
DATA INDEPENDENT REVISIONS TO

DATA BASE DEFINITIONS

A Thesis

Presented to

the Faculty of the Department of Computer Science 

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By
Sue Simpson Schwartz

December 1978



ACKNOWLEDGMENTS

The author would like to express her appreciation to 

Dr. Gerald D. Everett who has been a source of information, 

assistance, and inspiration throughout this project. The 

finished form of this thesis is mostly due to his careful 

reading and red-pencilling of the many drafts.

The Panhandle Eastern Pipe Line Company generously 

furnished both the computer time and the funds necessary 

to support the work done on the UPDATE module of the Remote 

File Management System.

Finally I wish to thank my husband, Andy, for without 

his support, encouragement, and admonitions of "When are 

you going to finish your thesis?" I would never have 

persevered.

iii



DATA INDEPENDENT REVISIONS TO

DATA BASE DEFINITIONS

An Abstract of a Thesis

Presented to

the Faculty of the Department of Computer Science 

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By
Sue Simpson Schwartz

December 1978



ABSTRACT

This thesis deals with the question of how to modify a 

data base definition independent of values which have been 

entered into the data base. Specifically an attempt was made 

to derive a scheme which would allow definition modifications 

of an existing data base to occur with a minimum of reorgization 

within the data base. The data base management system chosen 

for examination of definition modifications was the Remote 

File Management System.

Possible modifications to the definition of a data base 

consist of changes in data descriptions, the addition or deletion 

of data descriptions, and changes in the order m which data 

is related to other data in the data base. Each of these 

definition modifications is examined in depth and a scheme 

involving minimal reorganization within the data base is 

thoroughly detailed tor each modification. Each scheme is 

then compared to the only other known method of handling 

definition modifications, completely unloading the data and 

reloading it using the modified definition. In every 

instance the new schemes for definition modification in the 

Remote File Management System were found to be superior to 

the unload-reload method.

v



TABLK OF CONTENTS

vi

Chapter Page

1. DATA BASE MANAGEMENT 1

2. THE REMOTE FILE MANAGEMENT SYSTEM 18

3. DEFINITION MODIFICATION IN THE REMOTE FILE 42
MANAGEMENT SYSTEM

A. COMPONENT NAMES 43
B. COMPONENT NUMBERS 50
C. ELEMENT TYPE 56
D. LOGICAL ENTRY STRUCTURE 61
E. ADDITION OF NEW COMPONENTS 64
F. DELETION OF COMPONENTS 72
G. ORDER CHANGE WITHIN A REPEATING GROUP 78
H. ORDER CHANGE ACROSS REPEATING GROUPS 82
I. REPEATING GROUP - ELEMENT TYPE CHANGE 89
J. CONCLUSIONS 93

BIBLIOGRAPHY 96

APPENDIX A: CDEFNA TABLE 100

APPENDIX B: CDEFNB TABLE 104

APPENDIX C: CELS TABLE 108

APPENDIX D: CVALDR TABLE 111

APPENDIX E: CVALUS TABLE 114

APPENDIX F: CNAME TABLE 118

APPENDIX G: CENTS TABLE 120

APPENDIX H: CFIND TABLE 123

APPENDIX I: CDATA TABLE 127



LIST OF FIGURES

Figure Page

1. Program system development effort d

2. General-purpose system development effort 5

3. Unload-reload method of data base definition 16
modification

4. Sample tree 22

5. Data base table building and modification 24

6. Partial reproduction of sample RFMS tables 34

7. CDEFNA-CELS linkage 44

8. CDEFNA-CELS linkage after processing a component 45 
name change command

9. CDEFNB table entries after the execution of a 54
NUMCHG command

10. Element type change truth table 57

vii



Chapter 1

DATA BASE MANAGEMENT

Within the environment of all organizations, many pieces 

of data are collected daily. These data come from payroll, 

inventory control, sales, and indeed almost all operations of 

the organization. The data are facts which are collected from 

observations or measurements and represent the reality in 

which this particular organization operates. So much time, 

effort, and money is spent in the collection and storage of 

these data that it represents a significant asset of the
• 4. • 8organization.

This asset is not fully utilized, however, until the data 

is transformed through meaningful interpretation and correlation 

into information which can be used in the organization's
25 decision-making process. The information thus extracted is 

of value if it results in better decisions than would otherwise 

have been made. This implies that the information must be 

current to reflect the organization's present reality. Current 

information is based on current data which is captured, 

processed, and stored so that it will be available while it 

is still relevant.

A management information system is a means of supplying 
25 information based on the collected data to an organization.

-1-



-2-

It is an organized method of providing past, present, and 

projected information related to the internal operations and 

external intelligence of an organization. Its objective is 

to provide the most current and accurate information available.

In many cases the management information system is a man­

machine system where the data to be interpreted is stored in 

a computer and retrieved by programs which are written to 

correlate these data. A combination of people, procedures, 

data processing equipment, data, and input-output devices make 
14up the management information system. Its purpose is to 

utilize more fully the range of information-processing capabil­

ities of digital computer systems, while at the same time 

permitting more extensive use of these capabilities by the non­
specialist, nonprogrammer user.^ A management information 

system must provide an accurate, timely representation of the 

organization's reality to the personnel charged with the
14 planning and operation of the organization.

Before the advant of management information systems, an 

organization wishing to implement a new application, for 

example a new inventory control system, focused its attention
9 on the programs to be written. The data files to be set up 

were considered to serve the single purpose of these procedural 

programs, and little or no consideration was given to any 

multi-purpose master data files. Each department within the 

organization maintained its own data files which were set up 



-3-

and accessed by their own programs. If two or more depart­

ments had files on the same data items, effort was duplicated 

and discrepancies often occurred in the data on these files. 

Since reports to the organization's management were often 

based on the data in the various files, any discrepancies led 

to inconsistent, and sometimes incorrect, reports. The use of 

management information systems is an attempt to eliminate these 

data inconsistencies by consolidating data files across depart­

ments .

A typical system implementation cycle as described by 

Bleier and Vorhaus for a management information system is 
2 shown m Figure 1.

Figure 1. Program system development effort



-4-

At the beginning of the cycle, the users traditionally 

have requirements which may not be completely known, 

even to themselves. The system analysts translate the 

recognized needs into system design specifications. From 

this a program specification is produced which results 

in code. When the coding is completed, the code is 

compiled. These steps represent the development phase of 

the cycle.

During the test phase, each compilation is grammar 

tested and then the pieces of code are checked. Next, 

all of the pieces of code are collected into a program 

and tested as a unit. The program is then tested in the 

organization's environment and the finished product is 

evaluated.

Aside from the length of time it takes to implement 

such systems, the costs in terms of time, money, and 

manpower are excessive during the part of the cycle from 

program specification to program system test. System 

requirements tend to change over a period of time 

necessitating even more time spent at the bottom of the 

triangle to accommodate these changes. And often the 

decisions made by the system analysts during the implementation 

cycle are not those which would have been made by the 

system users.

These drawbacks can be overcome by the use of a



-5-

general-purpose system, a generalized data base management 

system, in the implementation cycle. (Figure 2.) The use of 

the general-purpose system reduces total development time and 

thus reduces cost. One important characteristic of a data 

base management system is that it can be constructed with 

sufficient generality to provide an environment for a wide 

range of potential uses, and thus avoid the need for numerous 
specialized subsystems.^ Furthermore, data bases which are 

maintained under a general system rather than several, per­

haps incompatible, subsystems can probably be more easily 

adapted to meet future information requirements. And despite 

the generality features, data base management systems can be 

designed in such a manner that data bases ranging up to

Figure 2. General-purpose system development effort



-6-

several hundred million characters in size can be handled 

efficiently. Indeed, in most systems, the size of the data 

base is a hardware constraint rather than a software one.

A data base management system is the software tool 

dedicated to storing, processing, and retrieving the data items 
g

for the management information system. It is a computer- 

based system which is used to establish, make available 

for use, and maintain the quality and integrity of a 

collection of data. A data base management system thus 

becomes an organizational tool for the user who has a
g 

collection of data and some idea of how he wants to use it.

A data base management system is not a necessity of a 

management information system, but it is required for 

effective data management in an information system environ-
4- 25 ment.

Management of a data base must encompass both the 

control and the use of the data resources of an organ- 
g

ization. The data base management system must improve 

the accessibility of the data and at the same time main­

tain its integrity. Preserving the integrity of data

implies safegaurding of the data from malicious or
25 erroneous tampering or faulty equipment. The system

must then become the single door through which all accesses 

to the data base pass. This single availability of the



-T-

functions is desirable for improved performance of the 

processing algorithms and mandatory for the control of the 

integrity of the data base.

The concept behind a data base management system is that 

common data resources can be shared by a variety of users.

A shared resource must be available and must respond in a 

timely and economic manner to diverse users operating in
9 diverse modes to meet diverse needs. The sharing of the

data base implies that different users and different processes 

are using the same actual data at virtually the same time. 

Under shared control, concurrent processes may look at a 

single piece of data in the data base, but only one process 

at a time may change that piece of data. This contrasts 

with single application programs and their resultant data 

bases where each program exercises exclusive control over 

its data base. This means that with single application 

programs, no other program or user can look at or change 

a piece of data.

In order to implement the goal of data sharing, 

each user of the shared resources must release control 

of the resources to a common responsible authority and 

must cooperate in their maintenance. The maintenance of 

the integrity of the data base must incorporate the concepts 

of conformance to data definition, validation of update



-8-

transactions, physical security and back-up protection,
9 privacy, and the control of concurrent processes.

The data base management system provides a tool for central­

izing, coordinating, and integrating the collection and 

storage of the data. This then leads to increased 

consistency, reduced redundancy, and less duplicated 

effort in the capture and maintenance of an organization's 

data.

As shown in Figure 2, one of the reasons for the 

development of generalized data base management systems 

was to decrease the programming effort and the lead time 

from the formulation of a data base to its availability 
12for use by application programs. A data base management 

system is a common interface between all users and a 

set of generalized file processing routines which address 

the data base. The purpose of this user interface is 

to allow the user to use descriptive labels, or names, 

when accessing the data and to allow the use of generalized 

processing capabilities. The system can then make 

the data base available to a user who is not familiar 

with the detailed computer steps the system uses to 

process his request, and at the same time maintain 

control over the content of the data base.



-9-

The use of a data base management system can lead to 

reduced effort in responding to changing data base require­

ments. This makes the system especially attractive in 

applications which have a large data base with a sophis­

ticated data structure and processing requirements which 

evolve over a period of time. The one-time development 

costs of the data base can then be amortized over many 
12 applications. However, in some applications, efficiency 

may be sacrificed in favor of more generalized processing 

capabilities.

In order for a management information system to meet 

successfully the needs of its community of users, several 
14 elements must be present. The system must have the 

direction, involvement, and commitment of the system 

administrators. It must be flexible and evolutionary, 

and at the same time operate within the limits of the 

available computer resources. The system must quickly 

produce meaningful results for its users. All management 

information systems must contain a reporting system, a 

data base, and a facility for responding to specific 

requests. This implies that a data base management 

system must have a powerful, generalized query language; 

tools to define, create, revise, and interrogate a data 

base; and a mechanism to service and control accesses 

to the data base.



-10-

All large scale data base management systems have 

several features in common. These features are defined 

by the Codasyl Systems Committee in its reports on 
4 5generalized data base management systems. These 

features provide for file definition (data organization), 

file creation, file updating, and file interrogation. 

Other features of a data base management system include 

a report generator and a program language interface.

In the file definition state, the data base manage­

ment system sets up the basic subsystems of the data 

base. These subsystems are the nucleus, the schema, 
22and the filter. The term nucleus refers to those files 

which will contain the explicitly represented data items 

entered by the system user. The schema is the particular 

definition which underlies the data base. This includes 

the labels chosen by the user for the data items and their 

informal definitions. Some of the other descriptions 

included in the schema are a file of files listing all 

files that are a part of the system, together with 

identifying information including file names, the address 

of the starting entry in each file, the length of each
18 entry, and the file type. The filter is a group of 

subroutines which protect the data base and its users 

against false messages and messages which are not mean­

ingful according to the specifications and definitions 



-11-

embedded in the schema.

During the file creation process, a set of data 

items is presented to the data base management system 

to form the initial copy of the file. File creation 

also includes a formal statement of the validation 

conditions which the data entering the file must satisfy. 

In some systems it was deemed easier and more efficient 

to validate input transactions as they are received than 

to monitor continuously the data base against a compre­

hensive data definition. Therefore, in these systems 

the data items are checked for conformance to the stored 

data definition before they are entered into the data 

base.

Interrogation is the process of selecting and extracting 

for presentation some part of the whole data base. The 

interrogation process typically consists of two parts. 

In the fifst part the selection criteria, a condition 

on the data in the file, is expressed, while the second 

part defines which data items must be copied out of the 
file into the output list.4 In the generalized manage­

ment information system, the interrogation process includes 

the processes of data selection, sorting, and report 

formatting. Data items to be examined for selection 

may be specified as being logically related by one or 

more Boolean operations. The user is able to formulate 



-12-

a query in the language of the system without detailing 

the sequence of steps used to access the data base and
5 extract the information. When the user wishes to change 

what he wants to examine in the data base, he merely
. 12changes his selection criteria. This contrasts with the 

traditional data processing approach of writing a new 

application program with each change in the object of the 

interrogation.

The end results of any data base management system
-3 r 

are the reports that it produces. This is the infor­

mation that is retrieved from the data base for use in 

monitoring the performance of the organization and to 

aid in making decisions which affect the organization. 

The ability to produce accurate reports quickly and 

easily is vital for the efficient management of the 

organization. Elementary data base management systems 

may search sequential files having simple record structures
5 and provide only rudimentary report formatting facilities. 

More complex systems handle several files via "indicies" 

or "links" and provide for elaborate formatting schemes.

