A MICROPROGRAMMED MIX 1009

EMULATOR FOR THE MICRODATA 1600/30 COMPUTER

A Thesis
Presented to
the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

by
T. Don Dennis

August, 1975

A MICROPROGRAMMED MIX 1009

EMULATOR FOR THE MICRODATA 1600/30 COMPUTER

A Thesis
Presented to
the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

by
T. Don Dennis

August, 1975

ABSTRACT

The design and implementation of a MIX 1009 emulator
for the Microdata 1600/30 are presented. Major design
alternatives sdch as allocation of file registers, allocation
of main memory, selection of byte sizes and codes are presented
in detail.

Insights from false starts are treated as valuable
experiences. The evolution of the system involved one major
false start as well as many minor ones. The major false start
is discussed in an entire chapter and the minor ones are dis-
cussed throughout.

Major firmware logic problems are also discussed in
detail. The final sYstem is presented through discussion, a

users manual, system flowcharts and listing of the microcode.

TABLE OF CONTENTS

CHAPTER PAGE
I. INTRODUCTION «uvevereennaccsonnnnannncsasescansnnsssnanns o1
II. THE FIRST ATTEMPT ¢uiuvveevnnsonacnnsananssoasascasonnans ... 25
III. THE SECOND ATTEMPT ..eueevvecnucennsanasensoncenosennncens 51
IV. USER'S GUIDE .evvevecnccenannnns P 103
V. FLOWCHARTS teuvvvononcaccnsonsocacacanans ceveres cereeenas 124
VI. MICROPROGRAM LISTINGS 4ev:vvecasonocns cesens cesiaaans cee..184

VII' CONCLUSION o-.l-ooco-o.o-'..oc...o.-no-.’---uc-..-279

REFERENCES ¢ucecoscvecscoccacrsoscsonassonsnnas veevecenane .282

I. INTRODUCTION-

Computer Science educators often discuss which computers
should be studied in introductory classes involving machine-
level programming. Although there is no unanimous agreement,
many feel that the computer itself is of no importance so
long as it provides a typical example of "machine language".

Donald Knuth has noted the following:
"There has been some feeling that it is
advantageous to have a 'machine-independent
machine' which does not change from year to
year, and which does not have too many ido-
?{?crasies that tend to waste classroom time."

Knuth calls his machine MIX. MIX is designed to be
a computer "wﬁich is very much like nearly every computer
now in existence (except.that it is, perhaps nicer). The
language of MIX has been designed to be powerful enough
to allow brief programs to be written for most algorithms, .
yet simple enough so that its operations are easily learned."
(1)

The justification for MIX then, is that it satisfies
the need for a generalized machine and language to be used
as a teaching aid in introductory programming classes.

The step following the design of the computer, is the
implementation of the machine. Students can then test their

programs and gain a deeper understanding of the problems of

computing.

There are at present 3 methods for realizing any machine
design: .
1. Build the computer.
2. Emulate the computer by means of
firmware.
3. Simulate the computer via a soft-
ware package.

Since MIX is meant to be a teaching tool to be used in
an educational environment, a hardware implementation would
be difficult to justify in terms of the time and money required
to achieve such a computer. Most educational environments
have large scale and small scale computer systems read%ly
available for program development, thus either method 2 or
method 3 seem to be the proper direction to proceed.

Implementation of MIX via software, either on a large
scale computer or a mini-computer, is feasible. This ap-
proach has several advantages and disadvantages. If the
simulation were done on a large scale system, then the sim-
ulator as well as the MIX assembler might be written in a
high level language, thus making program development easier.
There would be no problem simulating all of MIX memory and
the closed shop practices imposed on most large systems
might produce faster turn around. However, the simulator
would be slow since it must first assemble the MIX assembly
language into MIX machine code, and then execute the MIX

machine code. The execution of each MIX machine instruction

entails the execution of many host machine instructions, the

inefficiency of simulation somewhat offsets its advantages,
particularly on a large computer, since expensive system
resources are tied up for relatively long periods of time
while MIX programs are running. The advantages of simulating
in a closed shop are also diminished since students are not
allowed to touch the machine. Sometimes this fosters the
"Big Black Box" concept of computing.

The "Big Black Box" problem is solved by simulating
on a mini-computer. Most small computers are batch systems,
but many are console-mode or hands-on systems, i.e. the
students must operate the machine themselves. Small ma-
chines may be easily dedicated to simulating MIX since
resources are less expensive. Nevertheless, there are prob-
lems. Hands-on operation does improve the students concept
of the computer, but through-put is demolished since each
student must learn to operate the machine by trial and error.
Simulating MIX and its 4K word (31 bit) memory is at least
troublesome since most mini-computers have limited main
memory. This implies that programming would of necessity be
done in assembly language to conserve as much memory as pos-
sible. However, assembly language programming of a large
program is much harder than coding the same problem in a
high level language. Here the simulator would be slower than
on a large scale machine'since mini-computers usually have

longer execution times per instruction than large machines.

Despite these disadvantages MIXAL simulators have been
written and used successfully.

The second method seems to be more advaﬁtageous if
the computer is microprogrammable. There are two main prob-
lems in this approach. As noted earlier, program develop-
ment is most easily accomplished in a high level language.
Assembly language programming affords some savings in program
size, but requires more effort on the part of the programmer.
Microprogramming however, is the worst case wi£h respect to
program development. The code is tedious to write and dif-
ficult to debug. The microprogramﬁer must work at the con-
trol signal level, armed with a very limited instruction
set. If the microprogramming system uses a fixed read-only-
memory (ROM), a software simulator must be available for
development. In this case, implementation may be costly
since a new ROM must be built for the new MIXAL emulator
once it is debugged. However, if the mini-computer has
an alterable control memory(ACM) the problems of implement-
ation are lessened considerably.

It should be noted that by working on a small machine
all the advantages of a mini-computer are retained. By
emulating on a small system instead of simulating, many
of the problems formerly discussed are.resolved. The dif-
ficulty conéerning the limited memory of mini-computers is

eased by emulation since the microprogram resides in control

memory leaving the main memory compleiely free. Thus MIX's
4K words of memory might be emulated if the mini-computer
has at least that much main memory. The problem of execu-
tion time (per MIX instruction) is also solved since the
microcoded MIX instructions will run much faster than MIX
macrocoded MIX instructions. Aside from solving these prbb—
lems, emulation results in possibilities not even considered
when simulating. Once implemented, the user has a MIX com-
puter. The machine is as much a MIX 1009 compﬁter as any

of the originally announced IBM system 360 computers are

IBM system 360 computers. The hardware of the different
models of the 360 are in no way alike. They are all micro-
programmed, except for the model 70, to execute the same
machine language. Once the firmware is coded the natural
language of the host machine is MIXAL so the MIX assembler
can be written in MIXAL, the loader can be written in MIXAL,
in fact a whole operating system can now be written in MIXAL
with none of the system degradation that would result if
implementation was by simulation.

This thesis reports the emulation of the MIX 1009
machine by a Microdata 1600/30. The discussion which follows
covers the high points of both machines. If more detailed
information is required, see references (1) and (5), for

MIX and (3) for the Microdata.

MIX was designed with the "peculiar property..... that
it is both binary and decimal at the same time. The program-
mer does not actually know whether he is programming a machine
with base 2 or base 10 arithmetic." (1) This was accomp-
lished by not specifying the amount of information which
can be contained in a single byte. The only specifications
given is that each byte should be capable of holding at least
sixty-four values, and at most 100 values. As long as pro--
grams are written "so that no more than sixty-four values
are ever assumed for a byte ... An algorithm in MIX should
work properly regardless of how big a byte is..." (1) Figure
1.1 presents an overview of the major components of the MIX
1009 computef.

MIX memory consist of.4000 words of storége. Each
MIX word is composed of five bytes and a sign, the sign has
only two values + or —-. Values are stored in sign plus
magnitude format instead of the one's complement or two's
complement usually found in binary machines or the nine's
or ten's complement used on decimal machines.

The 1009 computer has nine registers that are available
to the user. The accumulator, (A-register), is a five
byte plus sign register used to perform the basic arith-
metic operations, add, subtract, multiply, and divide, as
well as data manipulation. The X-register is the right hand
extension of the A-register and it is also five bytes plus

sign. It is used in the multiply and divide instructions in

Figure 1.1

MIX
Register A Register X
+ | AL| A2| A3} A4] A5 + | X1|X2! X3}1X4]1X%5
Register Il <:)
Overflow Comparison
+ | 14fr1s @ togsle

<:> <:> indicator

Register 12

* 241125 Memory Cells
Register I3 0000:
+ |134)135 0001:
0002:
Register I4
T |T44]L45 0003:
Register I5
+ JI54}I55
Register 16)
+ 11641165 3998:
Register J 3999:
+ } J4}J5 “
Sl o~)
K)] “¢) o =
Magnetic tape isks and drum E'g'g g g.ﬁ 22
4 pd S
UNicLs O 0O A&d g a4
vojul)...}u7| U8 }...JUl4jULS5|UL6|UL7} ULBJULY

(1)

connection with the A-register to hold the ten byte product
or dividend. It is also used in shift commands when ten
bytes are to be shifted at once. The X-register can, however,
be used separately as a limited accumulator.

I1, 12, 13, 14, I5, and I6 are-six index registers.

They are used in address modification and in counting. Each
index register is two bytes plus sign. The J-register, Jump
address register, was designed to provide support for sub-
routine linkage. It is also a two byte plus sign register
and is loaded automaticaliy with the contents of the instruc-
tion counter immediately prior to the execution of any Jump
instruction, except a JSJ, Jump and Save J instruction.

In addition to these nine registers MIX has an over-
flow toggle, which is either set or reset, and a comparison
indicator which may assume one of three states, representing
less, equal, and greater.

MIX was designed to accomodate twenty I/O devices.

Units 0-7 are dedicated to magnetic tape, units 8-15 to disks
and drums, unit 16 to the card reader, unit 17 to the card
punch, unit 18 to the line printer, and unit 19 is reserved
for typewriter and a paper tape station.

Most instructions in MIX allow partial fields of words,
to be selected as the instruction operand. Each word can
be broken into six fields as follows:

0 1 2 3) 4 5
sign byte byte byte byte byte

The particular field or fields which the programmexr wishes
to use is then encoded in a field specification. Any specifi-
cation is legal so long as it addresses contiguous fields of
the operand. The notation used to express partial fields is
(L:R), where L is the number of the left-most field and R is
that of the right-most field being specified. Typical examples
of MIX's partial fields are:

(0:0), the sign only;

(0:3), the sign and high order 3 bytes;

(0:5), the entire word;

(1:5), the whole word except for the sign;

(2:2), the second byte;

(4:5), the low order 2 bytes.
There are 21 allowable specifications in all, they are:

(0:0)

(0:1) (1:1)

(0:2) (1:2) (2:2)

(0:3) (1l:3) (2:3) (3:3)

(0:4) (1:4) (2:4) (3:4) (4:4)

(0:5) (1:5) (2:5) (3:5) (4:5) (5:5)

Computer instructions are formated in MIX as follows:

0 1 2 3 4 5
S A A I F Cc

The first three fields, (0:2), of the word form the operand
address, the I-field following the address field is used for
operand address modification via indexing. If I is zero, no
modification occurs and the value in fields (0:2) is the ef-
fective memory address of the operand. If I is non-zero it
should have.a value, i, between 1 and 6. The effective operand
address, M, is computed to be the algebraic sum of Index reg-

ister Ii plus + AA. The effective address is formed this

10

way on all MIX instructions. It should be noted that in most
cases 0 < M < 3999, since MIX has 4000 memory locations.
However, in some instances M may be outside this range, and
indeed be negative. For example, the ENTA instruction,
(Enter A), causes the accumulator to be loaded with the wvalue
of M.

The right-most two bytes of each instruction explicitly
state what operation is to be carried out. The C-field
denotes the operation code, while the F-field modifies this
opcode. In most cases the F-field contains the partial field
designation (L:R) which is encoded as 8L + R. However, the
F field has other uses. For example in thé Move instruction,
F specifies the number of words to transfer. In input-output
operators, F is the unit number of the selected device. The
F~-field is also used as a secondary operation code, which
further defines the operation to be performed. Consider
opcode 48:

C=48, F=0 is the increment A command, while

C=48, F=1 is the decrement A command.
The following chart, figure 1.2 is a brief description of the
MIX instruction set.

The Microdata 1600/30 used to emulate MIX has 32K bytes of
main memory. This magnetic core memory.has a one microsecond
cycle time, is byte addressable, with 8-bit bytes. There
are 2K bytes (16 bit/bytes) of semiconductor control memory

which have a 200 nanosecond cycle time. I/0 devices include

Figure 1.2
General form:
C T
Description
OP (F)
C = operation code, (5:5) field of instruction
F = op variant, (4:4) field of instruction
M = address of instruction after indexing
V =FM) = contents of F field of location M
OP = symbolic name for operation
(F)= standard F setting
t =

execution time; T = interlock time

[*]:
rA = register A JL(4)
rX = register X JE(5)

TAX = registers AX as one JG(6)
rIi = index reg. i, 1 i<6 JGE(7)
rJ = register J JNE(8)

CI = comparison indicator JLE(9)

[+]:
N(0)

z(1)
P(2)
NN(3)
NZ(4)
NP (5)

11

Figure 1.2 Cont.

00 1 01 2 02 2 03 10
No Operation | YA rA +V |rA TA - V|rAX rA XV
NOP (0) ADD(0:5) SUB(0:5) MUL(0:5)

08 2 09 2 10 2 11 2
TrTA V rIl Vi ri2 \Y ri3 v

LDA(0:5) LD1(0:5) 1LD2(0:5) LD3(0:5)

16 2 17 2 18 2 19 2
rA -V rIl -V rI12 -V |ri3 -V

LDAN(O:5) LDIN(0:5) LD2N(0:5) LD3N(0:5)

24 2 25 2 26 2 27 2
FM) rA F(M) rIl FM) rI2 F(M) rI13
STA(0:5) ST1(0:5) ST2(0:5) ST3(0:5)

32 2 33 2 34 1 35 1+T

F(M) rJ FM) 0 | Unit F Busy? }Control, Unit

F

STJ(0:2) STZ(0:5) JBUS (0) 10C{0)

40 1 41 1 42 1 43 1
TA:0, jump r11:0,jump rI2:0,jump rI3:0,jump
JA[+] J1{+] J2[{+] J3[+]

48 1 49 1 50 . 1 51 1
rA [rA]?4M | rI1 [rI1]?78MjrI2 [I2P+ M{rI3 [rI3R+M
INCA%O;DECA lg INC1(O)DECI(1) JINC2(0)DEC2 (1)|INC3(0)DEC(1)
ENTA(2)ENNA(3)|ENT1 (2)ENN1(3) ENT(2)ENN2(3) | ENT(3)ENN(3)
56 2 57 2 58 2 59 2
rA(F):Vv CI rI1(F):V CI {rI2(F):V CI {rI3(F):V CI
CMPA(0:5) CMP1(0:5) CMP2(0:5) CMP3(0:5)

12

Figure 1.2 Cont.

(1)

04 12 05 1 06 2 07 1+ 2F
Special Shift M bytes|Move F words
rA TAX/V f
. NUM{(Q SLA(0) SRA(1
rX remainder CHAlg(i) SLA)g(%) ~SRA(X()3) f;{gsE}glszo Tl

DIV(0:5) HLT(2) SLC(4) SRC(5)

12 2 13 2 14 2 15 2
rI4 v rl5 \' rlb6 VirX v

LD4(0:5) LD5(0:5) 1LD6(0:5) 1LDX(0:5)

20 2 21 2 22 2 23 2
rI4 -V rI5 -V rl6 -V rX -V
LD4N(0:5) LD5N(0:5) LD6N(0:5) LDXN(0:5)

28 2 29 2 30 2 31 2
F(M) r1i4 FM) rl5 FM) rl6 F(M) rX
ST4(0:5) ST5(0:5) ST6(0:5) STX(0:5)

36 14T 37 1 38 1 39 1
Input, unit F|{Output, unit F|Unit F ready? JMP(ggmggJ(l)

JOV(2) JNOV(3)

IN(0) OUT(0) JRED(0) 2700 1#] abovel

44 1 45 1 46 1 47 1

rI4:0,jump r15:0, jump r16:0, jump rX:0,jump

J4[+] J5[+] J6[+] J7[+]

52 1 53 1 54 1 55 1
rI4 [rI4]?24#M|rI5 [rI5]1?2¥M} r16 [rI6]4M{rX [rX[?+ M
TNC4 (0)DEC4 (1) {INC5(0)DEC5(1) | INC6 (O)DEC(1) {INCX(O)DECX(1)
ENT4(2) ENNA(3)|ENTS5 (2) ENN5(3) |ENT6 (2) ENN6 (3)[ENTX (2) ENNX(3)

60 2 61 2 62 2 63 2
rI4(F):V CI | rI5(F):V CI |rI6(F):V CI |rX(F):V CI

CMP4(0:5) CMP5(0:5) CMP6(0:5) CMPX(0:5)

13

14

a 500 LPM line printer, a 300 CPM card reader, a magnetic
tape unit, two disk drives, a teletype writer, and a paper
tape.station.

The 1600/30's control memory continuously executes stored
microcommands to time and regulate all control and data oper-
ations required by the MIX computer. "Using application
programming at the micro level, the Micro 1600 can be used
directly as a hardwired controller. When the 1600 emulates
the operation of a general purpose computer which executes
software instructions stored in core memory, macro-instructions
are fetched and interpreted by the microprogram with cor-
responding operations carried out by execution of micro-
programmed routines in the control memory." (4)

Eight-bit data paths and eight-bit registers are in-
corporated in the Microdata. A 16-bit micro-instruction
is executed every 200 nanoseconds from control memory. Fig-
ure 1.3 provides a block diagram of the Microdata 1600/30

at the register level.
Registers

The T-register is one of the main input operands to the
eight-bit Arithmetic/Logic Unit (ALU). The T-register is
also used in input-output operations and in memory read and
memory write operations as a buffer register. Operate type
microcommands require the T-register be selected in one of

four forms, the mnemonics for these four forms are O, T, F,

Figure 1.3

Micro 1600

Block Diagram

Memory Address Bus

15

!

Regg)Ster Reg;‘ther

“4——1- Direct
Memory
et Address Core Memory
0~65 K Bytes
A})
I/0 Controll Memory D?ta Bus 1
I/0 Control MD Register
Register (3) (8)
Qutput Bus ‘
- 4
4 b
Output T Register General Purpose
Reg?ga:er %8) File Registers
(30 x 8)
Input Bus Flag Register | Flags
(8)
B Bus
Link
in Arithmetic Logic Unit
D) (8)
A Bus .
‘ .
/
L Register }|_ L Save
Console Internal (12) Reg%ster
Status 12)
[$
Control Memory U Register
R Bus (16) (8)
-]
e R Register - gg:ﬁigi and
(16)

(3)

16

and F, T. If O is coded then the selected operand transfered
to the B-bus will be zero. The mnemonic T indicates the true.
value of the T-register transfered. F selects the complement
of the T-register. Coding both F;T causes the B-bus to be
all ones.

The MD register, Memory Data register, is an 8-bit
buffer used to hold data being written out to the main memory.
It receives input automatically from the T-register 350
nanoseconds after the initiation of a memory write. The MD
register is not directly available to the programmer but
was designed to free the T-register faster than would be
possible otherwise.

The M and N registers, both 8-bits long, hold the 16-
bit memory address used in memory read and memory write oper-
ations. M holds the 8 most significant bits; N holds the
eight least significant bits.

Input-output control signals are regulated, under
program control, by the 3-bit IC register. All device
controllers are connected to this register via the I/0 con-
trol bus, allowing device controllers to receive and decode
signals from the IC register. Settings of 1, 2, or 3 are
decoded as output signals and values of 4,5,6, and 7 are
input signals. When an input value is in the IC register,
the input bus, rather than the T-register is the operand

gated to the B-bus.

17

The OD register, Output Data régister, was designed with
"a purpose similar to that of the MD register. The OD regis-
ter éutomatically copies the T register whenever the IC regis-
ter is set non-zero, thus freeing the T register for other
purposes.

The R register is the Microdata's microinstruction
register. It holds the 16 bit microcommand currently being
executed. The R register receives input from control memory
over the R-bus.

The eight high-order bits of the next microcommand to
be executed may be modified through the use of the U register.
When selected by the microcommand, the 8 bit U register is
ORed with thé control memory output prior to input to the
R register. This allows the generation of efficient code
since routines which differ by only a few instructions may
use common sSubroutines but with different settings of the
U register. For example the following code will add, (opcode

8), the T register to file 1:

LU X'00°" ILoad U with Zeros
ADD 1, T, (S) Or U with opcode, add T to
file 1.

By changing the value of U from X'00' to X'90' or X'l0' the
same add instruction will cause a subtraction since a subtract
is opcode 9:

- LU X'90' Load with X'90'

ADD 1, T, (S) Or U with opcode, subtract T from
file 1.

18

The L register is the 12-bit microinstruction counter.
It addresses the next command to be executed and can provide
contfol over 4K of control memory. This register can be
altered by executing a Jump instruction, which loads the
operand address, or by selecting the L register as the des-
tination for the output from the ALU.

The L Save register is also a 12-bit register, and it
provides for one level microsubroutines. It copies the con-
tents of the L register whenever a Jump . Extended instruction
is executed. After the subroutine has been performed a return
instruction causes the L Save register to be copied back into
-the L register and processing continues.

The Link register is a 2-bit register which holds the
high order carry-out from the Arithmetic/Logic Unit. The
Arithmetic Link (AL) bit of the Link register is the bit
usually selected. The exception occurs when the output from
the ALU is directed to the M and N regiéters, in this case
the Memory Link (ML) bit is used.

All the above registers were designed with a épecific
function in mind. However, the Microdata 1600/30 also pro-
vides two files of general purpose registers. These files,
denoted the Primary file and the Secondary file, each contain
fifteen 8-bit registers. Only one bank of registers may be
addressed at any given time and sélection of the Primary or
Secondary file is under program control. Input to these

registers is from the A-bus and output is through the ALU.

19

Register O is dedicated to ALUacondition flags (bits 0,
-1, 2) and internal status bits (3-7) and is common to both
banks. Register O is a read only file, and readout does
not effect its contents. The 8-bits of register 0 are

described below:

0---~Overflow condition (ALU)
l1----Negative condition (ALU)
2----Zero condition (ALU)
3-=---I/0 request flag
4----Internal interrupt flag
5~---I/0 reply flag
6----Serial TTy
7----External interrupt flag

The remaining "30 general-puropse file registers...

are implemented with MS1/LS1 semiconductor devices." (3)

In the emulation of MIX these file registers are assigned,

in groups, the functions of the A register, X register, Index
register, Jump register, Instruction register and the Instruc-
tion counter as well as providing free work areas.

It should be noted that the Von Neumann concept of
memory is absent in microprogramming. In a Von Neumann
machine data and instructions are intermixed in memory, in
fact instructions can be manipulated as data during one
phase of the program and later executed as an instruction.

In any case memory is a general purpose storage device con-
taining both instructions and data. In microprogramming,
however, control memory is almost always read-only. Thus
temporary étorage areas (i.e. data) and programming areas

(i.e. instructions) are completely separate.

20

Instructions are confined to an areé called control memory,
‘while temporary storage and work areas are located in another,
usually very small memory; which is backed up by main memory.
In the case of the Microdata this small memory takes the

form of these 30 general purpose file registers.

Data Flow:

There are 3 main paths in the Microdata which supply
data to the different registers and the ALU. The R-bus
provides input to the R register (microinstruction register).
Data is gated to the R-bus from three possible sources, con-
trol memory, control memory ORed with the U register, and
the console panel switches. Only one source may be selected
per clock pulse. The B-bus, the second operand to the ALU,
is supplied data form either the T register, in true or com-
plemented form, the Input-bus, or the R register. The
R register is selected when a literal is gated to the B-bus.
The A-bus is the main data bus in the Microdata. It receives
input from the ALU primarily, but the internal status or con-
sole may also be selected. The data on the A-bus can be trans-
fered to any file register and simultaneously to the L reg-
ister, U register, T register, M register, or N register.

The Arithmetic/Logic Unit (ALU), an 8-bit unit, is the
center of data manipulation in the 1600/30. Its operations

include addition, subtraction, and or Exclusive-OR, shifting,

21

and data transfer. The selected file register and the B-
bus provide the operands for the ALU and output is placed
on the A-bus, which is a common source of input to most reg-

isters.

Instruction Repertoire:

The microdata's microcommand repertoire consist of
65 instructions. Each instruction is classified as either
a literal command, an operate command or a generic command
depending on the commands format. The five possible formats
are displayed below aléng with examples of each format type.
Literal Command

OP- Operation Code
F - File register designator

Literal - 8-~-bit or 12-bit literal which is
transfered as an operand

Type 1
15 14 13 12 11 10 9 8 76 543 210
OoP F Literal
Example:
AF 7,X'04"
3 7 0 4

ADD the value X'04' to file register 7

22

Tyre 2 415 74131211109 8765432710
or Literal
Example:
LT X'56"
] 1
1 1 1 5 1+ 6
[}]
1 1
LOAD T register with X'56'
Type 3 15 141312111098 76543210
oP { ' Literal
1
Example:
JE X'621"
o) 6 : 2 1, 1

JUMP to location 621

Operate Commands

OP- Operation Code
F - File Register Designator
C - Control Field Designation

Designator - " Definition
‘L - Link Control/ADD Link
C - . Modify Condition Codes
T - Select T Register
F - Select T Complement

(continued on the next page)

Designator

I -—
D -

23

Definition

Increment
Decrement

* File inhibit - If bit 3 is a one, the file regis-
ter F is unchanged.

- If bit 3 is a zero, the file regis-
ter F is loaded with the result
of the command (i.e. A-Bus).

R - Distination Register

Designator

blank -

nc "N p=E R4
t

Type 4

Register Designated

None

T Register

M Register

N Register

L Register

(even address pages)

L Register

(odd address pages)

U Register

U Register is ORed into
upper 8 bits of operate
command

15 14 13 1211 10 9 8 76543210
OP F C * R
Example:
ADD* 13, T, L, C, (U)
8 D B

ADD the T register and Link bit to file register 13,

Set the condition flags in file zero and place the

sum in the U register. File 13 is not updated.

Generic Commands

OP- Operation Code

OP

Example:

SPF

Select Primary File

4

0

24

II. THE FIRST ATTEMPT

In constructing the MIX emulator some design problems
were encountered in meeting Knuth's specifications for MIX.
The design problems fall into two groups. The first con-
cerns the allocation of Microdata hardware for the emulation
of MIX hardware. The second type of problems involve the
development of the firmware logic required by the MIX in-

structions set.

Two attempts were made to construct a MIX emulator.
The first attempt employed a Microdata 1600/30 with 16K
bytes (8 bit) of core memory and 2K bytes (16 bit) of Alter-
able Control Memory (ACM). The first attempt was aborted
for reasons discussed in this chapter. The first attempt
showed that a complete implementation of a MIX machine with
16K bytes of Microdata memory would require more than 2K
of ACM to hold the emulator. The second effort used a
Microdata 1600/30 with 32K of core and 2K of Alterable
Control Memory. This larger configuration resulted in
simpler firmware logic and the successful emulation of the

MIX 1009 computer.

Although the first attempt was "scraped", much was

learned from previous mistakes which was useful in the second

26

attempt. The purpose of this chapter is to relate this

learning experience.

Hardware Allocation Problems

The first porblem encountered in designing the MIX
emulator was that of deciding the best way to allocate the
model 30's memory in implementing MIX's memory. The memory
resources available on the Microdata 1600/30 at this time
and the memory requirements of the MIX machine are reflected

in figure 2.1.

Words of Bits/ Total # Total # Character Numeric
figure 2.1 Memory Byte of Bytes of Bits Code Code
Microdata | Undefined 8 16,364 1130,912 ASCII binary
1600/30 byte or 2's
Addressable EBCDIC comp.
1009 4000 1/sign | 4000 124,000 | Knuth's binary
6/data |sign Code sign plus
20,000 magnitude
data

According to the MIX specifications a MIX machine is word ad-
dressable with 4,000 words of core memory. Each wofd is com~
posed of a sign byte and five data bytes. The sign byte
may contain one of two values, representing plus and minus.
Each data byte must be capable of containing at least 64 values
but not more than 100 values. The minimum number of bits
required for a MIX computer is then,

4000 x 31 = 124,000 bits,

(4000 words, each containg a one bit sign byte and 5 six bit

27

data bytes). In June 1974, the Computer Science Department's
1600/30, which is byte addressable, had 16K bytes (8 bits/byte)
or 130,912 bits of core memory. Plainly there ekisted enough
bits to emulate the MIX computer, but not enough addressable
units or bytes.

At this point three possible boundary allignments were
considered as solutions to the memory allocation problem.
MIX memory could be represented as six Microdata bytes per
MIX word, or as five Microdata bytes per MIX word, or as
4 bytes per MIX word.

Data in the six Microdata bytes per MIX word solution

was to be stored as follows;

figure 2.2
S IN N N [N [N |N [N S - sign bit
o 5 R T T S S N S S I N - not used

Ky~ ith bit of Kth byte

Using this format and going to an eight bit byte the data
was easy to manipulate, however only 2,727 words of MIX memory
were available with a 16K host machine. The six byte solution
also made MIX word boundaries hard to detect. There was also

a related problem due to the nature of the IN and OUT

28

commands, MIX's I/0 operators. These instructions handle
the sign byte separtely from the data bytes and thus need

to sense MIX word boundaries. With six bytes/word this can
only be done by dividing the current I/0 address, (Microdata
address), by six and examining the remainder. This process
is too lenghtly for interrupt driven I/O.

Six bytes per word also makes address translation,
from MIX addresses to Microdata addresses, and vice versa,
involved but not difficult. Given any MIX address M the
Microdata address, MD, of the first byte of M is simply,
MD = 2M + 4M,

Assume M is a 16 bit address, the most significant byte (MSB)
residing in Primary file 9, and the least significant byte
(LSB) in Primary file 10. Then MD will be in P9 and P10

after the execution of the following nine instructions.

Figure 2.3 .

SFL 10 Shift file 10 to left, multiply by two

SFL 9,L,(T) Shift file 9 left, inserting the bit just
Shifted out of file 10, and put the result
in the T register

CPY 11,T Copy the T register into file 11.

MOV 10, (T) Move the contents of file 10 to the T register

SFL 10 Shift file 10 left, multiply by two again

SFL 9,L Shift file 9 left, inserting the bit just

o Shifted out of file 10.

Now M x 2 is in P11 and T
M x 4 is in P9 and P10

ADD 10,T Add file 10 and the T register, put result
in file 10

Mov 11,(T) Move contents of file 11 to T.

ADD 9,L,T ADD file 9 to T along with the high order

Carry of the last add, placing the result
in file 9.

29

The need to convert the Microdata address back to the
corresponding MIX address also arises when the console step
switch is pressed. When the step switch is pressed the next
instruction is executed, the machine then HALTS and displays
the MIX address of the next instruction. However the MIX
Instruction Counter actually contains the Microdata address
of the first byte of the next instruction. In order that
the MIX address be displayed it must first be computed from
the Microdata address and this result placed on the data bus.
However, the conversion from a Microdata address back to a
MIX address involves a division by six. Naturally, the
divide algorithm coula be used for this purpose, but the
divide routineé is usually avoided since it is one of the
longest routines in the instruction set. It is possible to
divide by six fairly rapidly, given that the dividend is
evenly divisible by six (which is the case for memory address).
This problem becomes the ability to divide by three, since

MD/6 = (MD/3)/2
The divide by six algorithm is described in figure 2.4 while
the corresponding.microprogram is described in figure 2.5.

The 6 byte solution offered the advantage of easy data
manipulation, assuming 8 bit bytes were used, but the advan-
tage was offset by three disadvantages, namely:

1) Only 2,727 words of MIX memory could be emulated
instead of the specified 4,000 words.

2) Input/Output was severly complicated by the

Figure 2.4

Given: The dividend is evenly divisible by 6, then the quotient

may be found by

COUNT «§- ADDRESS LENGTH

QUOTIENT - 0

ot

SHIFT DIVIDEND RIGHT

(DIVIDE BY 2)

l,

IF THE LOW ORDER BIT OF THE DIVIDEND

IS 1, AND THE HIGH ORDER BIT OF THE QUOTIENT
1S 0,
THEN SHIFT THE QUOTIENT RIGHT AND
INSERT 1.
OTHERWISE, SHIFT THE QUOTIENT RIGHT

AND INSERT 0.

!

COUNT «§- COUNT - 1

COUNT > 0

Figure 2.5

31

The corresponding Microprogram follows:

* ¥ X *

LF
ZOF
ZOF

START SFR

SFR
TN

SP
TN

JP
ONE SRI
JP
SFR
SFR
DEC
TZ
Jb
HLT

ZERO
SHIFT

8,Xx'10"'
11
12

9

10,L
10,X'01"

ZERO
11,X'80"

ZERO
11
SHIFT
11
12,L

8
8,X'FF'
START

file 9 contains MSB of address
file 10 contains LSB of address
result to be placed in file 11 and 12
16 bit address

LOAD COUNT
ZERO QUOTIENT MSB
ZERO QUOTIENT LSB

DIVIDE DIVIDEND BY TWO

TEST LOW ORDER BIT OF
DIVIDEND)

JUMP IF ZERO

TEST HIGH ORDER BIT OF
QUOTIENT

JUMP IF ONE
SHIFT QUOTIENT, INSERT 1

SHIFT QUOTIENT, INSERTO

COUNT COUNT - 1
COUNT O ?

COUNT IS O

COUNT = 0

To perform this algorithm on a 16 bit address 211 instruc-

tions must be executed.

32

inability to detect MIX word boundaries.

3) Address translation from MIX address to Micro-
data address and back again would be time con-
suming.

Data for the five byte per word solution was to be stored
as shown in the illustration below. The MIX sign byte and
first MIX data byte were to occupy the first Microdata
byte with the remaining four bytes being stored in the next
four Microdata bytes.

Figure 2.6
S - Sign bit
C<JN R S T O £ A 1 I O 4] Ki- ith bit of KM byte

1172 |34 |'S]1 61718

| 51]>2 3P4 Ps Pefr Ps

Using this format and again assuming 8 bits per byte, data
was easy to manipulate. However, the first Microdata byte
must. be processed separately, since the Microdata's hardware
employee's 2's complement arithmetic and MIX is a sign plus
magnitude machine. Aside from this, the 5 byte solution
has the same advantages and disadvantages as the 6 byte sol-
ution. Here, 3,272 MIX words can be emulated, and addresses
are again a problem but data is easy to handle.

The major defect with both the 6 byte and the 5 byte

solution was that all 4000 words of MIX memory could not be

33

emulated. In light of this fact, if the entire 4000 words
of MIX memory were to be emulated then the 31-bit MIX words
nust be packed into four Microdata bytes.
1 MIX word = 31 bits 4 Microdata bytes = 32 bits
4000 x 32 = 128,000 bits 130,912 bits = 16K x 8 bits
Using this approach the whole MIX memory could be emulated
with 384 Microdata bytes left over. The information was

to be packed according to the diagram below.

Figure 2.7

S - Sign bit

s I p.p. i, L, po i1 N - Not used

Ki- ith bit of Kth byte.

This format solved the 3 problems found with the 5 byte and
6.byte formats. First, all 4000 words of MIX memory could
be implemented on the host machine's current 16K memory.
Second, word boundaries were easy to identify since any
Microdata address whose low order two bits are zero cor-
responds to the first byte of a MIX word. Finally, address
translation, either from MIX addresses to Microdata addresses
or vice versa, could be performed by simple register shifts
(i.e. multipling oxr dividing by 4). However in eliminating

these three problems the main advantage of the previous two

34

solutions was also eliminated, for data was no longer easy
to manipulate. In fact, this packed format caused data manip-
ulation to now become 'the' major firmware logic problem.
The second hardware allocation problem concerned the
mapping of MIX's registérs into the 30 general purpose
file registers that are available on the Microdata 1600/30.
There are nine registers available to the user in MIX plus
an overflow toggle and a Comparison Indicator. There is
also an Instruction Counter and an Instruction Register,
although these are not directly accessable to the user. All
these registers must be represented by the 30 general pur-
pose file registers. Main memory is accessible, of course,
from the microlevel but storage and retrieval is involved.

The following example illustrates this point.

