
A MICROPROGRAMMED MIX 1009

EMULATOR FOR THE MICRODATA 1600/30 COMPUTER

A Thesis

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

T. Don Dennis

August, 1975
i

i

A MICROPROGRAMMED MIX 1009

EMULATOR FOR THE MICRODATA 1600/30 COMPUTER

A Thesis

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

T. Don Dennis

August, 1975

ABSTRACT

The design and implementation of a MIX 1009 emulator

for the Microdata 1600/30 are presented. Major design

alternatives such as allocation of file registers, allocation

of main memory, selection of byte sizes and codes are presented

in detail.

Insights from false starts are treated as valuable

experiences. The evolution of the system involved one major

false start as well as many minor ones. The major false start

is discussed in an entire chapter and the minor ones are dis­

cussed throughout.

Major firmware logic problems are also discussed in

detail. The final system is presented through discussion, a

users manual, system flowcharts and listing of the microcode.

TABLE OF CONTENTS

CHAPTER PAGE

I. INTRODUCTION ... 1

II. THE FIRST ATTEMPT 25

III. THE SECOND ATTEMPT .. 51

IV. USER'S GUIDE ...103

V. FLOWCHARTS ...124

VI. MICROPROGRAM LISTINGS184

VII. CONCLUSION ...279

REFERENCES282

I. INTRODUCTION-

Computer Science educators often discuss which computers

should be studied in introductory classes involving machine­

level programming. Although there is no unanimous agreement,

many feel that the computer itself is of no importance so

long as it provides a typical example of "machine language" .

Donald Knuth has noted the following:

"There has been some feeling that it is
advantageous to have a 'machine-independent
machine* which does not change from year to
year, and which does not have too many ido-
syncrasies that tend to waste classroom time."
(1)

Knuth calls his machine MIX. MIX is designed to be

a computer "which is very much like nearly every computer

now in existence (except that it is, perhaps nicer). The

language of MIX has been designed to be powerful enough

to allow brief programs to be written for most algorithms, .

yet simple enough so that its operations are easily learned."

(1)

The justification for MIX then, is that it satisfies

the need for a generalized machine and language to be used

as a teaching aid in introductory programming classes.

The step following the design of the computer, is the

implementation of the machine. Students can then test their

programs and gain a deeper understanding of the problems of

computing.

2

There are at present 3 methods for realizing any machine

design: .

1. Build the computer.
2. Emulate the computer by means of

firmware.
3. Simulate the computer via a soft­

ware package.

Since MIX is meant to be a teaching tool to be used in

an educational environment, a hardware implementation would

be difficult to justify in terms of the time and money required

to achieve such a computer. Most educational environments

have large scale and small scale computer systems readily

available for program development, thus either method 2 or

method 3 seem to be the proper direction to proceed.

Implementation of MIX via software, either on a large

scale computer or a mini-computer, is feasible. This ap­

proach has several advantages and disadvantages. If the

simulation were done on a large scale system, then the sim­

ulator as well as the MIX assembler might be written in a

high level language, thus making program development easier.

There would be no problem simulating all of MIX memory and

the closed shop practices imposed on most large systems

might produce faster turn around. However, the simulator

would be slow since it must first assemble the MIX assembly

language into MIX machine code, and then execute the MIX

machine code. The execution of each MIX machine instruction

entails the execution of many host machine instructions, the

3

inefficiency of simulation somewhat offsets its advantages,

particularly on a large computer, since expensive system

resources are tied up for relatively long periods of time

while MIX programs are running. The advantages of simulating

in a closed shop are also diminished since students are not

allowed to touch the machine. Sometimes this fosters the

"Big Black Box" concept of computing.

The "Big Black Box" problem is solved by simulating

on a mini-computer. Most small computers are batch systems,

but many are console-mode or hands-on systems, i.e. the

students must operate the machine themselves. Small ma­

chines may be easily dedicated to simulating MIX since

resources are less expensive. Nevertheless, there are prob­

lems. Hands-on operation does improve the students concept

of the computer, but through-put is demolished since each

student must learn to operate the machine by trial and error.

Simulating MIX and its 4K word (31 bit) memory is at least

troublesome since most mini-computers have limited main

memory. This implies that programming would of necessity be

done in assembly language to conserve as much memory as pos­

sible. However, assembly language programming of a large

program is much harder than coding the same problem in a

high level language. Here the simulator would be slower than

on a large scale machine since mini-computers usually have

longer execution times per instruction than large machines.

4

Despite these disadvantages MIXAL simulators have been

written and used successfully.

The second method seems to be more advantageous if

the computer is microprogrammable. There are two main prob­

lems in this approach. As noted earlier, program develop­

ment is most easily accomplished in a high level language.

Assembly language programming affords some savings in program

size, but requires more effort on the part of the programmer.

Microprogramming however, is the worst case with respect to

program development. The code is tedious to write and dif­

ficult to debug. The microprogrammer must work at the con­

trol signal level, armed with a very limited instruction

set. If the microprogramming system uses a fixed read-only-

memory (ROM), a software simulator must be available for

development. In this case, implementation may be costly

since a new ROM must be built for the new MIXAL emulator

once it is debugged. However, if the mini-computer has

an alterable control memory(ACM) the problems of implement­

ation are lessened considerably.

It should be noted that by working on a small machine

all the advantages of a mini-computer are retained. By

emulating on a small system instead of simulating, many

of the problems formerly discussed are resolved. The dif­

ficulty concerning the limited memory of mini-computers is

eased by emulation since the microprogram resides in control

5

memory leaving the main memory completely free. Thus Mix's

4K words of memory might be emulated if the mini-computer

has at least that much main memory. The problem of execu­

tion time (per MIX instruction) is also solved since the

microcoded MIX instructions will run much faster than MIX

macrocoded MIX instructions. Aside from solving these prob­

lems, emulation results in possibilities not even considered

when simulating. Once implemented, the user has a MIX com­

puter. The machine is as much a MIX 1009 computer as any

of the originally announced IBM system 360 computers are

IBM system 360 computers. The hardware of the different

models of the 360 are in no way alike. They are all micro­

programmed, except for the model 70, to execute the same

machine language. Once the firmware is coded the natural

language of the host machine is MIXAL so the MIX assembler

can be written in MIXAL, the loader can be written in MIXAL,

in fact a whole operating system can now be written in MIXAL

with none of the system degradation that would result if

implementation was by simulation.

This thesis reports the emulation of the MIX 1009

machine by a Microdata 1600/30. The discussion which follows

covers the high points of both machines. If more detailed

information is required, see references (1) and (5), for

MIX and (3) for the Microdata.

6

MIX was designed with the "peculiar property.....that

it is both binary and decimal at the same time. The program­

mer does not actually know whether he is programming a machine

with base 2 or base 10 arithmetic." (1) This was accomp­

lished by not specifying the amount of information which

can be contained in a single byte. The only specifications

given is that each byte should be capable of holding at least

sixty-four values, and at most 100 values. As long as pro- •

grams are written "so that no more than sixty-four values

are ever assumed for a byte ... An algorithm in MIX should

work properly regardless of how big a byte is..." (1) Figure

1.1 presents an overview of the major components of the MIX

1009 computer.

MIX memory consist of 4000 words of storage. Each

MIX word is composed of five bytes and a sign, the sign has

only two values + or -. Values are stored in sign plus

magnitude format instead of the one’s complement or two’s

complement usually found in binary machines or the nine’s

or ten’s complement used on decimal machines.

The 1009 computer has nine registers that are available

to the user. The accumulator, (A-register), is a five

byte plus sign register used to perform the basic arith­

metic operations, add, subtract, multiply, and divide, as

well as data manipulation. The X-register is the right hand

extension of the A-register and it is also five bytes plus

sign. It is used in the multiply and divide instructions in

7

Figure 1.1

MIX
Register A

+ Al A2 A3 A4 A5
Register X

+ XI X2 X3 X4 X5

Register 12

Register 13

0001:

0002

0003:

Register 15

3998:

3999:

0)

Register II
+ 114115

Register 14
+ 144 145

V |-r^i V V WMagnetic tape isks and drums 5 n c c
9 '*■

Comparison
indicator

124 125

134 135

154 155

Register 16

1
+ 164 165

Register J

+ J4 J5

C 0) <D•h (X a
t-l Cti Cfl

UO U1 • . . U7 U8 .. • U14 U15 U16 U17 U18 U19

0000

(1)

8

connection with the A-register to hold the ten byte product

or dividend. It is also used in shift commands when ten

bytes are to be shifted at once. The X-register can, however,

be used separately as a limited accumulator.

Il, 12, 13, 14, 15, and 16 are six index registers.

They are used in address modification and in counting. Each

index register is two bytes plus sign. The J-register, Jump

address register, was designed to provide support for sub­

routine linkage. It is also a two byte plus sign register

and is loaded automatically with the contents of the instruc­

tion counter immediately prior to the execution of any Jump

instruction, except a JSJ, Jump and Save J instruction.

In addition to these nine registers MIX has an over­

flow toggle, which is either set or reset, and a comparison

indicator which may assume one of three states, representing

less, equal, and greater.

MIX was designed to accomodate twenty I/O devices.

Units 0-7 are dedicated to magnetic tape, units 8-15 to disks

and drums, unit 16 to the card reader, unit 17 to the card

punch, unit 18 to the line printer, and unit 19 is reserved

for typewriter and a paper tape station.

Most instructions in MIX allow partial fields of words.

to be selected as the instruction operand. Each word can

be broken into six fields as follows:

0 1 2 3.4 5
sign byte byte byte byte byte

9

The particular field or fields which the programmer wishes

to use is then encoded in a field specification. Any specifi­

cation is legal so long as it addresses contiguous fields of

the operand. The notation used to express partial fields is

(L:R), where L is the number of the left-most field and R is

that of the right-most field being specified. Typical examples

There are 21 allowable specifications in all, they are:

of Mix's partial fields are:

(0:0) , the sign only;
(0:3) , the sign and high order 3 bytes;
(0:5) , the entire word;
(1:5) , the whole word except for the sign;
(2:2), the second byte;
(4:5) , the low order 2 bytes.

(0:ff)
(0:1) (1:1)
(0:2) (1:2) (2:2)
(0:3) (1:3) (2:3) (3:3)
(0:4) (1:4) (2:4) (3:4) (4:4)
(0:5) (1:5) (2:5) (3:5) (4:5) (5:5)

Computer instructions are formated in MIX as follows:

0 1 2 3 4 5
S A A I F C

The first three fields, (0:2), of the word form the operand

address, the I-field following the address field is used for

operand address modification via indexing. If I is zero, no

modification occurs and the value in fields (0:2) is the ef­

fective memory address of the operand. If I is non-zero it

should have a value, i, between 1 and 6. The effective operand

address, M, is computed to be the algebraic sum of Index reg­

ister li plus + AA. The effective address is formed this

10

way on all MIX instructions. It should be noted that in most

cases 0 £ M <_ 3999, since MIX has 4000 memory locations.

However, in some instances M may be outside this range, and

indeed be negative. For example, the ENTA instruction,

(Enter A), causes the accumulator to be loaded with the value

of M.

The right-most two bytes of each instruction explicitly

state what operation is to be carried out. The C-field

denotes the operation code, while the F-field modifies this

opcode. In most cases the F-field contains the partial field

designation (L:R) which is encoded as 8L + R. However, the

F field has other uses. For example in the Move instruction,

F specifies the number of words to transfer. In input-output

operators, F is the unit number of the selected device. The

F-field is also used as a secondary operation code, which

further defines the operation to be performed. Consider

opcode 48:

C=48, F=0 is the increment A command, while
C=48, F=1 is the decrement A command.

The following chart, figure 1.2 is a brief description of the

MIX instruction set.

The Microdata 1600/30 used to emulate MIX has 32K bytes of

main memory. This magnetic core memory has a one microsecond

cycle time, is byte addressable, with 8-bit bytes. There

are 2K bytes (16 bit/bytes) of semiconductor control memory

which have a 200 nanosecond cycle time. I/O devices include

11

Figure 1.2

General form:

0 T
Description

OP(F)

C = operation code, (5:5) field of instruction
F = op variant, (4:4) field of instruction
M = address of instruction after indexing
V = F(M) = contents of F field of location M
OP = symbolic name for operation
(F)= standard F setting
t = execution time; T = interlock time

rA = register A
[*):

JL(4)
[+]:
N(0)

rX = register X JE(5) Z(l)
rAX = registers AX as one JG(6) P(2)
rli = index reg. i, 1^ i <_6 JGE(7) = ' NN(3)
rJ = register J JNE(8) = NZ(4)
CI = comparison indicator JLE(9) = NP(5)

12

Figure 1.2 Cont.

00 1 01 2 02 2 03 10

No Operation rA rA + V rA rA - V rAX rA X V
NOP (0) ADD(0:5) SUB(0:5) MUL(0:5)

08 2 09 2 10 2 11 2

rA V rll V rI2 V rI3 V
LDA(0:5) LD1(O:5) LD2(O:5) LD3(O:5)
16 2 17 2 18 2 19 2

rA - V rll - V rI2 - V rI3 - V
LDAN(O:5) LD1N(O:5) LD2N(O:5) LD3N(O:5)

24 2 25 2 26 2 27 2
F(M) rA F(M) rll F(M) rI2 F(M) rI3

STA(0:5) STI(0:5) ST2(O:5) ST3(O:5)

32 2 33 2 34 .1 35 1 + T
F(M) rJ F(M) 0 Unit F Busy? Control^ Unit

F
STJ(0:2) STZ(0:5) JBUS(0) I0C(0)

40 1 41 1 42 1 43 1
rA:0,jump rIl:0,jump rI2:0,jump rI3:0,jump

JA[+] Jl[+] J2[+] J3[+]

48 1 49 1 50 . 1 51 1

rA [rA]?+M
INCA (0) DECA (1)
ENTA(2)ENNA(3)

rll [rIl]?+M
INC1(O)DEC1(1)
ENT1 (2)ENN1(3)

rI2 [rI2]?+ M
INC2(O)DEC2(1)
ENT(2)ENN2(3)

rI3 [rI3]?+M
INC3(O)DEC(1)
ENT(3)ENN(3)

56 2 57 2 58 2 59 2

rA(F):V CI rIl(F):V CI rI2(F):V CI rI3(F):V CI

CMPA(O:5) CMP1(O:5) CMP2(O:5) CMP3(O:5)

Figure 1.2 Cont.
13

04 12 05 1 06 2 07 1+ 2F

rA rAX/V
rX remaind er
DIV(0:5)

Special
NUM(O)CHAR(l)
HLT(2)

Shift M bytes
SLA(O) SRA(l)
SLAX(2) SRAX(3)
SLC(4) SRC(5)

Move F words
from M to rll
MOVE(l)

12 2 13 2 14 2 15 2

r!4 V
LD4(0:5)

rI5 V
LD5(O:5)

rI6 V
LD6(0:5)

r X V
LDX(O:5)

20 2 21 2 22 2 23 2

rI4 - V
LD4N(O:5)

rI5 - V
LD5N(O:5)

rI6 - V
LD6N(O:5)

rX - V
LDXN(0:5)

28 2 29 2 30 2 31 2
F(M) rI4

ST4(0:5)

F(M) rI5

STS(0:5)

F(M) rI6

ST6(O:5)

F(M) rX

SIX(0:5)

36 1+T 37 1 38 1 39 1
Input, unit F

IN(0)

Output, unit F

OUT(O)

Unit F ready?

JRED(O)

JMP(0ym9sJ(l)
J0V(2) JN0V(3)
also [*] above

44 1 45 1 46 1 47 1

rI4:0,jump
J4[+]

rI5:0,jump
J5[+]

rI6:0,jump
J6[+]

rX:0,jump
J7[+]

52 1 53 1 54 1 55 1

rI4 [rI4]?+M
INC4(O)DEC4(1)
ENT4(2)ENNA(3)

rI5 [rI5]?4M
INC5(O)DEC5(1)
ENT5(2)ENN5(3)

rI6 [rI61?+M
INC6(O)DEC(1)
ENT6(2)ENN6(3)

rX [rX[?+M
INCX(O)DECX(1)
ENTX(2)ENNX(3)

60 2 61 2 62 2 63 2

rI4(F):V CI
CMP4(0:5)

rI5(F):V CI
CMP5(O:5)

rI6(F):V CI
CMP6(O:5)

rX(F):V CI
CMPX(O:5)

(1)/

14

a 500 LPM line printer, a 300 CPM card reader, a magnetic

tape unit, two disk drives, a teletype writer, and a paper

tape station.

The 1600/30*5 control memory continuously executes stored

microcommands to time and regulate all control and data oper­

ations required by the MIX computer. "Using application

programming at the micro level, the Micro 1600 can be used

directly as a hardwired controller. When the 1600 emulates

the operation of a general purpose computer which executes

software instructions stored in core memory, macro-instructions

are fetched and interpreted by the microprogram with cor­

responding operations carried out by execution of micro­

programmed routines in the control memory." (4)

Eight-bit data paths and eight-bit registers are in­

corporated in the Microdata. A 16-bit micro-instruction

is executed every 200 nanoseconds from control memory. Fig­

ure 1.3 provides a block diagram of the Microdata 1600/30

at the register level.

Registers

The T-register is one of the main input operands to the

eight-bit Arithmetic/Logic Unit (ALU). The T-register is

also used in input-output operations and in memory read and

memory write operations as a buffer register. Operate type

microcommands require the T-register be selected in one of

four forms, the mnemonics for these four forms are 0, T, F,

Figure 1.3 15

Micro 1600

(3)

16

and F, T. If O is coded then the selected operand transfered

to the B-bus will be zero. The mnemonic T indicates the true,

value of the T-register transfered. F selects the complement

of the T-register. Coding both F,T causes the B-bus to be

all ones.

The MD register, Memory Data register, is an 8-bit

buffer used to hold data being written out to the main memory.

It receives input automatically from the T-register 350

nanoseconds after the initiation of a memory write. The MD

register is not directly available to the programmer but

was designed to free the T-register faster than would be

possible otherwise.

The M and N registers, both 8-bits long, hold the 16-

bit memory address used in memory read and memory write oper­

ations. M holds the 8 most significant bits; N holds the

eight least significant bits.

Input-output control signals are regulated, under

program control, by the 3-bit IC register. All device

controllers are connected to this register via the I/O con­

trol bus, allowing device controllers to receive and decode

signals from the IC register. Settings of 1, 2, or 3 are

decoded as output signals and values of 4,5,6, and 7 are

input signals. When an input value is in the IC register,

the input bus, rather than the T-register is the operand

gated to the B-bus.

17

The OD register. Output Data register, was designed with

a purpose similar to that of the MD register. The OD regis­

ter automatically copies the T register whenever the IC regis­

ter is set non-zero, thus freeing the T register for other

purposes.

The R register is the Microdata's microinstruction

register. It holds the 16 bit microcommand currently being

executed. The R register receives input from control memory

over the R-bus.

The eight high-order bits of the next microcommand to

be executed may be modified through the use of the U register.

When selected by the microcommand, the 8 bit U register is

ORed with the control memory output prior to input to the

R register. This allows the generation of efficient code

since routines which differ by only a few instructions may

use common subroutines but with different settings of the

U register. For example the following code will add,(opcode

8), the T register to file 1:

LU X'OO* Load U with Zeros
ADD. 1, T, (S) Or U with opcode, add T to

file 1.

By changing the value of U from X'OO* to X'DC' or X'lO' the

same add instruction will cause a subtraction since a subtract

is opcode 9:

LU X'90' Load with X'90'
ADD 1, T, (S) Or U with opcode, subtract T from

file 1.

18

The L register is the 12-bit microinstruction counter.

It addresses the next command to be executed and can provide

control over 4K of control memory. This register can be

altered by executing a Jump instruction, which loads the

operand address, or by selecting the L register as the des­

tination for the output from the ALU.

The L Save register is also a 12-bit register, and it

provides for one level microsubroutines. It copies the con­

tents of the L register whenever a Jump : Extended instruction

is executed. After the subroutine has been performed a return

instruction causes the L Save register to be copied back into

the L register and processing continues.

The Link register is a 2-bit register which holds the

high order carry-out from the Arithmetic/Logic Unit. The

Arithmetic Link (AL) bit of the Link register is the bit

usually selected. The exception occurs when the output from

the ALU is directed to the M and N registers, in this case

the Memory Link (ML) bit is used.

All the above registers were designed with a specific

function in mind. However, the Microdata 1600/30 also pro­

vides two files of general purpose registers. These files,

denoted the Primary file and the Secondary file, each contain

fifteen 8-bit registers. Only one bank of registers may be

addressed at any given time and selection of the Primary or

Secondary file is under program control. Input to these

registers is from the A-bus and output is through the ALU.

19

Register 0 is dedicated to ALU- condition flags (bits 0,

1, 2) and internal status bits (3-7) and is common to both

banks. Register 0 is a read only file, and readout does

not effect its contents. The 8-bits of register 0 are

described below:

0----Overflow condition (ALU)
1 ----Negative condition (ALU)
2 ---- Zero condition (ALU)
3 ----I/O request flag
4 ----Internal interrupt flag
5 ----I/O reply flag
6 ----Serial TTy
7 ----External interrupt flag

The remaining "30 general-puropse file registers...

are implemented with MS1/LS1 semiconductor devices." (3)

In the emulation of MIX these file registers are assigned,

in groups, the functions of the A register, X register. Index

register. Jump register. Instruction register and the Instruc­

tion counter as well as providing free work areas.

It should be noted that the Von Neumann concept of

memory is absent in microprogramming. In a Von Neumann

machine data and instructions are intermixed in memory, in

fact instructions can be manipulated as data during one

phase of the program and later executed as an instruction.

In any case memory is a general purpose storage device con­

taining both instructions and data. In microprogramming,

however, control memory is almost always read-only. Thus

temporary storage areas (i.e. data) and programming areas

(i.e. instructions) are completely separate.

20

Instructions are confined to an area called control memory,

while temporary storage and work areas are located in another,

usually very small memory, which is backed up by main memory.

In the case of the Microdata this small memory takes the

form of these 30 general purpose file registers.

Data Flow:

There are 3 main paths in the Microdata which supply

data to the different registers and the ALU. The R-bus

provides input to the R register (microinstruction register).

Data is gated to the R-bus from three possible sources, con­

trol memory, control memory ORed with the U register, and

the console panel switches. Only one source may be selected

per clock pulse. The B-bus, the second operand to the ALU,

is supplied data form either the T register, in true or com­

plemented form, the Input-bus, or the R register. The

R register is selected when a literal is gated to the B-bus.

The A-bus is the main data bus in the Microdata. It receives

input from the ALU primarily, but the internal status or con­

sole may also be selected. The data on the A-bus can be trans-

fered to any file register and simultaneously to the L reg­

ister, U register, T register, M register, or N register.

The Arithmetic/Logic Unit (ALU), an 8-bit unit, is the

center of data manipulation in the 1600/30. Its operations

include addition, subtraction, and or Exclusive-OR, shifting.

21

and data transfer. The selected file register and the B-

bus provide the operands for the ALU and output is placed

on the A-bus, which is a common source of input to most reg­

isters.

Instruction Repertoire:

The microdata's microcommand repertoire consist of

65 instructions. Each instruction is classified as either

a literal command, an operate command or a generic command

depending on the commands format. The five possible formats

are displayed below along with examples of each format type.

Literal Command

OP- Operation Code
F - File register designator
Literal - 8-bit or 12-bit literal which is

transfered as an operand

Type 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OP F Literal

Example:

AF 7,X’O4'

3 7
1

0 I 4l
________ 1________

ADD the value X'04' to file register 7

22

Type 2 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OP Literal

Example:

X'56'LT
1 ' 1

ii
1

5 । 6i
________ I________

LOAD T register with X'SG*

Type 3 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OP । Literal

________ 1___________________

Example:
JE X,621'

0 6 1 2 J 1
_________1_______ 1______

JUMP to location 621

Operate Commands

OP- Operation Code
F - File Register Designator
C - Control Field Designation

Designator Definition

L Link Control/ADD Link
C Modify Condition Codes
T Select T Register
F Select T Complement

(continued on the next page)

23

Designator Definition

I - Increment
D - Decrement

* File inhibit - If bit 3 is a one, the file regis­
ter F is unchanged.

- If bit 3 is a zero, the file regis­
ter F is loaded with the result
of the command (i.e. A-Bus).

R - Distination Register

Designator Register Designated

blank — None
T — T Register
M — M Register

■ N — N Register
L L Register

(even address pages)
K — L Register

(odd address pages)
U — U Register
S — U Register is ORed into

upper 8 bits of operate
command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OP F C * R

Example:
ADD* 13, T, L, C, (U)

00 D B E

ADD the T register and Link bit to file register 13,

Set the condition flags in file zero and place the

sum in the U register. File 13 is not updated.

Generic Commands

OP

OP- Operation Code

24

Example:

Select Primary FileSPF

1 0 4 0

II. THE FIRST ATTEMPT

In constructing the MIX emulator some design problems

were encountered in meeting Knuth's specifications for MIX.

The design problems fall into two groups. The first con­

cerns the allocation of Microdata hardware for the emulation

of MIX hardware. The second type of problems involve the

development of the firmware logic required by the MIX in­

structions set.

Two attempts were made to construct a MIX emulator."

The first attempt employed a Microdata 1600/30 with 16K

bytes (8 bit) of core memory and 2K bytes (16 bit) of Alter­

able Control Memory (ACM). The first attempt was aborted

for reasons discussed in this chapter. The first attempt

showed that a complete implementation of a MIX machine with

16K bytes of Microdata memory would require more than 2K

of ACM to hold the emulator. The second effort used a

Microdata 1600/30 with 32K of core and 2K of Alterable

Control Memory. This larger configuration resulted in

simpler firmware logic and the successful emulation of the

MIX 1009 computer.

Although the first attempt was "scraped", much was

learned from previous mistakes which was useful in the second

26

attempt. The purpose of this chapter is to relate this

learning experience.

Hardware Allocation Problems

The first porblem encountered in designing the MIX

emulator was that of deciding the best way to allocate the

model 30*s memory in implementing Mix's memory. The memory

resources available on the Microdata 1600/30 at this time

and the memory requirements of the MIX machine are reflected

in figure 2.1.

Words of Bits/ Total # Total # Character Numeric
figure 2.1 Memory Byte of Bytes of Bits Code Code

Microdata
1600/30

Undefined
byte

Addressable

8 16,364 130,912 ASCII
or

EBCDIC

binary
2's
comp.

1009 4000 1/sign
6/data

4000
sign
20,000
data

124,000 Knuth's
Code

binary
sign plus
magnitude

According to the MIX specifications a MIX machine is word ad­

dressable with 4,000 words of core memory. Each word is com­

posed of a sign byte and five data bytes. The sign byte

may contain one of two values, representing plus and minus.

Each data byte must be capable of containing at least 64 values

but not more than 100 values. The minimum number of bits

required for a MIX computer is then,

4000 x 31 = 124,000 bits,

(4000 words, each containg a one bit sign byte and 5 six bit

27

data bytes). In June 1974, the Computer Science Department's

1600/30, which is byte addressable, had 16K bytes (8 bits/byte)

or 130,912 bits of core memory. Plainly there existed enough

bits to emulate the MIX computer, but not enough addressable

units or bytes.

At this point three possible boundary allignments were

considered as solutions to the memory allocation problem.

MIX memory could be represented as six Microdata bytes per

MIX word, or as five Microdata bytes per MIX word, or as

4 bytes per MIX word.

Data in the six Microdata bytes per MIX word solution

was to be stored as follows;

figure 2.2

S - sign bit
N - not used
K^- ith bit of Rth byte

Using this format and going to an eight bit byte the data

was easy to manipulate, however only 2,727 words of MIX memory

were available with a 16K host machine. The six byte solution

also made MIX word boundaries hard to detect. There was also

a related problem due to the nature of the IN and OUT

28

commands. Mix's I/O operators. These instructions handle

the sign byte separtely from the data bytes and thus need

to sense MIX word boundaries. With six bytes/word this can

only be done by dividing the current I/O address, (Microdata

address), by six and examining the remainder. This process

is too lenghtly for interrupt driven I/O.

Six bytes per word also makes address translation,

from MIX addresses to Microdata addresses, and vice versa,

involved but not difficult. Given any MIX address M the

Microdata address, MD, of the first byte of M is simply,

MD = 2M + 4M.

Assume M is a 16 bit address, the most significant byte (MSB)

residing in Primary file 9, and the least significant byte

(LSB) in Primary file 10. Then MD will be in P9 and PIO

after the execution of the following nine instructions.

3
SFL 10 Shift file 10 to left, multiply by two
SFL 9,L,(T) Shift file 9 left, inserting the bit just

Shifted out of file 10, and put the result
in the T register

CPY 11,T Copy the T register into file 11.
MOV 10,(T) Move the contents of file 10 to the T register
SFL 10 Shift file 10 left, multiply by two again
SFL 9,L Shift file 9 left, inserting the bit just

Shifted out of file 10.
Now M x 2 is in Pll and T
M x 4 is in P9 and P10

ADD 10,T Add file 10 and the T register, put result
in file 10

MOV 11,(T) Move contents of file 11 to T.
ADD 9,L,T ADD file 9 to T along with the high order

Carry of the last add, placing the result
in file 9.

29

The need to convert the Microdata address back to the

corresponding MIX address also arises when the console step

switch is pressed. When the step switch is pressed the next

instruction is executed, the machine then HALTS and displays

the MIX address of the next instruction. However the MIX

Instruction Counter actually contains the Microdata address

of the first byte of the next instruction. In order that

the MIX address be displayed it must first be computed from

the Microdata address and this result placed on the data bus.

However, the conversion from a Microdata address back to a

MIX address involves a division by six. Naturally, the

divide algorithm could be used for this purpose, but the

divide routine is usually avoided since it is one of the

longest routines in the instruction set. It is possible to

divide by six fairly rapidly, given that the dividend is

evenly divisible by six (which is the case for memory address).

This problem becomes the ability to divide by three, since

MD/6 = (MD/3)/2

The divide by six algorithm is described in figure 2.4 while

the corresponding microprogram is described in figure 2.5.

The 6 byte solution offered the advantage of easy data

manipulation, assuming 8 bit bytes were used, but the advan­

tage was offset by three disadvantages, namely:

1) Only 2,727 words of MIX memory could be emulated

instead of the specified 4,000 words.

2) Input/Output was severly complicated by the

30

Figure 2.4

Given; The dividend is evenly divisible by 6, then the quotient

may be found by;

31

Figure 2.5
The corresponding Microprogram follows:

file 9 contains MSB of address
file 10 contains LSB of address

* result to be placed in file 11 and 12
* 16 bit address

LF S^'IO' LOAD COUNT
ZOF 11 ZERO QUOTIENT MSB
ZOF 12 ZERO QUOTIENT LSB

START SFR 9 DIVIDE DIVIDEND BY TWO

SFR 10,L
TN lO^'Ol' TEST LOW ORDER BIT OF

DIVIDEND
SP ZERO JUMP IF ZERO
TN llxX'SO' TEST HIGH ORDER BIT OF

QUOTIENT
JP ZERO JUMP IF ONE

ONE SRI 11 SHIFT QUOTIENT, INSERT 1
JP SHIFT

ZERO
SHIFT

SFR 11 SHIFT QUOTIENT, INSERTO
SFR 12,L
DEC 8 COUNT ----- COUNT - 1
TZ 8,X'FF' COUNT 0 ?
JD START COUNT IS 0
HLT COUNT = 0

To perform this algorithm on a 16 bit address 211 instruc­
tions must be executed.

