which satisfies $\left\|T^{k} x-T^{k} y\right\| \leq\left\|T^{k}\right\|\|x-y\|$ for $k=1,2, \ldots$ suppose that $\sum_{i=1}^{\infty}\left\|T^{k}\right\|<\infty$. Then T has a unique fixed point X_{0} in X and the sequence of Picard iterates converges to x_{0} [35].

Comment: Picard iterates are used so frequently in fixed point theorems it would be interesting to take a slightly different point of view: Find necessary and sufficient conditions on the space and operator for the Picard iterates to converge. This could be accomplished by fixing the space and varying the operator then fixing the operator and varying the space.
D. Let T be a continuous map in a separable real

Hilbert space X such that for some $c_{0}>0$ $((T-T) x-(I-T) y, x-y) \geq c_{0}\|x-y\|^{2}$ for all x, y in X. Then T has a fixed point in X [9].
E. Let X be a finite dimensional Banach space, T a continuous map of B_{r} into X and μ any constant. Then there exists u in B_{r} such that $T u-\mu u=0$ provided that T satisfies either
($\pi \mu \leq$) If for some x in S_{r} the equation $T \mathrm{x}=\alpha \mathrm{x}$ holds then $\alpha \leq \mu$.
or
($\pi \mu \geq$) If for some x in S_{r} the equation $T x=\alpha x$ holds then $\alpha \geq \mu$ [29].

Corollary:

1. Let T be a continuous operator on the finite dimensional. Hilbert space X. If there exists a positive constant r such that $\operatorname{Re}(t x, x) \leq\|x\|^{2}$ for all x in S_{r} then T has a fixed point in B_{r} [32].
F. Let X be a finite dimensional Banach space. Let μ be a gauge function and let $T: C \rightarrow X$ be a continuous mapping of the bounded closed convex set C in X into X. (0 is in the interior of C.) Suppose that for all x in the boundary of C there exists v^{\prime} in X^{*} such that $v^{\prime}(x)=\|x\| \mu(\|x\|)$ and $v^{\prime}(T x) \leq\|x\| \mu(\|x\|)$. Then T has a fixed
point in C [21].
Corment: As noted in Chapter IV, both E and F are corolJaries to the result proved in that chapter. It would be an interesting, study to attempt to relate all the esoteric conditions to one another and perhaps synthesize them.
VII. Contraction Operators
A. ε-Contractions
2. Let X be a metric space, T an ε-contractive self map of X such that there exists an x_{0} in X for which the sequence $\left\{\mathrm{T}^{n}\left(\mathrm{x}_{0}\right)\right.$ \} has a subsequence converging to a point $x *$ in X. Then:
a. x^{*} is a periodic point of T , that is there exists $k>0$ such that $T^{k}\left(x^{*}\right)=x^{*}$.
b. If X is ε-chainable and x^{*} has a compact neighborhood $N_{p}\left(x^{*}\right)$ of radius $p \geq \varepsilon$, then $x *$ is the unique fixed point of T [15].
B. Local Iterative Contractions
3. Let T be a local iterative contraction on a complete metric space X. Then T has a unique fixed point in X. For arbitrary X_{0} in X , the Picard iterates of x_{0} converge in the metric to the fixed point of T [35].
C. II Local Contractions
4. Let T be a II local contraction on the complete metric space X and ϕ satisfy the additional condition: $\operatorname{Lim}_{t \rightarrow \infty} \inf (t-\phi(t))=a>0$. Then T has a unique fixed point in X and the Picard iterates converge in metric to the fixed point [35].
D. (ε, λ) Uniform Local Contractions
5. Let X be a complete metric ε-chainable space, I a map of X into itself which is (ε, λ) uniformly locally contractive. Then there cxists a unique fixed point of T in X [14].
6. If T is a l-l(ε, λ) uniformly locally expansive map of a metric space Y onto an ε-chainable complete metric space X contained in Y, then T has a unique fixed point in X [14].
E. II Pseudocontractions
7. Let X be a uniformly convex Banach space, B a closed ball in X, G an open set containing B. Let T be a II pseudocontraction mapping G into X such that T maps the boundary of B into B. Suppose also that T is demicoritinuous and that either a. T is uniformly continuous in the strong
topology on bounded subsets of X. or b. X^{*} is uniformly convex. Then T has a fixed point in B [7]. F. I Pseudocontractions
8. Let T be I pseudocontractive and Lipschitz mapping a lijlbert space X into X such that for some $r>0(T x, x) \leq\|x\|^{2}$ for all x in S_{r}. Then T has a fixed point in H_{1} [9].
9. Let T be I pseudocontractive and Lipschitz mapping a Hilbert space X into itself such that for some $r>0, T u-\lambda u \neq 0$ for all u in S_{r} and $\lambda>1$. Then T has a fixed point in B_{r} [9].