Figure 2.8
* File 9 contains MSB of Memory Address
* File 10 contains LSB of Memory Address
* File 8 contains data
*
* Store a byte in Main Memory
MOV 9, (M) Load MSB of Memory Ad-
dress Register (MAR)
WMF 10, (N) Load LSB of MAR, Begin
full cycle write
MOV 8, (T) Move data to T in time
to be written out
*
* Retrieve a byte from Main Memory
MOV 9, (M) Load MSB of MAR
RMF 10, (N) . Load LSB of MAR, Begin
full cycle read
NOP Delay 200 nanoseconds
CPY 8,T - Copy data from T into

file 8

35

Clearly main memory is not a good place to emulate registers
of a target machine or to store temporary results, such as
firmware loop counters. Recall that these thirty general
purpose files compose the only scratch pad available to the
microprogrammer, beside main memory, since the Alterable
Control Memory (ACM) is read-only when used as a control
memory. Thus these thirty files must serve not only as reg-
isters for the MIX computer but must also provide the micro-
programmer with a-fast work area to perform the needed firm-
ware routines.

The MIX Accumulator A, its right hand extension X, and
the Instruction Register are the same length as a MIX word,
a sign byte plus five data bytes. These six MIX bytes were

packed into four Microdata bytes as shown in figure 2.9.

Figure 2.9
A register S~ Sign
X register and S |N %. 1 213 1& 15 l6 N- Not used
2 |2 > 2.2 [3.]3] - Xi- i bt
Instruction register 1172 % L7506 |T1) T2 of the K
33 34 35 36 41 42 43 44 byte
45 46 51 52 53 54 55 56

The Instruction Counter is a two byte register and the re-
maining seven registers, the Jump ;egister, and the six Index
registers are three bytes each in MIX, a sign byte plus two
data bytes. Each of these registers was packed into two Micro-

data bytes as shown in figure 2.10.

36

Figure 2.10

Instruction S - Sign
Counter ;

Jump and S N 41 42 43 44 45 46[N - Not 4
Index registers s s 5 Is 5 Is use
-1 2173 4 175 600| 0O - Zero

Ki- ith pit

of kth
byte

This format was selected for several reasons. First, by
carrying the Instruction Counter in this form the Microdata
Address, (MIX addfess times 4), of the next instruction was
readily available. Secondly, this format facilitated index-
ing; Recall that the sign and first two data bytes of an
instruction compose the operand address. From figure 2.9
it can be seen that the operand address, in packed form,
is in the same format as the Index register. (Figure 2.10).
Computing the effective (Microdata) operand address can be
accomplished by masking the address field from the Instruc-
tion register, zero filling the low order two bits, and add-
ing this result to the specified index register. Thirdly,
MIX Jump instructions, which may be indexed, are easy to
execute since the address field of the instruction, the In-
dex register, and the Instruction Counter are all packed the
same way.

The Overflow toggle is a one bit register in MIX which
is either set or reset. The MIX Comparison Indicator can

assume one of three values representing greater, less, and

37

equal conditions. These two MIX registers were packed in-

to one Microdata file as shown in figure 2.11

Figﬁre 2.11

N - not used

N [N IN |]O [N |L }JE |G O - overflow
LEG - Comparison
Indicator

Three bits were used to emulate the MIX Comparison Indica-
tor although only two‘bits were needed to represent the
three possible states. However, a three bit Comparison
Indicator allows easier programming of the Jump Less,.
Jump Equal, Jump Greater, Jump Less or Equal, Jump Greater
or Equal, and Jump Not Equal instructions. Using a three
bit Comparison Indicator one general microprogram can

be written to decide whether the correct conditions exist
foreach of these six Jump instructions. To test for a
less than condition a mask of '0000 0100' is passed to the
compare routine, which OR's this mask with the file con-
taining the Comparison Indicator. If the logical result
is non-zero, then the Less bit is on indicating a less
than condition. The Equal and Greater cases work the same
way. The advantage of a three bit indicator is made
apparent by the Jump instructions which test for two con-
ditions instead of one. To test for a greater than or
equal condition a mask of '0000 00ll' is passed to the

compare routine. A not equal conditon can be stated as

38

a less than or greater than condition, therefore, a mask
of '0000 0101' will test for not equal. Figure 2.12 gives
the conditions and the corresponding masks to be used with
this method.

Figure 2.12

G -~ Greater bit
NININ O N LjE G E - Equal bit

L - Less bit

0

Overflow bit

Test Greater

Test Equal

Test Less

Test Greater or Equal
Test Less or Equal
Test Not Equal

© o ©o 0o o o
© ©o o o © o
©O © 0 ©o ©o °
o o 0o ©o o o
o ©o o © o o
H M © H © o
O M O H O
O H O O

Using the three formats just described'(Figures 2.9,
2.10, and 2.11) twenty-nine microdata files are required
to emulate MIX registers (Figures 2.13). This leaves only
one free work file to be used by the microprogrammer. How-
ever the third byte of a MIX instruction denotes which In-
dex register, if any, is to be used to compute the effective
operand address. This computationiis done on all instruc-
tions immediately following the instruction fetch. Thus
by the time the decode routine is executed MIX byte 3 is
free to be used by the microprogrammer. MIX byte 5, the
instruction operation code, becomes available to the micro-

programmer after instruction decode has occured. Also MIX

39

byte 4, the F field (partial word designator), is freed

shortly after entering the particular instruction subrou-
tine to be executed. Therefore, though work space is at
a premium, enough scratch files are available to perform

most computations.

Figure 2.13

A register 4 file registers

X register 4 file registers

Instruction register 4 file registers

Instruction counter 2 file registers Dedicated to MIX
Jump register 2 file registers

Index register Il 2 file registers

Index register I2 2 file registers

Index register I3 2 file registers

Index register I4 2 file registers

Index register I5 2 file registers

Index register 16 2 file registers

Overflow toggle and .

Comparison Indicator 1l file register Available to

Free work area 1 file register Microprogrammer

30 file registers

The thirty general purpose registers on the Microdata
1600/30 are divided into two files of 15 registers. Each,
refered to as the Primary file and the Secondary file. Only
one file is available to the microprogrammer at any given
time. To get from one file to the other a file select in-
struction must be executed. Figure 2;14 illustrates the ad-

dressing and manipulation of the two sets of file registers.

40

Figure 2.14

* Transfer the contents of Primary file 1 (Pl) to
* Secondary file 1 (S1)
* Transfer the contents of Secondary file 15 (S15)
: to Primary file 15 (P15)

SPF Select Primary File

MOV 1,(T) Move Pl to T register

SSF Select Secondary files

CpPY 1,T Copy T register into S1

Mov 15, (T) Move S15 to T register

SPF Select Primary files

CPY 15,T Copy T register into P15

Data transfer between the two sets of files is cumbersome
for two reasons. First, transfer must be via the T regis-
ter since it is the only register common to both files which
can be loaded and then read. (The U, M, and N registers

can only be loaded). Thus transfers must take place one
byte at a time. Secondly, file select commands must be
issued each time the file boundary is to be crossed. As

a result, MIX registers which are likely to be used together
were grouped in the same file to avoid inter-file transfers.
The Instruction Counter, the Instruction register, the A reg-
ister, the X register, and the one free work register were
assinged to the Primary file while the Index registers, the
Jump register, the Overflow togglé and the Comparison In-

dicator were assigned to the secondary file.

41

The Instruction Counter and the Instruction Register
were both assigned to the Primary file to facilitate the
instruction fetch cycle. Note, to fetch the next MIX in-
struction four memory reads must take place from consecu-
tive locations in memory starting with the byte addressed
by the Instruction Counter. The Memory Address Register
(M,N) is loaded with the contents of the Instruction Counter
and then a read can be performed, fetching the first of
four bytes. Now the Memory Address Register (M,N) must
be incremented. However M and N cannot be gated to the
Arithmetic Logic Unit, but can only be selected as the des-
tination for the output from the ALU. Instead the Instruc-
tion Counter must be incremented, this result can now
be selected as the new value of the Memory Address Register
(M,N), and the second byte can be read. The fetch routine
is then more efficient if both the Instruction Counter and
the Instruction register are in the same file, since the
fetch routine alternately selects one then the other.

The user registers most frequently selected in MIX are
the A register, the X register and the A-X register. The X
register is the riéht hand extension of the A register in
multiply, divide, and shift instructions. It is advantage-
o6us then to have the A register and the X register in the
Primary file with Instruction register to facilitate the

execution of A, X and A~X instructions.

42

The one free work register was placed in the Primary
file since this is where the instruction to be executed would
reside as well as the registers most likely to be involved
with this instruction execution.

The A register was located in Primary file registers
Pl1, P2, P3 and P4 where Pl contains the sign and most sig-
nificant bits of A and P4 the least significant bits. The
X register was assigned registers P5, P6, P7, P8 with P5
holding the most significant bits and P8 the least signifi-
cant bits. These assignments result in X being the natural
right hand extension of A, this of course makes micro-
programming the shift, divide, and multiply routines straight
forward if not easier. The instruction register was assigned
registers P11, P12, P13, and Pl4. The free work register
was located at P1l5. This helped group the work registers
together, recall P14 contains the opcode, MIX byte 5, which
is available to the microprogrammer following instruction
decode. The Instruction Counter was located at P9 and P10,
these being the only remaining registers in the Priﬁary file,

The Index registers, the Jump register, the Overflow
and Comparison Indicators occupy all of the Secondary file.
The Index registers were grouped into 12 consecutive regis-
ters starting with Secondary file 1. Index register Y then
resides in Secondary files 2Y-1 and 2Y. This allows micro-
programs which handle Index register operations to be general-

ized. Figure 2.15 is a microroutine used to zero the Index

43

register specified (I1-I6) in the Instruction register (MIX

‘byte 3).

Figure 2.15

SPF Select Primary files

LT X'FO! Load T register with mask

OR* 13,1, (T) Mask off index number

CPY 15,T Copy index number x 16 into P15
SFL 15 shift P15 left, divide by 2

SFL 15 Shift P15 left, divide by 2

SFL 15, (U) Compute index number x 2,

. Put result in U register

SSF Select Secondary file

ZOF 0,5 Zero file (U), LSB of index

The U register will be ORed into the upper
* 16 bits of the microcommand when the S option

is included

SPF Select Primary file

DEC 15, (U) Compute (Index number x 2) -1
put result in U register

SSF Select Secondary file

Z0F 0,8 Zero file (U), MSB of index

The Jump register was allocated file register S13
and S14. The function of the Jump register is to copy the
current contents of the Instruction Counter immediately prior
to a Jump Instruction. This provides a one level subroutine
linkage for the MIX user. This copy must take place across
the file boundary since the Instruction Counter is in the
Primary file and the Jump register is in the Secondary file.
However, this is only a two byfe transfer and Jump instruc-

tions are executed less frequently than the fetch routine

44

or even A, X, or A-X register instrﬁctions.

The file containing the overflow toggle and the Com-
parison Indicator was placed in the Secondary file 15. Note
that all the other MIX registers are composed of an even
number of file registers, but there are 15 file registers
(odd) in each file. Thus the free work file register must
be assigned to one file and the Overflow and Comparison
Indicator register to the other; Considering the need for
a work space in the Primary file, the Overflow and Compar-
ison Indicator was placed in the Secondary file. Figure
2.16 illustrates the file allocation of the MIX registers

as discussed.

Firmware Logic Problems:

~ Solutions to these major hardware allocation problems,
memory allocation and register allocation, defined the re-
lation between the host machine and the target machine so
that microprogramming could begin. However, the machine
organization that was developed resulted in two firmware
problems.

The first problem, which had been anticipated, was the
lack of sufficient work space to perform the required firm-
ware routines. 1In the file allocation plan, an attempt was
made to keép all MIX registers in either the Primary file
or the Secondary file. This resulted in only one free file

register to be used by the firmware for counters, temporary

45
Figure 2.16

PSO
Pl S1 1 1NpEX 1
A P2 S2
REGISTER
F3 83 | 1NpEX 2
P4 sS4
P> S5 | 1npEx 3
X P6 | - S6
REGISTER
7 57 | INDEX 4
P8 S8
INSTRUCTION P9 59 | npEx 5
COUNTER ' P10 S10
P11 S11 | poree 6
INSTRUCTIO P12 512
REGISTER :
P13 513 | 7 REGISTER
P14 S14
FREE WORH
SPACE P15 s15 | COEARISON &
INDICATOR
r—f v T LI L AL
S0 11 12 13 14 Ls 16 S 0 43 4phy 444546
7 L L A D B
2122 23 24 25 26 31 32 51 59 53 54 55 540 O
3334 35 36 by 42 43 4, INDEX, JUMP SAVE AND INSTRUC-
' - T TION COUNTER
45‘*6 51 52 53 54 55 3¢
T T T
A, X, AND INSTRUCTION o0 00 o 'L E G
REGISTER
, OVERFLOW AND COMPARISON
S - Sign
0 - Zero

Ki ith bit of kth byte

46

results and flags. One or two registers were freed after in-
struction decode occured but in some cases 3 free registers

were not enough. For example, the Multiply instruction requires
at least one more register than is available. This can only

be solved by temporarily writing some portion of a MIX reg-
ister, not currently being used, out to core memory.

The second firmware problem encountered was caused by
the misalignment of MIX bytes and Microdata bytes. Since
byte boundaries of the host machine did not correspond to
byte boundaries on the target machine, programming the MIX
partial field specifications was quite involved. The format
used to pack six MIX bytes into four Microdata bytes resulted
in each MIX byte being stored in a slightly different posi-
tion than the other MIX bytes. From figure 2.17 it can be
seen that the MIX sign byte and the first aata byte occupy
the first Microdata byte with one unused bit also present.
MIX byte two and the high order two bits of MIX byte three
‘are in Microdata byte 2. The low order four bits of MIX byte
3 and the high order 4 bits of MIX byte four are in Microdata
byte.3. The low order 2 bits of MIX byte 4 and MIX byte
five are in Microdata byte four. This format defies uni-
form handling of MIX bytes. As a result the microprogram
routines which treated MIX partial word specifications were
lengthy. A good example of this problem is the MIX Store A
instruction. In this instruction the number of bytes

specified by the F field is taken from the right hand side

47

of A and these bytes replace the contents of the effective
operand address specified by the F field. The bytes of the
operand not mentioned by F and the A register are unchanged.
Figure 2.17 illustrates all twenty-one variations of this
instruction.

Thirty-four of the sixty-four MIX instructions were
microprogrammed using the allocations discussed earlier. It
became obvious, however, that the complete MIX emulator
would exceed 2048 instructions, the size of the AROM. At
this point the following compromises were considered.

1. Emulate a subset of the MIX instructions rather
‘than the complete repertoire.
2. Page in sections of microcode from disk as
they are required (7). This would increase
MIX instruction execution time but would
create a virtual AROM.
3. Reallocate MIX memory avoiding the packing of
MIX bytes into Microdata bytes. This makes it
possible to write simpler code but imbossible
to implement all 4000 words of MIX memory.
In the midst of this consideration an additional 16K of
memory was acquired for the 1600/30. allowing the adoption of .
method 3 as well as the implementation of all of MIX memory.
This attempt to emulate MIX was then terminated and a new
study of hardware allocations was begun taking advantage of
the additional memory and the mistakes that had been made

during this first attempt.

Figure 2.17

M SN MlMlMlMlMlMl

48

M2M2M2M2M2M2M3M3

A SN AlAlAlAlAlAl

M3M3M3M3M 41"1 4M 4M 4

A2A2A2A2A2A2A3A3

M4M4M5M5M5M5M5M5

A3A:3A3A3A4A4A4A4

Initial contents
in Memory

M.K-Some bit of the K h

of M

A41{5«.4A5A5A5A5A5A5

A SN ,MlMlM lMlMlMl

Initial Contents
in A'Registegh

AK—Some bit of the K

of A

byte

M2M2M2M2M2M2M3M3

ASN A4A4A4A4A4A4

M3M3M3M3M 4M 4M 4M A

A5A5A5A5A5A5M3M3

M4M4M5M5M5MSM5M5

M3M3M3M3M 4M 4M 4M 4

STA M, (0,0)

MM, MM MMM M,

ASN" ASASASASASAS

STA M, (0,2)

M2M21‘{2M2M21\{2M31*‘I3

MSN A4A4A4A4A4A4

MMM MMM MM,

A5A5A5A5A5A5M3M3

M4M4M5M5M5M5M5M5

M3M3M3M3M4M4M4M4

STA M, (0,1)

M4M4M5M5M5M5M5M5

MSN ASASASASASAS

STA M, (1,2)

M2M2M2M2M21"‘12M3b'13

MSN MlMlMlMlMlMl

M3M3M3M3M 4M 4M 4M 4

AAAAANAMM,

M4M4M5M5M5M5M5M5

M3M3M3M3M4M4M4M4

STA M, (1,1)

M4M4M5M5M5M5M5M5

STA M, (2,2)

ASN A3A3A3A3A3A3

49

A[*A[‘A4A4A4A4A5A5

ASN A2A2A2A2A2A2

A5A5A5A5M4M4M4M4

A3A3A3A3A3A3A4A4

M4M4M5M5M5M5M5M5

A4A4A4A4A5A5A5A5

STA

M’ (0,3)

AAMM MM MM,

MSN A3A3A3A3A3A3

STA M(0,4)

A§A4A4A4A4A4A5A5

MSN A2A2A2A2A2A2

A5A5A5A5M4M4M4M4

A3A3A3A3A3A3A4A4

M4M4M5M5M5M5M5M5

A4A4A4A4A5A5A5A5

STA

M, (1,3)

ASASMSMSMSMSMSMS

STA M, (1,4)

MSN MlMlMlMlMlMl

MSN M lMlMlMlMlMl

A4A4A4A4A4A4A5A5

A5A5A5A5M4M4M4M4

A3A3A3A3A3A3A4A4

Ah A8 AR sASA

M4M4M5M5M5M5M5M5

A5A5M5M5M5M5M5M5

STA

M, (2,3)

MSN MlMlMlMlMlMl

STA M, (2,4)

MZMZMZMZMZMZASAS

MSN MlMlMlMlMlMl

A5A5A5A5M4M4M4M4

M2M2M2M2M2M2A4A4

M4M4M5M5M5M5M5M5

A4A4A4A4A4A4A5A5

STA

M, (3,3)

AA MMM MMM,

STA M, (3,4)

MSN MlMlMlMlMlMl

MMM MM MMMy

M SN MlMlMlMlMlMl

M3M3M3M3A 5A 5A SA 5

M2M2M2M2M2M2A3A3

ASASMSMSMSMSMSMS

A3A3A3A3A4A4A4A4

STA

M, (4,4)

A4A4A5A5A5ASA5A5

ASN AlAlAlAlAlAl

STA M, (3,5)

AAA A A A AA

222222373

MSN MlMlMlMlMlMl

A3A3A3A3A4A4A4A4

M MMM M MMM

AAAAASASASASASAS

M3M3M3'M3A 4A 4A 4A 4

STA

M, (0,5)

AéAéAjASASASASAS

MSN AlAlAlAlAlAl

STA M, (4,5)

B P e T

MSN MlMlMlMlMlMl

A3A3A3A3A4A4A4A4

M2M2M2M2M2M2M3M3

A4A4A5ASA5ASA5A5

M3M3M3M3M 4M 4M 4M 4

STA

M, (1,5)

M4M4A5A5A5A5A5A5

MSN MlMlMlMlMlMl

A2A2A2A 2A2A2A3A3

A3A3A3A3A 4A 4A 4A 4

A4A4ASA5A5A5ASA5

STA

M, (2,5)

STA M, (5,5)

III. THE SECOND ATTEMPT

In the fall of 1974, the Computer Science Department
increased the Microdata's core memory to 32K bytes. At
this point a second attempt was initiated to emulate the
MIX 1009 computer using this additional memory. Again,
the two major design problems concerned the allocation of
Microdata hardware for the emulation of MIX hardware, and

firmware logic problems.

Hardware Allocation Problems

The first design decision in this secondbattempt was
again how one should emulate MIX's memory. The memory
resources now available on the Microdata 1600/30 and the
memory requirements of the MIX machine are reflected in

Figure 3.1.

51

Words of Bits/ Total # Total # Character Numeric
Memory Byte of Bytes of Bits Code Code
Microdata | undefined 8 32,728 261,824 |ASCII ({binary 2's
1600/30 byte or compliment
addressable EBCDIC
MIX 4000 1/sign | 4000 {124,000 {Knuth's ppinary sign
1009 6/data | sign Code plus
20,000 magnitude
data

With the additional 16K of core memory'the Microdata 1600/30

was larger than the MIX 1009.

Recall that with 16K of core

memory the Microdata had only 16,364 bytes to implement MIX's

24,000 byte memory.

In the first attempt this dilemma was

52

solved by packing each 31 bit MIX word into four Microdata
8 bit bytes. However, this design resulted in difficult firm-
ware logic. But with 32K of core memory, packing was no
longer necessary since the Microdata had more than enough
bytes to implement MIX's memory byte for byte.

This surplus of main memory solved the major problems
previously encountered in implementing MIX's memory, but
three problems still remainded, namely:

l. How many Microdata bytes should be used
to emulate each MIX word?

2. How many bits should be used in each
byte?

3. How should any extra Microdata memory be
used?

In examining the first of these problems, it appears
that either five bytes per MIX word or six bytes per MIX word
was the best solution in light of previous experience. The
five bytes per MIX word solution required packing the sign
and the first MIX data byte together. This packing would
result in more available MIX memory but would inhibit uniform
handling of all five data bytes. Uniform handling and -
the ability to generalize the firmware for partial word oper-
ations was not possible in the first attempt, it was a pri-
mary consideration however in the second attempt. Therefore,
the six-bytes-per-MIX-word solution was selected where the
sign byte and 5 data bytes would each be assigned to a separate

Microdata byte, figure 3.2.

53

Figure 3.2

Sign Byte

1st Data Byte

2nd pata Byte

3¥d pata Byte

4th pata Byte

5th pata Byte

Recall from Chapter II that the three disadvantages of the
six byte solution were:

A) Not all 4000 words of MIX memory could be
emulated.

B) Address translation from MIX address to Micro-
data address and vice versa was time consuming.

C) Detection of MIX word boundaries was difficult
when given only the corresponding Microdata
address.

The increase of main memory to 32K solved problem A, in fact
8,728 bytes of Microdata memory would be still available at
six bytes per MIX word. Problem B can be solved, as discussed
in Chapter II, however, address translation is still time
consuming. Problem C however, is the most difficult. Recall
that MIX Input/Output instructions handle the sign byte of
each MIX word differently from the data bytes. On Input the

sign bytes are set positive and on Output the sign bytes are

ignored, figure 3.3 illustrate the Input operation.

Figure 3.3

g 1st 28d 3rd ,th sth

MIX word 0000

IMIX word 0001

MIX word 0002

MIX word 0003

0O CcC 0O N T E
1 N T S P
1 R 1 O R
OT O I N
1 p U T

MIX word 0004

Before Read

MIX word 0000
MIX word 0001
MIX word 0002
MIX word 0003

MIX word 0004

54

Read 80 characters into MIX
Memory starting at MIX word
0000

In 0,(10)

ABCDEF...

18t 9sd 3rd 4th sth

92]

After Read

Input/Output on the host machine however occurs one byte at a

time, and the microprogram must use Microdata addresses to store

each data byte, thus the firmware must be able to sense MIX

word boundaries.

As mentioned earlier one way to do this

is to divide each Microdata address by six. If the remainder

is zero then this byte corresponds to a MIX sign byte and

55

should be handled accordingly. Another possible solution
is to assign to each I/O device a counter that is set to
zero when an I/0 operation is initiated on that device, then
each time a data byte transmission occurs this counter is
tested to see if it is equal to zero. If not the data trans-
mission would take place and the counter would be decremented.
But if the counter is zero the Microdata address corresponds
to a MIX sign byte and this byte should be either zeroed
or ignored, depending on whether the operation involved is
input or output. The counter would then be set to 5 an@ nor-
mal handling of data could resume, figure 3.4 presents a
flowchart for the above description. Either of these
two methods, dividing by six or running a special counter
would solve the problem of MIX word boundary detection but
neither is easily accomplished.

Having tentatively adopted the six-byte-per-MIX-word
solution, the next decision concerned how many bits should
bé used in each MIX byte. Knuth specifies each MIX word
should hold at least 64 values, but a most 100 values. This
range allows MIX to be implemented as either a binary or
decimal machine. This implies that ény binary implementation
would have to use 6 bit data bytes. However, the Microdata
is an 8 bit machine. The Arithmetic-Logic Unit of the Micro-
data accepts 8 bit operands and produces an 8 bit result plus
an high order carry to be used as a Link bit in multiple

byte operations. If MIX was to be emulated with a 6 bit byte

Figure 3.4

INITIATE I/O
FOR DEVICE # N

COUNT, - 5

N«€- DEVICE #

COUNT, - 5
HANDLE SIGN BYTE

FALSE

TRANSMIT DATA

COUNT, ¢~ COUNT - 1

3

56

57

then the following format would resulf, figure 3.5.

Figure 3.5

S - Sign Bit
NIN 31§41, 01,11,11_ 11 N - Not used

Ki- ith bit of kth
1}1“21%31%41“5]%6 byte

This format complicates all arithmetic instructions in MIX.
If this format is allowed, the existing Microdata hardware
for doing arithmetic operations cannot be used as intended.
Incrementing a two byte counter, a very common and usually
very simple operation is now fairly involved. The hardware
Link bit provided in the Microdata ALU cannot be used to
indicate a carry, so firmware logic must be developed to
handle the high order carry. Figure 3.6 shows one way of

incrementing two 6 bit bytes on the Microdata ALU.

58

Figure 3.6

* Assume Pl contains the 6 high order bits of the
counter

* And P2 contains the 6 low order bits of the
counter

* Also assume Pl and P2 are carried in the following
form

* 00111111 High order 2 bits = zero

* 00222222

INC 2 Increment P2

™ 2,X'40' Test for high order carry

JP RTN No high order carry so continue
* High order carry has occurred .

LT X'3F' Load mask into T register

AND 2,7 Clear carry from P2
INC 1 Increment P1l

* Now overflow is possible
TZ 1,X'40' Test for overflow
JP OVERFL Overflow has occurred

* Return

Using the Microdata's ALU as intended a two byte (8 bit)

counter can be incremented as shown in figure 3.7.

Figure 3.7
* Assume Pl and P2 again contain the counter
INC 2 Increment low order 8 bits

ADD 1,L,C Add Link bit to high order 8
bits, set condition flags

TZ 0,X'0l" Test for overflow
Jp OVERFL Overflow has occurred

* Return

59

If the 6 bit format doubles the number of instructions
required to increment a two byte counter, it should be
clear that involved instructions such as Multiply, Divide,
Add, Subtract, Shift, Char, and Num would be considerably
longer as well. Recall also that Mlx, being a sign plus
magnitude machine already conflicts with the Microdata's
ALU since it is a two's complement unit.

In light of these complications and the fact that
the first attempt failed because the firmware became so
involved and lengthly that it would not fit into 2K of
AROM, an 8 bit data byte was adopted for the emulation of

MIX. The format is shown in figure 3.8.

Figure 3.8

S - Sign Bit
1,11 311,41, 131141 _J1 N - Not used

Ki- ith bit of xth
4Y'5176)7 7178 byte

This eight bit data byte called for the adoption of
another character code. Knuth's code, a six bit code, could
have been used, however, it was felt that since the teletype,

line printer, and disk worked in ASCII, it would be more

60

advantageous to use than forcing Knuth's code onto these
devices via firmware.
The remaining memory allocation problem concerned what
to do with the 8,728 bytes of surplus Microdata memory. The
two choices are obvious:
A. Extend MIX memory by 1,454 words.

B. Provide some sort of system
support (temporary storage).

Solution A enhances the MIX machine from the users point of
view. However the extra memory is not necessary since MIX
is suppose to have only 4000 words of memory. In fact, if
programs are to be written according to Knuth's rule "that
no more than sixty-four values are ever assumed for a byte"
(1). The largest memory location addressable is location
4095 (26 -1). It would dlso seem that 4000 words of memory
is more than enough for educational purposes. Thus adding
more memory to the MIX machine offers no real advantage.
Solution B offers some advantages that are not obvious
at first. All Input/Output in MIX takes place in concurrent
mode. That is, an I/O operation is started via an In or Out
instruction but a major portion of the I/O operation takes
place while the user executes other instructions. Certain
information must be available to the microprogram in order
to carry out these block data transfers. However this in-
formation, memory address, and counters, must be stored

somewhere besides the MIX registers available to the user.

61

This surplus memory provides an ideai, and in fact the only,
place to temporarily store this type of information. A
decision was also made in this second attempt, for reasons
that will be discussed later, to keep MIX's Index registers
in main memory instead of the secondary files. Thus with
this type of privileged data in main memory it is necessary
to have an area of core that the MIX user cannot use. If
certain MIX memory locations were dedicated to the above
functions then the MIX user could alter concurrent I/0 oper-
ations as well as the contents of the Index registers. It
was thought that this was both dangerous for beginning pro-
grammers and unnecessary.

Having adopted solution B one more question arose;
where should MIX memory begin and where should the surplus
memory reside? Three possible answers were considered, the
two which follow are obvious:

1) The surplus resides at Microdata address 0000-8727

and MIX memory resides at 8728-35,728.

2) MIX memory resides at 0000-24,000 and the surplus

at 24,001-35,728.
The third possibility, and the one which was chosen was to
begin MIX memory at Microdata 0000 and then alternate one
MIX word with two surplus bytes throughout Microdata memory.
This did not effect the availability of the surplus memory
but it did solve two problems previously discussed in this

chapter. Figure 3.9 illustrates the above solution.

62

Figure 3.9

Microdata MIX

Address Address|
00000 00 ‘ sign byvte
00001 1° -data bhvte
00010 25%3ata byte
00011 3¥ddata bvte
00100 4thdat+g byte
00101 sthjata byte
00110 Surplus
00111 Surplus
01000 01l sian bvte
01001 1°-data hyte
01010 ‘ 2°93ata byte
01011 3Iddata byte
0l1o00 4“13ata byte.
01101 5thdata byte
01110 sSurplus
01111 Surplus
10000 02 sign byvte
10001 15tdata hyte
10010 2Sddata byte

Using this memory layout the addressing problems of the six
byte per MIX word solution were solved. Each MIX word is
six Microdata bytes long but now each MIX word begins on
a Microdata address which is a multiple of eight. Thus con-
version from MIX address to Microdata address can be accomp-
lished by shifting the MIX address three places left. Con-
version from Microdata address to MIX address involves shifting
the Microdata address 3 places right. MIX word boundaries
are also easy to sense. Any Microdata address ending in
000 is a word boundary. Surplus bytes are also easy to de-
tect since their addresses all end in either 110 or 11l.

In summary, the memory allocation problem was resolved

by the following three policies:

63

1. One MIX word was to be composed of six
Microdata bytes.

2. Each MIX byte was to contain 8 bits.

3. MIX memory would begin at Microdata
address 0000 but each MIX word would
be followed by two surplus data bytes.

It should be noted that these surplus data bytes are
invisible to the MIX user. This inleaving of MIX words and
surplus data bytes also allowed a minor extension of MIX
memory from 4000 words to 4096 words. Some of these extra
96 words were dedicated for purposes not included in Knuth's
specifications. For example, one word in high core is trapped
to by the microprogram if an illegal address, opcode or I/O
device is encountered. Two words are dedicated to each
I/0 device, one to store the device status byté upon

completion of an I/O operation and one as a trap address

in case of an I/0 error on that device.

The second design decision concerned the mapping of MIX's
registers into the hardware available on the Microdata
1600/30. The registers which were to be emulated along
with their lenghts' are reflected in figure 3.10. Figure
3.10 appears on the following page.

As noted in chapter II the Microdata provides a 30
register work area for the microprogrammer to use in emula-
ting the registers of target machines. 1In the first attempt
all MIX registers were kept in these 30 file registers, how-

ever, this left only one free work register. This constraint

Figure 3.10

A Register

X Register
Instruction Register
Instruction Counter
Jump Save Register
Index Register 1
Index Register 2
Index Register 3
Index Register 4
Index Register 5
Index Register 6

Overflow and
Comparison

Sign plus
Sign plus
Sign plus
2 bytes

2 bytes

Sign plus
Sign plus
Sign plus
Sign plus
Sign plus

Sign plus

1 byte

bytes
bytes

bytes

bytes
bytes
bytes
bytes
bytes

bytes

64

65

resulted in rather strained firmware logic and in some

cases MIX registers had to be read out to main memory tem-
porarily to provide the necessary work space. The idea of
storing some of MIX's registers in main memory had been
considered, this was avoided in the first attempt since
intuitively it would slow the MIX machine. In the second

" attempt this approach was again considered. It was decided
that if simpler firmware logic would result from certain
registers being étored in main memory then the speed gained
through this simpler and therefore faster logic would make
up for the time spent paging registers in and out of main
memory. One should also note that the sum of the registers
listed in figure 3.10 is 41 file registers. Thus there were
more MIX register bytes to emulate than there were file reg-
isters.

Initially it was decided to place the X register and
the Index registers in main memory and to page them as
required into the secondary file. Nine file registers
(1-9) were reserved in the secondary file to hold the reg-
isters that were currently paged-in. A page map was to
designate which registers were in memory and which were in
the secondary files as well as which MIX register was in
which set of Microdata files. Using this set-up either
the X register and one Index register or up to 3 Index reg-
isters could be in the secondary files at any given time.

The X register could fit into two possible slots either

66

registers 1-6 or registers 3-9, and Index registers could
fit into either registers 1-3, 4-6, or 7-9. This paging
algorithm plus the other five MIX registers consumed a
total of 29 registers leaving one register free.

Although this method did allow the emulation of all
of MIX's registers and free work space could be created at
almost any time by paging the registers in the secondary
file out to memory, the overhead involved was considered
very high. Instructions concerning the X registers were
complicated since it would be in two positions. Index
register routines were complicated, since they could be in
any one of three places in the Secondary file. The account-
ing involved in keeping track of the current location of
each MIX register file required three file registers and a
considerable amount of AROM. Some sort of scheduling algo-
rithm was also required to determine which register should
be paged out in order to make room for the incoming register.
It was thus decided that this strategy was too costly both
in terms of firmware logic and file registers.

The paging concept was then amended to apply only
to the Index registers, with only one Index register al-
lowed in the file registers at any given time. The X
register would reside permanently ip the secondary files.
This simplified the X register instructions considerably,
as will be discussed later. The Index register instructions

were also simplified since now there were only six different

67

Index registers instead of thirty—six. For example, there
.are six load Index instruction, one for each Index register.
But all six are effectively represented by one Load Index
routine since all the Index registers are loaded into the
same place in the secondary file. This routine calls the
paging routine to page in the required Index register and
then loads this register with the proper contents. The
same is true for the Load Index negative, Store Index,
Jump On Index, Enter Index and Compare Index instructions.
The accounting problem associated with the paging system
was also simplified. The page map was now 3 bits long;
these bits contained the number of the Index register
currently rolled in from memory or the value zero if all
the registers were currently rolled out. This ability to
page all the Index registers out to memory provided an
easy way to create free work files when the need arose.
By allowing only one Index register in the Secondary files
at any time, the need for a scheduling algorithm was elimi-
nated. If Index register 1 is in the Secondary files and
Index register 2 is required, either for indexing or by an
Index instruction, Index register 1 must be paged out and
then Index register 2 paged in.

The detailed flowchart of the paging mechanism, called
the Index Register Supervisor can be seen in Chapter V

and the microcode for the routine is found in Chapter VI.

68

Having solved the problem of to;-many-MIX-registers—
énd-not—enough—files, the allocation of MIX registers to
Microdata files was begun. The A register, the Instruction
register and the Instruction Counter were assigned to the
Primary file while the X register, Overflow and Comparison
Indicators, Index registers, Index Map and Jump register
were assigned to the Secondary file.

The Instruction Counter and Instruction register were
again placed together to facilitate the fetch routine. The
A register was placed in the same file with the Instruction
register for the same reasons discussed in Chapter II, the
main one being that the A register is the register most likely
to be involved in the next instruction fetched. Although
only one free work file remained in the Primary file, the
three files in the Instruction Counter containing the Oper-
ation Code, the Index register and the sign of the Memory
Address normally become available following the execution
of the Instruction Decode Routine. These four free work
areas in the Primary file are available in most cases.

The remaining MIX registers, the X register, the Home
position for the Index registers, the Index Map, the Over-
flow and Comparison Indicators and the Jump Save register
were grouped together out of necessity since the secondary
file was the only place left to put them.