The dynamic environment of an organization will 

require changes in the data items in the data base to keep 

the files current. The timeliness and accuracy of the 

data base determines the accuracy of the reports produced 

by it. This implies an on-going activity of the data 



-13-

base management system, namely the processing of the 

daily transactions that take place in the organization. 

Many data base management systems provide a data file 

updating facility. Updating is the procedure the data 

base undergoes to change the value content of some part 
5of the data base. During the update process, inout 

messages are received which define the update "target" 

via selection criteria. The update process then 

executes a two-part built-in aloqrithm. First the taraet 

selection criteria is satisfied, and then the specified 

action is carried out on the selected data items.

This update process, however, precludes any restructuring 

of the data caused by modification to the stored data 

definition. Consider what happens with conventional 

data base management systems when the data requirements 

of the organization change. The administrators of the 

management information system must then become concerned 

with ways in which to define new data items to respond 

to these changes. The definition of the evolvability 

of a system is its ability to reach a highly developed
9 state through growth and change. These changes may 

cover both expansion and contraction of the data base. 

A system's ability to change with the requirements of 

its host organization minimizes its risk of technological 

obsolescence and also minimizes the cost and disruption 



-14-

of any redefinition and restructuring of the data base.

Unlimited data base restructuring is almost never 

provided for in data base management systems. Therefore 

the user of most present data base management systems 

must have in mind not only the information he currently 

wishes to have available, but he also must estimate new 
data requirements.^ In a dynamic environment, data 

requirements are bound to change. Sometimes these data 

definition revisions come about as the result of experience 

gained during a period of use of the data base. Other 

causes for these revisions might be additional require­

ments imposed by government regulations or technological 

advances.

The few data base management systems which do recognize 

the changing needs of its community of users provide only 

for very restricted modifications to the stored data 

definition and a subsequent remapping of the entire data 
. . . 5base to conform to the new definition. This process 

can indeed be costly and time-consuming for very large 

data bases and in most cases approaches the creation 

cost of an entirely new data base in the amount of work 

required by the computer system.

In the normal course of use of a data base, however, 

the modifications needed to the data definition may not 

fall within very restricted bounds. A data base manage­



-15-

ment system should provide for the introduction or 

elimination of a data element, changing of the heirarchical 

structure within the entry, or changes within a particular 
22 element's definition. And these modifications should 

be accomplished with the minimum amount of remapping 

within the data base.

It is the update process, then, which I wish to address 

in detail with the objective of introducing a modification 

to the update procedure. Specifically, this modification 

will allow the update process to restructure the data 

and modify the stored data definition with a minimum 

of change within the data base. This modification will 

be particularly applicable to the Remote File Management 

System (RFMS) data base management system as currently 

implemented on the Univac 1110. Similar modifications 

could also be made to the CDC and IBM versions.

As an example of a data base restructuring situation, 

consider an academic environment. Many colleges and 

universities use large scale data base management systems 

to maintain their student records. The data items stored 

for each student might include the student's name, his 

address, his telephone number, and his unique, university- 

assigned, student number. These records could cover 

many years, thousands of students, and might involve 

millions of separate data items.



-16-

What would happen if the student records' administrators 

were suddenly informed that they must go back and add the 

social security number of each student to his record? 

This would involve changing the stored data description 

of an existing, valued data base and most data base 

management systems make no provision for such modifications.

As noted above, of the few systems which do allow for 

modifications of the data base definition, almost all 

implement this feature by completely unloading the data 

base, regardless of the size of the data base or of the 

complexity of the modification involved, and reloading 

it according to the modified definition, or schema. (Figure 3) 

In some,data base management systems, unloading of the data base 

involves the dumping of the data values into an output file with 

no provision for formatting of the data. More sophisticated

Figure 3. Unload-reload method of 

data base definition modification



-17-

systems, however, usually provide a formatting capability 

which allows the data values to be output in such a manner 

that the output file can then be used as the input file 

for the new data base.

It is possible to modify the Univac version of the 

REMS update process so that definition modifications can be 

made without the unload-reload operation. The ability to 

modify the update process in this manner is the result of 

several features which I implemented in this version of REMS. 

In order to understand these features and their effect upon 

the update process, it is necessary to examine in some detail 

the REMS program structure. Consideration will also be 

given to the REMS data file structures and how they are used 

by the data base management system.



Chapter 2

THE REMOTE FILE MANAGEMENT SYSTEM

The Remote File Management System (RFMS) is fundamentally 

a file processing system directed by input messages. All of 

the data items in the files are specified by the user. The 

system keeps files of the processing subroutines, the language 

specifications, the format specifications, and any other 

special-purpose files. When an input message is received, the 

translator, directed by a specific language specification, 

translates the message into a list of operations to be performed. 

The processor then steps through this list interpretively, 

accessing or modifying the data base, and invoking any 

processing routines specified. If any output is generated, it 

is placed in the output files where output-formatting programs 

perform the required formatting procedures. The Remote File 

Management System is a self-contained system. The user of 

the data does not exercise control over the sequence of the 

detailed steps the system uses to process his requests, nor 

the sequence in which data is examined and moved from one 

level of storage to another.

The computer code for the Remote File Management System 

includes more than 100 labeled common blocks and approximately 
500 subroutines.^^ Since no computer could contain at one time 

-18-



-19-

the code generated by all of these subroutines, it was 

necessary not to require that all of the code be in core at 

the same time. Furthermore, the RFMS designers did not want 

to require that the computer be solely dedicated to RFMS 

whenever the data base management system was loaded.

This led to the partitioning of the RFMS code into 

approximately 30 overlays. An overlay is a block of code 

which is written on a file in absolute form and loaded 

into the computer without relocation. The main overlay 

is core resident throughout the execution of a RFMS process 

and it requests the loading of the other overlays as they 

are needed. Overlays called in by the main overlay are 

placed in core immediately following the last location 

of the main overlay.

The 500 RFMS subroutines are divided among the over­

lays on the basis of "functional requirements" and the 

overlays are then grouped into modules. These modules 

conform to the generalized data base management system
4 5 features as outlined by the Codasyl Committee. ' In 

the Remote File Management System the modules are 

CONTROL, DEFINE, LOADER, RETRIEVAL, REGENT {Report 

Generator), and UPDATE.

CONTROL — contains the program language interface between 

the user and the other modules. It maintains



-20-

communication between the user and RFMS 

by supervising user file operations and 

maintains communication between the different 

service modules within RFMS so that the 

correct program module is called to process 

the user's requests.

DEFINE -- allows a user to create a data base description 

i.e., to name the elements of the entries in 

his file, to indicate heirarchical relation­

ships among elements, and to specify what 

type of data will be associated with named 

data elements.

LOADER — provides a flexible capability for creating 

a new data base, taking as input the data 

base description supplied by the user to 

DEFINE and the data values for entries 

supplied by the user.

RETRIEVAL -— provides search capability based on one or 

many search criteria expressed in terms of 

the elements of the user's data base definition

REGENT — provides flexible report generation capabilities 



-21-

suitable for formatting RETRIEVAL answers 

for batch or remote output.

UPDATE — provides capability for editing an existing 

data base through instructions which add, 

delete, insert, and change data values.

A description of the REMS data files must begin with 

a formal definition of some of the terms used to describe 

the files.

A tree is composed of a heirarchy of components called 
15 17nodes. ' With the exception of the uppermost node, the

root, every node has one and only one node related to it at 

a higher level (parent). Each node may have none, one, or 

more nodes related to it at a lower level (children). In 

REMS terminology, the root node is called ENTRY and resides 

at level 0. Its children also reside at level 0, but sub­

sequent descendents of the children reside at levels 1, 2, 

3, etc. (Figure 4)

The REMS nodes are specified as being either elements 

or repeating groups. An element is the smallest logical 

unit of named data in the data base. A node which is specified 

as an element may never have any descendent nodes. Actual 

data in the data base which are associated with the elements 

are called data values. A repeating group is a named node



-22-

which is used to associate other descendent nodes. Its 

children may be elements or other repeating groups. A 

repeating group never has data values associated directly 

with it. The root node, ENTRY, is considered the parent 

(or root) repeating group for the tree.

Throughout the remainder of this paper the term component 

will be used whenever a description is equally applicable to 

an element or a repeating group. Components may be described 

further as having a component name consisting of a descriptive 

label from 1 to 150 characters long. The component also has 

a shorthand label, or component number, of from 1 to 6 

numbers with no embedded blanks. The component1s type 

indicates to the system the actual format of the data to be 

associated with the component.

A data set consists of one set of component numbers 

and their corresponding data values which are the sub­

level 0

level 0

level 1

level 2

Figure 4. Sample tree



-23-

ordinate components of a repeating group or ENTRY.

Each component number may appear no more than once in a 

data set, but every subordinate component need not appear 

in all of its allowable data sets.

The Remote File Management System utilizes a tree 

heirarchy when building the data base tables.The 

logical entry definition is the declaration of component 

labels which explicitly states each component's type, 

number, and all component nesting, or heirarchy. This 

heirarchy is the logical entry structure which is used 

to describe to RFMS the relationships within the input 

data which should be established. The RFMS heirarchy 

is also fully-inverted, which means that every node in the 

tree can be accessed directly, or used as a key. This 

allows all components to be located by their contents.

An RFMS data base consists of a set of nine designated 

random access files called tables. This set can be thought 

of as being broken into three subsets; the Definition 

Tables, the Selection Tables, and the Retrieval Tables. 

The CDEFNA, CDEFNB, and CELS tables are referred to as the 

Definition Tables. These tables are built and modified 

by the DEFINE module and contain the logical entry definition 

for the data base. The CVALDR, CVALUS, CNAME, and CENTS 

tables are referred to as the Selection Tables. They 

are built by the LOADER module and changed by the UPDATE 



-24-

module. These tables contain the actual data values 

associated with each element in the definition of the 

data base. The Retrieval Tables are CFIND and CDATA. 

These tables are also built by the LOADER module and 

changed by the UPDATE module and contain the data set 

linkages which associate the unique data values (in the 

Selection Tables) to their respective logical entry definition 

elements (in the Definition Tables). (Figure 5)

If a data base definition has been made but data 

values have not been entered for the defined elements, the 

RFMS data base consists minimally of the Definition Tables 

(CDEFNA, CDEFNB, and CELS). After data values have been

CVALDR

CVALUS

CNAME

CENTS

CFIND.

CDATA

Definition Tables

Selection Tables

Retrieval Tables

Figure 5. Data base table building and modification



-25-

entered into the data base according to the definition 

held in the Definition Tables, the data base consists of 

all nine tables.

Upon entry to the DEFINE module to initiate a new 

RFMS data base, all user input is kept in the form of 

scratch tables. This allows the user to modify and refine 

his data base definition as he is building the logical 

structure. Once he is satisfied with his declaration, 

the user issues a FINALIZE statement which builds the 

permanent versions of the CDEFNA, CDEFNB, and CELS tables. 

Subsequent entries to the data base must then be made through 

the LOADER (for the initial data values load only), REGENT, 

UPDATE, or RETRIEVAL modules.

The LOADER module enters the user's data into internal 

data structures for the newly defined data base. It scans 

the input strings, builds the Selection Tables (CVALDR, 

CVALUS, CNAME, and CENTS) and then builds the Retrieval 

Tables (CFIND and CDATA). In the LOADER string, the 

data base structure is explicitly detailed by the order 

in which the data sets occur.

Once values have been entered into the data base, 

access to it is limited to the RETRIEVAL module, the 

REGENT module, and the UPDATE module. The UPDATE module 

allows the user to modify data values ofc the order in 

which data sets are associated with their parent repeating 



-26-

group. The UPDATE module does not allow the introduction 

of any new nodes to the logical entry structure or any 

reordering of nodes within the existing structure. The 

RETRIEVAL and REGENT modules make no modifications to the 

data base. They merely select and report requested data.

To aid in understanding the relationships between 

the REMS tables, the component parts of each table are 

described in Appendices A through I. The table structures 

are shown as they are currently implemented by the Univac 

version of REMS. The descriptions for the various items 

within each table are taken from the original REMS docu­

mentation for the University of Texas.

The CDEFNA table contains the logical entry structure 

of the data base definition as ordered by the user. Each 

two-word entry in this table corresponds to one component 

in the logical entry definition. Items in the CDEFNA 

and CDEFNB tables contain properties and attributes for 

each component in the definition and the relationship 

among components as described by the user. The CDEFNA, 

CDEFNB, and CELS tables form the map and the pathway to 

entering and finding all of the current data in the data 

base.

The order of the CDEFNA and CDEFNB table entries is 

determined by the user. Words 0 and 1 of these tables are 

reserved and used by the system as an implied repeating



-27-

group component for the level 0 set of components in 

the logical entry definition. Entry items in words 2 

and 3 apply to the first user-defined component description, 

words 4 and 5 to the second component description, and so 

on. This two-for-one correspondence between the CDEFN 

entries and the component descriptions becomes an index 

and a relative address pointer to the CDEFN tables. This 

index is called the system-assigned component number and 

is used throughout the Selection and Retrieval Tables 

rather than the user-defined component number. The 

Definition Tables, CDEFNA and CDEFNB, are ordered and 

indexed in parallel. Items in each entry of the CDEFNA 

table are described in Appendix A.

The CDEFNB table contains the user-assigned component 

number and the type of the component as declared by the user 

in the type description for the component. Each entry in 

the CDEFNB table supplements and parallels information 

found in the CDEFNA table for a given component, including 

words 0 and 1. Items in each entry of the CDEFNB table 

are described in Appendix B.

Each entry in the CELS table corresponds to a component 

in the logical entry definition. A CELS entry holds the 

component name declared by the user with all leading, 

extraneous (more than one) embedded, and trailing blanks 

deleted. A CELS entry exists for each entry in the CDEFN 



-28-

tables excluding the level 0 entry which is reserved 

for use by the system. The first CELS entry begins at word 

2 in the CELS table. Words 0 and 1 are reserved for 

system use. CELS entries need not be ordered as they 

are accessed by a relative address pointer found in the 

CDEFNA table. Entry items of the CELS table are described 

in Appendix C.