Corollary:
a. Let B_{r} be a closed ball centered at the origin of a Hilbert space X, T a nonexpansive map of B_{r} into X such that for all u in S_{r}, $\lambda>1, \mathrm{~T} u-\lambda u \neq 0$. Then T has a fixed point in Br_{r} [5].

Comment: It should be noted that Browder uses the word "pseudocontractive" for both I pseudocontractive and II pseudocontractive. While all examples considered appear to be both or neither, it would be interesting to have a proof of their exact relationship.
G. Strict Pseudocontractions

1. Let T be a strict pscudocontraction with constant k mapping a ball B_{r} about the origin in a Hilbert space X into X such that for all u in S_{r} and any $\lambda>1, T u-\lambda u \neq 0$. Let R be the retract of X onto B_{r}. Then for any X_{0} in B_{r} and any γ such that $0<1-k<\gamma<1$, the sequence $\left\{x_{n}\right\}=\left\{(R T)^{n_{x_{0}}}\right\}$ given by $x_{n}=\gamma R T x_{n-1}+(1-\gamma) x_{n-1}$ converges weakly to a fixed point of T in Br_{r}. If T is demicompact then the convergence is strong [9].
2. Let C be a bounded closed convex subset of the Hilbert space X and let T be a map of C into C such that T is a strict pseudocontraction with constant k. Then for any x_{0} in C ard any fixed γ such that $1-k<\gamma<1$, the sequence $\left\{x_{n}\right\}=\left\{T^{n_{0}} x_{0}\right\}$ determined by $x_{n}=\gamma T x_{n-1}$ $+(1-\gamma) x_{n-1}$ converges weakly to a fixed point of T in C. If T is demicompact then the convergence is strong [9].
H. Nonexpansive Operators
3. Let X be a Banach space, T a nonexpansive self map of X. For given f in X let $T_{f}(u)=T(u)+f$ and suppose T_{f} is weakly asymptotically regular. Let $\left\{x_{n}\right\}=\left\{T_{f}^{n_{0}}\right\}$ be the sequence of Picard
iterates starting at x_{0} and suppose that there exists an infinite subsequence $\left\{x_{n_{1}}\right\}+y$ in X. Then y is a solution of $u-T u=f$ and the whole sequence converges strongly to y [8].
4. Let X be a strictly convex Barach space, T a nonexpansive self map of X with nonempty T-closure.
a. If there exists an x in T-closure such that $\left[\left\{T^{n}(x)\right\}\right]$ is finite dimensional, then there exists x^{*} in the closed convex hull of $\left\{T^{n}(x)\right\}$ such that $T\left(x^{*}\right)=x^{*}$.
b. If there exists an x in the T -closure such that $\left\{1 / \mathrm{n} \sum_{1}^{n} T^{n}(x)\right\}$ contains a subsequence which converges weakly to some $\mathrm{x} *$ in X , ther x^{*} is a fixed point of T.
c. If X is also reflexive, and if there exists an x in T-ciosure such that $\left\{T^{n}(x)\right\}$ is bounded then T has a fixed point in X [16].

Comment: The definition of weakly asymptotically regular is sufficiently similar to the condition on 2.b above that a relationship appears to exist between the two. It would be interesting to discover it.
3. Let C be a nonempty closed convex subset of a reflexive Banach space with nornal structure
and suppose that T is a nonexpansive self map of C. If there exists p in C such that $\left\{T^{n}(p)\right\}$ is bounded, then T has a fixed point in C [25].