Figure 3.11 illustrates the file mapping that was

finally selected. The A register was allocated Primary

69

Figure 3.11

ETi1lzNoO PSO
sign P1 sign S1
1St byte P2 1St byte 52
A ZSd'byte P3 25d byte S3 X
Register Register
37d byte P4 3rd byte S4
4th byte P5 4th byte S5
o 500 pyte P6 5th pyee S6
Fre? work Overflow, Comp.,
Register P7 OLEG x iii S7° |& Index Map
sign P8 sign S8
Al address-ho P9 1St byte S9 Index
Register i
Instructiod A9 address-1o P10 254 pyte S10
Register
1 index spec. P11 S11_ Free work
F _field spec. P12 812 J|Registers
C op code P13 S13
Instruction 18t byte-ho P14 1St byte-ho S14 | Jump
Counter Register
254 pytre-10 P15 | 259 pyre-1o $15

70

files P1, P2, P3, P4, P5, and P6. Thé X register was allo-
cated the matching registers in the Secondary file. This
allignment simplified the different A and X instructions

in much the same way that paging simplified the Index instruc-
tions. The only difference between a Load A and a Load X
instruction is the perodic selection of the Secondary files
instead of the Primary files.

The Instfuction register was placed in P8-P13 with
P7 being the one free work file. This placed P7 next to
the sign byte of the instruction address, which is one .of
the first files in the Instruction register to become free.
The Instruction Counter was then assigned to P14 and P15,
the remaining Primary files.

The Overflow and Comparison Indicators, a 4 bit regis-
ter, and the Index Map, a 3 bit register, were combined into
Secondary file S7. The Home position for the Index regis-
ters was assigned S8, S9, and S10. The Jump Save register
was alligned with the Instruction Counter in S14 and S15.
This left S11, S12, and S13 as free work registers.

‘It should be noted that eleven file registers can be
freed after instruction decode if they are needed. P7, S11,
S12, and S13 are always free. P8, P1ll, and P13 are free
after instruction decode. S8, S9, S10 can be freed by
paging the current Index register out to memory after the

effective operand address has been computed. Finally, the

71

seven bits of S7 can be packed into S1 with the sign of the
X register if necessary, freeing S7.

The mapping allowed simplified coding of Index instruc-
tions and of A and X instructions as well as ample work space
and result in the successful emulation of the MIX 1009 com-

puter.

Firmware Logic Design:

Having defined-the MIX Machine in terms of the Micro-
data's hardware, firmware design could begin. First a
general overview of the system was composed. The following
is an explanation of the overview as presented in figure 3.12.

Start Routine:

performed following cold start and
prior to the execution of any
MIX instructions;

enables external interrupts;

-~ enables the real time clock;

- initializes the teletype;

loads the Instruction Counter from
a dedicated high core address.

Fetch Routine:

- fetches the next instruction into
the Instruction register from
the address contained in the
Instruction Counter.

" Addressing Routine:

- computes the effective operand ad-
dress

72

" Decode Routine:

- examines the Instruction Operation
Code and transfers control to
the corresponding firmware
instruction module;

Instruction Modules:

- firmware routines that execute the
individual MIX instructions;

Interrupt Handler:

- executed after the execution of
the last instruction and prior
to fetching the next instruction;

- acknowledges and handles external
interrupts from I/O devices;

- acknowledges and handles internal
interrupts from the real time
clock and console pannel.

Subroutine Packet:

~ Index register Supervisor:
handles the paging of MIX index
registers.

- I/0 Routines:
used by the Input/Output instruc-
tions as well as the inter-
rupt handler.
- Error Routines:
handles user errors such as il-
legal addresses, illegal

opcodes, illegal I/O device
numbers, and I/O errors.

An attempt was made to keep the MIX emulator as modular
as possible. This facilitated program development and de-
bugging as ‘well as simplifying the decode routine. The de~
code routine divides the MIX instruction set into seven groups.

Each group representing a type of MIX instruction.

START
ROUTINE

INTERRUPT

ROUTINE

v

FETCH

ROUTINE

:

0-7

ADDRESSING

ROUTINE

Z

DECODE

ROUTINE

Figure 3.12 SYSTEM OVERVIEW

SUBROUTINES

INDEX
SUPERVISOR

I/0

ROUTINES

ERROR

ROUTINES

OPCODES
34-38

v

73

74

The seven groups are:
1. Opcodes 0-7 Arithmetic-Logic instructions
2. Opcodes 8-23 Load instructions
3. Opcodes 24-33 Store instructions
4. Opcodes 34-38 Input/Output instructions
5. Opcodes 39-47 Jump instructions
6. Opcodes 48-55 Enter and Increment instructions
7. Opcodes 56-63 Compare Instructions
The remainder of this Chapter has been devoted to a dis-
cussion of the major logic problems and their solutions

encountered in microprogramming each of these modules.

Opcode 0-7 Arithmetic-Logic Instructions

The Arithmetic Logic instructions are composed of ten
instructions. Four of these instructions are relatively
straight-forward and nothing will be said here concerning
these instructions. If more information is required about
these routines, consult the corresponding flowcharts in
Chapter V and microcode in Chapter VI. These four instructions
are NOP, HLT, SHIFT, and MOVE.

The remaing six instructions are the various arithmetic
operations, ADD, SUB, MUL, DIV, CHAR, and NUM. The first
problem encountered in microprogramming these routines was
that of representing sign plus magnitude arithmetic on a
two's complement machine. This problem was also found when

coding the increment immediate and decrement immediate

75

portions of opcodes 48-55 and in the Compare instructions,
opcodes 56-~63. The major difficulty involved'adding or
subtracting two sign plus magnitude numbers, since no hard-
ware mechanism was available to;

1) determine the sign of the result;

2) determine if the result was in true form or

two's complement form;

3) determine if overflow had occurred.
The Microdata's ALU does, of course, provide this type of
hardware support, but only for two's complement arithmetic.
Therefore, the existing negative result indicator and over-
flow indicator could not be used. The Microdata's negative
result indicator is turned on when the high order bit of
the result is a oﬁe, this high order bit being the sign bit
in two's complement. However, in the case of MIX's sign
plus magnitude format the presence of a one bit in the high
order position indicates the presence of a large magnitude
and says nothing about the sign of the mumber involved.
The Microdata's overflow indicator is turned on "when the
carry out of the high bit of the adder differs from the
carry into it" (3). But for sign plus magnitude operations
overflow occurs when the signs of the two operands are the
same and the high order carry out of the address (i.e. the
contents of the Link register) is-a one.

When pérforming sign plus magnitude addition four cases

arise, namely:

Case
Case
Case
Case

The following

76

1. (+A) + (+B);
2. (-A) + (-B);
3. (+A) + (-B);
4. (-A) + (+B).

two rules were employed to perform sign plus

magnitude addition using the Microdata's ALU.

Rule 1:

Rule 2: -

If the signs of the operands are the same,

case 1 and 2, then add the magnitudes to-=

gether, giving the result the sign of A.
Overflow has occurred if the Microdata's

Link register contains a one.

If the signs of the two operands are dif-
ferent, cases 3 and 4, then the two's com-
plement of B is formed, the addition occurs,
and the Link register is examined. If the
Link register contains a one the result is

in true form and the sign of the result is

the sign of A. But if the Link register
contains a zero, then the magnitude of the
result must be two's complement and the sign
is the complement of the sign of A, (or simply

the sign of B).

This algorithm for sign plus magnitude addition also

works for sign plus magnitude subtraction with one modifi-

cation, namely the sign of B must first be complemented

77

then the addition algorithm can be employed, figure 3.13.

Figure 3.13

(+A) - (-B) = (+A) + (+B) Case 1
(-A) - (+B) = (-A) + (-B) Case 2
(+4A) - (+B) = (+A) + (-B) Case 3

(-a) - (-B)

(-A) + (+B) Case 4

The flowchart of the algorithm for two's complement
addition and subtraction on the Microdata 1600/30 appears
on the following page in figure 3.14.

In the actual microprogramming of this algorithm
one major inefficiency was discovered. 1In figure 3.14, Box
14.1 and Box 14.2 represent the bulk of the required microcode.
Since they involve multiple byte addition or subtraction
operations they are quite long. The other unlabeled flow-
chart symbol's are represented in microcode by two or three
instructions. However, the subtract section, Box 14.1, is
identical to the add section, Box 14.2 with the exception
that all add instructions (opcode 8) are replaced by two's
complement subtract instructions (opcode 9). To avoid this
repetition of code figure 3.14 was modified to take advantage
of the Microdata's U register. The microprogrammer can se-
lect the U register, an eight bit register, to be ORed into
the high order eight bits of the next instruction. For ex-
ample, the instruction in figure 3.15 adds the contents of

g
the T register to Primary file 6 if the U register contains

Figure 3.14

(+ A) + (+ B)

COMPLEMENT
SIGN OF
B

I

BOX 14.1

FORM 2'S COMP |
DIFFERENCE
A-B

FALSE

LINK = 1

TRUE

FALSE

FORM 2'S COMP,
OF MAGNITUDE
OF RESULT

:

SIGN OF

LINK = 1

TRUE

SET MIX
OVERFLOW
INDICATOR ON

RESULT IS THE
COMPLEMENT OF
ITHE SIGN OF A

BOX 14.2

78

79

X'00'. However, it forms the two's complement difference
of Primary file 6 and the T register (P6¢—P6-T) if the
U register contains X'10'.

Figure 3.15

ADD 6,T,(S) or U‘with X'86' and execute
* ADD ::::::§§>opcode 8 = X'8' vV X'0'
* SUBTRACT ﬁopcode 9 = X'8' VX'1l'

Figure 3.16 gives the revised general logic flow used in
performing MIX sign plus magnitude addition and subtraction.
The next problem encountered in microprogramming the
Arithmetic operators was that of performing two's complement
multiplication and division. The Microdata's ALU does not
have a multiply or divide function available. However,
multiplication and division are actuélly easier in sign plus
magnitude format than in two's complement format. After
the mechanism for testing overflow and negative results
were developed for the add and subtract algorithm. The
multiplication routine used a typical shift and add algorithm
while the division employed one of the non-restoring tech-
niques. These algorithms are common and are not aiscussed in
this chapter. Detailed flowcharts and the corresponding
microprograms can be found in Chapters V and VI.
The remaining two Arithmetic Operators NUM and CHAR
proved to be the most difficult of the Arithmetic=-Logic

instructions. The MIX instruction NUM takes the ten digit

Figure 3.16

COMPLEMENT
SIGN
OE-

Subtract ADD
or

SUBTRACT

U Xx'oo'

False

ADD
or
SUBTRACT
DEPEND%NG ON

LINK=1

False

FORM 2's
COMP. of
MAGNITUDE OF
RESULT

v

SIGN of
RESULT IS THE
COMPLEMENT of

THE SIGN OF A

SET MIX
OVERFLOW
INDICATOR

ON

80

81

decimal number is ASCII code loaded in the A and X registers
énd converts them into the corresponding binary number, pla-
cing the result in the A register. It is assumed that these
ten characters are numeric and not alpha-numeric. CHAR
provides the opposite function. It takes the 40 bit binary
number in the A register and converts it into the equivalent
decimal number, encoded in ASCII.

The NUM routine works by étripping the four high order
zone bits off of each ASCII character. This leaves a ten
digit Binary Coded Decimal number which was then expanded

according to figure 3.17.

Figure 3.17

ao al a2 a3 ay ag ag a7 a8 ag

A register B register

(CCCCC(((ap*10+ag) x10+ap) x10+a3) x10+a,) x10+as5) x10+ag) x10+a7) x10+ag) x10+ag)
This part of the expansion was This part of the expan-
done with a 3 byte multiply. sion was done by a 5
byte multiply.

As noted above two special multiply routines were written
to perform this expansion. One multiplied a three byte oper-
and by 10 and the other multiplied a five byte operand by 10.
This was done to speed up the execution of this instruction.
Figure 3.18 points out that multiplying a number X by 10 is

straight forward.

82

Figure 3.18

X * 10 = (X*5) * 2= (X* 224+ X) * 2

The CHAR routine is essentially a reversal of the NUM
algorithm operand, initially the 40 bit contents of the A
register is divided by 10. The remainder after the division
was ORed with hexidecimal X'BO' to produce the corresponding
ASCII character. This division occurred ten times construct-

ing the ten digit decimal number from right to left.

Opcodes 8-23 Load instructions and

Opcodes 24-33 Store instructions:

The microprogramming of the Load instructions and
the Store instructions was greatly facilitated by the way
MIX hardware was emulated on the Microdata. No logic
problems were encountered in programming these routines.
However, it is interesting to note the difference in AROM
utilization on these routines between this attempt and the
first attempt. The Load routine for the first attempt, which
handled all 16 Load commands took a total of 166 microinstruc-
tions. However, by reorganizing meméry and file allocations
the Load routine in the second attempt took only 86 instruc-
tions. In fact the number of microinstructions required to
code the Load routine and the Store routine, 26 MIX instruc-
tions, fotaled only 136 words of AROM. Details of these

routines can be found in Chapters V and VI.

83

Opcodes 39-63 Jump Instructions Enter and Increment Instruc-

s and Compare Instructions

tion

The only major problem encountered with these instruc-
tions was the problem previously discussed concerning sign
plus.magnitude. addition and. subtraction. After this problem
was solved these routines proved trival. Chapters V and VI

contain details in these instructions.

Opcodes 34-38 Input/Output Instructions and the Interrupt

Handler

The MIX I/0 routines are by far the most involved in
the MIX emulator. MIX is designed so that the user need
not worry about details of Input/Output. All MIX Input/Output
occurs in concurrent mode; the user initiates the operation
and then is free to perform other work. At some later time
the user checks if the operation has completed via a Jump
Busy (J-Bus) or a Jump Ready (J-Red) instruction. Figure
3.19 gives the complete table of MIX Input/Output equipment,

all of which is optional. (1).

Figure 3.19

Unit number Peripheral Device Record Size
t tape unit no. t (0&t<7) 100 words
d disk or drum unit no. d (8¢d«l5) 100 words
16 Card Reader - 16 words
17 Card Punch 16 words
18 Printer 24 words

19 typewriter and paper tape 14 words

84

Each device has an associated fixed length record size.
Transfers to and from the magnetic units involve full MIX
words, sign and five bytes. Input or Output to the other
devices is by character code, thus on Input signs are set
to zero, and on Output signs are ignored.

The format of the Input/Output instructions is a little
different from the rest of the MIX instruction repitoire.
The opcode is, of course, used £o indicate which I/0 instruc-
tion the user wishes to execute. The F-field is used to
denote which device is to be activated, and the memory
address, which may be indexed, points to the first word
of the buffer area to be used. The length of this buffer
area is determined by the device chosen, (F-field) and by
Figure 3.19.

Emulation of MIX I/O instructions was difficult be-
cause all the work associated with‘Input/Output must be
performed by the microprogram. The MIX user provides the
emulator with three parameters; (1) the direction of
transfer, (2) the device number, and (3) the buffef address.
After this presentation of parameters the microprogram is
responsible for the remainder of the operation. The problem
of writing these device handlers was complicated by the way
the Microdata 1600/30 devices work. Of the MIX devices

described in figure 3.19 the follbwing were implemented.

85

Figure 3.20

Unit Number Peripheral Device Record Size
14 Disk Drive 32 words
15 - Disk Drive _ " 32 words
16 Card Reader 16 words
18 Printer 24 words
19 typewriter and paper tape 14 words

Due to differences in the peripheral controllers, these
four devices emplby three different types of Input/Output.
The card reader and printer work in concurrent interrupt mode.
In this mode the device controller generates a concurrent
I/0 request (interrupt) each time it is ready to perform
a data transfer. Each data transfer involves sending or re-
ceiving a single byte of information. The typewriter and
paper tape (teletype) work in byte mode. This mode of Input/
Output is the simplest of all I/O schemes. No interrupts
are available in byte mode operations. The microprogram
must repeatedly sample the teletype controller stétus byte
and test if the controller is ready to transfer a byte of
data. When the controller is finally ready, a single byte
of data can be transmitted eiﬁher to or from the teletype.
The disks employ a mode resembling the I/O described for MIX.
A Direct Memory Access kDMA) port is used by the disk con-
troller to handle disk I/0. This port provides a direct

path between main memory and the specified disk drive.

86

Therefore, no microprogram intervention is required once
the operation has been initiated. The microprogram starts
a disk operation by sending four parameters to the disk
controller as follows:

(1) Device Addréss;

(2) Section Address;

(3) Starting Memory Buffer Address;

(4) Ending Memory Buffer Address.
Once this information is received the transfer takes place
automatically.

The remainder of the Chapter is divided into three sec-

tions. Section one presents the card reader and printer
handlers. Section two explains the teletype handler and

section three deals with the disk handler.

Card Reader and Printer

Three major problems were encountered in writing the
I/0 handlers for the card reader and printer. The ﬁirst
problem was to develope a scheme to perform block transfers.
This can be accomplished by setting a counter equal to the
number of bvtes to be transfered and saving the address of
the buffer area. Then when a concurrent request is recog-
nized the microprogram adjusts the counter and the memory
addresé and performs the transfer. However, if the I/O
is to be concurrent, the user must be allowed to execute

MIX instructions between data transfers. This implies that

87

the concurrent counter and buffer address cannot be saved
in the file registers, since some MIX instructions use all
of the files in the course of their execution. Thus these
concurrent I/O values were stored in dedicated surplus mem-
ory bytes. As a result these counters are invisible to the
MIX user.

As shown in figure 3.21, the execution of an In command
to the card reader or an Out command to fhe printer occurs
in three steps. First the status of the unit involved is
polled to see if the controller is currently performing an
I/0 operation. If the unit is busy then the microprogram
loops through the interrupt subroutine until the unit is
ready. At this point a command is issued to the device
controller to arm the concurrent interrupts and to begin
an I/0 operation. The concurrent count is then assigned its
proper value, either 80 for the card reader or 120 for the
printer, and this value along with the instruction memory
address, files P9 and P10 are read out to the corresponding
dedicated memory locations.

Recall from figure 3.12 that the interrupt routine is
executed immediately prior to fetching the next MIX instruc-
tion. It is this routine that actually performs the data
transfers once a concurrent operation has begun on the card
reader or printer. Figure 3.22 illustrates the handling of
concurrent interrupts by the interrupt subroutine. If a con-

current request has occurred, the request is acknowledged

Card
Reader,
Printer

Figure 3.21

Concurrent I/0 Initiation

1}

pJInterrupt

Routine

Controller
Ready

False

Initiate
1/0 Operation,
Arm Interrupts

il

Assign Counters

Proper Values

1

Write Memory

88

Figure 3.22

Acknowledge
Request
Determine
Device Making

Request

False

!

R
Concug%gntI/O

Values in
from

ain Memory

.

Adjust
Concurrent
Counter

& Address

!

Perform Data

Transfer

Counter<0

89

Write
Counters Concurrent
Back out Interrupts
to Disable
Memory Concurrent I/Q

v

v

90

and the requesting device responds by supplying.its device
address. The interrupt routine examines this device address
to determine which dgvice is requesting service. Once this
has been determined the devices concurrent values are fetched
from main memory. These counters are adjusted and the spe-~
cified™ transfer occurs. The concurrent counter is then tested
if it is still positive the counters are written back out

to main memory. However, if the counter is zero or negative
the interrupting device is disabled and interrupts for this
device are disarmed.

The second problem in designing the concurrent I/O rou-
tines concerned the card reader's character code. The card
reader uses the EBCDIC character code while the other devices
use ASCII. Therefore, translation.. from EBCDID to ASCII
must occur before a card image can, for example, be listed
on the printer. Thié conversion involves a simple table
look up. The high order two bits of the incomming EBCDIC
character are masked off and the low order bits are then
used as an index into the ASCII table to retrieve the cor-
responding character. Since MIX provides no logical op-
erators this masking operation is rather involved if the
MIX user must perform the conversion. Therefore, the EBCDIC.
to ASCII conversion was performed in the microprogram.

This was rather expensive in terms of AROM utilization. There
are 64 characters in the ASCII code. . However 128 AROM loca-

tions were required to hold the table. This resulted from

91

the lack of a microinstruction of the form;

Figure 3.23

Opcode | file register | AROM address

Load the specified file register with the contents of the
given address.
The only Load instructions are Load Immediate instructions,
where the literal in the low order 8 bits of the instruction
are loaded into the specified register. As a result each
entry in the ASCII table was composed of two microcommands.
The first was a Load immediate instruction, the second was
a Jump instruction. The microprogram that converts from
EBCDIC to ASCII works as follows:
1. AND off the high order two bits of the EBCDIC
character; ‘
2. Shift the remaining 6 bits one place left;
3. Move the register containing these bité to the
L register (This creates a multiply way branch,
for now the low order 8 bits of the microloca-
tion counter have been altered).
4. A branch to the ASCII table occurs where the
correct ASCII charactér is loaded into a predeter-

mined file register;

92

5. A Jump back to the card.reader routine occurs;
6. At this point the conversion process has been
accomplished.

The third problem encountered also concerned the card
reader. The Microdata 1600/30 and the card reader controller
were designed to recognize certain error conditions such as,
pick failure, hopper empty, and illegal Hollerith Codes.

When such an error is detected an external interrupt is gen-
erated. However, MIX does not specify how these interrupts
should be handled. Therefore, two high core MIX words were
dedicated to the card reader to allow the user to handle these
I/0 errors. If an external interrupt from the card reader

is encountered the interrupts routine stores the card reader
status byte and the contents of the MIX location counter in
one of these dedicated locations and then loads the MIX loéa—
tion counter with the address of the other dedicated location.
Thus the next instruction will be fetched from this interrupt
address. If the user wishes to halt anytime a card reader
error occurs,rhe simply loads this location, prior to run time
with a MIX Halt instruction. If thes user wants to handle
the error, then a Jump instruction should be placed at this
location which will cause control to be transfered to the
users error routines. Following the execution of the error
routine, the user can load the old contents of the MIX Loca-

tion Counter into the address portion of a MIX Jump instruction

93

and jump back to section of MIX code being executed when the

error occurred.

Typewriter and Paper Tape

The typewriter and paper tape station available on the
Microdata 1600/30 is a 10 baud full duplex teletype. This
device works in byte mode and no interrupts are set by the
controller. This presented several problems. First, if
teletype Input/Output was to be performed concurrently with
the execution of MIX instructions the interrupt routine must
handle all but the I/0O intialization. However, since no data
ready interrupts were available, some other mechanism had
to be developed to time data transmissions due to the slowness
of the teletype. The teletype could be polled on each execu-
tion of the interrupt routine, however, this routine is exe-
cuted approximately once every 40 microseconds and the teletype
transmits only 10 characters per second. Thus polling each
time the interrupt routine was entered seemed somewhat extreme.
The only other timing device available was the Microdata real
time clock. This hardware clock generates an internal inter-
rupt once every millisecond. This is still 100 times faster
than the teletype; however, it was an improvement over a
few cycle times. This interrupt scheme along with four dedi-
cated bytes of surplus memory solved the teletype problem.
Three of these dedicated bytes were used to provide the memory

buffer address (16 bits) and the byte counter, as with the

94

card reader and printer. The fourth bfte was used as an
internal MIX status byte for the teletype. One bit of this
bvte was labeled the "controller ready bit". If this bit
was a one the device was ready to begin an I/0O operation.
If this bit was zero then the teletype was still involved
in an I/0 operation started previously. This bit was used
both in the In and Out routines as well as in the interrupt
routine. The In and Out routines loop through the interrupt
routine until this bit becomes a one. The interrupt routine
test this bit upon receiving a real time clock interrupt.
If this bit is one then the teletype routine is skipped. 1If
it is a zero an attempt is made to transfer a byte of data.

Four other bits of this internal MIX status bytes were
assigned functions also. One bit was dedicated as an input
flag and one as an output flag. This was necessary in order
to determine which operation was to be perfomred.

One bit was used to remember when to send a line feed.
In case of either teletype Input or Output, once 14 wordsl
have been transmitted a carriage return and line feed must be
sent. The interrupt routine recognizes the need to send a
carriage return when the counter goes to zero. Upon sending
the carriage return the line feed flag is set to 1. The next
time the teletype is polled, the interrupt routine finds the
counter zero and the line feed flag turned on. The inter-

rupt routine then sends a line feed and resets the internal

95

status controller ready bit to a one.

The other dedicated bit in the internal status bit of
the teletype is used to reflect input characters back to the
typewriter (teletype is full duplex). When in Input mode,
the interrupt routine must receive characters from the key-
board and then send this character back to the printing ball,
so the characters being input will be written on the teletype
paper. However, this reflection cannot be done immediately.
The reflection must occur the next time the teletype is ready
to receive data. Thus when a character is input from the
keyboard, the interrupt routine receives the byte and stores
it in the location specified by the memory address counter.
However, the memory address counter and byte counter are not
updated at this time. The interrupt routine turns the input
bit off and turns on the reflection and output bits. The
next time the teletype is ready the interrupt routine finds the
output bit on so the data byte pointed to'by the memory address
counter is output and the counters are adjusted and read back
to memory. The interrupt routine then tests to see if the
reflection flag is on. If it is not, the interrupt routine
leaves the teletype handler and proceeds to find other inter-
rupts. But if the reflection flag is on, the interrupt routine
turns this bit and the output bit off and turns the input bit on.
Figure 3.24 illustrates the format if the teletype internal

status byte.

96

Figure 3.24

Controller ready flag

Input flag

e Qutput flag

Reflect flag

Line feed flag

Figures 3.25 and 3.26 present a general flowchart of the tele-
type internal status byte.

At this point a word concerning Input/Output timing seems
appropriate. What gquarentee is there thét the interrupt rou-
tine will process I/0 interrupts fast enough to avoid losing
any information? This problem is most serious on the card
reader since it is faster than the teletype. If there exist
a MIX instruction whose execution time is longer than the
time between card reader interrupts, then it is possible
to miss information, for example, the routine might only
receive every other byte. The printer is faster than the
card reader, but once the printer is ready to receive a
data byte, it will stay ready as long as no outside interven-
tion occurs. However, when the card reader interrupts to
request a transfer, this interrupt must be answered within a

certain time frame or else the next byte of information will

97

Figure 3.25
Teletype In and Out Instructions

P13 €¢—Input] - . P13 §— Output

v v

-
Read in
Internal
TTY
Status
Call
mnterrupt
Routine

o 3
Count ¢—70
Status€f—P13

emory Address
- C(P9,P10)

Coungers

Status

Figure 3.26

False

True

" Read In
TTY Status
Byte &.

Counters

Controller

Ready to

Perform
rect

True
Feed Flag .
On

Transmit and

98

Load & Send

nterrupts

Send Carriage Store Data Byte
Return Data Byte Adjust
‘__,_‘ Counters
Set Line .
Feed On
Set TTY True eflection F?lse
Status to '
Reflection
Mode -
Send Line Feed Set Status
— Stop TTY to
1/0 Input
3 Y
Continu? Write
Processing A 4

Counters

to
Memory

99

arrive, overlaging the previous byte.

To show that the microroutine is fast enough to handle

the card reader, the longest possible MIX instruction cycle

time must be shown to be shorter than the shortest possible

interval between data signals. Figure 3.27 shows how an up-

per bound on the longest path through the MIX emulation can

be found.

Figure 3.27
l.

Execution of the fetch routine requires

44 clock pules (200 nanosecond pulses).

The memory address and decode routines

contain no loops and the total number of
instructions involved in both routines

is 127. This includes all possible paths.

The interrupt routine is 215 instructions
long. Note: Card reader interrupts are
handled first by this routine.

The longest MIX instruction is the Char instruc-
tion which is 116 commands long, some sections
of which are executed 10 times.

An upper bound on the worst case is thus

44 + 127 + 215 + 116 % 10 = 1546 clock pulses.

The data signal from the card reader lasts, in the worst case

(allowing for skewness and taking only the highest light sig-

nal), at least .5 milliseconds or 500,000 nanoseconds

100

(.5 % 10~3 = 500,000 = 10'9). One clock pulse occurs
every 200 nanoseconds on the Microdata, so each data sig-
nal lasts 2,500 clock pulses, safely more than the 1544

required.
Disks

The disk drivers were the simplest I/0 handlers written
due to the hardware available on the Miérodata. However,
several problems were encountered. ZXKnuth specified that each
disk record should consist of 100 MIX words. This works out
to_800 Microdata bytes. However, the smallest addressable
block on the Microdata disk is 256 Eytes long. Thus to ac-
commodate 800 bytes, three full sectors plus 32 bytes of a
fourth sector are required. This wastes the remaining 224
bytes of the fourth sector. The disk record size was there-
fore made to be variable in length, with the hope that MIX
users would use records sizes that are mﬁltiples of 32 MIX
words. The length of the disk record in MIX words to be
read or written is placed in bytes 2 and 3 of the X register.

The X register is also used to select the beginning sec-
tor address, (bytes 4 and 5); however, the MIX user must
use the Microdata's scheme for addressing different sectors
of the disk. Figure 3.28 gives the addressing format as well
as the format of the X register. figure 3.28 appears on

the following page.

101

Figure 3.28

Sign

1St data byte ..

Number of MIX

sd
2>% data byte words to transfer

3Td data byte

th
4% data byte Sector Address

(16 bit)

s5th gata byte

| | | |

‘ L D e L
Platter Cylinder Head Sector
0 - removable 0 - 202 0 -~ Top 0~ 23
1 - fixed ‘ 1 - Bottom

The other problem encountered concerned the IOC instruc—
tions when this instruction is executed with the disk as the
selected device, the disk read/write heads are to be positioned
to the cylinder address found in the X register. This is not
possible on the Microdata since once the Seek command is given
the heads are positioned and the I/O must follow immediately.

Figure 3.29 gives a general overview of the disk operation.

Figure 3.29

»
k]

P13 — Seek
Input

P13 @— Seek
Output

v

Routine

False | True

Tell

Controller
wggch dr?ve
to activate

Fil? Disk
Address

¥

Beginning
AdAaPEEs

File
Ending

Core
Address

Stgit

Seek (P13)

102

IV. USER'S GUIDE

This Chapter provides a user's guide for the MIX 1009
machine as emulated on the Microdata 1600/30. Two sections
are presented; the first explains the functions of the sys-
temcomseles as theypertaim to ther MIX 1009 machine. For
more information on the 1600/30 console see Microdata (3);
the second section explains the ten dedicated MIX memory

locations.

System Console

FPigure 4.1 presents a frontal view of the Microdata
1600/30 console. This console provides the user with the
hardware to cold start the MIX machine and to execute and
debug MIX programs.

1. KXey-Lock Switch

This switch can be turned to one of three posi-
tions. The key-lock switch should be set to the ON
position when using the MIX 1009 machine. This sup-
plies power to the CPU and enables the PANEL mode
switch.

2. Machine State Control Switches

This group of five momentary contact switches
are activated when pressed down. Each switch is des-

cribed below:

Figure 4.1 (2)

1600/30 System Console

Q<

BN

\c: = = >

20T

105

RESET Switch

When pressed this swiﬁch clears and halts the
CPU. It is used only during COLD START (Refer to
MIX COLD START Procedure).
CLOCK Switch

When the CPU is the RUN state, pressing the
CLOCK switch forces the CPU to halt after executing
the current microcommand. When the CPU is in the
HALT state, pressing the CLOCK Switch forces the
CPU to fetch and execute the next microcommand
and then halt.
INT Switch

When the INT switch is pressed, a console inter-
rupt is recognized by the MIX 1009 machine. This
invokes the MIX initialization sequence (Refer to
MIX COLD START Procedure).
STEP Switch

Pressing the STEP switch force§ the MIX pro-
cessor to execute the next MIX instruction and HALT.
When the HALT occurs the M display may be selected
and the address of the next MIX instruction, in
binary will appear on the 16 data lights.
RUN Switch

Pressing the RUN switch places the CPU in the

RUN state. The CPU remains in this state until a

106

halt instruction is executed or until the CLOCK, STEP,
INT or RESET switch is pressed.

PANEL MODE Switch

When the key-lock switch is in the ON position and
the PANEL MODE switch is in the UP position the MIX pro-
cessor will execute MIX instructions when placed in the
RUN state. When the key-lock switches in the ON posi-
tion and the PANEL MODE switch is in the DOWN position
most of the MIX registers can be displayed and modified
via the DATA switches and the CLOCK switch.

Machine State Indicator Lights

When the RUN indicator is 1lit the CPU is in the
RUN state. When the HALT indicator is'lit,the CPU
is in the HALT state.

Panel STATUS Indicator Lights

When the key-lock switch is set to LOCK, the
LOCK indicator comes on. When the key-lock switch is
set to On and the PANEIL MODE switch is down, the

PANEL light comes on.

.DATA Switches

When the PANEL INDICATOR is off, all 16 DATA
switches should'be in the UP position. When the PANEL
INDICATOR is on the 16, DATA switches can be used to
display and modify most of the MIX registers. The DATA

switches are numbered from 0 to 15, starting from the

RIGHT. A binary 1 is indicated when a DATA switch is

1o0.

11.

107

down, a binary zero is indicated when the switch is up.

" Address Stop Indicator

This indicator is not used by the MIX 1009 machine.

" Scan Indicator

This indicator is not used by the MIX 1009 machine.

SENSE Switches

These four switches are used by the MIX 1009 ma-
chine during COLD START and BOOTSTRAP operations.

DATA Display

The 16 DATA display lights allow the MIX user to
view, in binary, the address of the next MIX instruction
or the current contents of a selected MIX register. A
binary 1 is indicated when a data light is on, a bin-
ary 0 if the light is off.

DISPLAY SELECT Push Buttons

These push buttons select the source of the data
displayed on the 16 DATA display indicators. The L and
C push buttons are not used on the MIX machine.

M-Core Memory Address

This button is depressed when the MIX user is
executing a program via the STEP switch. When the M
button is selected and the STEP switch is depressed the
address of the next MIX instruction will appear, in bi-

nary, on the DATA display indicators.

12..

13.

108

' D-DATA

The D push button is selected when the MIX user
is examining and /or changing the contents of MIX reg-
isters via the PANEL, DATA, and CLOCK switches.

AROM Control Switches

The*LINK*GONTROE switclh, MANUAL OPERATION switch
and CONTROL MODE switch control the operating environ-
ment of the Alterable Control Memory (ACM). All three
switches should be DOWN for proper operation of the MIX
1009 machine.

COLD START Button

The disk controller allows the Microdata 1600/30
to cold étart from a loader program stored on a disk
drive. Pressing the COLD START Button caﬁses the first
256 bytes of the removable platten on drive 0 to be

loaded into the first 256 bytes of core memory.

MIX Console Procedures

' The MIX user has available five major Console Procedures.

The MIX user can COLD START the MIX 1009 computer, BOOTSTRAP

an object program into memory, STEP through MIX programs

one instruction at a time, DISPLAY most MIX registers, and

MODIFY most MIX registers. The following is a detailed dis-

cussion of each procedure.

109

MIX COLD START Procedure

The microprogram that defines the MIX 1009 program

on the Microdata 1600/30 resides in the Microdata's Alter-
able Control Memory. This ACM is a volatile memory, the
contents of which are filled with binary ones eéch time
the AROM CONTROL MODE switch is placed in the UP position.
Each time this occurs and before a MIX program can be loaded
the MIX emulator must be reloaded into the AROM. Thié
procedure is called a MIX COLD START. The COLD START
hardware and loader program are the same as the ones
used to perform initial program loads for the operating
systems on the Microdata 1600/30. Pressing the COLD
START Button causes the first sector (256 bytes) of the
removable disk of drive zero to be loaded into the low 256
bytes of memory. Pressing the RUN switch causes this
loader program to begin execution. This program can

load any of four systems. The user specifies which system
is to be loaded by setting the system CONSOLE SENSE switches.
To specify the MIX emulator, SENSE switches 4 and 3 should
be UP and SENSE Switches 2 and 1 should be DOWN. The COLD
START load routine, upon testing these switches, will read
into memory the AROM Load Program and the MIX eumulator
and jump to the beginning of the AROM Load Program. The

AROM Load Program then loads the AROM with the MIX emulator.