32

inability to detect MIX word boundaries.

3) Address translation from MIX address to Micro­

data address and back again would be time con­

suming .

Data for the five byte per word solution was to be stored

as shown in the illustration below. The MIX sign byte and

first MIX data byte were to occupy the first Microdata

byte with the remaining four bytes being stored in the next

four Microdata bytes.

must be processed separately,since the Microdata’s hardware

employee's 2's complement arithmetic and MIX is a sign plus

magnitude machine. Aside from this, the 5 byte solution

has the same advantages and disadvantages as the 6 byte sol­

ution. Here, 3,272 MIX words can be emulated, and addresses

are again a problem but data is easy to handle.

The major defect with both the 6 byte and the 5 byte

solution was that all 4000 words of MIX memory could not be

33

emulated. In light of this fact, if the entire 4000 words

of MIX memory were to be emulated then the 31-bit MIX words

must be packed into four Microdata bytes.

1 MIX word = 31 bits 4 Microdata bytes = 32 bits

4000 x 32 = 128,000 bits 130,912 bits = 16K x 8 bits

Using this approach the whole MIX memory could be emulated

with 384 Microdata bytes left over. The information was

to be packed according to the diagram below.

Figure 2.7
S - Sign bit
N - Not used
Ki- ifch bit of Rth byte.

This format solved the 3 problems found with the 5 byte and

6.byte formats. First, all 4000 words of MIX memory could

be implemented on the host machine's current 16K memory.

Second, word boundaries were easy to identify since any

Microdata address whose low order two bits are zero cor­

responds to the first byte of a MIX word. Finally, address

translation, either from MIX addresses to Microdata addresses

or vice versa, could be performed by simple register shifts

(i.e. multipling or dividing by 4). However in eliminating

these three problems the main advantage of the previous two

s N X3 X4 L5 H

a__
_

CM
CM

11
00

1
CM

1.

LT)
CM KD
CM 31 32

--
--

-1

w co 34 IF)
m 36 41 4 2 43 44

1--
--

- 46 Ul C
M

in in 54 55 \D
m

34

solutions was also eliminated, for data was no longer easy

to manipulate. In fact, this packed format caused data manip­

ulation to now become 'the1 major firmware logic problem.

The second hardware allocation problem concerned the

mapping of Mix's registers into the 30 general purpose

file registers that are available on the Microdata 1600/30.

There are nine registers available to the user in MIX plus

an overflow toggle and a Comparison Indicator. There is

also an Instruction Counter and an Instruction Register,

although these are not directly accessable to the user. All

these registers must be represented by the 30 general pur­

pose file registers. Main memory is accessible, of course,

from the microlevel but storage and retrieval is involved.

The following example illustrates this point.

Figure 2.8

file 8

* File 9 contains MSB of Memory Address* File 10 contains LSB of Memory Address*
* File 8 contains data

*

*

Store a byte in Main Memory
MOV 9,(M) Load MSB of Memory Ad­

dress Register (MAR)
WMF 10,(N) Load LSB of MAR, Begin

full cycle write
MOV 8, (T) Move data to T in time

to be written out

* Retrieve a byte from Main Memory
MOV 9,(M) Load MSB of MAR
RMF 10,(N) Load LSB of MAR, Begin

full cycle read
NOP Delay 200 nanoseconds
CPY 8,T • Copy data from T into

35

Clearly main memory is not a good place to emulate registers

of a target machine or to store temporary results, such as

firmware loop counters. Recall that these thirty general

purpose files compose the only scratch pad available to the

microprogrammer, beside main memory, since the Alterable

Control Memory (ACM) is read-only when used as a control

memory. Thus these thirty files must serve not only as reg­

isters for the MIX computer but must also provide the micro­

programmer with a fast work area to perform the needed firm­

ware routines.

The MIX Accumulator A, its right hand extension X, and

the Instruction Register are the same length as a MIX word,

a sign byte plus five data bytes. These six MIX bytes were

packed into four Microdata bytes as shovm in figure 2.9.

Figure 2.9

A register

X register and

Instruction register

S- Sign
N- Not used
Ki- 1th bit

of the K
byte

s N I co X6

w

ro

24

Ln

31 32

3 3 co* LJ

Ln

U
) 41 C

M

43 45
b

4^

Ln

46

in

C
M

in co
in in in 56

The Instruction Counter is a two byte register and the re­

maining seven registers, the Jump register, and the six Index

registers are three bytes each in MIX, a sign byte plus two

data bytes. Each of these registers was packed into two Micro­

data bytes as shown in figure 2.10.

36

Figure 2.10

Instruction
Counter

Jump and
Index registers

s N 41 to 43 44 45 46

tn cn

ro In

co

U1

Ln

in 0 0

S - Sign
N - Not

used
O - Zero
Ki- ith bit

of K^h
byte

This format was selected for several reasons. First, by

carrying the Instruction Counter in this form the Microdata

Address, (MIX address times 4), of the next instruction was

readily available. Secondly, this format facilitated index­

ing; Recall that the sign and first two data bytes of an

instruction compose the operand address. From figure 2.9

it can be seen that the operand address, in packed form,

is in the same format as the Index register. (Figure 2.10).

Computing the effective (Microdata) operand address can be

accomplished by masking the address field from the Instruc­

tion register, zero filling the low order two bits, and add­

ing this result to the specified index register. Thirdly,

MIX Jump instructions, which may be indexed, are easy to

execute since the address field of the instruction, the In­

dex register, and the Instruction Counter are all packed the

same way.

The Overflow toggle is a one bit register in MIX which

is either set or reset. The MIX Comparison Indicator can

assume one of three values representing greater, less, and

37

equal conditions. These two MIX registers were packed in­

to one Microdata file as shown in figure 2.11

Figure 2.11

N N |n 0 N. L E G
N - not used
O - overflow

LEG - Comparison
Indicator

Three bits were used to emulate the MIX Comparison Indica­

tor although only two bits were needed to represent the

three possible states. However, a three bit Comparison

Indicator allows easier programming of the Jump Less,

Jump Equal, Jump Greater, Jump Less or Equal, Jump Greater

or Equal, and Jump Not Equal instructions. Using a three

bit Comparison Indicator one general microprogram can

be written to decide whether the correct conditions exist

for-each of these six Jump instructions. To test for a

less than condition a mask of *0000 0100' is passed to the

compare routine, which OR's this mask with the file con­

taining the Comparison Indicator. If the logical result

is non-zero, then the Less bit is on indicating a less

than condition. The Equal and Greater cases work the same

way. The advantage of a three bit indicator is made

apparent by the Jump instructions which test for two con­

ditions instead of one. To test for a greater than or

equal condition a mask of *0000 0011’ is passed to the

compare routine. A not equal conditon can be stated as

38

a less than or greater than condition, therefore, a mask

of *0000 0101* will test for not equal. Figure 2.12 gives

the conditions and the corresponding masks to be used with

this method.

Figure 2.12

N N N 0 N L E G
G - Greater bit
E - Equal bit

00000001
00000010
00000100
00000011
00000110
00000101

L - Less bit
0 - Overflow bit

Test Greater
Test Equal
Test Less
Test Greater or Equal
Test Less or Equal
Test Not Equal

Using the three formats just described (Figures 2.9,

2.10, and 2.11) twenty-nine microdata files are required

to emulate MIX registers (Figures 2.13). This leaves only

one free work file to be used by the microprogrammer. How­

ever the third byte of a MIX instruction denotes which In­

dex register, if any, is to be used to compute the effective

operand address. This computation is done on all instruc­

tions immediately following the instruction fetch. Thus

by the time the decode routine is executed MIX byte 3 is

free to be used by the microprogrammer. MIX byte 5, the

instruction operation code, becomes available to the micro­

programmer after instruction decode has occured. Also MIX

39

byte 4, the F field (partial word designator), is freed

shortly after entering the particular instruction subrou­

tine to be executed. Therefore, though work space is at

a premium, enough scratch files are available to perform

most computations.

Figure 2.13

A register
X register

4 file registers
4 file registers

Instruction register 4 file registers
Instruction counter 2 file registers Dedicated to MIX
Jump register 2 file registers
Index register Il 2 file registers
Index register 12 2 file registers
Index register 13 2 file registers
Index register 14 2 file registers
Index register 15 2 file registers
Index register 16 2 file registers
Overflow togglei and

Comparison Indicator 1 file register Available to

Free work area , cn . . Microprogrammer1 file register r 3

30 file registers

The thirty general purpose registers on the Microdata

1600/30 are divided into two files of 15 registers. Each,

refered to as the Primary file and the Secondary file. Only

one file is available to the microprogrammer at any given

time. To get from one file to the other a file select in­

struction must be executed. Figure 2.14 illustrates the ad­

dressing and manipulation of the two sets of file registers.

40

Figure 2.14

* Transfer the contents of Primary file 1 (Pl) to
* Secondary file 1 (SI)

* Transfer the contents of Secondary file 15 (S15)
* to Primary file 15 (P15)
*

SPF Select Primary File
MOV 1, (T) Move P]. to T register
SSF Select Secondary files
CPY 1,T Copy T register into Si
MOV 15,(T) Move S15 to T register
SPF Select Primary files
CPY 15,T Copy T register into P15

Data transfer between the two sets of files is cumbersome

for two reasons. First, transfer must be via the T regis­

ter since it is the only register common to both files which

can be loaded and then read. (The U, M, and N registers

can only be loaded). Thus transfers must take place one

byte at a time. Secondly, file select commands must be

issued each time the file boundary is to be crossed. As

a result, MIX registers which are likely to be used together

were grouped in the same file to avoid inter-file transfers.

The Instruction Counter, the Instruction register, the A reg­

ister, the X register, and the one free work register were

assinged to the Primary file while the Index registers, the

Jump register, the Overflow toggle and the Comparison In­

dicator were assigned to the secondary file.

41

The Instruction Counter and the Instruction Register

were both assigned to the Primary file to facilitate the

instruction fetch cycle. Note, to fetch the next MIX in­

struction four memory reads must take place from consecu­

tive locations in memory starting with the byte addressed

by the Instruction Counter. The Memory Address Register

(M,N) is loaded with the contents of the Instruction Counter

and then a read can be performed, fetching the first of

four bytes. Now the Memory Address Register (M,N) must

be incremented. However M and N cannot be gated to the

Arithmetic Logic Unit, but can only be selected as the des­

tination for the output from the ALU. Instead the Instruc­

tion Counter must be incremented, this result can now

be selected as the new value of the Memory Address Register

(M,N), and the second byte can be read. The fetch routine

is then more efficient if both the Instruction Counter and

the Instruction register are in the same file, since the

fetch routine alternately selects one then the other.

The user registers most frequently selected in MIX are

the A register, the X register and the A-X register. The X

register is the right hand extension of the A register in

multiply, divide, and shift instructions. It is advantage­

ous then to have the A register and the X register in the

Primary file with Instruction register to facilitate the

execution of A, X and A-X instructions.

42

The one free work register was placed in the Primary

file since this is where the instruction to be executed would

reside as well as the registers most likely to be involved

with this instruction execution.

The A register was located in Primary file registers

Pl, P2, P3 and P4 where Pl contains the sign and most sig­

nificant bits of A and P4 the least significant bits. The

X register was assigned registers P5, P6, P7, P8 with P5

holding the most significant bits and P8 the least signifi­

cant bits. These assignments result in X being the natural

right hand extension of A, this of course makes micro­

programming the shift, divide, and multiply routines straight

forward if not easier. The instruction register was assigned

registers Pll, P12, P13, and P14. The free work register

was located at P15. This helped group the work registers

together, recall P14 contains the opcode, MIX byte 5, which

is available to the microprogrammer following instruction

decode. The Instruction Counter was located at P9 and PIO,

these being the only remaining registers in the Primary file.

The Index registers, the Jump register, the Overflow

and Comparison Indicators occupy all of the Secondary file.

The Index registers were grouped into 12 consecutive regis­

ters starting with Secondary file 1. Index register Y then

resides in Secondary files 2Y-1 and 2Y. This allows micro­

programs which handle Index register operations to be general­

ized. Figure 2.15 is a microroutine used to zero the Index

43

register specified (11-16) in the Instruction register (MIX

byte 3).

Figure 2.15

SPF Select Primary files
LT X'FO* Load T register with mask
OR* 13,T,(T) Mask off index number
CPY 15,T Copy index number x 16 into P15
SFL 15 Shift P15 left, divide by 2
SFL 15 Shift P15 left, divide by 2
SFL 15,(U)

SSF

Compute index number x 2,
Put result in U register

Select Secondary file
ZOF 0,5 Zero file (U), LSB of index

The U register will be ORed into the upper
• 16 bits of the microcommand when the S option
is included

SPF Select Primary file
DEC 15,(U)

SSF

Compute (Index number x 2) -1
put result in U register

Select Secondary file
ZOF 0, S Zero file (U), MSB of index

The Jump register was allocated file register S13

and S14. The function of the Jump register is to copy the

current contents of the Instruction Counter immediately prior

to a Jump Instruction. This provides a one level subroutine

linkage for the MIX user. This copy must take place across

the file boundary since the Instruction Counter is in the

Primary file and the Jump register is in the Secondary file.

However, this is only a two byte transfer and Jump instruc­

tions are executed less frequently than the fetch routine

44

or even A, X, or A-X register instructions.

The file containing the overflow toggle and the Com­

parison Indicator was placed in the Secondary file 15. Note

that all the other MIX registers are composed of an even

number of file registers, but there are 15 file registers

(odd) in each file. Thus the free work file register must

be assigned to one file and the Overflow and Comparison

Indicator register to the other. Considering the need for

a work space in the Primary file, the Overflow and Compar­

ison Indicator was placed in the Secondary file. Figure

2.16 illustrates the file allocation of the MIX registers

as discussed..

Firmware Logic Problems:

Solutions to' these major hardware allocation problems,

memory allocation and register allocation, defined the re­

lation between the host machine and the target machine so

that microprogramming could begin. However, the machine

organization that was developed resulted in two firmware

problems.

The first problem, which had been anticipated, was the

lack of sufficient work space to perform the required firm­

ware routines. In the file allocation plan, an attempt was

made to keep all MIX registers in either the Primary file

or the Secondary file. This resulted in only one free file

register to be used by the firmware for counters, temporary

Figure 2.16
45

PSO

A
REGISTER

Pl SI INDEX 1
P2 S2

P3 S3 INDEX 2

P4 S4

X
REGISTER

P5 S5 INDEX 3
P6 S6

P7 S7 INDEX 4
P8 S8

INSTRUCTION
COUNTER

P9 S9 INDEX 5
PIO S10

INSTRUCTION
REGISTER

Pll Sil INDEX 6
P12 S12

P13 S13 J REGISTER
P14 S14

BKhiE WuRK
SPACE P15 S15 COMPARISON OVERFLOW

INDICATOR

A, X, AND INSTRUCTION
REGISTER

S - Sign
0 - Zero
Ki i^ bit of byte

- 1- (—I- '--1- 1--1--
S 0 4-^ 4 2 4g 4 4 g 4 g.—j- ,—--- ,- ?,- 1--
51 52 53 54 55 56 0 0
INDEX, JUMP SAVE AND INSTRUC­

TION COUNTER

OVERFLOW AND COMPARISON

46

results and flags. One or two registers were freed after in­

struction decode occured but in some cases 3 free registers

were not enough. For example, the Multiply instruction requires

at least one more register than is available. This can only

be solved by temporarily writing some portion of a MIX reg­

ister, not currently being used, out to core memory.

The second firmware problem encountered was caused by

the misalignment of MIX bytes and Microdata bytes. Since

byte boundaries of the host machine did not correspond to

byte boundaries on the target machine, programming the MIX

partial field specifications was quite involved. The format

used to pack six MIX bytes into four Microdata bytes resulted

in each MIX byte being stored in a slightly different posi­

tion than the other MIX bytes. From figure 2.17 it can be

seen that the MIX sign byte and the first data byte occupy

the first Microdata byte with one unused bit also present.

MIX byte two and the high order two bits of MIX byte three

are in Microdata byte 2. The low order four bits of MIX byte

3 and the high order 4 bits of MIX byte four are in Microdata

byte 3. The low order 2 bits of MIX byte 4 and MIX byte

five are in Microdata byte four. This format defies uni­

form handling of MIX bytes. As a result the microprogram

routines which treated MIX partial word specifications were

lengthy. A good example of this problem is the MIX Store A

instruction. In this instruction the number of bytes

specified by the F field is taken from the right hand side

47

of A and these bytes replace the contents of the effective

operand address specified by the F field. The bytes of the

operand not mentioned by F and the A register are unchanged.

Figure 2.17 illustrates all twenty-one variations of this

instruction.

Thirty-four of the sixty-four MIX instructions were

microprogrammed using the allocations discussed earlier. It

became obvious, however, that the complete MIX emulator

would exceed 2048 instructions, the size of the AROM. At

this point the following compromises were considered.

1. Emulate a subset of the MIX instructions rather

than the complete repertoire.

2. Page in sections of microcode from disk as

they are required (7). This would increase

MIX instruction execution time but would

create a virtual AROM.

3. Reallocate MIX memory avoiding the packing of

MIX bytes into Microdata bytes. This makes it

possible to write simpler code but impossible

to implement all 4000 words of MIX memory.

In the midst of this consideration an additional 16K of

memory was acquired for the 1600/30. allowing the adoption of

method 3 as well as the implementation of all of MIX memory.

This attempt to emulate MIX was then terminated and a new

study of hardware allocations was begun taking advantage of

the additional memory and the mistakes that had been made

during this first attempt.

48

Figure 2.17

A -Some bit of the K byte K of A

Initial contents
in Memory ,

M^-Some bit of the K byte K of M

Initial Contents

MgN ASN A1A1A1A1A1A1

MM MM MM MM A2A2A2A2A2A2A3A3

M^M-M-M.M.M.M.33334444 A3A3A3A3A4A4A4A4

M-M-M-M^-M-M-M.44555555 A,A,ArA_A-AcAcA_44555555

STA M,(1,1)

AgN M1M1M1M1M1M1 AN A.A.A.A.A.A,S 4 4 4 4 4 4
MM MM MM MM

to to to to
A -A _A _A -A _A _MOMO
DDDDDD30

M-M-M-M-M.M.M.M.33334444 M-M-M-M-M.M.M.M.33334444
M.M.M-M-M-M-M-M,.44555555 M/M.MCMCMCMCMCMC44555555

STA M,(0,0) STA M,(0,2)

ASN A5A5A5A5A5A5 MON A.A.A.A.A.A.S 4 4 4 4 4 4
m2m2m2m2m2m2m3m3 A - A -A _A _A _A CMOMO

dddddDdd

M-M-M-M-M.M.M.M.3 3 3 3 4 4 4 4. M-M^M-M-M.M.M.M.33334444
M.M.MCMCM_M_M_M, _____ 4 4 5 5 5 5 5 5_____ M.M.MCMCMCM M Mc44555555

STA M,(0,1) STA M,(1,2)
M N A A A ARA AO 3 3 3 J 3 J

MgN M^^M^Mj^

MM MM MM MM
to to to to to to A5A5A5A5A5A5M3M3

M-M-M-M-M.M.M.M.33334444 M0M_M-M_M.M.M.M.33334444
M/M/McM-Ml.Ml.M-Ml.44555555 M.M.MCM[.MCM[.M[;MC44555555

STA M,(2,2)

49

AN A„A_A„A_A„A_D J j 3 3 3 O

A,A,A,A,A.A,A-A- 44444455
ACACACACM.M.M,M. 55554444
M/M/McMl.McMl.McMc 44555555

STA M,(0,3)

MgN A^A^A^A^A^A^

A.A,A,A.A,A,ACA^ 44444455
ACACACACM,M.M,M. 55554444

44555555

STA M,(1,3)
MgN M1M1M1M1M1M1

A, A, A, A, A, A, Ar-A,. 44444455
A-A-A-A-M.M.M.M. 55554444
M.M.MCMCMCMCMCMC _____44555555

STA M,(2,3)

MN MM MM MM
O -L J- -L J- -L -L

M2M2M2M2M2M2A5A5

ACACACACM.M.M,M.55554444
M/M,MCM_MCM,.MCM_ 44555555

STA M,(3,3)

ASN A2A2A2A2A2A2

A A A A A A A A 33333344
A, A, A.A, A^A^Ar-A^44445555
a5a5m5m5m5m5m5m5

STA M(0,4)

MN A„A9A„A„A„A0 o Z. 2- Z. Z. Z. 2.

kAAAA-kA.k, 33333344
A, A. A. A, kA A 44445555
a5a5m5m5m5m5m5m5

STA M,(1,4)
MgN M M MTM M M

kAAAAAAA3 3 3 3 3 3 4'
kAf kA. Ark Ar- 44445 5 55
a5a5m5m5m5m5m5m5

STA M,(2,4)

MgN M MXM M^^

MoM_M„M_M_MnA.A,22222244
A,A.A.A.A.A,ArA4 4 4 4 4 4 5.
a5a5m5m5m5m5m5m5

STA M,(3,4)

50

A3A3A3A3A4A4A4A4

A, A, A,.ArArArArAc44555555
STA M,(2,5)

A2A2A2A2A2A2A3A3

MgN

STA M, (4,5)

MN MM MM MMO -L J- J- J- J- MgN M M M M M M^^

m2m2m2m2m2m2m3m3 MM MM MM A A Xa ** ■ -J

M3M3M3M3A5A5A5A5 33334444
A5A5M5M5M5M5M5M5 A, A, ArAr.Ar.A_ArAc. 44555555

STA M,(4,4) STA M,(3,5)

AN A A A A A AO J- -L J. J- X JL MN MM MM MM o JL -L -L X J. J-
A2A2A2A2A2A2A3A3 m2m2m2m2m2m2m3m3
A3A3A3A3AZtAZtAZtA4 M-M-M-M-A.A.A.A.33334444
A, A, A-A-A_ A _A-.A- aahhhhhh A, A.AAAArkAc ______ 4 4 . 5 5 25 5 5 5____

STA M,(0,5)

MgN A^A^A^A^A^A^ MgN M1M1M1M1M1M1
A2A2A2A2A2A2A3A3 m2m2m2m2m2m2m3m3
A3A3A3A3A4A4A4A4 M„M_M_M„M/M.M/M.33334444
A. AAA AAA A^44555555 M,MAAAAAAC44555555

STA M,(1,5) STA M,(5,5)

51

III. THE SECOND ATTEMPT

In the fall of 1974, the Computer Science Department

increased the Microdata's core memory to 32K bytes. At

this point a second attempt was initiated to emulate the

MIX 1009 computer using this additional memory. Again,

the two major design problems concerned the allocation of

Microdata hardware for the emulation of MIX hardware, and

firmware logic problems.

Hardware Allocation Problems

The first design decision in this second attempt was

again how one should emulate Mix's memory. The memory

resources now available on the Microdata 1600/30 and the

memory requirements of the MIX machine are reflected in

Figure 3.1.
Words of Bits/ Total # Total # Character Numeric
Memory Byte of Bytes of Bits Code ____ Code

Microdata
1600/30

undefined
byte

addressable

8 32,728 261,824 ASCII
or

EBCDIC

binary 2’s
compliment

MIX
1009

4000 1/sign
6/data

4000
sign
20,000
data

124,000 Knuth's
Code

binary sign
plus

magnitude

With the additional 16K of core memory the Microdata 1600/30

was larger than the MIX 1009. Recall that with 16K of core

memory the Microdata had only 16,364 bytes to implement Mix's

24,000 byte memory. In the first attempt this dilemma was

52

solved by packing each 31 bit MIX word into four Microdata

8 bit bytes. However, this design resulted in difficult firm­

ware logic. But with 32K of core memory, packing was no

longer necessary since the Microdata had more than enough

bytes to implement Mix's memory byte for byte.

This surplus of main memory solved the major problems

previously encountered in implementing Mix's memory, but

three problems still remainded, namely:

1. How many Microdata bytes should be used
to emulate each MIX word?

2. How many bits should be used in each
byte?

3. How should any extra Microdata memory be
used?

In examining the first of these problems, it appears

that either five bytes per MIX word or six bytes per MIX word

was the best solution in light of previous experience. The

five bytes per MIX word solution required packing the sign

and the first MIX data byte together. This packing would

result in more available MIX memory but would inhibit uniform

handling of all five data bytes. Uniform handling and

the ability to generalize the firmware for partial word oper­

ations was not possible in the first attempt, it was a pri­

mary consideration however in the second attempt. Therefore,

the six-bytes-per-MIX-word solution was selected where the

sign byte and 5 data bytes would each be assigned to a separate

Microdata byte, figure 3.2.

53

Figure 3.2

Sign Byte

1st Data Byte

2nd Data Byte

3r^ Data Byte

4th Data Byte

S^h Data Byte

Recall from Chapter II that the three disadvantages of the

six byte solution were:

A) Not all 4000 words of MIX memory could be
emulated.

B) Address translation from MIX address to Micro­
data address and vice versa was time consuming.

C) Detection of MIX word boundaries was difficult
when given only the corresponding Microdata
address.

The increase of main memory to 32K solved problem A, in fact

8,728 bytes of Microdata memory would be still available at

six bytes per MIX word. Problem B can be solved, as discussed

in Chapter II, however, address translation is still time

consuming. Problem C however, is the most difficult. Recall

that MIX Input/Output instructions handle the sign byte of

each MIX word differently from the data bytes. On Input the

sign bytes are set positive and on Output the sign bytes are

ignored, figure 3.3 illustrate the Input operation.

54

Figure 3.3

g j^st 2S^ 3r<^ 4^ 5th

0 c 0 N T E MIX word 0000
1 N T S P MIX word 0001
1 R 1 0 R MIX word 0002
0 T 0 I N MIX word 0003
1 P u T MIX word 0004

Before Read

Read 80 characters into MIX
Memory starting at MIX word
0000

In 0,(10)

A B C D E F

MIX word

MIX word

MIX word

MIX word

MIX word

After Read

Input/Output on the host machine however occurs one byte at a

time, and the microprogram must use Microdata addresses to store

each data byte, thus the firmware must be able to sense MIX

word boundaries. As mentioned earlier one way to do this

is to divide each Microdata address by six. If the remainder

is zero then this byte corresponds to a MIX sign byte and

should be handled accordingly. Another possible solution

is to assign to each I/O device a counter that is set to

55

zero when an I/O operation is initiated on that device, then

each time a data byte transmission occurs this counter is

tested to see if it is equal to zero. If not the data trans­

mission would take place and the counter would be decremented.

But if the counter is zero the Microdata address corresponds

to a MIX sign byte and this byte should be either zeroed

or ignored, depending on whether the operation involved is

input or output. The counter would then be set to 5 and nor­

mal handling of data could resume, figure 3.4 presents a

flowchart for the above description. Either of these

two methods, dividing by six or running a special counter

would solve the problem of MIX word boundary detection but

neither is easily accomplished.

Having tentatively adopted the six-byte-per-MIX-word

solution, the next decision concerned how many bits should

be used in each MIX byte. Knuth specifies each MIX word

should hold at least 64 values, but a most 100 values. This

range allows MIX to be implemented as either a binary or

decimal machine. This implies that any binary implementation

would have to use 6 bit data bytes. However, the Microdata

is an 8 bit machine. The Arithmetic-Logic Unit of the Micro­

data accepts 8 bit operands and produces an 8 bit result plus

an high order carry to be used as a Link bit in multiple

byte operations. If MIX was to be emulated with a 6 bit byte

56

Figure 3.4

57

then the following format would result, figure 3.5.

Figure 3.5

S - Sign Bit
N - Not used
Ki- ith bit of Kth

byte

This format complicates all arithmetic instructions in MIX.

If this format is allowed, the existing Microdata hardware

for doing arithmetic operations cannot be used as intended.

Incrementing a two byte counter, a very common and usually

very simple operation is now fairly involved. The hardware

Link bit provided in the Microdata ALU cannot be used to

indicate a carry, so firmware logic must be developed to

handle the high order carry. Figure 3.6 shows one way of

incrementing two 6 bit bytes on the Microdata ALU.

58

Figure 3.6

* Assume Pl contains the 6 high order bits of the
counter

* And P2 contains the 6 low order bits of the
counter

* Also assume Pl and P2 are carried in the following
form

*
*

*

00111111 High order 2 bits = zero
00222222
INC 2 Increment P2
TN 2,X,40, Test for high order carry
JP RTN No high order carry so continue

High order carry has occurred

*

*

LT X'SF' Load mask into T register
AND 2,T Clear carry from P2
INC 1 Increment Pl

Now overflow is possible
TZ l^XMO' Test for overflow
JP OVERFL Overflow has occurred

Return

Using the Microdata’s ALU as intended a two byte (8 bit)
counter can be incremented as shown in figure 3.7.

Figure 3.7
* Assume Pl and P2 again contain the counter

INC 2 Increment low order 8 bits
ADD 1,L,C Add Link bit to high order 8

bits, set condition flags
TZ O,X'O1" Test for overflow
JP OVERFL Overflow has occurred

* Return

59

If the 6 bit format doubles the number of instructions

required to increment a two byte counter, it should be

clear that involved instructions such as Multiply, Divide,

Add, Subtract, Shift, Char, and Num would be considerably

longer as well. Recall also that MIX, being a sign plus

magnitude machine already conflicts with the Microdata’s

ALU since it is a two's complement unit.

In light of these complications and the fact that

the first attempt failed because the firmware became so

involved and lengthly that it would not fit into 2K of

AROM, an 8 bit data byte was adopted for the emulation of

MIX. The format is shown in figure 3.8.

Figure 3.8

S - Sign Bit
N - Not used
Ki- ith bit of Kth

byte

This eight bit data byte called for the adoption of

another character code. Knuth's code, a six bit code, could

have been used, however, it was felt that since the teletype,

line printer, and disk worked in ASCII, it would be more

60

advantageous to use than forcing Knuth’s code onto these

devices via firmware.

The remaining memory allocation problem concerned what

to do with the 8,728 bytes of surplus Microdata memory. The

two choices are obvious:

A. Extend MIX memory by 1,454 words.

B. Provide some sort of system
support (temporary storage).

Solution A enhances the MIX machine from the users point of

view. However the extra memory is not necessary since MIX

is suppose to have only 4000 words of memory. In fact, if

programs are to be written according to Knuth's rule "that

no more than sixty-four values are ever assumed for a byte"

(1). The largest memory location addressable is location

4095 (2^ -1). it would also seem that 4000 words of memory

is more than enough for educational purposes. Thus adding

more memory to the MIX machine offers no real advantage.

Solution B offers some advantages that are not obvious

at first. All Input/Output in MIX takes place in concurrent

mode. That is, an I/O operation is started via an In or Out

instruction but a major portion of the I/O operation takes

place while the user executes other instructions. Certain

information must be available to the microprogram in order

to carry out these block data transfers. However this in­

formation, memory address, and counters, must be stored

somewhere besides the MIX registers available to the user.