Corollaries:
a. If the condition that $\left\{\mathrm{T}^{n}(\mathrm{p})\right\}$ be bounded is replaced by the stronger condition that C is bounded; then the result remains true [25].
b. Every nonexpansive self map of a nonempty bounded closed convex subset C of a uniformiy convex Banach space has a fixed point $[8,6]$,
c. Let X be a Hilbert space, C a bounded closed convex subset of X, T a nonexpansive self map of C.
(1) T has a fixed point x^{*} in C and if x^{*} is a unique fixed point then $\mathrm{T}^{\mathrm{n}_{\mathrm{X}_{0}} \xrightarrow{\mathrm{~W}} \mathrm{x}} \mathrm{X}^{*}$ for any x_{0} in $C[9,5]$.
(2) If $T_{\lambda}=\lambda I+(I-\lambda) T$ for $0<\lambda<1$, then for any x_{0} in $C, T_{\lambda}^{n} x_{0} \xrightarrow{W} y$ where y is a fixed point of T in C. If, in addition, T is demicompact, then the convergence is strong [9].
4. Let C be a closed convex subset of a strictly convex Banach space, T a nonexpansive self map of C, and suppose that $T(0) \subseteq C_{1} \subseteq C$ where C_{1}
is compact. Then the sequence $\left\{\mathrm{F}^{\mathrm{n}}(\mathrm{x})\right.$ \} where $F: C+C$ is defined by $F(x)=\frac{1}{2}(T(x)+x)$ converges to a fixed point of T [17].
5. Let X be a uniformly convex Banach space, B a closed ball in X, G an onen subset of X containing B. Suppose T is a nonexpansive map of G into X which maps the boundary of B into B. Then T has a fixed point in $B[7]$.
6. Let X be a uniformly convex Banach space, C a closed bounded convex subset of X, G an open subset of X which contains C and such that C has positive distance from X / G. Suppose T is a nonexpansive map of G into X which maps the boundary of C into C. Then T has a fixed point in C [7].
7. Suppose T is a nonexpansive map of a bounced closed convex subset C of a Hilbert space X into X. Suppose further that i.f u lies on the boundary of C and if $u=R_{c}(T u)$, then u is a fixed point of T. Then T has a fixed point in C and for any $\lambda, 0<\lambda<1$ and any x_{0} in C, the sequence $\left\{x_{n}=\lambda R_{c} T x_{n-1}+(1-\lambda) x_{n-1}\right\}$ converges weakly to a fixed point of T in C. If in addition T is demicompact, the convergence is strong [9].
8. Let B be a closed ball centered at the crigin of a Hilbert space X, T a nonexpansive map of B into X such that for u in the boundary or $B, T u=-T(-u)$. Then T has a fixed point in B [9].
9. Let C be a bounded closed convex subset of a real Hilbert space and let T mapping C into itself be representable as $T=S+U$ where S satisfics $\|S x-S y\| \leq q\|x-y\| f o r ~ a l l$ x, y in C . Then T has at Jeast one fixed point if either of the following conditions is satisfied:
a. If $q<l$ then U is completely continuous.
b. If $q=1$ then U is strongly continuous [36].
I. Strict Nonexpansive Operators

1. Let X be a metric space, T a strictly nonexpansive self map of X such that there exists an x in X for which $\left\{T^{n}(x)\right\}$ has a subsequerce converging to a point x^{*} in X . Then x^{*} is a fixed point of T [15].

Corollary:
a. If an operator T in a complete metric space X maps a closed set A onto a compact set $B \subseteq C$ and \underline{T} is strictly nonexpansive on C, then T has a unique fixed point in $C[24,27]$.
J. Strict Contractions

1. Let T be a continuous self map of the complete metric space X. Suppose that $d(T x, T y) \leq \lambda(d(x, y)) d(x, y)$ where $\lambda(p)$ is a nonincreasing function in p and satisfies $0 \leq \lambda(p)<1$ for $p>0$. Then T has a unique fixed point in X [35].