The CVALDR table serves as a page directory to the 

data values for each element. Each entry in the CVALDR 

table corresponds to a single partition in the CVALUS 

table. No two CVALDR entries point to the same CVALUS 

partition. For each element in the logical entry definition 

for which data values have been entered, there are as many 

CVALDR entries as the number of CVALUS partitions created 

for the element. CVALDR entries need not be ordered, 

as the set of entries pertaining to a single element 

are linked by item CVNEXT as shown in Appendix D. CVALDR 

entries indicate the highest value in a CVALUS partition 

for an element and thus are used to point to the CVALUS 

partition where a data value may be found if it exists 

in the data base for the given element. Items in each 

entry of the CVALDR table are described in Appendix D.

Each unique data value assigned to a given element 

is represented by one and only one entry in the CVALUS 

table. Each CVALUS partition contains entries pertaining 



-29-

to only one element. Thus if an identical unique data 

value is assigned more than once to a given element, 

only one CVALUS entry is created. However, if the same 

unique data value is assigned to two or more different 

elements, a CVALUS entry is created and stored in the proper 

partitions for each of the respective elements. Entries 

within a partition are ordered by low value first, with 

respect to the total value (not truncated) in table CNAME. 

The set of partitions for any given element need not be 

ordered or consecutive in the CVALUS table since the 

CVALDR table is a directory that identifies, links in 

order, and locates the complete set of partitions for 

each element that has been assigned values. The CVALUS 

representation of a data value is not necessarily the 

complete actual value, but item CNAMB in each CVALUS 

entry points to the full actual value as found in the 

corresponding CNAME table entry which is available if 

further matching is needed during a compare operation. 

The items in each entry of the CVALUS table are described 

in Appendix E.

The CNAME table contains the full display value 

string for unique data values. A CNAME entry exists for 

each unique data value assigned to an element. If the 

value was assigned to a specific element in more than 

one data set, one and only one copy of the value is 



-30-

retained in the CNAME table, and it is pointed to by 

relative address pointers in the appropriate CDATA table 

entries. CNAME entries are not necessarily ordered, but 

there is a one-to-one correspondence between entries in 

the CNAME and CVALUS tables, with each CVALUS entry having 

item CNAMB as the relative address pointer to its respective 

CNAME entry. CNAME entries have no relative address 

pointers to any other table. Entries in the CNAME table 

are used in matching when uniqueness is not assured by 

the corresponding CVALUS entry and are used in generating 

report output. The items in each entry of the CNAME table 

are described in Appendix F.

Whenever an identical data value has been entered for 

an element in more than one data set, a CENTS entry is 

created to hold all relative address pointers to the CFIND 

table entries for the respective data sets. If the unique 

value occurs only once for the element, no CENTS entry 

is created and the relative address pointer to the single 

CFIND entry for the specific data set is stored in item 

CPFNDA of the CVALUS entry for the unique data value.

A CENTS entry may consist of one or more CENTS blocks 

in one or more partitions. One block is created initially 

if less than partition size. Additional updates create 

additional blocks. All blocks pertaining to multiple 

occurrences of the same unique data value for an element 



-31-

are linked. No order is necessary among the relative 

address pointers within a CENTS entry and, likewise, the 

entire CENTS table need not be ordered as associated 

blocks are linked by item CLINK. Items in each entry 

of the CENTS table are described in Appendix G.

The CFIND table is a retrieval tree of linked data 

sets and logical entries. Its entries preserve the 

structure of the data sets in a data base. For each data 

set there exists one CFIND entry. If no values were 

entered for a data set but other data sets exist at .a 

deeper logical level for the same family of data sets, 

then a dummy CFIND entry is created for the null parent 

set. Complete vertical and horizontal heirarchical 

structure is preserved within a logical entry and between 

logical entries by three two-way pointers in each CFIND 

entry. CFIND entries need not be ordered nor need they 

be consecutive in the CFIND table, as each is linked', 

to its logical associates. Items in each entry of the 

CFIND table are described in Appendix H.

Each CDATA entry serves as a directory to access 

actual data values entered for specific elements in a 

single data set. Every data set in the data base that 

contains at Least one data value has a CDATA entry 

(accessed by item CPLOC of the corresponding CFIND entry 

for the set). If the data set is a dummy entry in the



-32-

CFIND table, then no CDATA entry exists and item CPLOC 

= 0.

Each CDATA entry is made up of one block of two or 

more consecutive words. Within a block, it is unnecessary 

to order the words by their contents. One word exists 

for each element having a data value in the data set 

for this CDATA entry. The items in each entry of the 

CDATA table are described in Appendix I.

In order to show the logic of the tables, consider 

the following retrieval request:

PRINT ENROLLMENT LIMIT WHERE INSTRUCTOR EQ OSBURN 

AND SECTION NUMBER EQ 0002;

The RETRIEVAL module examines the conditional portion 

of the request, the WHERE clause, and finds the first 

Boolean expression, INSTRUCTOR EQ OSBURN. Using the 

partial reproduction of the data base tables as shown in 

Figure 6, a search is made of the CELS table until a 

match is made on INSTRUCTOR. This CELS entry points to 

the CDEFNA-CDEFNB entries related to INSTRUCTOR. Having 

found that entry, the CPVDIR pointer is followed to search 

the CVALDR table for a pointer to the appropriate CVALUS 

partition. Having found the appropriate CVALUS partition, 

the program looks for the value OSBURN. Having found the



-33-

value OSBURN in the CVALUS table, the program checks to 

see if OSBURN occurred only once for the element INSTRUCTOR. 

Since the CONCE item is set to 1, OSBURN occurs only once 

as an INSTRUCTOR and his CPFNDA pointer points to a CFIND 

entry instead of a CENTS entry. The CPFNDA pointer is 

held temporarily.

The process is then repeated using the second BOOLEAN 

expression, SECTION NUMBER EQ 0002. The CELS, CDEFNA, 

CDEFNB, CVALDR, and CVALUS tables are all examined as 

described above. The CPFNDA pointer to the CFIND table is 

once again temporarily held.

The program then examines the logical operator and 

finds it to be an AND. The two CPFNDA pointers are 

"ANDed" together giving the pointer to the CFIND table for 

the data set containing both OSBURN and 0002.

Table CFIND contains the pointer to the CDATA entry 

for the selected data set. The data value for component 

number 8 (ENROLLMENT LIMIT) is the required output. The 

program finds the CDATA entry for the data set and looks 

for component number 8. It then follows the CPVAL pointer 

to the CNAME table and the data value 75 is printed out.



-34-

Figure 6. Partial reproduction of sample RFMS tables



-35-

The original RFMS was written for the CDC 6600 series 

of computers. That computer series has a logical memory 

broken down into 60-bit words. The CDATA table for RFMS 

under CDC consists of one-word entries, each word containing 

the relevant information for one element in a given data 

set. The low-order third of each word points to the 

relative CDATA address of the next element in that data 

set. As data sets expand to accommodate an element which 

previously had no data value in that data set, the added 

element can be quickly inserted at the end of the CDATA 

table and linked back to the other members of its data 

set by this pointer. Data sets can thereby expand and 

contract with a minimum of change within the CDATA table.

When RFMS was converted to run on the Univac 1100 

series computers, a new CDATA table format had to be 

adopted to accommodate the computer's shorter (36 bit) 

word length. The new format consists of a header word 

containing a count of the entries in the data set with 

the data set entries immediately following. No provision 

was made originally for expanding or contracting the sizes 

of the data sets. This condition was justifiable since 

certain applications originally planned to use only the 

DEFINE, LOADER, and RETRIEVAL modules. Each load of the 

data base would thereby be static and expanding or con­

tracting data sets would not be encountered.



-36-

With the decision to implement the UPDATE module 

came the necessity of providing in the CDATA tables for 

data sets which change size. Since no item had been 

set up in the CDATA entries to provide for a relative 

address pointer to the next CDATA entry for that data 

set, it was decided that the entire CDATA entry for a 

data set which expands in size would be rewritten. CDATA 

entries for data sets which contract in size would be left 

where they were and would be followed by unused words 

which had previously been a part of that CDATA entry. The 

question of where to rewrite the expanded data sets and 

what to do with the unused words within the CDATA table 

then had to be addressed. More specifically, the problems 

of available space linkages and garbage collection had to 

be considered.

The original design specifications for RFMS provided 

for a common block list, GARBAGE, to contain a pointer to 

the word after the last word used, the first "available 

space", in the CENTS, CDATA, CFIND, and CNAME tables. 

This list was set up by the LOADER module. As the Selection 

and Retrieval Tables were modified by the UPDATE module, 

the UPDATE module was to mark the words as deleted that 

were no longer used in the tables, and link these words 

into an available space list, or collect the garbage. 

The pointers from this list would then be held in GARBAGE.



-37-

Since the Univac application under consideration originally 

intended for each load of the data base to be static, the 

available space linkages for garbage collection, or GAR­

BAGE, had never been used for more than the first available 

space pointer.

A discussion of what, if any, type of garbage collection 

should be implemented needs to include an analysis of how 

the tables are used. Upon entrance to the RETRIEVAL 

module, three or more CDATA partitions are set aside in 

the REMS buffer area. In searching for the data sets that 

satisfy the retrieval request (or update request), it is 

assumed that a minimum of swapping of CDATA partitions 

will occur due to the fact that most requests consist of 

components which are logically contiguous (or related) 

and therefore will be somewhat physically contiguous. 

This physical proximity of data sets is indeed a direct 

consequence of the stringent ordering requirements of the 

LOADER module. If data sets which change sizes are 

rewritten in the last CDATA partition with no regard to 

ordering, the minimal swapping assumption will break 

down to the extent that there are changing data set sizes.

Three garbage collection schemes were considered 

for this Univac implementation.



-38-

(a) No garbage collection. Under this scheme, all 

CDATA data sets which expand in size would be 

rewritten in the last CDATA partition. This is 

the easiest scheme to implement and the fastest 

to execute in the UPDATE mode as no time is 

spent marking and linking unused words in the 

CDATA table. It is a viable alternative if the 

largest majority of the UPDATE requests do not 

change the sizes of existing data sets, only 

their values, and the whole data base is reloaded 

periodically, theoretically before the slight 

RETRIEVAL degradation begins to show.

(b) Partial garbage collection within a partition. 

This scheme would require the LOADER module to 

create an overflow area by padding the bottom of 

each CDATA partition. The percentage of padding 

could be set by the user to reflect the percentage 

of data sets he expects to change in size over

the life of this load of the data base. The 

theory behind partial garbage collection is that 

RETRIEVAL degradation can be minimized by rewriting 

the changed data sets in the same partition 

the original data set was in. This could be 

accomplished by designating the first word of 

each partition as an available space pointer



-39-

(again requiring a change in the LOADER module). 

More simply, each available word could be marked 

with a unique code in the high-order bits 

(another change in LOADER) and a sequential 

search made down the partition until the avail­

able space is hit. Failure to find enough 

available space in a CDATA partition to rewrite 

a data set would cause the set to be rewritten 

in the last partition. This would cause some 

increase in the execution time of the UPDATE 

module due to the sequential search and the 

marking of unused words, but could lessen the 

RETRIEVAL degradation due to physical separation 

of data sets.

(c) Full garbage collection. This scheme requires 

the most time to maintain. Available space would 

be linked together throughout the CDATA partitions 

and data sets which must be rewritten would be 

placed in the first available space large enough 

to hold them. This would have the same logical 

fragmentation effect as the scheme using no 

garbage collection, only the data sets would 

tend to be rewritten in the first CDATA partitions 

instead of the last ones. Due to the degradation 

of the UPDATE module caused by the building of 



-40-

the available space linkages, this approach is 

not a viable alternative unless the physical 

space requirements for the CDATA table become 

such that it is critical that each word in the 

partitions be used.

Examination of the types of update requests that are 

most frequently received showed them to be almost exclusively 

changes in existing data values and insertions of entire 

new data sets in which all the elements already have values. 

This evaluation led to the choice of no garbage collection 

for the CDATA table, as changing data set sizes were not 

anticipated as the result in any significant percentage 

of the update requests.

When the LOADER module finishes building the Selection 

and Retrieval Tables, it stores the first-available-space 

address in the system-reserved words at the top of each 

table. Since this pointer was already stored in the CDATA 

table, the decision to do no garbage collection required 

no revision in the LOADER module. The UPDATE module was 

simply modified so that expanding data sets were entirely 

rewritten in the last CDATA partition, the next-available- 

space address in the CDATA table was updated to reflect 

this addition, and the CPLOC pointer of the CFIND table 

was changed to point to the new location for this data set.



-41-

The ease with which expanding and contracting data sets 

could now be handled due to the decision to move expanding 

data sets to the end of the CDATA table suggested to me the 

possibility of allowing for redefinition of an existing data 

base within the confines of the UPDATE module. This would 

eliminate the need for the time-consuming process of unloading 

and reloading the data base to accommodate a change in its 

logical entry definition. With this innovation in handling 

definition modifications in mind, I began investigating 

its feasibility for RFMS as currently implemented on the 

Univac 1110.



Chapter 3

DEFINITION MODIFICATION IN THE REMOTE

FILE MANAGEMENT SYSTEM

In order to design a data base definition modification 

system, several questions had to be addressed. The first 

question revolved around the actual structure of the tables 

which comprise the data base and their linkages to one another. 

Could the present form of these tables accommodate all the 

various definition modifications, and, if not, what changes 

needed to be made to the tables and their linkages? The 

second question dealt with the application (user) programs 

which were written under various definitions, or editions, of 

the data base. How could one data base edition differ from 

another and still be processed by application programs written 

under a different edition? The final question addressed the 

relative desirability of this type of data base definition 

modification. Were there circumstances under which the modif­

ications enumerated below were superior to the only other avail­

able definition modification method, the unload-reload method?