61

This surplus memory provides an ideal, and in fact the only,

place to temporarily store this type of information. A

decision was also made in this second attempt, for reasons

that will be discussed later, to keep Mix's Index registers

in main memory instead of the secondary files. Thus with

this type of privileged data in main memory it is necessary

to have an area of core that the MIX user cannot use. If

certain MIX memory locations were dedicated to the above

functions then the MIX user could alter concurrent I/O oper­

ations as well as the contents of the Index registers. It

was thought that this was both dangerous for beginning pro­

grammers and unnecessary.

Having adopted solution B one more question arose;

where should MIX memory begin and where should the surplus

memory reside? Three possible answers were considered, the

two which follow are obvious:

1) The surplus resides at Microdata address 0000-8727

and MIX memory resides at 8728-35,728.

2) MIX memory resides at 0000-24,000 and the surplus

at 24,001-35,728.

The third possibility, and the one which was chosen was to

begin MIX memory at Microdata 0000 and then alternate one

MIX word with two surplus bytes throughout Microdata memory.

This did not effect the availability of the surplus memory

but it did solve two problems previously discussed in this

chapter. Figure 3.9 illustrates the above solution.

62

Figure 3.9

t
icrodata MIX
Address Address

00000 00
00001
00010
00011
00100
00101
00110
00111
01000 01
01001
01010
01011
01100
01101
OHIO
01111
10000 02
10001
1.Q.Q.1Q__

sign byte
l^data _bvte.
2sadata byte
3rgdata bvte_
4t^dabA by+-A_
gth^ata byte

_____Surplus
_____Surplus
. ugiqn bYta-
l^data byte.
2s^data byte.
3y~data byte
4^data byte'
5tjldata byte

_____Surplus
Surplus
sign bvte

, lsrrlata byte.
2sddata byte

Using this memory layout the addressing problems of the six

byte per MIX word solution were solved. Each MIX word is

six Microdata bytes long but now each MIX word begins on

a Microdata address which is a multiple of eight. Thus con­

version from MIX address to Microdata address can be accomp­

lished by shifting the MIX address three places left. Con­

version from Microdata address to MIX address involves shifting

the Microdata address 3 places right. MIX word boundaries

are also easy to sense. Any Microdata address ending in

000 is a word boundary. Surplus bytes are also easy to de­

tect since their addresses all end in either 110 or 111.

In summary, the memory allocation problem was resolved

by the following three policies:

63

1. One MIX word was to be composed of six
Microdata bytes.

2. Each MIX byte was to contain 8 bits.

3. MIX memory would begin at Microdata
address 0000 but each MIX word would
be followed by two surplus data bytes.

It should be noted that these surplus data bytes are

invisible to the MIX user. This inleaving of MIX words and

surplus data bytes also allowed a minor extension of MIX

memory from 4000 words to 4096 words. Some of these extra

96 words were dedicated for purposes not included in Knuth's

specifications. For example, one word in high core is trapped

to by the microprogram if an illegal address, opcode or I/O

device is encountered. Two words are dedicated to each

I/O device, one to store the device status byte upon

completion of an I/O operation and one as a trap address

in case of an I/O error on that device.

The second design decision concerned the mapping of Mix's

registers into the hardware available on the Microdata

1600/30. The registers which were to be emulated along

with their lenghts' are reflected in figure 3.10. Figure

3.10 appears on the following page.

As noted in chapter II the Microdata provides a 30

register work area for the microprogrammer to use in emula­

ting the registers of target machines. In the first attempt

all MIX registers were kept in these 30 file registers, how­

ever, this left only one free work register. This constraint

64

Figure 3.10

A Register

X Register

Sign plus 5 bytes

Sign plus 5 bytes

Instruction Register Sign plus 5 bytes

Instruction Counter 2 bytes

Jump Save Register 2 bytes

Index Register 1 Sign plus 2 bytes

Index Register 2 Sign plus 2 bytes

Index Register 3 Sign plus 2 bytes

Index Register 4 Sign plus 2 bytes

Index Register 5 Sign plus 2 bytes

Index Register 6 Sign plus 2 bytes

Overflow and
Comparison 1 byte

65

resulted in rather strained firmware logic and in some

cases MIX registers had to be read out to main memory tem­

porarily to provide the necessary work space. The idea of

storing some of Mix’s registers in main memory had been

considered, this was avoided in the first attempt since

intuitively it would slow the MIX machine. In the second

attempt this approach was again considered. It was decided

that if simpler firmware logic would result from certain

registers being stored in main memory then the speed gained

through this simpler and therefore faster logic would make

up for the time spent paging registers in and out of main

memory. One should also note that the sum of the registers

listed in figure 3.10 is 41 file registers. Thus there were

more MIX register bytes to emulate than there were file reg­

isters.

Initially it was decided to place the X register and

the Index registers in main memory and to page them as

required into the secondary file. Nine file registers

(1-9) were reserved in the secondary file to hold the reg­

isters that were currently paged-in. A page map was to

designate which registers were in memory and which were in

the secondary files as well as which MIX register was in

which set of Microdata files. Using this set-up either

the X register and one Index register or up to 3 Index reg­

isters could be in the secondary files at any given time.

The X register could fit into two possible slots either

66

registers 1-6 or registers 3-9, and Index registers could

fit into either registers 1-3, 4-6, or 7-9. This paging

algorithm plus the other five MIX registers consumed a

total of 29 registers leaving one register free.

Although this method did allow the emulation of all

of Mix’s registers and free work space could be created at

almost any time by paging the registers in the secondary

file out to memory, the overhead involved was considered

very high. Instructions concerning the X registers were

complicated since it would be in two positions. Index

register routines were complicated, since they could be in

any one of three places in the Secondary file. The account­

ing involved in keeping track of the current location of

each MIX register file required three file registers and a

considerable amount of AROM. Some sort of scheduling algo­

rithm was also required to determine which register should

be paged out in order to make room for the incoming register.

It was thus decided that this strategy was too costly both

in terms of firmware logic and file registers.

The paging concept was then amended to apply only

to the Index registers, with only one Index register al­

lowed in the file registers at any given time. The X

register would reside permanently in the secondary files.

This simplified the X register instructions considerably,

as will be discussed later. The Index register instructions

were also simplified since now there were only six different

67

Index registers instead of thirty-six. For example, there

are six load Index instruction, one for each Index register.

But all six are effectively represented by one Load Index

routine since all the Index registers are loaded into the

same place in the secondary file. This routine calls the

paging routine to page in the required Index register and

then loads this register with the proper contents. The

same is true for the Load Index negative. Store Index,

Jump On Index, Enter Index and Compare Index instructions.

The accounting problem associated with the paging system

was also simplified. The page map was now 3 bits long;

these bits contained the number of the Index register

currently rolled in from memory or the value zero if all

the registers were currently rolled out. This ability to

page all the Index registers out to memory provided an

easy way to create free work files when the need arose.

By allowing only one Index register in the Secondary files

at any time, the need for a scheduling algorithm was elimi­

nated. If Index register 1 is in the Secondary files and

Index register 2 is required, either for indexing or by an

Index instruction. Index register 1 must be paged out and

then Index register 2 paged in.

The detailed flowchart of the paging mechanism, called

the Index Register Supervisor can be seen in Chapter V

and the microcode for the routine is found in Chapter VI.

68

Having solved the problem of too-many-MIX-registers-

and-not-enough-files, the allocation of MIX registers to

Microdata files was begun. The A register, the Instruction

register and the Instruction Counter were assigned to the

Primary file while the X register. Overflow and Comparison

Indicators, Index registers, Index Map and Jump register

were assigned to the Secondary file.

The Instruction Counter and Instruction register were

again placed together to facilitate the fetch routine. The

A register was placed in the same file with the Instruction

register for the same reasons discussed in Chapter II, the

main one being that the A register is the register most likely

to be involved in the next instruction fetched. Although

only one free work file remained in the Primary file, the

three files in the Instruction Counter containing the Oper­

ation Code, the Index register and the sign of the Memory

Address normally become available following the execution

of the Instruction Decode Routine. These four free work

areas in the Primary file are available in most cases.

The remaining MIX registers, the X register, the Home

position for the Index registers, the Index Map, the Over­

flow and Comparison Indicators and the Jump Save register

were grouped together out of necessity since the secondary

file was the only place left to put them.

Figure 3.11 illustrates the file mapping that was

finally selected. The A register was allocated Primary

69

Figure 3.11

E T J I J Z N 0 PSO

A
Register

sign Fl sign Si

X
Register

1st byte F2 1st byte S2
2sd byte P3 2sd byte S3

3rd byte P4 3rd byte S4

4^ byte P5 4^ byte S5

5^ byte P6 5^ byte S6
Flee wortf”
Register P7 OLEG x iii S7

Overflow, Comp
& Index Map

Instruction
Register

sign PS sign S8

Index
Register 1

Al address-ho P9 1st bvte S9

1 A2 address-lo PIO 2sd bvte S10

1 index spec. PH Sil Free work
RegistersF field spec. P12 S12

C op code P13 S13

Instructior
Counter

1st byte-ho P14 1st byte-ho S14 Jump
Register

2sd byte-lo P15 2sd byte-lo S15

70

files Pl, P2, P3, P4, P5, and P6. The X register was allo­

cated the matching registers in the Secondary file. This

allignment simplified the different A and X instructions

in much the same way that paging simplified the Index instruc­

tions. The only difference between a Load A and a Load X

instruction is the perodic selection of the Secondary files

instead of the Primary files.

The Instruction register was placed in P8-P13 with

P7 being the one free work file. This placed P7 next to

the sign byte of the instruction address, which is one .of

the first files in the Instruction register to become free.

The Instruction Counter was then assigned to P14 and P15,

the remaining Primary files.

The Overflow and Comparison Indicators, a 4 bit regis­

ter, and the Index Map, a 3 bit register, were combined into

Secondary file S7. The Home position for the Index regis­

ters was assigned S8, S9, and S10. The Jump Save register

was alligned with the Instruction Counter in S14 and S15.

This left Sil, S12, and S13 as free work registers.

It should be noted that eleven file registers can be

freed after instruction decode if they are needed. P7, Sil,

S12, and S13 are always free. P8, Pll, and P13 are free

after instruction decode. S8, S9, S10 can be freed by

paging the current Index register out to memory after the

effective operand address has been computed. Finally, the

71

seven bits of S7 can be packed into SI with the sign of the

X register if necessary, freeing S7.

The mapping allowed simplified coding of Index instruc­

tions and of A and X instructions as well as ample work space

and result in the successful emulation of the MIX 1009 com­

puter.

Firmware Logic Design:

Having defined the MIX Machine in terms of the Micro­

data's hardware, firmware design could begin. First a

general overview of the system was composed. The following

is an explanation of the overview as presented in figure 3.12.

Start Routine:

- performed following cold start and
prior to the execution of any
MIX instructions;

- enables external interrupts;
- enables the real time clock;
- initializes the teletype;
-loads the Instruction Counter from

a dedicated high core address.

Fetch Routine:

- fetches the next instruction into
the Instruction register from
the address contained in the
Instruction Counter.

Addressing Routine:

- computes the effective operand ad­
dress

72

Decode Routine:

" examines the Instruction Operation
Code and transfers control to
the corresponding firmware
instruction module;

Instruction Modules:

- firmware routines that execute the
individual MIX instructions;

Interrupt Handler:

- executed after the execution of
the last instruction and prior
to fetching the next instruction;

- acknowledges and handles external
interrupts from I/O devices;

- acknowledges and handles internal
interrupts from the real time
clock and console pannel.

Subroutine Packet:

- Index register Supervisor:
handles the paging of MIX index

registers.

- I/O Routines:
used by the Input/Output instruc­

tions as well as the inter­
rupt handler.

- Error Routines:
handles user errors such as il­

legal addresses, illegal
opcodes, illegal I/O device
numbers, and I/O errors.

An attempt was made to keep the MIX emulator as modular

as possible. This facilitated program development and de­

bugging as well as simplifying the decode routine. The de­

code routine divides the MIX instruction set into seven groups.

Each group representing a type of MIX instruction.

73

Figure 3.12 SYSTEM OVERVIEI-J

1

Ik

The seven groups are:

1. Opcodes 0-7 Arithmetic-Logic instructions

2. Opcodes 8-23 Load instructions

3. Opcodes 24-33 Store instructions

4. Opcodes 34-38 Input/Output instructions

5. Opcodes 39-47 Jump instructions

6. Opcodes 48-55 Enter and Increment instructions

7. Opcodes 56-63 Compare Instructions

The remainder of this Chapter has been devoted to a dis­

cussion of the major logic problems and their solutions

encountered in microprogramming each of these modules.

Opcode 0-7 Arithmetic-Logic Instructions

The Arithmetic Logic instructions are composed of ten

instructions. Four of these instructions are relatively

straight-forward and nothing will be said here concerning

these instructions. If more information is required about

these routines, consult the corresponding flowcharts in

Chapter V and microcode in Chapter VI. These four instructions

are NOP, HLT, SHIFT, and MOVE.

The remaing six instructions are the various arithmetic

operations, ADD, SUB, MUL, DIV, CHAR, and NUM. The first

problem encountered in microprogramming these routines was

that of representing sign plus magnitude arithmetic on a

two's complement machine. This problem was also found when

coding the increment immediate and decrement immediate

75

portions of opcodes 48-55 and in the Compare instructions,

opcodes 56-63. The major difficulty involved adding or

subtracting two sign plus magnitude numbers, since no hard­

ware mechanism was available to;

1) determine the sign of the result;

2) determine if the result was in true form or

two’s complement form;

3) determine if overflow had occurred.

The Microdata's ALU does, of course, provide this type of

hardware support, but only for two's complement arithmetic.

Therefore, the existing negative result indicator and over­

flow indicator could not be used. The Microdata's negative

result indicator is turned on when the high order bit of

the result is a one, this high order bit being the sign bit

in two's complement. However, in the case of Mix's sign

plus magnitude format the presence of a one bit in the high

order position indicates the presence of a large magnitude

and says nothing about the sign of the mumber involved.

The Microdata's overflow indicator is turned on "when the

carry out of the high bit of the adder differs from the

carry into it" (3). But for sign plus magnitude operations

overflow occurs when the signs of the two operands are the

same and the high order carry out of the address (i.e. the

contents of the Link register) is a one.

When performing sign plus magnitude addition four cases

arise, namely:

"76

Case 1. (+A) + (+B);

Case 2. (-A) + (-B);

Case 3. (+A) + (-B);

Case 4. (-A) + (+B).

The following two rules were employed to perform sign plus

magnitude addition using the Microdata’s ALU.

Rule 1: If the signs of the operands are the same,

case 1 and 2, then add the magnitudes to­

gether, giving the result the sign of A.

Overflow has occurred if the Microdata’s

Link register contains a one.

Rule 2:• If the signs of the two operands are dif­

ferent, cases 3 and 4, then the two’s com­

plement of B is formed, the addition occurs,

and the Link register is examined. If the

Link register contains a one the result is

in true form and the sign of the result is

the sign of A. But if the Link register

contains a zero, then the magnitude of the

result must be two’s complement and the sign

is the complement of the sign of A, (or simply

the sign of B).

This algorithm for sign plus magnitude addition also

works for sign plus magnitude subtraction with one modifi­

cation, namely the sign of B must first be complemented

77

then the addition algorithm can be employed, figure 3.13.

Figure 3.13

(+A) - (-B) = (+A) + (+B) Case 1

(-A) - (+B) = (-A) + (-B) Case 2

(+A) - (+B) = (+A) + (-B) Case 3

(-A) - (-B) = (-A) + (+B) Case 4

The flowchart of the algorithm for two's complement

addition and subtraction on the Microdata 1600/30 appears

on the following page in figure 3.14.

In the actual microprogramming of this algorithm

one major inefficiency was discovered. In figure 3.14, Box

14.1 and Box 14.2 represent the bulk of the required microcode.

Since they involve multiple byte addition or subtraction

operations they are quite long. The other unlabeled flow­

chart symbol's are represented in microcode by two or three

instructions. However, the subtract section. Box 14.1, is

identical to the add section. Box 14.2 with the exception

that all add instructions (opcode 8) are replaced by two's

complement subtract instructions (opcode 9). To avoid this

repetition of code figure 3.14 was modified to take advantage

of the Microdata's U register. The microprogrammer can se­

lect the U register, an eight bit register, to be ORed into

the high order eight bits of the next instruction. For ex­

ample, the instruction in figure 3.15 adds the contents of
*

the T register to Primary file 6 if the U register contains

78

Figure 3.14

> ADD

RETURN

79

X'OO'. However, it forms the two’s complement difference

of Primary file 6 and the T register (P6^—P6-T) if the

U register contains X’lO*.

Figure 3.15

ADD 6,T,(S) or U with X’Se* and execute

* ADD --- ^opcode 8 = X'8’ V X'O'

* SUBTRACT —^opcode 9 = X’8' V X’l*

Figure 3.16 gives the revised general logic flow used in

performing MIX sign plus magnitude addition and subtraction.

The next problem encountered in microprogramming the

Arithmetic operators was that of performing two1s complement

multiplication and division. The Microdata’s ALU does not

have a multiply or divide function available. However,

multiplication and division are actually easier in sign plus

magnitude format than in two’s complement format. After

the mechanism for testing overflow and negative results

were developed for the add and subtract algorithm. The

multiplication routine used a typical shift and add algorithm

while the division employed one of the non-restoring tech­

niques. These algorithms are common and are not discussed in

this chapter. Detailed flowcharts and the corresponding

microprograms can be found in Chapters V and VI.

The remaining two Arithmetic Operators NUM and CHAR

proved to be the most difficult of the Arithmetic-Logic

instructions. The MIX instruction NUM takes the ten digit

80

Figure

81

decimal number is ASCII code loaded in the A and X registers

and converts them into the corresponding binary number, pla­

cing the result in the A register. It is assumed that these

ten characters are numeric and not alpha-numeric. CHAR

provides the opposite function. It takes the 40 bit binary

number in the A register and converts it into the equivalent

decimal number, encoded in ASCII.

The NUM routine works by stripping the four high order

zone bits off of each ASCII character. This leaves a ten

digit Binary Coded Decimal number which was then expanded

according to figure 3.17.

Figure 3.17

a0 al a2 a3 a4 a5 a6 a7 a8 a9

A register B register

(((((((((aQAlO+aj) *104-32) *101-33) *101-34) *104-35) *10+35) *10+37) *10+33) *101-ag)

This p3rt of the expansion wss This part of the expan-
done with a 3 byte multiply. sion was done by a 5

byte multiply.

As noted above two special multiply routines were written

to perform this expansion. One multiplied a three byte oper­

and by 10 and the other multiplied a five byte operand by 10.

This was done to speed up the execution of this instruction.

Figure 3.18 points out that multiplying a number X by 10 is

straight forward.

82

Figure 3.18

X * 10 = (X * 5) * 2 = (X * 22 + X) *2

The CHAR routine is essentially a reversal of the NUM

algorithm operand, initially the 40 bit contents of the A

register is divided by 10. The remainder after the division

was ORed with hexidecimal X’BO' to produce the corresponding

ASCII character. This division occurred ten times construct­

ing the ten digit decimal number from right to left.

Opcodes 8-23 Load instructions and

Opcodes 24-33 Store instructions:

The microprogramming of the Load instructions and

the Store instructions was greatly facilitated by the way

MIX hardware was emulated on the Microdata. No logic

problems were encountered in programming these routines.

However, it is interesting to note the difference in AROM

utilization on these routines between this attempt and the

first attempt. The Load routine for the first attempt, which

handled all 16 Load commands took a total of 166 microinstruc­

tions. However, by reorganizing memory and file allocations

the Load routine in the second attempt took only 86 instruc­

tions. In fact the number of microinstructions required to

code the Load routine and the Store routine, 26 MIX instruc­

tions, totaled only 136 words of AROM. Details of these

routines can be found in Chapters V and VI.

83

Opcodes 39-63 Jump Instructions Enter and Increment Instruc­

tions and Compare Instructions

The only major problem encountered with these instruc­

tions was the problem previously discussed concerning sign

plaiSs.magnitude, addition and-subtraction. After this problem

was solved these routines proved trival. Chapters V and VI

contain details in these instructions.

Opcodes 34-38 Input/Output Instructions and the Interrupt

Handler

The MIX I/O routines are by far the most involved in

the MIX emulator. MIX is designed so that the user need

not worry about details of Input/Output. All MIX Input/Output

occurs in concurrent mode; the user initiates the operation

and then is free to perform other work. At some later time

the user checks if the operation has completed via a Jump

Busy (J-Bus) or a Jump Ready (J-Red) instruction. Figure

3.19 gives the complete table of MIX Input/Output equipment,

all of which is optional. (1).

Figure 3.19
Unit number Peripheral Device Record Size

t tape unit no. t (O4.t<7) 100 words
d disk or drum unit no. d (8£d«15) 100 words

16 Card Reader 16 words
17 Card Punch 16 words
18 Printer 24 words
19 typewriter and paper tape 14 words

84

Each device has an associated fixed length record size.

Transfers to and from the magnetic units involve full MIX

words, sign and five bytes. Input or Output to the other

devices is by character code, thus on Input signs are set

to zero, and on Output signs are ignored.

The format of the Input/Output instructions is a little

different from the rest of the MIX instruction repitoire.

The opcode is, of course, used to indicate which I/O instruc­

tion the user wishes to execute. The F-field is used to

denote which device is to be activated, and the memory

address, which may be indexed, points to the first word

of the buffer area to be used. The length of this buffer

area is determined by the device chosen, (F-field) and by

Figure 3.19.

Emulation of MIX I/O instructions was difficult be­

cause all the work associated with Input/Output must be

performed by the microprogram. The MIX user provides the

emulator with three parameters; (1) the direction of

transfer, (2) the device number, and (3) the buffer address.

After this presentation of parameters the microprogram is

responsible for the remainder of the operation. The problem

of writing these device handlers was complicated by the way

the Microdata 1600/30 devices work. Of the MIX devices

described in figure 3.19 the following were implemented.

85

Figure 3.20

Unit Number Peripheral Device Record Size

14 Disk Drive 32 words
15 Disk Drive 32 words
16 Card Reader 16 words
18 Printer 24 words
19 typewriter and paper tape 14 words

Due to differences in the peripheral controllers, these

four devices employ three different types of Input/Output.,

The card reader and printer work in concurrent interrupt mode.

In this mode the device controller generates a concurrent

I/O request (interrupt) each time it is ready to perform

a data transfer. Each data transfer involves sending or re­

ceiving a single byte of information. The typewriter and

paper tape (teletype) work in byte mode. This mode of Input/

Output is the simplest of all I/O schemes. No interrupts

are available in byte mode operations. The microprogram

must repeatedly sample the teletype controller status byte

and test if the controller is ready to transfer a byte of

data. When the controller is finally ready, a single byte

of data can be transmitted either to or from the teletype.

The disks employ a mode resembling the I/O described for MIX.

A Direct Memory Access (DMA) port is used by the disk con­

troller to handle disk I/O. This port provides a direct

path between main memory and the specified disk drive.

86

Therefore, no microprogram intervention is required once

the operation has been initiated. The microprogram starts

a disk operation by sending four parameters to the disk

controller as follows:

(1) Device Address;

(2) Section Address;

(3) Starting Memory Buffer Address;

(4) Ending Memory Buffer Address.

Once this information is received the transfer takes place

automatically.

The remainder of the Chapter is divided into three sec­

tions. Section one presents the card reader and printer

handlers. Section two explains the teletype handler and

section three deals with the disk handler.

Card Reader and Printer

Three major problems were encountered in writing the

I/O handlers for the card reader and printer. The first

problem was to develope a scheme to perform block transfers.

This can be accomplished by setting a counter equal to the

number of bytes to be transfered and saving the address of

the buffer area. Then when a concurrent request is recog­

nized the microprogram adjusts the counter and the memory

address and performs the transfer. However, if the I/O

is to be concurrent, the user must be allowed to execute

MIX instructions between data transfers. This implies that

87

the concurrent counter and buffer address cannot be saved

in the file registers, since some MIX instructions use all

of the files in the course of their execution. Thus these

concurrent I/O values were stored in dedicated surplus mem­

ory bytes. As a result these counters are invisible to the

MTX^user.

As shown in figure 3.21, the execution of an In command

to the card reader or an Out command to the printer occurs

in three steps. First the status of the unit involved is

polled to see if the controller is currently performing an

I/O operation. If the unit is busy then the microprogram

loops through the interrupt subroutine until the unit is

ready. At this point a command is issued to the device

controller to arm the concurrent interrupts and to begin

an I/O operation. The concurrent count is then assigned its

proper value, either 80 for the card reader or 120 for the

printer, and this value along with the instruction memory

address, files P9 and PIO are read out to the corresponding

dedicated memory locations.

Recall from figure 3.12 that the interrupt routine is

executed immediately prior to fetching the next MIX instruc­

tion. It is this routine that actually performs the data

transfers once a concurrent operation has begun on the card

reader or printer. Figure 3.22 illustrates the handling of

concurrent interrupts by the interrupt subroutine. If a con­

current request has occurred, the request is acknowledged

88

Figure 3
Concurrent I/O

------------ 3$E-------------
Assign Counters

Proper Values

--------- —------------
Write Memory

Address & Counter

89

Figure 3.22

90

and the requesting device responds by supplying its device

address. The interrupt routine examines this device address

to determine which device is requesting service. Once this

has been determined the devices concurrent values are fetched

from main memory. These counters are adjusted and the spe­

cif led* transfer occurs. The concurrent counter is then tested

if it is still positive the counters are written back out

to main memory. However, if the counter is zero or negative

the interrupting device is disabled and interrupts for this

device are disarmed.

The second problem in designing the concurrent I/O rou­

tines concerned the card reader’s character code. The card

reader uses the EBCDIC character code while the other devices

use ASCII. Therefore, translation,, from EBCDID to ASCII

must occur before a card image can, for example, be listed

on the printer. This conversion involves a simple table

look up. The high order two bits of the incomming EBCDIC

character are masked off and the low order bits are then

used as an index into the ASCII table to retrieve the cor­

responding character. Since MIX provides no logical op­

erators this masking operation is rather involved if the

MIX user must perform the conversion. Therefore, the EBCDIC .

to ASCII conversion was performed in the microprogram.

This was rather expensive in terms of AROM utilization. There

are 64 characters in the ASCII code. . However 128 AROM loca­

tions were required to hold the table. This resulted from

91

the lack of a microinstruction of the form;

Figure 3.23

Opcode file register AROM address

Load the specified file register with the contents of the
given address.

The only Load instructions are Load Immediate instructions,

where the literal in the low order 8 bits of the instruction

are loaded into the specified register. As a result each

entry in the ASCII table was composed of two microcommands.

The first was a Load immediate instruction, the second was

a Jump instruction. The microprogram that converts from

EBCDIC to ASCII works as follows:

1. AND off the high order two bits of the EBCDIC

character;

2. Shift the remaining 6 bits one place left;

3. Move the register containing these bits to the

L register (This creates a multiply way branch,

for now the low order 8 bits of the microloca­

tion counter have been altered).

4. A branch to the ASCII table occurs where the

correct ASCII character is loaded into a predeter­

mined file register;

92

5. A Jump back to the card reader routine occurs;

6. At this point the conversion process has been

accomplished.

The third problem encountered also concerned the card

reader. The Microdata 1600/30 and the card reader controller

were designed to recognize certain error conditions such as,

pick failure, hopper empty, and illegal Hollerith Codes.

When such an error is detected an external interrupt is gen­

erated. However, MIX does not specify how these interrupts

should be handled. Therefore, two high core MIX words were

dedicated to the card reader to allow the user to handle these

I/O errors. If an external interrupt from the card reader

is encountered the interrupts routine stores the card reader

status byte and the contents of the MIX location counter in

one of these dedicated locations and then loads the MIX loca­

tion counter with the address of the other dedicated location.

Thus the next instruction will be fetched from this interrupt

address. If the user wishes to halt anytime a card reader

error occurs,-he simply loads this location, prior to run time

with a MIX Halt instruction. If thes user wants to handle

the error, then a Jump instruction should be placed at this

location which will cause control to be transfered to the

users error routines. Following the execution of the error

routine, the user can load the old contents of the MIX Loca­

tion Counter into the address portion of a MIX Jump instruction

93

and jump back to section of MIX code being executed when the

error occurred.

Typewriter and Paper Tape

The typewriter and paper tape station available on the

Microdata 1600/30 is a 10 baud full duplex teletype. This

device works in byte mode and no interrupts are set by the

controller. This presented several problems. First, if

teletype Input/Output was to be performed concurrently with

the execution of MIX instructions the interrupt routine must

handle all but the I/O intialization. However, since no data

ready interrupts were available, some other mechanism had

to be developed to time data transmissions due to the slowness

of the teletype. The teletype could be polled on each execu­

tion of the interrupt routine, however, this routine is exe­

cuted approximately once every 40 microseconds and the teletype

transmits only 10 characters per second. Thus polling each

time the interrupt routine was entered seemed somewhat extreme.

The only other timing device available was the Microdata real

time clock. This hardware clock generates an internal inter­

rupt once every millisecond. This is still 100 times faster

than the teletype; however, it was an improvement over a

few cycle times. This interrupt scheme along with four dedi­

cated bytes of surplus memory solved the teletype problem.

Three of these dedicated bytes were used to provide the memory

buffer address (16 bits) and the byte counter, as with the

94

card reader and printer. The fourth byte was used as an

internal MIX status byte for the teletype. One bit of this

byte was labeled the "controller ready bit". If this bit

was a one the device was ready to begin an I/O operation.

If this bit was zero then the teletype was still involved

in an I/O operation started previously. This bit was used

both in the In and Out routines as well as in the interrupt

routine. The In and Out routines loop through the interrupt

routine until this bit becomes a one. The interrupt routine

test this bit upon receiving a real time clock interrupt.

If this bit is one then the teletype routine is skipped. If

it is a zero an attempt is made to transfer a byte of data.

Four other bits of this internal MIX status bytes were

assigned functions also. One bit was dedicated as an input

flag and one as an output flag. This was necessary in order

to determine which operation was to be perfomred.

One bit was used to remember when to send a line feed.

In case of either teletype Input or Output, once 14 words

have been transmitted a carriage return and line feed must be

sent. The interrupt routine recognizes the need to send a

carriage return when the counter goes to zero. Upon sending

the carriage return the line feed flag is set to 1. The next

time the teletype is polled, the interrupt routine finds the

counter zero and the line feed flag turned on. The inter­

rupt routine then sends a line feed and resets the internal

95

status controller ready bit to a one.

The other dedicated bit in the internal status bit of

the teletype is used to reflect input characters back to the

typewriter (teletype is full duplex). When in Input mode,

the interrupt routine must receive characters from the key­

board and then send this character back to the printing ball,

so the characters being input will be written on the teletype

paper. However, this reflection cannot be done immediately.

The reflection must occur the next time the teletype is ready

to receive data. Thus when a character is input from the

keyboard, the interrupt routine receives the byte and stores

it in the location specified by the memory address counter.