110

The AROM Load Program will inform the usér of any
errors that occur during transmission. When the AROM has
been successfully loaded the CPU will halt. Then, when the
RUN switch is pressed the MIX 1009 computer will begin
executing MIX instructions. The MIX COLD START Procedure
is~as~foilows: |

1. Turn the Key-Lock switch to the On position;
2., Set the DATA switches and the PANEL MODE
switch UP;
3. Set the AROM CONTROL switches DOWN;
4. Flip SENSE Switches 3 and 4 UP, and SENSE
switches 1 and 2 DOWN;
5. Press the CLOCK SWITCH;
6. Press the RESET switch;
7. Press the COLD START Button;
8. Press the RUN switch.
If an AROM load error occurs the user can attempt a reload
as follows;
9. Set SENSE switches 2, 3, and 4 UP. Set SENSE
switch 1 DOWN:
10. Press the RUN switch;
If an AROM load error does not occur or occurs but the user
wishes to ignore the error, then:
9. Set SENSE switches 1, 3, and 4 UP; set
SENSE switch 2 DOWN;

10. Press the RUN switch.

- 111

BOOT STRAP Procedures

The BOOTSTRAP procedure allows the MIX user to load
the first MIX program into memory, after the MIX emulator
has been loaded. The BOOTSTRAP Procedure is emulations's
implementation of Knuth's GO button. When Knuth's GO
button is pressed, a single card is read from the card

reader into MIX locations 0000-000F. When the card

reader is no longer busy, the MIX computer begins executing

the program just read from this card starting at location
0000. The BOOTSTRAP Procedure corresponding to Knuth's GO
button is as follows:
1. COLD START the MIX 1009 computer;
2. Place the load program card in the card
reader and ready the card reader;
3. Set SENSE switch 4 DOWN and the other SENSE
switches UP;
4. Press the INT switch;

5. Press the RUN switch.

STEP Procedure

The STEP Procedure may be invoked at any time the
user wishes to execute a single MIX instruction at a time.
This procedure is as follows:

1. PRESS the M DISPLAY SELECT push button;

2. Press the STEP Switch.

112

Each time the STEP switch is pressed one MIX instruction

is executed and the address of the next MIX instruction to
be executed will be displayed in binary on the DATA DISPLAY
INDICATORS. The user should note the I/0 instructions will
not work correctly if they are executed by pressing the
STEP” switch; since the I/0 devices work separately from the

CPU.

DISPLAY MIX Registers Procedures

It is possible for the MIX user to display most of
the MIX registers whenever the MIX 1009 computer is halted,
(i.e. when the HALT Machine Indicator Light is ON). The
MIX A, X, J. Instruction Counter, Overflow Toggle and Compar-
ison Indicator can be displayed one byte at a time whenever
the HALT light is on. However only one Index register is
available for display at any given time. The MIX registers
emulated in the Microdata's 30 general puropse registers
as shown in figure 4.2. These 30 general purpose registers
are divided into two files, the Primary files P1-P1l5 and
the Secondary files S$1-S15. Only one set of files may be
addressed at any one time. When the STEP switch is pressed,
the Primary files are selected and any byte of the A register
or of the Instruction Counter can be displayed. If informa-
tion in the Secondary files is to be displayed the Secondary
file must first be selected. Once this has been done, any

byte in the Secondary files, S1-S15,can be displayed. If

113

Figure 4.2
ET-ILlzNoO Pso
sign Pl sign- 51
1St byte P2 1% byte 52
A ond byte P3 21d pyte S3 |Ix
Register .
3rd byte P4 3rd byte S4 Register
4th byte P5 4th byte S5
5t byte P6 5th pyte S6
k f .
E£§$S¥g£ P7 OLEC x iii S7 &O¥g£e}1<o§épComp ?
sign P8 sign S8
Index
Al address-ho P9 1%t byte 59 __IRegister 1
Instructiop sd
Register A2 address-lo P10 27 byte S10
I index spec. P11 511
Free work
F field spec. P12 512 _JRegisters
C opcode P13 513
Igstr:cticn 1%t byte-ho P14 1% byte-ho 14 | Jump
ounter ,
2nd . P15 sd s Register
yte-lo 27" byte-1lo 15

114

the user wishes to check again some information in the Pri-
mary files, the Primary files must first be selected since
the Secondary files are currently the ones available for
display. The procedures for displaying information, and

selecting the Secondary and Primary file follow:

Select Secondary Files Procedure

1. Load the following bit pattern into the DATA
switches: 0001 0000 1000 0000 (108016)
2. Set the PANEL MODE switch to the DOWN position;

3. Press the CLOCK switch.

Select Primary Files Procedure:

Note: The Primary files are automatically selected
when the STEP switch is pressed. This procedure
need be involked only when the user has pressed

the STEP switch and then performed the Select
Secondary Files Procedure and now wishes to select
the Primary files once again.

1. Load the following bit pattern into the DATA
switches: 0001 0000 0100 0000 (104016);

2. Set the PANEL MODE switch to the DOWN position;

3. Press the CLOCK switch.

Display Primary File Register

1. Select Primary files either by pressing the STEP

switch or by performing the Select Primary Files Pro.;

115

2, Press the D DISPLAY SELECT Push button;

3. Set the PANEL MODE Switch to the DOWN posi-
tion;

4. Load the following bit pattern into the DATA
switches 1100 XXXX 0000 0000 (CX0016)

where XXXX is the binary equivalent of the

file number to be diaplayed. For example

to display Pll enter 1100 1011 0000 0000

(CBOO,) -

5. Press the CLOCK switch.

The contents of the file register selected will appear on

the eight right hand DATA DISPLAY lights.

Display Secondary File Register Procedures

This procedure is the same as the Display Primary File
Register Procedure, only in Step 1 the Secondary files must
be selected instead of the Primary files.

Note from figure 4.2 that Secondary file registers S8,
S9, S10 are dedicated to Index register i. This is the only
onevof the six MIX Index registers that can be displayed.
The user can determine which of the six Index registers is
occupying these locations by examining the low order three

bits of Secondary file register S7.

116

Modify MIX Registers Procedures

MIX registers can be modified one byte at a time. The
procedure is similar to the Display Procedures. The Proce-
dure is as follows;

1. Determine from figure 4.2 the location of the
MIX register to be modified.

2. Using the Select Files Procedure select the
proper set of file registers.

3. If required the user may now display the con-
tents of the chosen MIX register;

4. Set the PANEL MODE switch DOWN;

5. Enter the following bit pattern into the
DATA switches: 0010 XXXX YYYY YYYY, where
XXXX is the binary equivalent of the file
number to be loaded, and YYYY YYYY is the 8
bit binary value to be loaded. For example,
to load file 3 with a decimal 18 set the DATA
switches to 0010 0011 0001 001l0.

6. Press tﬁe CLOCK Switch.

7. The user may now display the new contents,
change them again, or change some other regis-
ter.

Note: After Displaying or Modifying registers the user must
" raise the PANEL MODE switch before pressing the STEP 62 RUN

switch. The user need not select the Primary files before

117

executing the next instruction, as the MIX emulator will
reset the CPU to the Primary files upon leaving the STEP

Sequence.

Dedicated MIX Memory Locations

The last ten words of MIX memory have been dedicated
to specific functions of the MIX machine figure 4.3 and the
description that follows explains these functions.

Note: MIX users should never use the last 18 locations
of memory as buffer area for disk operations as certain values
which are transparent to the user would be aestroyed if the

disk were allowed to input data to this area.

MIX Words OFF6-OFF7

Illegal address, Illegal Opcode, Illegal Device,
Trap Locations

An attempt by the MIX user to execﬁte an instruction
containing an illegal address, opcode, or device number,
invokes the MIX User Abort Sequence. This sequence causes
the.execution of the following two steps:

1. The current contents of the MIX Instruction
Counter are written into the (1:2) field of
MIX word OFF 7.

Note: The address of the illegal instruction

is the contents of the Instruction Counter minus

one.

Figure 4.3
MIX Address

Hexidecimal Decimal

OFF6

OFF7

OFF8

OFF9

OFFA

OFFB

OFFC

OFFD

OFFE

OFFF

4086

4087

4088

4089

4090

4091

4092

4093

4094

4095

Format

PSP ES

.

g)

o

VIO OIY.

A

VISR,

A,

DD

118

Function

Abort Instruc-
tion

Abort Return
Address

Hopper Empty
Instruction

Hopper Empty
Return Address

Card Reader
Error Instruc-
tion

Card Reader
Error Return
Address

Disk Error
Instruction

Disk Error
Return Ad-
dress

P - Printer

L1l |L2 |C1

c2

C3

Status
C - Card
Reader
Status
MD - Major
Disk
Status
DD - Diagnostic.
Disk
Status
Ll MSB}of Load
L2 L.SB jJ Address
Cl MSB
Cc2 } Sfogllczx
C3 LSB

119

2. The Instruction Counter is loaded with OFF 6
and execution continues, beginning with the
instruction found at OFF 6.
To use this facility the user should load MIX location OFF 8
with either a Halt instruction or a Jump instruction. If
the Halt instruction is used the MIX processer will halt
when an illegal instruction is used. The MIX processer
will halt when an illegal instruction is encountered.
However, the iser may wish to weite his own routine to handle
illegal instructions, for example, a core dump routine:
In which case OFF 6 would contain a Jump to.this routine.
The user can alsc choose to continue processing by jumping

to the address found in the (1:2) field of location OFF 7.

MIX WORDS OFF8 - OFFD

Card Reader Trap Locations

A. Hopper Empty Trap Location
An attempt to execute an IN instruction directed
to the cardreader when the hopper of the card
reader is empty invokes the Hopper Empty Trap
Sequence. This sequence causes the execution
of the following two steps:
1. The contents of the MIX instruction Counter

are written into the (1:2) field of MIX

word OFF 9.

120

Note: - This is the instruction immediately
following the interrupting IN instruction.

The IN instruction has not been executed

The Instruction Counter is loaded with
OFF8, and execution continues, begin-

ning with the instruction found at OFFS8.

Illegal Character Code or Mechanical Failure

Trap Location

Failure of the card reader to recognize

a character punched on the card currently being

read or failure to correctly pick the next

card invokes the Illegal Character Code or

Mechanical Failure Trap Sequence. This se-

guence causes the execution of the following

three steps:

1. The contents of the MIX Instruction
Counter are written into the (1:2)
field of MIX word OFF B,

Note: This is the next instruction to

be executed.

2. The card reader status byte is stored
in the (3:3) field of MIX word OFF E.

3. The Instruction Counter is loaded with
OFF A, and execution continues, begin-

ning with the instruction found at OFFS8.

121

MIX Words OFFC - OFFD

Disk Trap Locations
If a disk error is sensed by the disk controller, the
Disk Trap Sequence is invoked. This sequence occurs in three
steps.
1. The contents of the MIX Instruction Counter
are written into the (1:2) field of MIX
word OFFD.
Note: This is the next instruction to be
executed.
2. The Disk Major Status is written into the
(5:5) field of MIX word OFFE. The Disk
Diagonistic Status is written into the
(4:4) field of MIX.word OFFE.
3. The Instruction Counter is loaded with OFFC, .

and execution continues.

MIX Word OFFE

MIX 1I/0 Status word

Following the completion of card reader, printer or
disk I/0 operation the status of the device involved is
stored in MIX word OFFE. The user can sample this word
to determine the outcome of the last operation. Figure 4.4.

gives the fofmat for each status word.

MIX Word OFFE

Figure 4.4

122

Bit = 1

Printer
Status Byte

Printer Ready

Print buffer ready to accept
character

Bit =1

Card Reader
Status Byte

Card Reader ready
Data ready for Input to

Computer

Input hopper empty

EBCDIC error

Mechanical error

Disk Major
Status Byte

I

g""‘i:-f-——-Drive number

Error detected-examine DIA.

Status

Controller ready

Cylinder Seek error

Returned

. Disk not ready

Disk Diagonistic

St?tus Byte

r——Coctor not found

DMA channel overrun (Data
lost)

Hender check code error

Data check code error

Write attempted on a protected
sector

Disk address comparison error

123

MIX Word OFFF -

'MIX Load Address and MIX Real Time Clock

When one cold starts the MIX processer or when the
PANEL Interrupt Switch is depressed, the MIX processer is
reset and the Instruction Counter is loaded from the (1:2)
field of "MIX word OFFF. Also at these times the MIX Real
Time Clock counter, field (3:5) of this word, is set to
zero. This field is incremented by one every millisecond

while the processor is running. f

I. Driver Routines

A.

B'

C.

DT

GO

FETCH

ADDRESS

DECUDE"

VO

IT. Instruction Repertoire

III .

L.

M.

ADD and SUB

MUL

DIV

NUM

CHAR

. SHIFT

MOVE

LOAD

. STORE

INPUT/OUTPUT

. JUMP

ENTER

COMPARE

Subroutines

A.

B.

C.

ABORT
ERROR

z11, 76, Z4

FLOWCHARTS

L.R

ID.IX, IDIX, .IDIX

ICOX

I.DOX, IDOX

.0uT, 0.UT, I.OUT

« IN=~

ISKIP

INDEX Supervisor, PAGE, VIA, VINDEX

INTERRUPT
PRINTER, T.OUT
READER, T.IN
TREADER

IDSK

125

126

I. Driver Routines

127

GO GO Routine

Clear I/0 Control Register
Enable External Interrupts
Toad” Inctruction Counter from X'7FF9'

Set MIX Clock to Zero
Set TTY Status to Ready
Enable Real Time Clock

HALT

P74 -Sense Switche%

Bootstrap
Required

Load Instruc- -
tion Counter
with Boot-

strap Address

|

FETCH

FETCH

Instruction Fetch

Routine

Call
Interrupt
Routine

-~

P7 @- X'BI"
‘N @- P15

M 1}— P14
Read Full

Cycle

— 0

P7,Ug§-P7+1

True

Five Bytes

False

P15 @-P15+3

P15,Ng-P15+1

P14 §-P14+L
U 4-X'00'

ADDRESS

14 ,MGPL4+HL
Read Full
Cycle

128

129

Multiply P9
& P10 by 8.
(Convert to
Microdata
Address.)

egal
Operand
Address

DECODE ABORT

130

Operand Address

Routine
Call Index
¥Supervisor,
;age in Index
U ¢- X'80' | U - X'90'

P10,SPL10+S10
P9, SPoH+SHHL

True False

the Signs

Link=1
(Overflow)

Complement
P10 & P9,
Flip Sign in

P8.

111& T

Opcode

ABORT U

131

Instruction Decode

Routine

U &- X'00'
T - P13
P7 ¢- T/8
T <&~ A'DECODE’

|lil| ‘llllii" ('liiiil'} ‘Ei‘iili) "liiiii" o
T

1/0

Command

T - A'0P2'

L - T+P13

132

T - A'DCSi

G¢- T+ PL

133

II. Instruction Repertoire

134

ADD
&
SUB

A

Pl1g--X'7"
P114§-P1l.and.P12
P12<¢-P12/8
P7<%-~P11-P12+1

Sign

Required
C E
Ng-P10 _
Mg P9 P8g-0
Read Full
Cycle
D P7<¢-P7-1
P8--T
i
|
Fi P10 -P10+P11+1
P9§-Po+L
T¢--X'80"
H !
P84P8.xo0r.T
L
I
C-P8.x01.P]
P13g-X'06'
Zero
. Result K
P13€¢-X'10'+P13
J

P7g-P7-1

PO,C,S@-PO+T

S 1

U¢-P13
C,P0, S&-PO+L
P13g-P13-1

Set Overflow

§

Were
igns Same

-ve
Result

P7<&-P7-1
P13,UP13-1

0]

N,P10¢-P10-1

M,P94¢-P9-L

Read Full
Cycle

P

PO,C,SQ—PO+TT1

)

Flip Sign in
P1, 2's Comp,
P2-P6

135

c

Mg-P10
Ng--P9
Read Full
Cycle
D

P1€4-Pl.xor.T

A

MULTI-
PLY

-

P11¢P11l.and.P12

Pllg-X'07"

P124§-P12/8

g

B~
Sign
Required

E

Page Out Index
Save Map & Sign
of A in P1
S134P10+pll+l
S12¢-P9+1
P124-P11+P12+2
Move P2-P6 to
§7-S11
Zero P2-P11 &
S2-S6

@

136

I

P12g-P12-1

S13,NgS13-
12, Mg S12-

Read Full
[M!mcyclﬁe -

-

J

P13«¢-X'08'
Slef-T

Order Bit=1

__@

Restore Map

Restore Sign

of A
Restore Sign
of X

ADD S11-S7 to
56-S2

ADD P11-P7 to
P6-P2

M

Shift Left
$11-87
P11-P7

P13g-P13-1

Slg-S1/2

RETURN

137

A

DIVIDE

P11g-X'07'
Plle§-P1l.and.P12
,P124-P12/8

Si€--P1

Required

N@--P10
Mg--P9
Read Full
Cycle

Hign

P1g-Pl.xor.
P12¢}-P12+1
]

3

Page Out .Index

Save Map &

Sign Of A in PI

S134¢P10+P11+1
S124-P9+1L
P12¢-P11-P12+1
P13g¢-X'0C'
Move P2-P6 to
P7-P11
Move S2-S6 to
P2-P6
Zero S2-S11

138

G

N,S13§S13-

»S12¢S12 L

Read Full
Cycle

U,P13-P13-1
* p12g-P12-1
File (UDGT

139

P13g--X'51'

P13@ -P13-1
Shift Left
P6~P1"
P11-P7
$6-S2
Ug-X'90"

Q

Shift Left &
Insert P6
Ug-x'90'

ADD, (S)
S11-S7 to
52-S6

I

Set Overflow

Restore Map

R

FETCH

Shift Left
P6

Ug-X'00’

S

Shift P5-P2, P11-P7, S6~S52

v

ADD S2-S6 to
§$7-511

140

A

Zero Files
P11-P13
P7---X'E1l"

P7,U--P7+1

D

T-—-X'0F" @

T,S---P0.and.T
P13---P134T
P12—--P124+L
P11---P11+L

Move
P11-P13 to
P10-P8

| Multiply

Shift 3 Bytes by 10
P11-P13
Left Twice

ADD
P10-P8 to
P11-P13

Shift
P13-P11
Left Once

O

Multiply

5 Bytes By 10

J
P7<4-X"E1l’
Zero Files
P9-P10
‘¢3 ;a X
P7,U-P7+1
T§--X'0F"'
SSF
T,54-5S0.and.T
SPF
ADD T to
P13-P9
L
F T
Move
Move P13-P9 to
P13-P9 to P6-P2
P6-P2
|
Shift
P13-P9
Left Once
|
ADD
P6-P2 to
P13-P9
Shift
P13-P9 —
Left Once

141

Set Overflow
Move * to
A&X

-

FETCH

@___.

©_____

of X in S1
P12g-X'07"

Page Out Index
Save Map & Sign

SO, Se¢-T

T¢-X'B0".or.

Call Ki;’i;e
.5BY10 by 10
P12g--P12-1

S11

P12¢g-X'07'

Call
.5BY10

Divide
A&X
By 10

P12,Ug-P12-

Te§-X"'BO'.or.
PO,S¢--T

1
P11

Restore Map
& sign of X

FETCH

142

}
@———w_

0,

5 Bytes Divided By 10

Routine
Zero S7-S11
P12g-X'23"'
P13¢-X'06"
Shift Left
P11-P7
P13«}-P13-1
U<&—X'90'
Plle§--P11/2
|

ADD, (S) 10
to
S11-s7

Shift Left
P11
U<$-X'00'

Shift Left
P10-P7

T F | Shift Left &
. Insert P11
UQ——X'90'

P12§-P12-1

ADD 10 to
S11-S7

143

144

* N
ON IO,
B L
T T F
c D M N
‘ ’ P7¢-X'00"
T§-P2 T¢-S6
x'on?'
S11-T S11@-X'00'] .
|]
E 1
P2g-P3
P3&-P4
P4g-P5
P5¢--P6
F
F T I
‘ ‘ , - l
¢ i - P6g--P5
o P5§-P4
P6@-S2 P6-X'00" Pﬁ—PB
S24--S3 P3g2
S3¢-s4 P2g--P7
Sid-55 C,P10¢-P10-1
S56--S6 . C,P9¢-P9-L
S6q¢--S11
L

I]C,P10€-P10-1
C,P9¢=P9-L

Zero
Result

MOVE

Page In Index
P7g¢-S3+P12
P8-S10+L

P12g§-P12%8
P7g--P7*8
Pag--P8*3

|

P8@-P8-1
P7€¢-P7-L
P104§-P10-1
P9<§--P9-L
P11}-X'05"'

P10,Ng-P10+

P9,M<}P9+L

Read Full
Cycle

T T4

P8 M—P8
P7 ,.MEP7+
write Full

Cycle

P12¢ -P12-1
T¢--X'05"'
T,C<§-P10.and.T

P10 -P10+2
P9g--PHL
Po€--P8+2
P7¢-P7+L

P12§--P12-2

145

c

A

Pllg-X'07'
Pllg¢-P1l.and.P12
P124§-P12/8

T§-X'00'

P7§-X' 80"
T¢-P7.x0r.T

G
Pl -P13.0r.T
-X'01"

Ped--xX'01"
P7g--X'05'
TQ——PlZ
TQ-'—Pll—T
P7<—-P7—T

L

Pg-X'03"

&

146

N

Te#--P11
CRg—-X'04'

P7-x'01'

P .

P7§-P7+1

Q

U,

Page In
Required
Index

P84--x'08"'

R

T§-P13
SSF

S13g¢-T

15

147

15

S

T<&-X'80"' -
~P13.and.T-

File(U)&-T
. gpF -
T¢-P12
N3 P10&-P10+T
M,Pog-Po+L
T -P11-T

P1o-T+1

T

3

U,P8e§-P8+1

CF,P7€-P7-1

X
Select
Secondary
. Files
— I
. AA File(U)<}-0
Select
Primary
Files

GG

148

File(U)g~T
SPF
CF,P124§-P12-1

N,P1
M,P

3

-P10+1
-Po+L

U,P8q-P8+1 |

FETCH

P10,NgP10+

9, M@ PI+L
Write Full

Cycle

{

A

P12§--P12/8

Pllg-X'07"
P11l€}--P11l.and.P12

P7«§-P1l1+p12+1 -
P10,N@--P10+P12
P9, M-PO+L

P7}-P7+2

F

U,P12-X'CD’

@

PS@-P12
P12 -7-P7

P12,U-P12+X'CO’

EE

149

\{

B
P12,U}-X'C8’
U

U,P12¢}-P12+1

Q :

Page In
Required
Index

T}-58

SPF

Write Full

Cycle
P7-P7-1
U,P12-——X'C8

P10,Nef-P10+1
P9, ,M&}-Po+L

]

P124§-x'C9’

6,

Write Full
Cycle
‘P7@-P7-1

P10,N<g-P10+]]

P9, M@ -PoHL

150

151

U,P12¢4-P12+1

Store A T

SSF - Command
L
T§-File (U)
SSF
P7Q--P7-l
- M
0
P10,N
P9 .M

@

152

JRED
JBUS
. T F
—\D‘isk/
ToX' 14"
Call .

.DIX

&
Read In
TTY Status
(Internal

Teg-X"'1C"" Status)
Gontrolle P1?4-P12+T
eacy P7&@-X'24" P7<g-X"25"
' L M|
|
I<§-P7
- P7g-x'01"

Call

DIX

CF,P7¢-P7-1

Call
INTERRUPT

Printer
Ready

T§~X'05"'
P7€-X'8C’

Call

.DOX

Output
Form Feed

153

154

=X! \ %! '
P8<§-X'42 P8§--X'44 Set Up
(Set TTY Busy (Set TTY Busy New TTY
On Input) : On Output) ew
Status
ey :
- Nt 01d TTY 40
7 TTY Status
| . *_\\\\\f:jzl//"T
T«<§-P8
Write Full Sllei k8
Cycle
,P7¢¢-P7-1 Call
INTERRUPT
P8g—X'46" 42]
P7g-X"9F" P -S11

P12§—P10
P13§-P9

Call
1.00T

FETCH

Pae}-X'00'

P8§-X'02'

L

J

Mask Drive #
Into P12

Input Major
Status

Controller
Ready

Queue éelected
Drive (P12)

File Action
Byte (P8)
A

File Disk
Address (4:5)X

File Beginning Core
Address (P9,P10):

File Ending Core
Address (P9,P10+(2:3)X

Start Queued
Seeks

155

Call
INTERRUPT

Card
Reader
Ready

T-X'44"

Call
COX

Enable
Concurrnet I/0

Set up Con-
current
Counters in
Memory

156

pPeg-x'co’
P10§-~X'C8’

ERROR

Call
INTERRUPT

157

Te-X'C5"

Enable

Call
COX Concurrent
1/0

Set Up Con=
current
Counters in
Memory

@

158

Command

Page In
Required
L Index
G SSF.
C,T¢§-S10
C,Tg-P6 S”Iﬁ—-SQ+L
c,Tg¢-P5,L ,T4—88
C,T&-P4,L :
c,T€-P3,L
C,T¢}-P2,L
T&--P1
H SPF
P/ -~-T
: T -A'JAX'
I
N Te-T+P12 > NP
P N
K M
o P7=X"80" M

" J
F
P7=X'80"
T - i
L
F T

N
g Zero ' w 'F Zero T
Result Result .
' u 33 a u

Pl%it

~P12%2
~A'IMP'

159

ESJ//TQX'E

T@X'40’ Tq-)_('30' T§-X'60"
U BB
SPF SSF
%T?——xc'isg; C@-T.and.S7
—l.and. |

T&-X"'7F"
S7€g¢-T.and.S7

SPF

Zero
Result

T¢-P14
SSF
Sl4g-T
SPF
T#-P15
SSF
S154-T

SPF

Te§-P9
Plig--T
T<§-P10

P15¢f-T

FETCH

160

16l

ZZ

P1 —P10/8
—P9/8+L

Flip Sign T<}—X’80'
of Operand |P8«§-P8.x0r.T

0
Page In
Required F F X T ¢
Index, f
_P8 . Command SSF
SSF .
S8¢--T
SPF H
g P2 -0
ggﬁf'T PB::-O
T-P10 Pig-0
SSF SPF
$10¢¢-T : T4-P9

O

SSF

P5¢-T

SPF
T¢-P10

SSF

162

163

P
A
F Command T

\/

R
Page In
Required SSF
Index {
SSF . C T
T¢-S8 ' SSF .
| |
U ser
C,F,P84P8.x0r.T
TQ—PIO
W
Ug-x'10' Ug¢-x'00"
Z 4
F A T
SSF - Command
SPF
BB T -P9
$10,Sq§-S10+T
SPF : i
T{'-PQ X
SSF SSF T Command F
S9,C,F¢-P9+T+L

164

HH

P5,Sq-—P5+T+L
P4, S@¢--P4+L
P3,5¢--P3+L
P2,S-P2+L

‘-

IT

SSF
TF-X'7F"
S7€§-S7.and. T

Set
Overflow

J

| I
SSF
00 ! ' Form 2's Comp.
Form 2's Comp. of P9,P10
of Files 6-2 Flip Sign of P8
Flip Sign of
File 1

FETCH

E

Page In
Required
Index,
SSF

T--P1

COMPARE
A
SSF
T§-X'8F"’
S7€-S7.and.T
T<¢-x'07"
T¢-P12.and.T
PllF-T
APlZQ}—PlZ/S
B D
F A T
Command
. SSF-
g¢-s1
G
SPF
1
H
F Sign
Required
I
SSF.
S1leg--0
 812¢-0

SPF

N,Ploq--P10+Pi
M,Po§g-PoHL
P7¢-P11+P12+1
U,P8§-P11+1

1

C,F¢-0

165

SSF

S12¢¢-T

1

Read. Byte
P1244-P12+1
SSF

S1lq@-T

yo

AA

C,F,S@P0-T-L

P7¢-P7-1

SPF

P10,Ng§P10-1
P9, Mg P9-L
P8,U<§P8-1

C,Feg§-S12.0r.T

T§-S11

KK

Tg-X' 20"
SSF

W
T Zero F
Result

166

BB

P8,Ug-P8+4
CF,P12¢¢-0

4 P11 3 ¥

167

2
DD I
P8, U -P8+1 \/
SSF Read Byte
into
FF T
Read Byte
into
T
P7-P7-1
' P10,NgP10-1
P9, Mg§-P9-L
CF,S<§-S0,T-L CF<§}-P12-T-L
SPF
P7<§-P7-T
P1lg}-P11-1
P10,N@-P10-1

P9, M -P9-L

31
T L Nes.
MM w
Te§-X' 04"
SSF

T¢-X"'05" .xor.T

T§-X' 01"

SSF

T

T¢§-X'05"'.xor.T

i)

QQ

Sk§-S7.or.T

Ueg-X' 00"

168

169

. ITI. Subroutines

ABORT

P9G-X'7F'
P10 -X'BO"
P8&-X'B9"

ERROR

170

ERROR

Mg -X'7F"'
P9 -X'7F'

P8, N@-P8+1
T§-P14

Write Ful

171

zZ11
File 11---0
File 10---0
-File 9 —0
File 8 —--0
File 7 ---0
File 6 ——-0
File 5 ——-0
File 4 --=0
File 3 -—-0
File 3 ——-0

Return

RETURN

LR

T &¢- X'07'
T&4-P12.and.T
Plleg- T
P12,T€-P12/8

ABORT

172

OUTPUT
COMMAND
BYTE

INPUT
DATA
BYTE

. P7<-_—X'FF'

IDIX

Set COXX
DELAY
Reset COXX

©

Set DIXX
DELAY
Reset DIXX
P7<§-DATA

RETURN

.IDIX

IDOX

ICOX

@

Set COXX
DELAY
Reset COXX

RETURN

I.DOX

®

Set COXX

T - P7
DELAY
Reset COXX

®

Set DOXX
DELAY
Reset DOXX

RETURN

173

OUTPUT
COMMAND
BYTE

OUTPUT
COMMAND
BYTE

OUTPUT
DATA
BYTE

174

P13@-P13+1
P12@-P12+L

. 0.UT

Te§-X'80"
Pl¢§-Pl.and.T

I.0UT

Mg-X'7F'

Tqﬁ—PS
Write Full
Cycle
2 .
T-P13
Write Ful
7 Cycle

P7,N@-P7-1
DELAY

T§-P12
Write Ful
Cycle
<:E%EEEE)

Read Full
Cycle

Ng-P7
PR -T

175

ISKIP

Read Full

Cycle

P13q§-P13+2
P12<§-P12+L

P7,Ng-P7-1

P134&.-T

Read Full
Cycle

Printer

into Sign
Byte

P7,N@E-P7+1
P12€§-T

P13§-P13+1
M<¢-P12
NgG-P13
F T
P74-X'FF'

.IDIX

176

Index Supervisor

VIA
T - X'07'

T«#-T.and.P13 T @¢- P11

egal
Index #

Compute Ad-
dress of Index
Now In S8,

s9, S10

Write Hal
Cycle S8,
S9, S10 to
Core.

T F Compute Ad-
ress of
! Required
Index

Read Half
Index Map @ Cycle into
Index # s8, s9, S10

(EgggEE:) |

177

INTER~
RUPT

A

Inhibit L Save
U<§-X'00"

" 170

Request
B
Acknowledge .
Request,
PIg-# of Interrupt .
Requesting
Device Acknowledge .INT
D P7g-# of
Card Requesting
Reader Device

Request

Disk
Interrupt

ard
Reader

‘Interna
Interrupt

178

Increment
MIX Clock

Read in TT
Status
P8~-—-T

Active

Controlle

Pannel
INT.

)

Display Cur-
rent MIX
Address on
Data Switches

IDSK

RETURN

Ready

P7@-X'9F'
P1¢§-P8.or.P1

Input
Required

T.OUT

179

H

N@-X'B7'
P7<¢-X'BF'

“w

Call
.IN

Read Data
from Core

P8g-P8-1

F
L |
Ng¢-X'B7'
~X'B7 Data
P7«f-X'BF Byte=C/R
Cg%% Turn on Linéd
Feed Flag eflection
Flag o
ox G
in . T¢-X 02"
INggi- 0]
N@--X'97'
Mg-X'"7F"

Write Out
TTY "Status

I/0

Send Line
T Féed

Count=0

Tg-X'01"

T<¢¢-X'80'
P14 T.and.P1
Disconnect &
Disarm
Printer,
Store Status

J

180

READER
N-X'A7'
P7€--X'AF'
T.IN
Input
I/0 Counter into Call
P8, Buffer Add. .IN
into P12 & P13
Data Byte into T
F
Convert Data OR High Order
to ASCII '1 onto Data

Write Out}
Data to
Buffer

Status

PIg-X'A7' P/@-X' 96"
N@-X'A8' Ne-X'97
|
Call
0.UT
ox G
in
INTER-

UPT

181

, 182

“HWrite-Out }
Status to
Memory

Disconnect
& Disarm
Card Reader

ERRORS

P(B):—X'DS'
P10#--X'DO’

ERROR

., 183

IDSK

Status to
femo

Write Out
Diagonisti
Status to
emory

Disconnect &
Disarm
Disk
_F T
P104--X'EQ"
P8§¢-X'E8’'

ERROR

CHAPTER VI. MICROPROGRAM LISTINGS

d 185

Unused Names...
TMS
CMS
PMS
LDL
ISK
VNN
ITT
IPR

ADI

SN

JPR

PAGE 186

0600

003F
0002
0078
007¢
00F8
0076
0077
007E
007F
0087
008E
008F
0097
0097
009E
009F
0oCo
00C8
0080
0089
0000
0008
00E0Q
00ES8
00F2
00F3
00F4

00F9
00FA
00FB
00FD

HICORE
T0S
708
BOOT
,BOOT
TONE™
TSTAT
TMSB
TLSB .
CCNT
CMSB
cLSs
BASE
PCNT
PMSB
PLSB
HSAVE
HADD
ABTADD
ABSAVE
C1ADD
CISAVE
DADD
DSAVE
PSTAT
CSTAT
DSTATD
*
LDMSB
LDLsB
CLOCK
+CLOCK

ORG
EQU
EQU
EQu
EQU
EQU
E€U
EQuU
EQU
EQU
EQU
EQu
EQu
EQu
EQU
EQu
EQU
EQU
EQU
EQu
EQU
EQu
EQU
EQU
EQu
EQu
EQU
EQU

EQU
EQU
EQu
EQU

X'0600!
X13F1
xtoe!
Xt7B!

Xt7c! ADDRESS OF BOOT STRAP PROGRAM

X1F8
X764

X7

Xt7E
XVTF
X1871¢
X18E"
X18F!

I ARNA BASE ADDRESS FOR INDEXEREG,

Xtort
X19€E!
X19F !
Xtcoe
x1cs!

X801 ABORT ADDRESS
X1Bot ABORT RETURN ADDRESS

X100t
xtost
X'EO0!
X1ES!