The first consideration an attempt to modify the Remote 

File Management System to accommodate definition changes had 

to test was whether or not the present structure of the data 

base tables could support these changes. In order to determine 

-42-



-43-

if the present data base tables could support definition 

modifications, all of the various types of modifications had 

to be examined. Possible definition modifications consist 

of a change in the user-assigned component name, or the user- 

assigned component number, or the component's type description. 

Other modifications to the definition include the addition 

or deletion of an element or repeating group, or a change in 

the order in which components are defined within the logical 

entry structure.

A. COMPONENT NAMES

A change in the user-assigned component name could be 

easily handled within the present confines of the data base 

tables. The CDEFNA and CELS tables contain the only 

references to the component name. (Figure 7) The CNAMA 

item in the CDEFNA table is a relative address pointer to 

the header word of the CELS table entry where the component 

name for that entry is stored. Since the component names 

in the CELS table occupy only as many words as are necessary 

to hold each component's name and one header word, modifi­

cations to component names could be most rapidly accomplished 

by appending the new component names to the end of the 

CELS table.

At the end of the initial definition process of a 



-44-

data base, the DEFINE module presently places in the CNAMA 

item of word 0 of the CDEFNA table a relative address pointer 

to the next available address for storing a component name 

in the CELS table. The routine handling the change in a 

component's name would simply have to pick up the next 

available space pointer from word 0 of the CDEFNA table 

and insert the new name at this point in the CELS table. 

The CPEL item in the old component name's CELS entry would 

be copied into the new component name's CPEL item space. 

The CNAMA item in the component's CDEFNA table entry is

CDEFNA

Figure 7. CDEFNA-CELS linkage



-45-

then changed to point to the new component name and the 

CNAMA item in word 0 of CDEFNA is updated to point to the 

next available space in the CELS table after the new name.

(Figure 8)

I---------------- *----- ---------- 1
! - CELCARn |
I I

CDEFNA

I
Figure 8. CDEFNA-CELS linkage after processing

a component name change command



-46-

The command to change a component's name might look 

like:

NAMCHG <C]> EQ <NEWNAME^;

where 1 is the user-assigned component number for the 

component whose name will be changed to NEWNAME.

To allow user programs which were written under 

previous editions of the data base to continue to run under 

the present edition, CELS table words which are occupied 

by component names which have been changed must not be 

overwritten. Consider the following command issued from 

an application program:

PRINT GRADE WHERE INSTRUCTOR EQ JONES AND 

STUDENT NAME EQ BLACK;

What would happen to this command if under a subsequent 

edition of the data base the component name INSTRUCTOR 

were changed to PROFESSOR? In its attempt to satisfy the 

WHERE clause of the command, the retrieval process searches 

down through the CELS table until it finds a match on the 

component name, INSTRUCTOR. If that space in the CELS 

table had been reclaimed and overwritten, the retrieval 

search would have failed and the application program would 



-47-

have received the message that the component INSTRUCTOR 

was not a member of that data base. By leaving the old 

name in the CELS table, the retrieval process will find 

it upon a search through the CELS table.

The decision to leave the old component names in the 

CELS table led to the question of how to relate the 

synonymous names for a given component. Since the CDEFNA 

table contains the pointer to the most recent name associated 

with a component, it is proposed that an unused portion of 

each component's CDEFNA entry be modified to hold a count, 

CELCNT, of the number of names which have been associated 

with the component. Thus a component's CDEFNA table 

entry would be changed, from

CDEFNA

CgPIN__________________ CRGOP
-Tin—।—'—>——■—।------ >—■■ ■ I

2LEVEL
iii<

CNAMA CPUNIT

77/w7/Z/////, CRGID CNOEL

to look like

CDEFNA

CELCNT

CSPIN CRGOP



-48-

Item CELCNT, 5 bits long, would be a counter of how many 

names have ever been associated with a particular component.

To implement this change in the CDEFNA table, the 

DEFINE module would have to be modified to set all of the 

CELCNT items equal to one when the data base is defined. 

The UPDATE module would then increment a component's CELCNT 

item by one each time the component received a new name.

The addition of the CELCNT item to CDEFNA makes 

possible the addition of a new UPDATE command, SYNONYMS. 

The invocation of the SYNONYMS command would cause the 

entire data base definition to be displayed with each 

component name followed by any other component names 

which have ever been associated with the component. The 

SYNONYMS routine would check the CELCNT of each component 

as it printed out the component's current name. If the 

CELCNT item for a component were greater than one, the 

CPEL item of the CELS entry for the current name would 

be saved. The CPEL item is a pointer to the CDEFNA entry, 

or component, associated with this CELS entry. The 

SYNONYMS routine would then start at the top of the CELS 

table and search for matches on the CPEL item. Each time 

a match is made, the component name associated with that 

CPEL item would be printed. By the time the routine 

reaches the CELS entry for the component name currently 

associated with the component, CELCNT synonymous names



-49-

for the component should have been printed.

An attempt to change a component's name to one which 

has been used previously or is currently in use could 

result in another problem. Application programs trying 

to access a non-unique name would always get the data values 

associated with its first occurrence in the CELS table, a 

clearly unsatisfactory solution. Therefore the CELS 

table should be used as a legality list for all the component 

names which have been defined under any edition of the 

data base. When a request is processed to place an additional 

name into the data base definition, the CELS table should 

be checked to see if the new name is a duplicate of a previous 

component name. If the new name is a duplicate, an error 

message to that effect should be printed out and the 

processing of that command terminated. If, however, the 

new name is indeed unique, the system should allow it to 

be placed in the CELS table.

Once an unload-reload operation has been performed 

on a data base, all component names which are not currently 

defined for the data base are lost. This means that error 

messages will be generated by application programs which 

were written under previous editions of the data base 

and which attempt to access components whose names have 

been changed. The unload-reload process involves unloading 

all of the data values in the data base and building new 



-50-

linkages for all of these data values. Since none of the 

data values, or their linkages, are altered by a change in 

the user-assigned component name, the modification to 

the Remote File Management System which allows for component 

name changes within the UPDATE module is clearly superior 

to the unload-reload method of handling changing nomenclature.

B. COMPONENT NUMBERS

The second type of possible definition modification is 

a change in the user-assigned component number. A close 

examination of the data base reveals that the user-assigned 

component number is used in only one place, the CFIELD 

item of the CDEFNB table. Therefore a modification in a 

component's user-assigned component number could be 

easily accomplished by merely changing its CFIELF item.

The command to change a component's number might be:

NUMCHG^C) EQ ^15^;

where 7 is the old user-assigned component number and 15 

will now be that component's user-assigned component number.

Note that a change in a component's user-assigned 

component number does not require a change in its system- 

assigned component number. The system-assigned component 



-51-

number is a number calculated by the system and serves as 

a relative address pointer into the CDEFN tables for that 

component. The'system-assigned component number is intent­

ionally independent of the user-assigned component number.

An examination of RFMS shows that when processing a 

query containing a user-assigned component number, the 

retrieval process searches down through the CDEFNB table 

until it finds a match in the CFIELD item. The process 

then follows the CPVDIR item pointer to examine or retrieve 

the component's data values. If an application program 

written under a previous edition of the data base tried to 

access a component number whose CFIELD item had been 

overwritten by a new component number, the search for the 

old component number would fail.

To avoid problems with old application programs, it is 

proposed to further modify the method of handling component 

number changes so that the old component number is not 

lost when a new number is assigned to a component. Under 

this proposal, the existing CDEFNB entry of a component 

whose user-assigned component number is to be changed 

would first be rewritten immediately following the last 

entry in the CDEFNB table. Then the CFIELD item in the 

original CDEFNB entry space would be changed to the new 

user-assigned component number. An unused portion of 

each CDEFNB entry could be modified to hold a pointer,



-52-

CFLNUM, back to the original CDEFNB entry for this component.

Thus a component's CDEFNB table entry would be changed from

CDEFNB

CFIELD CPVDIR CPAD
'//////////////A
/z///2Z///mz/2 CPLEGL CTYPE

to look like

CDEFNB

CFIELD CPVDIR CPAD
^////////^ CFLNUM CPLEGL CTYPE

Item CFLNUM, 12 bits long, would then be a link from an 

old user-assigned component number back to the current 

user-assigned number for the component.

The decision always to leave the current copy of a 

component's CDEFNB entry, and parallel CDEFNA entry, in 

its original position in the CDEFN tables meant that a 

user-assigned component number could be changed without 

changing the system-assigned component number. This 

decision is significant since the system-assigned component 

number is used throughout the CDEFNA, CELS, CFIND, and



-53-

CDATA tables, and a change to the system-assigned component 

number would entail significant changes in these tables.

To implement this change in the CDEFNB table, the 

DEFINE module would have to be modified to set all of the 

CFLNUM items equal to zero when the data base is defined. 

The zeroth word in the CDEFNB table is reserved for use by 

the system and therefore could not be the relative address 

of a component whose user-assigned component number could 

change. The presence of a zero in the CFLNUM item of a 

component's CDEFNB entry means that the CFIELD item contains 

the most recent user-assigned component number associated 

with the component. Thus the command:

NUMCHG C7 EQ 15 ;

would result in CDEFNB table entries as shown in Figure 9.

As noted in Appendix B, the CFIELD item of word 0 

of the CDEFNB table contains the last system-assigned 

component number, or number of CDEFN entries, and therefore 

can be used as a pointer to the last entry in the CDEFN 

tables. Since each entry in the CDEFN tables occupies two 

computer words, the last CDEFN entry would start at 

CFIELD(word 0) x 2. The CDEFNB entry to be rewritten 

should then be moved to statt at CFIELD(word 0) x 2 + 2. 

After rewriting the CDEFNB entry, the CFIELD item of 



-54-

word 0 in the CDEFNB table would then be incremented by 

1 to show the total number of meaningful entries in the 

CDEFNB table.

This change in the CDEFNB table structure means that 

the CFIELD item in word 0 of the CDEFNB table no longer 

can be assumed to contain a count of the total number of 

components defined in the schema. This count is not 

needed, however, as will be shown with the addition of the 

CDNEXT item discussed in SECTION D. The CFIELD item in 

word 0 of the CDEFNB table merely becomes a count of the 

number of entries which have been made in the CDEFN tables 

and therefore can be used to calculate the relative address

CDEFNB

i i

Figure 9. CDEFNB table entries after the execution

of a NUMCHG command 



-55-

of the last meaningful entry in the CDEFN tables.

A change in a component's user-assigned component 

number presents many of the same problems noted above for 

a change in a component's name. If a user changed a 

component number to one that was currently in use, application 

programs which tried to access that number would always 

retrieve those data values associated with the first 

occurrence of that number in the CDEFNB table. To avoid 

this problem, it was decided to treat user-assigned 

component numbers in much the same fashion as component 

names. Requests to place component numbers in the data 

base definition would be checked against the CDEFNB table 

for duplicates. If a duplicate component number is encountered 

an error message to that effect should be printed out 

and processing of the command terminated. If the component 

number is indeed unique, the system should continue processing 

the command.

Using the unload-reload method of definition modifi­

cation to change a user-assigned component number results 

in the loss of the old user-assigned number. Indeed the 

data base retains no reference to the previous number 

and this number could be reassigned. A number formerly 

associated with an element could be reassigned to a repeating 

group or vice versa. This could lead to the retrieval of 

meaningless data values by application programs which were 



-56-

written when a component number was associated with an 

entirely different component type. The cost and time 

required to rebuild all of the data base pointers to 

handle a component number change is clearly not justified 

when compared to the REMS modification that rewrites a 

CDEFNB entry and changes a CFIELD item.

C. ELEMENT TYPE

A third possible definition modification is a change 

to the type description of an element. As noted in Appendix 

B, there are six possible type descriptions for an element; 

NAME, TEXT, DATE, INTEGER NUMBER, DECIMAL NUMBER, and 

EXPONENTIAL NUMBER. If care is not exercised when changing 

an element's type description, problems can arise in the 

data base tables where the element's data values are stored.

As an example, if an element is specified as type DATE, 

each of its values is converted to a value equalling the 

number of elapsed days between October 15, 1582 and that 

date. This number is then stored as a floating point number 

in item CTEN of the data value's CVALUS entry. In order to 

convert the data value to the number of elapsed days since 

October 15, 1582, the data value must be in the form MONTH 

DAY YEAR and must be a valid date. Consider what would 

happen if an attempt were made to change an element of type



-57-

TEXT with a data value of AMEX RENTAL COMPANY to type

DATE. AMEX RENTAL COMPANY is clearly not a valid date and 

the system would not allow the conversion. Similar problems 

would arise if an attempt were made to convert a data value 

with alphabetic characters into a data value of type NUMBER.

To avoid these problems, proposed element type changes 

must be checked against a legality table similar to the 

one in Figure 10.
NEW 

OLD^-^YPE 
TYPE NAME TEXT

INTEGER
NUMBER

DECIMAL
NUMBER

EXPONENTIAL
' NUMBER DATE

NAME YES NO NO NO NO

TEXT YES — NO NO NO NO

INTEGER
NUMBER YES YES — YES YES NO

DECIMAL
NUMBER YES YES NO YES NO

EXPONENTIAL
NUMBER YES YES NO YES — NO

DATE YES YES YES YES YES j
I i

LEGEND

— — no type change

YES — type change without data validation
NO — type change requires data validation

Figure 10. Element type change truth table



-58-

Since types NAME and TEXT can be any combination of 

alphanumeric or special characters, any other element type 

can be converted to types NAME or TEXT. An element of 

type NAME could be converted to type INTEGER NUMBER only 

if all of its data values happened to be integers. Since 

individually checking each data value of an element to 

see if it will correspond to a new type description could 

be very time-consuming, it was decided to disallow all 

type changes which involved individual data validation.