However, the memory address counter and byte counter are not

updated at this time. The interrupt routine turns the input

bit off and turns on the reflection and output bits. The

next time the teletype is ready the interrupt routine finds the

output bit on so the data byte pointed to by the memory address

counter is output and the counters are adjusted and read back

to memory. The interrupt routine then tests to see if the

reflection flag is on. If it is not, the interrupt routine

leaves the teletype handler and proceeds to find other inter­

rupts. But if the reflection flag is on, the interrupt routine

turns this bit and the output bit off and turns the input bit on.

Figure 3.24 illustrates the format if the teletype internal

status byte.

96

Figure 3.24

7654 3 210
--- 1--- 1--- 1--- 1-- 1--- 1--- 1---

---- Controller ready flag

--- - Input flag

----------- Output flag

.....—- Reflect flag

------------------ Line feed flag

Figures 3.25 and 3.26 present a general flowchart of the tele­

type internal status byte.

At this point a word concerning Input/Output timing seems

appropriate. What quarentee is there that the interrupt rou­

tine will process I/O interrupts fast enough to avoid losing

any information? This problem is most serious on the card

reader since it is faster than the teletype. If there exist

a MIX instruction whose execution time is longer than the

time between card reader interrupts, then it is possible

to miss information, for example, the routine might only

receive every other byte. The printer is faster than the

card reader, but once the printer is ready to receive a

data byte, it will stay ready as long as no outside interven­

tion occurs. However, when the card reader interrupts to

request a transfer, this interrupt must be answered within a

certain time frame or else the next byte of information will

97
Figure 3.25

Teletype In and Out Instructions

Fetch
Cycle

98

False

I

False

False

True

True FalseInput

False

True

Set Status

Set Line
Feed On

to
Input

Continue \
Processing
nterrupts /

Send Carriage
Return

Set TTY
Status to

Reflection
Mode

Write
Counters

to Memory

Transmit and
Store

Data Byte

Load & Send
Data Byte
Adjust

Counters

True

Send Line Feec
Stop TTY

I/O

Controller
Ready to

nterrup
Routine

TTY
Busy

Line
Feed Flag

On

Falseeflection

FalseCount=0

eal TruTime Clock
nterrup

True

lag o

Figure 3.26

True

99

arrive, overlaying the previous byte.

To show that the microroutine is fast enough to handle

the card reader, the longest possible MIX instruction cycle

time must be shown to be shorter than the shortest possible

interval between data signals. Figure 3.27 shows how an up­

per bound on the longest path through the MIX emulation can

be found.

Figure 3.27

1. Execution of the fetch routine requires

44 clock pules (200 nanosecond pulses).

2. The memory address and decode routines

contain no loops and the total number of

instructions involved in both routines

is 127. This includes all possible paths.

3. The interrupt routine is 215 instructions

long. Note: Card reader interrupts are

handled first by this routine.

4. The longest MIX instruction is the Char instruc­

tion which is 116 commands long, some sections

of which are executed 10 times.

5. An upper bound on the worst case is thus

44 + 127 + 215 + 116 * 10 = 1546 clock pulses.

The data signal from the card reader lasts, in the worst case

(allowing for skewness and taking only the highest light sig­

nal) , at least .5 milliseconds or 500,000 nanoseconds

100

(.5 * 10”3 = 500,000 * 10“9). One clock pulse occurs

every 200 nanoseconds on the Microdata, so each data sig­

nal lasts 2,500 clock pulses, safely more than the 1544

required.

Disks

The disk drivers were the simplest I/O handlers written

due to the hardware available on the Microdata. However,

several problems were encountered. Knuth specified that each

disk record should consist of 100 MIX words. This works out

to 800 Microdata bytes. However, the smallest addressable

block on the Microdata disk is 256 bytes long. Thus to ac­

commodate 800 bytes, three full sectors plus 32 bytes of a

fourth sector are required. This wastes the remaining 224

bytes of the fourth sector. The disk record size was there­

fore made to be variable in length, with the hope that MIX

users would use records sizes that are multiples of 32 MIX

words. The length of the disk record in MIX words to be

read or written is placed in bytes 2 and 3 of the X register.

The X register is also used to select the beginning sec­

tor address, (bytes 4 and 5); however, the MIX user must

use the Microdata's scheme for addressing different sectors

of the disk. Figure 3.28 gives the addressing format as well

as the format of the X register. Figure 3.28 appears on

the following page.

101

Figure 3.28

0 - removable 0 - 202 0 - Top 0-23
1 - fixed 1 - Bottom

The other problem encountered concerned the IOC instruc­

tions when this instruction is executed with the disk as the

selected device, the disk read/write heads are to be positioned

to the cylinder address found in the X register. This is not

possible on the Microdata since once the Seek command is given

the heads are positioned and the I/O must follow immediately.

Figure 3.29 gives a general overview of the disk operation.

102

Figure 3.29

IV. USER’S GUIDE

This Chapter provides a user’s guide for the MIX 1009

machine as emulated on the Microdata 1600/30. Two sections

are presented; the first explains the functions of the sys-

teimreoneede=-as* they-pertain-txr the'MIX 1009 machine. For

more information on the 1600/30 console see Microdata (3);

the second section explains the ten dedicated MIX memory

locations.

System Console

Figure 4.1 presents a frontal view of the Microdata

1600/30 console. This console provides the user with the

hardware to cold start the MIX machine and to execute and

debug MIX programs.

1. Key-Lock Switch

This switch can be turned to one of three posi­

tions. The key-lock switch should be set to the ON

position when using the MIX 1009 machine. This sup­

plies power to the CPU and enables the PANEL mode

switch.

2. Machine State Control Switches

This group of five momentary contact switches

are activated when pressed down. Each switch is des­

cribed below:

1600/30 System Console

Figure 4.1 (2)

105

A. RESET Switch

When pressed this switch clears and halts the

CPU. It is used only during COLD START (Refer to

MIX COLD START Procedure).

B. CLOCK Switch

When the CPU is the RUN state, pressing the

CLOCK switch forces the CPU to halt after executing

the current microcommand. When the CPU is in the

HALT state, pressing the CLOCK Switch forces the

CPU to fetch and execute the next microcommand

and then halt.

C. INT Switch

When the INT switch is pressed, a console inter­

rupt is recognized by the MIX 1009 machine. This

invokes the MIX initialization sequence (Refer to

MIX COLD START Procedure).

D. STEP Switch

Pressing the STEP switch forces the MIX pro­

cessor to execute the next MIX instruction and HALT.

When the HALT occurs the M display may be selected

and the address of the next MIX instruction, in

binary will appear on the 16 data lights.

E. RUN Switch

Pressing the RUN switch places the CPU in the

RUN state. The CPU remains in this state until a

106

halt instruction is executed or until the CLOCK, STEP,

INT or RESET switch is pressed.

3. PANEL MODE Switch

When the key-lock switch is in the ON position and

the PANEL MODE switch is in the UP position the MIX pro­

cessor will execute MIX instructions when placed in the

RUN state. When the key-lock switches in the ON posi­

tion and the PANEL MODE switch is in the DOWN position

most of the MIX registers can be displayed and modified

via the DATA switches and the CLOCK switch.

4. Machine State Indicator Lights

When the RUN indicator is lit the CPU is in the

RUN state. When the HALT indicator is lit the CPU

is in the HALT state.

5. Panel STATUS Indicator Lights

When the key-lock switch is set to LOCK, the

LOCK indicator comes on. When the key-lock switch is

set to On and the PANEL MODE switch is down, the

PANEL light comes on.

6. -BATA Switches

When the PANEL INDICATOR is off, all 16 DATA

switches should be in the UP position. When the PANEL

INDICATOR is on the 16, DATA switches can be used to

display and modify most of the MIX registers. The DATA

switches are numbered from 0 to 15, starting from the

RIGHT. A binary 1 is indicated when a DATA switch is

107

down, a binary zero is indicated when the switch is up.

7. Address Stop Indicator

This indicator is not used by the MIX 1009 machine.

8. Scan Indicator

This indicator is not used by the MIX 1009 machine.

9. SENSE Switches

These four switches are used by the MIX 1009 ma­

chine during COLD START and BOOTSTRAP operations.

10. DATA Display

The 16 DATA display lights allow the MIX user to

view, in binary, the address of the next MIX instruction

or the current contents of a selected MIX register. A

binary 1 is indicated when a data light is on, a bin­

ary 0 if the light is off.

11. DISPLAY SELECT Push Buttons

These push buttons select the source of the data

displayed on the 16 DATA display indicators. The L and

C push buttons are not used on the MIX machine.

M-Core Memory Address

This button is depressed when the MIX user is

executing a program via the STEP switch. When the M

button is selected and the STEP switch is depressed the

address of the next MIX instruction will appear, in bi­

nary, on the DATA display indicators.

108

D-DATA

The D push button is selected when the Mix user

is examining and /or changing the contents of MIX reg­

isters via the PANEL, DATA, and CLOCK switches.

12.. AROM Control Switches

Th®*LINK- CONTROL switch', MANUAL OPERATION switch

and CONTROL MODE switch control the operating environ­

ment of the Alterable Control Memory (ACM). All three

switches should be DOWN for proper operation of the MIX

1009 machine.

13. COLD START Button

The disk controller allows the Microdata 1600/30

to cold start from a loader program stored on a disk

drive. Pressing the COLD START Button causes the first

256 bytes of the removable platten on drive 0 to be

loaded into the first 256 bytes of core memory.

MIX Console Procedures

The MIX user has available five major Console Procedures.

The MIX user can COLD START the MIX 1009 computer, BOOTSTRAP

an object program into memory, STEP through MIX programs

one instruction at a time, DISPLAY most MIX registers, and

MODIFY most MIX registers. The following is a detailed dis­

cussion of each procedure.

109

MIX COW START Procedure

The microprogram that defines the MIX 1009 program

on the Microdata 1600/30 resides in the Microdata's Alter^-

able Control Memory. This ACM is a volatile memory, the

contents of which are filled with binary ones each time

the AROM CONTROL MODE switch is placed in the UP position.

Each time this occurs and before a MIX program can be loaded

the MIX emulator must be reloaded into the AROM. This

procedure is called a MIX COLD START. The COLD START

hardware and loader program are the same as the ones

used to perform initial program loads for the operating

systems on the Microdata 1600/30. Pressing the COLD

START Button causes the first sector (256 bytes) of the

removable disk of drive zero to be loaded into the. low 256

bytes of memory. Pressing the RUN switch causes this

loader program to begin execution. This program can

load any of four systems. The user specifies which system

is to be loaded by setting the system CONSOLE SENSE switches.

To specify the MIX emulator, SENSE switches 4 and 3 should

be UP and SENSE Switches 2 and 1 should be DOWN. The COLD

START load routine, upon testing these switches, will read

into memory the AROM Load Program and the MIX eumulator

and jump to the beginning of the AROM Load Program. The

AROM Load Program then loads the AROM with the MIX emulator.

110

The AROM Load Program will inform the user of any

errors that occur during transmission. When the AROM has

been successfully loaded the CPU will halt. Then, when the

RUN switch is pressed the MIX 1009 computer will begin

executing MIX instructions. The MIX COLD START Procedure

is-as^- follows:

1. Turn the Key-Lock switch to the On position;

2. Set the DATA switches and the PANEL MODE

switch UP;

3. Set the AROM CONTROL switches DOWN;

4. Flip SENSE Switches 3 and 4 UP, and SENSE

switches 1 and 2 DOWN;

5. Press the CLOCK SWITCH;

6. Press the RESET switch;

7. Press the COLD START Button;

8. Press the RUN switch.

If an AROM load error occurs the user can attempt a reload

as follows;

9. Set SENSE switches 2, 3, and 4 UP. Set SENSE

switch 1 DOWN;

10. Press the RUN switch;

If an AROM load error does not occur or occurs but the user

wishes to ignore the error, then:

9. Set SENSE switches 1, 3, and 4 UP; set

SENSE switch 2 DOWN;

10. Press the RUN switch.

Ill

BOOT STRAP Procedures

The BOOTSTRAP procedure allows the MIX user to load

the first MIX program into memory, after the MIX emulator

has been loaded. The BOOTSTRAP Procedure is emulations's

implementation of Knuth's GO button. When Knuth's GO

button is pressed, a single card is read from the card

reader into MIX locations 0000-000F. When the card

reader is no longer busy, the MIX computer begins executing

the program just read from this card starting at location

0000. The BOOTSTRAP Procedure corresponding to Knuth'S GO

button is as follows:

1. COLD START the MIX 1009 computer;

2. Place the load program card in the card

reader and ready the card reader;

3. Set SENSE switch 4 DOWN and the other SENSE

switches UP;

4. Press the INT switch;

5. Press the RUN switch.

STEP Procedure

The STEP Procedure may be invoked at any time the

user wishes to execute a single MIX instruction at a time.

This procedure is as follows:

1. PRESS the M DISPLAY SELECT push button;

2. Press the STEP Switch.

112

Each time the STEP switch is pressed one MIX instruction

is executed and the address of the next MIX instruction to

be executed will be displayed in binary on the DATA DISPLAY

INDICATORS. The user should note the I/O instructions will

not work correctly if they are executed by pressing the

STEP" switch-, since the I/O devices work separately from the

CPU.

DISPLAY MIX Registers Procedures

It is possible for the MIX user to display most of

the MIX registers whenever the MIX 1009 computer is halted,

(i.e. when the HALT Machine Indicator Light is ON). The

MIX A, X, J. Instruction Counter, Overflow Toggle and Compar­

ison Indicator can be displayed one byte at a time whenever

the HALT light is on. However only one Index register is

available for display at any given time. The MIX registers

emulated in the Microdata's 30 general puropse registers

as shown in figure 4.2. These 30 general purpose registers

are divided into two files, the Primary files P1-P15 and

the Secondary files S1-S15. Only one set of files may be

addressed at any one time. When the STEP switch is pressed,

the Primary files are selected and any. byte of the A register

or of the Instruction Counter can be displayed. If informa­

tion in the Secondary files is to be displayed the Secondary

file must first be selected. Once this has been done, any

byte in the Secondary files, S1-S15, can be displayed. If

113

Figure 4.2

E T J I J Z N 0 PSO

A
Register

sigrr Pl sign- SI

X
Register

1st byte P2 lSt byte S2

2nd byte P3 2nd byte S3

3rd byte P4 3rd byte S4

byte P5 4^ byte S5

5^ byte P6 5^ byte 86
Free work Register P7 OLEG x iii S7

s0KSS0fepCo"p"

Instructio
Register

sign PS sign S8
Index

Register iAl address-ho P9 1st byte 89
i

A2 address-lo PIO 2sd byte 810

I index spec. PH sn
Free work
RegistersF field spec. P12 S12

C opcode P13 S13

Instructic
Counter

n 1st byte-ho P14 1st byte-ho 814 Jump
Register2nd byte-lo P15 2sd byte-lo 815

114

the user wishes to check again some information in the Pri­

mary files, the Primary files must first be selected since

the Secondary files are currently the ones available for

display. The procedures for displaying information, and

selecting the Secondary and Primary file follow:

Select Secondary Files Procedure

1. Load the following bit pattern into the DATA

switches: 0001 0000 1000 0000 (1080,c)ID
2. Set the PANEL MODE switch to the DOWN position;

3. Press the CLOCK switch.

Select Primary Files Procedure:

Note: The Primary files are automatically selected

when the STEP switch is pressed. This procedure

need be involked only when the user has pressed

the STEP switch and then performed the Select

Secondary Files Procedure and now wishes to select

the Primary files once again.

1. Load the following bit pattern into the DATA

switches: 0001 0000 0100 0000 (1040,,);io
2. Set the PANEL MODE switch to the DOWN position;

3. Press the CLOCK switch.

Display Primary File Register

1. Select Primary files either by pressing the STEP
switch or by performing the Select Primary Files Pro.;

115

2. Press the D DISPLAY SELECT Push button;

3. Set the PANEL MODE Switch to the DOWN posi­

tion;

4. Load the following bit pattern into the DATA

switches 1100 XXXX 0000 0000 (CX00,,.lb;
where XXXX is the binary equivalent of the

file number to be diaplayed. For example

to display Pll enter 1100 1011 0000 0000

(cboo16).
5. Press the CLOCK switch.

The contents of the file register selected will appear on

the eight right hand DATA DISPLAY lights.

Display Secondary File Register Procedures

This procedure is the same as the Display Primary File

Register Procedure, only in Step 1 the Secondary files must

be selected instead of the Primary files.

Note from figure 4.2 that Secondary file registers S8,

S9, S10 are dedicated to Index register i. This is the only

one of the six MIX Index registers that can be displayed.

The user can determine which of (the six Index registers is

occupying these locations by examining the low order three

bits of Secondary file register S7.

116

Modify MIX Registers Procedures

MIX registers can be modified one byte at a time. The

procedure is similar to the Display Procedures. The Proce­

dure is as follows;

1. Determine from figure 4.2 the location of the

MIX register to be modified.

2. Using the Select Files Procedure select the

proper set of file registers.

3. If required the user may now display the con­

tents of the chosen MIX register;

4. Set the PANEL MODE switch DOWN;

5. Enter the following bit pattern into the

DATA switches: 0010 XXXX YYYY YYYY, where

XXXX is the binary equivalent of the file

number to be loaded, and YYYY YYYY is the 8

bit binary value to be loaded. For example,

to load file 3 with a decimal 18 set the DATA

switches to 0010 0011 0001 0010.

6. Press the CLOCK Switch.

7. The user may now display the new contents,

change them again, or change some other regis­

ter.

Note: After Displaying or Modifying registers the user must

raise the PANEL MODE switch before pressing the STEP 62 RUN

switch. The user need not select the Primary files before

117

executing the next instruction, as the MIX emulator will

reset the CPU to the Primary files upon leaving the STEP

Sequence.

Dedicated MIX Memory Locations

The last ten words of MIX memory have been dedicated

to specific functions of the MIX machine figure 4.3 and the

description that follows explains these functions.

Note: MIX users should never use the last 18 locations

of memory as buffer area for disk operations as certain values

which are transparent to the user would be destroyed if the

disk were allowed to input data to this area.

MIX Words OFF6-OFF7

Illegal address. Illegal Opcode, Illegal Device,
Trap Locations

An attempt by the MIX user to execute an instruction

containing an illegal address, opcode, or device number,

invokes the MIX User Abort Sequence. This sequence causes

the execution of the following two steps:

1. The current contents of the MIX Instruction

Counter are written into the (1:2) field of

MIX word OFF 7.

Note: The address of the illegal instruction

is the contents of the Instruction Counter minus

one

118

Figure 4.3
MIX Address
Hexidecimal

OFF 6

OFF7

OFFS

OFF 9

OFFA

OFFB

OFFC

OFFD

OFFE

OFFF

Decimal Function

4086

4087

Abort Instruc­
tion

Format

Abort Return
Address

4088 V/Z/Z/Z/^ Hopper Empty
Instruction

4089

4090

4091

4092

4093

4094

4095

Hopper Empty
Return Address

V////////A Card Reader
Error Instruc­

tion

Card Reader
Error Return
Address

Y////////A

p c MD DD

LI L2 Cl C2 C3

Disk Error
Instruction

Disk Error
Return Ad­

dress

P - Printer
Status

C - Card
Reader
Status

MD - Major
Disk
Status

DD - Diagnostic.
Disk
Status

LI -
L2 -
Cl -
C2 -
C3 -

MSB
LSB
MSB

LSB

of LoadAddress

119

2. The Instruction Counter is loaded with OFF 6

and execution continues, beginning with the

instruction found at OFF 6.

To use this facility the user should load MIX location OFF 8

with either a Halt instruction or a Jump instruction. If

the Halt instruction is used the MIX processer will halt

when an illegal instruction is used. The MIX processer

will halt when an illegal instruction is encountered.

However, the iser may wish to weite his own routine to handle

illegal instructions, for example, a core dump routine.-

In which case OFF 6 would contain a Jump to this routine.

The user can also choose to continue processing by jumping

to the address found in the (1:2) field of location OFF 7.

MIX WORDS OFF8 - QFFD

Card Reader Trap Locations

A. Hopper Empty Trap Location

An attempt to execute an IN instruction directed

to the cardreader when the hopper of the card

reader is empty invokes the Hopper Empty Trap

Sequence. This sequence causes the execution

of the following two steps:

1. The contents of the MIX instruction Counter

are written into the (1:2) field of MIX

word OFF 9.

120

Note: This is the instruction immediately

following the interrupting IN instruction.

The IN instruction has not been executed

2. The Instruction Counter is loaded with

OFFS, and execution continues, begin­

ning with the instruction found at OFFS.

B. Illegal Character Code or Mechanical Failure

Trap Location

Failure of the card reader to recognize

a character punched on the card currently being

read or failure to correctly pick the next

card invokes the Illegal Character Code or

Mechanical Failure Trap Sequence. This se­

quence causes the execution of the following

three steps:

1. The contents of the MIX Instruction

Counter are written into the (1:2)

field of MIX word OFF B.

Note: This is the next instruction to

be executed.

2. The card reader status byte is stored

in the (3:3) field of MIX word OFF E.

3. The Instruction Counter is loaded with

OFF A, and execution continues, begin­

ning with the instruction found at OFFS.

121

MIX Words OFFC - OFFD

Disk Trap Locations

If a disk error is sensed by the disk controller, the

Disk Trap Sequence is invoked. This sequence occurs in three

steps.

1. The contents of the MIX Instruction Counter

are written into the (1:2) field of MIX

word OFFD.

Note: This is the next instruction to be

executed.

2. The Disk Major Status is written into the

(5:5) field of MIX word OFFE. The Disk

Diagonistic Status is written into the

(4:4) field of MIX word OFFE'.

3. The Instruction Counter is loaded with OFFC, .

and execution continues.

MIX Word OFFE'

MIX I/O Status word

Following the completion of card reader, printer or

disk I/O operation the status of the device involved is

stored in MIX word OFFE. The user can sample this word

to determine the outcome of the last operation. Figure 4.4

gives the format for each status word.

MIX Word OFFE

122

Figure 4.4

Bit = 1

Printer Ready-
Printer
Status Byte

------------ Print buffer ready to accept
character

Card Reader
Status Byte

Bit = 1

Card Reader ready
Data ready for Input to
"* Computer
Input hopper empty

-i—. .- EBCDIC error
Mechanical error

Disk Major
Status Byte

Drive number
Error detected-examine DIA.

Status
Controller ready
■Cylinder Seek error
Returned

Status Byte DMA channel overrun (Data
lost)

Render check code error
Data check code error
■Write attempted on a protected

sector
•Disk address comparison error

123

MIX Word OFFF'

MIX Load Address and MIX Real Time Clock

When one cold starts the MIX processer or when the

PANEL Interrupt Switch is depressed, the MIX processer is

reset and the Instruction Counter is loaded from the (1:2)

field ofMIX word OFFF. Also at these times the MIX Real

Time Clock counter, field (3:5) of this word, is set to

zero. This field is incremented by one every millisecond

while the processor is running.

V. FLOWCHARTS

I. Driver Routines

A. GO

B. FETCH

C. ADDRESS

d: decode*
II. Instruction Repertoire

A. ADD and SUB

B. MUL

C. DIV

D. NUM

E. CHAR

F. SHIFT

G. MOVE

H. LOAD

I. STORE

J. INPUT/OUTPUT

K. JUMP

L. ENTER

M. COMPARE

III. Subroutines

A. ABORT

B. ERROR

C. Zll, Z6, Z4

125

D. L.R
E. ID.IX, IDIX, .IDIX
F. ICOX
G. I.DOX, IDOX
H. .OUT, O.UT, I.OUT
I. .IN*
J. ISKIP
K. INDEX Supervisor, PAGE, VIA, VINDEX
L. INTERRUPT
M. PRINTER, T.OUT
N. READER, T.IN
O. IREADER
P. IDSK

126

I. Driver Routines

127

FETCH

128

1

129

DECODE ABORT

130

131

132

T AlOEO.'

T A’DC5’

133

II. Instruction Repertoire

134

9

135

136

137

138

P11<-X’O7’
PlK(-Pll.and.P12
,P12^--P12/8

Sl<f—Pl

P1<P1 .xor.T
P12<--P 124-1

Sign Of A in Pl
S13<P104-P114-l
S124-P94-L
P124-P11-P124-1
Pl^X’OC’
Move P2-P6 to

P7-P11
Move S2-S6 to

P2-P6
Zero S2-S11

139

ADD,(S)
S11-S7 to
S2-S6

V
UT ADD S2-S6 toTT

S7-S11P13=0
-ve

.Result

Shift P5-P2, P11-P7, S6-S2
P134--P13-1

F

2

140

Multiply

3 Bytes by 10

141

Multiply

5 Bytes By 10

142

FETCH

143

144

FETCH

F

M0c

S11<-X'OO'Sll<-T

P
E

S2<--P6

QHG P&4~ P5
P6<~X’OO’

C,P10<-P10-1

0) Case

S6<— S5
S5^~S4
S4<—S3

P4<-P3
P3<--P2

P64--S2
S2<-S3
S34--S4
S4<-S5
S5<-S6
S64-S11

I C,P10<-P10-L
C,P9<^P9-L

Shift
Right

Zero
Result

Zero
Result

Shif
Right

hift
Circular

F
hif t

Left

B
Shift

Circular

SHIFT

T

P2<-P3
P3<-P4
P4<-P5
P54--P6

FETCH FETCH

145

146

17

147

15

148

S

P12<tT+1

T

Load A FPll =
X Z

FETCH

CC

Load AAA SSF

rGG
EEF

Select
Secondary

. Files

Read Full
Cycle /
into T /

U,P84-P8+1
CF,P7<-P7-1

File(U)^--0
Select
Primary
Files

-X’80'
-P13.and.T-

File(U)4— T
' SPF -

N,P10^~P10+l
M,P9<-P9+L
U,P8<-P8+1

/ T
CF = X'06>-

n;pio<'-pio+t
M,P9«4-P9+L

u
F

DP _________
File(U)^-T

SPF
CF,P12^-P12-1

15

T

BB

FETCH

149

U,P12<4-X,CD’

Plie-Pll.and.P12
P124-P12/8
P7^-Pll+pl2+l
P10,N4~ P10+P12
_P9,M<-P9+L

19

150

P10,N<-P10+l
P9,M<-P9+L

151

152

Call
BIX

CF,P7^-P7-1

153

154

FETCH

155

FETCH

156

157

42

158

159

160

FETCH

161

162

37

163

38

164

165

166

167

168

FETCH

169

III. Subroutines

170

171

Return

172

T <- X’O7’
T<-P12.and.T
Pll^~ T
P12,T<-P12/8

Legal
F field

RETURN ABORT

173

INPUT
DATA
BYTE

OUTPUT
COMMAND
BYTE

OUTPUT
COMMAND
BYTE

OUTPUT
COMMAND
BYTE

OUTPUT
DATA
BYTE

RETURN

174

RETURN

175

P7,N<-P7-1

P7.N4-P7+1
P12<-T

.IDIX

176

RETURN

177

RETURN

178

T FTerminatio:
. INT. >

IDSK RETURN

179

180

Count=0

Disconnect &
Disarm
Printer,
Store Status

N-4-X'96*
'P7^-X’9F'

Send Line
Feed

TTY
Call

T

181

, 182

ERROR

r 183

Disconnect &
Disarm
Disk

ERROR

CHAPTER VI. MICROPROGRAM LISTINGS

185

Unused Names...