X1F2t PRINTER STATUS
X1F31 CARD READERESTATUS
XtF4at DISK DIAGONSTIC STATUS

DSTAYD ¢ | IS
XtF9! MSB
XIFAY LSB
X1FB! MSB
XFD! LSB

THE DISK MAJOR STATUS
MIXESTART ADDRESS
MIXESTART ADDRESS
OF CLOCK (3 BYTES)
OF CLOCK (3 BYTES)

PAGE 187

0600 7080
0601 1708

0602 1720

0603 28F8
0604 123F
0605 AB813
0606 1100
0607 A8D3
0608 {000
0609 A8D3

060A 2877
0608 A843
060C 1101}

060D 1080
060E B70Q
060F 1040
0610 28F9
0611 A803
0612 1000
0613 BE20
0614 A8C3
0615 1000
0616 BF20
0617 FFoOO
0618 FE8Q
0619 FFQO
061A FEBOQ
0618 FFO0O
061C FEBO
0630 1780
061E 1600
061F 7710
0620 5780

* GO = THIS IS THE INITIALIZATION ROUTINE RARKKAR

*
RARAXkkRd
ABOXEM w
ARRRRAAKRR
G0 clo
EEI
Yedodrdei B de ok g
*BOXEN »
TRXKRKRAKR
ERT
kAR AXR
«BOXEQD »
RRAKAKkRXN
\F
LM
WMF
LY
WMF
NOP
WMF

LF
WMF
LT
RRRARRAR
*BOXEP =
RERRRRRN
SSF
Z0F
SPF
LF
RMF
NOP
cPYy
RMF
NOP
CPRY
SFL
SFL
SFL
SFL
SFL
SFL
HLY
L
ESS
TN

0 CLEAR I/0 CONTROL REGISTER
ENABLE EXTERNAL INTERRUPTS

ENABLE REAL=TIME CLOCK
ZERO CLOCK

8,CLOCK
HICORE
8y (N)
Xt00!
8y1s(N)

8,1,(N)

SET TTY 70 READY
8, TSTAT

84 (N)

X104

7

8,LDMSB LOAD STARTING ADDRESS MSB
8,4 (N)

14,7
8,1,(N)

§1S.7
1S
14,L
15
14,0
i5
14,1

X100t
7 ENTER SENSE SWITCHES
ToX1801 TEST FOR CARD READER BOOTSTRAI

PAGE 188

0621 {C2¢4
0622 2E7C
0623 2FF8
0624 OTEY

JP
LF

JE

"¢y

14,8007
15,,800T7
FETCH

PAGE 189

0625
0626

0627
0628
0629
062A
0628
062C
062D
062E

062F
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0634A
0638
063C
0630
063E
063F
0640
064l
0642
0643

27A0
10A0Q

617F
1047
6736
§0A0
6726
1031
6716
§1C33

37C0
{1DAO
37F9
10A0
37FY
$10A0
1000
1000
1000
1000
270C
{1DAO
2TAE
10A0
278¢C
10A0
27A8
1DAD
2748
10AQ
2708

* THIS IS THE EBCDIC TO ASCII CONVERSION
% TABLE USED BY THE CARD READEREROUTINE

ASCII LF ToXVAQ!
JP RB
" THIS ROQUTINE CONVERTS EBCDIC CHARACTERS INTO
x ASCII CHARACTERS
L ad FIRST ™ TRE EBCDIC CHARACTERS ARE BROKEN
" INTO FIVE GROQUPS
* GROUP § » SPECIAL CHARACTERS CODES 40e7F
* THESE CODES MUSTEBE LOOKED UP
" IN THE ASClI TABLE
* GRQUP 2 » LETTERS A e l, THESE ARE CORRECT
* GROUP 3 = LETTERS J = R, TO CONVERT THESE
] TO ASCI1 SUBTRACTEX'07!
] GROUP 4 » LETTERS $ = Z, TO CONVERT THESE
] SUBTRACT X!10F!
* GROUP S NUMBERS, TO CONVERTETHESE
* SUBTRACT X140¢
EBCDIC CP TyXVTF? TESY FORESPECIAL CHARACTERS
JP SPCHAR SPECIAL CHARACTER
(o 2 TeX1361 LETTERS A =]
JP RB A= 1 .
CcP T.X1261 TEST FOR J = R
JP 01,09 CHARACTERS J = R
cP Textiot TEST FOR LETTERS S = 2Z
JP E2,E9 8§ » Z SUBTRACT X!0F!
L] MUST BE A NUMBER
AF TeX1C0Y SUBTRACTEX'40!
JR RB :
01,09 AF ToXIFO? SUBTRACTEX!'07!
JP RB _
E2,E9 AF TeXtF{ SUBTRACTEXTOF!
JP RB
NOP FREE LOCATION
NOP FREE LOCATION
NOP- FREE LOCATION
NOP FREE LOCATION
LF T.X1DC!
JR RB
LF TsXVAE?
JP RB
LF TeX18C!
JP RB
\F TeXVAB!
JP RB
LF TsXVAB!
JP RB
LF T.,x008!

PAGE {90

0644 1DAQ
0645 27A6
0646 1DAO

0647 F700
0648 FT00
0649 F720
064A 1125
0648 8724

064C 2858
064D 1C69
064E 2BS8
064F 1C6A
0650 2858
0651 1C8S
0652 2B58
0653 1C89
0654 2858
0655 1C73
06586 2BE\
0657 1C92
0658 {000
0659 27A}
065A 10DA0
0658 27A4
065C 10A0Q
065D 27AA
065E 1DAO
06SF 2TA9
0660 1DA0
0661 2788
0662 {DAQ
0663 2700
0664 {DAO
0665 27AD
0666 {DAQ
0667 2TAF
0668 {DAO

*
*
SPCHAR SFL

ADD

N %

,DIXE LF
JP

DIXE LF
JP

,DOXE LF
JP

DOXE LF
ST
COXE LF
WeOUT LF

JP

RB

TiX1A6!

RB

SPECIAL CHARACTER, THESE MUST BE
%OOKED-UP IN THE ASCII TABLE

7’

7 MULTIPLY BY &2

ASCII

TeTs (L) JUMP TO CORRECTEASCII CHARACTY

THESE ARE SUBROUTINES USED BY THE I/0 DRIVERS
THIS CODE PROVIDES SUBROUTINE LINKAGE VIA THE
JE AND RTN INSTRUCTIONS FOR CALLS MORE THAN 256
WORDS AWAY

11 ,RETURN
IDL1X
11)RETURN
IDIX
11 ,RETURN
1.00X
11,RETURN
100X
11 ,RETURN
1C0X
{1.,FETCH
T1.,0UT
FREE LOCATION
TeX1ALY
RB
TeXVA4Y
R8
TeXVAAL
RB
T X1AQI
RB
T,XtBB!
RB
T)X10D1Y
RB
TeXVAD?
RB
ToXVAF)
RB

«x THESE ROUTINES DO THE DEVICE INPUT/QUTPUT

* THEY EXPECY THE DEVICE ADDRESS AND FUNCTION CODE
* IN THE T REGISTER, AND DATA IN P7

* RETURN ADDRESS IN P1}

xx% INPUTEA BYTE

PAGE {91

0669 27FF
066A 7090
0668 1000
066C 1C60
066D 7080
066E 70E0
066F 1000
0670 1C71
0671 7784
0672 1CCY

0673 7090
0674 1000
0675 1C76
0676 7080
0677 1CCH
0678 1000
0679 27A0Q
067A 1DAOQ
0678 27AC
067C 1DAO
067D 27AS
067E 1DA0
067F 270E
0680 1DAO
068} 27BE
0682 1DAQ
0683 27BF
0684 1DAD

0685 7090
0686 1C87
0687 €70}
0688 7080
0689 T0AQ
068A 1000
0688 {C8C
068C 7080
068D 1CCH

10,IXE LF ToX1FF)

IDIXE COXE 0 SET COXX, SEND COMMAND BYTE
NOP
JP LL D! DELAY 3 CLOCK PULSES
cio 0 CLEAR I/0 REG
IDIXE DIXE 0 SET DIXX
NOP
JR AR
ClIo 7.(M

JP GOBACK RETURN
kkx OUTPUTECOMMAND BYTE

ICOXE COXE 0 SET COXX~OUTPUT COMMAND BYTE
NOP
JPR *é! DELAY 3 CLOCK PUL.SES
C10 0 RESET COXX
JPR COBACK RETURN
NOP 1 FREE LOCATION
LF TeXVAQ!
JP RB
LF ToXVAC!
JP RB
LF TeXTAS!
JP RSB
LF TeX'DEY
JP RB
LF T¢X'BE!}
JP RB
LF T.X1BF?
JP RB

*4 THESE ROUTINES DO THE DEVICE INPUT/OUTPUT

* THEY EXPECT THE DEVICE ADDRESS AND FUNCTION CODE
* IN THE T REGISTER, AND DATA IN P7

* RETURN ADDRESS IN Pt}

wxx QUTPUTEA BYTE

1,00xf COXE O SET COXX=OUTPUTECOMMAND BYTE
JP el DELAT 3 CLOCK PULSES
MOV Te(T) MOVE DATA T0 T REG,
Clo 0 CLEAR I/0 REG

IDOXE DOXE 0 SET DOXX=0QUTPUT DATA IN T REG,
NOP
JP LA DELAY 3 CLOCK PULSES
clo 0 RESET COXX

JP GOBACK RETURN
RRRRARKRRRRARARRR
RRRARRAARRRNRARAR
NANKRRRARKARRNRRN
* THIS ROUTINE WRITE OUT TO MEMORY THE UPDATED
* CONCURRENTEI/O VALUES

PAGE 92

* N<==« ADDRESS OF THE COUNTER
* PT7<=w ADDRESS OF |.SB OF C=I/0 ADDRESS
* PB<em COUNTER VALUE
& P{i<=«» RETURN ADDRESS
* Pic<esMSB OF Cel/0 ADDRESS
* P13<ew| SB OF Ce1/0 ADDRESS
*®
*
06BE 8D4D s OUT INC 13
068F 8C80 ADD 12,L ADJUST Ce»1/0 ADDRESS
0690 $180 0,UT LY X1801%
0691 E{20 AND 1.7 CLEAR P}
0692 §23F 1,007 LM H1CORE LOAD MAR(MSB)
0693 AB}11} WMF By(T) WRITE COUNTER VALUE
0694 C703 MOV 79 (N) ADJUST MAR(LSB)
0695 ADSY WMF 13,(T) WRITE L SB QOF Cm=I/0 ADDRESS
0696 9743 DEC T+ (N) ADJUST MAR(LSS)
0697 AC1 WMF §12,(7) WRITE MSB OF Ce!/0 ADDRESS
0698 {CCH JP GOBACK RETURN
0699 27BA LF TeX'BAY
069A {DAQ JP RB
0698 27A3 ' LF ToX1AZ
069C §DAQ JR RB
069D 27C0 LF TeXt1COY
069E 1DAOQ JP RB
069F 27A7 \F TeX1TATY
06A0 {DAOD JP RB
06A1 278D LF T,XBDY
06A2 {DAQ JP R8
06A3 27A2 LF TeXVARY
06A4 {DAQ JP RB
RARRARRRAKR
ARARRRRAKRKRN
RAAKRAARAE KR AKX
RARRARKARRKR
%« THIS ROUTINE READS IN FROM MEMORY THE CONCURRENT
* 1/0 VALUES
* N<==s ADDRESS OF THE COUNTER
* P7<e=s ADDRESS OF THE LSB OF THE C=l/0 ADDRESS
* Pli<eeRETURN ADDRESS
® P8<=w COUNTER VALUE
%. Ple2<es MSB OF Cel/0 ADDRESS
¢ Pji3ces LSB OF THE C=1/0 ADDRESS
*®
06AS {23F +IN LM HICORE LOAD MAR(MSB)
06A6 AQ20 RMH 0 READ IN COUNTER VALVYE
06A7 CT703 MOV T+ (N) ADJUST MAR(LSB)=DELAY

06A8 B820 CPY 8,7 COPY COUNTEREINTO P8

PAGE 193

06A9
06AA
06AB
06AC
06AD
06AE

06AF
0680
06B1
0682
0683
0684

0685
0éBeé
0687
0688
0689

06BA
0688
06BC
068D
06BE
068F
06C0O
06C!t
oece
06C3

AQ20
9743
B8D20
A020
8743
BCa0

5007
{Ces
5002
{1CBE
5004
1CBE

1102
8Deo
8C80
SB8o
1CBO

ccee
AD{3
1100
8040
ccoe
CDo3
5880
€BOS
27FF
1C6E

RMH 0 READ |SB OF Ce»1/0 ADDRESS
PEC Te(N) ADJUST MAR(LSB)eDELAY
CPY 13,7 COPY LSB OF Ce1/0 ADDRESS
RMH 0 READ MSB OF C=1/0 ADDRESS
INC T4 (N) ADJUST MAR(LSB)=DELAY
CPY 12,7 COPY MSB OF C=1/0 INTO P12
RARNRRA AN -
hARARA KA Ak N
RRAAARNNARRAN

»

THIS ROUTINE IS USED BY THE PRINTER,
* CARD READER, AND TTY INTERRUPTEROUTINES TD SKIP
* SIGN AND GARBAGE BYTES
* Pil<=e RETURN ADDRESS
* Pl2<ew MSB OF Ce]/0 ADDRESS
* Pi3<== | SB 00 C»I/0 ADDRESS
*
*
1

SKIP TN $13,X107) IS THIS A SIGN BYTE ADDRESS

JP 16 YES
TN 13,X102" 1S THIS A GARBAGE BYTE ADDRES!
JP 18 NO
TN 13,X1041 IS THIS A GARBAGE BYTE ADDRES!
JP 18 NO
* TIME YO SKIP 2 BYTES '
LT xtoza? GARBAGE BYTES
ADD 13,7
ADD 12,0
16 TN 11,X'80' PRINTER OR TTYsOUT CALL
JP 17 YES

* CARD READER OR TTY=IN CALLED THIS ROUTINE
* MUSTEZERO SIGN BYTE

MOV §12,(M) LOAD MAR(MSB)

WMF 13,(N) WRITE, LOAD MAR(LSB)

LY X100 SET SIGN TO ZERD
17 INC 13
18 MOV 12,(M)- LOAD MAR(MSB)

MOV 13, (N) LOAD MAR(LSB)

IN $1,X180' PRINTER OR CARD READER??
GOBACK MOV 114 (K)

LF TeXVFF

JP e 301X

PAGE {94
REGISTERESUPERVISOR

THIS IS THE INDEX£SUPERVISOR ROUTINE

IT TAKES CARE OF ROLLING THE INDEXEREGISTER
WHICH IS NEEDED INTO S8, 59, S10

87 IS THE INDEXEMAP, IT CONTAINS THE NUMBER OF
- THE®" REGISTER™ CURRENTLY~IN 58 = S10

*

L BN 2B B B BB J

06C4 1107 PAGE LY x1o71
06C5 ED29 ANDx §3,T,(T) GEY INDEXE# FROM OPCODE
06C6 1CC8 P VIA
AkkhAkkk&
*BOXEDD#
KAkkRAkRK
06C7 CBOY VINDEXEMOV §1,(T)
KkXKRRAN
*«BOXEEEw
RAKE AR Kk
06C8 1080 VIA S$SF
06C9 BB2O . CRY 11,7
AxQAkkAn .
* TEST FOR ILLEGAL - INDEXENUMBER
Rk kkkR
06CA 6&BF9 CR 11, X1F9Y
06CB §1CCOD JP "2 INDEXEBETWEEN 0 & 6 » QK
06CC 06F9 JE ABORT INDEXE> 6 ABORT USER RUN
Rk kRkN
¢BOXEFF»
AKXARKKANR)
06CD §107 LT X107 LOAD MASK
06CE ET729 AND» T,T7,tT) PICK UP INDEXEMAP
06CF BD20O crRY 13,7 SAVE INDEXEMAP
0600 DB3S XORs {1,7,C TEST EQUAL
06D 4004 YZ2¢£ 0,X10414
06D2 10640 RSP REGUIRED INDEXE£]S PRESENT
t
* THE REQUIRED INDEXEIS NOT IN THE HOME POSITION
& STEPS MUST BE TAKEN
* .
* STEP § 1S ANY INDEXEHOME? IF NOYT GOTO SYEP 4
* STEP 2 COMPUTE CORE STORAGE ADDRESS OF THE INDEX
* STEP 3 WRITE KALF CYCLE THIS INDEXEOUT TO CORE
+ STEP 4 COMPUTE THE CORE ADDRESS OF THE REQUIRED
« STEP S READ HALF CYCLE THIS INDEXEINTO FILES S8
* STEP 6 UPDATE INDEXEMAP IN S7

"
RERARRAN
2BOXEHHW STEP §

PAGE {95

S22
06D3 {23F LM HICORE
0604 5007 TN §3,X0071
06DS ICEY JP VKK INDEXEMAP 5 0
KRR RNARR .
*BOXEYIw STEP 2
La 2.8 2 2.2 8 1
0606 FDOO . SFL 13 MULTIPLY -OLD INDEXE® BY (6
06D7 FDOO SFL, 13
06D8 FDOO SFL, 13
06D9 FDOO SFL 13
06DA 1197 LT BASE LOAD T WITH BASE ADDRESS
0608 8023 . ADD $3,7,(N) COMPUTE ADDRESS OF SIGN
KARRANARA
*BOXEJJ# STEP 3
RAKKRRARR
06DC A83% WMH 8,(T) WRITE OUT SIGN BYTE
06DD 3007 AF §3,X107Y COMPUTE SIGN OF MSB
06DE AD33 WMH §3+(N) WRITE MSB MOVE ADDRESS TO N
06DF C90} : MOV 9,(T) MOVE WRITE OPERAND TO T
06E0 3D0%§ AF 13,x104' COMPUTE ADDRESS OF LSB
0661 AD33 WMH §13,(N) WRITE LSB MOVE ADDRESS TO N
062 CADY MOV 10,(T) MOVE WRITE OPERAND YO T
Rk koK k&K
*BOXENN® . STER 6
RARKRAX R
06E3 $1F8 VNN LY XtF8!
06E4 ET20 AND 7,7
06ES CBOY MOV 11,(T)
06E6 CT20 LOR Te?
Q6ET7 SBO7 VKK IN fl,x007
06E8 1060 RSP INDEXE® = 0
RRKARRKA KN
®BOXEKK® STEP 4
RRAXXRRAK
RRRARKAAR
wBOXELL®
RERKARNR R
06E9 FBOO SFL 11 MULTIPLY NEW INDEXE#® BY 16
06EA FBOO SFL 11 ‘
06EB FBOO SFL
06EC FBOO SFL, 14
06ED §197 LY BASE- LOAD Y WITH BASE ADDRESS
06EE 8B23 ADD $11,74(N) COMPUTE ADDRESS OF SIGN
RARRRRAR
2BOXEMMA STERP S
RRARRRRRN

06EF A020 RMH 0 READ IN SIGN BYTE

PAGE 196

06F0 3807
06F1 B820
06F2 AB23
06F3 3801
06F4 8920
06FS5 AB23

tefFo6- 1000

06F7 BA20

06F8 1060

kRA AL R

*BOXE£0O
RAKARRR

AF
CRY
RMH
AF
CcrPY
RMH
NOP=
CrPY
*

L]

RS8P

11,X107
8,7
11,(N)
f1,x104!
9,7

11, (N)

10,7

COMPUTE ADDRESS OF MSB
COPY SIGN OF INDEXEINTO S8
READ MSB MOVE ADDRESS TO N
COMPUTE ADDRESS OF LSB
COPY MSB INTO 9

READ LSB MOVE ADDRESS YO N
DELAY

COPY LSB INTO 810

PAGE 197

06F9 293F
06FA 2ABO
06FB 2889
06FC 0QT0DA

#x ABORTERQUTINE

ABORT LF
LF
LF
JE

9,HICORE
$10,ABTADD
8,ABSAVE
ERROR -

PAGE 398
* INTERRUPTEROUTINE

RAkAAKRK&
*BOXEA »
RkkkkRRkE
06FD §BOO INTY ILS INHIBIT L SAVE UNTIL RETURN 0OCC
06FE 1600 Ly X100¢
06FF~ 1040 Sp#
0700 S008 TN 0,X108" TEST FOR CONCURRENTEI/Q REQUESTY
0701 1D0B JP IHG
RARKKKKN
*BOXEB » CONCURRENTEREQGUESTEHAS OCCURED
RARRkARR
0702 70CO CAK 0 ACKNOWLEDGE REQUEST
0703 27FF LF T+ XVFFI
0704 1D0S JP IHY
RARRARR
*BOXEC »
RAKRARK
0705 7780 IH1 C10 7 RESET, AND INPUTY BUS WITH P7
RARRRRARK
*BOXED «»
ERARARRK
0706 1180 LY xt80!1
0707 EL120 AND 1,7 CLEAR P
0708 S702 TN TeX102¢ INPUT QR QUTPUT
0709 0798 JE READER
070A Q75A JE PRNTER
KRR ARKK
* BOXEGW TESY FOR EXTERNAL INTERRUPT=ERROR
AkRAhRRE _
0708 S080 IHG TN 0,x801 TEST EXTERNAL FLAG
070C Q710 JE IHK NO EXTERNAL INTERRUPT
KkkRAKANA
*BOXEM w EXTERNAL INTERRUPTEHAS OCCURRED
ARRARRARN
070D 7000 IAK 0 ACKNOWLEDGE INTERRUPY
070E 27FF LF T XI1FFI P7<e=AlLL ONES
070F 1010 JP IK2 DELAY
0710 7780 IH2 (o fl4] 7 RESET, INPUT BUS ANDED WITH P’
RARRARRNY
* BOXElw
RAARRARR
‘ * FIND OUT WHICH DEVICE CAUSED INTERRUPTY
0711 1128 LY xta8t DISK ADDRESS » 2
0712 D738 XORe 7,7,C WAS IT THE DISK
0713 4004 T2 Dex104
0714 07C4d JE 1DSK DISK INTERRUPT

071S 1108 LY xtost CARD READER ADDRESS » 2

PAGE 199

0746 D738 XORw
0737 1010 JP
0718 1124 LY
0719 2818 LF
071A 1C69 JP
071B S704 IN
0rICT 0784 J&
RAkRARAR
*BOXEK
RkRkkkhN
0710 5010 I1HK TN
RERARRRAR
*BOXEL »
RARAARKAN
074E 1060 RSP
13333322
*BOXEM »
RRAKRRKE
071F 7840 EIS
' S322222%
*BOXEN W
RARAEKAKK
0720 SBOY TN
0721 (D48 JP
ARARRKRSK
*BOXEQ =
RARKRKKR
0722 123F LM
0723 28FD LF
0724 A823 RMH
0725 9843 DEC
0726 BD20 crPy
0727 ADEQ RMH
0728 8843 INC
0729 BC20 cPY
072A AD3} WMH
0728 9843 DEC
072C A(CB}¢ WMH
072D 9843 DEC
072E A020 RMH
072F 9843 DEC
0730 B8D20 CPY
0731 8p8} ADD
0732 A8F3 WMH

*
®
]
L]

T:7,C
IHK MUST BE TTY OR MAG TAPEw]IGNOR
X124 INPUT STATUS BYTE

fione2 LOAD RETURN ADDRESS

I0,IXE GET CARD READER STATUS
TeX104) IS THIS A HOPPER EMPTY INT,
IREADR NO REAL ERROR

0,XV110% TEST FOR INTERNAL INTERRUPTS

RETURN

1 ENTER INTERNAL STATUS

11,x104¢ REAL TIME CLOCK INTERRUPT?
IHR

ADJUST CLOCK

HICORE

8,,CLOCK LOAD P8 WITH A(CH)

8, (N) READ IN C1

8,(N) DECREMENTEPB TO A(CR2)=DELAY
13,7 COPY C! INTO PL3

13,1 READ C2, INCREMENTECH

8y (N) INCREMENTEPB TO A(Ci)=DELAY
12,7 COPY C2 INTO P12

13,(1) WRITE OUT UPDATED C1

89 (N) DECREMENTEP8 TO A(C2)=DELAY
12,L,(T) WRITE QUT UPDATED C2

84 (N) DECREMENTEPB YO A(C3)wDELAY
0 READ C3

8, (N) DELAY

13,7 COPY C3 INTO P13

13,L,(T) UPDATE C3

8y1,(N) WRITE OUT C3

TTY INTERRUPTERQUTINE

THIS IS THE TELETYPE ROUTINE
NO INTERRUPTS ARE AVAILABLE ON THE
TTY, THUS THE I/0 IS RUN BY INTERRUPTS

PAGE 200

0733 2877
0734 A803
073S 9843
0736 B820
0737 4801
Q738" {048

0739 1120
073A 28B3C
0738 1C69
073C E838
073D 4004
073E {048

073F 1100
0740 2842
0741 1C73

0742 277F
0743 €801}
0744 C120
0745 S802
0746 1D5¢C
0747 1094

0748 5801
0749 104¢C

074A 1600
0748 0600

074C 5840

ITTY LF

> * W ®

LT
LF
JP

»

LF
MOV
LOR
N
JP
JR
RRRKkR kA
«*BOXEP =
' 2333320
IHP N
JP
ARRRAKRR
*BOXEQ =
ARRARARREAR
Lu
JE
RAXKRARAD
*BOXER =
RRAAARAR
IHR TN
RXXKARAN

*BOXET »
RRAAKARNR

FROM THE REAL TIME CLOCK,

8,)TSTAT
8, (N)
8y (N)
8,7 :
8,X10¢41?
IHP

READ IN INTERNAL STATUS

LOAD TCNT=DELAY
COPY STATUS
TEST BUSY BITY

NO TTY TRANSFER IN PROGRESS

GET STATUS FROM TTY CONTROLLER

Xxt201
§1,%42
10,1XE

8,7,C
0,X1041
IHP

LOAD COMMAND BYTE
LOAD RETURN ADDRESS
INPUT STATUS BYTE
TEST STATUS

TEST IF READY

NOT READY, CONTINUE

"CONTROLLER READY T0 DO I/O

SEND COMMAND BYTE TO DO I/0

X100
11,2e2
ICOXE

DETERMINE

T:TLSB
8,(T)
107
8yxt021
T,0UT
TeIN

11,1081
IHR

X100
60

11,X140¢

LOAD COMMAND BYTE
LOAD RETURN ADDRSSS
REQUESTEL/Q

IF INPUTEOR OUTPUT

SAVE STATUS IN P

QUTPUY
INPUT

PANNEL INTERRUPTS

STERP INTERRUPT

PAGE 201}

074D 3057

0T4E FEZ29
074F BC20
0750 FFAS
0751 BD20
0752 FC20
0753 FDAO
0754 FC22
0755 FDA3
0756 1780

0757 5802
0758 1060
0759 07C4

RRAREKRR

*BOXES w
JP

NRERAKKRE

®

®

| 4

STEP SFRx
CRY
SFRw»
CPY
SFR
SFR
§FR
SFR
HLT

RARRNKM AN

® BOXEY w

KRR ARKE kY

IHU TN

RETURN RSP
JE

IHU

DIVIDE LOCATION COUNTER BY 8 T0 GETY
MIXEADDRESS, THEN MOVE THIS ADDRESS
TO"THE DATA BUS SO IT CAN BE DISPLAVYE

14,(T)

12,7

§1SeLa(T)

13,7

12

13,0

12, (M)

3.0 (N)

f1,x8021
1DSK

PAGE 202

075A
0758

075C
0750

075E
075F
0760

0761
0762
0763
0764
0765

0766
0767
0768
0769

076A
0768
076C
076D

076E
076F

1397
279F

2BSE
1CAS

S87F
1079
A840

2B63
§C89
B8B20
430F
106A

1397
2719F
eB0B
{1C8E

118D
DB30
4004
1080

5108
1074

* PRINTER INTERRUPTEROUTINE

RARXKRNRR
*BOXEH »
Kk RAKRKR
PRNTER [N
LF
*
*®
T.0UT LF
JP
*
' 2233 E%Y]
*BOXEG w
AKKKKKRK
TN
JP
RMF
kARKkRKRkN
« BOXEJw
' Y23 22232]
LF
JP
cPY
\R 43
P
RRAKARRN

*BOXEL #
KAk Rkk AR

T,P LF
JR

ARRRANK AR

*BOXEM =

RRKRANKRR

T LY
XOR
T2¢
JP

RERAARAR &

* BOXENS

ARAKRRNRSA

*®
TN
JP

ARARNERE

"BOXED w

Y

PCNT

7.,PLSB

THIS ROUTINE IS COMMON TO BOTH THE

PRINTER AND THE TTY®OUT

11onee LOAD RETURN ADDRESS

JIN GET C=1/0 COUNTERS &
ADJUST C=1/0 ADDRESSES

8,X'7F1 TEST IF COUNT = ZERO
PRK COUNT = ZERO

8,0 GET DATA, DECREMENTECOUNTER
ISR LY

1DOXE QUTPUT DATA BYTE

11,7 SAVE DATA BYTE

1,X'0F?

T TTY R6UTINE

PCNT

7,PLSB

11, IHG

,OUT

X180 LOAD CARRIAGE RETURN
11,7,C TEST IF DATA WAS A C/R
0,X104)

C.R DATA BYTE WAS C/Ril

TEST REFLECT FLAG
1sX0081
12 NOT ON WRITE OUT COUNTERS

REFLECT FLAG IS ON,THIS MEANS THAT
A TTYeIN OPERATION IS IN PROGRESS

PAGE 203

0770 1102
0278 1377
0772 {23F
0773 A010

0774 S8FF
0775 1079
0776 1376
0777 277F
0778 1068

0779 S{0F
077A 1085
0778 4110
077C 1085

0770 1180
077t 2880
077F 1C89

0780 1114
0781 2880
0782 1074

0783
0784

g
-

0785 118A
0786 2B88
0787 1C89

*
*
*
|]
ARk ARA
LY
Ry Fe LN=
LM
WMF
RARKKRAN
*BOXEP »
L2223 8 1]
AL TN
JP
LN
LF
JP
AAAKRARARE
*BOXEK »
RERAAARNY
PRK TN
JP
T2¢
JR
khkhkhkhdha&
"BOXEQ #
KARARARR
LT
LF
JP
L2232 X288 ¢
*BOXER #
RRRKANRN
CyR LY
LF
JP
REkRRANRKN
*BOXEY =
KRRRAAKRNA
TLF LT
JP
KRKRRARR &
* BOXESH
RARRRAKAN
' PRK Lt
LF
JP

ARk kAR

THIS 1S THE SECOND PHASE OF HANDLING
ONE DATA BYTE

MUST FIXETHE STATUS TO ALLOW THE
NEXT OPERATION TO BE A TTY=IN,

Xxtoat
TSTAY
HICORE
0

8,X1FF!
PRK
TCNT
T,TLSB
T,P

f4X10F1
s PRK _
1oXV100
o PRK

X18D!
§1,%e2
I100X¢E

X144
B,X1801
RoF

X104

X18A1

1,002

100X

WRITE OUT STATUS

COUNT = ZERO STOP TRANSFER

WRITE OUT C»1/0 COUNTERS

TTY2?

PRINTER

LINE FEED FLAG ON7?
FALG IN ON

SEND C/R

TURN LINE FEED FLAG ON

STOP TVYY

SEND LINE FEED

PAGE 204

0788 410F
0789 {083

078A 1180
078B Ef20

078C §125
078D 2B8F
078E 1C69
078F J3F2
0790 123F
0791 A71}

0792 11AS
0793 2B9S
0794 1C73

0795 1185
0796 2808
0797 1C73

*BOXETY =
"SI '
T2 19XV0F1
P TLF STOP TTY TRANSFER
T TIIII L
*BOXEUR
ARKRARR &~ _
9 f X180
AND 07

* IPRNTR ROUTINE
* THIS IS THE EXTERNAL INTERRUPTEROUTINE FOR THE
* PRINTER, IT STORES THE STATUS BYTE IN ADDRESS 7FFB

IPRNTR LT x1esit INPUT THE STATUS BYTE
LF $11,%e2
JP 10, IX¢E GET STATUS IN P7 AND Y
LN PSTSY)
LM KICORE
WKMF T4(T) WRITE OUT STATUS
* NOW SEND DISCONNECT
L7 XV1AS!H
LF 11,n¢2
JR ICOXE SEND C6MMAND BYTE
® NOW SEND DISARM 70O PRINTER CONTROLLER
LT Xt1851

LF $11,1IHG SET RETURN 10 INT LABEL
JP 1COXE SEND COMMAND BYTE

PAGE 208

0798 1387
0199~ 218F

079A 2B9C
0798 §CAS

079C S30F

079D €27

079E 1180
079F €720

07A0 AT1Y
07A1 2BOB
07A2 510F
07A3 10AB
07A4 1377
07AS 123F
07A6 AOfO
07A7 110C
07A8 277F
07A9 1376
07AA 1C90

07AB 9840
07AC S8FF
07AD 078}
O07AE 1387
0TAF 278F
0780 1C8E

*CARD READER INTERRUPT ROUTINE
*

RAKRRK KK
*BOXEB =
ARARARkN
READER (N CONTY
LF- 7,£L.58
* READ IN C»I1/0 COUNTERS
* MUSTESKIP SIGN BYTE AND TWO HI ORDER BYTES OF EACH
* GEY DATA FROM DEVICE

" THIS CODE IS COMMON TO THE TTY & CARD READER
TeIN LF 1,ne2
JP o IN
KERRARRR
*BOXEA *
ARKKARNAN

TN §oX1OF) TTY OR CARD READER
KRAKKARNN

* CONVERT EBCDIC TO ASCII
RARRAKRRR
JR EBCDIC CONVYERTECHARACTERS T0O ASCII
* MUST OR HIGH ORDER § ONTO EACH TTY
* CHARAGTER TO GET THE CORRECT ASCII CODE
LY X801
LOR T.7?
ARKRNRERA
*BOXEB »
AKARARKRNAR
RB WMF Ts(T) WRITE QUT DATA BYTE
LF 11,1HG
IN 1oXV0F) TYTY OR CARD READER
JP RD CARD READER
LN TSTAY
LM HICORE
WMF Q)
LY Xxtocr CHANGE STATUS YO REFLECTION
LF T,TLSB
LN TCNT
JP 0,uY
KXRKAARN
*BOXED w
RARRERARN
RD DEC 8

IN 8, X1FF!
JE IREADR
LN CCNT
LF T,CLS8
JP s OUT

PAGE 206
0780 1CBE

0781 14§24
0782. 28B4
0783 1C69
0784 13F3
07BS 123F
0786 AQ010

0787 1184
0788 2BBA
0789 1C73

078A 11A4
0788 2880
078C 1C73
078D {118
07BE E730

. 07BF 4004

07C0 1008
07C1 2808
07C2 2ADO
07C3 070A

IREDR ROUTINE A XA AAARARARAREARRRKRARARRARRARAR AR KX &
THIS IS THE EXTERNAL INTERRUPTEROUTINE FOR

ADDRESS T7FFC

»
*
% YHE CARD READER, JT STORES THE STATUS BYTE IN
*
!

