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Abstract

Motivated by proofs in extreme value theory, we investigate the statistical properties

of certain chaotic dynamical systems, including the well-known dispersing billiard

model. In particular, we prove the existence of a maximal probability distribution

and rare event point process in the setting of two-dimensional hyperbolic systems

with singularities. We also obtain bounds on the growth rates of Birkho� sums with

non-integrable observables, where the Birkho� ergodic theorem fails, by using the

recurrence properties of the system to a point of maximization. We end with an anal-

ysis of extreme temperatures across Texas where we �nd compelling evidence that

the probability of observing higher summer temperature extremes has increased.

v
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Chapter 1

Introduction

The term dynamical system is used to describe a process that changes over time.

Dynamics play a critical role in understanding the systems that govern our everyday

lives: from stock market exchanges in viewing price �uctuations; to weather patterns

in observing changes in temperature or precipitation; to biological agent interactions,

such as the movement of cells in a petridish or the �ocking of birds.

In theory, a dynamical system is often viewed as a map (in the discrete-time

case) or a �ow (in the continuous-time case) on a space. While in simple systems

knowing the trajectory of a single point under iterations of the map is su�cient

for modeling and prediction, more complex dynamical systems often exhibit chaotic

behavior, where the future is too sensitive to initial conditions to be understood in

this way. As a result, many physically-relevant problems in dynamics are reduced to

studying the long-term behavior of chaotic systems.
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This observed randomness provides motivation for studying the statistical and

asymptotic properties of our system rather than viewing the trajectories individually.

We may investigate whether classical results from probability theory, such as, central

limit theorems, strong laws of large numbers, recurrence properties (such as Borel-

Cantelli lemmas), extreme value theory, and the like, enables us to make predictions

about the system's behavior.

Mathematically, a dynamical system is de�ned by the pair (X,T ) where T is

a transformation on a state space X, and for some point x ∈ X, the sequence

x, Tx, T 2x, . . . , T nx is the time-evolution of the point x.

De�nition 1.0.1. A family B of subsets of X is called a σ-algebra if the following

are satis�ed:

1. X ∈ B;

2. for any A ∈ B,Ac ∈ B, where Ac = {x ∈ X : x /∈ A};

3. if An ∈ B, for n = 1, 2, · · · , then
⋃∞
n=1An ∈ B.

De�nition 1.0.2. If X is a set and B ⊂ P (X) is a σ-algebra, (X,B) is called a

measurable space and the sets in B are called measurable sets. P (X) is called

the power set of X and is the family of all subsets of a set X.

De�nition 1.0.3. A set function µ : B → [0,∞) is called a measure on B if it

satis�es:

1. µ(∅) = 0;

2



2. for any sequence {An} of disjoint measurable sets, An ∈ B, n = 1, 2, · · · ,

µ
( ∞⋃
n=1

An
)

=
∞∑
n=1

µ(An)

(X,B, µ) is called a measure space and if µ(X) = 1, it is called a normalized

measure space or probability space. If X can be written as a countable union of

measurable sets with �nite measure then µ is a σ-�nite measure and (X,B, µ) is

called a σ-�nite measure space.

The transformation T is called a measure-preserving transformation, or inter-

changeably (X,B, T, µ) is a measure-preserving dynamical system, provided ∀A ∈ B,

µ(T−1(A)) = µ(A). Within this framework, µ is referred to as a T -invariant, or in-

variant measure.

De�nition 1.0.4. If µ and ν are two measures on a σ-algebra B of subsets of X, we

say that ν is absolutely continuous with respect to µ if ν(A) = 0 for any A ∈ B

such that µ(A) = 0. This is commonly denoted by ν � µ.

From now on we will restrict ourselves to measure-preserving transformations

de�ned on probability spaces.

1.1 Ergodic Theory

In physics and thermodynamics, the ergodic theorem originates from the work of

Boltzmann and states that, over long periods of time, the time spent by a system

in some region of the phase space is proportional to the volume of this region. It is

3



then understandable that ergodic theory is a branch of mathematics concerned with

the asymptotic behavior of dynamical systems with invariant measures.

If we consider a dynamical system (X,B, T, µ) equipped with T : X → X a

measure-preserving transformation then T n(x) = T ◦ T · · · ◦ T (x) represents the

trajectory of a point x ∈ X. In a probabilistic sense, B represents the set of observable

events and µ their probability of occurrence. Taking n→∞ allows us to consider the

long-term behavior of the system, including convergence and recurrence properties.

One important recurrence theorem comes from Poincaré,

Theorem 1.1.1. (Poincaré Recurrence Theorem) [83, Theorem 8.1]. Let T be a

measure-preserving transformation on a probability space (X,B, µ). Let E ∈ B such

that µ(E) > 0 then almost all points of E return in�nitely often to E under iterations

of T .

Before introducing stronger versions of recurrence and other statistical properties,

we need to discuss ergodicity in terms of dynamics.

De�nition 1.1.2. A measure-preserving transformation T on a dynamical system

(X,B, T, µ) is called ergodic if for any A ∈ B, such that T−1A = A, then µ(A) = 0

or µ(Ac) = 0.

Under the ergodic assumption a stronger version of the Poincaré Recurrence

Theorem holds. Let A be a measurable set with µ(A) > 0 and de�ne, for x ∈ A, the

�rst hitting time of x to a set A.

nA(x) = min{k ≥ 1 : T k(x) ∈ A}

4



Theorem 1.1.3. (Kac's Lemma) [8, Theorem 3.2.4]. Let T be an ergodic measure-

preserving transformation of the probability space (X,B, µ). Let A ∈ B be such that

µ(A) > 0. Then ∫
A

nA(x)dµ(x) = 1. (1)

If we de�ne µA(B) = µ(A∩B)
µ(A)

as the conditional measure then we can rewrite (1)

as, ∫
A

nA(x)dµA(x) =
1

µ(A)
.

Thus, Kac's theorem tells us that, given a set A of measure µ(A), the orbit of almost

every point of A returns eventually to A and the expected time of the �rst recurrence

is 1
µ(A)

.

In dynamics it is common to consider an observable taken on the map T , which

represents a physical quantity that can be measured. The time-series of a measurable

function ϕ : X → R given by ϕ(x), ϕ(Tx), ϕ(T 2x), . . . may be thought of as the

time-evolution of some physically interesting variable within our dynamical system.

Moreover, if the map T taken on the measure space (X,µ) is such that µ is T -

invariant, then the time-series is stationary. Since we are interested in the long-term

statistical behavior of a system, it is bene�cial to consider the long-term time average

given by

1

n

n−1∑
i=0

ϕ ◦ T i(x).

Convergence in the case when ϕ ◦ T i is independent and identically distributed

(i.i.d) was proved by Borel (Borel's Strong Law of Large Numbers) [81]; however the

independence assumption is too strong for most applications. Almost everywhere

5



(a.e.) convergence under more general dependence conditions is given by Birkho� [81,

Theorem 2.3]. We will consider a consequence of this theorem stated in the following

corollary.

Corollary 1.1.4. [81, Theorem 4.4] Let (X,B, µ) be a probability space, T : X → X

an ergodic measure-preserving transformation and ϕ ∈ L1(X,B, µ) then

lim
n→∞

1

n

n−1∑
i=0

ϕ ◦ T i(x) =

∫
ϕdµ,

for µ-a.e. x ∈ X where 1
n

∑n−1
i=0 ϕ ◦T i(x) is often referred to as the time average and∫

ϕdµ as the space average.