Note that the truth table in Figure 10 applies only 

to elements which have data values associated with them. 

If an element has been defined but no data values are 

currently associated with it in the data base (item CPVDIR 

in its CDEFNB table entry equals 0), then the element's 

type description can be changed to any of the types allowed 

for an element.

Once it has been determined that a proposed element 

type change is legal (as indicated by a YES in Figure 10), 

the CTYPE item in the CDEFNB table entry for the element 

would be changed to the new type. The full data values 

for the element are stored in display format in the CNAME 

table, but these display fields do not change if the 

element type is changed. So the CNAME table is not 

affected by a change in an element's type description.

The CTEN items in the CVALUS partitions pertaining



-59-

to the element whose type is to be changed may have to be 

modified to correspond to the element's new type.

CVALUS

The CTEN items for an element can contain one of two repre­

sentations of data values assigned to that element. If the 

element is defined as type NAME or TEXT, the first six display- 

coded characters of the data values are stored in item CTEN. 

If the element is defined as a number, then its display 

value is converted to binary and carried in item CTEN in 

floating point format. If the element is defined as a date, 

the date is converted to a value equalling the number of 

elapsed days between October 15, 1582 and that date and the 

value is then handled as if it were a type NUMBER. Therefore 

for changes from type NAME to TEXT or vice versa, no change 

would be needed in the CVALUS table. The same would also 

be true for the allowed changes between INTEGER NUMBER, 

DECIMAL NUMBER, EXPONENTIAL NUMBER, and DATE. For changes 

from NUMBERS or DATES to NAME or TEXT, however, a process 



-60-

would have to be invoked which changed all of the NUMBERS or 

DATES in the CTEN items for that element back to their display 

values and stored the first six display characters in the 

CTEN item. Note that this change in the CTEN representation 

would not necessitate a reordering of the values within the 

affected CVALUS partitions, as the partitions are ordered by 

low value first with respect to the total value (not truncated) 

in table CNAME, and the CNAME table has not been changed.

The final table change needed for an element's type 

modification will occur in the CVHI item of the CVALDR table.

CVALDR

1 1 1
CVNUM ___ । i__ i___

Illi III
CVLOC

'oe/z/ro.<1111CVNEXT
1 1 I

_____ 1____ 1_____1_____
* CVHI

J__ I__ i__ ___ i___ I___ f___I__

The CVHI item contains the last CTEN item of the CVALUS partition 

this CVALDR entry points to. If the representation of the 

CTEN item has been changed in the CVALUS table, this change 

should be copied into the CVHI item in the CVALDR table.

The command to change an element's type might be:

TYPCHG <£2> EQ <(TEXT^;



-61-

where 2 is the user-assigned component number whose new type 

will now be TEXT.

A change in an element's type description will have no 

effect on application programs which were written under 

previous editions of the data base. The data values retrieved 

for output from the data base are always the full display 

values contained in the CNAME table, and as shown, these 

values are not altered by an element's type change.

Use of this modification to REMS does not result in any 

degradation in retrieval time for components whose type 

description has been changed. This is due to the fact that 

this method does not change any of the linkages within the 

data base, nor does it cause any data sets to be rewritten. 

The unload-reload operation would have to do all of the 

conversions for CVALUS and CVALDR as described above, as well 

as rebuild all of the data base links. The unload-reload 

method again proves to be more time-consuming and more costly 

than the REMS modification.

A modification to the type description of a component 

which changes an element to a repeating group ar a repeating 

group to an element will be discussed below under changes 

in ordering.

D. LOGICAL ENTRY STRUCTURE



-62-

The current version of RFMS maintains in the CDEFNA table 

the logical entry structure of the data base definition as 

ordered by the user. This is accomplished by requiring the 

user actually to input his components in exactly the order he 

wishes for the schema. Each component is then entered into 

the CDEFNA table in this order. The addition, deletion, or 

reordering of components within the data base definition, 

however, requires a more flexible means of maintaining the 

logical entry structure.

Since the CDEFNA table currently contains the logical 

entry structure, it is proposed that an unused portion of each 
component's CDEFNA entry be modified to hold a relative address 

pointer, CDNEXT, to the component which succeeds it in the 

logical entry definition. Thus a component's CDEFNA table 

entry would be changed from

CDEFNA

CELCNT

to look like



-63-

CDEFNA

CELCNT

SPIN CRGOP
ULEVEI

1 1 / 1
CNAMA CPUNIT

CDNEX — I.
T CRC

__ i____
;id 
___ f__

1 1 1
CNOEL 

j__ i___ i___

Item CDNEXT, 14 bits long, would be a relative address pointer 

to the component immediately following the present component 

in the data base's logical entry structure.
To implement this change in the CDEFNA table, the DEFINE 

module would have to be modified to build the CDNEXT pointers 

sequentially as it is building the rest of the CDEFNA table. 

This would be a simple programming change, as the DEFINE 

module requires that the components be enumerated in the order 

in which they will appear in the logical entry structure. 

Each CDNEXT pointer would then point to the two-word CDEFNA 

entry below it. The DEFINE module should also place a zero 

in the CDNEXT item of the last CDEFNA entry to mark it as the 

last component in the logical entry structure.

Additional changes would have to be made in the PRINT 

and DISPLAY routines of the RETRIEVAL module so that the data 

base definition could be shown.in the order implied by the 

CDNEXT pointers. As stated above, the present version of 

RFMS assumes that the components are entered into the CDEFN 

tables in their correct order. A request to DISPLAY the data 



-64-

base definition would then only require that the DISPLAY 

routine step down through the CDEFN and CELS tables, adding 

each component to the output list as they are encountered.

The addition of the CDNEXT pointers implies that the logically 

contiguous components may no longer be physically contiguous 

in the CDEFN tables. Therefore the PRINT and DISPLAY routines 

should be changed to use the CDNEXT pointers as their guide 

in building an output list.

E. ADDITION OF NEW COMPONENTS

To add a new element to a valued data base, one in which 

data values have already.been loaded, it would be necessary 

to specify the component which will immediately preceed the 

new component in the logical entry structure, as well as the 

new element's parent repeating group. The new element's 

user-assigned component number, name, and type would also have 

to be specified. The command to add a new element might be:

PLACE ELEDEFN AFTER C4;

3) 10) NEWNAME (INTEGER NUMBER);

END ELEDEFN;

where 4 is the component number of the component which will 

now preceed the new element whose user-assigned component 



-65-

number is 10, whose name is NEWNAME, whose type is INTEGER 

NUMBER, and whose parent repeating group is the repeating 

group associated with the user-assigned component number 3. 

As noted in Chapter 2, the level 0 components have the repeating 

group ENTRY, with its implied component number 0, as their 

parent repeating group. Therefore the new command, PLACE 

ELEDEFN, would be well-behaved with respect to the addition 

of a new element to the level 0 set of components, as its 

parent repeating group could be specified by the number 0.

After checking the CELS and CDEFNB tables for duplications 

of the component name and number, the CDEFNA and CDEFNB 

entries could be built for the new element after the last 

definition in the CDEFN tables. The new CDEFN entries would 

then be linked to their correct position in the logical entry 

structure by the CDNEXT pointers.

CDEFNA

CRGOP-CSPIN
CLEVEL
-----i----

CDNEXT

CPUNIT 
h----h------ 1----- h
> CNOEL

CNAMA ।
pl---- h---- 1------------

CRGID

CELCNT

An examination of the CDEFNA table shows that the new 

element gets its CLEVEL item from the CLEVEL of its parent 

repeating group.



-66-

CLEVEL(NEWNAME)----CLEVEL(Parent Repeating Group) + 1

If the parent repeating group is ENTRY (component number 0), 

then

CLEVEL (NEWNAME)<---- 0

The relative address pointer to the next available space in 

the CELS table tor storing a new component name would be 

retrieved from the CNAMA item in word 0 of the CDEFNA table 

and this pointer would become the CNAMA item for the new 

element. The CRGID item for the new element is the system- 

assigned component number of its parent repeating group and 

is calculated from the parent repeating group's relative 

position in the CDEFN tables. For example, if the parent 

repeating group is the seventh component in the CDEFN tables, 

its system-assigned component number would be 7. The CNOEL 

item for elements is always zero. The CDNEXT item of the new 

element obtains its value from the CDNEXT item of the component 

immediately proceeding it in the logical entry structure.

The proceeding component's CDNEXT item then becomes a relative 

address pointer to the new element, the location of which is 

calculated from the CFIELD item of word 0 of the CDEFNB table 

as shown above.



-67-

CDNEXT(NEWNAME)----CDNEXT(Preceeding Component)

CDNEXT(Preceeding Component)^--- CFIELD(word 0) x 2 + 2

The CSPIN, CPUNIT, and CRGOP items are not implemented in this 

version of REMS and are always set equal to zero.

CDEFNB

-■I I 1 1
CFIELD__ i______ i__ ।__

1 1 1 1 1 1
CPDVIR CPAD

* 1
CFLNUM 
—i-- 1 

CPLEGI
--- 1--- 1-- 1---

1

CTYPE

For the new element's CDEFNB table entry, the user- 

assigned component number of the element is copied into the 

CFIELD item space. The component type description of the new 

element is converted to a number from 1 to 6 to match the 

RFMS legal element type description and becomes the element's 

CTYPE item. If the user has specified a percentage of 

padding for the CVALUS partitions in this data base, this 

percentage becomes the element's CPAD item. Otherwise, CPAD 

is set to zero. Since no data values have been entered yet 

for this element, no CVALDR table entry has been built and 

CPVDIR is set to zero. CPLEGLis not implemented under this 

version of RFMS and is always equal to zero.



-68-

CELS

i *1 1 1
CPEL

i i i
CELCRS

1 1
CELWDS

CELCAR. 
--- 1___ 1___ 1___i__ 1__ 1 1___ 1__ 1___ 1___ 1_ :

I CELCAR„ |1------------------ 1 _ £----------------t
1 1 1I-------------------,------------------ |
I CELCAR„ II--------------------N--------------- ।

In addition to building the CDEFNA and CDEFNB entries for 

the new element, a CELS table entry must be built. The CPEL 

item is the system-assigned component number of the new element 

which serves as a relative address to the element's CDEFN 

table entries. The user-assigned component name for the 

new element is then stored in display code in CELCAR(l) 

through CELCAR(N) with a count being kept in the CELCRS item 

of the number of characters stored and another count being 

kept in the CELWDS item of the number of words, N, required 

to store the name.

After creating the Definition Table entries tor the new 

element, several "housekeeping" functions must be performed 

to allow the data base to function correctly on all subsequent 

accesses. The CDEFNA CNOEL item of the parent repeating group 

of the new element must be increased by 1 to show the correct 

number of elements currently associated with that repeating 

group. The CNAMA item of word 0 of the CDEFNA table must be 



-69-

adjusted to show the next available space in the CELS table 

for placing a new component name. Namely,

CNAMA(word 0)^---- CNAMA(word 0) + CELWDS(NEWNAME) + 1

where CELWDS(NEWNAME) contains the number of words used to 

store the new element's component name and the 1 represents 

the word taken up by the header word for the new component 

name in the CELS table. Likewise, the CFIELD item of word 0 

in the CDEFNB table must be increased by 1 to indicate the 

total number of meaningful entries in the CDEFN tables.

The new element would then be defined tor the data base, 

and its data values could be entered into the data base by 

subsequent calls on the UPDATE verbs ADD or ASSIGN.

The addition of a new repeating group into a data base 

definition parallels the addition of an element in many respects. 

To add a new repeating group to a valued data' base, it would 

be necessary to specify the component which would immediately 

preceed the new repeating group in the logical entry structure, 

as well as the new repeating group's parent repeating group. 

The new repeating group's user-assigned component number, name, 

and type would also have to be'specified, as well as those of 

its descendents, if it has any. The command to add a new 

repeating group might be: 



-70-

PLACE RGDEFN AFTER C7;

5) 11) NEWRG (REPEATING GROUP);

12) NEWELE (NAME IN 11);

13) SECELE (DATE IN 11);

14) DESCENDRG (REPEATING GROUP IN 11);

16) DESCENDELE (NAME IN 14);

END RGDEFN;

where 7 is the component number of the component which will 

now preceed the new repeating group, NEWRG, whose user-assigned 

component number is 11, whose parent repeating group is the 

repeating group associated with the user-assigned component 

number 5. Note that unlike the new command PLACE ELEDEFN 

which can add only one element per command into the data base 

definition, PLACE RGDEFN can add a repeating group and any 

number of descendents, both elements and repeating groups, of 

the new repeating group. The only limitations are the system 

limits of 127 total components defined for the data base and 

that repeating groups may be nested and declared dependent 

only up to 64 levels.

After checking the CDEFNB and the CELS tables for dupli­

cations in the component numbers and names, the CDEFNA, CDEFNB, 

and CELS entries are built for the new repeating group and 

its descendents exactly as described above tor the addition 

of an element. The CNOEL item in the new repeating group's



-71-

CDEFNA table entry would be determined by the actual number 

of descendent elements declared for the repeating group m 

this command. The new repeating group and its descendents, 

if any, would then be defined for the data base, and their 

associated data values could be entered into the data base by 

subsequent calls on the UPDATE verbs ADD, ASSIGN, or INSERT.

Application programs written under previous editions of 

the data base would be affected little by the addition of new 

components to the definition. Since the old programs do not 

have the new components' names or numbers in their name list, 

they would have no knowledge of their existence. Note, however 

that any PRINT or DISPLAY command which included the new 

component's parent repeating group would automatically result 

in the retrieval and output of the new component, and its 

descendents if the new component were a repeating group, along 

with all the other components previously associated with the 

new component's parent repeating group.