READR LT Xt24t INPUT STATUS BYTE
LF 11,%¢2
JP I0,IX¢£ GET" CARD READER STATUS
LN £STST
LM HICORE
WMF 0 WRITE STATUS OUY TO MEMORY
* NOW SEND DISCONNECTETO READER CONTROLLER
LT xra4)
LF ISFE LY
JP ICOX
* NOW SEND DISARM
LT- XTA4!
LF 1,092
JP ICOoX
LT Xty81 TEST FOREERRORS
AND 7:7,C
12 QX104 TESY FOR ERROR.
P 1HG- NO ERROR .
LF 8,CISAVE
\F §0,C1ADD
JE ERROR

PAGE 207

07Cc4 1144
07€5.2BC7
07C6 1C69
07C7 BB20
07C8 1134
07C9 28C8
07CA fC69
07CB 123F
07CC 2CF4d
07CD AC13
07CE 8C43
07CF AB11

0700 1114
0701 2720
07D2 28BD4
0703 1C85
0704 1114
07D5 E830
0706 4004
0707 0710
07D8 2AE0Q
07D9 28E8

07DA 123F
070B R293F
07DC A843
070D CEO}
070E ABD3
070F CFO}
0780 0CDC

THIS IS THE EXTERNAL INTERRUPTEROUTINE FOR THE
DISK, IT STORES THE MAJOR STATUS BYTE IN ADDRESS
TFDFA AND STORES THE DIAGONISTIC STATUS BYTE IN

* IDISK ROUTINE

®

*

*

» ADDRESS 7FF9

IDSK LT X1§d4t
LF- $1)%ed
JyP 10, IXE
CRY 8,7
(1 | X134
LF flone2
JP I0,1X¢E
LM HICORE
LF 12,0STAY
WMF $12,(N)
INC 124 (N)
WMF 8y(T)

* NOW SEND DISARM
LT xryan
LF TeX1201
LF flone2
JP 1.00X
LY Xrq4
AND 8,7,C
Y2¢ 0,x104¢
JE IHK
LF 10,DADD
LF 8,0SAVE

' Y322132

* ERROREROUTINE

RAXKRRKAR R

ERROR LM HICORE
\F 9,HICORE
WMF 8, (N)
MoV 14,(T)
WMF 8,1,(N)
MOV 15,(1)
JE JS

INPUT MAJOR STATUS

GEY MAJOR DISK STATUS

COPY MAJOR STATUS INTO P8
INPUT DIAGONOSTIC STATUS

GET DIAGONISTIC STATUS IN PV
WRITE DIAGONSITIC STATUS OUT
ADJUST MAR(LSB)=DELAY
WRITE OUT MAJOR STATUS

OQUTPUT COMMAND BYTE

PAGE 208

07E! 06F0

07e2 2787
07e3 CFO3
074 AEQR
07ES 10E8

07E6 BF43
07E7 AE82

O7E8 8746
07E9 0820

07TEA 6743
07eB 1DE6

07EC 1103
07ED 8F20
07EE BES8O
O7TEF 1600

» % »

*
[3 32 R 3 & 8.1
ABOXEALW
KRARAKXKKRRN
FETCH JE
(2222 3 & %
"BOXEA »
RRKXARARN
RRXAANKA
*BOXEB w
RRAARAEANR
LF
MOV
RMF
JP
RRRRER AN
*BOXEC »
RAkAkAkAhkXN
FC INC
RMF
ARk Rk kRAN
*BOXED w
RRARRRARK
INC
EOT
RAKAARRR
*BOXEE
ARkARANAN
CP
JP
ARARKKAAR
*BOXEF «
|3 X2 2 8.4 8.1
L7
ADD
ADD
LV

FETCH ROUTINE
THIS ROUTINE FEYCHES THE NEXTEINSTRUCTION FROM THE
FOUND IN THE INSTRUCTION COUNTER

INT GO CHECK INTERRUPTS

ToX'BT! LOAD COUNTEREAND MASK
15, (N)

§44 (M)

FCe2

15,(N) ADJUST MEMORY ADDRESS
{4,L,(M) READ A BYTE

T, (V) INCREMENTECOUNTER
8,7 COPY T INTO CORRECTEFILE REGISTI

ToX1430 TEST FOR END OF READ LOOP
FG

X031
15,7
14,L
xtoo! CLEAR U REGISTER

PAGE 209

0TFO0
07F 1

07F2
07F3
07F4

07FS
07F6
07F7
07F8
07F9
07FA
07F8
07FC
07FD
07FE
07FF
0800
0801
0802
0803
0804
0805

0806

SB07
0811

1600
06C7?
1080

1680
€801
1040
D838
5004
1690
1080
CAo}
1040
8A27
{080
€90}
§040
8947
FBOO
5004
§409

B0

* ADDRESSING ROUTINE

[|

* THIS ROUTINE COMPUTES THE EFFECTIVE MIXAL MEMORY A
* FOR THE INSTRUCTION CURRENTLY HELD IN THE INSTRUCT
+ COUNTER

*

forferde e dete o A~

*BOXEL * TEST FOR INDEXING

RAERA KA AN

ADI ™ 11,X107"

JE ADJ
*
% INDEXING HAS QCCURED
"
ARARAANKR
*BOXEK w
Ak hAkkR
ADK LV X100
JE VINDEXE JUMP T0 INDEXING ROUTINE
SSF
®

* THE INDEXEREGISTER REFERENCED IN P1§ IS NOW AVAILA!
* IN 88,89,S10

I 223228 81
~BOXEL # TEST SIGN OF INDEX
ARAKAKANR .
*
* TEST IF SIGNS ARE SAME
*
LU X801 ASSUME SIGNS ARE SAMEw»ADD
MOV 8,(T)
SPF
XORx 8,7,C X=/R SIGNS 1 SET CONDITION FL/
TN DeXYO4Y YEST FOR Z2ERD RESULT
Ly X901 SIGNS DIFFERENTESUBTRACT
SSF
MoV 10,(7)
SPF
ADD 10,7,(8)
SS8F
MOV 9,(T)
SPF
ADD 9sToLs(S)
SFL 11 SHIFT LINK BIT INTQ Pile]INDEX
IN 0,X1041 WERE SIGNS DIFFERENT?2?
JP ADL SINGS DIFFERENT
* SIGNS SAME TEST FOR OVERFLOW

12§ $1,X701' LINK = | =3» OVERFLOW

PAGE 210

0807 06F9 JE ABORT BAD ADDRESS
0808 {41} JP ADJ
| {
* SIGNS WERE DIFFERENT, MUST GET ADDRESS
* BACK INTO SIGN + MAGNITUDE FORMAT
0809 4BOI. AD Ll YZ. 11,X104' TEST SIGN OF RESULT
080A 141} JP ADJ RESULT IN TRUE FORM
* RESULY IN COMPLEMENTEFORM
0808 13§89 LY X1801
080C D820 XOR 8,7 FLIP SIGN
080D D960 XOR 9,7T,F
080E DAb6O XOR 10,7,F
080F B8AUYD - INC 10
0830 8980 ADD 9,1 COMPLEMENTEADDRESS
w
* THIS ROUTINE FORMS THE MICRODATA EFFECTIVE MEMORY |
KRRRKEKAR
*BOXEP »
(323232328]
* JLLEGAL INSTRUCTION TRAP
0811 6DBF ADJ ¢cP 13, X1BF!
0812 1414 JP "2
0813 06F9 JE. ABORT JLLEGAL INSTRUCTION
0814 6OFA cP 3, X1FAY
0815 141C JP s ADJ OPCODES 00=05
0816 6DF9 (o 13,X1F9
0817 1422 JP «DECOD OPCODE 06 SHIFT COMMAND
0818 6DDO cp 13,x'D0!
0819 141C JP W ADJ OPCODES 00 w 2F
081A 6DCB cP 13,x1C8!1
0818 1422 JP o DECQD OPCODE 30 = 37
081C FAOOQ e ADJ SFL 10 .
081D F980 SFL 9L
081E FAOQO SFL 10
081F F980 SFL - 9,L
0820 FAO3 SFL 10, (N)
0821 F982 SFL 9,L, (M)
0822 4980 o DECOD T2¢ 9,X1801!

0823 0Q6F9 JE ABORT ILLEGAL OPERAND ADDRESS

PAGE 211}

0824 1600
0825 CDOY
0826 B720
0827 F720
0828 F720
0829eFF 297

082A 112C
0828 872¢

082C 083C

0820 0827

082E 0827

082F. 088¢Q

0830 0837

0831 0C8D

0832 0CFOQ

0833 0064

0834 f802
0835 2978
0836 0§04

* DECODE ROUTINE

LU
MOV
cPY
SFR
SFR
SER
" 333332L%
*BOXEQ #
[E XX X883
LT
ADDx%
ttt**t*ﬁ
*BOXER »
kR hhk Ak
DECQODE JE
RAAARKkk kW
*BOXES w
REARKKRARAN
JE
REARANAKE
*BOXET =
REARANKR
JE
ARARRAAR
*BOXEU w
AERRARAN
JE
ARXRAAKAR
xBOXEYle
RKRRRARARN
JE
(22 22 3]
sBOXEY =
RAARRAXA
JE
RRRANKAR
*BOXEW =
RARALXARRA
JE
RRRKARNRN
*BOXEX
RRRRARARAWN

JE

X100!
£13,(7T)
T 7

7

7

7_
DECODE

DECODE
TeTo (L)

MISC

LOAD

LOAD

STORE

JUMP YO BOXEY

DYl
JUMP
ENTER

COMP

» TRAP BACK TO THE ROM ON OPCODE 40 HEX,

LF
LFP
oC

8,708
9,708
X101041

LOAD MSB OF TOS ADDRESS
LOAD L SB OF TOS ADDRESS
JUMP T0 THE ROM FETCH ROUTINE

PAGE 2%2
0836 0104

0837 6DDE

0838 0880

0839 60D9

083A 084D

0838 0C8D

083C 113E
083D 8D2C

083E 07E}

083F 0877
0840 0877

0841 08AD

0842 09i1C

0843 0846

ARRRARAN
sBOXEY w
Rk RRAKN
DY] cP
REhkhkhkhkkh
*BOXEZ w
K & dedr g g e Yo
JE
KARREARR
*BOXEAA®
Y3222 %
cp
RAKRKRKAR
*BOXEBBw
[EXXX2 8 8]
JE
RAkARRARKR
*BOXECCw
ARkRRKKAN
JE
RKARARKR
*BOXEPPW
ARXANKAN
MISC LT
ADD»
ARRAERRA
*BOXERRw
RRARXAKRRA
0P} JE
' 33328388
*BOXESSH
RRAAXRAN
JE
JE
ARKRAARS
*BOXETT»
RERAREEDN
JE
ARRRAREN
*BOXEUYUn
RARRARR Y
JE
ARAAARKN
*BOXEVV X
RARAAKKA
JE
ARRRKNKKN
"BOXEWWS

13,X1DE!

STORE

$13,X109!

INPUT

JUMP

OP{
13,7, (L)

MIXAL NOP
FETCH

ADD
ADD

MUL

Olv

NCH

PAGE 213

0844 0AAD

0845 0AFe

0846 1148

0847 8C2C

0848 090}

0849 0A2B

084A 06FD
0848 074E

084C 07EY

084D 1122

084E 6CFe
084F 06F9
0850 6CEF
0851 1457
0852 6CEE
0853 06F9

ERAKRRRR
JE
RAXKANKR
RBOXEXXW
RARKA R &K
JE
Vborde etk deoden
RBOXEYYH
RARKRKAR
NCH LY
RAKAKA &R
“BOXEZZw
ERKRRRKR
ADD«x
RERRRRKR
& BOXEALR
KAKARR KN
DCS5 JE
'Y312120
«BOXEBL %
ERRRARAN
JE
RREKRKRRR
*BOXECT»
'SI1311L
JE
JE
RRKRAK KN
*BOXEDY w
RRRKRRRN
JE
RAKEARAK
*BOXEE w
RAKRKRAR
INPUT LT
* TEST

L 2R F B BN B

cP
JE
ce
JP
cP
vE

SHIFT

MOVE

DCS

12,7, (L)

NUM

CHAR

INT TEST INTERRUPTS BEFORE HALTIN(
STEP

FETCH

xta221
FOR ILLEGAL DEVICE CODES, THE ONLY
DEVICES ALLOWED ARE AS FOLLOWS?H
0E » DISK
0F o DISK
10 CARD READER
12 PRINTER
13 = TTY
12,X¥F21
ABORTY ILLEGAL CODES 0 =« D
§2,)X1EF!?
"6 CODES E = 10
12, X1EE!
ABQORTY CODE 1§}

PAGE 214

0854 6CEC ce §12,XYEC!

085S 1457 JP el

0856 06F9 JE ABORY CODES > 3
0857 9De9 §BT~ 13,7T,(T)

0858 275A LF T.,0P2 .

0859 872C ADD* T7,T,(L)

0854~ 0BOS~ oPe JE JBUS

0858 0BF9 JE joc

085C 0C03 JE IN

085D oC18 JE ouT

085E 0BDS JE JRED

PAGE 21S

* THIS ROUTINE PUTS THE LEFT HALF OF
* THE F SPECIFICATION IN P1}
* AND PUTS THE RIGHTEHALF IN P2
085F $107 LR LT X1071
0860 EC29 AND* 12,7,(T)
0861 BB20 CRY 11,7
0862 FC20" SFR™ 127
0863 FC20 SFR 2
0864 FC21 SFR 12,(T)
* TEST FOR ILLEGAL F FIELD VALUES
0865 6BFA cP 11, X1FA!
0866 1468 JP *e2
0867 06F9 JE ABORT
0868 6CFA cP 12,X1FA!
0869 1468 JP "2
086A 06F9 JE ABORT

086B §020 RTN

PAGE 216

086C
086D

08&6E-B900-

086F
0870
0871
0872
0873
0874
0875
0876

BBOO
BAOO

88090
8700
B&0O
B500
B40O
B300
8200
1020

N »%»

26
24

ZERO OUT FILES SUB ROUTINE

Z0F
Z0F

Z0F
Z0F
ZOF
ZOF
‘20F
Z0F
ZOF
RTN

THIS ROUTINE 1S USED BY THE ENTER,
DIVIDE AND MULTIPLY ROUTINES TO
ZERO OUT CONSECUTIVE FILES

1 :

—
i -4

NN&U!O‘*IO?

PAGE 217

0677 0856
0878 9829
0879 B760

087A 4co7
0878 {494

087C CAOQ3
087D ASOQ2

0B7E 9740
087F B820

0880 CBOY
0881 B8A23
0882 8982

. 0883 1180
0884 5001

0885 D820

0886 €801
0887 D438
0888 2006

* ADD AND SUBTRACT ROUTINE

AAKAKRRKARKRAR K AR KR AR A AKX

* THIS 1S THE ADD AND SUBTRACTEROUTINES
« OPCODES 01 & 02

LEE S RS2SR

* BOXEA #
KAXKNRKR KX

ADD JE

§8Tx

cPY
RN AN RN
* BOXEB =
2 EEE RS &
T2
JP
323323288
* BOXEC w
RRARRXANNARN
MOV
RMF
RARAKRARRNN N
% BOXED »
RRKAKKARKN
DEC
CPY
REARARRARK
* BOXEF =
RERAKARRXRA
AF MOV
ADD
ADD
RRAKRRRRRN

» BOXEG

 RRRRRRERK

LT
TN
AARRRRRAR

» BOXEH »
KRKRRARRKX

XO0R
ARARARKER

* BOXEL »
RRARRRRAR Y

MOV

XOR»

LF

RAXAA KAk

* BOXEJ »
ARRRKRRAA

LeR
13,7,(T)
1,7

f2,X0071
AE

10, (N)
9 (M)

Xtgaol
$3,x104!

8,7

e e 0D
Ap™- -
- e
XKe -4
-]

SEPERATE LEFT AND RIGRT FIELD

S9GN REQUIRED 77
NO SIGN REGQUIRED

TEST QPCODE
SUBTRACTECOMMAND
FLIP SIGN BIY OF M

EXCLUSIVE OR SIGN BITS

PAGE 218
0889 5004

0884 3D10

0888 Fi28
088C 5707
0880 149C
088E ADOS
088F 37FF
0890 8937

0891 5707
0892 §49C

0893 3DFF

0894 9443
0895 9982
0896 ADOG
0897 37FF

0898 80B7
0899 149}

089A B8OO
0898 1480

089C 30FF
089D SD06
089E 14A3

TN

Kkkhhhkhkhk

* BOXEK »
KRRRKARRK

AF
RARKKRRAR

- BOXEL *—
RERAAKARRN

SFR«

TN
JP
RMF
AF
ADD
REAKRRRAAN
* BOXEM =
RAARRAKARR
AM TN
JR
RRARAKAR AWK
* BOXEN »
ARRKKRRR K
AF
[$ X2 X288 3}
* BOXEQ =
RRAKRRAR K%
DEC
S§B87Y
RMF
AF
RERKARARKAA
* BOXEP »
RRAKRR Ak k%
ADD
JP
RRRRRARKRN
x BOXEE «
RARRRRAKRN
AE Z0F
JP
RRXRRRARRE
* BOXER w
RRKRRKRRAN
AR AF
TN
JP
RRAXARRRAN
% BOXEY «

0sX'04)

$13,x1401

{

T X407
AR

13,CU)
TsXFFI
0:,7,C4(S)

TeXt0TH
AR

§13,X1FF!

TEST IF SIGNS SAME

SIGNS NOT SAME, SUBTRACT

CLEAR LINK REGISTER TO 0
TEST P7T = 0

Uc=aPi3, READ §ST BYTE
DECREMENTEPT BY {
DO FIRSTEADD

0sTelsCy(S)

AM

$13,XVFF!
$13,x106!
AS

SUBTRACTE1=FROM P§3
TESY P13 > {

PAGE 239

089F
08A0
08AtL
08A2

08A3
08A4
08AS
08Ab

08A7

08A8
08A9

08AA
08AB
08AC

CDOs
8097
30FF
1490

FO8o
1600
4020
14AA

4001

0053
07E}

4poy
07E}
0D3¢

ReA kR k k%
MOV
ADD
AF
JP
Rkkkk ki
-BOXEY
Wk Aok ok
AS SFL
L
TZ¢
JP
RARRARXAAR
* BOXES w
ARRE AR K AN
12
ERAKRRRARE N
* BOXET #
KKKk ARhk kN
JE
JE
AkhkkhRRhhkh
* BOXEV +
RARARAAKNARN
AV T2
JE
JE

13,(V)
0,L,Cr(S)
13,X1FF!?
ARe¢}

13,0
X100
13,x1201
AV

13,x1041

SAVE LINK BIT FOR TESTING

WERE SIGNS SAME 777
SIGNS NOT SAME

LINK = | =2> QVERFLOW

OVERFLOW HAS OCCURED

OVERFL
FETCH

13,1081
FETCH
E00

GO SEY OVERFLOW FLAG

LINK =2 1 227

LINK=! e RESULT IN TRUE FORM
MUST COMPLEMENTERESULT & SIGN

PAGE 220

08AD

08AE
08AF

0880
0881
08Be

08B3
0884

0885
o8Be
0887
oses
08B9
08BA

o8es
oaec
088D
08BE
08BF
08C0O
08Ct
oece
08cC3
08C4
08CS
08Cé6

oec?
o8cs
08C9

085F

4co7
148S

CAO3
4902
8C40

1000
D10

1100
06C8
1080
F12}
1040
Cia0

8B4y
8AZ9
1080
BD20
1049
8984
1080
BC20
1040
9C4}
9824
BC20

€20}
1080
B720

* MULTOPLY ROUTINE

RRREAKARERRAANRAKRK A AR R AR AR A A &

¢ OPCODE 03
REKARAKKRN
% BOXEA #* SEPARATE F FIELD INTO Pit & P12
RAKAARRAR
MUL JE LeR SEPERATE (L}IR)
RERARRRE R
¥ BOXEB »
RAKNRRRRR _
T2 §2,X107% TESTY IF SIGN REGUIRED
JP ME SIGN NOTEREQUIRED
KAARRRARR
& BOXEC =
RRRKARARH
MOV 10, (N)
RMF 9, (M)
INC 12
23313311
* BOXED « COMPUTE ALGEBRAIC SIGN OF RESULT
RARXRRRLAND
NOP
X0OR 197
RAERARRRR
s BOXEE »
ERRRRRRRA .
ME L7 Xtoot PAGE OUTEINDEX
JE ViaA
S$SF
§FR To(T)
$PF :
LOR 1,7 SMMMMXXXE= P{
* SIGN & MAP PACKED INTO P}
INC 11,(T)
ADDx 10,7,(T)
S$SF
cPY 13,7
SPF '
ADD Lo (T)
SSF
cPy 12,7
SPF
DEC 12,(T1) Pl2 @« | =a> ¥
sSBY 11,pT4(T) Pi]l ¢ | =(Pi2 w |) eu> T
CPY 12,7 SET UP MAJOR COUNTER
* MOVE A REG, (P2 «P6) TO S7 = S 1}
MoV 2s(T7)
S§SF '
CPY 7,7

PAGE 221

08CA 1040
08CB C301
08CC 1080
08CD B820
08CE 1040
08CF C401
06007 1080
08D1 B920
08D2 1040
08D3 €501
08D4 1080
08D5 BA20Q
08D6 1040
08D7 C601
08D8 1080
08D9 BB20
08DA 087}
08DB 1040
080C 086C

0800 9640

08DE SCFF
08DF 151

0BEO 1080
0BE1 9D43
08E2 9C8e
0BE3 A000

08E4 §040
08ES 2008
0BE6 1080
0BE7 Bieo

0B8ES8 5101
0BE9 1500

SPF

MOV

SSF

CPY

SPF

MOV

S8R

CPY

SPF

MOV

SSF

CPY

SPF

MQv

SSF

CrRY
JE

SPF
JE
KARKRRR AW
* BOXEG o
BEEAXRARRAN
MG DEC
ERXNARAEN
* BOXEH w
ARERRRR KN
IN
JP
RAXXRRARN
* BOXEL »
ARERRAKRRAN
SSF

DEC

$BT

RMF
WARAAR NN
* BOXEJ w
RARRARARN
SPF
LF

"S8F

I
RRRRARNARRN
» BOXEK w
AAKRRRXRRAWN
MK IN
JP

RARKARRAA

39(7)
8,7
4,(7)
9,7
SeLT)
10,7
6s(T)

11,7
26 ZERQ FILES 6m=2

i1 ZERD FILES 1} » 2

12
TEST MAJOR COUNTERE= ZERO

12, XIFF!
mMP MAJOR COUNTER IS ZERO

READ IN A BYTE OF MULTIPLIER

13,(N)
gzlLa(M)

13,x1081
1,7
TEST LOW ORDER BITEQF S}

f.X101410
MM ZERO BITI SHIFT

PAGE 222

08EA CBO1
08EB 8630
08EC CAQ1
08ED 8580
0BEE C90]
0BEF 8480
08F0 C80}
08F1 83B0
08F2 C70}
08F3 8280
08F4 1040
08FS CBO}Y
08F6 B86BQ
08F7 CAQY
08F8 8S5S8B0Q
08F9 C90}
08FA 84B0O
08FB C80}
08FC 8380
08FD CT701
08FE 8280
08FF 1080

0900 FBOO
0901 FA80Q
0902 F980
0903 F880
0904 F780
0905 1040
0906 FB8O
0907 FABOQ
0908 F980
0909 F889Q
090A F780
0908 9040

090C SDOF
0900 140D

. 090E 1080

% BOXEL w
RKRRKRRAN
MOV
ADD
MOV
ADD
MoV
ADD
MOV
ADD
MOV
ADD
SPF
MOV
ADD
MOV
ADD
MOV
ADD
MOV
ADD
MOV
ADD
SSF
ARKKRKARKAR
* BOXEM »
RAKRARRKN
MM SFL
SFL
SFL
SFL
SFL
SPF
SFL
SFL
SFL
SFL
SFL
DEC
ARRRAKRAR
* BOXEN w
RRRRAAKAN
TN
JP
RARAKRRAKRRR
* BOXED =
ARRRKRRR A
SSF

ONE BITJ ADD & SHIFTY

- -
- ™ ™ ™ g
- - A -

| [and pul r

» wm wm wmw wiw Ow =
-

e Fa X Kol Ko N B
€Vt LI o I (D () =4

N2 N O e

- -
-

- ™ W

—f . smwm
-
r T [o ~ T

-

OVer O r (Y or O 4 O 4

-

e LT

N~ OLE O N
- W W W™ W™ W W™ W e

- . —fw-

§3,X10F!
MG

PAGE 223

090F Fi20
0910 14ES

0951 Clo0}
0942~ 1 08¢
09§83 B720
0914 F700
0915 2180
0916 E120
0917 1040
0918 2180
0919 Ef20

0934 1600
0918 07E}

SFR
JP
RRAARRKK N
* BOXEP w
KRXRRRKKH
MP MOV
SSF
CPY
SFL
LF
AND
SPF
LF
AND
KRRAKR AR S
% BOXES w
RAKRRARN R
Ly
JE

§0(7)

7,7
7 RESTORE MAP
J)X1801

107 RESTORE SIGN OF X

1,Xt801
107 RESTORE SIGN OF A

X100
FETCH

PAGE 224

094C 085F
09¥D-Cl0Y~
091E 1080
091F Bi20
0920 1Q40

0921 4COF
0922 1529

0923 CAO03
0924 A902

0925 B8C40
0926 D120
0927 SB807
0928 {S6F

0929 1100
092A OecC8
0928 8B49
092C B8A29
0920 1080
092€ BD20
092F 1040
0930 8984
0931 10809
0932 BC20
0933 F7e}
0934 Ci120
0935 1040
0936 CCO1
0937 9824
0938 BCéO
0939 2poC
093A C201

% DIVIDE ROUTINE WAAXAAKXARAXRARAARRRARKRAARRRARNARRS k&

* OPCODE 04

AAKRARAKN
* BOXEA #
RRRKRAkRRKKX

Dlv JE

mQv-

SSF
CRY
SPF
(282 X2 K2 &1
% BOXEB #
32382282
4
JPR
AAKRKRAKNR
* BOXEC »
ARRRRRA KN
MOV
RMF
RAERXRXNKANN
* BOXED w
ARAERARRWY
INC
XO0R
TN
JR
RAAkRRARRRR
* BOXEE »
ARARRAAXN
DE LT
JE

INC«
ADDx

SSF
cPy
SPF
ADD
SSF
CPY
§FR
LOR
SPF
MOV
87
CcPY
LF

MOV

LR SEPERATE (LJR)
T

.7

TEST JIF SIGN REQUIRED

§12,X10F!
DE

SIGN IS8 REQUIRED

10, (N)
9 (M)

COMPUTE ALGEBRAIC SIGN QF RESULTY

{12

1.7

11,X%07Y TESY FORE(0,0) CASE

Dl DIVIDE BY ZERO ATTEMPTD

X100

VIA PAGE OUTEINDEX
11007

$0,7,CT)

13,7

9 Ls(T)
12,7
T(T)
1.7
12,(T)

1107, (T)
12,1,7

13, x0C

2s(T)

PAGE 225

0938
093C
0930
093E
093F
0940

0941 BAZQ™

0942
0943
0944
0945
0946
0947
0948
0949
094A
0948
094C
094D
094E
094F
0950
0951
0952
0953
0954
0955
0956
0957
0958
0959
095A

0958

095¢C

095D
095€E
09SF
0960
0961
0962
0963
0964

B720
c301
8820
€404
B920
C50%

Cé04
8820
1080
cao}
1040
8220
1080
€304
1040
B320
1080
c4oy
1040
8420
1080
€50}
{040
B520Q
§080
€604
1040
B6290
1080
086C
10490

SCOF
1567

1080
9D43
9C82
1040
AD46
9Cc40
1080
BO27

CRY
MOV
CRY
MOV
CPY
MOV
CPY
MOV
CPY
SSF
MOV
SPF
CPRY
SSF
MOV
SPF
CPY
§SF
MOV
SPF
CPY
S8F
MOV
SPF
cPy
SSF
MOV
SPF
CPY
SSF
JE
SPF
RRARANRAERN
* BOXEF »
KA hRARRAR &
OF TN
JP
KRRRAKRAR
n BOXEG
ARRARRRAN
SSF
OEC
S8BT
SPF
RMF
PEC
S8F
CPY

12,X10F!
DH

13,(N)
12,04 (M)

§13,0,(V)
12

0,7,(S)

ZERQO FILES 1} » 2

PAGE 226

0965 {040
0966 {558

0967 {080
0958. CB11
0969 CA9Y
096A C99%
0968 (€891
096C C79}
096D S004
096E §S76

096F C104
0970 B720
0971 F700
0972 1180
0973 £120
0974 0DS3
0975 1600

0976 CBOY
0977 1040
0978 9B38
0979 {080
097A CAOY
0978 1040
097C 9aBE
0970 1080
097€ €90}
097F 1040
0980 9988
0981 1080
- 0982 €801
0983 1040
0984 9888
- 0985 1080

0986 C70}

© 0987 §040

0988 9788
0989 1080
098A 4004
0988 {5S6F

SPF
JP
ARAARRRAK
n BOXEH =
RARARRA KK
DH SSF
MOV~
MOV
MOV
MOV
MOV
TN
JP
KRR RNKRARY
% BOXE] w
RRAEARRNN
(VB ¢ MOV
CPY
SFL
LY
AND
JE
Ly
ARARKRARARKNR
* BOXEDJLx*
AARAREKRAK AN
DJi MOV
SPF
SBT»
SSF.
MOV
SPF
SBT»
SS8F
MOV
§PF
$BT»
SSF
MOV
SPF
§BT»
SSF
. MOV
: SPF
SBTx«
SSF
12¢£
JP

OF
TEST IF DIVISOR IS ZERO

DIVIDE BY ZERO ATTEMPTED
§04T)
77
7
X180
1.7 RESTORE SIGN
OVERFL GO SET OVERFLOW FLAG
Xtoo0!
TESTYT IF A > M OR A = M
13,(T)
11.,C,7
10,(T)
10,CyL,7
9(7)
9,ChL,T
8,(T)
8,LsCHT
=1p(T)-
TeLsCh?7

0.X104" A= M 227
01 OVERFLOW WILL OCCUR

PAGE 227

098C
0980
098E

098
0990

0991
0992
0993

0994
0995
0996
0997
0998
0999
099A
0998
099C
099D
099¢

099F
0940
0944
09A2
09A3
0944
09AS
09A6

09A7
09A8
0949
09AA
09AB
09AC

FCOO
4cot
1S6F

1040
205}

1690
F600
1548

1080
csol
8627
CAO0}
85A7
€904
8447
8oy
83A7
Cc701
8287

FCao
CCoy
B020
1600
4coy
1690
FC20
1040

F680
F580
F48Q
F380
Fes8o
FB80Q

SFL 12 GEY LINK BIT

TZ£ 12,X101! LINK = | ==2> POSITIVE RESULT

JP DI POSITIVE RESULT ==2> A > M
RARRARARK

* BOXEJ #
RAXRRRR K&

SPF

LF 13,4541
REXKAKRAKRKS

* BOXEN w
KAERERRER
Ly X190
SFL 6
JP DS§
RAKRARKRN
* BOXEQ +#
RERANRARN
00 SSF
MOV 11,(7)
ADD 69T,(S)
MOV 10,(T)
ADD SeTeble(S)
MOV 9.(T)
ADD ,T,L,(8)
MOV 8,(T)
ADD 3,T,L0(8)
MOV To(T)
ADD 2)TsL2Cy(8)
RRARARARWN '
* BOXEP w
RRARARARN
SFL 12,L
MOV 12,(7) '
CPRY 13,7 S13 <== LINK BIT
Ly X100t ASSUME NEGATIVE RESULY
12¢ 12,X104"' LINK = § ==> POSITIVE RESULY
L X190¢t POSITIVE RESULT
"SFR | ¥4 PUT VALUE BACK IN LINK REG,
SPF
RARRAAKAR
« BOXES #
RRRARARRAW
SFL 6, LINK BITECONTAINS RIGHT VALUE
DS SFL 5.4
SFL 4L
$FL 3L
SFL el
SFL 11,0

PAGE 228

09AD
09AE
09AF
0980

0981
09B2
0983
0984
0985
0986
0987
0988
0989
09BA

0988
09BC
098D

09BE
098F

. 09Co

09C1H
09C2
09C3
09C4
09C5
09Ce
09C7?
09C8
09C9

09CA
09c8
09cC
09CD
09CE
09CF
0900

FABO
F980
F880
F780

3DFF
SDFF
1588
1080
F680
FS80
F480
F380
Feso
1594

1080
4001}
{5CA

caoi
8629
CAOl}
85A0
c901
84A0
c8ot
83A0
701
8280
FD80
158¢C

Cci0}
8720
F700
1480
El20
$1600
07E}

SFL
SFL,
SFL
SFL
MR R AN R
* BOXET *
KEXKR KRR
AF
TN
JR
SSF
SFL
SFL
SFL

SFL.

SFL,
JP
RAkAARKKAKA
* BOXEU #
RANXKRRANN
]1] SSF
BU T2¢
JyP
RAXKAAEANE
* BOXfyY +
RRARNRAARN
MOV
ADD
MOV
ADD
MOV
ADD
MOV
ADD
MOV
ADD
SFL
JP
RRRARARKR A&
* BOXEW ¢
AARRRRRAAN
OwW MOV
CPY
SFL
LT
AND
Ly
JE

10,L
9L
8sL
7,0

13, X1FF?
§13,XFF!
ou

6,L
SeL
4,0
3L
2:L
DO

$13,X403" LINK = 1 =3>» POSITIVE RESULY
DW POSITIVE RESULT

NEGATIVE RESULTY

e
L4

" " ™ g
o RV BT R e R e | -
t

w Tl e 4~
-
-

™ -

$13 <e= LINK BITY

D= dWDE DO UNe=s O oe
C Wim » » u & == Ow

POSITIVE RESULY

$0CT)
77

7
X180
§.7
xXtoo!
FETCH

PAGE 229

0900 O7E} # NUM ROUTINE AXARAAARKARARARRKARRRRARRARRARARNRAAR R
« THIS ROUTINE TAKES 10 CHARACTERS IN THE A & X£REG,
* AND CONVERTS THEM TO THEIR BINARY EGQUIVALENT

RRKARARRAR
s BOXEA »
Rk AAARRAN
0201: 8600 N Lhbge Z0F 13
0902 BCOO Z0F 12
0903 BBOO 20F 11
0904 27E¢ LF TeXIEL!
RARRAXRA S
* BOXEB »
RRAKKAARRN
" 09D5 8746 NB INC TsCU)
RERRRAA LR
* BOXEC
RRAXBRARX KK
0906 6719 cPp TeX119
0907 1C33 JP ND
AKRNARANAANASR
w BOXEJ »
ARREAXRXAWN
0908 27E} LF ToX1EYLD
09D9 B90O Z0F 9
090A BAOO 20F 10
AREAKRARRN
* BOXEK #
ARXRAARARKN
09DB 8746 NK INC 7, (V)
Rkhkkokkk Nk
* BOXEM «
KRR AKR AN
090C {10F (W | X10F 1!
090D 10890 S8F
09DE 0029 EOTx 0,7, ,(T)
09DF 1040 $PF
RRARARRA AR
® BOXEN w
RRRNAKREN
09E0 8D20 ADD 13,7
09E1 8C80 ADD 12,14
09E2 88B8(ADD 11,0
09E3 8A80 ADD 10,0
09E4 898} ADD Ll
RARKARKAR K S
* BOXEL =
REANRRR AN

09ES 6714 cP TeXtiAl

PAGE 230
09E6 {S5F2

09€E7 B220
09E8 CAQ}
09E9 B320
09EA=(CBOY-
09EB B420Q
09eC CCO{
09ED BS20
09EE CDOY
09EF B620

09F0 1600
09F1 07E}

09F2 B220
09F3 CAO}
09F4 B320
09FS CBOY
09F6 Bu20
09F7 CCO}
09F8 BS20
09F9 CDOY

09FA FDOO
09FB FCB80
09FC FBB8O
09FD FABQ
09FE F980Q
09FF FDOO
0A00 FC80
0AO0] FBS8O
0A02 FAB0
0A03 F980

0A04 8D20
0A05 C501
0A06 8CAQ

JP
ARNRARAN kAN
* BOXES »
EARKKRNA AN
crPY
MOV
CRY
MoV
CPY
MOV
Ccry
MOV
CPY
RERARARRAAS
* BOXEU »
RAKNRAKAAN
Lu
JE
ARRAAAXRAN
¢ BOXELO »
RARRAR N KR
NO cPy
MOV
Cry
MOV
CPY
MOV
CPY
MOV
Rk kARAE
x BOXEP w
KRAKARKAR
SFL
SFL
SFL
SFL
SFL
SFL
SFL
SFL
SFL
8SFL
RARKRAKkARARKD
* BOXEQ w
RAAKRAXRRN
ADD
MOV
ADD

-y

(7

- -

Qe Nl e gl e NS
— -

Lo Y L ~~

- - -

~r ~r LW)

- e fyws e O
— ™

— -

Xt00!
FETCH

—

(T)

- Llee £ Lol = Ny
WwWe fju =w O
- adw =fjw —fw

) " ~~

il - -y

~— ~ e

PAGE 231}

0AQ7 Cd40}
0AQ8 8BAO
0A09 C301}
0AO0A BAAQ
0A0B C20}
0AOC 8940

0A0D FDOO
OAOE FCB80
0AOF FBB8YQ
0A10 FA80
0AL1 F98Y
0Af2 1508

0A13 110F
0A14 0029

0A1S 8D20
0A16 8C8O
0A17 8BS}

0A18 B820
0A19 CCOY
0ALA B920
0A1B CDOY

0A3C FDOO
0A1D FC80
0ALE FBSO
0ALIF FDOO
0A20 FC80
0A2y FB8O

0A22 8020Q
0423 €901
0A24 8CA0Q

MOV
ADD
MOV
ADD
MOV
ADD
R Podfedrfpalefe-fo-don
x BOXER »
REARKARAN
SFL
SFL
SFL
SFL
SFL
JP
KREAKAARSN
* BOXED =
KRRKARRKAN

ND LY

EOTx

ARARKARRAH
% BOXfE =
(22 X222 2 &1
ADD
ADD
ADD
(228 82 8 8 2]
% BOXEF »
RARAARNAR
CPY
MOV
CPRY
MOV
RRARRARA RN
* BOXEG »
RRARAAAKkAN
SFL
SFL
SFL
SFL
SFL
SFL
RRARXA AR
* BOXEM »
RAARRRAARN
ADD
MOV
ADD

XV1OF?
0,T,(T)

13,7
f2.L
$1,L0(T)

PAGE 232

0A25 €804
0A26 BBAQ

0A27 FDOO
02a8s FEBOY
0A29 FBS8O
0A2A §5DS

MOV
ADD
ARKRRRARN
* BOXE] »
KRKR KRR AN
SFL
SF[
SFL
JP

PAGE 233

0A2B
0A2C
0A20
0A2E
0A2F
0A30
0A31
0A32
0A33
0A34

0A3S
0A36
0A37
0A3B
0A39

0A3A
0A3B
0A3C
0A3D

0A3E

0A3F
0A40
0A4)
0A42
0A43

0A44
0A4S
0Ade
0A47
0A48
0A49

J{FF
9638
11E3
9588
1108
9488
1154
9388
1102

9288

F780
5704
1G34A
5004
0053

cao0l
8720
€301
B820
C404
8920
€504
BA20
€604
BB20

1100
06cC8
1080
F704
€120
2C07

» % »

Rhkkhhkkhn

n BOXEA »

weNQTE THIS

RAKRRR KKK

CHAR LY
SBT»
LY
S8BT
LT
SBT»
LY
58T»
LY
SBY»

kARARRRAKY

* BOXEB »

ARRANRREN
SFL
TN
JP
TN
JE

REKRRRRXR X%

* BOXED »

KRR AKAAN

HD MOV
CRY
MOV
cPY
MOV
CRrRY
MoV
CPY
MOV
CRY

22322223

* BOX{E »

RAARARRRN
Lt
JE
SSF
SFL
LOR
LF

CHAR ROUTINE Ax kAR A XA A XRAKRARKRKAK KRR AR RRARNK KA R AR & &
THIS ROUTINE TAKES A 40 BIT BINARY NUMBER IN THE

A REG, AND CONVERTS IT INTO 10 ASCII CHARAGTERS’

®* QOPCODE 05

SUBTRACT 254,0BE,3FF FROM A REG,

X1FF!
6,7,C
'

o rr VW o—-4m
£ @= W
-

X WX X N X

- - - - - - -

- U

") -l -
-

(g] L] (o] o

-

ToL _
TeX101Y
WO
D,x1041
OVERFL

X100!
VIA

TelT)
1.7
12,xt07!