In probability theory, if we de�ne (Xi) to be an i.i.d. sequence of random vari-

ables, the property that limn→∞
1
n

∑n−1
i=0 Xi = E(X0) is called the Strong Law

of Large Numbers (SLLN). The SLLN holds provided E(X0) is �nite and fails

otherwise. If (Xi) are i.i.d and E(X0) = ∞ then it has been shown [35] that for

any sequence b(n) > 0, if limn→∞
b(n)
n

= ∞ then either lim sup Sn
n

= ∞ a.e. or

lim inf Sn
b(n)

= 0 a.e. In fact, the conditions on b(n) can be relaxed so that for any

sequence of constants b(n) either lim sup Sn
b(n)

= ∞ a.e. or lim inf Sn
b(n)

= 0 a.e. [25].

Hence, there is no strong law of large numbers for which the E(X0) =∞.

If we let (X,T, µ) be an ergodic, measure-preserving transformation and de�ne

Xi = ϕ ◦ T i(x) then our dynamical system can be seen as a stochastic process.

In this setting the Birkho� ergodic theorem serves as a dynamical variant of the

SLLN provided the observable satis�es
∫
ϕdµ < ∞. Note that

∫
ϕ dµ plays the

role of E(X0) since in the dynamical setting E(X0) = E(ϕ ◦ T 0(x)) = E(ϕ(x)) by

de�nition. If the observable is taken to be non-integrable, that is
∫
ϕ dµ = ∞, a
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failure of the Birkho� ergodic theorem occurs. In fact, since ϕ◦T i(x) is stationary by

de�nition, Aaronson [1] showed that for any sequence b(n) > 0, if limn→∞
b(n)
n

= ∞

then either lim sup Sn
b(n)

=∞ a.e. or lim inf Sn
b(n)

= 0 a.e. Hence for ergodic dynamical

systems there is no strong law of large numbers for non-integrable observables. When

no convergence can be established, a natural question is at what rate the Birkho�

sum grows. We address this issue in detail in Chapter 2.

The property that 1√
n

∑n−1
i=0 Xi → N (m,σ2) (that is, converges in distribution to

the Normal with mean m and variance σ2) is called the Central Limit Theorem.

For the rest of this chapter we will only discuss processes for which the observable

is integrable.

De�nition 1.1.5. Let T be a measure-preserving transformation and (X,B, µ) a

probability space.

1. We say that T is weak-mixing if, for all A, B ∈ B, we have

lim
n→∞

1

n

n−1∑
i=0

|µ(T−iA ∩B)− µ(A)µ(B)| = 0

2. We say that T is strong-mixing if, for all A, B ∈ B, we have

lim
n→∞

µ(T−nA ∩B) = µ(A)µ(B)

That is, given two sets A,B ∈ B, the sets T−nA and B become independent

in some sense in the limit. This property and its relationship to ergodicity is well-

de�ned. Strong-mixing implies weak-mixing and weak-mixing implies ergodicity [81,

Proposition 5.2].
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An example of a dynamical system which is ergodic but not mixing is the irra-

tional rotation Rα = x+α. In this system α provides the angle of rotation around

the circle created by "gluing" the end pieces of the [0,1] interval together.

Dynamics of the Rotation Map

(a) (b)

Figure 1.1: (a) Example orbit of an irrational rotation (α = 1/π) and (b) a rational
rotation (α = 1/5).

Example 1.1.6. Let A = {e2πix : x ∈ [0, 1/4]} since α /∈ Q there are in�nitely many

n such that R−nα (A) ∩A = ∅ and thus limn→∞ µ(R−nα (A) ∩A) = 0 6= (1/4)2. On the

other hand Rα is ergodic. To see this let ϕ =
∑

n∈Z ane
2πinx then the invariance of µ

implies µ(ϕ ◦ Rα(x)) = µ(ϕ(x)) so that ane
2πiα = an ∀n and hence ϕ(x) is constant

on Rα.

Examples of dynamical maps that are weak-mixing but not strong-mixing are less

obvious and left out of this discussion. An explanation for how to construct trans-

formations with this property on the unit interval equipped with Lebesgue measure

can be found in [14].

After convergence of the Birkho� sum is established, a common question is to
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ask how fast this convergence occurs. Answering this question requires an under-

standing of the strength of dependence in the system or how quickly the iterates T nx

become independent in some sense. Mathematically, this is described by decay of

correlations.

In general, correlation between integrable functions ψ1 and ψ2 is given by,

Cψ1,ψ2(n) =
∣∣∣ ∫ ψ1 · ψ2 ◦ T ndµ−

∫
ψ1dµ

∫
ψ2dµ

∣∣∣.
When ψ1 = ψ2 this is called autocorrelation and we write this as Cψ(n). Moreover,

T is mixing if and only if correlations decay, that is, for every pair ψ1 and ψ2 ∈ L2,

Cψ1,ψ2(n)→ 0 as n→∞

For simplicity let Sn = 1
n

∑n−1
i=0 ϕ ◦ T i(x) and µϕ =

∫
ϕdµ. Recall that under the

Birkho� ergodic theorem we have,

Sn − nµϕ
n

→ 0, i.e. Sn = nµϕ + o(n)

In other words, Sn−nµϕ is ultimately smaller than n. For fast enough decay of cor-

relations the remainder term o(n) is actually o(
√
n); consequently, the time average

converges at a faster rate. The following is taken from [19] and describes under what

conditions this is observed.

As a measure of the order of magnitude of the di�erence Sn−nµϕ we may estimate

the root-mean-square value
√
m([Sn − nµϕ]2) where,

m([Sn − nµϕ]2) = nCϕ(0) + 2(n− 1)Cϕ(1) + 2(n− 2)Cϕ(2) + · · ·+ 2Cϕ(n− 1).
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Now suppose decay of correlations is fast enough so that (at least)

∞∑
n=0

|Cϕ(n)| <∞ (2)

Then the following sum is always positive:

σ2 =
∞∑

n=−∞

Cϕ(n) = Cϕ(0) + 2
∞∑
n=1

Cϕ(n).

and the mean square of the di�erence grows as

m([Sn − nµϕ]2) = nσ2 + o(n)

This means that on average the values Sn−nµϕ grow as σ
√
n; they are of order

√
n.

Hence,

Sn = nµϕ +O(
√
n)

Sometimes our correlation results can be improved to decay in normed spaces

with stronger conditions on the observables [5, De�nition 2.2]. Let B1, B2 denote

Banach spaces of real valued measurable functions ψ1 and ψ2 de�ned on a probability

space X equipped with invariant measure µ. Correlation in this setting is de�ned

by,

Cψ1,ψ2(n) =
1

||ψ1||B1||ψ2||B2

∣∣∣ψ1 · ψ2 ◦ T ndµ−
∫
ψ1dµ

∫
ψ2dµ

∣∣∣.
We say that we have decay of correlations with respect to measure µ, for observables

in B1 versus observables in B2 if, for every ψ1 ∈ B1 and every ψ2 ∈ B2 we have

Cψ1,ψ2(n)→ 0. For example, a common assumption occurs in the setting of decay of

correlations for any real valued measurable functions ψ1 ∈ B1 a Banach space and

ψ2 ∈ L1(µ). Decay of correlations versus L1(µ) observables is a very strong property.
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In fact, one can show that such a system has exponential decay of correlations of

Hölder observables regardless of the rate of decay in L1(µ) provided the correlation

given in (2) is summable [4].

1.2 Borel-Cantelli Lemmas

In order to study the limiting behavior of a system we need to know something about

recurrence in the system. In classical probability theory the question of whether an

event will occur with probability one or probability zero in the limit is addressed by

the Borel-Cantelli lemmas.