TMS

CMS

PMS

LDL

TSK

VNN

ITT

IPR

ADI

ADK

SN

JPR

PAGE 186

0600 ORG X»0600 *
003F H1C0RE EQU X’3F»
0002 TOS EQU X 1 02 *
007B ,TOS EQU Xt7Bf
007C BOOT EQU X»7C t ADDRESS OF BOOT STRAP PROGRAM
00F8 ,800T EQU X'F8»
0'076 TW” EQU Xi-764
0077 TSTAT EQU X ’ 771
007E 7MSB EQU X»7E ♦
007F TLSB . EQU X»7F«
0087 CCNT EQU X« 871
008E CMS8 EQU X« 8EI
008F CLSB EQU X<8FI
0097 BASE EQU X«97 1 BASE ADDRESS FOR INDEXfREG,
0097 PONT EQU X»97»
009E PMSB EQU X»9E» •
009F PLSB EQU X । 9F 1
ooco HSAVE EQU X • CO t
OOC8 HADD EQU X’CBI
0080 ABTADD EQU X’BOI ABORT ADDRESS
0089 ABSAVE EQU X«B9« ABORT RETURN ADDRESS
OODO CIADD EQU X'D0«
0008 CISAVE EQU X’DBI
OOEO DADD EQU X'EO»
00E8 DSAVE EQU X • E6»
00F2 PSTAT EQU X’F2t PRINTER STATUS
00F3 CSTAT EQU XIF3I CARD READERfSTATUS
OOFil DSTATD EQU X»F4» DISK DIAGONSTIC STATUS

* DSTATD ♦ 1 IS THE DISK MAJOR STATUS
00F9 LDMS8 EQU X • F9 1 MSB MIXESTART ADDRESS
OOFA LDLSB EQU X’FAl LSB MIXESTART ADDRESS
00F8 CLOCK EQU X • FBI MSB OF CLOCK (3 BYTES)
OOFD •CLOCK EQU X’FD» LSB OF CLOCK (3 BYTES)

PAGE 187

* GO » THIS
*

*BOX£M *

IS THE INITIALIZATION ROUTINE *******

0600 7080 GO CIO 0 CLEAR I/O CONTROL REGISTER
0601 1708 EEI ENABLE EXTERNAL INTERRUPTS

A*******
*BOX£N *

0602 1720 ERT ENABLE REAL»TIME CLOCK

*BOX£O * ZERO CLOCK

0603 28F8 IF 8,CLOCK
0604 123F LM HICORE
0605 A813 WMF 8, (N) •
0606 1100 LT X f 00»
0607 A8D3 WMF 8,1,(N)
0608 1000 NOP
0609 A8D3 WMF 8,1,(N)

* SET TTY TO READY
060A 2877 UP 8,TSTAT
0608 A813 WMF 8, (N)
060C 1101 LT x»o i»

*BOX£P *

060D 1080 SSF
060E 8700 ZOF 7
060F 1040 SPF
0610 28F9 LF 8,L0MSB LOAD STARTING ADDRESS MSB
0611 A803 RMF 8, (N)
0612 1000 NOP
0613 BE20 CPY 14,T
0614 A8C3 RMF 8,1,(N)
0615 1000 NOP
0616 BF20 CPY 15,T
0617 FFOO SFL IS
0618 FE80 SFL 14,L
0619 FFOO SFL IS
061A FE80 SFL 14,L
0618 FFOO SFL 15
061C FE80 SFL 14,L
0610 1780 HLT
061E 1600 LU X'OOl
061F 7710 ESS 7 ENTER SENSE SWITCHES
0620 5780 TN 7,XI8OI TEST FOR CARD READER BOOTSTRAI

PAGE 188

0621 1C24 JP *♦3
0622 2E7C LF 14,BOOT
0623 2FF8 LF 15,,B00
0624 07E1 JE FETCH

PAGE 189

* THIS IS THE EBCDIC TO ASCII CONVERSION
* TABLE USED BY THE CARD READEREROUTINE

0625 27A0 ASCII LF 7,X«AOI
0626 1DA0 JP RB

* THIS ROUTINE CONVERTS EBCDIC CHARACTERS INTO
* ASCII CHARACTERS

FIRST* TTIE EBCDIC* CHARACTERS ARE BROKEN
* INTO FIVE GROUPS
* GROUP 1 w SPECIAL CHARACTERS CODES 40»7F
* THESE CODES MUSTfBE LOOKED UP
* IN THE ASCII TABLE
* GROUP 2 • LETTERS A • I» THESE ARE CORRECT
* GROUP 3 e LETTERS J e R, TO CONVERT THESE
* TO ASCII SUBTRACTfX’07 »
* GROUP 4 » LETTERS S « Z, TO CONVERT THESE
* SUBTRACT X»OF»
* GROUP 5 NUMBERS, TO CONVERTETHESE
* SUBTRACT X’40’

0627 677F EBCDIC CP 7,X»7F» TEST FORESPECIAL CHARACTERS
0628 1C47
0629 6736
062A IDAO
062B 6726
062C 1C31
062D 6716
062E 1C33

062F 37C0
0630 IDAO

*

JP
CP
JP
CP
JP
CP
JP

AF
JP

SPCHAR SPECIAL CHARACTER
7,XI36I LETTERS A * I
RB A b I .
7#Xi26t TEST FOR J b R
01,09 CHARACTERS J - R
7,X»J6I TEST FOR LETTERS S w Z
E2,E9 S w Z SUBTRACT X » OF •
MUST BE A NUMBER
7,X»C0» SUBTRACT£X«40t
RB

0631 37F9
0632 IDAO

01,09 AF
JP

7,XIF9I SUBTRACTEXf071
RB

0633 37F1
0634 IDAO
0635 1000
0636 1000
0637 1000
0638 1000
0639 27DC
063A IDAO
0638 27AE
063C IDAO
063D 27BC
063E IDAO
063F 27A8
0640 IDAO
0641 27AB
0642 IDAO
0643 27DB

E2,E9 AF
JP
NOP
NOP
NOP
NOP
LF
JP
LF
JP
LF
JP
LF
JP
LF
JP
LF

7,X»FU SUBTRACTEX10FI
RB

FREE LOCATION
FREE LOCATION
FREE LOCATION
FREE LOCATION

7,X'DCf
RB
7,X«AEI
RB
7,X»BC»
RB
7,XIA8I
RB
7»X1 AB *
RB
7,X»DBI

PAGE 190

* THESE ARE SUBROUTINES USED BY THE I/O DRIVERS
* THIS CODE PROVIDES SUBROUTINE LINKAGE VIA THE
*■ JE AND RTN INSTRUCTIONS FOR CALLS MORE THAN 256
* WORDS AWAY

0644 1DA0 JP RB
0645 27A6 LF 7,X»A6!
0646 1DA0 JP RB

* SPECIAL CHARACTER, THESE MUST BE
* LOOKED UP IN THE ASCII TABLE

0647 F700 SPCHAR SFL 7
064* F70(T 7*
0649 F720 SFR 7 MULTIPLY BY 2
064A 1125 LT ASCII
064B 6724 ADD 7,T,(L) JUMP TO CORRECTfASCII CHARACT

064C 2858 ,DIX£ LF 11,RETURN
064D 1C69 JP ID,IX
064E 2B58 DIX£ LF 11,RETURN
064F 1C6A JP IDIX
0650 2B58 ,DOX£ LF 11,RETURN
0651 1C85 JP I,DOX
0652 2858 DOX£ LF 11,RETURN
0653 1C89 JP IDOX
0654 2B58 COX£ LF 11,RETURN
0655 1C73 JP ICOX
0656 2BEI W,OUT LF 11,FETCH
0657 1C92 JP I,OUT
0658 1000 NOP FREE LOCATION
0659 27A1 LF 7,X«A>I
065A 1DA0 JP RB
065B 27A4 LF 7,X»A4»
065C 1DA0 JP R8
065D 27AA LF 7,X » AA•
065E 1DA0 JP RB
065F 27A9 LF 7,X » A91
0660 1DA0 JP RB
0661 27B8 LF 7,X<BBI
0662 1DA0 JP RB
0663 27DD LF 7,X«DD«
0664 1DA0 JP RB
0665 27AD LF 7 < X।AD•
0666 1DA0 JP RB
0667 27AF LF 7,X IAF 1
0668 1DA0 JP RB

** THESE ROUTINES DO THE DEVICE INPUT/OUTPUT
♦ THEY EXPECT THE DEVICE ADDRESS AND FUNCTION CODE
♦ IN THE T REGISTER, AND DATA IN P7
♦ RETURN ADDRESS IN Pll
*** INPUTfA BYTE

PAGE 191

* THIS ROUTINE WRITE OUT TO MEMORY THE UPDATED
* CONCURRENTEI/O VALUES

0669 27FF ID,IX£ LF 7< X »FF •
066A 7090 IDIXE COX£ 0 SET COXX, SEND COMMAND BYTE
066B 1000 NOP
066C 1C6D OP *♦1 DELAY 3 CLOCK PULSES
066D 7080 CIO 0 CLEAR I/O REG
066E 70E0 .IDIXE DIX£ 0 SET DIXX
066F- 1000 NOP'
0670 1C71 JP *♦1
0671 7781 cio 7, (T)
0672 ICC 1 jp GOBACK RETURN

*** OUTPUTfCOMMAND BYTE
0673 7090 ICOX£ COX£ 0 SET COXXwOUTPUT COMMAND BYTE
0674 1000 NOP
0675 1C76 JP *♦1 DELAY 3 CLOCK PULSES
0676 7080 CIO 0 RESET COXX
0677 1CC1 Jp GOBACK RETURN
0678 1000 NOP FREE LOCATION
0679 27A0 IF 7,X’A0»
067A 1DA0 JP RB
067B 27AC LF 7,X »AC »
067C 1DA0 JP RB
067D 27A5 LF 7# X f AS 1
067E 1DA0 JP RB
067F 27DE LF 7,X»DE1
0680 1DA0 JP RB
0681 27BE LF 7,XIBEI
0682 1DA0 JP RB
0683 27BF LF 7,X•BF f
0684 1 DAO JP RB

** THESE ROUTINES DO THE DEVICE INPUT/OUTPUT
* THEY EXPECT THE DEVICE ADDRESS AND FUNCTION CODE
* IN THE T REGISTER, AND DATA IN P7
* RETURN ADDRESS IN Pll
*** OUTPUTfA BYTE

0685 7090 I,DOX£ COX£ 0 SET COXXeOUTPUTECOMMAND BYTE
0686 1C87 JP *♦1 DELAT 3 CLOCK PULSES
0687 C701 MOV 7,(T) MOVE DATA TO T REG,
0688 7080 CIO 0 CLEAR I/O REG
0689 70A0 IDOX£ DOX£ 0 SET DOXX»OUTPUT data in T REG
068A 1000 NOP
068B 1C8C JP *♦1 DELAY 3 CLOCK PULSES
068C 7080 CIO 0 RESET COXX
068D 1CC1 JP GOBACK RETURN

PAGE 192

* N<--• ADDRESS OF THE COUNTER
ADDRESS OF LSB OF C^I/O ADDRESS

r COUNTER VALUE
•• RETURN ADDRESS
:««MSB OF Cwl/O ADDRESS
:*»LSB OF C-el/O. ADDRESS

* P1<*
* P6<w
♦ Pll<-
* P12<
* P13<
♦
*

068E 8D40 ,OUT INC 13
068F 8C80 ADD 12,L ADJUST C*I/O ADDRESS
0690 1180 O.UT LT X»80 1
0691 E120 AND liT clear Pl
0692 123F IiOUT LM HICORE LOAD MAR(MSB)
0693 ABH WMF 8,(T) WRITE COUNTER VALUE
0694 C703 MOV 7, (N) ADJUST MAR(LSB)
0695 AD11 WMF 13,(T) WRITE LSB OF C»I/O ADDRESS
0696 9743 DEC 7,(N) ADJUST MAR(LSB)
0697 AC11 WMF 12,(T) WRITE MSB OF C«I/O ADDRESS
0698
0699
069A
069B
069C
069D
069E
069F
06A0
06A1

1CC1
27BA
1DA0
27A3
1 DAO
27C0
1DA0
27A7
IDAO
27BD

JP
LF
JP
LF
JP
LF
JP
LF
JP
LF

GOBACK
7* X•BA »
RB
7,X»A3l
RB
7,X »CO »
RB
7,X»A7’
RB
7,X•BD»

RETURN

06A2
06A3
06A4

IDAO
27A2
IDAO

JP
IF
JP

RB
7,XIA2I
RB

* THIS ROUTINE READS IN FROM MEMORY THE CONCURRENT
* I/O VALUES
* N<m ADDRESS OF THE COUNTER
* P7<es ADDRESS OF THE LSB OF THE C-I/O ADDRESS
* P11«»»RETURN ADDRESS
* P8<--» COUNTER VALUE
*■ P12<ew MSB OF C*I/O ADDRESS
* Pl3<e» LSB OF THE C»I/O ADDRESS

O6A5 123F
*
.IN LM HICORE LOAD MAR(MSB)

06A6 A020 RMH 0 READ IN COUNTER VALUE
06A7 C703 MOV 7,(N) ADJUST MAR(LSB)*DELAY
06A8 B820 CPY 8,T COPY COUNTEREINTO P8

PAGE 193

******* *-*-**
* **********

06A9 A020 RMH 0 READ LSB OF C»I/O ADDRESS
06AA 9743 DEC 7,(N) ADJUST MAR(LSB)»DELAY
06AB BD20 CRY 13,T COPY LSB OF C»I/O ADDRESS
06AC A020 RMH 0 READ MSB OF C»I/O ADDRESS
06AD 8743 INC 7,(N) ADJUST MAR(LSB)eDELAY
06AE BC20 CRY 12,T COPY MSB OF C»I/O INTO P12

*
*
*
* 1
*
*
*

THIS ROUTINE IS USED BY THE PRINTER,
CARD READER, AND TTY INTERRUPTEROUTINES TO SKIP
SIGN AND GARBAGE BYTES

Pll<v* RETURN ADDRESS
P12<e* MSB OF C«I/O ADDRESS
P13<ew LSB OD C»I/0 ADDRESS

06AF 5007
*
ISKIP TN 13,X»07» IS THIS A SIGN BYTE ADDRESS

06B0 1CB8 JR 16 YES
06B1 5D02 TN 13,X»02» IS THIS A GARBAGE BYTE ADORES
06B2 1CBE JP 18 NO
06B3 5004 TN 13,XI04« IS THIS A GARBAGE BYTE ADORES
06B4 1C8E JP 18 NO

* TIME TO SKIP 2 BYTES
06B5 1102 LT X*02» GARBAGE BYTES
06B6 8020 ADD 13,T
06B7 8C80 ADD 12,L
06B8 5B80 16 TN ll,X»80’ PRINTER OR TTY»OUT CALL
0689 1CBD JP 17 YES

* CARD READER OR TTY-I N CALLED THIS ROUTINE
* MUSTCZERO SIGN BYTE

06BA CC02 MOV 12,(M) LOAD MAR(MSB)
06BB AD13 WMF 13,(N) WRITE, LOAD MAR(LSB)
06BC 1100 LT X’OOI SET SIGN TO ZERO
06BD 8D40 17 INC 13
06BE CC02 18 MOV 12,(M) LOAD MAR(MSB)
06BF C003 MOV 13,(N) LOAD MAR(LSB)
06CO 5B80 TN ll,X'80» PRINTER OR CARD READER??
06C1 CB05 GOBACK MOV 11,(K)
06C2 27FF LF 7,X»FFI
06C3 1C6E JP iIOIX

PAGE 1941

* REGI$TER£SUPERVISOR
*
* THIS IS THE INDEXESUPERVISOR ROUTINE
* IT TAKES CARE OF ROLLING THE INDEXEREGISTER
* WHICH IS NEEDED INTO S6, S9, 510
* S7 IS THE INDEXEMAP, IT CONTAINS THE NUMBER OF
t-TM^RTGrSTER -CURRENTLY-IN SB « S101

* THE REQUIRED INDEXEIS NOT IN THE HOME POSITION
* 6 STEPS MUST BE TAKEN
*
* STEP 1 IS ANY INDEXEHOME? IF NOT GOTO STEP 4
* STEP 2 COMPUTE CORE STORAGE ADDRESS OF THE INDEX
* STEP 3 WRITE HALF CYCLE THIS INDEXEOUT TO CORE
* STEP 4 COMPUTE THE CORE ADDRESS OF THE REQUIRED
* STEP 5 READ HALF CYCLE THIS INDEXEINTO FILES SB
* STEP B UPDATE INDEXEMAP IN ST
*

BOX£HH STEP 1

*

♦

06C4 HOT PAGE LT X»07 •
06C5 ED29 AND* * * * 13,T,(T) GET INDEXED FROM OPCODE
06C6 ICC8 JP VIA

BOX£DD

06C7 CB01 VINDEXEMOV

BOX£EE

lli(T)

06C8 1080 VIA SSF
06C9 8820 CPY IUT

Q***
*

TEST FOR ILLEGAL INDEXENUMBER

06CA 6BF9 CP ll,XfF9l
06CB 1CCD JP **2 INDEXEBETWEEN 0 & 6 » OK
06CC 06F9 JE ABORT INDEX£> 6 ABORT USER RUN

BOX£FF

06CD MOT LT XI07I LOAD MASK
06CE E729 AND* 7,T,(T) PICK UP INDEXEMAP
06CF 8020 CPY 13,T SAVE INDEXEMAP
06D0 DB38 XOR* 11,T,C TEST EQUAL
0601 4004 TZ£ 0,X104 •
06D2 1060 RSP REQUIRED INDEXEIS PRESENT

PAGE 195

06D3 123F IM HICORE
0604 5007 TN 13,XIO7I
0605 1CE7 JP

BOX£II

VKK

STEP 2

INDEXEMAP = 0

0606 FDOO , SFL 13 MULTIPLY OLD INDEXE# BY 16
0607 FDOO SFL 13
0608 FDOO SFL 13
0609 FOOO SFL 13
06DA 1197 LT BASE LOAD T WITH BASE ADDRESS
06DB 8023 ADD

BOX£JJ

13,T,(N)

STEP 3

COMPUTE ADDRESS OF SIGN

06DC A831 WMH 6, (T) WRITE OUT SIGN BYTE
0600 3007 AP 13,X'07» COMPUTE SIGN OF MSB
06DE AD33 WMH 13,(N) WRITE MSB MOVE ADDRESS TO N
06DF C901 MOV 9, (T) MOVE WRITE OPERAND TO T
06E0 3001 AF 13,X » 01» COMPUTE ADDRESS OF LSB
06E1 AD33 WMH 13,(N) WRITE LSB MOVE ADDRESS TO N
06E2 CA01 MOV

BOX£NN

10, (T)

STEP 6

MOVE WRITE OPERAND TO T

06E3 11F8 VNN LT X f F8 I
06E4 E720 AND 7,T
06ES CB01 MOV 11 * CT)
06E6 C720 LOR 7,T
06E7 5807 VKK TN 11,X107 »
06E8 1060 RSP

♦BOXEKK*

BOX£LL

STEP 4

INDEXED s o

06E9 FBOO SFL 11 MULTIPLY NEW INDEXE* BY 16
06EA FBOO SFL 11
06EB FBOO SFL 11
06EC FBOO SFL 11
06ED 1197 LT BASE LOAD T WITH BASE ADDRESS
06EE 8B23 ADD

♦BOX£MM*

11,T,(N)

STEP 5

COMPUTE ADDRESS OF SIGN

06EF A020 RMH 0 READ IN SIGN BYTE

PAGE 196

06F0 3807 AF 11 * X »07 » COMPUTE ADDRESS OF MSB
06F1 B820 CPY 8,T COPY SIGN OF INDEXfINTO S8
06F2 A823 RMH Ur (N) READ MSB MOVE ADDRESS TO N
06F3 3801 AF IlfXI01 ' COMPUTE ADDRESS OF LSB
06F4 8920 CPY 9fT COPY MSB INTO 9
06F5 AB23
OWr- 1000-

RMH
N0ps

Ilf(N) READ LSB MOVE ADDRESS TO N
delay

06F7 8A20

06F8 1060

CPY

wBOXEOO*

RSP

10f T COPY LSB INTO S10

PAGE 197

♦* ABORTEROUTINE
06F9 293F ABORT LF 9,HIC0RE
06FA SABO IF 10iABTADD
06FB 2889 IF 8,ABSAVE
O6FC 07DA JE ERROR

PAGE 198

* INTERRUPTEROUTINE

*BOX£A *

06FD 1000 INT ILS INHIBIT L SAVE UNTIL RETURN OCC
06FE 1600 LU X 1 0 0 1
06FF~ loae* SPF*
0700 5008 TN o * x«oai TEST FOR CONCURRENTEI/O REQUEST
0701 1008 JP IHG

♦BOXES *

CONCURRENTEREQUESTEHAS OCCURED

0702 70CO CAK 0 ACKNOWLEDGE REQUEST
0703 27FF LF 7,X«FFI
0704 1005 JP IH1

♦BOXEC ♦

0705 7780 IH1 CIO

tBOXEO *

7 RESETf AND INPUT BUS WITH P7

0706 1180 LT X»80»
0707 E1Z0 AND liT CLEAR Pl
0708 5702 TN 7* X » 02» INPUT OR OUTPUT
0709 0798 JE READER
070A 075A JE PRNTER

* BOXEG*

TEST FOR EXTERNAL INTERRUPTeERROR

0700 5080 IMG TN 0#XI801 TEST EXTERNAL FLAG
070C 0710 JE IHK NO EXTERNAL INTERRUPT

♦BOXEH *

EXTERNAL INTERRUPTEHAS OCCURRED

070D 7000 IAK 0 ACKNOWLEDGE INTERRUPT
070E 27FF LF 7,X1FFI P7<»wALL ONES
070F 1010 JP IH2 DELAY
0710 7780 IH2 CIO 7 RESETf INPUT BUS ANDED WITH P;

* BOXEI*

* FIND OUT WHICH DEVICE CAUSED INTERRUPT

0711 1126 LT X > 281 DISK ADDRESS * 2
0712 0738 XOR* 7,T,C WAS IT THE DISK
0713 4004 TZE 0, X104I
0714 07C4 JE IDSK DISK INTERRUPT
0715 1106 LT X’06i CARD READER ADDRESS * 2

PAGE 199

0716 D738 XOR* 7,T,C
0717 1010 JP IHK MUST BE TTY OR MAG TAPEwIGNOR
0716 1124 UT X«24l INPUT STATUS BYTE
0719 2818 LF 11,**2 LOAD RETURN ADDRESS
071A 1C69 JP ID,IX£ GET CARD READER STATUS
0718 5704 TN 7,X«04l IS THIS A HOPPER EMPTY INT,
07Tf 0784- jr

*******w
*BOX£K *

IREADR NO REAL ERROR

071D 5010 IHK TN

*BOX£I„ *

0,X»10« TEST FOR INTERNAL INTERRUPTS

071E 1060 RSP

*BOX£M *

RETURN

071F 7840 CIS

*BOX£N *

11 ENTER INTERNAL STATUS

0720 5804 TN 11,XIO4» REAL TIME CLOCK INTERRUPT?
0721 1048 JP

*BOX£O ♦

IHP

ADJUST CLOCK

0722 123F LM HICORE
0723 28FD LF 8,,CLOCK LOAD P8 WITH A(CD
0729 A823 RMH 8,(N) READ IN Cl
0725 9843 DEC 8,(N) DECREMENT£P8 TO A(C2)»DELAY
0726 8020 CPY 13,T COPY Cl INTO P13
0727 ADEO RMH 13,1 READ C2, INCREMENTED!
0728 8843 INC 8,(N) INCREMENT£P8 TO A(C1)»DELAY
0729 BC20 CPY 12,T COPY C2 INTO P12
072A A031 WMH 13,(T) WRITE OUT UPDATED Cl
0728 9843 DEC 8,(N) DECREMENT£P8 TO A(C2)*DELAY
072C ACB1 WMH 12,Lf(T) WRITE OUT UPDATED C2
072D 9843 DEC 8,(N) 0ECREMENTEP8 TO A(C3)*DELAY
072E A020 RMH 0 READ C3
072F 9843 DEC 8,(N) DELAY
0730 8020 CPY 13,T COPY C3 INTO P13
0731 8081 ADD 13,L,(T) UPDATE C3
0732 A8F3 WMH 8,1,(N) WRITE OUT C3

* TTY INTERRUPTEROUTINE
* THIS IS THE TELETYPE ROUTINE
* NO INTERRUPTS ARE AVAILABLE ON THE
* TTY, THUS THE I/O IS RUN BY INTERRUPTS

PAGE 200

* FROM THE REAL TIME CLOCK,
*

0733 2877 ITTY LF 8,TSTAT
0734 A803 RMF 8,(N) READ IN INTERNAL STATUS
073S 9843 DEC 8, (N) LOAD TCNT’DELAY
0736 8820 CPY 8,T COPY STATUS
0737 4801 TZ 8,X»01 ’ TEST BUSY BIT
073tT 1046 jp- IMP NO TTY TRANSFER IN PROGRESS

* GET STATUS. FROM TTY CONTROLLER
0739 1120 LT X»20» LOAD COMMAND BYTE
073A 2B3C LF 11,**2 LOAD RETURN ADDRESS
0738 1C69 JP ID,IX£ INPUT STATUS BYTE
073C E836 AND* 8 # T i C TEST STATUS
073D 4004 TZ£ o # x i oa । TEST IF READY
073E 1048

*
JP IMP NOT READY, CONTINUE

* CONTROLLER! READY TO DO I/O
* SEND COMMAND BYTE TO DO I/O
*

073F 1100 LT X»00» LOAD COMMAND BYTE
0740 2B42 LF ll,*t2 LOAD RETURN ADDR5SS
0741 1C73

*
JP ICOXE REQUESTfl/O

* DETERMINE IF INPUTEOR OUTPUT
*

0742 277F LF 7,TLSB
0743 C801 MOV 8,(T)
0744 C120 LOR UT SAVE STATUS IN Pl
0745 5802 TN 8,X 1021
0746 105C JP T,OUT OUTPUT
0747 ID9A JP T,IN INPUT

*BOX£T *

♦BOXEP *

0748 5B01 IMP TN n,XI01’ PANNEL INTERRUPTS
0749 1D4C JP IHR

*BOX£Q *

074A 1600 LU X»00»
074B 0600 JE GO

*BOX£R *

074C 5B40 IHR TN ll,X«40’ STEP INTERRUPT

PAGE 201

♦BOXES *

0740 1057 JP

*
*
*

IHU

DIVIDE LOCATION COUNTER BY 8 TO GET
MIXEADDRESS, THEN MOVE
TO-TRE- DATA BUS SO IT

THIS ADDRESS
CAN BE DISPLAYE

074E FE29 STEP SFR* 14,(T)
074F BC20 CRY 12, T
0750 FFA9 SFR* 15,L,(T)
0751 BD20 CPY 13,T
0752 FC20 SFR 12
0753 FDAO SFR 13,L
0754 FC22 SFR 12,(M)
0755 FDA3 SFR 13,L#(N)
0756 1780 HUT •

* BOXEU *

0757 5B02 IHU TN 11,X f 021
0758 1060 RETURN RSP
0759 07C4 JE IDSK

PAGE 202

* PRINTER INTERRUPTEROUTINE

*BOX£H *

075A 1397 PRNTER UN PCNT
075B 279? UP 7,PUSS

* TMIS ROUTINE IS COMMON TO BOTH THE
* PRINTER AND THE TTY-OUT

075C 2B5E T,OUT LF 11#**2 LOAD RETURN ADDRESS
0750 1CA5 JP ,IN GET C-I/O COUNTERS &

* ADJUST C-I/O ADDRESSES

*B0X£G *

075E 567F TN 6,X»7FI TEST IF COUNT = ZERO
075F 1079 JP PRK COUNT = ZERO
0760 Adao RMF 8,D GET DATA, DECREMENTEC01JNTER

♦ BOX£J*

0761 2863 LF ll,**2
0762 1C89 JP IDOX£ OUTPUT DATA BYTE
0763 8820 CPY 11,T SAVE DATA BYTE
0764 410F TZ£ 1,X«OFI
0765 1D6A JP T1 TTY R6UTINE

*B0X£L *

0766 1397 LN PCNT
0767 279F LF 7,PLSB
0768 2808 T,P LF 11,IHG
0769 1C8E JP .OUT

*BOX£M *

076A 1180 T1 LT XiBDt LOAD CARRIAGE RETURN
0768 0830 XOR 11,T,C TEST IF DATA WAS A C/R
076C 4004 TZ£ 0,X«04«
0760 1080 JP C.R DATA BYTE WAS C/Rll

* BOX£N*

* TEST REFLECT FLAG

076E 5108 TN 1,XIO8I
076F >074 JP T2 NOT ON WRITE OUT COUNTERS

*80X£0 * REFLECT FLAG IS ON,THIS MEANS THAT
* A TTY-IN OPERATION IS IN PROGRESS

PAGE 20?

* THIS IS THE SECOND PHASE OF HANDLING
*
*
*

0770 1102 LT
0771^1371 R^F- LN=-
0772 123F LM

ONE DATA BYTE
MUST FIXETHE STATUS TO ALLOW THE
NEXT OPERATION TO BE A TTY»IN,

XI021
TSTAF
HICORE

0773 A010 WMF

*BOX£P *

0774 58FF T2 TN

0

8,X • FF 1

WRITE OUT STATUS

0775 1079 JP
0776 1376 LN
0777 277F LF

PRK
TCNT
7#TLSB

COUNT = ZERO STOP TRANSFER

0778 1068 JP

*80X£K *

0779 510F PRK TN

TiP

I * X» OF »

WRITE OUT CwI/0 COUNTERS

TTY??
077A 1085 JP ,PRK PRINTER
0778 4110 TZ£ UXI10I LINE FEED FLAG ON??
077C 1085 JP

*BOX£Q *

0770 1180 LT
077E 2880 LF

,PRK

X • 8D 1
11,**2

FALG IN ON

077F 1C89 JP

*BOX£R *

IDOXE SEND C/R

0780 1114 C,R LT
0781 2880 LF
0782 1071 JP

*BOX£V *

Xf 14t
8,X f 601
ReF

TURN LINE FEED FLAG ON

0783 1101 TLF LT
0784 1071 JP

* BOXES*

X'Ol I
R,F

STOP TYY

0785 H8A ,PRK LT
0786 2B88 LF
0787 1C89 JP

X ’ 8 A t
lb**2
IDOX

SEND LINE FEED

PAGE 204

*BOX£T *

0788 410F TZ 1r X » OF •
0789 1083 JP TLF STOP TTY TRANSFER

BOX£U

078A 1180 LT X * 80 1
078B E120 AND 1#T

* IPRNTR ROUTINE
* THIS IS THE EXTERNAL INTERRUPTEROUTINE FOR THE
* PRINTER, IT STORES THE STATUS BYTE IN ADDRESS 7FFB

078C 1125 IPRNTR LT X»25» INPUT THE STATUS BYTE
078D 2B8F LF ll,**2
078E 1069 JP ID,IX£ GET STATUS IN P7 AND T
078F 13F2 LN PSTST
0790 123F LM HICORE
0791 A711 WMF 7,(T) WRITE OUT STATUS

* NOW SEND DISCONNECT
0792 HAS LT X’ASI
0793 2695 LF 11,**2
0794 1C73 JP ICOX£ SEND C6MMAND BYTE

♦ NOW SEND DISARM TO PRINTER CONTROLLER
0795 1165 LT X»85»
0796 2B0B LF 11,IHG SET RETURN TO INT LABEL
0797 1C73 JP ICOX£ SEND COMMAND BYTE

PAGE 205

♦CARD READER INTERRUPT ROUTINE
*

0798 1387

*BOX£B *

READER LN CCNT

0799-2I8F IF* 7*JC4,SB
*
* MUSTCSKIP
*

READ IN C-I/O COUNTERS
SIGN BYTE AND TWO HI ORDER BYTES OF EACH

GET DATA FROM DEVICE
* THIS CODE IS COMMON TO THE TTY & CARD READER

079A 2B9C T.IN IF llf**2
079B 1CA5 JP

*BOX£A *

.IN

079C 51 OF TN

*

bX'OFI TTY OR CARD READER

CONVERT EBCDIC TO ASCII

079D 1C27 JP
*
*

EBCDIC CONVERT£CHARACTERS TO ASCII
MUST OR HIGH ORDER 1 ONTO EACH TTY
CHARACTER TO GET THE CORRECT ASCII CODE

079E 1180 LT X»80 1
079F C720 LOR

*BOX£B *

7,T

07A0 ATM RB WMF 7,CT) WRITE OUT DATA BYTE
OTA 1 2B0B LF H.IHG
07A2 510F TN l.X’OF’ TTY OR CARD READER
07A3 IDAS JP RD CARD READER
07A0 1377 LN TSTAT
07A5 123F LM HICORE
07A6 A010 WMF 0
07A7 HOC LT X»OC» . CHANGE STATUS TO REFLECTION
07A8 277F LF 7fTLSB
07A9 1376 LN TCNT
07AA 1C90 JP

*BOX£D *

O,UT

07AB 9840 RD DEC 8
07AC 58FF TN 8,X’FFt
07AD 07B| JE IREADR
07AE 1387 LN CCNT
07AF 278F LF TiCLSB
07B0 1C8E JP ,OUT

PAGE 206

07B0 1C8E * IREDR ROUTINE ************************************
♦ THIS IS THE EXTERNAL INTERRUPTEROUTINE FOR
* THE CARD READER, IT STORES THE STATUS BYTE IN
* ADDRESS 7FFC

07B1 1124 IREADR LT X’24» INPUT STATUS BYTE
01B2_ 2BB« LF ll,*t2
07B3 1C69 JP- H),IX£ GET"CARD READER STATUS
07B« 13F3 LN CSTST
07B5 123F UM HICORE
07B6 A010 WMF 0 WRITE STATUS OUT TO MEMORY

* NOW SEND disconnecte TO READER CONTROLLER
07B7 1184 LT X»84«
07B8 2BBA LF 11,**2
0789 1073 JP JCOX

♦ NQW SEND DISARM
07BA 11A4 LT XIA4I
07BB 2B8D LF 11,**2
07BC 1073 JP ICOX
07BD 1118 LT X’18l TEST FOREERRORS
07BE E730 AND 7,T,C
07BF 4004 TZ .OfXI04I TEST FOR ERROR
07C0 1D0B JP IHG NO ERROR .
07C1 2808 LF SfCISAVE
07C2 2AD0 LF 10,CIADD
07C3 07DA JE ERROR

PAGE 207

* IDISK ROUTINE
* THIS IS THE EXTERNAL INTERRUPTEROUTINE FOR THE
* DISK, IT STORES THE MAJOR STATUS BYTE IN ADDRESS
* 7FDFA AND STORES THE DIAGONISTIC STATUS BYTE IN
* ADDRESS 7FF9