IS~ THE HEXENUMBER = 9,999,999,999 DEC,

TEST LINK BIY

TEST ZERO
GO SET GVERFLOW FLAG

LOAD CHARACTERECOUNTER

PAGE 234
0A49 2C07
0A4A 1600

0AU4B 0AbO
0A4C 9C46

QRYD™ [18¢™ -

0AdE CB2}
0AUF BO27
0AS50 6CFD
0AS% 1CS3
0AS2 {C4A

0AS3 2007
0AS4 1600
0ASS 0A66
0AS6 9C46
0A57 1180
0AS8 (B2}
0AS9 1040
0ASA BoO27
0ASB 1080
0ASC 6CFD
- OASD 1CSF
0ASE {C54¢

0ASF 1080
0A60 Fi129
0A6} B720
0A62 1180
0A63 E120

0A64 1600
0A6S Q7EY

RARAKARRN
% BOXEF =«
RARAkkRAA
HF Ly
JE
DEC
L
LOR
CPY
ce
JP
JP
KkXRARAKK
* BOXEH #
KARRKKRAR
HH LF
Ly
JE
DEC
LY
LOR
SPF
CRY
SSF
CR
JP
JPR
RARRAARKN
* BOXE] »
KAKRARRAN
B¢ SSF

SFR«

CPY
LY
AND
RARKARAAKAN
x BOXEJ »
RRARRKRKRRANE
LU
JE

X100

2 5BY10
12, (V)
X4801
11,7,(T)
0,7,(8)
12, XVFD!?
HM

HF

12,X107!
xtoo!
«5B8Y10
124 (V)
X801
$3,70(T)

0,7,(5)
{2,X1FD!

K1
HH+1

o L ~f -
- ww =
-t Q0 4 ~
(=] ~
- o

X100t
FETCH

LOAD MASK,

DECREMENTECOUNTER

PICK UP NEXT ASCII CHARACTER

PAGE 235

® THIS IS A S BYTE DIVIDE ROUTINE
1222238
* BOXEA #
' 2232228
0A66 1080 +S5BY10 SSF
0A67 B700 Z0F 7
0AL8~BBOD Z0F 8
0A69 B9OO 20F 9
0A6A BAOO ZOF {0
0A6B BBOO Z0F i1
0A6C 1040 SPF
0A6D 2C23 . LF 12,X123%Y # OF TIMES THRU ROUTINE
' Y323 2227
% BOXEAA®
RARAAR KRN
0AG6E 2006 LF 13,1061
- 0A6F FBOO TAA SFL 8 |
0A70 FABO SFL 10,L
QAT F9890 SFL 9:L
0A72 F880 8FL 8L
0AT3 F780 SFL Tel
0AT4 9040 DEC 13
0A7S 4DFF TZ 13, X'FF!
0A76 1C6OF JPR TAA
RRARRKKRW
* BOXEB # INITIALIZE FIRST PASS
RRAKRAKRAN
0A77 1690 Ly Xt901 SET UP SUBTRACT
0A78 FBOO SFL 1
0A79 1104 LT X1QA? LOAD T WITH SUBTREND
0ATA 1C87 JP TE JUMP 10 SHIFTEROUTINE
KRRRARAAA
* BOXEC »
Y2223 0)
0A78B 8827 TC ADD 11,7,(8)
0A7C 8A87 ADD 10,L,(S)
0ATD 8987 ADD L4 (S)
0ATE 8887 ADD 8yL,(S)
0ATF 8787 ADD Tel s (8)
RRARRAKRKN
* BOXED TEST RESULTS
ARRRAKNAKRA
* LINK 2 0 =s» NEGATIVE RESULT
" LINK = § =3> POSITIVE RESULY
0A80 FD8O SFL 13,L
0ABY1 FD28 SFRa 13
0A82 1600 Ly X'00! ASSUME NEGATIVE RESULT

0A83 4DOY T2 $3,X108! LINK = | =3> POSITIVE

PAGE 236

0AB4 §690
0A85 1040

0AB86 FBBO
0ABY FABO
0A88 F980
0AB9 FB880
0ABA F780

0A8B 3CFF
0A8C SCFF
0A8D 1C95
0ABE 1080
QABF FB8O
0A90 FABQ
0A9y F980
0A92 FB8O
0A93 F780
0A94 {C78

0A9S 1080
0A96 4DOY
0A97 {020

0A98 110A
0A99 8820
0A9A 8A80Q
0A9B 8980
0ASC 8880
0ASD 8780
0A9E 1600
0A9F 1C97

LU
SPF
ARRAANRAKK
% BOXEE
1228 E 28 3 8]
SFL
TE SF{
SF{,
SFL
SFL
ARRARAAkAkE
* BOXEF #
KRR A kRN
AF
TN
JP
SSF
SFL
SFL
-SFL
S$FL
SFL
P
222282 %]
* BOXEG »
(88 222 8% 2 2]
16 SSF
A4
RTN
RAKAKRAAR
® BOXEH w
KARARRRKR
LY
ADD
ADD
ADD
ADD
ADD
Ly
JR

Xt9Q! POSITIVE RESULTY

f1,L LINK BITECONTAINS RIGHWTEVALUE
10,L

9L

8,L

Tl

12, X1FF1 DECREMENTECOUNTER

12, XFFY FINISHED???

16 RETURN

1.0

10,L

9.4

8L

TsL

1C

FINISHED DIVIDING, GET REMAINDER +VE

13,X104! LINK = | ==> POSITIVE RESULT

REMAINDER 1§ NEGATIVE

Xt0oAl
1.7
§0,L
9.L
8,L
7L
Xt00!
TGe2

PAGE 237

0AA0~CoFY
0AAY CA9¢
0AA2 4004
0AA3 07E}

0AA4 4COY
0AAS ICCF

0AAb6 5C04
0AA7 §CAC

0AA8 €201
0AA9 1080
0AAA BB2O
- 0AAB ICAE

OAAC 1080
QAAD BBOO

0AAE 1040
0AAF C301
0ABO B220
. 0AB1 C40}
0AB2 B320
0AB3 (50}
0ABU4 B420Q
0ABS C601
0AB6 8520

0AB7 B60O

* SHIFTERQUTINE kA kAR AKRAAAAKARRARKRARAKKAAARARRR AR KA
* THIS ROUTINE HANDLES THE SHIFTEINSTRUCTIONS

» OPCODE 06

KRR R AARARN
% BOXEAlw
RRAAARARK
SHIFT™ MOV
MOV
12
JE
REXANAKAN
® BOXEA »
RERARK AN
T2¢£
JP
ARAARAREN
% BOXEB #
BRARRKAARA
SB IN
JP
RARRARARA
® BOXEC »
KRARARARS
MOV
SSF
CRY
JP
RAKRRAR KR
* BOXED »
KRRAARRKY
§0 SSF
20F
RAXAKKRAKARSY
* BOXEE »
RRRRARKRNA
SE SPF
Mov
cPY
MoV
CRY
MoV
cPy
MOV
CRY
RRRREAARAEN
* BOXEM »
AARRRRAAN
Z0F

T {T)

10,C,L,(T)

0. X104 TEST IF 0 BYTES TO SHIFT
FETCH NO OPERATION, RETURN

12,X104! TEST FORESHIFTERIGHTECOMMAND
SL, SHIFT RIGHT

SHIFT LEFY ROUTINE

12,X104! TEST FOR CIRCULAR SHIFT
sD NONaCIRCULAR SHIFT

CIRCULAR SHIFTY
2y(T)

11,7
£13

NON=CIRCULAR SHIFY

1

3,(T)
27
4, (7}
3,7
S5.(T)
4,7
6,(7)
5,7

TEST FOR SLA COMMAND
6 ASSUME SLA COMMAND

PAGE 238
0AB7 B600

0AB8 5C06
0AB9 I1CCA

0ABA {080
0ABB C201}
0ABC §040
0ABD Bé620
0ABE 1080
0ABF €301}
0ACO Be20
0ACY1 CdO}
0AC2 B320
0AC3 €501
0AC4 B420
0ACS Cé601
0ACe BS20
0AC7 CBO}
0AC8 B620
0ACY 1040

0ACA 9AS0
GACB 99990

0ACC 5004
0ACD 1CA6

0ACE O7EY

0ACF 5C04
0ADO 1CF2

0AD1 1080
0AD2 C60}

Khkkkhkhki

* BOXEF #
1222228 431
TN
JP
RARKARRARN
* BOXEG «
RAKRARKAR
SSF
MOV
SPP
CRY
SSF
MOV
CPY
MoV
CPY
MOV
CPY
MOV
CRY
MOV
crPy
8§PF
ARRARRRRRR
% BOXE] »
RAARAKANKRA
Sl, DEC
§87Y
RRARARASN
* BOXEJ #
AANRRARRAN
TN
JP
RRRAERRRR
* BOXEK »
RERXERR AR
JE
RXKRXAERAN
* BOXEL »
ARRARRRRA
SL, TN
JP
RRARRRARR
% BOXEM »
RAKARRAR K
SSF
MOV

12,xX106' TESTY IF SLA COMMAND
§1, ' SLA COMMAND

STAXEOR™ SLCCOMMAND

er(T)
6,7
3,(T)

11,(T)
6,7
DECREMENT COUNTER

10,C
9,L,C

0oX1041Y TEST RESULT
$B NONeZERDO RESULT

ZERO RESULT
FETCH
RIGHY SHMIFT ROUTINE

12,x104% TEST IF CIRCULAR COMMAND
SNy NONeCIRCULAR COMMAND

CIRCULAR COMMAND

6,(T)

PAGE 239

0AD3 1040
0AD4 B720

0ADS 080
GAD® CS0T7
0AD7 Bé20
0AD8 C4ol
0AD9 BS20
0ADA C30}
0ADB B420
0ADC C20}
0ADD B320
0ADE 1040
0ADF Ce0}
0AEO0 1080
0AEY 8220
0AE2 1040

0AE3 €504
0AEd4 Bb20
0AES €40}
0AES BS20Q
O0AE7 C30%
0AEB Bd420
0AE9 €20}
0AEA B320
O0AEB C70}
0AEC Be2o

0AED 9ASO
O0AEE 99990

OAEF 4004
0AFO 07EY
0AF{ 1CCF

0AF2 B700

SPF
CPY
RRAKARRAKAN
* BOXEP #
AAKAARKR AN
8P SSF
MOV
CrPY
MOV
CrY
MOV
CRY
MOV
CrPY
SPF
MOV
8SF
CPY
SPF
RAKRAKANRY
* BOXEQ
AKX RR A RN
$Q, MOV
CPY
MOV
cPY
MOV
CRY
MoV
CPY
MoV
Cry
RARRR KR KA
* BOXER #
RRXKANRARN
DEC
$87Y
REARXRATARN
® BOXER »
ARRRARARAN
T2
-JE
JP
RRRRAARAA
* BOXEN #
RERRNARRARN
SN, Z0F
ARRRRERARN

7,7
SHIFT SECONDARY FILES (XEREG,)

S (TY
6,7
4 (7
S¢7
3.(T)
4,7
2s(7)
3,7

6,(T)
27

SHIFT PRIMARY FILES (A REG,)

Se(T)
6,7
4s (T
5,7
3,(T)

DECREMENTECOUNTER

10,C
9, L,C

TESY IF RESULT ZERO

0, X104
FETCH 2ERO RESULT
SL, NONeZERO RESULT

NON=CIRCULAR SHIFT
7

PAGE 240
* BOX£O w TEST IF SRA QR SRAXECOMMAND

KRRRRRK RN _
0AF3 SCo02 TN §2,x102!
0AF4 §CE3 JP SQ, S8RA COMMAND

0AFS 1CDS JP sP SRAXECOMMAND

PAGE 24}

2 MOV ROUTINER A AR AR KA A AR AR RARA KRR AR KRR RARAARALSARRKARR

* OPCODE 07
ARRRAARRAR
* BOXEA =
REAKRNRAKAN
0AF6 110 MOV LY Xtoft
GAFRT™ 0BCT vE— VIA- PAGE- IN INDEXE#Y
% MOVE INDEXE£! (S9,S10) Y0 P7, P8
0AF8 1080 S$SF
0AF9 C90¢ MOV 9,(T)
OAFA {040 SPF
0AFB B720 CPy TeT
0AFC §080 SSF
0AFD CAO} MOV 10,(T)
0AFE 1040 SPF
OAFF B82¢ cPY 8,7
* ADJUST CONTENTYS OF INDEXEY
% INDEX {<==INDEXY ¢ F (# OF WORDS MOVED)
0800 CCO}Y MoV 124(T)
0801 1080 . SSF
0B02 8A20 ADD 10,7
0B03 8980 ADD 9,4
0BO04 1040 SPF
L CONVERY # OF WORDS (MIXAL) TO TRANSFER
* Y0 # OF BYTES (MICRODATA) TO TRANSFER
* F €=« F % §
0805 FCOOQ SFL 12
0806 FCOO SFL ie
0807 FCOO SFL 12
* CONVERTEMIXAL ADDRESS FROM INDEXEQ
. TO MICRODATA ADDRESS
] MOCRODATA ADDRESS = MIXAL ADDRESS =» 8
0808 F800 SFL 8
0809 F789¢ SFL Tl
0BOA FB800 SFL 8
0B0B F789 SFL TsL
0B0C FB00O SFL 8
0BOD F780 SFL Tl
L X SET UP ADDRESSES FOR READ WRITE LOOP
0BOE 9840 DEC 8
0BOF 9780 $87Y Tsb
0810 9A40 DEC 10
0Bi1 9980 . §BT 9L
0B1e 2B0S LF 11,X105¢' SKIP MASK
» SENDING ADDRESS IN P9, P10
% RECIEVING ADDRESS IN P7, P8
» BYTE COUNTER IN P12

LASE SR 22 4]

PAGE 242

0813
0814

0815
0816

0817

0B18
0B19
081A
0BiB
081C

eB10D
0B1LE

0B3F

0B20
0821
0822
0B23
0B24
082S
0826

8A43
A982

8843
A792

9C40

1105
EA29
0B38
4004
1020

UCFF
1013

07€¢

j102
8420
8980
8820
8780
9C20
1010

*» BOXEC w
KARARKRKRAN
RyW INC
RMF
KRXRREAK KN
* BOXEE w
KA RARARAN
INC
WMF
RARERARAN
® BOXED w
RERREAARRN
DEC
RERAARAAR S
* BOXEBIw
RENRREREAN

Lt

AND#
XOR%

12
JP
AR AARERR KR
» BOXEB =
RARRANKARRR
MB T2
JP
RRARARRAKS
¢ BOXEF w
RARARRRRKN
JE
RRKAAkR A AA
» BOXEG »
RARRARKR N
oSKIP LT
ADD
ADD
ADD
ADD
§8Y
JR

READ WRITE LOOP

10, (N)
Gols (M) READ A BYTE
84 (N)
Tl (M) WRITE A BYTE

12 ADJUSY BYTE COUNTER

Xt0S51 LOAD T WITH SKIP MASK
10,T,(Y)

11,7,C TEST IF TIME TO SKIP 2 BYTES
0, X040 TIME YO SKIP YWO BYTES??
«SKIP YES

12, XFF? TRANSFEREDONE??

RoyW

FETCH

SKIP TWO BYTES

Xtge!

10,7 INCREMENTESOURCE ADDRESS
9L

8,7 INCREMENTETARGETY ADDRESS
7L

12,7 INCREMENTECOUNTER

MB

PAGE 243

0827 08&F-

0828 2780
0829 4Co07
082A 1D6C

0828 CAOQ3
082C C902
0820 ACCO

0B2E 5010
0B2F {03}

0830 D729

0B31 E729
0832 €020
0833 160}
0B34 2801
0835 2705
0836 CCO{
0837 9829
0838 9720

0839 SDO7
0B3A {059

0838 1107

] LOAD ROUTINE
v THI8 ROUTINE HANDLES ALL 16 LOAD COMMANDS

®

PUT RIGHT FIELD SPEC IN P{t, LEFT FIELD

SEPERATE (LIR)

TESTeIS SIGN BYTE REQUIRED?

JUMP TO BOXED
BYTE

NEGATIVE COMMAND?

JUMP TO BOXEG
BIT IN Y

AND OFF SIGN

JUMP TO BOXES

TESTe LOAD INDEX£COMMAND?

KAXAkKANK
*BOXEA
KRR ARN
Loap: JE LR
KKAXRARSY
*BOXEDR
AKKRAKRRNY
LF TeX1801
4 §2,x1071
JP LD
RARARKAR
*BOXfC » READ IN SIGN
RARENN AR
MOV 10, (N)
MOV 95 (M)
RMF 12,1
AEKANRAE
*BOXEE « TESTeLADD
RERRAR AN ;
LE TN §3,x1100
JP L6
ARRARAKR
*BOXEF w FLIP SIGN
RRRARAAR
XOR® 7,7,(T)
RAERAKRN
*BOXEG w
RAKRAREN
LG ANDY 7,T7,(T)
LOR 13,7
Ly Xtoyy
LF 8,x1011
LF ToX1051
MOV 12,(7)
$BTx 11,7,(T)
SBY Te7
I
*BOXEN » TEST=LOAD A COMMAND?
RXRRNNRN)
TN §3,x107!
JP LS
RERARKANY
*BOXEY =
RARXARRAN

LT

xtom

PAGE 244

083C ED29
083D 1080
0B3E 2007
0B3F DD38
0B40 1040
0841 4004
0B84 1056

0B43 5807
0B44 {D6E

0845 CCOY
0846 9829
0B47 8720
0B48 6TFE
0849 104¢

0B4A 8C4|
0B48B D46

0B4C CBOY
0B4D DC38
0BUE 270%

0B4F 4004

0850 8740

0B51 1600
0852 06C4
0853 1040
0854 2808
0855 je608

AND»
8SF
LF
XOR»
SPF
12
o e
' 23233028
*BOXEJxn
BRRKA KA NN
TN
JP
RARAK KRN
*BOXEK #
RkKkARKRR
MOV
LK SBTw
CRY
(of
JP
ARKRNRRA
ABOXEM »
KARAARRAK
INC
JR
RARARRRR
*BOXEN »
KEARRRNRS
LN MOV
XOR»
LF
[2322232 3}
*BOXED »
RRRARNR S
T2
' 33331228
*BOXER W
RARAANKR
INC
ARRRANKY
*BOXEQ »
RAXRKRARR
LaQ LU
JE
SPF
Lr
LV

RARRAR AR

13,7,(T)

13,x107¢
$13,7,C

0,X1040
LR-

t1,x107¢
LL

12,(7)
£4,7,(T7)
T¢7
TeX'FE!
LN

§2,(T)
LK

-l o g
-) e
e »
- - r~
Ow —
- LY

0,X1041

X100
PAGE

8,xt08t
X081

JUMP TO BOXERw LOAD XEINSTRUC

JUMP T0 BOXEL

GO PAGE IN INDEXEREGISTER

PAGE 24S

0856 CDO1
0857 1080
0858 8020

0859 3180
0BSA ED29
0BSB Bo27
0B5C 1040
0BSD CCOY
0BSE 8423
0BSF 8982
0860 9829
0861 BC6O
0862 1100

0B63 8846
0864 9750

0865 4006
0B66 §070

0B67 4007
0868 1080

0869 B027
0B6A 1040
oBéeB 1D63

086C 1100
086D {D2E

*BOXER »
Rhkkhhkhk kN
LR MOV
SSF
CPRY
WARK AR AR
“BUXES w—
Rk ARR KN
LS LY
AND »
CPY
SPF
MOV
ADD
ADD
SBTx»
CPY
LY
RAKA AR KA
* BOXET »
' 2312211
LY INC
DEC

AAkRkkhkkg

*BOXEY®
RRAAKREKN
T2
JP
ARRRARRN
«BOXEY #
RARKARARN
12¢
AKRARRRS
wBOXEX w
' 23328388
S$SF
WRERRRRN
ABOXEAA
RARAARARN
CPY
SPF
JP
RARARKAR
*BOXED »
[228 X2 2§]
L0 LY
JP

RERRRkAAN

13,(T)
13,7

X1801
13,7,(T)
0,74(S)

12,(1)

§0,7,(N)
9l (M)
$3,7,(T)

<O e

TEST LOOP VARIBLE

0, %4061
LW

JUMP TO BOXEW

TEST= LOAD A COMMAND?

13,x007°

0,7,(8)
LY

X100
LE

PAGE 246

*BOXEL #
Y2331 3
0B6E 2703 LL LF ToX1031
0B6F 105} JP LG
ARARKAAR
*BOXEW »
KXRRKERR i
0B70 SBO7 LW TN ISR AN IR
Y3220 02)
*BOXEY »
RARARRAN
0871 107E JP LFF
KARKAAARK
*BOXEZ *
KAKKARNRE
0B72 AQO} Lz RMF 0,(T)
RhkkAkAREN
tBOXEBB TEST FOR LOAD A COMMAND
KARAARKR
0873 4po7 . 12 §13,x107
RAXRARAR
«BOXECCH
KRRARR AN
0874 1080 SSF
RARRAAAR
*BOXEDD»
KAKRARRA
0875 8027 cPyY 0:.7,(8)
0B76 1040 SPF
0B77 9CS0 OEC 12,C
RARKANEAR
kk%
*BOXEEE# TEST LOOP VARIBLE P12
AXRRAREAR
0B78 4006 12 0,X106!
0879 {D7E JR LFF RETURN
ARRAARRA
*“BOXEGGH
RARRAARN
0B7A BAY3 INC 10, CN)
0878 8982 ADD 9oL (M)
0B7C 884e INC 8, (V)
0870 1072 . JP (4
RRARNRAN
*BOXEFF»
ARRAAKRAA
0B7E 1600 LFF Ly X001
0B7F O7TE} JE FETCH

PAGE 247
0B7F 07EY

0BBO 085F

0B81 9829
0882 B760
0883 CCO1
0BB4 B8AZ3
0B85 8982

0886 6DE7
0887 1D99
0888 60El
0B89 IDAF

0BBA 6DEOQ
0888 1099
0B8C 6DDF
0880 1091

0BBE 8740
0BBF 8740
0890 1DBé

0B91 4CFF
0B92 1097
0B93 ATS0
0894 1§00
0B9S 8Ad43
0B96 8982
0897 2CCD
0B98 {DB4

*STORE ROUTINE

*

REAAR RN AR AN AARRRRRRRARARANARR AR kA&

. THIS 18 THE STORE ROUTINE ITEHANDLES ALL STORE COM

*

REERXRRARRX
% BOXEA »
Fedoirak -k & fefes
STORE JE
AARKRRER K
* BOXEB =
ARKRARRA®
S87»
CRY
MOV
ADD
ADD
RAAKANRARE
* BOXEC #
ARXKRRE R kN
cpP
JP
of
JP
ERRAARKAARAAN
* BOXEDRE =
RERKKRARARKR
cep
JP
ce
JPR
*
RRARARKA N
®* BOXEH w
REKARRAA %
INC
INC
JP
RRRARARRRR
* BOXEF #
KRARRAKRAN
SF 1Z
JP
WMF
LY
INC
ADD
LF

JP

LeR SEPERATE (LJR)

T,(T)

- g -
X

1!,
T,7
12,
10,
9L

- .
e

{13, x1ETY
SG JUMP TO
13,X1EL!
8@ JUMP TO

§3,X1EQ!

86 , JUMP TP

13,X1DF !

SF JUMP T0
NO JUMP

"SXE JUMP 710

12, X1FF!
45

7.0
Xt00!
10, (N)
9rls (¥
12,x18)!
suU

BOX£O$ STORE A
BOX£QY STORE INDEX

BOX£Gs STORE X

BOXEFt1 STORE J
IMPLIES) STORE ZERO

BOXEX

PAGE 248
0898 {DBY

0899 €COY
0894 B820
0898 2CC7
0B9C-CTOY
0890 926

0B9E 5807
0B9F {6C}
0BAO 1DA2

0BAf 8C4é

0BA2 6DEY
0BA3 {DAS

0BA4 1080

0BAS 0001
0BAS6 §040

0BA7 A750

0BAB S70F

0BA9 {DAD

0BAA B8A43

ARRAKAARRKYN
% BOXEG w
REEAANARK
SG MOV
CRY
LF
MOV
S8BT
EREXRAAKN
« BOXEDD»
RRARAXNARAN
TN
L
JP
RRARANARAREN
* BOXE! «
khkkkhkkhdh
CR INC
KRR RAREN
* BOXEJ #
RRKRARRARS
SJ cP
JP
KARAAKRXRE
¢ BOXEK w
KARARRAAKKKX
SSF
RERXRRRRAN
® BOXEL »
RARRARRRED
SL EOY
8PF
KRRAARNKRAR
* BOXEM »
KRR ANRAR
WMF
122328288 %]
% BOXEN »
ARARARAR AN
SN IN
RRRRRRAARN
% BOXEP »
RRRXNK AN
JP
KRARAARARY
* BOXEQ »
RRRKARKRKW
INC

12,(T)
8,7 :
12,X1CT
T4 (T)
12,7, (V)

8,X107)
Xtci!
SJ

12,(V)

13,X1E7!
st

0,(T)

7:0

ToX1OF

SEN

§0,C(N)

JUMP TO BOXELISTORE A

PAGE 249

0BAB 8982
0BAC 1DA}

0BAD 1600
0BAE-OTEY

OBAF 06C4
08B0 §040

0881 SCO07
0BB2 10C9

0883 2CC8

0BB4 6T7FE
0B85 10D}

0BB6 1100

0BB7 67FD
0888 1DBD

0BB9 A750

0BBA B8A43
0BBB 8982
0ssC {087

0B8BD &DDF

ADD
JP

RkkRkARAN

9Ly (M)
81

* RETURN TO FETCH ROUTINE

ARRARRAKR®
SEND LV
JE”
RRRAKRARRE
* BOXEQ w
AkXKXhRR A%
SQ JE
SPF
RAKRR KRR A
® BOXER w
wAARRARA NN
TN
JP
* BOXES
RRARRARRAN
LF
ARARRAKAN
* BOXEU #
KRR ANARS
SV cp
JP
32332222
® BOXEX
RERRARRRRSY
SXE LT
REARAARAEN
* BOXEY +#
KRNARRRR &
Sy cP
JR
ARRAARKAN
t BOXEfAAW
REXKREXARRY
WMF
RARNARRARRAN
* BOXEBB#
RKRARRRRAN
INC
ADD
JP
KRAKARRRAN
% BOXEZ »
RARKANRRAN

S$2¢ cp

xt001
FETCH

PAGE

12,x107!
ST
12,x1C8¢

TX'FES
SV

Xt00!

TeX1FD!
8¢

7,0

10, (N)
990l (M)
Sy

13,X10F!

GO PAGE IN INDEXEREGISTER

JUMP T0 BOXEXt P7< OR =3

JUMP TO BOXEZY P7 OR = 2

PAGE @50

0BBE 10CO
0BBF §DAD
0BCO 6DEO
0BCY 10DC3
0BC2 §0DA}
0BC3 4702
08€4=1DAL>
0BCS 5701
0BC6 1DAD
0BC7Y 2cCc9
0BC8 (DA}

0BCY9 1080
0BCA C80}
08CB 1040

0BCC ATSO
0BCD 2cc8
O0BCE 8Ad43
0BCF 8982
08D0 1DB6

0BDY STFF
0802 1DAD
0BD3 8C4dé
0BD4 {0A}

JP
JP
ce
JP
JP
¢
J R
TN
JP
LF
JP
RAKRARRRS
* BOXET «#
AKRKRKKRN
ST SSF
MoV

SPF

ARk ARAkkRY
* BOXEW w
ERAREAKARN
WMF
LF
INC
ADD
JP
ARk k kAR kN
* BOXEY w
ERARAANARY
Sy IN
JP
INC
JP

ne2

SEND
13,XtEQ!
ré2

S
TeN10210
St°
ToX1041
SEND
§2,x1C91
81

8,(7)

TeXIFFPI
SEND
12, (V)
Si

PAGE 25}

08DS 4co8

0BDS
0805~ (0BED
08D7 4CO1
0BD8 08F2
0BD9 5C02
0BDA {DE7

0808 1125

0B0C 2701
080D 064E

0BDE 9750
0BDF 5004
0BEO JDE4

0BEY S004
0BE2 07E}
0BE3 0CD4&

0BE4 5D04

. OBES 0CD4

* JRED DECODE ROUTINE AAAAAKRAKRAKRKARKRRRAARKANARARR K& &

RARARR KA AN
* BOXED w
RREARRRRN
JRED T2
JBUS EQU
JE©
T2¢
JE
TN
JR
RARARRN kN
« BOXEA #
ERARRAARY
JPRNT T
RARAKRKRKN
* BOXEB #
ERRARANRKN
LF
JE
RRAARANKAK
« BOXED w
KARARKRARN
«JTESTEDEC
TN
JP
ARRRANKRAKN
¢ BOXEE +
RRRARKAAR
JBE TN
RRARRANARARR
® BOXEF «
ARARARKRRRN
JE
R RARRAR
® BOXEH #
ERRARRRAKN
JE
RRRAKRKRRA
t BOXEG #
KEXARARRA
JBG6 TN
RAANRRRAEWN
* BOXEW #
RRARAKERAR

JE

ARKRARKAN
* BOXLI #

12,xV08!?
JRED
DRED
12,X1014?
TBUS
12,x102!
JCRD

Xxtast

T.X1011
DIX

7.:¢C
0,x104?
JBG

13,X1041

FETCH

JR

13,1041

JR

TTY?22?

PAGE 252

RRKARRARR
0BE6 O07E} JE FETCH
: KXRRANAS
* JCRD=#
RAERKRAN
0BE7 1387 JCRD LN CONT
0BES~{33p= LM HICORE
0BE9 AQO00 RMF 0
0BEA {DEB JR LL B
0BEB B760 CPY TeT1 PT&meaCCNT+]
0BEC 1DDE JP eJTEST
RRERRAKRN
» DBUS «
RARKRRARKN
0BED 1114 0BUS LY Xtiat INPUT MAJOR STATUS
0BED ODRED EQU oBUS '
0BEE 064(C JE «OIX
* TESTEIF CONTROLLER IS READY
O0BEF 5708 TN TeX1081
0BF0 IDE4 JP JBG NOY READY
0BF1 1DE} JP JBE READY
ARRRARKR
* TBUS =
ARRRNRAN
08F2 1377 TBUS LN TSTAY
0BF3 123F LM HICORE
0BF4 A000 RMF 0 READ IN INTERNAL TTY STATUS
0BFS 270} LF TeX1041 LOAD MASK
0BF6 ET720 AND Te7 STRIP OFF READY BIY

0BF7 0BOE JE WJTEST TEST IF READY OR NOT

PAGE 253

* JO0C DECODE ROUTINE XA Ak AAANKRAKRARARAKRRARAARAARK R A K&

RARAARK K AN

* BOXES w

RRKRARARAR
0BF8 06FD JE INT
0BF9 {125 10C LT X125 INPUY MAJOR STATUS
0BFA 064¢ JE DIX

PR A Ko

* BOXEK »

ARRAKRAKAKAN
0BFB S701% TN T.X1011 PRINTEREREADY
0BFC {DF8 JR 10C»4
0BFD S704 IN ToX1041 PRINTER READY
0BFE {DF8 JP 10Ce=}

RRKARRARR %

* BOXEM w

AR ARR AR .
0BFF §10S LY X105 QUTPUT DATA BYTE
0C00 278¢ LF T.X8C!? FORM FEED
0C03} 0650 JE 00X

|2 3282838

* BOXEN w

RRKARARAKRN

0C02 07E} JE FETCH

PAGE 254

% IN DECODE ROUTINE A XAk R a AR ARARRRARARAAARRNRARARR AR

RERKRRRRAR
* BOXEV #
KARRERARN)
0C03 SC10 IN TN 12,x110!
0C04 0Cd4C JE DIN
0C05™ 4CUY Y7 12,Xv0T1Y YTY?7?7Y
0C06 0Ce0D JE TIN

0CO07 0C09 JE RIN

PAGE 259

0T Q4RO
0C09 1124
0COA 2710
0C0B 064E
0COC 123F
0CoD 4708
0COE 0Ci8

0COF 9750
0C10 S004
0C11 0Co8

0Cle 1144
0C13 0654

0C14 278F
0C15 2850
0Ci6 1387
0C17 0C47
0Ci18 28C0
0C19 24ACS
0CiA Q7D0A

* CARD READER INPUT ROUTINE MAXAARAARARRARARRARKNRARR
* RIN INITIATES A READ FROM THE CARD READER
* ONE CARD IS READ IN CONCURRENTEMODE

EERREKEKAR
% BOXEA »
RAKRKRRARS
J B
RIN LY
LF
JE
LM
12
JE
AEXRRRRAKR
* BOXEB
kKKK RARRR
DEC
IN
JE
KRAXRRA K&
* BOXEC »
REKRARRRRN
LY
JE.
RARRARKAYR
¢« BOXEE »
RRAKANRKARK W

LF

HOPPER LF

INT
xt241
TeX14DI
DIX
HICORE
Toxt081
HOPPER

7,C
0,X1041
RINm=}

xta41
cox

7.CLSB
8,80
CCNT
CTP
8,HSAVE
10,HADD
ERROR

INPUT STATUS BYTE

IS THE HOPPER EMPTY
HOPPER 1S EMPTY

SUBTRACT
ZERO RESULTE??27

ENABLE CON=CURRENT I/08 INT,

PAGE 256

* OUT DECODE ROUTINE AA XA ARk ARARAARKRARRAARRRAARARAX K

RRRKARARAR
* BOXEXE®
AKRARANRRN
0C18 5C10 ouT ™ 12,X110!
0C1C OCUE JE DOUT
0e10 4€0T TZ= 127Xt0t- TT¥?I?
0CYE 0C2F JE TOUT

0CiF 0Cel JE POUT

PAGE 257

(T20~08FD™
0c21 31es
0C22 277F
0C23 064dE

0c24 37FB
0C25 dTFF
0Cc26 0C20

0Ce7 11CS
0C28 0654

0029 2878
0C2A 279F
0ces 1397
0C2C 0C47

* PRINTEREQUTPUTEROUTINE ARAARAARKARRNARRARARKAKARRA
* THIS ROUTINE INITIATES CONCURRENTL£I/0 TO THE

* PRINTER

KRKAARR RN
* BOXEL =
RAXRRKRRR
JEF
POUY LY
LF.
JE
KRRRRRRRR
*« BOXEM »
EARAAAAAN
AF
T2¢
JE
BRRRAKKAN
® BOXEN »
KRAAARRRR
LY
JE
KARRKAK
* BOXEP #
RRRRARKAR
LF
LF
LN
JE

INTY
xtz2s51
TeXVTF?
DIX

TsX1FBY
ToXIFF?
POUT»}

X1C51
cox

8,120
7,PLSB
PCNY
cTp

INPUT STATUS BYTE

SUBTRACTES
TEST READY

NOT READY SO WAITY

ENABLE CONeCURRENT I/0

PAGE 258

0C2D 2842
0C2E 1430
0C2F 2844
0C30 2717
0C3) §23F
0G32*AT0%5~
0C33 9743
0C34 BB20
0C35 4801}
0C36 {442

0C37 €801
0C38 1080
0C39 BB20
0C3A 06FD
0C38 1080
0C3C CBOY
0C3D 1040
0C3E B820
0C3F 5840
0C40 1452
0C4y 1430
0c42 €80}
0C43 ATD3
0CHYd 9743
0C4S 2846
0C46 277F
0C47 €904
. 0C48 BC20
" 0C49 CAOY
0C4A BD20
0C4B 0656