For a probability space (X,B,P) the classical Borel-Cantelli lemmas [34] state,

Classical Borel-Cantelli Lemmas

1. (BC1): If (An)∞n=0 is a sequence of measurable sets inX and
∑∞

n=0P(An) <∞,

then P(x ∈ An i.o. ) = 0. (i.o. means "in�nitely often")

2. (BC2): If (An)∞n=0 is a sequence of independent sets in X and
∑∞

n=0P(An) =

∞, then P(x ∈ An i.o. ) = 1.

3. (BC3): If (An)∞n=0 is a sequence of pairwise independent sets inX and
∑∞

n=0P(An) =

∞, then for P a.e. x ∈ X,

Sn(x)

En
→ 1

where Sn(x) =
∑n−1

i=0 1Ai(x) and En =
∑n−1

i=0 P(Ai).
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Given a measure-preserving transformation T : X → X and a probability space

(X,B, µ) and a sequence of sets (An)∞n=0 in B it is natural to ask whether T ix enters

Ai in�nitely often and at what rate this reentry occurs. We may reformulate the

classical Borel-Cantelli lemmas in the dynamical framework [58, Section 3.1].

Dynamical Borel-Cantelli Lemmas

1. Borel-Cantelli (BC): A sequence of sets (An) is said to be a Borel-Cantelli

(BC) sequence if µ(x : T nx ∈ An i.o. ) = 1.

2. strong Borel-Cantelli (SBC): A sequence of sets (An) is said to be a strong

Borel-Cantelli (SBC) sequence if for µ a.e. x ∈ X we have,

Sn(x)

En
→ 1

as n→∞ where Sn(x) =
∑n−1

i=0 1Ai ◦ T i(x).

Consider Bi = T−iAi then if
∑∞

i=0 µ(Bi) =∞ and the events Bi are independent

we have Sn(x)
En
→ 1 almost surely as n→∞. Moreover, the independence requirement

can be relaxed to pairwise independence, e.g. µ(Bi ∩ Bj) = µ(Bi)µ(Bj) for i 6= j.

In many cases the sequence Bi = T−iAi is not pairwise independent; however, it is

reasonable to consider some su�ciently fast decay of correlations so that for large

enough i the sequence is almost pairwise independent.

Note that if a sequence is strong Borel-Cantelli then Sn = En+o(En). A stronger

version of the SBC property is given in terms of a quantitative estimate on the error

rate and is typically used in applications.
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3. quantitative strong Borel-Cantelli (QSBC): A sequence is said to be

quantitative strong Borel-Cantelli (QSBC) [21] if for µ-a.e. x ∈ X and ε > 0

we have,

Sn = En +O(E1/2
n log3/2+εEn)

Consider the quantity,

Rij = µ(Bi ∩Bj)− µ(Bi)µ(Bj) = µ(T−iAi ∩ T−jAj)− µ(Ai)µ(Aj)

then the assumption that,

∃C > 0 :
n∑

i,j=N

Rij ≤ C ·
∑
i=N

nµ(Ai)

for all n ≥ N ≥ 1 is known as the (SP) property (Sprindzuk Property) [93]. If a

sequence (An)∞n=0 satis�es the SP property then it is a QSBC sequence [21].

Remark 1.2.1. By de�nition, independent sequences satisfy the (SP) property so

that the QSBC property holds; however, it is possible to obtain better convergence

rates under certain boundedness assumptions on the observable.

1.3 Extreme Value Theory

Extreme value theory deals with modeling and establishing statistical properties of

maxima within a system and attracts interest in multiple �elds of study, including

mathematics, physics, climate-science, and �nance. Since extremes occur in the tail

of probability distributions, they relate to predictions of rare events. An analysis of

recurrence times and other statistics of these events allows us to estimate risks.
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Extreme value laws have been well-established for i.i.d random variables. A

main goal when studying extremes in the context of dynamics is to investigate the

statistical properties of the maxima when dependence or nonstationarity is observed.

The next few sections discuss classical results from extreme value theory for i.i.d

random variables, extend these results under more relaxed conditions and �nally

discuss applications to dynamical systems viewed as a stochastic processes.

1.3.1 Extreme value theory for i.i.d. processes

Given a sequence of i.i.d. random variables X0, · · · , Xn−1 de�ne F as the cumulative

distribution function for X0 so that P(X0 ≤ x) = F (x).

De�nition 1.3.1. If a random variable has the property that the Lebesgue-Stieltjes

measure associated to F , µF , is absolutely continuous with respected to Lebesgue

measure m we may de�ne the probability density function (p.d.f) as the Radon-

Nikodym derivative function f = dµF/dm. Moreover, if f is Riemann integrable and

continuous at x we have f(x) = dF (x)/dx.

Generally, a rare event or extreme event at time n corresponds to the occurrence

of an exceedance of a threshold u denoted by,

U(u) := {Xn > u}.

When X is essentially bounded we de�ne,

uF = sup{x : F (x) < 1}.
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Extreme values of a random variable in the i.i.d. case relate directly to the behavior of

the tail of the of its distribution function (d.f.). Let F̄ = 1−F be the complementary

d.f. then the speed at which F̄ approaches 0 as u→ uF establishes the type of tail.

Informally, F is said to have heavy tails if uF =∞ and F̄ vanishes polynomially fast

and light tails if uF <∞ or F̄ vanishes exponentially fast.

Given our sequence of random variables de�ne Mn = max{X0, · · · , Xn−1}. Clas-

sical statistical analysis is mostly concerned with establishing almost-sure and distri-

butional convergence results for the mean, 1
n

∑n−1
i=0 Xi and

1√
n

∑n−1
i=0 Xi. In the case

of i.i.d random variables these results are known as the Laws of Large Numbers

and Central Limit Theorem respectively. For extremes of i.i.d random variables

we have that Mn converges almost surely to uF [73]. The question of general distri-

butional convergence for Mn is addressed in the following de�nition [73, De�nition

2.2.1].

De�nition 1.3.2. We say that we have an extreme value law (EVL) for Mn if

there is a non-degenerate d.f. H : R → [0, 1] with H(0) = 0 and, for every τ > 0,

there exists a sequence of levels un = un(τ), n = 1, 2, · · · , such that

nP(X0 > un(τ))→ τ, as n→∞ (3)

and for which the following holds:

P(Mn ≤ un(τ))→ H̄(τ), as n→∞

where the convergence is meant to hold at the continuity points of H(τ).

Motivation for the chosen normalizing sequences satisfying (3) comes once again

from the classical i.i.d case where P(Mn ≤ u) = (F (u))n, where F is the d.f. of X0
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and hence,

P(Mn ≤ un(τ)) = (1−P(X0 > un(τ)))n ∼ (1− τ

n
)n → e−τ ,

as n→∞.

In classical theory, the sequences of real numbers un = un(τ), n = 1, 2, · · · are

usually taken to be one parameter linear families like,

un(τ) = y(τ)/an + bn,

where y(τ) ∈ R and an > 0, for all n ∈ N which brings us to the main classical result

of extreme value theory.