07C4 1114 IDSK LT XI 141 INPUT MAJOR STATUS
07E5->2BQJ LF- 11,**2
07C6 IC69 JP ID.IXE GET MAJOR DISK STATUS
07C7 B820 CPY 8,T COPY MAJOR STATUS INTO P8
07C8 1134 LT XI34I INPUT DIAGONOSTIC STATUS
07C9 2BC8 LF 11,M2
07CA 1C69 JP ID.IXE GET DIAGONISTIC STATUS IN P7
07CB 123F LM HICORE
07CC 2CF4 LF 12,DSTAT
07CD AC 13 WMF 12,(N) WRITE DIAGONSITIC STATUS OUT
07CE 8043 INC 12,(N) ADJUST MAR(LSB)eDELAY
07CF A811 WMF 8, (T) WRITE OUT MAJOR STATUS

* NOW SEND DISARM
07D0 1114 LT X’14l OUTPUT COMMAND BYTE
07D1 2720 LF 7,XI2OI
0702 2804 LF 11,**2
0703 IC85 JP I,DOX
0704 1114 LT XI141
0705 E830 AND 8,T,C
0706 4004 TZE OfXI04I
0707 0710 JE IHK
0708 2AE0 LF 10,DADD
0709 28E8 LF 8,DSAVE

* ERROREROUTINE

07DA 123F ERROR LM HICORE
07DB 293F UF 9,HICORE
07DC A813 WMF 8, (N)
0700 CEOJ MOV 14,CT)
07DE A8D3 WMF 8,1,(N)
07DF CF01 MOV 15,(T>
07E0 ococ JE JS

PAGE 208

* FETCH ROUTINE
* THIS ROUTINE FETCHES THE NEXTEINSTRUCTION FROM THE
* FOUND IN THE INSTRUCTION COUNTER
*

BOX£A1

07E1 08FD FETCH JE

*BOX£A *

♦BOXES *

INT GO CHECK INTERRUPTS

07E2 2787 LF 7,XIB7I LOAD COUNTEREAND MASK
07E3 CF03 MOV 15,(N)
07E4 AE02 RMF 14,(M)
07E5 1DE8 JP FC + 2

♦BOXEC *

07E6 8F43 FC INC 15,(N) ADJUST MEMORY ADDRESS
07E7 AE82 RMF 14,L,(M) READ A BYTE

♦BOXED ♦

07E8 8746 INC 7, (U) INCREMENTECOUNTER
07E9 0820 EOT 8,T COPY T INTO CORRECTEFILE registi

♦BOXEE ♦

07EA 6743 CP 7,Xi 43i TEST FOR END OF READ LOOP
07EB IDE6 JP FC

♦BOXEF ♦

07EC 1103 LT X»03»
07ED BF20 ADD 15,T
07EE 8E80 ADD 14,L
07EF 1600 LU X’OOl clear u register

PAGE 209

ADDRESSING ROUTINE

INSTRUCTION CURRENTLY HELD IN THE INSTRUCT

»****♦**—

*
*
*
*
*

THIS ROUTINE COMPUTES THE EFFECTIVE MIXAL MEMORY A
FOR THE
COUNTER

♦BOXEI *

TEST FOR INDEXING

07FO 5B07 ADI TN 11 * X»07•
07F1 0811 JE ADJ

♦
* INDEXING
*

*BOX£K *

HAS OCCURED

07F2 1600 ADK LU X»00 1
07F3 06C7 JE VINDEXfi JUMP TO INDEXING ROUTINE
07F« 1080 SSF

*
* THE INDEXEREGISTER REFERENCED IN PH IS NOW AVAILAI
♦ IN S8,S9,

S10

*80X£L ♦ TEST SIGN OF INDEX

*
* TEST IF SIGNS ARE SAME
*

07F5 1680 LU X'80» ASSUME SIGNS ARE SAME-ADD
07F6 C601 MOV 8, (T)
07F7 1040 SPF
07F8 D838 XOR* 8,T,C X*/R SIGNS 1 SET CONDITION FL/
07F9 5004 TN 0,X»Q4» TEST FOR ZERO RESULT
07FA 1690 LU X • 90 t SIGNS DIFFERENTESUBTRACT
07FB 1080 SSF
07FC CAOl MOV 10,(T)
07FD 1040 SPF
07FE 8A27 ADD IO,T,(S)
07FF 1080 SSF
0600 C9O1 MOV 9,CT)
0801 1040 SPF
0802 89A7 ADD 9,T,L,CS)
0803 FBOO SFL 11 SHIFT LINK BIT INTO Pll-INDEX
0804 5004 TN 0,X«04t WERE SIGNS DIFFERENT???
0805 1409 JP ADL SINGS DIFFERENT

* SIGNS SAME TEST FOR OVERFLOW
0806 4B01 TZ£ lUXiop LINK s 1 ==> OVERFLOW

PAGE 210

0607 06F9 JE ABORT BAD ADDRESS
0808 1011 JP ADJ

*
* SIGNS WERE DIFFERENT, MUST GET ADDRESS
* BACK INTO SIGN ♦ MAGNITUDE FORMAT

0809 «B0l_ ADL-_ TZ. 1 L, X 1 0 1 • TEST SIGN OF RESULT
080A 1011 JP ADJ RESULT IN TRUE FORM

* RESULT IN COMPLEMENTEFORM
0808 1180 UT X»80 t
080C 0820 XOR 8,T FLIP SIGN
080D 0960 XOR 9,T,F
080E DA60 XOR 10,T,F
080F 8AO0 INC 10
0810 8980 ADD 9,L COMPLEMENTEADDRESS

*
* THIS ROUTINE FORMS THE MICRODATA EFFECTIVE MEMORY

*BOX£P *

* ILLEGAL INSTRUCTION TRAP

0811 6DBF ADJ CP 13,X IBF *
0812 1014 JP **2
0813 06F9 JE ABORT ILLEGAL INSTRUCTION
0814 60FA CP 13,X t FA »
0815 io ic JP , ADJ OPCODES 00*05
0816 6DF9 CP 13,XIF9«
0817 1422 JP iDECOD OPCODE 06 SHIFT COMMAND
0818 6000 CP 13,X»D0’
0819 141C JP .ADJ OPCODES 00 - 2F
081A 6DC8 CP 13,XlC8t
0818 1422 JP iDECOD OPCODE 30 * 37
081C FAOO ,ADJ SFL 10
081D F980 8FL 9,L
081E FAOO SFL 10
081F F980 sfl 9,L
0820 FA03 SFL 10,(N)
0821 F982 SFL 9,L,(M)
0822 4980 ,DECOD TZ£ 9,X'80»
0823 06F9 JE ABORT ILLEGAL OPERAND ADDRESS

PAGE 211

0824 1600
0825 CD01
0826 B720
0827 F720
0828 F720
082^F-720^

082A 112C
0828 872C

082C 083C

082D 0827

082E 0827

082F 0880

0830 0837

0831 0C8D

0832 OCFO

0833 0064

0834 2802
0835 2978
0836 0104

* DECODE ROUTINE
LU X * 00 »
MOV 13,(T)
CPY 7,T
SFR 7
SFR 7
SFfF

*80X£0 * DECODE

LT DECODE
ADD* 7,T,(L)

*B0X£R *

DECODE JE MISC

♦BOXES *

JE LOAD

♦BOX£T *

JE LOAD

*BOX£U *

JE STORE

BOX£Y1 JUMP TO BOX£Y

JE DY 1

♦BOXEV *

JE JUMP

♦BOXEW ♦

JE ENTER

*BOX£X *

JE COMP
* TRAP BACK TO THE ROM

IF 8,TOS LOAD
IF 9,,TOS LOAD
DC X’0104l JUMP

ON OPCODE 40 HEX,
MSB OF TOS ADDRESS
LS8 OF TOS ADDRESS
TO THE ROM FETCH ROUTINE

PAGE 212

0836 0104 ********
*BOX£Y *

0837 6DDE DY1 CP

*B0X£Z *
-*-*-

13,x toe•

0838 0880 je

BOX£AA

STORE

0839 6009 CP

BOX£BB

13,X1D9 *

083A 0840 JE

BOX£CC

INPUT

0838 0C8D JE

BOX£PP

JUMP

083C 113E MISC UT 0P1
0830 8D2C ADD*

♦BOXERR*

13* T,CL>

MIXAl NOP

083E 07E1 DPI JE

BOX£SS

FETCH

083F 0877 JE ADD
0840 0877 JE

BOX£TT

ADD

0841 08A0 JE

B0X£UU

MUL

0842 091C JE

BOX£VV

DIV

0843 0846 JE

BOX£WW

NCH

0844

0845

0848

0847

0848

0849

084A
0848

084C

084D

084E
084F
0850
0851
0852
0853

PAGE 213

0AA0 JE

BOX£XX

SHIFT

0AF8 JE
********>**
BOX£YY

MOVE

1148 NCH UT

BOX£ZZ

DC5

8C2C ADD*

* BOX£A1*

12,T,(L)

0901 DC5 JE

8OX£B1

NUM

0A28 JE

BOX£C1

CHAR

06FD JE INT TEST INTERRUPTS BEFORE HALTINC
074E JE

BOX£D1

STEP

07E1 JE

6OX£E1

FETCH

1122 INPUT LT X • 22»
* TEST FOR ILLEGAL DEVICE CODES, THE ONLY
*
*
*
*
*
*

DEVICES ALLOWED ARE AS FOLLOWSI
OE • DISK
OF » DISK
10 • CARD READER
12 " PRINTER
13 • TTY

6CF2 CP 12,X»F2«
06F9 JE ABORT ILLEGAL CODES 0 w D
6CEF CP 12,X IEF •
1457 JP *♦6 CODES E * 10
6CEE CP 12,X•EE t
06F9 JE ABORT CODE 11

PAGE 210

0654 6CEC CP 12,X«EC1
0855 1457 JP *♦2
0856 06F9 JE ABORT CODES > 13
0857 9029 SBT* 13,T,(T)
0858 275A LF 7<0P2 ■
0859 872C ADD* 7iTfCl)
0854- 0&D5- OP^ JE* J8US
085B 0BF9 JE IOC
085C 0C03 JE IN
085D 0C1B JE OUT
085E 0BD5 JE JRED

PAGE 215

* THIS ROUTINE PUTS THE LEFT HALF OF
* THE F SPECIFICATION IN Pll
* AND PUTS THE RIGHTEHALF IN P12

085F 1107 L.R LT X»07 ♦
0860 EC29 AND* 12,T,(T)
0861 BB20 CRY Ilf T
0862- FCSO’ SFFT 12*
0863 FC20 SFR 12
0864 FC21 SFR 12i(T)

* TEST FOR ILLEGAL F FIELD VALUES
0865 6BFA CP IhXtFAl
0866 1468 JP *♦2
0867 06F9 JE ABORT
0868 6CFA CP 12, X » FA t
0869 146B JP *♦2
086A 06F9 JE ABORT
086B 1020 RTN

PAGE 216

086C 8000

*
♦
*
*
Zll

ZERO OUT FILES SUB ROUTINE

ZOF

THIS ROUTINE IS USED 0Y THE ENTER,
DIVIDE AND MULTIPLY ROUTINES TO
ZERO OUT CONSECUTIVE FILES
U

0B6D 8A00 ZOF 10
086€- 8990- ZXTF- 9^
086F 0800 ZOF 8
0870 0700 ZOF 7
0871 0600 Z6 ZOF 6
0872 8500 ZOF 5
0873 0400 Z4 ZOF 4
0874 0300 ZOF 3
0875 0200 ZOF 2
0876 1020 RTN

PAGE 217

* ADD AND SUBTRACT ROUTINE **********************
* THIS IS THE ADD AND SUBTRACTEROUTINES
* OPCODES 01 & 02

* BOXEA *

0^77* 085F- ADD JE L,R SEPERATE LEFT AND RIGHT FIELD
0678 9829 S8T* 11#T,(T)
0679 8760 CPY 7,1, T

* BOXES *

087A 4C07 TZ 12* X »07 » S9GN REQUIRED ??
0878 149A JP AE NO SIGN REQUIRED

* BOXEC *

087C CA03 MOV 10,(N)
087D A902 RMF 9,(M)

* BOXED *

067E 9740 DEC 7
087F 8820 CPY 8, T

* BOXEF *

0880 C801 AF MOV 11,(T)
0881 8A23 ADD 10,T,(N)
0882 8982 ADD 9,Li(M)

* BOXES *

0883 1180 LT X»80«
0884 5001 TN 13,X f 01• TEST OPCODE

* BOXEH *

SUBTRACTECOMMAND

0885 0820 XOR 8,T FLIP SIGN BIT OF M

* BOXEI *

0886 C801 MOV 8,CT)
0887 0138 XOR* 1,C,T EXCLUSIVE OR SIGN BITS
0888 2006 LF 13,X»06'

* BOXEJ *

PAGE 218

0689 5004 TN OfXI04I TEST IF SIGNS SAME

* BOXEK *

088A 3010 AF 13,X f10 • SIGNS NOT SAME, SUBTRACT

*-BOX£L **

0868 F128 SFR* 1 CLEAR LINK REGISTER TO 0
086C 5707 TN 7fX»07» TEST P7 = o
0680 149C JP AR
068E AD06 RMF 13,(U) U<«!-P)3, READ 1ST BYTE
068F 37FF AF 7fX’FFI DECREMENTEP7 BY 1
0890 8037 ADD OfTfCf (S) DO FIRSTEADD

* BOXEN *

0691 5707 AM TN 7,X« 071
0892 149C J? AR

* BOXEN *

0893 3DFF AF 13fX«FFf

* BOXEO *

0694 9A43 DEC 10,(N)
0895 9982 3BT 9,LfCM)
0896 A006 RMF 13,(U)
0897 37FF AF 7,X»FF»

* BOXER *

0896 8087 ADO OfTfLfC, CS)
0899 1491 JP AM

* BOXEE *

089A 8800 AE ZOF 8
0896 1480 JP AF

* BOXER *

089C 3DFF AR AF 13,X’FFI SU8TRACTE1-FR0M P13
0690 5006 TN 13,X’06l TEST P13 > I
089E 14A3 JP AS

* BOXEY *

PAGE 219

089F CD06 MOV 13,(U)
08A0 8097 ADD O,L,C,(S)
08A1 3DFF AF 13,X«FFf
08A2 1490 JP AR + l

*-

06A3 FD80 AS SFL 13,L SAVE LINK BIT FOR TESTING
08A4 1600 UU X’OOI
08A5 4020 TZ£ 13,X»20’ WERE SIGNS SAME ???
08A6 14AA JP AV SIGNS NOT SAME

* BOXES *

08A7 4001 TZ 13,XI01I LINK = 1 ==> OVERFLOW

* BOXET *

OVERFLOW HAS OCCURED

08A8 0053 JE OVERFL GO SET OVERFLOW FLAG
08A9 07E1 JE FETCH

* BOXEV ♦

08AA 4001 AV TZ 13,X » 011 LINK = 1 ???
08A8 07E| JE FETCH LINK=1 * RESULT IN TRUE FORM
08AC 0D3C JE EOO MUST COMPLEMENTERESULT & SIGN

PAGE 220

♦ MULTOPLY ROUTINE *****************************
♦ OPCODE 03

* BOXEA * SEPARATE F FIELD INTO Pll & P12

08AD 085F MUU JE

* B'OXEff ♦

L.R SEPERATE CLIR)

08AE 4C07 TZ 12,X107 » TEST IF SIGN REQUIRED
06AF 1485 JP ME SIGN NOTEREQUIRED

* BOXfC *

0880 CA03 MOV 10,(N)
0881 A902 RMP 9,(M)
0882 8C40 INC 12

* BOXED * COMPUTE ALGEBRAIC SIGN OF RESULT

0883 1000 NOP
0884 0120 XOR 1,T

♦ BOXEE *

0885 1100 ME UT XfOOl PAGE OUTEINDEX
0886 06C8 4E VIA
0887 1080 $SF
0888 F721 SFR 7,CT)
0889 1040 8PF
08BA C120 LOR UT SMMMMXXXE- Pl

* SIGN 8- MAP PACKED INTO Pl
0888 8841 INC 11,(T)
08BC 8A29 ADD* IO,T,(T)
08BD 1080 SSF
08BE BD20 CPY 13,T
0B8F 1040 SPF
08CO 8981 ADD 9,L,(T)
08C1 1080 SSF
0BC2 BC20 CPY 12,T
08C3 1040 SPF
08C4 9C41 DEC 12,CT) P12 e 1 wr> T
08C5 9821 SBT 11,T,CT) Pll ♦ I *CP12 • 1) —> T
08C6 BC20 CPY 12,T SET UP MAJOR COUNTER

* MOVE A REG, CP2 •P6) TO S7 ’ S 11
08C7 C201 MOV 2,CT)
08C8 1080 SSF
08C9 8720 CPY 7,T

PAGE 221

08CA 1040 SPF
08CB C301 MOV 3#(T)
08CC 1080 SSF
08CD B820 CPY 8,T
08CE 1040 SPF
08CF C401 MOV 4, (T)
0850^ ID 80- SSf^
08D1 B920 CPY 9,T
08D2 1040 SPF
08D3 C501 MOV 5, CT)
0804 1080 SSF
0805 BA20 CPY 10,T
0806 1040 SPF
0807 C601 MOV 6, (T)
0808 1080 SSF
0809 BB20 CPY 11 * T
08DA 0871 JE Z6 ZERO FILES 6"2
08DB 1040 SPF
08DC 086C JE Zll ZERO FILES 11 • a

*********(
* BOXEG *

0800 9C40 MG DEC

12

* BOXEH * TEST MAJOR COUNTER£= ZERO

08DE 5CFF TN 12,XIFFI
08DF 1511 JP MP MAJOR COUNTER IS ZERO

* B0XE1 *

READ IN A BYTE OF MULTIPLIER

08E0 1080 SSF
08E1 9043 DEC 13,(N)
06E2 9C82 SBT
08E3 AOOO RMF 0

* BOXEJ *

08E4 1040 SPF
OSES 2008 IF 13,X«08«
08E6 1080 SSF
08E7 8120 CPY IfT

* BOXEK *

TEST LOW ORDER BITEOF SI

08E8 5101 MK TN 1,X»01»
08E9 1500 JP MM ZERO BIT! SHIFT

PAGE 222

* BOXEL * ONE BIT! ADD & SHIFT

08EA CB01 MOV 11,(T)
08EB 8630 ADD 6,T,C
08EC CA01 MOV 10,(T)
08ED 8550. ADD 5,T,C,L.
08EE C901 MOV 9HT)
08EF 8480 ADD 4,T,C,L
08F0 C801 MOV 8, (T)
08F1 83B0 ADD 3, T, C, L
08F2 C701 MOV 7, (T)
08F3 8280 ADD 2,T,C,L
08F4 1040 $PF
08F5 CB01 MOV 11,(T)
08F6 8680 ADD 6,T,C,L
08F7 CAOt MOV 10,(T)
08F8 8580 ADD 5,T,C,L
08F9 C901 MOV 9, (T)
08FA 8480 ADD 4,T,C,L
08FB C801 MOV 8,(T)
08FC 8380 ADD 3,T,C,L
08FD C 701 MOV 7,(T)
08FE 8280 ADD 2,T,C,L
08FF 1080 SSF

* BOXEM *

0900 F800 MM SFL 11
0901 FA80 SFL 10,L
0902 F980 SFL 9,L
0903 F880 SFL 8,L
0904 F780 SFL 7,L
0905 1040 SPF
0906 FB80 SFL 11,L
0907 FA80 SFL 10,L
0908 F980 SFL 9,L
0909 F880 SFL 8,L
090A F780 SFL 7,L
0908 9040 DEC 13

* BOXEN *

090C 5D0F TN 13,X t OF I
090D 14DD JP MG

* BOXED *

090E 1080 SSF

PAGE 223

090F F 3 20 SFR 1
0910 14E8 JP MK

* BOXER *

0911 C101 MP MOV btn
09f2’ 1080" S^SF
0913 8720 CPY 7,T
0914 F700 $FU 7 RESTORE MAP
0915 2180 LF 1 * X » 80 1
0916 E120 AND 1,T RESTORE SIGN OF X
0917 1040 SPF
0918 2180 IF 1,X • 801
0919 E120 AND 1#T RESTORE SIGN OF A

* BOXES * •

091A 1600 LU X’00»
091B 07E1 JE FETCH

PAGE 22<l

* DIVIDE ROUTINE ***********************************
* OPCODE oa

* 80XEA *

091C 085F DIV JE L,R SEPERATE CLIR)
a«fD* CtDl^ M13V- 1HTT
091E 1080 SSF
091F 8120 CRY UT
0920 1040 SPF

* 80X£B *

TEST IF SIGN REQUIRED

0921 4C0F TZ 12* X•OF I
0922 1529 JR DE

* BOXEC *

SIGN IS required

0923 CA03 MOV 10,(N)
0924 A902 RMF 9* (MJ

* BOXED *

COMPUTE algebraic sign of RESULT

0925 8C40 INC 12
0926 0120 XOR bT
0927 5807 TN ll,Xt07t TEST FOR£C0,0) CASE
0928 156F JR DI DIVIDE BY ZERO ATTEMPTD

* BOXEE *

0929 1100 DE IT x । oo i
092A 06C8 JE VIA PAGE OUTEINDEX
092B 8849 INC* 11,(T)
092C 8A29 ADD* 10,T,(T)
092D 1080 SSF
092E 8D20 CRY 13,T
092F 1040 SPF
0930 8981 ADD 9,L,(T)
0931 1080 SSF
0932 BC20 CPY 12,T
0933 F721 SFR 7,CT)
0934 C120 LOR 1»T
0935 1040 SPF
0936 CC01 MOV 12,CT)
0937 9821 SBT 11,T,(T)
0938 BC60 CPY 12,1,T
0939 2D0C LF 13,X•OC t
093A C201 MOV 2,CT)

PAGE 225

093B B720 CPY
093C C301 MOV 3,(T)
0930 B820 CPY 8,T
093E C401 MOV 4,CT)
093F B920 CPY 9,T
0940 C501 MOV 5, CT)

CPY 1’O’, T
0942 C601 MOV 6, (T)
0943 8820 CPY 11,T
0944 1080 SSF
0945 C201 MOV 2,CT)
0946 1040 SPF
0947 8220 CPY 2,T
0948 1080 SSF
0949 C30| MOV 3,CT)
094A 1040 SPF
0948 8320 CPY 3,T
094C 1080 SSF
0940 C401 MOV 4,CT)
094E 1040 SPF
094F 8420 CPY 4,T
0950 1080 SSF
0951 C501 MOV 5,CT)
0952 1040 SPF
0953 8520 CPY 5,T
0954 1080 SSF
0955 C601 MOV 6,CT)
0956 1040 SPF
0957 8620 CPY 6,T
0958 1080 SSF
0959 086C JE Zll ZERO FILES 11-2
095A 1040 SPF

* BOXfF A

095B 5C0F OF TN 12* X f OF i
095C 1567 JP OH

A BOX£G *

0950 1080 SSF
095E 9043 DEC 13,CN)
095F 9C82 SBT 12,L,CM)
0960 1040 SPF
0961 AD46 RMF 13,0,CU)
0962 9C40 DEC 12
0963 1080 SSF
0964 8027 CPY O,T,CS)

PAGE 226

0965 1040 SPF
0966 1558 JP DF

* BOXER * TEST IF DI VISOR IS ZERO

0967 1080 DH SSF
0968. CBlt M6V^ 1UC,(T)
0969 CA91 MOV 10,C,L,CT)
096A C991 MOV 9,C,L,CT)
0960 C891 MOV 8,C,L,CT)
096C C791 MOV 7,C,L#CT)
0960 5004 TN Of X»04 I
096E 1576 JP DJI

* BOXEI * DIVIDE BY ZERO ATTEMPTED

096F C101 DI MOV If CT)
0970 8720 CPY 7fT
0971 F700 sfl 7
0972 1180 LT X * 60»
0973 E120 AND 1»T RESTORE SIGN
0974 0053 JE OVERFL GO SET OVERFLOW FLAG
0975 1600 LU X * 00«

* B0XEDJ1* TEST IF A > M OR A = M

0976 CBOl DJI MOV Ilf CT)
0977 1040 SPF
0978 9B38 SBT* llfC,T
0979 1080 SSF
097A CA01 MOV 10,CT)
097B 1040 SPF
097C 9A88 SBT* 10,C,LfT
0970 1080 SSF
097E C901 MOV 9,CT)
097F 1040 SPF
0980 9988 SBT* 9,C,Lf T
0981 1080 SSF
0982 C801 MOV 8f CT)
0983 1040 SPF
0984 9888 SBT* 8,L,CfT

v 0985 1080 SSF
0986 CTO 1 ■ . " MOV ■ n<T)
0987 1040 ’ *■' SPF
0988 97B8 SBT* 7,LfCfT
0989 1080 SSF
098A 4004 TZE Of X»04» Asm???
0988 156F JP DI OVERFLOW WILL OCCUR

PAGE 227

098C FC00 SFL 12 GEY LINK BIT
0980 tiCOl TZ£ 12,X t 011 (.INK = 1 = = > POSITIVE RESULT
098E 156F JP DI POSITIVE RESULT ==> A > M

* BOX£J *

09-frp- 1040 S-PF"
0990 2051 LF 13,X«5|1

- ♦ BOX£N *

0991 1690 LU X»90»
0992 F600 SFL 6
0993 15A8 JP DS

* BOXEO *

0994 1080 DO SSF
0995 C801 MOV lli(T)
0996 8627 ADD 6,T,(S)
0997 CA01 MOV 10, (T)
0998 85A7 ADD 5,T,L,(S)
0999 C901 MOV 9, (T)
099A 84A7 ADD 4,T,L#(S)
0998 C801 MOV 8, (T)
099C 83A7 ADD 3,T,L,(S)
099D C701 MOV 7,tn
099E 8287 ADD 2»T,L,C,(S)

* BOXER *

099F FC80 SFL 12,L
09A0 ccoi MOV 12,(7)
09A1 8020 CRY 1S,T 313 LINK BIT
09A2 1600 LU X»00 * ASSUME NEGATIVE RESULT
09A3 4C01 YZ£ 12,X»01» LINK s 1 ==> POSITIVE RESULT
09A4 1690 LU Xl90f POSITIVE RESULT
09A5 FC20 SFR 12 PUT VALUE BACK IN LINK REG,
09A6 1040 8PF

* BOXES *

09A7 F680 SFL 6,L LINK BITECONTAINS RIGHT VALUE
09A8 F580 OS SFL 5,L
09A9 F480 SFL 4,L
09AA F380 SFL 3,L
09A8 F280 SFL 2,L
09AC FB80 SFL HiL

PAGE 228

09AD FA80 SFL 10,L
09AE F980 SFL 9»L
09AF F880 SFL 8,L
0980 F780 SFL 7,L

* BOX£T *

0981 3DFF AF 13,X’FFt
0982 5DFF TN 13,X»FF’
0983 1588 JP DU
0984 1080 SSF
0985 F680 SFL 6,L
0986 F580 SFL 5,L
0987 F480 SFL 4,L
0988 F380 SFL 3,L
0989 F280 SFL 2,L
098A 1594 JP DO

* BOX£U *

0988 1080 DU SSF
09BC 4001 BU TZ£ 13,X»01» LINK = 1 ==> POSITIVE RESULT
09BD 15CA JP DW POSITIVE RESULT

* BOX£V * NEGATIVE RESULT

09BE CB0I MOV 11,(T)
09BF 8620 ADD 6,T
09C0 CA01 MOV 10,(T)
09C1 85A0 ADD 5,L#T
09C2 C901 MOV 9, (T)
09C3 84A0 ADD 4,L,T
09C4 C801 MOV e* ct)
09C5 83A0 ADD 3,L,T
09C6 C701 MOV 7,(T)
09C7 8280 ADD 2, L # C, T
09C8 FD80 SFL 13,L S13 <ew LINK BIT
09C9 15BC JP BU

* BOX£W * POSITIVE RESULT

09CA Cl 01 DW MOV 1#(T)
09CB 8720 CPY 7,T
09CC F700 SFL 7
09CD 1180 LT X160 1
09CE E120 AND IfT
09CF 1600 LU X»00 1
09D0 07E1 JE FETCH

PAGE 229

0900 07E1 * NUM ROUTINE **************************************
* THIS ROUTINE TAKES 10 CHARACTERS IN THE A & X£REG,
* ANO CONVERTS THEM TO THEIR BINARY EQUIVALENT

♦ B0X£A *

09-01: B-oaox NU.M* ZOF- 13
0902 BCOO ZOF 12
0903 BB00 ZOF 11
0904 27E1 LF

* BOXES *

7,XtEl»

0905 8746 NB INC

* BOX£C *

7,(U)

0906 6719 CP 7* X f191
0907 1C13 JP

* BOXEJ *

ND

0906 27E| LF 7#XIE1I
0909 B900 ZOF 9
09DA BA00 ZOF

* BOXEK *

to

09DB 6746 NK INC

* BOXEN *

7,CU)

09DC
0900

11 OF
1080

LT
SSF

X»OF t

09DE
09DF

0029
1040

EOT*
8PF

* BOXEN *

O#T,(T)

09E0 8020 ADD 13,T
09E1 8C80 ADD 12,L
09E2 8B80 ADD 11,L
09E3 8A80 ADD 10,L
09E4 8981 ADD

♦ BOX£L *

9,1, (T)

09E5 671A CP 7,X» 1AI

PAGE 230

09E6 15F2 JP

* BOXES *

NO

09E7 B220 CPY 2,T
09E8 CA01 MOV 10,(T)
09E9 B320 CPY 3,T
0^*>C80r MOV"' it, cn
O9EB 8420 CPY 4,7
09EC CCO| MOV 12,(7)
09ED B520 CPY 5,7
09EE C001 MOV 13,(7)
O9EF 8620 CPY

w BOXEU *

6,7

09FO 1600 LU X100 1
09F1 07E1 JE

* BOXEO *

FE7CH

09F2 8220 NO CPY 2,7
09F3 CAO 1 MOV 10,(7)
O9F4 8320 CPY 3,7
09F5 CB01 MOV 11,(7)
09F6 8420 CPY 4,7
09F7 ccoi MOV 12,(7)
09F8 8520 CPY 5,7
O9F9 CD01 MOV

* BOXEP *

13,(7)

09FA FDOO SFL 13
O9FB FC8O SFL 12,L
09FC FB80 SFL 11,L
09FD FA8Q SFL 10, L
09FE F980 SFL 9,L
09FF FDOO SFL 13
0A00 FC80 SFL 12,L
0A01 FB80 SFL 11,L
OAO2 FA80 SFL 10,L
0A03 F980 SFL

* BOXEQ *

9,L

0A04 8020 ADD 13,7
0A05 C501 MOV 5,(7)
OA06 8CA0 ADD 12,7,L

PAGE 231

0A07 caoi MOV a, ct)
OAO8 8BA0 ADD 11,T,L
0A09 C301 MOV 3, CT)
OAOA 8AAO ADD 10,TfL
OAOB C2O1 MOV 2,(T)
OAOC 89AO ADD-*|- ---- *- .A- -4.