Comment: The requirement that T be continuous is superfluous since the condition $\lambda(p)<1$ gives $d(T x, T y) \leq d(x, y)$.
2. T is a continuous map of a closed subset of a complete metric space X into itself such that T^{n} is a strict contraction for some integer $n>0$, then the sequence of Picard iterates converges to a unique fixed point of T in X $[26,18]$.

Corollary:
a. If T is a strict contraction with constant k mapping a closed subset C of a complete metric space X into itself, then T has a unique fixed point in C. Moreover, we can obtain the fixed point $x *$ as the limit of a sequence $\left\{x_{n}\right\}$ where $x_{n+1}=T\left(x_{n}\right)$ and x_{0} is any element in C. The ratio of convergence is given by

$$
d\left(x_{n}, x^{*}\right) \leq\left(k^{n} / 1-k\right) d\left(x, x_{0}\right)[24,26,27] .
$$

Comment: The existence of a fixed point in this case also follows as a corollary to 1.
3. Let U be an open subset of the Banach space X, T a strict contraction with constant k mapping U into itself. Suppose that there exists a ball $\mathrm{B}_{\mathrm{r}}\left(\mathrm{x}_{0}\right)$ contained in U such that $\left\|T x_{0}-x_{0}\right\| \leq(1-k) r$. Then T has a unique fixed point in B_{r} [31].
Corollary:
a. In F^{n} let T be a strict contraction with constant k defined on a closed neighborhood $N_{r}\left(y_{0}\right)$ and suppose that $\left\|T\left(y_{0}\right)-y_{0}\right\| \leq(1-k) r$. Then T has a unique fixed point in $N_{r}\left(y_{0}\right)$ [20].

Comment: A close examination of the relations between all the types of contractions in order to find one kind of contraction which includes all, or most, of the others needs to be made. It would perhaps be fruitful to construct examples of situations in which a contraction does not have a fixed point. An investigation of the use of Picard iterates and alternative schenes for approximating the fixed point of a contraction type operator could be made, with special attention given to algorithms for speeding convergence.
VIII. Nowhere Normal Outward Maps
A. Let X be a strictly convex normed linear space, K a compact convex subset of X and T a nowhere normal outward map from K into X. Then T has a fixed point [22].
IX. Weakly Outward and Inward Maps
A. Let X be a topological vector space such that continuous linear functionals distinguish points. Let K be a compact convex subset of X. 1. If $T: K \rightarrow X$ is weakly inward then T has a fixed point in K [22].
2. If $T: K \rightarrow X$ is weakly outward then T has a fixed point and $K \subseteq T(K)$ [22].

Comment: In all of the preceding theorems a technique which makes the results easier to apply in a practical situation is needed. In particular, an easy method of determining whether the complicated hypotheses are fulfilled would be extremely useful.

FIXED POINTS OF FAMILIES

I. Continuous

A. Let X be a topological vector space, C a nonvoid compact convex subset of X. Suppose G is a set of continuous maps of C into itself such that: 1. If g is in G, x, y in C and $a, b \geq 0$ such that
$a+b=1$ then $g(a x+b y)=a g(x)+b g(y)$.
2. There exists a natural number n and subsets $G_{i}(0 \leq i \leq n-1)$ of G such that
$\{1\}=G_{n} \subseteq G_{n-1} \subseteq \ldots \subseteq G_{0}=G$ where l is the identity man of C . To each pajr $\mathrm{c}^{\prime}, \mathrm{E}^{\prime \prime}$ in G_{i-1} there exists an f in G_{i} such that g'r" = g"g'f.

Then there exists x_{0} in C such that $g\left(x_{0}\right)=x_{0}$ for all g in $G[18]$.

Comnent: Can any other characterization of the set G be given? How does G relate to the set of all continuous functions? Is G a solvable groun?

What are the implications if G is abelian or consists of linear functions, or both?
B. Let C be a compact convex subset of a topological vector space X. Let F be a commuting family of continuous linear maps which map C into itself. Then F has a common fixed point in C [13].
C. Let C be a compact convex subset of a locally convex topological vector space X and let G be a group of linear maps which is equicontinuous on C and such that $g(C) \subseteq C$. Then G has a common fixed point in C [13].