Theorem 1.3.3. [73, Theorem 3.1.1] If X0, X1, · · · is a sequence of i.i.d random

variables and there exist linear normalizing sequences (an) and (bn), with an > 0 for

all n, such that,

P(an(Mn − bn) ≤ y)→ G(y),

where the convergence occurs at the continuity points of G , and G is the nondegen-

erate (that is, there is no y0 ∈ R such that G(y0) = 1 and G(y) = 0 for all y < y0)

function H̄(τ) under this scaling, then G(y) = e−τ(y) where G(y) can be one of the

following types,

• Type 1 (Gumbel): G(y) = e−e
−y

• Type 2 (Fréchet): G(y) =


0 x ≤ 0

e−y
−α

α > 0, y > 0
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• Type 3 (Weibull): G(y) =


e−(−y)α α > 0, y ≤ 0

1 y > 0

De�nition 1.3.4. We may combine all three extreme value distributions into the

following d.f. known as the Generalized Extreme Value Distribution (GEV),

G(y) =


e−(1+ξy)−1/ξ

, 1 + ξy > 0, if ξ 6= 0

e−e
−y
, y ∈ R, if ξ = 0

In this context the shape parameter or ξ determines the type of distribution by

its tail. When ξ = 0 the distribution corresponds to the Gumbel type; when ξ > 0 it

corresponds to a Fréchet; and when ξ < 0 it corresponds to a Weibull. Generally, an

exponential tail is displayed in Gumbel type distributions, a heavy tail in the Fréchet

type and the Weibull type display an upper bound.

Three Types of GEV Distributions

0
y

g(y)

ξ = 0.5
ξ = −0.5
ξ = 0

Figure 1.2: Generalized extreme value probability distribution functions (PDF) for
three di�erent values of the shape parameter corresponding to the three di�erent
types with µ = 0 and σ2 = 1.

A reformulation of the GEV commonly used in numerical settings is given in
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terms of the location µ, scale σ and shape ξ parameters and has the following form.

P(Mn ≤ y)→ G(y) = exp
{
−
[
1 + ξ

(y − µ
σ

)]−1/ξ}
de�ned on the set {y : 1 + ξ(y − µ)/σ > 0}, where −∞ < µ < ∞, σ > 0 and

−∞ < ξ <∞. The subset of the GEV family with ξ = 0 is interpreted as the limit

ξ → 0 which leads to

G(y) = exp
[
− exp

{
−
(y − µ

σ

)}]

1.3.2 Extreme value theory for dependent processes

The requirement of i.i.d on the sequence of random variables is commonly not satis-

�ed in applications. It is interesting to consider whether an extreme value law still

holds when this assumption is modi�ed. The general idea is to determine under

which assumptions the dependent process is quanti�ably close to an independent

process.

1.3.2.1 Stationary sequences and dependence conditions

A sequence (Xn) is called stationary if the distributions of (Xj1 , · · · , Xjn) and (Xj1+k ,

· · · , Xjn+k) are identical for any choice of n and j1, · · · , jn. Leadbetter proposed that

an extreme value law can still be obtained provided the sequence of random variables

is stationary and the following two dependence conditions hold [68].

Condition D(un) (mixing condition): Given the sequence X1, ..., Xn, for any
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integers i1 < ... < ip and j1, ..., jk for which j1 − jp > t, and any large n ∈ N,

|Fi1,...,ip,j1,...,jk(un)− Fi1,...,ip(un)Fj1,...,jk(un)| ≤ α(n, t)

uniformly for every p, k ∈ N, where Fi1,...,ip denotes the joint distribution function of

Xi1 , ..., Xip for any tn = o(n) such that α(n, tn)→ 0 as n→∞.

We can think of the D(un) condition as a mixing condition in which if two large

blocks are su�ciently apart then the joint probabilities of the two blocks is approxi-

mately the product of the probability of the individual blocks.

Condition D′(un) (recurrence condition): Given the sequence X1, ..., Xn there

exists a sequence kn such that kn →∞, limn→∞ knα(n, tn) = 0 and kntn = o(n) and,

lim
n→∞

bn/knc∑
j=1

P(X0 > un, Xj > un) = 0

Under the requirement limn→∞ nP(X0 > un(τ)) = τ there are approximately τ

exceedances of un among X1, · · · , Xn, and thus τ/kn among X1, · · · , Xbn/knc. Con-

dition D′(un) bounds the probability of more than one exceedance of un among

X1, · · · , Xbn/knc and thus determines a simple Poisson limit for this point process [73,

Section 3.3.2]. Rare event point processes are discussed in more detail in Chapter 1,

Section 1.4.

Theorem 1.3.5. [73, Theorem 3.2.1] Let X0, X1, · · · be a stationary stochastic

process and (un(τ))n∈N a sequence satisfying limn→∞ nP(X0 > un(τ)) = τ , for some

τ > 0. If D(un) and D′(un) hold, then H̄(τ) = e−τ .

The core argument for this theorem comes from breaking the n observations into

kn blocks of size bn/knc and separating them by adding a sequence of tn observations
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between each block. Condition D(un) ensures independence between each block,

condition D′(un) decorrelates the information within each block so that the process

is quanti�ably close to an independent process where the di�erence converges to zero

as n→∞. This is known as the blocking argument.

In the previous result, the recurrence condition D′(un) ensures that the limiting

distribution for Mn exists and is given as H̄(τ) = e−τ (equivalent to the i.i.d case).

When D′(un) does not hold but D(un) does, although existence may not be assumed

apriori, another limiting distribution for Mn is de�ned.

Theorem 1.3.6. [73, Theorem 3.2.3] Let X0, X1, · · · be a stationary stochastic

process and (un)n∈N a sequence satisfying limn→∞ nP(X0 > un(τ)) = τ . Suppose

D(un) holds for each choice of τ . If the limit of P(Mn ≤ un) exists then there exists

0 ≤ θ ≤ 1 such that H̄(τ) = e−θτ for all τ > 0.

The consecutive occurrences of an exceedance of a given threshold can cause

D′(un) to fail. This is often referred to as clusters of exceedances and is related

to the memory properties of the underlying process. It has been shown that this

setting essentially produces the same type of EVL with a parameter 0 ≤ θ ≤ 1 so

that H̄(τ) = e−θτ where θ is known as the extremal index and 1
θ
roughly measures

the number of clustered exceedances.
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1.3.2.2 General dependence conditions motivated by dynamics

Consider a stationary stochastic process, X0, X1, · · · , a measure space (X,B,P) and

a map T de�ned by

Xi−1 ◦ T = Xi

for all i ∈ N where T i denotes the ith composition of the map T and T 0 is the

identity map on X. In this setting, stationarity is equivalent to the statement that

P is T -invariant. Following the same notation described in previous sections and

recalling U(u) = {X0 > u} we de�ne,

A(q)(u) := U(u) ∩
q⋂
i=1

T−i(U(u)c) = {X0 > u,X1 ≤ u, · · · , Xq ≤ u}.

In other words, A(q)(u) corresponds to the case when an exceedance occurs at time

zero and does not occur again up to time t = q. For convenience take A(0)(u) := U(u),

Un := U(un) and A
(q)
n := A

(q)
n (un), for all n ∈ N and q = N ∪ {0}. Let,

θ = lim
n→∞

θn :=
P(A

(q)
n )

P(Un)

Now let B ∈ B be an event. For some s ≥ 0 and l ≥ 0 de�ne,

Ws,l(B) =

s+max{l−1,0}⋂
i=s

T−i(Bc).

The disadvantage of the dependence condition D(un) is that it cannot veri�ed

easily in the dynamical setting by using information about mixing rates or decay

in various norms of the system. To develop theory with more practical utility in

this context [53] proposed a new condition, D2(un) for general stochastic processes

to replace D(un) and, together with D′(un), establishes an EVL for the system.
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Periodicity poses another issue since it may result in short returns of exceedances

resulting in a failure of the recurrence assumption D′(un). Further adjustments

motivated by the relationship between periodicity and the presence of cluster of

exceedances [42] resulted in a new set of conditions Dp(un) and D′p(un) for systems

of periodic behavior of period p. Finally, the following conditions were proposed

which combine all scenarios with no periodic behavior, simple periodic behavior or

multiple types of behavior.