* BOXER *

9,T,L

OAOD FDOO SFL 13
OAOE FC80 SPL 12# L
OAOF FB8O SFL H#L
OA1O FA80 SFL 10,L
OA11 F98J SFL 9#L,(T)
0A12 1SD8 JP

* BOXED *

NK

OA13 11OF ND LT X»OF •
OAlti 0029 EOT*

* BOXEE *

0,T,CT)

0A15 8020 ADD 13,T
0A16 8C80 ADD 12,L
0A17 8B81 ADD

* BOXEF *

11,LfCT)

0A18 8820 CPY 8,T
0A19 CC01 MOV 12,(T)
0A1A 8920 CPY 9,T
0A1B CD01 MOV

* BOXEG *

13,(T)

0A1C FDOO SFL 13
0A1D FC80 SFL 12,L
0A1E FB80 SFL 11,L
0A1F FDOO SFL 13
OA20 FC80 SFL 12,L
0A21 FB80 SFL

* BOXEH *

11,L

0A22 8020 ADD 13,T
0A23 C901 MOV 9,CT)
0A24 8CA0 ADD 12#L,T

PAGE 23?

0A25 C80 X MOV 8# CT)
0A26 8BA0 ADD 11,T,L

* BOXEI *

0A27 FDOO SFL 13
0AS8-* F-689*' SFC 1211
0A29 FB8O SFL IhL
0A2A 1505 JP NB

PAGE 233

* CHAR ROUTINE *************************************
* THIS ROUTINE TAKES A «O BIT BINARY NUMBER IN THE
* A REG, AND CONVERTS IT INTO 10 ASCII CHARACTERS
* OPCODE 05

* BOX£A * SUBTRACT 25a,0BE,3FF FROM A REG,
*r»NQTE THIS IS-THE HEXfNUMBER = 9,999,999,999 DEC,

0A2B I IFF CHAR LT XIFFI
0A2C 9638 S8T* 6, T # C
0A2D 11E3 LT X«E3’
0A2E 9588 SBT* 5,T,LfC
0A2F 1X OB LT X»OB ♦
0A30 94B8 SBT* 4,L,T,C
0A31 1154 LT XI54I
0A32 93B8 SBT* 3,L,T#C
0A33 1102 LT X»02»
0A34 9288 SBT* 2,T,L,C

* BOXES *

0A35 F780 SFL 7,L
0A36 5701 TN 7,XI0U TEST LINK BIT
0A37 1C3A JP HD
0A38 5004 TN 0,X»04l TEST ZERO
0A39 0D53 JE OVERFL GO SET OVERFLOW FLAG

* BOXED *

0A3A C201 HD MOV 2, (T)
0A3B 6720 CPY 7,T
0A3C C301 MOV 3,(T)
0A3D 8820 CPY 8,T
0A3E C401 MOV 4, (T)
0A3F B920 CPY 9,T
0A40 C501 MOV 5,CT)
0A41 8A20 CPY 10,T
0A42 C601 MOV 6,(T)
0A43 BB20 CPY lliT

* BOXEE *

0A44 1100 LT X’ 001
0A45 06C8 JE VIA
0A46 1080 SSF
0A47 F701 SFL 7,CT)
0A48 C120 LOR 1#T
0A49 2C07 LF 12,X»07» LOAD CHARACTERECOUNTER

PAGE 234

0A49 2C07 *********
* BOX£F *

0A4A 1600 HF LU X ’ 00 <
OAtiB 0A66 JE ,5BY10
OAtiC 9C46 DEC 12,(U) LOAD MASK, DECREMENTECOUNTER
OMS" tr* X^frO’
OA4E CB21 LOR 11,T,(T) PICK UP NEXT ASCII CHARACTER
OA4F 8027 CPY 0,T,(S)
0A50 6CFD CP 12,X«FD»
0A51 1CS3 JP HH
OA52 1C4A JP HF

* BOX£H *

OA53 2C07 HH L? 12,X » 07 »
OA54 1600 LU X»00 I
OA55 0A66 JE ,5BY10
OA56 9046 DEC 12,(U)
OAST HBO LT X 1 BO»
OA58 C821 LOR ll,T,CT)
OA59 1040 SPF
0A5A 8027 CPY 0,T,(S)
OA5B 1080 SSF
0A5C 6CFD CP 12,X »FD »
OA5D ICSF JP HI
OA5E IC54 JP HH+1

* BOX£I *

OA5F 1080 HI SSF
OA6O F129 SFR* It (T)
OA61 8720 CPY 7,T
OA62 1180 LT X t 60 ।
OA63 E120 AND IrT

* BOXfJ *

OA64 1600 LU X»00 •
OA65 07E1 JE FETCH

PAGE 235

0A66 1080

* THIS

* BQXEA *

,58710 SSF

IS A 5 BYTE DIVIDE ROUTINE

0A67 8700 ZOF 7
O'A 68“ 8800 ZOF 8
OA69 8900 ZOF 9
0A6A 8A00 ZOF 10
OA6B 8800 ZOF 11
OA6C 1040 SPF
OA6D 2C23 LF

* BOXEAA*

12,Xt23t W OF TIMES THRU ROUTINE

OA6E 2006 LF 13r X « 061
OA6F FBOO TAA SFL 11
0A70 FA80 SFL 10,L
0A71 F980 SFL 9,L
0A72 F880 SFL 8,L
0A73 F780 SFL 7,L
0A74 9040 DEC 13
0A75 40FF TZ 13,X»FFI
0A76 1C6F JP

* BOXES *

TAA

INITIALIZE FIRST PASS

0A77 1690 LU X»90l SET UP SUBTRACT
0A78 FBOO SFL 11
OA79 110A LT XIQAI LOAD T WITH SUBTREND
0A7A 1C87 JP

* BOXEC *

TE JUMP TO SHIFTEROUTINE

0A7B 8827 TC ADD 11,T,(S)
0A7C 8A87 ADD 10,L,(S)
0A7D 8987 ADD 9,L,(S)
0A7E 8887 ADD 8,L,(S)
0A7F 8787 ADD

* BOXED *

*
*

7,L,(S)

TEST RESULTS

LINK 8.0 =s> NEGATIVE RESULT
UINK s 1 =$> POSITIVE RESULT

OA80 FD80 SFL 13,L
0A81 FD28 SFR* 13
0A82 1600 LU X»00» ASSUME NEGATIVE RESULT
0A83 400| TZ 13,Xi01t LINK s 1 ==> POSITIVE

PAGE 836

0A84 1690 LU X»90 » POSITIVE RESULT
0A85 1040 SPF

* BOXEE *

0A86 FB80 SFL IbL LINK BITECONTAINS RIGHTEVALUE
0A8-F F*80 TE SFt 10,1
0A88 F980 SFL 9,L
0A89 F880 SFL 8,L
0A8A F780 SFL 7,L

* BOXEF *

-

0A8B 3CFF AF 12,XIFFI DECREMENTECOUNTER
0A8C 5CFF TN 12,X«FFI FINISHED???
0A8D IC95 JP TG RETURN
0A8E 1080 SSF
QA6F FB80 SFL llfL
0A90 FA80 SFL 10,L
0A91 F980 SFL 9,L
0A92 F880 SFL 8fL
0A93 F780 SFL 7,L
0A94 1C7B JP TC

* BOXES *

FINISHED DIVIDING, GET REMAINDER +VE

0A95 1080 TG SSF
0A96 4001 TZ 13,X»01» LINK = 1 ==> POSITIVE RESULT
0A97 1020 RTN

* BOXEH *

REMAINDER IS NEGATIVE

0A98 110A LT X » 0 A »
0A99 8020 ADD llfT
0A9A 8A80 ADD 10,L
OA90 8980 ADD 9,L
0A9C 8880 ADD 8,L
0A9D 8780 ADD 7,L
0A9E 1600 LU X»00 I
0A9F 1C97 JP TGf2

PAGE 237

* SHIFTEROUTJNE ************************************
* THIS ROUTINE HANDLES THE SHIFTfINSTRUCTIONS
* OPCODE 06

* BOXEA1*

OAAO' C'?) !" SHTF-F MOV- Mf<T)‘
0AA1 CA91 MOV 10,C,L,(T)
0AA2 4004 TZ 0,XI04l TEST IF 0 BYTES TO SHIFT
0AA3 07E| JE FETCH NO OPERATION, RETURN

0AA4 4C01

* BOXfA *

TZ£ 12,X»0p TEST FOR£SHIFT£RIGHT£COMMAND
0AA5 1CCF JP SLi SHIFT RIGHT

0AA6 5C04

* BOX£B *

SB TN

SHIFT LEFT ROUTINE

12,X»O4» TEST FOR CIRCULAR SHIFT
0AA7 1CAC JP SD NON-CIRCULAR SHIFT

0AA8 C201

♦ BOX£C *

MOV

CIRCULAR SHIFT

2, CT)
0AA9 1060
OAAA BB20

SSF
CPY lb T

OAAB 1CAE JP SE

OAAC 1060
OAAD BBOO

* BOX£D *

SO SSF

ZOF

NON*CIRCULAR SHIFT

11

OAAE 1040
OAAF C301

* BOX£E •

SE SPF

MOV 5#(T)
OABO B220 CPY 2#T
0AB1 C401 MOV 4, (T)
0AB2 B320 CPY 3,T
0AB3 C501 MOV 5, CT)
0AB4 8420 CPY 4,T
0AB5 C601 MOV 6, CT)
0AB6 B520 CPY 5,T

0AB7 B600

* BOXCH *

ZOF

TEST FOR SLA COMMAND

6 ASSUME SLA COMMAND

PAGE 238

0AB7 B6OO *********
* BOXER *

0AB8 SC08 TN 12,XIO6« TEST IF SLA COMMAND
0AB9 ICCA JP

* BO7£G *

SI, SLA COMMAND

SIAXEDR-SLC'" COMMAND

OABA 1080 SSF
OABB C201 MOV 2, (T)
OABC 1040 8PP
OABD B620 CPY 6,T
OABE 1080 SSF
OABF C301 MOV 3,(T)
OACO B220 CPY 2#T
OAC1 C401 MOV 4,(T)
OAC2 B320 CPY 3,T
OAC3 C501 MOV 5,(T)
OAC4 B420 CPY 4,T
OAC5 C601 MOV 6, CT)
OAC6 B520 CPY 5,T
OAC7 CB01 MOV Hi (T)
0AC8 B620 CPY 6rT
OAC9 1040 8PF

* BOXEJ ♦

decrement counter

OACA 9A50 SI, DEC IOiC
OACB 9990 SBT

* BOXEJ *

9iLiC

OACC 5004 TN 0iXI04l TEST RESULT
OACD 1CA8 JP

* BOXEK *

SB NONeZERO RESULT

ZERO RESULT

OACE 07E1 JE

♦ BOXEL *

FETCH

RIGHT SHIFT ROUTINE

OACF 5C04 SL, TN 12,XIO4I TEST IF CIRCULAR COMMAND
OADO ICF2 JP

* BOXEM *

SN, NONwCIRCULAR command

CIRCULAR COMMAND

OAD1 1080 SSF
OAD2 C601 MOV 6* CT)

PAGE 239

0AD3
0AD4

0AD5
0AD6
0AD7
0AD8
0AD9
OADA
OADB
QADC
OADD
OADE
OADF
OAEO
OAE1
OAE2

0AE3
0AE4
OAE5
OAE6
0AE7
OAE8
OAE9
OAEA
OAEB
OAEC

OAED
OAEE

OAEF
OAFO
OAF1

OAF2

1040 SPF
B720 CPY 7,T

1080

* BOX£P * SHIFT SECONDARY FILES (X£REGe)

3P SSF

C50T MOV 5#(TT
B620 CPY 6,T
C401 MOV 4,(T)
B520 CPY 5,T
C301 MOV 3,(T)
B420 CPY 4,T
C201 MOV 2,(T)
B320
1040

CPY 3,T
SPF

C601
1080

MOV 6,(T)
SSF

8220
1040

CPY 2,T
SPF

* BOX£Q * SHIFT PRIMARY FILES (A REG.)

C501 SO, MOV 5,(T)
B620 CPY 6,T
C401 MOV 4,(T)
6520 CPY 5,T
C301 MOV 3,(T)
8420 CPY 4,T
C201 MOV 2,(T)
8320 CPY 3,T
C70I MOV 7#(T)
B220 CPY 2,T

♦ BOX£R * DECREMENTECOUNTER

9A50 DEC 10,C
999Q SBT 9,L,C

* BOXER * TEST IF RESULT ZERO

4004 TZ 0,Xt04»
07E1 JE FETCH ZERO RESULT
1CCF JP SL, NONeZERO RESULT

* BOXEN * NON*CIRCULAR SHIFT

8700 SN, ZOF 7

PAGE 240

OAFS 5C02
0AF4 ICES
OAFS 1CDS

* BOX£O * TEST IF SRA OR SRAXECOMMAND

TN 12,XfO2l
JP SQ, SRA COMMAND
JP SP SRAXECOMMAND

PAGE 341

* MOV ROUTINE***************************************
* OPCODE 07

* BOX£A *

0AF6 1101 MOV LT X » 0 11
OAF-?" 0-8 CV *

JE" VIA- PAGE* IN INDEXfSl
MOVE INDEXfl (S9,S10) TO P7# P8

0AF8 1080 SSF
0AF9 C901 MOV 9, CT)
OAFA 1040 SPF
OAFB B720 CPY 7,T
OAFC 1080 SSF
OAFD CA01 MOV 10,CT)
OAFE 1040 SPF
OAFF 8820 * CPY 8,T

ADJUST CONTENTS OF INDEXfl* INDEXK-^INDEXl ♦ F (A OF WORDS MOVED)
OBOO ccoi MOV 12*(T)
0B01 1080 SSF
0B02 8A20 ADD 10,T
0B03 8980 ADD 9,L
0B04 1040 * SPF

CONVERT # OF WORDS (MIXAL) TO TRANSFER* TO # OF BYTES (MICRODATA) TO TRANSFER* F F * 8
0B05 FCOO SFL 12
OB06 FCOO SFL 12
0B07 FCOO

♦ sfl 12
CONVERTEMIXAL ADDRESS FROM INDEXfl♦ TO MICRODATA ADDRESS* MOCRODATA ADDRESS e MIXAL ADDRESS * 8

0B08 F800 SFL 8
0B09 F780 SFL 7,L
OBOA F800 SFL 8
OBOB F780 SFL 7,L
OBOC F800 SFL 8
OBOD F780 *■ SFL 7,L

SET UP ADDRESSES FOR READ WRITE LOOP
OBOE 9640 DEC 8
OBOF 9780 SBT 7,L
0810 9A40 DEC 10
OBH 9980 SBT 9,L
0B12 2B05 * LF 11,X»O5» SKIP MASK

SENDING ADDRESS IN P9, PIO* RECIEVING ADDRESS IN P7, P8* BYTE COUNTER IN P12*********

page aaz

* BOX£C * READ WRITE LOOP

OB13 8A43 R,W INC 10,(N)
OBI Al A982 RMF 9,Lr(M) READ A BYTE

* BOXfE *

OB15 8843 INC 8, (N)
OB16 A792 WMF 7,L,(M) WRITE A BYTE

* BOXED *

0B17 9C40 DEC 12 ADJUST BYTE COUNTER

* BOXEBl*

0B18 1105 LT X»OS 1 LOAD T WITH SKIP MASK
0B19 EA29 AND* 10,T,CT)
0B1A DB38 XOR* ll,T,C TEST IF TIME TO SKIP 2 BYTES
0B1B 4004 TZ 0,X«04i TIME TO SKIP TWO BYTES??
0B1C 1020 JP .SKIP YES

♦ BOXES *

0B1D 4CFF MB TZ 12,X«FFl TRANSFEREDONE??
0B1E 1013 JP R.W

* BOXEF *

0B1F 07E1 JE FETCH

* BOXEG *

SKIP TWO bytes

0B20 1102 .SKIP LT X’ 02’
0B21 8A20 ADD 10,T xncrementesource address
0B22 8980 ADD 9,L
0B23 8820 ADD 8,T incrementetarget address
0B24 8780 ADD 7,L
0B25 9C20 SBT 12, T Incrementecounter
0B26 1010 JP MB

PAGE aa?

* LOAD ROUTINE

0B2L7 08&F*

* THIS ROUTINE HANDLES ALL 16 LOAD COMMANDS
*

BOX£A PUT RIGHT FIELD SPEC IN PH, LEFT FIELD

LW- US. SEPERATE (L1R)

0B28 2780

*B0X£8 * TESTeJS SIGN BYTE REQUIRED?

LF 7,Xt80i
OB29 aC07 TZ 12,Xt07f
0B2A ID6C UP LD JUMP TO BOX£D

0B2B CAOS

*BOX£C * READ IN SIGN BYTE

MOV 10,(N)
0B2C C902 MOV 9,(M)
0B2D ACCO RMF 12,1

0B2E 5D10

*BOX£E * TESTwLAOD NEGATIVE COMMAND?

LE TN l3,XH0i

0B2F 1031 JP LG JUMP TO BOX£G

0830 D729

*BOX£F * FLIP SIGN BIT IN T

XOR* 7,T,(T)

0B31 E729

*BOX£G *

LG AND* 7,T,(T) AND OFF SIGN

0B32 CD20 LOR 13,T
0B33 1601 LU XIOU
OB3<4 2801 LF 8,X»0H
0B35 2705 LF 7,X»05l
0B36 CCOi MOV 12,(T)
0B37 9829 38T* 11,T,(T)
0838 9720 SBT 7#T

0839 5007

*BOX£H * TEST«LOAD A COMMAND?

TN 13,XIO7I
0B3A 1059 JP LS JUMP TO BOXES

0B3B 1107

*BOX£I * TEST- LOAD INDEX£COMMAND?

LT X«07l

PAGE 244

0B3C ED29 AND* 13,T,(T)
0030 1080 SSF
0B3E 2007 LF 13,X107•
0B3F 0058 XOR* 13,T,C
0B40 1040 SPF
0B41 4004 TZ 0,X»04 »

JP* LR- JUMP TO BOX£R» LOAD XEINSTRUC

*BOX£J**

0B43 5807 TN 11, X » 07 »
0B44 1D6E JP LL JUMP TO BOX£L

*BOX£K ♦

0B45 ccoi MOV 12,(7)
0B46 9829 IK SBT* U#T,(T)
0B47 8720 CPY 7,7
0B48 67FE CP 7,X।FE t
0B49 104C JP LN

*BOX£M *

0B4A 8C41 INC 12,(7)
0B4B 1048 JP LK

*0OX£N *

0B4C CB01 LN MOV 11,(7)
0B4D DC38 XOR* 12,7,C.
0B4E 2701 LF 7, X »011

♦BOX£O *

0B4F 4004 YZ o,xioa।

*BOX£P ♦

0B50 8740 INC 7

*BOX£Q ♦
******** -

0B51 1600 LQ LU XI001
0B52 06C4 JE PAGE GO PAGE IN INDEXEREGIS7ER
0B53 1040 SPF
0B54 2808 LF 8,X*08t
0B55 1608 LU X • 08»

PAGE 205

0B56
0B57
0B5B

0859
0B5A
0B5B
0B5C
0B5D
0B5E
0B5F
0860
0861
0862

0863
0864

0865
0B66

0867

0868

0869
0B6A
0868

0B6C
0B6D

*BOX£R *

CD01 LR MOV 13,(T)
1080 SSF
8020 CPY 13,T

*ffOX£S *"

H80 LS LT X • 80»
ED29 AND* 13,T,(T)
8027 CPY O,T,(S)
1040 SPF
CC01 MOV 12, (T)
6A23 ADD 10,T,(N)
8982 ADD 9,L#(M)
9829 SBT* ll,T,(T)
8C60 CPY 12,I,T
1100 LT X100» ZERO T

* BOX£T *

6846 LT INC 8,(U)
9750 DEC 7,C

BOX£U

TEST LOOP varible

4006 TZ 0 * X « 061
1070 JP LW JUMP TO BOX£W

*BOX£V *

TEST* LOAD A COMMAND?

4007 TZ£ 13,X»07»

*BOX£X *

1080 SSF

B0X£AA

8027 CPY O,T,(S)
1040 SPF
106? JP LT

*BOX£D *

1100 LD LT XI 001
102E JP LE

PAGE 2<I6

*BOX£L ♦

0B6E 2703 LL IF 7# X»03«
0B6F 1051 JP LQ

*BOX£W *
***** * **

11, X I 07»0B70 5807 LW TN

*BOX£Y *

0B71 ID7E JP

*BOX£Z *

LFF

0B72 A001 LZ RMF 0* CT)

BOX£BB TEST FOR LOAD A COMMAND

0673 0007 TZ 13,XI07«

BOX£CC

0B74 1080 SSF

♦BOXEDD*

0B75 8027 CPY O#T,(S)
0B76 1040 $PP
0B77 9C50 DEC 12,C

BOX£EE TEST LOOP VARIBLE P12

0B78 4006 TZ 0 * X«061
0B79 1D7E JP LFF RETURN

BOX£GG

0B7A 8A43 INC 10,CN)
0B7B 8982 ADD 9,L»(M)
0B7C 8846 INC 8,(U)
0B7D 1072 JP LZ

BOX£FF

0B7E 1600 LFF LU X 100 *
0B7F 07E1 JE FETCH

PAGE 247

0B7F 07E1 *STORE ROUTINE ************************************
♦
* THIS IS THE STORE ROUTINE ITEHANDLES ALL STORE COM
*

* BOXEA *
****** ***»

0B80 085F

0B81 9829
0B82 B760
0B85 CC01
0B84 8A23
0B85 8982

0B86 6DE7

STORE JE l,R SEPERATE (LIR)

* BOXES *

SBT* 11,T,(T)
CPY 7,T,I
MOV 12,(T)
ADD 10,T,(N)
ADD 9,L,(M)

* BOXEC *

CP 13,X«E7I
0B87 1D99
0B88 6OE1

JP SG JUMP TO BOXEOl STORE A
CP 13,X»EH

0B89 1DAF

0B8A 6DE0

JP SO JUMP TO BOXEQl STORE INDEX

* B0XED8E *

CP l3,xiE0«
0B8B 1099
0B8C 6DDF

JP SG JUMP TP BOXEGl STORE X
CP 13,X»0Ft

0B8D 1091

0B8E 8740
0B8F 8740

JP SF JUMP TO BOXEFl STORE J
* NO JUMP IMPLIES! STORE ZERO

* BOXEH *

INC 7
INC 7

0B90 1086

0B91 4CFF
0B92 1097
0B93 A750
0894 1100
0B95 8A43
0B96 8982
0B97 2CCD
0B98 1084

JP SXE JUMP TO BOXEX

* BOXEF *

SF TZ 12,XtFFl

JP **5
WMF 7,0
LT XI001
INC 10, (N)
ADD 9,U,(w:
LF 12,x«c;’
JP su

PAGE 248

0B98 IDB4 *********
* BOXES *

0699 CC01 SG MOV 12,(T)
0B9A 8820 CPY 6,T
0898 2CC7 IP 12,XIC7I
OWC*' CTO r Mtrv 77 (T)
089D 9C26 88T 12,T,(U)

* BOXEDD*

0B9E 5807 TN 8,Xf07l
0B9F 16CI LU XtCH
OBAO IDA2 JP 8J

* BOXEI *

0BA1 8C46 SI INC 12,(U)

♦ BOXEJ *

0BA2 6DE7 SJ CP 13,XtE7l
0BA3 1DA5 JP SL JUMP TO BOXELISTORE A

* BOXEK *

0BA4 1080 SSF

* BOXEL *

0BA5 0001 SL EOT 0,(T)
0BA6 1040 SPF

* 80XEM *

0BA7 A750 WMF 7,0

* BOXEN *

0BA8 570F SN TN 7,X»0FI

* BOXER *

0BA9 1DAD JP SEN

* BOXEO *

OBAA 8A43 INC 10,(N)

PAGE 249

OBAB 8982 ADD 9,Lr(M)
OBAC 1DA1

O8AD 1600
o&AE-ortr

OBAF 06C4

JP

* RETURN TO

SEND LU

JE"

* BOXEQ *

SO JE

SI

FETCH ROUTINE

X’OOI
FETCH

PAGE GO PAGE IN INDEXEREGISTER
OBBO

0BB1
0BB2

0BB3

OBB4
OBB5

1040

5C07
1DC9

2CC8

67FE
1DD1

5PF

* BOXER *

TN
JP

* BOXES *

LF

* BOXEU *

SU CP

JP

12,XIO7I
ST

12,X f CB1

7 * X »FE l
SV JUMP TO BOXEXI P7< OR = I

OBB6

0BB7
0BB8

1100

67FD
1DBD

* BOXEX *

SXE LT

♦ BOXEY ♦

SY CP

JP

XIOOI

7#XIFDI
SZE JUMP TO BOXEZI P7 , OR = 2

0BB9

OBBA
OBBB
OBBC

OBBD

A7S0

8A43
8982
1087

6DDF

* BOXEAA*

WMF

w BOXEBB*

INC
ADD
JP

* BOXEZ *

SZE CP

7,0

10,(N)
9,L,CM)
SY

13,X1DF ।

PAGE 250

OBBE loco JP *♦2
OBBF 1DA0 JP SEND
OBCO 6DE0 CP 13,X•EO *
OBCi 1DC3 JP **2
0BC2 IDA! JP SI
0BC3 4702 TZE 7,X f 021

J|8r SI’
0BC5 5701 TN 7,Xf 011
0BC6 1DAD JP SEND
0BC7 2CC9 IF 12,X t C9 f
0BC8 IDA 1 JP SI

* BOXET *

0BC9 1080 ST SSF
08CA ceoi MOV 8, (T)
OBCB 1040 SPF

* BOXEW *

OBCC A750 WMF 7,D
OBCD 2CC8 IP 12,X1CB f
OBCE 8A43 INC 10,(N)
OBCF 8982 ADD 9,L,CM)
OBDO 1DB6 JP SX

* BOXEV *

0BD1 57FF SV TN 7,X < FFI
0BD2 1DA0 JP SEND
0BD3 8C46 INC 12,(U)
OBDti 1OAX JP SI

PAGE 251

* JRED DECODE ROUTINE ******************************

♦ BQXtO *

0BD5 4CO8
0BD5

JRED TZ
JBUS EQU

12,XiOBt
JRED

OBCns- OBE1> JE*" OREO
0BD7 4C01 TZ£ 12,XIO1• TTY???
OBDB 0BF2 JE TBUS
0BD9 5C02 TN 12,X।02•
OBDA 1DE7 JP

* BOX£A ♦

JCRD

OBDB 1125 JPRNT LT

* BOXES *

X’25l

OBDC 2701 LF 7,X»01»
OBDD 064E JE

* BOXED *

DIX

OBDE 9750 .JTESTEDEC 7,C
OBDF 5004 TN O,XIO4«
OBEO 1DE4 JP

♦ BOXEE *

JBG

OBEI 5004 JBE TN

* BOXEF *

13,X»04«

OBE2 07EI JE

* 80XEH *

FETCH

OBES 0CD4 JE

* BOXEG *

JR

OBEO 5D04 JBG TN

* BOXEH *

13,X » 04 »

OBES 0CD4 JE

• BQXCI *

JR

PAGE 252

0BE4> 07E1 JE FETCH

* JCRD*

0BE7 1387 JCRD LN CCNT
0868- UJF* LM* Hi CORE
OBE9 AOOO RMF 0
OBEA IDES JP *♦1
OBEB 8760 CPY 7*T, X P7<---»CCNT + 1
OBEC 1DDE JP ,JTEST

* DBUS *

OBED ma DBUS LT XI141 INPUT MAJOR STATUS
OBED DRED EQU DBUS •

OBEE 064C JE ,DIX
* TESTHF CONTROLLER IS READY

OBEF 5708 TN 7,XI081
OBFO IDE4 JP JBG NOT READY
0BF1 I DEI JP J8E READY

* TBUS *

0BF2 1377 TBUS LN TSTAT
0BF3 123F LM HICORE
OBFti AOOO RMF 0 READ IN INTERNAL TTY STATUS
0BF5 2701 LF 7,X1011 LOAD MASK
08F6 E720 AND 7»T STRIP OFF READY BIT
0BF7 OBOE JE ,JTEST TEST IF READY OR NOT

PAGE 253

* IOC DECODE

♦ BOXES *

ROUTINE *******************************

0BF8 06FD JE INT
0BF9 H25 IOC LT X ’ 25 • INPUT MAJOR STATUS
OBFA O6«C JE

.*=*»*«•
* BOXEK *

,DIX

OBFB 5701 TN 7/XI01I PRINTEREREADY
OBFC 1DF6 JP IOC»1
OBFD 5704 TN 7 * X f 04 । PRINTER READY
OBFE 1DF6 JP

♦ BOXEN *

IOC-1

OBFF 1105 LT X»05» OUTPUT DATA BYTE
OCOO 278C LF T*X•8C t FORM FEED
0C01 0650 JE

* BOXEN *

iDOX

0C02 07E1 JE FETCH

PAGE 254

* IN DECODE ROUTINE ********************************

* BOX£V *

0C03 SCIO IN TN 12,xil0i
OCO4 OC4C JE DIN
OC05"4COt TZ" 12iX»0I’ HY???'
OCO6 OC2D JE TIN
0C07 OCO9 JE RIN

PAGE 255

* CARD READER INPUT ROUTINE ************************
* RIN INITIATES A READ FROM THE CARD READER
* ONE CARD IS READ IN CONCURRENTEMODE

* BOXEA *

orowfrf^ je* in-t
OCO9 1124 RIN LT X«24l INPUT STATUS BYTE
OCOA 2710 LF 7#X«1D1
OCOB 064E JE DIX
OCOC 123F LM HICORE
OCOD 4708 TZ 7,X«O8I IS THE HOPPER EMPTY
OCOE 0C18 JE HOPPER HOPPER IS EMPTY

* BOXES *

OCOF 9750 DEC 7,C SUBTRACT
0C10 5004 TN 0,Xf04l ZERO RESULTf???
OCll 0C08 JE RIN-l

* BOXEC *

0C12 1144 LT X»44l ENABLE CON-.CURRENT I/0& INT,
0C13 0654 JE cox

i * BOXEE *
4 *********

0C14 276F L? 7,CLSB
0C15 2850 LF 8 # 8 0
0C16 1387 LN CCNT
0C17 0C47 JE CTP
0C18 28C0 HOPPER LF 8,HSAVE
0C19 2AC8 LF 10,HADD
0C1A 07DA JE ERROR

PAGE 256

* OUT DECODE

* BOX£X£w

ROUTINE *******************************

0C1B 5C1O OUT TN 12,XI1OI
OC1C 0C4E JE DOUT
<reii> tiGTTT TT“ 127X*Ott~ TTY???
OC IE OC2F JE TOUT
OCIF OC21 JE POUT

PAGE 257

* PRI NTER£OUTPUY£ROUT IN£ ***************************
* THIS ROUTINE INITIATES CONCURRENTEI/O TO THE
* PRINTER

* BOX£L *

INT
OC21 1125 POUT LT X»25 • INPUT STATUS BYTE
0C22 277F LF 7iX'7F«
0C23 064E JE DIX

* B0X£M *

0C24 37FB AF 7,X f FB1 SUBTRACTS
0C25 47FF TZ£ 7,XIFFI TEST READY
0C26 0020 JE POUT»1 NOT READY SO WAIT

* B0X£N *

0C27 lies LT X»C5I ENABLE CON-CURRENT I/O
0C28 0654 JE COX

* BOX£P *

0C29 2878 LF 8,120
OC2A 279F LF 7,PLSB
0C28 1397 LN PCNT
0C2C 0C47 JE CTP

PAGE 258

* TTY INPUT / OUTPUT HANDLERS
0C2D 2842 TIN IF 8,Xf42l SET STATUS TO BUSY ON INPUT
0C2E 1430 JP TTY
0C2F 2844 TOUT UF 8, X»44t SET STATUS TO BUSY ON OUTPUT
0C30 2777 TTY LF 7#TSTAT
0C31 U3F LM HICORE

R-MP- 7» (N) INPUT INTERNAL STATUS
0C33 9743 DEC 7, (N) DELAY
0C34 8820 CPY llfT COPY STATUS INTO Pll
0C35 4801 TZ£ 11 • X t 0 1 ’ TEST BUSY BIT,1<=READY
0C36 1442 JP TOK NOT BUSY

* TTY OR DISK IS BUSY MUST WAIT FOR
* PREVIOUS I/O TO FINISH
* THIS CODE IS USED BY BOTH TTY & DISK

0C37 C801 WAIT MOV 8, (T)
0C38 1080 SSF
0C39 8820 CPY Ilf T SAVE NEW STATUS VALUE IN Sil
0C3A 06FD JE INT GO SERVICE INTERRUPTS
0C3B 1080 SSF
0C3C CB01 MOV ll»(T)
0C3D 1040 SPF
0C3E B820 CPY B,T
0C3F 5840 TN 8,X«40l TTY OR DISK ???
oc<io 1452 JP DISK DISK INSTRUCTION
oca 1 1430 JP TTY TTY INSTRUCTION
0C42 C801 TOK MOV 8, CT) WRITE OUT NEW STATUS
OC43 A7D3 WMF 7,1,(N)
0C44 9743 DEC 7, (N) LOAD COUNTEREADDRESSwDELAY
OCtiS 2846 LP 8,70 SET UP COUNTER VALUE
OC46 277F LF 7,TLSB LOAD C»I/O ADDRESS(LSB)
0C47 C901 CTP MOV 9, (T)
0C48 BC20 CPY 12,T
OC49 CAOl MOV 10,(T)
0C4A 8020 CPY 13,T
OC48 0656 JE W.OUT

PAGE 259

* DISK INPUT & OUTPUT ROUTINE *********************
* THIS ROUTI
* MODE.