Comment: It should be determined if a weaker condition such as locally compact and bounded could replace the requirement of compactness.

II. Contraction

A. Let X be a Banach space and let C be a nonempty compact convex subset of X. If F is a nonempty commutative family of nonexpansive maps of C into itself then the family has a common fixed point in C [11].
B. Suppose C is a weakly compact, convex subset of a Banach space X and suppose C has complete normal structure. Let F be a conmutative family of nonexpansive maps of C into itself. Then the family has a common fixed point in C [2].

Corollaries:

1. If F is countable, or if C is separable, then complete normal structure in the above may be replaced by countable normal structure $[2,1]$. 2. Let X be a uniformly convex Banach space, F a commuting family of nonexpansive maps of a given bounded closed convex subset C of X into C. Then the family has a common fixed point in C [6].
C. Let C be a nonempty closed bounded convex subset of a Banach space X, M a compact subset of C. Let F be a nonempty commutative family of nonexpansive mappings of C into itself with the property that for some f_{1} in F and for all x in C the closure of the $\operatorname{set}\left\{f_{1}^{n}(x)\right\}$ contains a point
of M. Then the family has a common fixed point in M [I].
D. Suppose C is a nonempty weakly compact convex subset of a strictly convex Banach space X. Suppose F is a nonempty comintative family of nonexpansive mappings of C into itself such that for each f in F the f closure is nonempty. Then the family has a common fixed point in X [1].

Corment: A close examination of the structure of each of the above families is needed. Examples, of cach type should be constructed, both to exhibit the theorem and to show that it can or cannot be improved as well as to make it easier to answer certain conjectures which arise.