Condition Äq(un): We say that Äq(un) holds for the sequence X0, X1, · · · if for

every `, t, n ∈ N,

∣∣P(A(q)
n ∩Wt,`(A

(q)
n ))−P(A(q)

n )P(W0,`(A
(q)
n ))

∣∣ ≤ γ(q, n, t)

where γ(q, n, t) is decreasing in t for each n and, there exists a sequence (tn)n∈N such

that tn = o(n) and nγ(q, n, tn)→ 0 as n→∞.

Condition Ä′q(un): We say that Ä′q(un) holds for the sequence X0, X1, · · · if there

exists a sequence (kn)n∈N such that kn →∞ and kntn = o(n) and

lim
n→∞

n

bn/knc−1∑
j=q+1

P(A(q)
n ∩ T−j(A(q)

n )) = 0

As stated, Äq(un) and Ä′q(un) can be used to prove the existence of an EVL through

the following corollary.

Corollary 1.3.7. [73, Corollary 4.1.7] Let X0, X1, · · · be a stationary stochastic

process and (un)n∈N a sequence satisfying limn→∞ nP(X0 > un(τ)) = τ , for some

τ > 0. Assume that conditions Äq(un) and Ä′q(un) hold for some q ∈ N ∪ {0} and

(tn)n∈N and (kn)n∈N are the sequences in those conditions. Moreover, assume that
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the limit θ = limn→∞ θn := P(A
(q)
n )

P(Un)
exists. Then,

lim
n→∞

P(Mn ≤ un) = e−θτ .

Given our dynamical system (X,T, µ) we consider an observable ϕ taken on the

map which represents some physically relevant variable which can be measured so

that our stochastic process is given by X0 = ϕ(x) and Xn = ϕ ◦ T n(x) where x ∈ X.

In the classical extreme value setting the observable is typically taken as a function

of the distance to some �xed point, ϕ(x) = g(dist(x, p)) where p ∈ X. It has been

shown that the choice of g determines the type of tail (extremal distribution) G(y).

• Type 1 (Gumbel) law for ϕ(x) = − log d(x, p)

• Type 2 (Fréchet) law for ϕ(x) = d(x, p)−k, k > 0

• Type 3 (Weibull) law for ϕ(x) = C − d(x, p)k, k > 0 and C constant

The following examples outline how each distribution type is determined for the

doubling map.

Example 1.3.8. Consider the observable ϕ(x) = − log(|x−1/3|) taken on ([0, 1], T,m)

with m taken as Lebesgue measure. First we solve F (u) = m({X0 ≤ u}) by solv-

ing − log(|x − 1/3|) ≤ u for u. This gives {x : ϕ(x) ≤ u} = [0, 1/3 − e−u] ∪

[1/3 + e−u, 1] so that F (u) = 1 − 2e−u. The series of thresholds (un) de�ned by

limn→∞ nP(X0 > un(τ)) = τ are assumed to hold. Moreover, n(1 − F (un)) = τ so

that un = − log(τ) + log(2n). Solving for parameter τ = e−y and we conclude that

the underlying distribution is of the Gumbel type.
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Dynamics of the Doubling Map

0 1/3 1/2 2/3 1
0

1

x

T
(x

)

Figure 1.3: The doubling map with a nonperiodic orbit of a point (black) and a
periodic orbit of a point (red).

Example 1.3.9. Consider the observable ϕ(x) = (|x− 1/3|)−k so that {x : ϕ(x) ≤

u} = [0, 1/3−u−1/k]∪ [1/3+u−1/k, 1] and F (u) = 1−2u−1/k. By a similar calculation

to the previous example we have un = 2n−1/kτ−1/k. Solving for our parameter

τ = y−k and we conclude that the underlying distribution is of the Fréchet type.

Example 1.3.10. Consider the observable ϕ(x) = 1 − (|x − 1/3|)1/k so that {x :

ϕ(x) ≤ u} = [0, 1/3 − (1 − u)k] ∪ [1/3 + (1 − u)k, 1] and F (u) = 1 − 2(1 − u)k. By

a similar calculation to the previous example we have un = 1 − τ1/k

2n1/k . Solving for

our parameter τ = −yk and we conclude that the underlying distribution is of the

Weibull type.

Recall that, for those dependent sequences of random variables which satisfy

conditions D(un) and D′(un), the Generalized Extreme Value distribution (GEV)
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can be �t to the extremes. Typically a numerical GEV �t is performed by some

version of likelihood estimation and the the value of the extremal index (which is a

result of the dependence in the system) is buried within the estimated parameters.

It is interesting to ask whether we are able to recover the value of θ numerically.

The following theorem relates the standard GEV model to the GEV model with an

extremal index [27, Theorem 5.2].

Theorem 1.3.11. [27, Theorem 5.2] Let X1, X2, . . . be a stationary process and

X∗1 , X
∗
2 , . . . be a sequence of independent variables with the same marginal distribu-

tion. De�ne Mn = max{X1, . . . , Xn} and M∗
n = max{X∗1 , . . . , X∗n}. Under suitable

regularity conditions (D(un) and D′(un) or variations thereof),

P{(M∗
n − bn)/an ≤ z} → G1(z)

as n → ∞ for normalizing sequences {an > 0} and {bn}, where G1 is a non-

degenerate distribution function, if and only if

P{(Mn − bn)/an ≤ z} → G2(z)

where

G2(z) = Gθ
1(z)

for a constant θ such that 0 < θ ≤ 1.

Moreover, if G1 corresponds to a GEV distribution with parameters (µ, σ, ξ) and

ξ 6= 0 then

Gθ
1(z) = exp{−[1 + ξ(

z − µ
σ

)]−1/ξ}θ

= exp{−[1 + ξ(
z − µ∗

σ∗
)]−1/ξ}θ
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where

µ∗ = µ− σ

ξ
(1− θ−ξ) and σ∗ = σθξ

If ξ = 0 for G1 then it is also for Gθ
1 and

µ∗ = µ+ σ log θ and σ∗ = σ

Dynamics on frequently investigated transformations, such as the doubling map,

are de�ned precisely so that we may consider a point which is non-periodic, compare

the resulting parameters of the distribution to that of the periodic point, and recover

the value of θ in a straight-forward way. It is more interesting, however, to consider

time series where the underlying dynamics are relatively unknown and where this

procedure is certain to fail. In this setting, results on the numerical estimation of

θ use the informal de�nition of the extremal index (a representation of the number

of clusters of exceedances) to obtain approximations on this parameter. If we let a

general form for the estimator of θ be given by [73],

θ̂ :=
C(un)

N(un)
,

where N(un) is the number of exceedances of a high threshold un and C(un) the num-

ber of clusters then the literature gives two general ways of estimating the extreme

index.

Runs estimator Given 1 < ` < n,

θ̂R :=
1

N(un)

n−∑̀
i=1

1{Xi>un}1{Xi+1≤un} · · ·1{Xi+`≤un}.

In other words, θ̂R only de�nes a cluster if there are at least ` consecutive observations

below the threshold between exceedances of the threshold.
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Blocks estimator Given a sequence of n observations, we divide the a sample into

k blocks of length m so that n ≈ km. If an observation inside one of the k blocks

exceeds (un) we call that block a cluster. We sum up all the clusters and denote this

sum by C(un). We de�ne,

θ̂B =
C(un)

N(un)

where N(un) is the total number of exceedances of the threshold.

1.4 Rare Event Point Processes

When studying rare events, it is interesting to consider records of the exceedances

of the high thresholds un. These records are often referred to as rare event point

processes (REPP) and are de�ned by the following,

Nun(A) :=
∑
i∈A∩N

1(Xi>un).