* TTY INPUT / OUTPUT HANDLERS

TIN LF
JP

TOUY LF

TTY LF
LM
RMF
REC
CPY
Tif
JP

X% & %

AIT MOV
SSF
CRY

§SF
MOV
SPF-
CRY

JP
JP
TOK MOV
WMF
OEC
LF
LF
cTp MOV
crPY
MoV
CPY
JE

B, X421
TTY
8,Xtdys
ToTSTATY
HICORE
T3 (N}
Te(N)
1,7
1,004
TOK

SET STATUS Y0 BUSY ON INPUT
SET STATUS TO BUSY ON QUTPUTY

INPUT INTERNAL STATUS
DELAY

COPY STATUS INTO P1{
TEST BUSY BIT,{<=READY
NOT BUSY

TYY OR DISK IS BUSY MUST WAIT FOR
PREVIOUS 1/0 TOQ FINISH
THIS COQE IS USED BY BOTH TTY & DISK

8,(T)

$1,7
INT

$1.47)

8,7
Byxt1d401?
DISK
TTY
8,s(T)
Toals(N)
T+(N)
8,70
T,TLSB
9, (T)
12,7
10,(T)
13,7
We0urt

SAVE NEW STATUS VALUE IN Sit
GO SERVICE INTERRUPRTS

TTY OR DISK 227

DISK INSTRUCTION

TTY INSTRUCTION
WRITE QUT NEW STATUS

LOAD COUNTEREADDRESS»DELAY
SET UP COUNTER VALUE
LOAD C=1/0 ADDRESS(LSB)

PAGE 259

0C4E. 2800~
0C4D JU4F
0C4E 2802

0C4F $101%
050 EC20
0CS1 3C04

0C52 1114
0C53 064G

0CS4 5708
0C5S 1437

0C56 CCOY
0C57 B720
0C58 1114
0€59 0650

0CSA C801%
0€SB8 8720
0CSC §134
0CS50 0650

QCSE 1154
0CSF 0654
0C60 1080
0Cé61 €SO}
0C62 0652

* DISK INPUT & OUTPUT ROUTINE Ak kAkAkhaxahhtAarthkhkhsnh
¢ THIS ROUTINE INITIATES DISK 1/0 IN THE CONesCURRENT

* MODE,
ERARNRKNRRA
® BOXEL »
|2 X388 8 8 8
DTN~ LF™
JR
bouT LF
ARARARRRN
* BOXEK =
RARRARAAN
DIK LY
AND
AF
RRRXRARRAN
» BOXFA »
REAKARRKAY
DIsK L7
JE
RAKRRAkRAN
* BOXEB w
L
Rkhkhkhkkkhd
N
JP
kR ARRE R
* BOXEC »
RRRARRARN
MOV
cPY
LY
JE
RRAAKRAKARN
* BOXED w
ARRRARRARA
MOV
CPY
LT
Je
RAERRARRARAN
* BOXEE »
REARRAANRAR
LY
JE
SSF
MOV
JE

83Xr00!
DIK
B,xt1021

X0yt MASK OFF DRIVE NUMBER = { OR
12,7
§2,X104" SET UP QUEUE SEEK BYTE

INPUT MAJOR STATUS

X144
(01X

TEST MAJOT STATUS TO SEE IF CONTROLLER
1S READY

Texr08¢
WALTY NOT READY SO WAlY

QUEUE SELECTED DRIVE

12,(7)
77
X'la'
«DOX

FILE ACYION BYTE

8,(T)

Te7

X134

2 DOX
FILE DISK ADDRESS BYTES

Xts4¢
cox

S5:(T)
DOX

PAGE 260

0C63 §174
0C64 0654
0C65 Co01
0C66 0652

0C67 C40}
0C68 1040
0C69 BD20
0C6A 1080
0Cé6B C301¢
0C6C 1040
0CeD BC20
0C6E C901
0C6F B720
0C70 {194
0C71 0650
0C72 CAQ{
0C73 B720
0C74 1184
0C7S 0650

0C76 FDOO
0C77 FCBO

0C78 FDOO
0C79 FC8o
0C7A FROO
0C78 FC80
0C7C CDOY
0C70 8A20
0C7E CCO}Y
0C7F B89A0
0C80 9A40
0C81 998¢
0Ce2 B720
0C83 {104
0Cc84 0650
0C85 CAOY
0C86 B720
0C87 §1F4
0C88 0650

LY
JE
MOV
JE
RRRAKXARR AR
» BOXEF «
AREAKRA KK b
MOV
SPF
CPY
SSF
MOV
SPF
CPY
MOV
CPRY
LY
JE
MOV
CPY
LT
JE
ARRKARRAN
* BOXEG w
AN R ANY
SFL,
%
8SF|,
®
SFL
SFL,
SFL
8F|
MOV
ADD
MOV
ADD
DEC
88T
CPY
LY
JE
MOV
CPY
9 |
JE
RARARRKARN
* BOXEM

Xrran
cox
6,(T)
DOX

FILE BEGINNING CORE ADDRESS
4,(T)

13,7

3,4(T)

12,7
9.,(T)
77
X194)
200X
10,(T)
T:7
X184}
¢ DOX

FILE ENDING CORE ADDRESS

13 MULTIPLY NUMBER OF MIXAL
WORDS TO TRANSFER BY 8
{290 THIS GIVES THE NUMBER OF
" MICRODATA BYTES
13
i2,L
13
1240
13,(T)
ig'I : COMPUTE ENDING CORE ADDRESS
1 ()
9Tl COMPUTE ENDING ADDRESS (MSB)

b (T)

0
’
’
1pat
X

M =3 O+~

L
T
)
0

$10,(T)
77
XtF4?
,DOX

START QUEUED SEEKS

PAGE 26}

0ces 1114
0CBA 2790
0C88 0650
0C8C 07E}Y

ARARARR AW
LT
LF
JE
JE

X114y
TeX19Q1
DOX
FETCH

RETURN

PAGE 262

0C8D 6DDB-
0CBE 14BA

0C8F 6DD7
0C90 1494

0C91 6001
0C92 14A4

0C93 1080

0C94 Cé614
0C95 (591
0C96 €49}
0C97 C394
0C98 C291¢
0C99 C10}

0C9A 1040
0Ce8 B720Q
0C9C 119E

0C9D 8C20
0C9E $4AA
O0C9F 1484
0CAQ 14AF

% JUMP ROUTINE AA kA kR ARANAAX AR RRRAAKRRAR IR ARN A I RR K& K
* THIS ROUTINE HANDLES THE ARITHMETIC JUMP INST,
* OPCODES 39 e 47

RRRAKRRR R
* BOXEB »
ARRKKARRRA
JUMF CPT

JP
AEKARKAAN
%« BOXEC =
BRRKRNRRA

cP

JP

BRRKAARAN
% BOXED w
BRARRAEARR S
cP
JP
Y 223223
* BOXEE »
RRRRAR AR N
SSF
RARK KR K AN
* BOXEG w
RRARKARAN
JG MOV
MOV
MOV
MoV
MoV
MOV
KRRARRA AR
* BOXEM %
ARRRRRANRN
RAKAANKRAN
RRARAARKR N
RRRERRAR N
ARRARRR K S
JH SPF
CPY
LY
RRRAAARRRY
* BOXEY w
(1222282 2 &

ADD%»

JAXE JP
JP
JP

§37X108¢ DECODE
JP QPCODE 39

13,X'D7' DECODE
JG OPCODE 40 = A COMMAND

13,xiD4! DECODE
JF OPCODES 41 e 46

OPCODE 47
TEST FOR ZERD CONDITION
6,Cs(T)

S»Cole(T)
4sCoile(T)

'3¢COL'(T)

2,C,L,(T)
14CT7) MOVE SIGN TO Y

THIS SECTION IS COMMON TO OPCODES 40=4
THE CONDITION FLAGS HAVE BEEN SET

BY A TEST FOR ZERQ
THE T REGISTER CONTAINS THE SIGN

OF THE REGISTER BEING TESTED

To1 PUT SIGN OF REG, IN P7

12,7,(K) MULTIPLE WAY BRANCH ON F FIEL

JJ JUMP NEGATIVE
Jo JUMP ZERO
JK JUMP POSITIVE

PAGE 263

0CAl 14B2
0CA2 14AC
0CA3 {487

00 L% 0684~
0CAS 1080
0CA6 CAYl
0CA7 C994
0CA8 C801
0CA9 1494

0CAA S780
0CAB 07ElL

0CAC So004
0CAD 1404
OCAE 07E}

0CAF 5780
0CBO 14AC
0CB1 07E}

ocs2 57890
0CB3 1404

0CB4 5004
0CBS 07EY
0CB6 1404

0CB7 57840
0CB8 1484
0CB89 1404

JP
JP
JP
ARRRARRRA
x BOXEF =
RAKKARR &N
JF JE
SSF
MOV
MOV
MOV
JP
RRRRANRNN
% BOXEJ «
RRXKRAKA N
JJ TN
JE
ARREXR kR &
* BOXEL w
KREKRRRRY
Ji TN
JP
JE
'*121133%
A BOXEK »
AARRAKRAAR
JK TN
JP
JE
kAKX ARLN
* BOXEM w
KRR kAKX &S
JM TN
JP
ARRRARRAN
* BOXEQ =
RARRANRAN
Jo TN
JE
JP
RARXREKRN
® BOXEN w

"RRARRAR AR

JN TN
JR
JP
TRARXNRRAN
% BOXEP

JM
JN

FAGE

10,C,(T)
9,Cels (1)
8,(T7)

JH

JUMP NON=NEGATIVE
JUMP NON=ZERO
JUMP NONePOSITIVE

GO™ PAGE- IN INDEXEREGISTER
TEST FOREZERO CONDITION
MOVE SIGN 70 T

JUMP NEGATIVE

T,X180¢
FETCH

POSITIVE = RETURN

JUMP NON®eZERQ

0s%XV041
JR
FETCH

NON=ZERD RESULT = JUMP
ZERDO RESULTE= RETURN

JUMP POSITIVE

7,X180f
JL
FETCH

NEGATIVE = RETURN

JUMP NON=NEGATIVE

T,xt801

JR POSITIVE e JUMP
JUMP -ZERO

0,X1041

FETCH NONeZERQ = RETURN

JR ZERO » JUMP

JUMP NON=POSITIVE

Toxteot
Jo
JR

NEGATIVE = JUMP

PAGE 264

0CBA FCOO
ocsB §18D

(ese 8€20™
0CBD 14D4
0CBE 1000
0CBF {4DC
0CCo 1000
0CCt 1080
0cce 14EQ
0CC3 {080
0CC4 14dE2

0CCS 1140
0CCé 14D0O

0CC7 1120
0CC8 14D0

0CC9 1110
0CCA 14D0

0CcCB 1330
0CCC 1400

0CCD 1150
0CCE 1400

0CCF 1160

0CDO 108¢

RRAANRAAR
JP SFL
Lt

ARk AN

% BOXEQ =
KRR ANk AN

ADDw»-

Jup JP
NOP
JP
NOP
SSF
JPR
SSF
JP
KRRk hkkN
% BOXEY »
RERAAARRK D
LY
JP
AARAANRARAN
* BOXEW w
RRRRARKAD
LT
JP
RARAKR A kW
® BOXEX
RARRKARARN
LY
JP
232 28823 8]
* BOXEY =
KRR AAREADY
LY
JR
kRARRARRN
* BOXEZ #
RAKRKREARAAN
LY
JP
RRRRKARAKNE
* BOXEAAW
ARRAKRARS
LY
RRRRRARRAR
* BOXEBBw
RERKARRANN
JBB SSF

12
JMP

MULTIPLE

12,7, (K)
JR

Js
Ju

Ju

Xt401
JBB

Xxt2o!
Jes

X140
JBB

Xt301
JBB

X1501
JB8

Xt601

MULTIPLY P12 BY 2

WAY BRANCH ON F FIELD

JUMP
Jsd
JOv
JNOV

JiL

JE

JG

JGE

JNE

JLE

PAGE 265
0CD1 E738

0CD2 4004
0CD3 07E%

0C04 1040
0CDS CEOY
0CD6 1080
0CD7 BE20
0CD8 1040
0CD9 CFOY
0CDA 1080
0CDB BF20Q

0CDC 1040
0CDD €90}
0CDE BEZ20
0CDF CAOQ}
0CE0 BF29Q

0CEl 07E{

0CE2 {180
O0CE3 E738

0CE4 4004
0CES $4EC

0CE6 117F
0CE7 ET20
0CES8 1040

AND®

RRRAARKKA
* BOXECCH
RARARRRAN
T2
JE
% -k RRR g
% BOXER #
KRRk R &kkRk
JR SPF
MOV
S$SF
cpy
SPF
MOV
SSF
CrY
RARXANRRRRN
® BOXES #
RRERNRRAN
JS SPF
Moy
Cry
MOV
CRY
RAXRANRRA
* BOXEY »
RRXANKR RS
JE
RAEAKRAR K
% BOXEY w
RAKNRRRAAR

Ju LY

AND»

RRRRRRRAR
* BOXEDDw
KARRAARAN
1%¢
JP
RRARRRARR
* BOXEEE®
RXXRNNRRN
LT
AND
SPF
REARREARA
* BOXEGG
RRRRARNRN

T:74C

0,X104¢4 TEST FOR ZERO RESULT
FETCH RETURN

JUMP ROUTINE

SAVE NEXTEMEMORY ADDRESS
$4,(7)

14,7
15,(7)
15,7
JUMP SAVE J ROUTINE
9,(T)
14,7

$10,(T)
15,7

FETCH

0,Xxt04!
JFF OVERFLOW IS OFF

OVERFLOW FLAG IS SETY

XVTF
a1 RESET OVERFLOW FLAG

PAGE 266

0CE9 5C02
0CEA 14D4
0CEB Q7E}

QCEC™ 1040~
0CED 5C02
O0CEE 07E}
OCEF 1404

™
JP
JE
AR KRk kK
* BOXEFF
KRAXRANRAN
JFP* §PF
1l
JE
JP

12,x102!
JR
FETCH

f§2,xv02!
FETCH
JR

JOV = JUMP
JNOV = RETURN

JOV « RETURN
JNOV = RETURN

PAGE 267

0CFoO
0CF1

0CF2
0CF3

0CF4
0CFS

0CFeé
0CF?
0CF8
0CF9

0CFA
0CFB
0CFC

0CFD
O0CFE
OCFF
0000

5cod
14F 4

1180
Peeao

6CFE
1517

6DCF
{4FA
60C9
{504

cgol

404

1089

B120
0873
1040
€901

* % »

ENTER ROUTINE

% OPCODES 48 =» 53

RRKERARRAN
% BOXEA =
(332823 2.5 &
ENTER TN
JP
RARKRAR R RN
* BOXEB =
KARRNE AW
LY
XOR
RARARARARRN
% BOXEC w
KRR AARRARD
EC cP
JP
RAKRAR KA R
* BOXED »
KARKARKAN
cP
JR
cr
P
1 2388822 2]
* BOXEE »
AAXRNARRK
EE MOV
RARARRRAK
% BOXEF »
RAREARKRANY
12¢
RRARRARARAN
¢ BOXEG w
RRARAKEAN
SSF
ARRERENAN
o BOXEH #
CRAKEKREARR
cPY
JE
SPF
MoV
RRXARAANRN
® BOXEY «
RARKARRAR

12,x104!
EC

X1801
8,7

12, X1FE!
EP

ENTA OR
§3,X1CF!
EE

§3,x1C9
EO

8,(7)

13,x104°

1.7
24

9.(7)

RERRRRRRRARAR KR ARAR AR AR A RARRRR R AR
THIS RQUTINE HANDLES THE FOLLOWING INSTRUCTIONS)
INCREMENT, DECREMENT ENTER, & ENTER NEGATIVE,

TEST FOR ENN OR DEC
ENTA OR INCA COMMAND

DECA OR ENNA COMMAND
FLIP SIGN QF M

TEST FOREENT OR ENN COMMAND
INC OR DEC COMMAND

ENNA ROUTINE
TEST FOREA COMMAND
A COMMAND

XECOMMAND
INDEX£COMMAND

XECOMMAND OR A COMMAND

X COMMAND e SELECYT SEC, FILES

ZERO FILES 4 =2

PAGE 268
0D01 4D01}

0002 1080

0D03 BS20
0004 1040
0005 CAQ}

0D06 4DOY
0007 10890

0008 Béa20
0009 1556

0DOA 06C4
0008 C80}Y
0D0C 10890
0D0D B820
000E 1040
0DOF €901}
0Di0 1080
0011 B920
0012 1040
0033 CAOQ}
0014 1080
0Di5 BA20
0016 1556

0017 60CF
0018 151C

12¢
Rk Akkk%
t BOXEJ #
RRRAKNA KR AR
SSF
EARNARAKANN
- BOXEK: o
KEKARKARAN
CRY
SPF
MOV

.RRkRkRA kR

* BOXEL #
RERRRAKKRN

12

wkkakRkrAk

¢ BOXEM #
RARAKKRAS

SSF
RARRERRRNAN

* BOXEN #
RAKKKAKAN

cPY

JP
RRARNARNR
* BOXEO +
REKARRAKA
EQ JE

MOV

§SF

CPY

SPF

MOV

SSF

CRY

SPF

MoV

SSF

CPY

JP
RRRRARRAARN
* BOXEP w
REKEAARRK
EP cP

JP
[X322 £ X3

* BOXEQ «
RAARANANRD

13,x101"

S 7
10,(T)

13,x104

6,7

EQQ

X COMMAND

X COMMAND

INDEXECOMMAND

PAGE
8,(T)

8,7
9,tT)
9,1

£0, (1),

10,7
£QQ

13,X1CF!
ETY

GO PAGE IN INDEXEREG]ISTER

INCA OR DECA ROUTINE

A COMMAND

PAGE 269

0D19 6DC9
0D3A 1558

0D18 1080

0D3C Cio0d

001D 1040
ODIE D830
0D{F CAO}

0020 1600

0023 5004

0D22 1610

0023 &DCF
0024 1528

0025 6DC9
0026 155C
0027 1080

0D28 8627
0D29 1040
0D2A C90}

ce
JP
RARKANRARAN
® BOXES w
RRAXAKKNKEAR
8SF
Rk kkhkkk
* BOXET o
ARKkARARKN
ET MOV
RAAAAARKS
* BOXEYU w
RAKRRANK®
EU SPF
XOR
MOV
ARAARRE AN
* BOXEXEW
RRKRAARKRAR
Ly
RRARAXRRRN
* BOXEV «
RRAKKARNARA N
TN
RARRARKAN
» BOXEW »
RRERARNKKN
Ly
RARARARRARN
* BOXEY »
RAKXKARRARN
ceP
JR
RRRXKAKRRAN
* BOXEAAW
NRARARARN
cp
JP
SSF
RRARXARRRR
* BOXEEEx
RKARARERRANN
EEE ADD
SPF
MOV
RARANRRR %
* BOXEFFw
RARAABAANN

13,X1C9¢
ER

$.(7)

X1001

0sX1041

xt10!

13,XICF1
EEE

$13,x1C9!
€8s

6,7,(S)
LT

INDEXE£COMMAND

XECOMMAND

MOVE SIGN TO T

TEST SIGNS, SET CwFLAGS

ASSUME SIGNS SAME=SEY UP ADD

TEST SIGNS

SIGNS NOT SAME=SET UP SUBTRAC

A COMMAND

INDEXE£COMMAND

XECOMMAND

ADD OR SUBTRACTEDEPENDING ON |

PAGE 270

0D2B 4DO} T2 13,x101¢
RAXARARRN
* BOXEGG#
RAARARARN
0D2C 1089Q SSF X COMMAND
ARRKAKRRN
A BOXEHHW
RARRARR deton
002D 85A7 ADD 5,7,L,(8) ADD OR SUBTRACT DEPENDING ON
0D2E 8487 ADD 4,L,(S)
0D2F 8387 ADD 3sLs(S)
0030 8297 ADD 2ilsCy(S)
KARRRRARR
* BOXENN®
KRXRANARRN
0034 FCBO Ell SFL 12,0 SHIFT LINK BIT INTO S13
0D32 5889 TN 8,x1801 TEST SIGNS
0033 1551 JR ELL SIGNS SAME
RAKRRNKAR
« BOXEJJn SIGNS DIFFERENT
. KRKRKARKRN .
0D34 4Ccoy T2 12,X104! LINK = §
QD35S 1556 JP [Jele] RETURN .
RAXRRARRR
* BOXEKK® LINK = 0, FORM 2!'S COMP, FLIP SIGN
RARRARNRS
0D36 1040 SFPF
0037 SDOF TN $13,X10F!
0D38 §S3C JP E0Q A COMMAND
0D39 SD08 ™ 13,1081 :
0D3A 1549 JP EPP INDEXE£COMMAND
ARRRRARRY
* BOXEOOw XEOR A COMMAND
: KARAARRAR
0038 {080 SSF
0D3C Db660 EQO XO0R 6,7,F
0D3D DS69 X0R SyT,F
O0D3E D4s60 XOR 4,7,F
O0D3IF D3SO XOR -32TF
0D40 Deso XOR 2,1,F
0D4t 8640 INC 6
0D42 85890 ADD SeL
0043 8480 ADD 4,0
0044 8380 | ADD 3,1
0045 8289 ADD 2L
0046 1189 LY xt8014
0047 D129 XOR 1,7 FLIP SIGN
0D48 1556 JP EQQ

PAGE 27%
0D48 1556

0049 1080
004A D960
004B DA6O
004C™ BAGO-
0D4D 8980
ODHE 1180
0D4F D820
0050 §55¢6

0051 SCO}
0D52 1556
0053 1080
0054 180
0055 C720

0DS6 1600
0DS7 07E}

0058 Q6C4
0059 (o080
0DSA C80}
0058 151D

00SC 1080
0DSD 8A27
QDSE 1040
0DSF C901
0D60 1080
0061 89B7
0D62 1040
0D63 153}

I 22823 8% 4]
% BOXEPPw
RAEKARRAE N
EPP SSF
XOR
XOR
INC
ADD
LY
XOR
yP
RARRARKRAN
* BOXELL®
AkARARRAN
ELL TN
JP
OVERFL §$
LY
LOR
RRRAMNRRARN
%« BOXEQQw
RRKARAKAN
EQQ Ly
JE
ARARRARRERR
* BOXER »
RRRRARRRN
ER JE
SSF
MOV
JP
RRRRARARN
* BOXEBBW
RERRANNAN
EBB SSF
ADD
SPF
MOV
SSF
ADD
SPF

JP

INDEXECOMMAND

991,F

10,7,F

$0-

9L

xX180¢

8,7 FLIP SIGN
EQQ

TEST FOR OVERFLOW
$12,%X101"' LINK = {1 ==>» OVERFLOW

EQQ NO OVERFLOW
. OVERFLOW HAS OCCURED
X1801 Y «s= OVERFLOW BIT
7 SET OVERFLOW
X100¢
FETCH
INDEXECOMMAND
PAGE GO PAGE IN INDEXEREGISTER
8.(T) MOVE SIGN TO 7
EV

INDEXE£COMMAND = INC OT DEC

10,7,(8) ADD OR SUBTRACTEDEPENDING ON
9,(T) ‘

9, T4CsLs(S) ADD OR SUB DEPENDING ON U

Ell

PAGE 272

0D64 1080
0D65 118F
0D66 E720
0067 BDOO
0068 1040
0069 08SF

0D6A 6DC7
0068 1577

0D6C 6DCt
006D 157}

0D6E 1080
0D6F Ci01l
0070 1575

0071 06C4
0D72 1080
0D73 C801}
0074 BDOO

0075 1040
0076 1578

* COMPARE ROUTINE N XA AXAARAKRAAARNRARRARARARAKAN
* THIS ROUTINE HANDLES THE COMPARE INSTRUCTIONS
®* OPCODES 56 » 63
w COMRARE 1S DONE BY LOOKING AT THE RESULT
] OF SUBTRACTING-M FROM R
® IF- NEGATIVE RESLUT s=> [M[> (R
o IF-EQUAL RESULT s> (Ml = ([RI
w IF POSITIVE RESULTY ==3> (R » (M{
RARRKRKRN
* BOXEA # .CLEAR LEG FLAGS
RARRRRA NN
COMP SSF]
LY X18F1
AND T:7
Z0F 13 813 ZERO TEST FILE
SPF
JE LeR SEPERATE (LIR)
RERAARKAR
* BOXEB #
RANRAAKRAR
cP 13,x1C7!
JP co A COMMAND
RRRARNRRN
* BOXEC =
RARRANKRN
ce §3,x1C1?
JP CE INDEXECOMMAND
RRRKARKRKRE
¢ BOXEF » XECOMMAND
RRRRKAKAN
SSF
MOV 14(T)
JR CG
RRXRAKRXN
* BOXEE w
KRRKRARNS
CE JEF PAGE GO PAGE IN INDEXfREGISTER
§
MOV 8y,(T)
L0F $13
RARAANRRAKX
» BOXEG »
RARRRRRAN
€6 SPF
JR CH
RRRRRARRK
n BOXED =

Rk AARARN

PAGE 273
0077 Ci0}¢

0078 d4CO7
0079 {585

0D7A SB07
0078 150C

007C 1080
0070 BC20
0D7E 1040

0D7F CAOQ3
0080 C902
0b8y ACCO

0082 1080
0083 BB2O
0D84 §588

0085 1080
0D86 2B00
0087 2€00

o088 {040
0089 CBOY
0D8A 8A23
o088 8982
0D8C CcCot
008D 9829
008E B760

¢D MOV
KXRARAAAR
* BOXEM #
RRRANA RN
CH 12
JP
BRhkAkkERAW
* BOXEJ #
ARRRKAKARN
TN
JP
ARRAANR kAN
% BOXEK #
XXX A kXN
SSF
CPY
SPF
kRAARRA KW
* BOXEL *
ARRXRARKA S

MOV
RMF
AKRRRRENN
* BOXEM =
RARAARRAD
SSF
cpy
JR
KARARRERS
* BOXET »
KXRRARARN
Cl SSF
LF
LF
RRARKARAR
* BOXES »
TITTTITY
cs SPF
MOV
ADD
ADD
MOV

SBTx

. CPY
ARRRARARARR

% BOXEY w
RARKKRRAN

MOV

$00T)

12,XV071
C1

§1,X007¢
CKK

12,7

10, (N)
9 (M)
12,1

11,%100!
12,x100!

SIGN REQUIRED?7?
NO SIGN NEEDED

SIGN IS REQUIRED

IS THIS TYHE (0,0) CASE??
THIS 1S THE (0,0) CASE, SET =

SAVE SIGN OF REGISTER

P12«<aPi2+1, READ SIGN BYTE

SAVE SIGN OF M

PAGE 274

0D8F 8B49
0090 Ba2eé

0091 60C7
0092 {595
0093 6DCY
0094 §5A9

0D9S AQ00
0096 4007
0097 1080
0098 903F

0099 {S9E

0D9A AQ0O

0D98 4D07

0D9C 1080

0D9D 90BF
0D9E 1080
0D9F CD20
0DAO 1040
0DAY 37FF

0DA2 STFF
0DA3 §503

0DA4 9A43
0DAS 9982
0DA6 38FF

INC»
CrPY
ARAARRNKRR
% BOXET »
RARAANARKSN
(o
J?-‘
cpP
JPR
KA R AAKRRA
* BOXEULnw
RARARARRARN
cut RMF
T2¢
SSF
SBT»
JP
RRAENRERK
* BOXEY »
RRAREA XKW
cv RMF
AR RkhkhRAW
* BOXENW o
RARANNRAN
12
RARARARRR
* BOXEXEW
ARAARARAR
SSF
RAKRARRRN
& BOXEY «
RAAXARARR
SBTw
cy SS8F
LOR
SPF
AF
ANRARRKRA
® BOXEZ »
AR AARRAN
IN
JP
ARRRARRAN
* BOXEAAN
RAKRARRR A
DEC
§8T
AF.

11,(7)
8,7T,(V)

SEPERATE INDEXING COMMANDS

13,x1C7!

cut- A COMMAND
§3,x1C1t

cBB INDEX

0
$13,x407"

0,7,Cy(S)
cy

13,x107!

0sToLsCr(S)

13,7

ToX'FF! DECREMENTERY
TsX1FF!

cJJ P7 I8 ZERO

P7 18 NONeZERO

$10, (N)
9obls (M)
8y XFF !

DECREMENTEU & P8

PAGE 275

0DA7 C806
0DAB 1594

0DA9 3804
ODAA 6BFC
0DABR 15CT
0DAC 3BFD
ODAD C806&
ODAE BC10

0DAF A000
00B0 1080
0DB1 903F
obB2 1588

0D0B3 SBFF
0084 15C8

0DB5 A000
0DB6 1080

0DBY 90BF
0DB8 CD20
0DB9 1040
0DBA 3TFF
00BB 3BFF
0DBC 9A43
0DBD 9982

0DBE 3BFF
0DBF €806

0DCO STFF

MOV
JP
RRAKRANKKN
* BOXEBBw
ARARANRKR
ces AF
cP
Jr
AF
MOV
Z0F
KRAXRRRKN
* BOXECY«
RARRKRARA
RMF
SSF

SBTx

JP

REkRhhkkk
RARARRARN

* BOXECCH
RRAKRNKRAN

ccc N
JP

KRRk kkkk

% BOXEFFW
RARARRARR

RMF

S§SF

RARARRKX kN

® BOXEHH®
ERARKARAAN

SBT»

CHH LOR
S§PF
AF
AF
DEC
$87Y
WAk AN
* BOXEDDw
RAkAAARKARW%
AF
MOV
RAARARKRRK
* BOXEN »
REKRKRARAR

TN

8. (V)
cv

8,041
11,X'FC?
CGiw}
11, XV'FD?
8, (V)
12,C

0

0,7,C,(S)
CHH

11X VFFY
CGG

SUBTRACTES3

e,T,L,C,(8)

13,7

74X 1FF I
11, X1FF
10, IN)

9l (M)

ByXVFF
8, (V)

T)XFF

DECREMENTEPT7 BY
DECREMENTEPIL! BY |

PAGE 276

opCt 1503
0DC2 1583

00C3 BC1O
0DC4 AQ00
0OCS™ {000~
00C6 9C38
00C7 15C8

0DC8 A000
0DCY9 1000

0DCA 9CB8
00CB §080
0DCC CD20
0DCD 040
0DCE 37FF
ODCF 9A43
00D0 9982

00Dt 4TFF
00D2 {5¢C8

0003 S004
00D4 {SOF

00DS5 1080
0DD6 SOFF
0007 150C
0008 CBOY
0DD9 DC38

0DDA 5004
000B 15E2

JP
JP
* BOXEGw
RRRKRARK AN
20F
CGHY RMF
NOF
SBTx»
JP
KRKRRRRKA
* BOX£GG#
RRARAREKRRK
CGG RMF
NOP
(22828 &3]
* BOXEILIw
RRAKRKARARR
SBTx»
CIl1l SSF
LOR
SPF
AF
DEC
SBY
23222228}
» BOXEEE®
REXRAREKAY
12
JP
KRR ARAN
&t BOXEJJn
(3222282 81
cJJ TN
JR
RRARARRAAN
% BOXEUUw
RRRRRAKNRN
SSF
TN
JP
MOV
XOR+#
RRARAKAANRKRRA
* BOXEVVwW
KRXARRR AN
TN
JP

RERRRARRN

cJJ
ccc
12,C
WAIT FORET REGISTER

12,7,C
clI

12,74L,C
13,7
ToXVFF

10, (N)
9,L, (M)

DECREMENTEPT BY |

ToX'FF!
CGG

0,%x004°
cLL NONeZERQ RESULT

ZERQ RESULY

13,X'FF!

CKK BOTH OPERANDS = 0) SET :

11,(T)
§12,7,C

0,x1041
CMM

PAGE 277

* BOXEKK#H ZERO RESULY ==> (M[= (Rt
ARKRAARKKR
oDDC t120 CKK LT xtz2o01
00DD 1080 SSF
0DDE {SE7 JP ofe]e]
RARARARAASR
=~ BOXELL»
ARRAAKREL S
0DDF FD80 CLL SFL 13,4 SHIFTY LINK INTO Pi3
ODEO 4DO0} T2¢ 13,X104" TEST LINK BIT
0DEY 1SEA JR CNN POSITIVE RESULTY

REKARARRAN
* BOXEMM® NEGATIVE RESULY ==> (Ml » (R{
RAXANRRAN ‘
0DE2 1140 CMM LY X140
0DE3 1080 SSF
REARERARARE
» BOXEQOw
RRAKRARRRAN
0DE4 2050 LF 13,x150!¢
0DES 4B8O T2¢ 14,x180!¢
RAARRRREN
* BOXESSH
RRRARRARSK
0DE6 DD29 XOR* §3,7T,(T) FLIP SETTING
REARAANNRN
% BOXEQGw SEY LEG FLAGS AND RETURN
RARRARRRAN
0DE7 C720 ceq LOR Te7
O0DEB8 1600 LU Xtoo¢
RRXRKRARNRRN
* BOXERR+®
RRARR R A KN
0DE9 O07E} JE FETCH RETURN
RRRARRRKA
* BOXENN® POSITIVE RESULT =3> [RI[» ([M{
RRRKAKRARER

0DEA 1110 CNN LY X110
0DEB 1080 SSF
_ ARRERRRRS
* BOXEPPwW
RARKKRKAN
0DEC 2DS0 Lr §3,x150!
ODED 4C80 12£ 12,x180!
ODEE DD29 XOR* 13,7,(T) FLIP SETTING

0DEF {5E7 JP caea

PAGE 278
0DFO0 0000 END

VII. CONCLUSIONS .

As with most projects of any size, several conclusions
can be drawn by looking back at the effort as a whole. The
conclusions drawn here deal not only with the development
of the project but offer some evaluation cf the Microdata
1600/30 and the MIX 1009 computers.

Regarding the Microdata 1600/30 as a tool for emulation,
the following points can be made concerning the relation
between the 1600/30 and the target machine:

1. Unless the target machine has an 8 bit
byte, emulation will not be efficient.

This results from problems with byte
allignment as ﬁell as difficulities im-
plementing arithmetic operations on the
Microdata's 8 bit ALU.

2. Unless the word size of the target machine
equals 2N Microdata bytes, N = 1,2,3,...,
word boundary control will not be efficient.

3. Unless

N*M+2*p <30,

where N number of Microdata bytes per

target machine word,

M = number of full word registers in
the target machine,

P = number of address registers, (i.e.

index registers),

280

emulation must necessarily involve

register paging.

Regarding the MIX 1009 computer as a target machine

which is to be emulated, four conclusions can be drawn.

1.

3.
4.

The five byte word implies a degree of
firmware inefficiency when the host
machine is a binary computer.

The requirement that.a byte assume 64 to
100 states is restrictive in view of many
present architectures. This restriction,
if followed, forces the use of a 6 bit byte
on all implementations using a binary host
machine.

The character code adheres to no standard.
Sign plus magnitude is a somewhat obsolete
architecture but results in no major firm-

ware problems.,

Regarding the dévelopment ot the project as a whole

the following points are presented:

1.

Initially, Knuth's architecture was considered
inviolable and many of the early firmware
coding problems were due to strict adherence
to RKnuth's design.

With the passing of time and with increasing
experience in the cost of implementing all

parts of Knuth's design, his architecture

was considered less and less inviolable.
The resulting MIX computer, with 8 bit
bytes and ASCII code is.not only easier

to emulate but represents an instructional
computer whose architecture is more com-

patable with- commercially available machines.

281

REFERENCES

(1) MIX, publication number AL 1/73 03808, Addison-Wesley
Series in Computer Science and Information Processing,
1970.

(2) Microdata, Computer Reference Manual, Microdata 1600/30,
publication number RM 20001630-1, Microdata Corporation,
1973. '

(3) Microdata, Micro 1600 Computer Reference Manual, pub-
lication number 71-1-1600-001, Microdata Corporation,
1971.

(4) Microprogramming Handbook, Second Edition, Microdata
Corporation, 1972.

(5) Knuth, D.E., Fundamental Algorithms Vol. 1, The art
of Computer Programming, (Varga, R.S. and Harrison,
M.A., eds.), pp. 120-153, Reading, Mass., 1969.

(6) Richards, R.K., Digital Design, (Richard, R.K. ed.),
pp. 341-368, New York, N.Y., 1971.

(7) King, W. and Dennis, T.D., "A Paging System for the
Control Memory in a Minicomputer System", COMPCON 75,
Tenth IEEE Computer Society International Conference,
San Francisco, California, Feb. 25-27, 1975.

