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ABSTRACT

Important structures such as nuclear power plants should experience very little
vibrations in order to maintain the safety of the nuclear facilities during seismic events.
Protection of these structures by seismic isolators requires the isolators to provide seismic
isolation irrespective of the direction of excitations and to develop a stable response
without rocking. Conventional seismic isolation systems, however, can only fulfill partial
requirements for the seismic protection.

This study adopts the principle of periodic materials for seismic isolation. These
materials exhibit unique properties of frequency band gaps, where incoming waves with
frequencies falling inside the frequency band gaps are forbidden. The new isolation
systems, known as periodic foundations, function both as a structural foundation to support
the gravitational weight of the superstructure and also as a seismic isolator. The isolation
mechanism, hypothetically, can easily fulfill all the requirements for seismic protection of
the critical facilities.

This study focuses on the design of one-dimensional (1D) and three-dimensional
(3D) periodic foundations for seismic isolation of small modular reactor (SMR) buildings.
The theoretical study was first conducted to reveal the fundamental behavior of periodic
foundations. Then global sensitivity analysis was utilized to study the effect of design
parameters on the frequency band gaps. In addition, simple straight-forward design
equations based on the sensitivity analysis are proposed for the design of periodic
foundations. Utilizing the proposed equations, prototypes of 1D and 3D periodic
foundations were designed to isolate an SMR building. Scaled models were fabricated and

experimentally tested to validate the hypothesis and design. The periodic foundation
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structural systems were tested under various input waves, including seismic waves, in the
horizontal and vertical directions and the torsional mode. The shake table test results show
that the periodic foundations can reduce the acceleration response of the SMR building up
to 90% in the horizontal direction and the torsional mode. As much as a 40% response
reduction in the vertical direction is also observed. Moreover, the periodic foundation-
isolated structure exhibited stable response with negligible rocking on the structure. This
study proved the capability of periodic foundations to enhance the seismic safety of critical

structures.
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