In other words, the REPP counts the number of exceedances of un so that Nun([0, n))

represents the count of these exceedances among the �rst n observations of the pro-

cess X0, X1, · · · , Xn−1. As is common, we consider the i.i.d case for Nun([0, n)) which

by de�nition is binomial with parameters (n,P(X0 > un)). By limn→∞ nP(X0 >

un(τ)) = τ we have that the average number of successes converges to τ ≥ 0 which

implies that this average is nearly constant and Nun([0, n)) is asymptotically Poisson.

Hence, it is natural to ask whether we obtain a Poisson process in the limit for the

dependent setting. For stationary processes where dependence is observed we need

to de�ne the REPP over a rescaled time period so that the average number of ex-

ceedances can be kept stabilized (converging to 1 on the unit interval [0,1]). Note that
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in the independent case the rescaling factor would be taken as vn := 1/P(X0 > un)

following Kac's theorem.

Let S denote the semi-ring of subsets of R+
0 whose elements are intervals of the

type [a, b), for a,b ∈ R+
0 . Let R denote the ring generated by S. Recall that for

every J ∈ R there are k ∈ N and k intervals I1, · · · , Ik ∈ S such that J = ∪kj=1Ij.

Let aj,bj ∈ R+
0 be such that Ij = [aj, bj) ∈ S. For I = [a, b) ∈ S and α ∈ R,

denote αI := [αa, αb) and I + α := [a + α, b + α). Similarily, for J ∈ R de�ne

αJ := αI1 ∪ · · · ∪ αIk and J + α := (I1 + α) ∪ · · · ∪ (Ik + α).

De�nition 1.4.1. A REPP is de�ned by counting the number of exceedances during

the (rescaled) time period vnJ ∈ R, where J ∈ R. That is, for every J ∈ R set

Nn(J ) := Nun(vnJ ) =
∑

j∈vnJ∩N∪{0}

1Xj>un

Next we will de�ne a slightly stronger mixing condition [73, Section 3.3.3].

Condition (∆(un)) For 0 ≤ i ≤ j ≤ n, let F ji (un) be the σ-algebra generated by

the events {Xs ≤ un}, for i ≤ s ≤ j, where (un)n∈N is a sequence of levels satisfying

limn→∞ nP(X0 > un(τ)) = τ . Let

αn,t = max{|P(A∩B)−P(A)P(B)| : A ∈ Fp1 (un), B ∈ Fkp+t(un), 0 ≤ p ≤ n− 1− t}.

Then ∆(un) holds for the sequence X0, X1, · · · if α(n, tn)→n→∞ 0, for some sequence

tn = o(n).

Let (kn)n∈N be a sequence satisfying D(un) then the cluster size distribution for

each j ∈ N

πn(j) = P(N ([0, n/kn))
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The following main theorem of this section relates the REPP to the existence of

an extreme value law (EVL).

Theorem 1.4.2. [73, Theorem 3.3.6] Assume that X0, X1, · · · is a stationary stochas-

tic process satisfying condition ∆(un) and limn→∞P(Mn ≤ un) = e−η for some η > 0

and a sequence (un)n∈N as in limn→∞ nP(X0 > un(τ)) = τ . Suppose that there exists

a probability distribution π de�ned on N such that π(j) = limn→∞ πn(j) for every

j ∈ N. Then the REPP Nn converges in distribution to a compound Poisson process

N , with intensity θ = η/τ and multiplicity distribution π.

In dynamical applications the condition ∆(un) is typically di�cult to prove, so

adaptations of this condition have been introduced.

Absence of clustering. When condition Ä′0(un) = D′(un) holds there is no clus-

tering. In this setting the REPP converges in distribution to a standard Poisson

process (since the EI θ = 1) for simple point processes without multiple events and

is shown to hold for those systems which satisfy the following adapted condition [13].

Condition (D3(un)) Let A ∈ R and t ∈ N. We say that D3(un) holds for the

sequence X0, X1, · · · if

|P({X0 > un} ∩ {Nun(A+ t) = 0})−P({X0 > un})P(Nun(A) = 0)| ≤ γ(n, t)

where γ(n, t) is nonincreasing in t for each n and nγ(n, tn)→ 0 as n→∞ for some

sequence tn = o(n), that is tn/n → 0 as n → ∞. The proof of condition D3(un)

follows, after minor adjustments, the proof scheme of Äq(un).

Presence of clustering. Since condition Ä′0(un) prevents the existence of clusters of

exceedances the associated EVL is standard exponential H̄(τ) = e−τ . When Ä′0(un)
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fails a new parameter θ ∈ (0, 1) is introduced so that H̄(τ) = e−θτ . In this setting

distributional convergence of the REPP exists as a compound Poisson process with

parameter θ has been shown to hold provided condition Ä′(un) and the following

adapted condition Dq(un)∗ hold for the system.

Let p be a periodic point of prime period q. Recall Un = (X0 > un) and de�ne

the sequence (U (k)(un)) of nested sets centered at p given by

U (0)(un) = Un and U (k)(un) = T−q(U (k−1)(un)) ∩ Un, for all k ∈ N.

For i, k, l, s ∈ N ∪ {0}, we de�ne the following sets:

Qk
q,i(un) := T−i(U (k)(un)− U (k+1)(un)).

Note that Q0
q,0(un) = Aqn. Furthermore, Un = ∪∞k=0Q

k
q,0(un).

Condition (D∗q(un)) We say that D∗q(un) holds for the sequence X0, X1, . . . if for

any integers t, k1, . . . , kq n and any J = ∪qj=2Ij ∈ R with inf{x : x ∈ J} ≥ t,

|P(Qk1
q,0(un) ∩ (∩qj=2Nn(Ij) = kj))−P(Qk1

q,0(un))P(∩qj=2Nn(Ij) = kj)| ≤ γ(n, t)

where for each n we have that γ(n, t) is nonincreasing in t and nγ(n, tn) → 0 as

n→∞, for some sequence tn = o(n).

The advantage of these new conditions is that they follow from su�ciently fast

decay of correlations of the dynamical system.

Proposition 1.4.3. [73, Proposition 4.4.1] Assume that for a system (X,T, µ) we

have decay of correlations for all ψ1 ∈ BV and all ψ2 ∈ L∞ so that there exist C,

independent of ψ1, ψ2 and a rate function ρ : N→ R such that,∣∣∣ψ1 · (ψ2 ◦ T i)dµ−
∫
ψ1 dµ

∫
ψ2 dµ

∣∣∣ ≤ C||ψ1||BV ||ψ2||∞ρ(i)
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for all i ∈ N and nρ(in) → 0, as n → ∞ for some in = o(n). Then conditions

Äq(un), D3(un), and D∗q(un) hold.

Remark 1.4.4. In most applications it can be shown that the clustering π follows

a geometric distribution of parameter θ ∈ (0, 1], that is, πk = θ(1− θ)k−1, for every

k ∈ N. This means that, as in [41, 13], N([0, t)) follows a Pólya-Aeppli distribution

P(N([0, t))) = k = e−θt
k∑
j=1

θj(1− θ)k−j (θt)j

j!

(
k − 1

j − 1

)
,

for all k ∈ N , and that P(N([0, t)) = 0) = e−θt.

This behavior has been observed in a variety of one-dimensional expanding maps [40,

36, 61] as well as in two-dimensional hyperbolic linear toral automorphisms [57, 30,

13].

1.5 Statistical Methods for Modeling Extremes

It is certainly of interest to use the established theory on extreme values in real-

world application through statistical modeling of rare events based on recorded data.