Whereas the unload-reload operation would build new 

pointers for every data value m the data base, this Remote 

File Management System modification would rebuild only those 

pointers which were affected by the addition of new components. 

For cases involving relatively small additions to large data 

bases, most of the old pointers in the data base would not be 

affected by the addition, and a substantial savings could be 

realized by not rebuilding the entire data base.



-12-

F. DELETION OF COMPONENTS

As with the addition of a new element to a data base 

definition, the ability to delete an element from the data 

base definition would require a modification to the Definition 

Tables as they are currently implemented by RFMS. Two approaches 

are considered to handling the deleted element's Definition 

Tables entries. The first approach involves actually removing 

the element's CDEFNA, CDEFNB, and CELS entries, while the 

second approach merely marks the entries as belonging to a 

deleted element.

Since the first approach implies a "packing up" of the 

definition, or moving the components below the deleted 

element up to fill the space left by the deletion, an exami­

nation of the effect of this packing up on the other tables 

was made. Since a component's system-assigned component 

number is its relative address in the CDEFN tables, all 

components below the deleted element would have to be given 

a new system-assigned component number if they were packed 

up. The system-assigned component number of an element is 

used in its CELS entry (item CPEL) and in every CDATA data set 

(item CPVAR) where the element has been given a data value. 

If the element were packed up, all of these items would have 

to be located and changed. Furthermore, the system-assigned 

component number for each component's parent repeating group 



-73-

is used in the component's CDEFNA entry (item CRGID) and in 

the CFIND entries (item CRGNUM) which are built tor each of 

its data sets. If a repeating group appears below the deleted 

element in the data base definition, its system-assigned 

component number would be changed during the packing up 

process. This, of course, means that the parent repeating 

group references of all of its descendents would also have to 

be modified. Because of the tremendous volume of system- 

assigned component number changes which could result from a 

packing up operation, the first approach has little merit 

over the unload-reload approach.

The second approach of merely marking an element's 

CDEFN entries "deleted" proved to be advantageous from several 

standpoints. First, the system-assigned component number 

changes would be avoided. Second, the user-assigned component 

name and number would still be in the Definition Tables and 

therefore would still be recognizable by application programs 

which were written under previous editions of the data base. 

The RETRIEVAL module would have to be modified slightly so 

that a successful search for a component name or a user- 

assigned component number would be followed by a check on 

whether or not the element was'defined in the current data 

base edition. If the element were marked as deleted, an error 

message to that effect would need to be issued and the processing 

of the application program should be halted to guard against



-14-

the introduction or use of meaningless data.

A new item, CDEF, in each component's CDEFNB entry could 

be used to indicate if the component is defined for the 

present edition of the data base.

CDEFNB

till 
CFIELD

* 1 i i 1
CPVDIR

--- 1--
CPAD

CDEF- -i CFLNUM 
__ i___ i___ i__ CPLEGL ___ i___ i___ i__ CTYPE

Item CDEF, 6 bits long, would be zero for currently defined 

components and one for deleted components. The DEFINE module 

would have to be modified to assign zeroes to the CDEF items 

as the data base definition is being built.

The deletion ot an element from the data sets in the data 

base could then be accomplished easily by using a modification 

of the UPDATE module's REMOVE verb. The REMOVE verb removes 

all references to an element from all the CDATA entries, as 

well as all CENTS, CVALUS, and CVALDR entries relevant to the 

element. If the removal ot an element causes a data set to 

become empty, REMOVE also deletes its CFIND entry. The deletion 

of an element's CVALUS and CDATA entries causes all pointers 

to that element's CNAME data values to be lost, but no attempt 

is made to actually remove the data values from the CNAME 

table



-75-

Using the programming already available for the REMOVE 

verb, a new UPDATE verb, DELETE-ELE, could be formulated. A 

command using DELETE-ELE might be:

DELETE-ELE <C1);

where 7 is the user-assigned component number for the element 

which will be deleted from the data base definition.

In addition to performing the tasks described above for 

the REMOVE verb, DELETE-ELE must also provide for setting the 

element's CDEF item to 1 and for decreasing by 1 the CNOEL 

item of the element's parent repeating group. One final task 

would be the removal ot the element from the CDNEXT chain in 

the CDEFNA table.

CDNEXT(Preceeding Component)<--- CDNEXT(Deleted Element)

The "Preceeding Component" would be found by searching down 

through the CDEFN entries, using the CDNEXT items as a pointer 

to the next entry to examine, until a match was made on the 

user-assigned component number (CFIELD item in the CDEFNB 

table). During this search a copy should be kept of the 

CDEFN relative address of the component which was accessed 

just before the present component. Upon a successful match 

on the component number, the address of the preceeding 



-76-

component's CDEFN entries would then still be available and 

its CDNEXT item could be changed.

The deletion of a repeating group from a data base 

definition would be accomplished similarly to the deletion 

of an element with one special addition. The removal of a 

repeating group must always imply the removal of all of its 

descendents, as these descendents have no connection to the 

data base definition except through their parent repeating 

group.

The UPDATE verb REMOVE TREE, or RT, operates over one or 

more levels of data sets and removes all references to selected 

data sets, and their descendent data sets, from CDATA, CENTS, 

CVALUS, CVALDR, and CFIND. By using the programming already 

available for the REMOVE TREE verb, a new UPDATE verb, 

DELETE-RG, could be formulated. The command using DELETE-RG 

might be:

DELETE-RG <C4^;

where 4 is the user-assigned component number for the repeating 

group which, with its descendents, will be deleted from the 

data base definition.

DELETE-RG must then set the CDEF items in all of the 

deleted components' CDEFNB entries to 1 to show that these 

components are not defined for this edition of the data base.



-77-

The CDNEXT item in the CDEFNA entry which logically preceeds 

the deleted repeating group would then be replaced by the 

CDNEXT item of the logically last descendent of the deleted 

repeating group. If the deleted repeating group had no 

descendents,

CDNEXT(Proceeding Component^---- CDNEXT(Deleted Repeating Group)

Application programs which were written under previous 

editions of the data base and which try to access deleted 

elements or repeating groups would not perform correctly after 

these components have been deleted. It was deemed so important 

that the user be aware that his program tried to access a 

deleted component that the decision was made to stop the 

processing of the program at that point and issue an appro­

priate error message.

An unload-reload operation would also result in an error 

message if an application program from a previous edition of 

the data base attempted to access a deleted component. The 

deleted component names are lost in the unload-reload process 

and are therefore available to be reassigned to a completely 

different component. As shown above, this could lead to the 

generation and use of meaningless data values by application 

programs which were written when the component name was 

associated with an entirely different component.



-78-

The cost and time required to rebuild the entire data 

base by the unload-reload method just to delete a small 

number of components is clearly not justified. The modified 

RFMS method can remove components easily without changing 

any of the links of other, logically separate components.

G. ORDER CHANGE WITHIN A REPEATING GROUP

A modification to the order in which components are 

defined within the logical entry structure of a data base 

might be the result of a desire to change the order in which 

components are defined within a repeating group. The logical 

entry structure would also change if a component was made 

a descendent of a repeating group other than the one it is 

currently associated with, or if an element were changed to 

a repeating group or vice versa.

The CDEFNA table, through the CDNEXT item, contains the 

only map of the order in which components are defined within 

the logical entry structure of the data base. Changing the 

order in which components are defined within a repeating 

group, or ENTRY, then becomes a relatively simple matter of 

changing their CDNEXT pointers. The command to move a component 

in the logical entry structure might be:

REORDER <COMPONENTNAME1^ TO FOLLOW ^0MP0NENTNAME2>;



-79-

where C0MP0NENTNAME1 is the user-assigned component name of 

the component which will be logically repositioned to follow 

COMPONENTNAME2 m the same parent repeating group. Consider 

the following example:

RGA

ELEC

ELED

ELBE

RGB

If the user desired to have ELBE as the first element defined 

under the repeating group RGA, then the command

REORDER ELBE TO FOLLOW RGA;

would result in

COPY<--- CDNEXT(ELED)

CDNEXT (ELED)<---- CDNEXT (ELBE)

CDNEXT (ELEF)f---- CDNEXT (RGA)
CDNEXT (RGA) <----COPY

If the component to be moved in the logical entry structure 

is a repeating group, then the desired repeating group, and



-80-

all of its descendents, will be moved. For example:

RGA

ELEC

RGD

ELEF

ELEG

ELEH

RGB

If the user desired to have RGD, and its descendents ELEF and

ELEG, as the first components defined under the repeating 

group RGA, then the command:

REORDER RGD TO FOLLOW RGA;

would result in

COPY<----CDNEXT (ELEC)

CDNEXT (ELEC)<----CDNEXT (ELEG)

CDNEXT (ELEG)<----CDNEXT (RGA)

CDNEXT (RGA)<---- COPY

The last descendent under a given repeating group is 

found by starting with the desired repeating group and chaining 



-81-

down through the CDEFNA table using the CDNEXT items, the 

CRGID items (parent repeating group's system-assigned component 

number), and the CNOEL items (number of elements defined for 

a specific repeating group). Indeed, with the exception of 

using the CDNEXT item as the pointer to the next logical 

entry to examine, the programming necessary to find the last 

descendent of a repeating group is already operational in REMS.

Since the CDATA data sets have no implied logical ordering 

for components within a data set, a change m the order of 

definition within a repeating group, or ENTRY, would have no 

effect on the CDATA table. This means that two different data 

sets for the same components may or may not have the components 

listed in the same order m the two CDATA data sets. Indeed, 

one of the data sets may contain fewer components in its 

CDATA data set than another data set tor the same components 

if a component has not been assigned a data value tor that 

data set.

Application programs written under previous editions of 

the data base would continue to run smoothly after a reordering 

within a repeating group. The only time a user need be aware 

that a reordering had occurred would be if the program called 

for a print out of the definition or of a repeating group 

which included the reordered repeating group as one of the 

descendents to be output. The definition or descendent data 

values would be printed out using the new positioning within 



-82-

the repeating group.

The addition of the REORDER verb to the REMS UPDATE 

module leads to a method of handling reordering within a 

repeating group which is clearly superior to the unload­

reload method. The modified Remote File Management System 

method can reorder the components by changing the CDNEXT 

pointers of the components involved in the reordering, while 

the unload-reload method would have to rebuild all of the 

pointers in the data base.

H. ORDER CHANGE ACROSS REPEATING GROUPS

In order to make an element which has been assigned data 

values a descendent of a repeating group other than the repeating 

group with which it is currently associated, it would first 

be necessary to remove all references to the element from its 

current data sets. An operation similar to that of deleting 
an element from the data base definition would occur, with 

the exception that the element would not be marked as deleted 

in the CDEFNB table.

Data values are associated with elements in specific data 

sets. When an element is deleted from the definition of a 

data set, then all of its data values must also be removed 

from the data set. Furthermore, if the element will hence­

forth be associated with a new data set definition, the element's



-83-

data values must be added into the new data sets in a specific, 

user-assigned manner. Since the data base management system 

has no knowledge of which data values from the element's 

previous data sets should be associated with which of the 

element's new data sets, it is the user's responsibility to 

reassign data values to the element in the new data sets.

The CDNEXT pointers in the CDEFNA table should then be 

changed to reflect the change in the logical entry structure. 

The command to move an element to another repeating group 

might be:
RESTRUCTURE (COMPONENTl} TO FOLLOW ^0MP0NENT2) IN ^OMPONENTRG

where COMPONENT! is the user-assigned component name of the 

element which will now be linked by the CDNEXT pointers to 

logically follow COMPONENT2 in the repeating group COMPONENTRG.

Note that if COMPONENTl is to be the first logical entry 

in the repeating group COMPONENTRG, then COMPONENT2 and 

COMPONENTRG would be the same component name.

As an example:

RGA

ELEC

ELED

RGB

ELEF

ELEG



-84-

If the user desired to have ELEC as the second element defined 

under the repeating group RGB, then the command

RESTRUCTURE ELEC TO FOLLOW ELEF IN RGB;

would result in the following changes to the CDNEXT items:

COPY<----CDNEXT (RGA)

CDNEXT(RGA)<----CDNEXT(ELEC)

CDNEXT(ELEC)<----CDNEXT(ELEF)

CDNEXT (ELEF)<----COPY

Associating an element with a repeating group other than 

the element's present parent repeating group could result 

in a change in the CDEFNA CLEVEL item for that element.

CLEVEL(COMPONENT1)<---- CLEVEL(COMPONENTRG) + 1

If the new parent repeating group, COMPONENTRG, is the repeating 

group ENTRY, then

CLEVEL (COMPONENT1)<---- 0

The CDEFNA table CRGID item would be changed for the 

element COMPONENTl to the system-assigned component number of 



-85-

the new parent repeating group, COMPONENTRG. The CNOEL 

item in the parent repeating group's CDEFNA table entry would 

have to be incremented by 1 to reflect the addition of another 

element to its descendents. The CNOEL item in the old parent 

repeating group's CDEFNA entry would already have been decre­

mented by the deletion operation.

The element would then be defined in the new parent 

repeating group, but would have no data values associated 

with it. Data values for the element could then be inserted 

into specific data sets through the use of the UPDATE verbs 

ADD or ASSIGN.

Moving a repeating group so that it becomes a descendent 

of a different parent repeating group involves the same 

operations as outlined above for moving an element. An 

important extension, however, ot the process is that when 

moving a repeating group, all of its descendents will also 

move, as they have no connection to the data base definition 

except through the parent repeating group. An operation 

similar to deleting a repeating group from the data base 

definition would occur with all of the descendent data sets 

removed from the data base. Unlike the deletion operation, 

however, the repeating group and its descendents would not be 

marked as deleted in the CDEFNB table.

The same command could be used to associate a repeating 

group with another repeating group as was used for an element.