NE INITIATES DISK I/O IN THE CONwCURREN

» BOX£L *

0£M< 2&6Ar DINS- LF’ 8> X rod
0C4D 144F JP DIK
OC«E 2802 DOUT LF

* BOXEK *

8,X f 021

0C4F 1101 DIK LT X’01> MASK OFF DRIVE NUMBER * 1 OR
OC5O EC20 AND 12,T
OC51 3C04 AF l2,XI04f SET UP QUEUE SEEK BYTE

* BOX£A *

INPUT MAJOR STATUS

OC52 ma DISK LT XI141
OC55 064C JE iDIX

* BOX£B * TEST MAJOT STATUS TO SEE IF CONTROLLER
* IS READY

OC54 5708 TN 7,X•08»
OC55 1437 JP WAIT NOT READY SO WAIT

* BOX£C *

QUEUE SELECTED DRIVE

OC56 ccoi MOV 12,(T)
0C57 8720 OPT 7,T
0C58 1114 LT x»iai
OC59 0650 JE .DOX

* BOX£D *

FILE ACTION BYTE

0C5A 0801 MOV 8,CT)
0C5B 8720 CPY 7,T
OC5C 1134 LT XI34«
OC5D 0650 JE .DOX

* BOX£E *

FILE DISK ADDRESS BYTES

OC5E 1154 LT XI54I
OC5F 0654 JE COX
0C60 1080 SSF
OC61 0501 MOV 5,(T)
OC62 0652 JE DOX

PAGE 260

0C63 1174 LT X174I
0C64 0654 JE COX
0C65 C601 MOV 6, CT)
0C66 0652 JE

* BOX£F *
****** ***—

DOX

FILE BEGINNING CORE ADDRESS

0C67
0C68

C401
1040

MOV
SPF

4, CT)

0C69
0C6A

BD20
1080

CPY
SSF

13, T

0C6B
0C6C

C301
1040

MOV
SPF

3* CT)

0C6D 8C20 CPY 12,T
OC6E C901 MOV 9, (T)
0C6F B720 CPY 7,T
OCTO 1194 LT X»94»
0C71 0650 JE ,DOX
0C72 CAO 1 MOV 10, (T)
0C73 B720 CPY 7,T
0C74 1184 LT X • B4 1
0C75 0650 JE

• BOX£G *

,DOX

FILE ENDING CORE ADDRESS

0C76 FDOO SFL
*

13 MULTIPLY NUMBER OF MIXAL
WORDS TO TRANSFER BY 8

0C77 FC80 SFL
*

12,L THIS GIVES THE NUMBER OF
MICRODATA BYTES

0C78 FDOO SFL 13
0C79 FC80 SFL 12,L
0C7A FDOO SFL 13
0C7B FC80 SFL 12* L
0C7C CD01 . MOV 13,CT)
0C7D 8A20 ADD 10,T COMPUTE ENDING CORE ADDRESS
0C7E CC01 MOV 12,(T)
0C7F 89A0 ADD 9,T,L COMPUTE ENDING ADDRESS (MSB)
0C60 9A40 DEC 10
0C81 9981 SBT 9,L,CT)
0C82 8720 CPY 7#T
0C83 1104 LT XID4I
0C84 0650 JE .DOX
0C85 CAOl MOV 10,(T)
0C86 8720 CPY 7,T
0C87 11F4 LT X»F4I
0C88 0650 JE

* BOX£H ♦

.DOX

START QUEUED SEEKS

PAGE 261

0C89 lllfl LT X' 14'
0C6A 2790 LF 7#X • 901
OC80 0650 JC ,DOX
0C8C 07E1 JE FETCH RETURN

PAGE 262

* JUMP ROUTINE *******
* THIS ROUTINE HANDLES
* OPCODES 39 » 47

* BOXES *

******************************1
THE ARITHMETIC JUMP INST,

0C8D-6DD8'
0C6E UBA

0C8F 6DD7
0C90 U94

JUMP- CP’
JP

* BOXEC *

CP
JP

137 XI08 r
JP

13,X«D7l
JG

DErOTTE
OPCODE 39

DECODE
OPCODE 40 ■ A COMMAND

0C91
0C92

0C93

0C9AI
0C95
0C96
0C97
0C98
0C99

0C9A
0C9B

6DD1
UA4

1080

C611
C591
C491
C39J
C291
CIO 1

1040
B720

* BOXED *

CP
JP

* BOXEE *

SSF

* BOXEG *

JG MOV

MOV
MOV
MOV
MOV
MOV

* BOXEH *

JH SPF

CPV

l3,XiDli DECODE
JF OPCODES 41 • 46

OPCODE 47

TEST FOR ZERO CONDITION

6,C,(T)
5,C,L,(T)
4,C,L»(T)
3,C,L,(T)
2#C,L#(T)
1,CT) MOVE SIGN TO T

THIS SECTION IS COMMON TO OPCODES
THE CONDITION FLAGS HAVE BEEN SET

BY A TEST FOR ZERO
THE T REGISTER CONTAINS THE SIGN

OF THE REGISTER BEING TESTED

7»T PUT SIGN OF REG, IN P7

40”4'

0C9C

0C9D

H9E

8C2D

LT

* BOXEI *

ADD*

JAX

12,T,(K) MULTIPLE WAY BRANCH ON F FIELI
0C9E
0C9F
OCAO

14AA
14B4
14AF

JAXE JP
JP
JP

JJ
JO
JK

JUMP NEGATIVE
JUMP ZERO
JUMP POSITIVE

PAGE 265

0CA1 1482 JP JM JUMP NON-NEGATIVE
0CA2 I4AC JP JL JUMP NON-ZERO
OCAS 1487 JP JN JUMP NONePOSITlVE

* BOXEF *

JF JE” P-AGE GO'PAGE- IN INDEXEREGISTER

OCAS 1080 S8F
OCAS CAll MOV 10,C, (T) TEST FOREZERO CONDITION
0CA7 C991 MOV 9,C,Lr (t)
OCA8 C801 MOV 6, (T) MOVE SIGN TO T
OCA9 149A JP JM

* BOXEJ * JUMP NEGATIVE

OCAA 5780 JJ TN 7,X<80«
OCA8 07E1 JE FETCH POSITIVE • RETURN

* BOXEL *

JUMP NONwZERO

OCAC 5004 JL TN 0» X1041
OCAD 14D4 JP JR NONwZERO RESULT * JUMP
OCAE 07E1 JE FETCH ZERO RESULTED RETURN

* BOXEK •

JUMP POSITIVE

OCAF 5780 JK TN 7* X।80 t
OCBO 14AC JP JL
OCB1 07E1 JE FETCH NEGATIVE w RETURN

* BOXEM *

JUMP NON-NEGATIVE

OC82 5780 JM TN 7,X»80»
0CB3 1404 JP JR POSITIVE * JUMP

* BOXEO *

JUMP ZERO

OCB4 5004 JO TN 0 * X * 04 1
OCB5 07E1 JE FETCH NONsZERO • RETURN
OCB6 1404 JP JR ZERO w JUMP

* BOXEN ♦ JUMP NON-POSITIVE

0CB7 5780 JN TN 7,X’80«
OCB8 1484 JP JO
OCB9 1404 JP JR NEGATIVE • JUMP

* BOXEP *

PAGE 264

OCBA FCOO JP SFL 12 MULTIPLY P12 BY 2
OCBB HBD LT JMP

* BOX£Q *

MULTIPLE WAY BRANCH ON F FIELD

otBC’ eescr AFO*- 12rT,(K)'
OCBD ItiDti JMP JP JR JUMP
OCBE 1OOO NOP
OCBF 14DC JP JS JSJ
occo 1000 NOP
OCC1 1060 SSF JOV
OCC2 14E2 JP JU
OCC3 1080 SSF JNOV
OCC4 14E2 JP JU

* BOX£V *

OCC5 1140 LT X»40» JL
OCC6 14D0 JP JBB

* BOX£W *

0CC7 1120 LT X1201 JE
OCC8 1400 JP JBB

* BOX£X *

OCC9 1110 LT X 110 • JG
OCCA 1400 JP JBB

* BOX£Y *

OCCB 1130 LT XI30I JGE
occc 1400 JP JBB

w BOX£Z *

OCCD 1150 LT XI SOI JNE
OCCE 1400 JP JBB

* BOXfAA*

OCCF 1160 LT XI60I JLE

* 80X£BB*

OCDO 1080 JBB SSF

PAGE g65

0CD1 E738 AND* 7rT,C

* BOXECC*

0CD2 4004 TZ 0#XI04l TEST FOR ZERO RESULT
0CD3 07E1 JE FETCH RETURN

*******•**-
* BOXER *

JUMP ROUTINE

0CD4 1040 JR SPF SAVE NEXTEMEMORY ADDRESS
OCD5 CEOl MOV 14,(T)
0CD6 1080 SSF
0CD7 BE20 CPY 14,T
OCD8 1040 SPF
OCD9 CF01 MOV IS,(T)
OCDA 1080 SSF
OCDB BF20 CPY 15,T

♦ BOXES *

JUMP SAVE J ROUTINE

OCDC 1040 JS SPF
OCDD C901 MOV 9,(T)
OCDE BE20 CPY 14,T
OCDF CA01 MOV 10,(T)
OCEO BF20 CPY 15,T

* BOXET *

OCEl 07E1 JE FETCH

* BOXEU *

OCE2 1180 JU LT X • 80 •
OCE3 E738 AND* 7,T,C

* BOXEOD*

OCE4 4004 TZE o * x•oa।
OCE5 1 4EC JP JFF OVERFLOW IS OFF

* BOXEEEw OVERFLOW FLAG IS SET

OCE6 117F LT XlTFf
0CE7 E720 AND 7,T RESET OVERFLOW FLAG
OCE8 1040 SPF

* BOXEGG*

PAGE 266

0CE9 5C02 TN 12* X•02’
OCEA 1404 JP JR JOV ■ JUMP
OCE0 07E1 JE FETCH JNOV • RETURN

ocrtriontr
OCED 5CO2
OCEE 07E1

* BOXfFF*

JFF- SPF

TN
JE

12,X » 02 »
FETCH JOV • RETURN

OCEF 1404 JP JR JNOV w RETURN

PAGE 267

OCFO
OCF1

OCF2
0CF3

OCFfl
OCF5

OCF6
OCF7
OCF8
OCF9

OCFA

OCFB

OCFC

OCFD
OCFE
OCFF
ODOO

SCO 1
14F4

1180
0820

6CFE
1517

60CF
14FA
6DC9
150 A

C801

4001

1080

8120
0873
1040
C901

* BOXCI *

* ENTER ROUTINE *********************************
* THIS ROUTINE HANDLES THE FOLLOWING INSTRUCTIONS)
* INCREMENT, DECREMENT ENTER, & ENTER NEGATIVE,
* OPCODES

* BOX£A *
*********-

48 - 53

ENTER TN 12,X f 01 • TEST FOR ENN OR DEC
JP

* B0XC8 *

EC ENTA OR INCA COMMAND

LT XI801 DECA OR ENNA COMMAND
XOR

8,T FLIP SIGN OF M

* BOX£C *

EC CP i2,XlFE» TEST FOREENT OR ENN COMMAND

JP

EP INC OR DEC COMMAND

* BOXCD *

ENTA OR ENNA ROUTINE

CP 13,X।CF I TEST FOR£A COMMAND
JP EE A COMMAND
CP 13,XIC9I XECOMMAND
JP EO iNDEXfCOMMAND

* BOXCE *

EE MOV

* BOX£F ♦

8,tT) XECOMMAND OR A COMMAND

TZ£

13,XIO1»

* BOX£G *

SSF

* 80X£H *

X COMMAND • SELECT SEC, FILES

CPY liT
JE
SPF

Z4 ZERO FILES 4 «2

MOV

P»(T)

PAGE 268

0D01 4001 TZ£ 13* X1011

* BOX£J *

0D02 1080 SSF

X COMMAND

0003
0004

8520
1040

CPY
SPF

5,T

0005 CAOl MOV
.*********
* BOX£L *

10,(T)

0006 4001 TZ

♦ BOX£M *

13,X1011

0007 1080 SSF

* BOX£N *

X COMMAND

0008 8620 CPY 6,T
0009 1556 JP

* BOX£O *

EOG

INDEX£COMMAND

ODOA 06C4 EO JE PAGE GO PAGE IN INDEXEREGISTER
0008
ODOC

C801
1080

MOV
SSF

8, CT)

0000
ODOE

8820
1040

CPY
SPF

8,T

ODOF
0010

C901
1080

MOV
SSF

9, (T)

0011 8920 CPY 9,T
0012 1040 SPF
0013 CAOl MOV 10,CT).
0014 1080 SSF
0015 BA20 CPY 10,T
0016 1556 JP

♦ BOXfP *

EGG

INCA OR DECA ROUTINE

0017 6DCF EP CP 13,X»CF »
0018 151C JP

* BOX£Q *

ET A COMMAND

PAGE 269

0D19 6DC9 CP 13,X»C9»
0D1A

OD1B

ODIC

0D1D

1558

1080

C101

1040

JP

* BOXES *

SSF

* BOXET *

ET MOV

* BOXEU *

EU SPF

ER

1 * CT)

INDEXECOMMAND

XECOMMAND

MOVE SIGN TO T

OD1E
OD1F

0830
CAO 1

XOR
MOV

* BOXEXE*

6,T,C
10,(T)

TEST SIGNS, SET C- FLAGS

0020

0021

1600

5004

LU

* BOXEV «

TN

* BOXEW *

XI 00 1

0,XI041

ASSUME SIGNS SAME*

TEST SIGNS

SET UP ADD

0022

0023
0024

0025
0026
0027

1610

6DCF
1528

60C9
155C
1080

LU

* BOXEY *

CP
JP

* BOXEAA*

CP
JP
SSF

* BOXEEE*

X • 10 •

13,XICFI
EEE

13,X»C9I
EBB

SIGNS NOT SAMEbSET

A COMMAND

INDEXECOMMAND
XECOMMAND

UP SUBTRAC

0028
0029
0D2A

8627
1040
C901

EEE ADD
SPF
MOV

* BOXEFF*

6,T,(S)

9,(T)

ADD OR SUBTRACTEDEPENDING ON 1

PAGE 270

002B 4001 TZ

* BOXEGG*

13,XIO1«

0D2C

0D2D

1080

85A7

SSF

* 80XEHH*

ADD

X COMMAND

5,T,Lf(3) ADO OR SUBTRACT DEPENDING ON
OD2E
0D2F
0D30

0D31

8487
8387
8297

FCBO

ADD
ADD
ADD

* BOXENN*

Eli SFL

4,L#(S)
3,L,(5)
2,L#C,(S)

12,L SHIFT LINK BIT INTO S13
0D32
0033

0034
0035

0036
0037
0038
0039
0D3A

0038
0D3C
0030
0D3E
0D3F
0040
0041
0042
0043
0044
0045
0046
0047
0048

5880
1551

4C01
1556

1040
5D0F
153C
5008
1549

1080
0660
0560
0460
0360
0260
8640
8580
8480
8380
8280
1180
0120
1556

TN
JP

* BOXEJJ*

TZ
JP

* BOXEKK*

SPF
TN
JP
TN
JP

* BOXEOO*

SSF
EOO XOR

XOR
XOR
XOR
XOR
INC
ADD
ADD
ADD
ADD
LT
XOR
JP

8,X»80» TEST SIGNS
ELL SIGNS SAME

SIGNS DIFFERENT

12, X»01’ LINK = 1
EQQ RETURN .

LINK 6 0, FORM 2»S COMP, FLIP SIGN

13, XI0F«
EOO A COMMAND
13,X»08t
EPP INDEXECOMMAND

XEOR A COMMAND

6,T,F
5,T,F
4, T,F
3, T,F
2#T,F
6
5, L
4, L
3,L
2iL
X«80l
1,T FLIP SIGN
EQQ

PAGE 271

* BOXEQQ*

0048 1556 *********
* BOXEPP*

INDEXECOMMAND

0049 1080 EPP SSF
0D4A 0960 XOR ‘MfF
0D4B DA60 XOR 10,T,F
0tT4r 8A4X)‘ INC- 10"
0040 8980 ADD 9,L
0D4E 1160 LT X t 80 •
0D4F 0820 XOR 8,T FLIP SIGN
0050 1556 JP EQQ

* BOXELL* TEST FOR OVERFLOW

0051 5C01 ELL TN 12,X101f LINK s 1 ss> OVERFLOW
0052 1556 JP EQQ NO OVERFLOW
0053 1080 OVERFL SSF OVERFLOW HAS OCCURED
0054 1180 LT XI801 T <s= OVERFLOW BIT
0055 C720 LOR 7,T SET OVERFLOW

OD56 1600 EQQ LU X»00l
0057 07E1 JE FETCH

* BOXER * INDEXECOMMAND

0058 06C4 ER JE PAGE GO PAGE IN INDEXEREGISTER
0059 1080 SSF
0D5A C801 MOV 6, CT) MOVE SIGN TO T
0058 1510 JP EU

* BOXEBB*

INDEXECOMMAND • INC OT DEC

0D5C 1080 EBB SSF
0050 8A27 ADD 10,T,(S) ADD OR SUBTRACTEDEPENDING ON
0D5E 1040 SPF
0D5F C901 MOV 9|CT)
0060 1080 SSF
0061 8987 ADD 9,T,CiL#(S) ADD OR SUB DEPENDING ON U
0062 1040 SPF
0063 1531 JP Eli

PAGE 272

* COMPARE ROUTINE ***************************
* THIS ROUTINE HANDLES THE COMPARE INSTRUCTIONS
* OPCODES 56 • 63
* COMPARE IS DONE BY LOOKING AT THE RESULT
* OF SUBTRACTING M FROM R
* IF NEGATIVE RESLUT ==> IM[CR C
*• IF-E-QUAL RESULT ==> CMC 3 CR C
* IF POSITIVE RESULT ==> CR t > (Mt

* BOXEA * CLEAR LEG FLAGS

0D64 1080 COMP SSF
0D65 118F LT X»8F t
0D66 E720 AND 7,T
0D67 BDOO ZOF 13 S13 ZERO TEST FILE
0D68 1040 SPF
0D69 085F JE L,R SEPERATE CLIR)

* BOXfB *

0D6A 6DC7 CP 13,XIC7‘
0D6B 1577 JP CO A COMMAND

* BOX£C *

0D6C 6DC1 CP 13,X»CI»
0D6D 1571 JP CE Indexecommano

* BOX£F *

XfCOMMAND

0D6E 1080 SSF
0D6F Cl 01 MOV UCT)
0D70 1575 JP CG

* BOX£E *

0071 06C4 CE JE PAGE GO PAGE IN INDEXEREGISTER
0072 1080 SSF
0073 C801 MOV 8,(T)
0074 BDOO ZOF 13

* BOX£G *

0075 1040 CG SPF
0076 1578 JP CH

* BOX£D *

PAGE ?73

0D77 C101 CD MOV

* BOX£H *

UCT)

0076 4C07 CH TZ 12,X » 071 SIGN REQUIRED??
0079 1585 JP CI NO SIGN NEEDED

* BOX£J *

SIGN IS REQUIRED

0D7A 5807 TN 1UXI07’ IS THIS THE (0,0) CASE??
0078 15DC JP CKK THIS IS THE (0,0) CASE, SET

A BOX£K *

0D7C 1080 SSF
0070 BC20 CPY 12,T SAVE SIGN OF REGISTER
0D7E 1040 SPF

* BOX£L *

0D7F CA03 MOV 10,(N)
0080 C902 MOV 9,(M)
0081 ACCO RMF 12,1 P12<=P12*l, READ SIGN BYTE

* BOXfM *

0082 1080 SSF
0083 B820 CPY 11,T SAVE SIGN OF M
0064 1588 JP CS

* BOX£I *

0085 1060 CI SSF
0086 2800 IF 11,X100 I
0087 2CO0 LF 12,X»00 »

* BOXES *

0088 1040 CS SPF
0089 CB01 MOV ll,CT)
0D8A 8A23 ADD 10,T,CN)
0088 8982 ADD 9,L,(M)
ODBC ccoi MOV 12,CT)
0080 9829 SBT* il,T,CT)
0D8E 8760 CPY 7,T,I .

* BOX£U *

PAGE 274

0D8F 8849 INC* 11,(T)
0090 8826 CRY 8,T,(U)

0091 6DC7

* BOX£T *

CP

SEPERATE INDEXING COMMANDS

13,X«C7»
OD^r 159S JP- CUI- A COMMAND
0093 6DCI CP 13,XIClt
0094 15A9 JR CB8 INDEX

0095 AOOO

* 80XEU1*

CUI RMF 0

0096 4007 TZ£ 13,XIO7»
0097
0098

1080
903F

SSF
SBT* O,T,C,(S)

0099 159E JR CY

0D9A AOOO

* BOXfV *

CV RMF 0

0098 4007

W BOX£W *

TZ 13,X»07 »

0D9C 1060

* BOX£X£*

SSF

0090 908F

* BOX£Y *

SBT* O,T,LfC,(S)
0D9E
0D9F

1080
CD20

CY SSF
LOR 13,T

ODAO
0DA1

1040
37FF

SPF
AF 7,X»FFI DECREMENT£P7

0DA2 57FF

* BOX£Z *

TN 7,X»FF»
0DA3 1503 JR CJJ P7 IS ZERO

0DA4 9A43

* BQX£AA*

DEC

P7 IS NONwZERO

10,(N)
ODAS 9982 SBT 9,L,(M)
0DA6 38FF AF. 8,X’FF« DECREMENTED & P8

PAGE 275

0DA7 C806 MOV 8, (U)
0DA8 159A

0DA9 3804
ODAA 68FC
OtJA-fF 15CT

JP

* BOXEBB*

088 AF

CP
JP”

CV

8,X * 04•
11,X•FC »
CGX-1

ODAC
ODAD
ODAE

ODAF
0080

3BFD
0806
BC10

AOOO
1080

AF
MOV
ZOF

* B0XEC1*

RMF
SSF

11,XIFD« SUBTRACTE3
8, CU)
12#C

0

0081
0082

0083
0064

0085
0086

903F
1588

5BFF
1508

AOOO
1080

SBT*
JP

* BOXECC*

CCC TN

JP

* BOXEFF*

RMF
SSF

* BOXEMH*

O,T,C,(S)
CHH

llrX’FF’
CGG

0

0087
0088
0089

90BF
0020
1040

SBT*
CHH LOR

3PF

0,T,L,C,(S>
HiT

0D8A 37FF AF 7»XlFFf DECREMENTEP7 BY 1
0088
ODBC
0080

0D8E
ODBF

ODCO

3BFF
9A43
9982

38FF
0806

5TFF

AF
DEC
SBT

* BOXEOD*

AF
MOV

* BOXEN *
* ********

TN

lUXlFFi DECREMENTEPU BY I
10,(N)
9,1,(M)

8,X IFF »
8# (U)

7 * X•FFl

PAGE 27*

0DC1 1503 JP CJJ
ODC2 15B3 JP ccc

* BOXEGl*

ODC3 BC10 ZOF 12,C
ODCti AOOO CGI RMF 0
ODtS-1 1^0 O' NOF WAIT FORET REGISTER
0DC6 9C38 $BT* 12,TrC
0DC7 15C8 JP CII

♦ BOXEGG*

0DC8 AOOO CGG RMF 0
0DC9 1000 NOP

* BOXfll*

ODCA 9CB8 SBT* 12,T,L,C
ODCB 1080 CII SSF
ODCC CD20 LOR 13,T
ODCD 10*0 SPF
ODCE 37FF AF 7, X • FF * DECREMENTEP7 BY 1
ODCF 9A*3 DEC 10,(N)
ODDO 9982 SBT 9,L,(M)

• BOXEEE*

ODDI *7FF TZ 7, X ♦ FF »
0DD2 15C8 JP CGG

• BOXEJJ*

ODDS 500* CJJ TN 0,X«0««
ODD* 15DF JP CLL NONbZERO result

* BOXEUU*

ZERO RESULT

ODDS 1080 SSF
ODD* 5DFF TN 13,X»FF«
0DD7 15DC JP CKK BOTH OPERANDS = 01 SET
0DD8 CBOt MOV 11,CT)
0DD9 DC38 XOR* 12,T,C

* BOXEVV*

ODDA 500* TN 0,X • 041
ODDS 15E2 JP CMM

PAGE 277

* BOXfKK*

ZERO RESULT ==> (Ml s (Rt

ODDC 1120 CKK LT X»20 •
ODDD 1080 SSF
ODDE 15E7 JP CQQ

**BD'X£LL*'

ODDF FD80 CLL SFL 13,L SHIFT LINK INTO P13
ODEO 4D01 TZ£ 13,X » 0 1 » TEST LINK BIT
ODE1 15EA JP CNN POSITIVE RESULT

* BOXfMMw ' NEGATIVE RESULT ==> (Mt > (R(

ODE2 1140 CMM LT X»40 i
ODE3 1080 SSF

* BOXfOO*

ODE<I 2050 UF 13,X’5O’
ODES 4B80 TZ£ 11,XI8O<

* BOXESS*

ODE6 DD29 XOR* 13,T,(T) FLIP SETTING

* BOX£QQ*

SET LEG FLAGS AND RETURN

0DE7 C720 CQQ LOR 7,T
ODE8 1600 LU X»00 1

♦ BOXERR*

ODE9 07E1 JE FETCH RETURN

* BOX£NN*

POSITIVE RESULT ==> CR(»

ODEA 1110 CNN LT X>10»
ODEB 1080 SSF

* BOX£PP*

ODEC 2050 LP 13,X »50 »
ODED 4C80 TZ£ 12* X »80 ।
ODEE 0029 XOR* 13,T,(T) FLIP SETTING
ODEF 15E7 JP CQQ

PAGE 278

ODFO OQOO END 0

VII. CONCLUSIONS
As with most projects of any size, several conclusions

can be drawn by looking back at the effort as a whole. The
conclusions drawn here deal not only with the development
of the project but offer some evaluation of the Microdata
1600/30 and the MIX 1009 computers.

Regarding the Microdata 1600/30 as a tool for emulation
the following points can be made concerning the relation
between the 1600/30 and the target machine:

1. Unless the target machine has an 8 bit
byte, emulation will not be efficient.
This results from problems with byte
allignment as well as difficulities im­
plementing arithmetic operations on the
Microdata's 8 bit ALU.

2. Unless the word size of the target machine
Nequals 2 Microdata bytes, N = 1,2,3,...,

word boundary control will not be efficient.
3. Unless

N*M+2*P<30,
where N = number of Microdata bytes per

target machine word,
M = number of full word registers in

the target machine.
P = number of address registers, (i.e.

index registers),

280

emulation must necessarily involve
register paging.

Regarding the MIX 1009 computer as a target machine
which is to be emulated, four conclusions can be drawn.

1. The five byte word implies a degree of
firmware inefficiency when the host
machine is a binary computer.

2. The requirement that a byte assume 64 to
100 states is restrictive in view of many
present architectures. This restriction,
if followed, forces the use of a 6 bit byte
on all implementations using a binary host
machine.

3. The character code adheres to no standard.
4. Sign plus magnitude is a somewhat obsolete

architecture but results in no major firm­
ware problems.

Regarding the development ot the project as a whole
the following points are presented:

1. Initially, Knuth*s architecture was considered
inviolable and many of the early firmware
coding problems were due to strict adherence
to Knuth’s design.

2. With the passing of time and with increasing
experience in the cost of implementing all
parts of Knuth's design, his architecture

281

was considered less and less inviolable.

3. The resulting MIX computer, with 8 bit

bytes and ASCII code is not only easier

to emulate but represents an instructional

computer whose architecture is more com-

patabie with-commerci.ally available machines.

REFERENCES

(1) MIX, publication number AL 1/73 03808, Addison-Wesley
Series in Computer Science and Information Processing,
1970.

(2) Microdata, Computer Reference Manual, Microdata 1600/30,
publication number RM 20001630-1, Microdata Corporation,
1373.

(3) Microdata, Micro 1600 Computer Reference Manual, pub­
lication number 71-1-1600-001, Microdata Corporation,
1971.

(4) Microprogramming Handbook, Second Edition, Microdata
Corporation, 1972.

(5) Knuth, D.E., Fundamental Algorithms Vol. 1, The art
of Computer Programming, (Varga, R.S. and Harrison,
M.A., eds.), pp. 120-153, Reading, Mass., 1969.

(6) Richards, R.K., Digital Design, (Richard, R.K. ed.),
pp. 341-368, New York, N.Y., 1971.

(7) King, W. and Dennis, T.D., "A Paging System for the
Control Memory in a Minicomputer System", COMPCON 75,
Tenth IEEE Computer Society International Conference,
San Francisco, California, Feb. 25-27, 1975.