This section will introduce two commonly used techniques for modeling extremes of

general data: the block maximum [27, Chapter 3] and the peaks over threshold

approach [27, Chapter 4]. Recall that for an extreme value law to be established

the system must be stationary. In all the dynamical systems we have described

the presence of an invariant measure implies the stationary assumption; however,

real-world data may not behave so "neatly". In fact, nonstationarity in the data

is quite common and, consequently, adaptations on the extreme value model have
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been introduced. We describe these adaptations below. Complementary, though

not unique to extreme modeling, machine learning methods are described towards

the end of this section. The statistical methods outlined are used in the analysis of

real-world data located in Chapter 4.

1.5.1 Generalized Extreme Value distribution approximation

and block maxima approach

Recall from Chapter 1, Section 1.3, the de�nition of the Generalized Extreme Value

distribution (GEV). The uni�cation of the extremal distribution types provides a

way of simplifying statistical implementation. Since there is no longer a need to

make an apriori judgement on the tail behavior of the system we can look at the

asymptotic behavior of the extreme values to determine the value of ξ and hence

which family they belong to. But before we can discuss �tting the GEV, we need to

establish under what conditions this can be done.

Recall that the assumptions for the existence of the limit require the sequence

of random variables X0, X1, · · · to be i.i.d. In the case of modeling extremes taken

from data it is enough to require stationarity of the sequence and independence over

blocks of length m given by,

{X0, · · · , Xm−1}, . . . , {Xn−m, · · · , Xn−1}.

The choice of block size can be critical and amounts to a trade-o� between bias and

accuracy of the �t. Blocks which are too small can lead to sequences which are not

quite independent and thus do not follow the required assumptions on the model. In
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contrast, blocks which are too large result in too few maxima and a wide variance in

parameter estimates.

To estimate the distribution of extremes in this context we de�ne the GEV over

the set of block maxima given by MN = max{XN , · · ·XN+m}. A common tech-

nique is to estimate by maximum likelihood estimation (MLE) the location µ,

scale σ and shape ξ parameters for the block maxima MN under which the assump-

tions for the existence of a GEV distribution hold.

Modeling under stationary assumptions

Under the assumption that X0, X1, · · · are stationary and M1, · · · ,MN are inde-

pendent variables having the GEV distribution G(y), the log-likelihood for the GEV

parameters when ξ 6= 0 is,

`(µ, σ, ξ) = −N log σ − (1 + 1/ξ)
N∑
i=1

log
[
1 + ξ

(yi − µ
σ

)]
−

N∑
i=1

[
1 + ξ

(yi − µ
σ

)]−1/ξ
,

for

1 + ξ(
yi − µ
σ

) > 0

and

`(µ, σ) = −N log σ −
N∑
i=1

(yi − µ
σ

)
−

N∑
i=1

{
−
(yi − µ

σ

)}
when ξ = 0.

A potential di�culty when using MLE comes from the regularity requirements

violated by the GEV model: the GEV model end-points are functions of the param-

eter so that µ − σ/ξ is the upper end-point when ξ < 0 but the lower end-point

when ξ > 0. This issue has been partially overcome in [92] which state under what

conditions of ξ the asymptotic likelihood results are valid.

33



• when ξ > −0.5, maximum likelihood estimators are regular, in the sense of

having the usual asymptotic properties;

• when −1 < ξ ≤ −0.5, maximum likelihood estimators are generally obtainable,

but do not have the standard asymptotic properties;

• when ξ ≤ −1, maximum likelihood estimators are unlikely to be obtainable

Since the case ξ < −0.5 corresponds to distributions with a very short bounded

upper tail it is rarely the case that applications of extreme value modeling encounter

the obstacles in likelihood estimation.

Modeling under non-stationary assumptions

In many instances the sequence of variables X0, X1 · · · (and thus M1, · · · ,MN)

is non-stationary and apparent trends in the data raise doubts about model �t. In

this case a practical approach to extreme modeling is adopted by considering the

location µ, scale σ and shape ξ parameters as functions of time.

A simple linear trend, for example µ(t) = β0 + β1t is typically checked in initial

analyses. If appropriate, more complex changes in the parameters such as a quadratic

µ(t) = β0 + β1t+ β2t
2

or a change-point model

µ(t) =


µ1 for t ≤ t0,

µ2 for t > t0.

are considered. This idea can be extended further by looking at the parameters as

functions of variables which change over time. In all the examples presented the

34



extreme value parameters can be written in the form,

θ(t) = h(XTβ)

where θ represents either µ, σ or ξ, h is a speci�ed function, β is a vector of param-

eters, and X is a model vector. Under this representation the model can be �t using

optimization techniques to minimize error; however, this type of estimation may

provide too broad a �t for representing models with more than one time-dependent

parameter.

The advantage of maximum likelihood estimation over other estimation tech-

niques is its adaptability to changes in the model since all parameters are considered

at each time step. Under the independence assumption for M1, · · · ,MN if we have

t = 1, · · · , N with,

Mt ∼ GEV(µ(t), σ(t), ξ(t))

then the log-likelihood function for the GEV is,

`(µ, σ, ξ) = −
m∑
t=1

log σ(t) + (1 + 1/ξ(t)) log
[
1 + ξ(t)

(yt − µ(t)

σ(t)

)]
+
[
1 + ξ(t)

(yt − µ(t)

σ(t)

)]−1/ξ(t)

provided that

1 + ξ(t)
(yt − µ(t)

σ(t)

)
> 0, for t = 1, · · · , N

It is important to discuss under what conditions a more complex model should

be considered since over�tting the data can lead a model which poorly describes

future or generated data. The following theorem for comparing two models by their

maximum likelihood estimators is commonly used to make this determination.
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Theorem 1.5.1. [27, Theorem 2.6] Let x1, · · · , xn be independent realizations from

a distribution within a parametric family F , and let θ̂0 denote the maximum like-

lihood estimator of the d-dimensional model parameter θ0 = (θ1, θ2), where θ1 is a

k-dimensional subset of θ0 and θ2 corresponds to the remaining (d− k) components

of θ0. Then, under suitable regularity conditions, for large n

Dp(θ
1) = 2{`(θ̂0)− `p(θ1)} ∼ χ2

k.

SupposeM1 is a model with parameter vector θ and modelM0 is the subset of

modelM1 obtained by constraining k of the components of θ = (θ1, θ2). Let `1(M1)

be the maximized log-likelihood for modelM1, similarly `0(M0) forM2 and de�ne

the deviance statistic

D = 2{`1(M1)− `0(M0)}.

Applying the theorem we have that D ∼ χ2
k so that large values of D indicate that

modelM1 explains signi�cantly (speci�cally at the α signi�cance level) more of the

variation in the data thanM0 whereas small values of D suggest that the increase

in model complexity does not provide signi�cant improvements. This test is known

as the likelihood ratio test.

1.5.2 Generalized Pareto distribution and peaks over thresh-

old approach

In some cases a di�erent approach to modeling the extreme values is necessary,

particularly those for which the block does not have many realizations. For example,
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if we consider a time series with a single yearly weather recording we can reasonably

assume independence; however we cannot calculate block maximum in this setting

since it will result in too few points to �t a GEV model. In this setting we can look

to the peaks over threshold (POT) method of gathering maximum values.

Given a sequence of independent and identically distributed random variables,

having marginal distribution function F it is natural to consider an extreme event

one which exceeds some high threshold u. If we denote an arbitrary Xi by X, we

can rewrite this description in terms of the following conditional probability,

P(X > u+ y|X > u) =
1− F (u+ y)

1− F (u)
, y > 0. (4)

In practical application it is uncommon to know the parent function F . The following

theorem allows us to approximate such a distribution while giving some relation to

the generalized extreme value distribution. A detailed proof can be found in [68].