-86-

RESTRUCTURE (cOMPONENTRGl) TO FOLLOW ^OMPONENT^ IN ^OMPONENTRG2^ ;

If COMPONENTRG1 is the user-assigned component name for a 

repeating group, then COMPONENTRG1, and all of its descendents, 

would be logically moved to follow COMPONENT2 in the parent 

repeating group C0MP0NENTRG2.

As with an element, a repeating group which has been 

moved will obtain its CDEFNA CLEVEL item from its parent 

repeating group. If the CLEVEL item changes for the moved 

repeating group, then it must also change for all of the 

descendents of that repeating group.

CLEVEL(Descendent Component)^--- CLEVEL(Parent Repeating

Group) + 1

The CDEFNA table CRGID item would be changed for the 

repeating group C0MP0NENTRG1 to the system-assigned component 

number of its new parent repeating group, COMPONENTRG2. 

However, none of the CRGID items for the descendents of the 

repeating group C0MP0NENTRG1 would be changed as their parent 

repeating group would remain the same. No change would 

occur in any CNOEL items, as repeating groups are not considered 

in a count of the number of elements associated with a 

repeating group.

The repeating group and its descendents would then be



-87-

detined as belonging to the new parent repeating group, but 

no data values would be associated with the descendent data 

sets. Data values for these data sets would have to be 

inserted into the data base and linked to their new antecedent 

data sets by the use of the UPDATE verbs ADD, ASSIGN, or 

INSERT.

Whereas an element can be logically associated with any 

parent repeating group in the data base definition, there are 

restrictions on associating repeating groups with other 

repeating groups. Namely a repeating group may not be logically 

moved so that it becomes a descendent of one of its own 

descendents. This would result in no defined parent repeating 

group tor all of the original descendents of the parent 

repeating group, and every component in the data base definition 

must have a specified or implied (ENTRY) parent repeating 

group. For example, in the data base definition:

RGA

ELEB 

ELEC 

RGD

ELEF 

RGG

ELEH

RGJ



-88-

The command

RESTRUCTURE RGD TO FOLLOW ELEH IN RGG;

would be illegal.

Logically moving elements and repeating groups to associate 

them with new parent repeating groups can have a major effect 

on user programs which were written under a previous edition 

of the data base. Since the moved component is no longer a 

member of its previous data sets, retrieval requests for those 

data sets will no longer cause the retrieval of the moved 

component's data values. And retrieval requests which explicitly 

call for the moved component in conjunction with another 

previously logically connected but now disjoint component can 

lead to indeterminate results.

Because of these inconsistencies in retrieval results 

over data base editions which have had modifications to the 

association of components to parent repeating groups, it was 

decided to flag components involved in a RESTRUCTURE operation. 

The RESTRUCTURE command would then further result in the place­

ment of a 2 in the CDEF item of the CDEFNB entry tor each 

component moved by RESTRUCTURE. Subsequent retrieval of data 

values for these components would cause a message to be 

issued warning of possible indeterminate results due to the 

RESTRUCTURE.



-89-

When using this modification of the Remote File Management 

System to associate an element or a repeating group and its 

descendents with a new parent repeating group, the number of 

links to be broken down for data values which will be deleted 

can be signiticant. This number may be small, however, when 

compared to the total number of pointers in the data base. 

The unload-reload method has to build all of the data base 

linkages, with no regard to whether or not a particular 

portion of the data base was involved in the alteration.

2- REPEATING GROUP - ELEMENT TYPE CHANGE

The final modification to be examined for the logical 

entry structure is really an extension of a component's type 

change as discussed in SECTION C. The modification involves 

changing an element's type description to that of a repeating 

group or a repeating group's type description to one of the 

types associated with an element. These types of changes can 

lead to major alterations in the data base such as the 

deletion of all the data values associated with an element 

or the deletion of all of the descendents, and their data 

values, of a repeating group. To lessen the chance that these 

data base modifications would occur as the result of a typing 

error for the command TYPCHG, it was decided to restrict the 

TYPCHG command to alterations dealing only with changing an 



-90-

element's description to another legal type description for 

an element.

For changing an element's type description to that of a 

repeating group or a repeating group's type description to 

one ot the allowable descriptions for an element, new commands 

are proposed. The command to change an element to a repeating 

group might be:

ELERGCHG <04^ EG ^REPEATING GROUP) ;

where 4 is the user-assigned component number for the element 

whose new type will now be REPEATING GROUP.

Since a repeating group has no data values associated 

with it, changing a component type to REPEATING GROUP would 

involve deleting the data values currently associated with 

the element. This could be easily accomplished using the 

programming available for the UPDATE verb REMOVE. The REMOVE 

verb can be used to remove all references to that element from 

all of the CDATA entries, as well as all CENTS, CVALUS, and 

CVALDR entries relevant to the element. if the removal of 

the element causes a data set to become empty, REMOVE also 

deletes its GRIND entry.

The CPVDIR and CTYPE items in the CDEFNB entry for the 

element would then be set to zero to indicate that the element 

is now a repeating group. The CNOEL item in the CDEFNA entry



-91-

ot its parent repeating group would be decremented by 1 to 

show the loss of an element from its descendents. The CNOEL 

item of the component whose type was changed would remain zero 

to signify that the new repeating group has no descendents. 

Descendents could then be associated with the new repeating 

group by the use of the UPDATE commands PLACE ELEDEFN, PLACE 

RGDEFN, or RESTRUCTURE.

To change a repeating group to an element, the command 

might be:

RGELECHG <C10^ EQ ^INTEGER NUMBEI^ ;

where 10 is the user-assigned component number of the repeating 

group which will now become an element of type INTEGER NUMBER.

The first operation to be performed when changing a 

repeating group to an element would be to delete all of the 

repeating group's descendents from the data base. This would 

occur in the same manner as described above for the new 

UPDATE command DELETE-RG, with the exception that the parent 

repeating group, in this example component number 10, would 

not be marked as deleted in the CDEFNB item CDEF. For example

1 RGA

2 ELEB

3 ELEC



-92-

4 RGD

5 ELEF

6 ELEG

7 RGH

The command

RGELECHG C4 EQ NAME;

would result in

CDNEXT(RGD)----CDNEXT(ELEG)

and ELEF and ELEG would be deleted from the data base definition.

The CTYPE item in the repeating group would then be changed 

to reflect the component's new element type and the CNOEL item 

of its parent repeating group, RGA, would be incremented by 

1 to show the addition of another element to its descendents. 

The CNOEL item of the new element would be changed to 0, as 

elements have no descendent elements.

The former repeating group would then be defined as an 

element in the data base and data values could be associated 

with it through the use of the UPDATE verbs ADD or ASSIGN.

Changing an element to a repeating group or a repeating 

group to an element may cause errors in application programs 



-93-

which were written under previous editions of the data base. 

It a program tries to retrieve a value tor a repeating group 

(formerly an element), an error message will be printed out 

since repeating groups have no data values associated with 

them. And user programs which try to access components which 

were deleted as the result of being a descendent ot a repeating 
group-turned-element will receive the fatal error message that 

an attempt was made to access a deleted component.

Although the unload-reload approach for changing an 

element would also result in the deletion ot a former element's 

data values or a former repeating group's descendents, the 

savings realized in using the modification described above 

for RFMS would come as a result of not having to rebuild the 

entire data base. The investment in building the original 

data base structure is lost whenever an unload-reload operation 

is undertaken, as this method can be as costly as the first 
formulation of the data base.

J. CONCLUSIONS

As shown, the Remote File Management System data base 

is organized in such a way as to allow for component modifi­

cations with a minimum of data reorganization. This is 

primarily due to the fact that each data value is implicitly 

associated with its particular data set and data set selection 



-94-

in the RETRIEVAL module is determined by these associated data 

values. REMS provides an independent access path to all of 

the data values m the data base.

An examination of the preceeding modifications makes it 

clear that the purpose of providing for data base definition 

changes is to allow the definition to evolve over its period 

of use. The data base is modified at the time the definition 

revision is processed so that all subsequent accesses to the 

data base will occur under the revised edition.

Experience with evolving data bases has shown that the 

addition of elements and repeating groups to an existing data 

base definition is much more frequent than the deletion or
24 reordering of components. The proposed modifications to 

the Remote File Management System would easily handle these 

additions by placing expanding data sets at the end of the 

CDATA table. The housekeeping chores tor linking the new 

components to their proper positions in the logical entry 

structure are minimal and are readily accomplished by the 

commands PLACE ELEDEFN and PLACE RGDEFN.

During these discussions, no value has been assigned 

to the storage space which would continue to be occupied by 

data values belonging to deleted elements. Indeed, the 

decision to do no garbage collection within the data base was 

the result of an attempt by the data base administrators and 

myself to assign relative costs to computer time spent in 



-95-

garbage collection and to storage space. It was decided that 

the potentially small storage space to be regained by garbage 

collection did not justify the computer time which would be 

spent building and maintaining the garbage collection lists 

for the various tables.

Periodic unloading and reloading of the data base to 

bring all of the logically contiguous data sets into physical 

proximity may be desirable tor the sake of efficiency. The 

decision of when to undertake an unload-reload operation based 

on a cost-benefit analysis is discussed m detail by Shneiderman 

In the above discussions of the data base definition 

modifications which might be encountered, comparisons were 

made between the Remote File Management System using the 

unload-reload method of definition revision and the Remote 

File Management System modified to handle definition revisions 

in the UPDATE module. In all cases the modified RFMS operations 

were demonstrated to be superior to the only other available 

method of data base definition modification, the unload­

reload method.

21



SELECTED BIBLIOGRAPHY

-96-



SELECTED BIBLIOGRAPHY

1. Abrial, J. R. "Data Semantics," Data Base Management.
eds. J. W. Klimbie amd K. L. Koffeman. 
North-Holland Publishing Company, 1974.

2. Bleier, Robert E. and Alfred H. Vorhaus. "File Organ­
ization in the SDC Time-Shared Data Management 
System (TSMS)," Proceedings IFIP Congress 1968 
2:1245-1252, 1969.

3. Cardenas, Alfonso F. Data Base Management Systems.
Boston, Massachusetts: Allyn and Bacon, Inc., 
1978.

4. CODASYL Systems Committee. "A Survey of Generalized
Data Base Management Systems." A CODASYL 
Systems Committee Technical Report. Associ­
ation for Computing Machines, May 1969.

5. . "Introduction to 'Feature
Analysis of Generalized Data Base Management 
Systems’," Communications of the ACM, 14 (5): 
308-318, May 1971.

6. Durchholz, R. and G. Richter. "Concepts for Data Base
Management Systems," Data Base Management, 
eds. J. W. Klimbie and K. L. Koffeman. 
North-Holland Publishing Company, 1974.

7. Everest, Gordon C. "Concurrent Update Control and
Data Base Integrity," Data Base Management, 
eds. J. W. Klimbie and K. L. Koffeman. 
North-Holland Publishing Company, 1974.

8. . "Data Base Management Systems
Tutorial," Fifth Annual Midwest AIDS Conference 
Proceedings, Vol. 1. Minneapolis, Minnesota, 
May 1974.

9. . "The Objectives of Data Base Manage­
ment," Information Systems. Proceedings of 
Fourth International Symposium on Computer 
and Information Science (COINS-72), Miami 
Beach, Florida, 1972.

-97-



10. Everett, Gerald D., C. William Dissly, and W. Terry
Hardgrave. Remote File Management System 
User's Manual. The University of Texas at 
Austin, Computation Center, Austin, Texas. 
TRM-16. August 1971.

11. Everett, Gerald D. Systems Programming Documentation,
Control-IDS, Internal Design Specifications 
of the Remote File Management System, Phase 1. 
The University of Texas at Austin, Computation 
Center, Austin, Texas. TSD-12. July 1970.

12. Fry, James P. "Data Base Management: An Overview,"
Generalized Data Base Management Systems. 
An Intensive Short Course, College of 
Engineering, University of Michigan. June 1974.

13. Hall, M. and A. M. Feinstein. "Data Base Management
Systems," Chemical Engineering Progress, 
October 1977: 79-82.

14. Kindred, Alton R. Data Systems and Management--An
Introduction to Systems Analysis and Design. 
Englewood Cliffs, New Jersey: Prentice-Hall, 
1973.

15. Knuth, Donald E. The Art of Computer Programming 1,
Fundamental Algorithms. Reading, Massachusetts: 
Addison-Wesley, 1968.

16. Lucking, J. R. "A Descriptive Methodology Suitable
for Multiple Views of an Information Processing 
System," Data Base Management, eds. J. W. 
Klimbie and K. L. Koffeman. North-Holland 
Publishing Company, 1974.

17. Martin, James. Computer Data Base Organization.
Englewood Cliffs, New Jersey: Prentice-Hall, 
1977.

18. Sa11on, Gerald. Automatic Information Organization
and Retrieval. New York: McGraw-Hill, 1968.

19. Schenk, Hans. "Implementational Aspects of the
CODASYL DBTG Proposal," Data Base Management, 
eds. J. W. Klimbie and K. L. Koffeman. North- 
Holland Publishing Company, 1974.

-98-



20. Senko, M. E., E. B. Altman, M. M. Astrahan, and
P. L. Fehder. "Data Structures and Accessing 
in Data Base Systems," IBM Systems Journal, 
12:30, 1973.

21. Shneiderman, Ben. "Optimum Data Base Reorganization
Points," Communications of the ACM, 16 (6):362-365 
1973.

22. Sundgren, Bo. "Conceptual Foundation of the Infological
Approach to Data Bases," Data Base Management, 
eds. J. W. Klimbie and K. L. Koffeman. North- 
Holland Publishing Company, 1974.

23. System 2000. System 2000 Newsletter. System 2000,
Version 2.40, CDC CYBER/6000 Series Computers. 
MRI Systems Corporation, Austin, Texas, 
October 1975.

24. Taylor, Robert W. and David W. Stemple. "On the
Development of Data Base Editions," Data 
Base Management. eds. J. W. Klimbie and 
K. L. Koffeman. North-Holland Publishing 
Company, 1974.