BIBLIOGRAPHY

1. Belluce, L. P., and W. A. Kirk. "Fixed Point Theorems for Families of Contraction Mappirgs," Pacific Journal of Mathematics, XVIII (1966), pp. 213-217.
2. Belluce, L. P., and W. A. Kirk. "Nonexpansive Mappings and Fixed Foints in Banach Spaces," Illinois Journal of hathematics, VII (1967), pp. 474-479.
3. Birkhoff, G. D., and O. D. Kellogg. "Invariant Points in Function Space," Transactions of the American Matrematical Society, XXIII (1922), pp. 96-1 15.
4. Bronder, Felix E. "Existence of Periodje Solutions for Nonlinear Equations of Evolution, " Procecdines of the National Academy of Sciences, LIIT (1965), pp. 1100-1103.
5. Browder, Felix E. "Fixed Point Theorems for Noncompact Mappings in Hilbert Space," Proceedings of the National Academy of Sciences, IIIT (1965), pp.12721276.
6. Browder, Felix E. "Nonexpansive Nonlinear Operators in a Banach Space," Proceedings or tine National Academy of Sciences, LIV (1965), pp. 1041-1044.
7. Browder, Felix E. "Nonlinear Mappings of Nonexpansive and Accretive Type in Banach Spaces," Bulletin of the American Mathematical Society, LXXIII (1967), pp. 875882.
8. Browder, Felix E., and W. V. Petryshyn. "The Solution by Iteration of Nonlinear Functional Equations in Banach Spaces," Bulletin of the American Mathematical Socjety, LXXII (1966), pp-571-575.
9. Browder, Felix E., and W. V. Petryshyn. "Construction of Fixed Points of Nonlinear Mappings in Hilbert Space," Journai of Mathematical Analysis and Applications, $X \bar{X}$ (1967), pp. 197-228.
10. Cronin, Jane. Fixed Points and Topological Degree in Nonlinear Analysis. Vol. 11 of Mathematical Surveys. Providence, Rhode Island: American Mathematical Society, 1964.
11. DeMarr, Ralph. "Common Fixed Points for Commuting Contraction Mappines," Pacific Journal of Mathematics, XITI (1963), pp. 1139-1141.
12. Dugundji, James. Topolocy. Boston: Allyn and Bacon, 1966.
13. Dunford, Nelson, and Jacob T. Schwartz. Linear Operators Pait 1: General Theory. New York: Interscience Publishers, Inc., 1964 .
14. Fdelstein, Michael. "An Extension of Banaci's Contraction Frincirle," Proceedings of the American Mathematical Society, XII (19615, pp. 7-10.
15. Edelstein, Michael. "On Fixed and Periodic Points Under Contractive Mappings," London Mathematical Society Journal, XXXVII (1962), pp. 74-73.
16. Edelstoin, Michacl. "On Nonexpansive Mappirigs of Banach Spaces," Proceedings of the Cambridre PhiJosophieal Socjety, LX (196T), pp. 439-447.
17. Edelstein, Michael. "A Romark on a Theorem of M.A. Krasnoseiski," The American Mathomatical Monthly, LXXIII (1966), "p1. 509-510.
18. Edwards, R. E. Functional Analysis: Theory and Applications. Chicaco: Holt, Rinehant and Winston, 1965.
19. Finkbeiner, Daniel T. Introduction to Matrices and Linear Transformations. San Francisco: W. H. Freeman and Company, I966.
20. Graves, Lawrence M. The Theory of Functions of Real Variables. New York: McGraw-Hill Book Company, Inc., 1956.
21. Guedes De Figueiredo, Djairo. "Fixed Point Theorems for Nonlinear Operators and Galerkin Approximations," Journal of Differential Equations, III (1967), pp. 27I-281.
22. Halpern, Benjamin R., and George M. Bergman. "A Fixed Point Theorem for Inward and Outward Maps," Transactions of the American Mathematical Society, CXXX (1968), рр. 353-358.
23. James and James (ed.). Mathematics Dictionary. Princeton, New Jersey: D. Van Nostrand Cumpany, Inc., 1968.
24. Kantorovich, L.V., and G.P. Akilov. Functional Analysis in Normed Spaces. New York: Pergamon Press, 1964.
25. Kirk, A.V. "A Fixed Point Theorem for Mappings Which Do Not Increase Distance," American Mathematical Monthly, LXXII (1965), pp. 1004-1006.
26. Kolmogorov, A.N., and S.V. Fomin. Metric and Normed Spaces. Vol. I of Elements of the Theory of Functions and Functional Analys is. Rochester, New York: Gray lock Press, 1957.
27. Nenyckii, V.V. "rine Fixed Point Method in Analysis," American Mathematical Society Translations, Series रे Vó. 34 (1963), pp. 1-37.
28. Olmsted, John M.H. Real Variables. New York: Appjeton-Century-Crofts, Inc., $1 \overline{9} 59$.
29. Petryshyn, W.V. "On Nonlinear P-Compact Operators in Banach Space with Applications to Constructive Fixed Point Theorems," Journal of Mathematical Analysis and Applications, XV (1966), pp. 228-2म2.
30. Petryshyn, W.V. "Further Remarks on Nonlinear P-Compact Operators in Banach Space," Journal of Mathematical Analysis and Applications, XVI (1966), pp. 243253.
31. Saaty, Thomas L., and Joseph Bram. Nonlinear Mathematics. New York: McGraw-Hill Book Company, Inc., IgE4.
32. Shinbrot, Marvin. "A Fixed Point Theorem and Sorie Applications," Archives of Rational Mechanics and Analysis, XVII (1964), pp. 255-271.
33. Taylor, Angus E. Introduction to Functional Analysis. New York: John Wiley and Sons, Inc., 1966.
34. Van Der Walt, T. Fixed and Almost Fixed Points. Vol. I of Mathematical Centre Tracts. Amsterdam: Mathematisch Centrum, 1963.
35. Wang, James S.W. "Iwo Extensions of the Eanach Contraction Principle," Journal of Mathematical Analysis and Applications, XXII (1968), pp. 438-443.
36. Zabreiko, P.P., and others. "On a Fixed Point Principle for Operators in a Hilbert Space," Funkcional. Anal. 1 Prilozen, I (1967), pp. 293-294.

[^0]: *Throughout this paper a bracketed number refers to the corresponding reference in the bibliography.