25. Tsichritzis, Dionysios C. and Frederick H. Lochovsky.
Data Base Management Systems. New York: 
Academic Press, 1977.

26. Tymshare. MAGNUM. Cupertino, California: Tymshare,Inc.
1976.

-99-



APPENDIX A

CDEFNA TABLE

-100-



APPENDIX A

CDEFNA TABLE

CDEFNA

(a) CLEVEL item (6 bits long) —

CLEVEL specifies the level ot the component (0 is the 

highest logical level). Level is implied in the 

logical entry declaration.

(b) CSPIN item (2 bits long) —

This item was never implemented and is always equal 

to zero.

(c) CNAMA item (14 bits long) —

CNAMA contains the rightmost 14 bits of a relative 

address pointer to the header word of the CELS table 

entry which contains the component name for this 

component. Under this version of RFMS, a maximum of 

150 characters is allowed for a user-defined component 

name, and with this maximum, the rightmost 14 bits of 

the relative address is sufficient to access any entry 

in the CELS table.

-101-



-102-

(d) CPUNIT item (12 bits long) --
This item has never been implemented and is 
always equal to zero.

(e) CRGOP item (1 bit long) --
This item is not implemented in the Univac REMS 
version and is always equal to zero.

(f) CRGID item (10 bits long) --
CRGID specifies the system-assigned component 
number of the parent repeating group component 
to which this component (either an element or 
a lower level repeating group) belongs. All 
level 0 components (elements and repeating groups) 
belong to the implied repeating group 0.

(g) CNOEL item (10 bits long) --
This item is a counter stored in a repeating 
group component’s CDEFNA entry which indicates the 
number of elements belonging to that repeating 
group. For elements, CNOEL = 0 and is not 
meaningful. The count of level 0 elements is 
stored in CNOEL of word 1 and behaves as any other 
CNOEL repeating group item.

Values of items in words 0 and 1 of CDEFNA implicitly 
associated with the level 0 set of a logical entry are:



-103-

(a) CLEVEL item -- equals 0 and is meaningful.
(b) CSPIN item -- equals 0 and is not meaningful in 

current implementation.
(c) CNAMA item -- a pointer to the next available 

address in the CELS table.

(d) CPUNIT item -- holds the count of the components 
in the definition.

(e) CRGOP item -- equals 0 and is not meaningful in 
current system.

(f) CRGID item -- equals 0 and is meaningful.
(g) CNOEL item -- count of level 0 elements.



APPENDIX B

CDEFNB TABLE

-104-



APPENDIX B

CDEFNB TABLE

CDEFNB

(a) CFIELD item (14 bits long) --
The CFIELD item represents the user-defined 
component number for the component at the time 
that the logical entry declaration was finalized.

(b) CPVDIR item (16 bits long) --
This is the rightmost 16 bits of a relative 
address pointer to the first word of the first 
CVALDR entry for an element. For repeating groups, 
CPVDIR = 0 and is not applicable. If no data 
values have been stored for an element, CPVDIR = 0.

(c) CPAD item (6 bits long) --
CPAD specifies the user-defined percentage 
padding of the CVALUS table partitions for each 
element defined. For a repeating group component, 
CPAD = 0 and is not applicable.

-105-



-106-

(d) CPLEGL item (12 bits long) --
This item has never been implemented and this 
field always equals zero.

(e) CTYPE item (6 bits long) --
CTYPE contains a code which specifies the type 
of the component as declared by the user in the 
type description for the component.

CTYPE = 0 for REPEATING GROUP
1 for NAME
2 for TEXT
3 for DATE
4 for INTEGER NUMBER
5 for DECIMAL NUMBER

6 for EXPONENTIAL NUMBER

Words 0 and 1 of the CDEFNB table are reserved and 
used by the system in a manner similar to the use described 
in the CDEFNA table. Contents of items in words 0 and 
1 of the CDEFNB table are:

(a) CFIELD item -- used by the system to contain the 
number of components defined in the total definition. 
This number is the last system-assigned component 
number and is the last meaningful relative address 
pointer to the CDEFN tables.



-107-

(b) CPVDIR item -- is used by the system to contain 
the maximum (deepest) level used in the logical 
entry definition.

(c) CPAD item -- used by the system to keep CENTS 
table padding percent as given by the user.

(d) CPLEGL item -- equals 0 and is not meaningful 
in the current implementation.

(e) CTYPE item -- equals 0 to imply that the ENTRY 
level component is a repeating group.



APPENDIX C

CELS TABLE

-108-



APPENDIX C

CELS TABLE

CELS

(a) CPEL item (12 bits long) --
CPEL contains the system-assigned component 
number which is the relative address pointer 
(or CDEFN entry number) to the CDEFNA and 
CDEFNB table entries associated with this 
component name.

(b) CELCRS item (8 bits long) --
This item contains the number of characters in 
the component name as declared by the user 
excluding leading, extraneous (more than one) 
embedded, and trailing blanks. System-supplied 
trailing blanks in the last word, CELCAR^, are 
not included in the count for the CELCRS item.

-109-



-110-

(c) CELWDS item (8 bits long) --
CELWDS contains the number of CELCAR words 
associated with this entry. The word count 
does not include the header word (first word) 
of each CELS entry; it is equal to N.

(d) CELCAR item (36 bits long) --
CELCAR is a string of display coded characters 
declared by the user as the component name. The 
character string begins at the left of word 
CELCAR^ and the last word CELCAR^ is filled with 
trailing blanks if there are less than 6 characters 
remaining. CELCAR words do not contain any 
leading, extraneous (more than one) embedded, or 
trailing blanks.

Words 0 and 1 of the CELS table are reserved and used 
by the system.

(a) CPEL item -- contains the system-assigned 
component number of ENTRY, namely 0.

(b) CELCRS item -- contains number of characters 
in ENTRY, namely 5.

(c) CELWDS item -- contains number of CELCAR words 
needed to store ENTRY, namely 1.

(d) CELCAR item -- contains the display code for 
ENTRY followed by one blank.



APPENDIX D

CVALDR TABLE

-111-



APPENDIX D

CVALDR TABLE

CVALDR

(a) CVNUM item (12 bits long) --
CVNUM contains the number of words containing 
values in the relevant CVALUS partition for 
the element.

(b) CVLOC item (24 bits long) --
This item contains the relative address pointer 
to the first word of the relevant CVALUS 
partition.

(c) CVNEXT item (16 bits long) --
CVNEXT contains a relative address pointer to the 
next CVALDR entry for the same element. Whenever 
a CVALUS partition for the same element exists 
after the CVALUS partition associated with this 
CVALDR entry, another CVALDR entry exists for the 
element in the CVALDR table. New CVALDR entries 

-112-



-113-

are added to the end of table CVALDR and linked by 

CDNEXT. For the last CVALDR entry in the set of 

CVALDR entries for an element, item CVNEXT = 0.

(d) CVHI item (36 bits long) —

CVHI contains item CTEN of the last entry of the 

corresponding CVALUS partition pointed to by CVLOC 

in this CVALDR entry. CVHI item contains, then, 

the representation of the highest value in the 

relevant partition.

Words 0, 1, and 2 of the CVALDR table are reserved and 

used by the system.



APPENDIX E

CVALUS TABLE

-114-



APPENDIX E

CVALUS TABLE

(a) CONCE item (1 bit long) --
CONCE is set to 1 if the corresponding unique 
data value occurred only once for a given element; 
otherwise CONCE = 0.

(b) CMORE item (1 bit long) --
CMORE contains a 0 if the number of characters 
in the value string is less than or equal to 6; 
otherwise it is 1 for type NAME or TEXT, For 
numeric or date types, CMORE item is 0 since the 
floating point value stored in item CTEN below 
is complete for comparing regardless of the number 
of input characters for the data value.

(c) CDOWN item (1 bit long) --
CDOWN contains a 1 if there is a duplicate CTEN 
item in the CVALUS table entry immediately

-115-



-116-

below this one within the same partition. 
Otherwise CDOWN = 0.

(d) CGOUP item (1 bit long) --
CGOUP contains a 1 if there is a duplicate CTEN 
item in the CVALUS table entry immediately above 
this one within the same partition. Otherwise 
CGOUP =0.

(e) CNAMB item (24 bits long) --
CNAMB contains a relative address pointer to 
word 1 of the CNAME table entry which in turn 
contains the entire value string in display code 
associated with the representation in this CVALUS 
entry.

(f) CPFNDA item (24 bits long) --
This item contains a relative address pointer 
to word 1 of the CENTS table entry for this 
unique value if CONCE =0, i.e., if this value 
occurred more than once for this element. If 
CONCE = 1, then the CPFNDA item contains the 
relative address pointer to the single CFIND 
table entry in which data set this data value 

occurred.
(g) CTEN item (36 bits long) --

CTEN contains two kinds of representations of 
data values which have been assigned to an 



-117-

element. If an element is defined as type NAME or 

TEXT, then the first six characters of the data value 

are stored in item CTEN. If the element is defined 

as a number, then its display value is converted to 

binary and carried in CTEN in floating point format. 

If the element is defined as a date, then the date 

data value is converted to a value equalling the 

number of elapsed days between October 15, 1582, and 

that date value, and then handled as if it were a 

type NUMBER, i.e., number of days elapsed is stored 

as a floating point number in item CTEN.



APPENDIX F

CNAME TABLE

-118-



APPENDIX F

CNAME TABLE

CNAME

CNMCAR^ |

(a) CNMCRS item"(8 bits long) --
CNMCRS contains the number of characters in 
the value string found in this entry's CNMCAR.

(b) CNMWDS item (5 bits long) --
CNMWDS contains the number of words needed by 
CNMCAR to hold the complete value string; in 
the above illustration, CNMWDS = N.

(c) CNMCAR item (36 bits long) --
This item contains the string of display coded 
characters that comprise the unique data value 
string.

-119-



APPENDIX G

CENTS TABLE

-120-



APPENDIX G

CENTS TABLE

CENTS

(a) CVLAST item (24 bits long) --
CVLAST contains the relative address pointer to 
the last CPFIND item in the entire CENTS table 
for this unique data value. CVLAST item is 
stored only in the first block in the series 
of blocks for a given element value.

(b) CENWDS item (12 bits long) --
CENWDS contains the number of CPFIND words in 
this block.

(c) CLINK item (24 bits long) --
CLINK contains a relative address pointer to 
the next CENTS block for this unique value if 

-121-



-122-

another block exists. If this block is the only 
block or the last block, CLINK = 0.

(d) CPFIND item (30 bits long) --
This item contains a relative address pointer to 
an entry in the CFIND table which, in turn, 
identifies and associates this occurrence of 
the unique value for the element with a specific 
data set in the database structure.



APPENDIX H

CFIND TABLE

-123-



APPENDIX H

CFIND TABLE

CFIND

(a) CLEV item (6 bits long) --
CLEV contains the level number of the data set 
being described by this CFIND entry. If this 
is a dummy data set, then CLEV is the level 
number of the repeating group for the data set 
plus 1.

(b) CPRGHT item (24 bits long) --
CPRGHT contains a relative address pointer to 
the next data set (CFIND entry) on the same 
level providing a chain of data sets (ordered 
by their links) on level N which have the same 
parent data set at level N-l. If the present 
data set is a level zero data set, CPRGHT points

-124-



-125-

to the next level 0 set and thus preserves the 
horizontal chain of logical entry entrance into 
the database. CPRGHT of word 0 (the zeroth entry) 
points to the first level 0 data set in the 
database.

(c) CRGNUM item (10 bits long) --
CRGNUM contains the system-assigned repeating 
group component number to which the data set 
belongs. CRGNUM equals 0 for all level 0 data 
sets, and is well behaved in that the level 0 
elements are treated implicitly as repeating 

.group 0.

(d) CPLOG item (24 bits long) --
CPLOC contains the relative address pointer to 
the beginning of the CDATA table entry for this 
CFIND entry if any actual data values have been 
entered for this data set. If this is a dummy 
CFIND entry, then no actual values exist for the 
set, no CDATA entry exists, and CPLOC = 0.

(e) CPUP item (24 bits long) --
This item contains a relative address pointer.
For any level N set where N is greater than zero, 
CPUP points to the CFIND entry for “the set at 

level N-l with which the level N set is associated 
as a member of a repeating group. For a level 



-126-

zero set, item CPUP points to the previous level 
zero set in the database or equals zero if there 
is none. CPUP of word 2 (the zeroth entry) of 
the CFIND table points to the last level 0 
CFIND entry (the beginning of the last logical 
entry in the database).

(f) CPDOWN item (24 bits long) --
CPDOWN contains a relative address pointer also. 
For any level N data set, item CPDOWN points to 
the CFIND entry for the first level N+l data 
set associated with that level N data set. If 
none exists, CPDOWN = 0. CPDOWN of word 3 

(the zeroth entry) of the CFIND table contains 
the next available address (relative) for storing 
a CFIND entry.



APPENDIX I

CDATA TABLE

-127-



APPENDIX I

CDATA TABLE

CDATA

(a) CZNWDS item (12 bits long) --
CZNWDS contains the number of CPVAL words 
associated with this entry. The word count 
does not include the header word and is equal 
to N.

(b) CHF item (2 bits long) --
If the word is the second word for the data set 
block (the header word being word 1), CHF is 
set to 2. The CHF items for all subsequent words 
in this data set block are set to 0.

-128-



-129-

(c) CPVAR item (10 bits long) --
CPVAR contains the system-assigned component 
number, i.e., the relative address pointer to 
the CDEFNA and CDEFNB table entries for the 
element in this data set which has the value 
pointed to by the CPVAL item associated with 
this CPVAR item.

(d) CPVAL item (24 bits long) --
This item contains the relative address pointer 
to the CNAME table entry which in turn contains 
the actual data value associated with the element 
identified in the CPVAR item above.