Theorem 1.5.2. [27, Theorem 4.1] Let X1, X2, . . . be a sequence of independent

random variables with common distribution function and let

Mn = max{X1, . . . , Xn}

so that for large n,

P(Mn ≤ z) ≈ G(z),

where

G(z) = exp{−[1 + ξ(
z − µ
σ

)]−1/ξ}

for some µ, σ > 0 and ξ. Then, for large enough u, the distribution function given

by (4) is approximately

H(y) = 1− (1 +
ξy

σ̃
)−1/ξ
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de�ned on {y : y > 0, (1 + ξy/σ̃) > 0} where,

σ̃ = σ + ξ(u− µ).

The set of points

{(u, 1

nu

nu∑
i=1

(x(i) − u)) : u < xmax},

where x(1), . . . , x(nu) consist of the nu observations that exceed u, and xmax is the

largest value is termed the mean residual life plot or the mean excess function. A

threshold u is chosen so that this relationship is roughly linear since the mean excess

is linear if and only if the parent function is a generalized Pareto distribution [Section

4.3.1][27]. A point MN is called a maximum if MN > u. Increasing the value of u

gives a better approximation of the generalized Pareto distribution since the mean

residual is more easily approximated linearly while decreasing the value of u provides

a larger pool of data at the expense of a lower �t quality.

After an appropriate threshold is chosen the GDP is �t to the maxima by ap-

proximation by maximum likelihood estimation of the log-likelihood function given

by,

`(σ, ξ) = −n log σ − (1 + 1/ξ)
n∑
i=1

log(1 + ξyi/σ)

where yi are the n excesses of a threshold u and (1 + σ−1ξyi) > 0 for i = 1, . . . n;

otherwise `(σ, ξ) = −∞.
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1.6 Statistical Methods for Clustering Large Data

Statistical learning has critically impacted our society, as seen in: national security in

the form of fast-processing facial recognition software; in medical research providing

a way of mapping the brain; even in weather modeling giving global views to climate

variability and extreme weather events. The elements of statistical learning can be

generally split into two categories: supervised and unsupervised algorithms.

Some of the most well-known statistical methods for analyzing data come in the

form of supervised learning where the values of one or more outputs or response

variables are modeled on a set of predictor variables. Predictions are based on a

subset of previously recorded data called the training sample where the joint values of

all predictor and response variables are known. The model created from the predictor

variables provides a value of the response variable possibly with some associated

error. This error is typically characterized by some loss function, for example the

squared di�erence between the actual and predicted values, where the main goal is

to minimize such loss.

In unsupervised learning the goal is to conjecture about the underlying probability

distribution of a variable, call it X, without the help of a set of predictor variables

providing some measurement for the degree-of-error of each observation. SinceX now

must represent all response variables under consideration the dimension of X is often

much higher than in supervised learning. In low-dimensional problems (X ∈ Rn≤3)

there are a variety of numerical methods for estimating the probability density of X

and representing it graphically; however, these methods fail in higher dimensions [90].
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Moreover, in unsupervised learning there is no such direct measure of success as

observed in the supervised case. This makes it di�cult to prove the validity of

results and opens the e�ectiveness of an unsupervised algorithm up to a matter of

a opinion. Nevertheless in recent years unsupervised learning techniques have been

commonly put into practice with favorable results.

In this section we discuss a standard, unsupervised clustering technique called

spectral clustering. Cluster analysis has a variety of goals all relating to grouping

or segmenting a collection of objects into subsets or "clusters". The objects in

each cluster are more closely related to other objects within the same cluster than

objects in di�erent clusters. An object is often described as a set of measurements,

or by a similarity to other objects. The latter is typically represented by some

positive-de�nite similarity matrix containing vectors which represent each object in

the system and their similarities to all other objects. Recall that in unsupervised

learning this matrix can carry (possibly unnecessarily) high dimension. Spectral

clustering consists of two parts, the �rst to minimize the dimension without much

loss of information and the second to run a clustering algorithm on the system based

on similarities between objects.

1.6.1 Mutual information and data compression

Fundamentally, similarity can be seen as a measure of how much information one

random variable can tell us about the other. It is natural to extend this idea in a

probabilistic way to consider a measure which takes into account the joint probability
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distribution or conditional probabilities of the two random variables.

Let Z1 and Z2 be random variables with realizations z1
i and z2

j respectively for

i = 1, · · · ,m and j = 1, · · · , n then the entropy of Z1 is given by,

H(Z1) = −
m∑
i=1

p(z1
i ) log p(z1

i )

and the joint entropy is given by,

H(Z1, Z2) = −
m∑
i=1

n∑
j=1

p(z1
i , z

2
j ) log p(z1

i , z
2
j )

where p(z1
i ) = P(Z1 = z1

i ) and p(z1
i , z

2
j ) = (Z1 = z1

i , Z
2 = z2

j ). In general, entropy

is a function which attempts to assign a value to the unpredictability of a random

variable. In a similar way joint entropy assigns a value to the multi-valued random

variable. This measure allows us to extend a precise mathematical de�nition to

the information in a system and assigns a value to the similarity of two random

variables [69].

De�nition 1.6.1. Themutual information between two random variables Z1 and

Z2 is given as

I(Z1, Z2) = H(Z1) +H(Z2)−H(Z1, Z2).

where the mutual information between Z1 and Z2 is 0 if and only if Z1 and Z2 are

statistically independent.

Remark 1.6.2. Mutual information allows us to assign a positive similarity between

two time series without the requirement that their relationship be linear as in the

case of correlation.
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Since the distribution of a random variable in practice is apriori unknown, a

method for calculating the mutual information between two continuous random vari-

ables is to consider the transformation into discrete time. Given the data processing

inequality [7],

I(T (X), R(Y )) ≤ I(T (X), Y ) ≤ I(X, Y )

with equality only when T (·) and R(·) are invertible, our goal is to �nd transfor-

mations (though not invertible by de�nition) which compress our random variables

while preserving the maximum possible mutual information between each pair of

random variables.

We seek values a`max where ` = 1, . . . ,m and v` ∈ Z is the value the compressed

vector can take such that the mutual information between two continuous random

variables X1 = (x1
1, x

1
2...x

1
l ) and X2 = (x2

1, x
2
2...x

2
p) is maximized. Compression is

given by

If a` < x1,2
k < a`+1 then z1,2

k = v`

If x1,2
k > am then z1,2

k = vm

If x1,2
k < a1 then z1,2

k = v1

Since entropy is maximized when the random variable is uniformly distributed,

it is reasonable to choose starting points of gradient ascent a`0 at the 1/m quantile

of their respective time series. The gradient value of mutual information (now as a

function of the interval endpoint) is estimated as,

∆It =
I(at)− I(at−1)

at − at−1

. (5)
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Here at is the left-hand (right-hand) value of the interval with �xed right-hand (left-

hand) at the current time step, and our updated at+1 is given by

at+1 = at + γ∆It,

where γ is the speci�ed step size multiplier. Gradient ascent is then performed on (5)

by varying the endpoints. Mutual information as a measure of similarity has been

used in other applications of clustering real world data [6, 55, 56].

Since our transformation for compression is noninvertible, there will be an error

on the calculated mutual information for the compressed data and the true mutual

information between two time series. The total error is estimated by the di�erence

between the true and calculated joint entropy. This derivation can be found in A.2.1.

The similarity matrix of mutual information is positive de�nite and can be rep-

resented as an undirected graph where nodes correspond to a single random variable

and an edge represents a strictly positive mutual information between two random

variables. If the graph is disconnected, the connected component containing the ran-

dom variable of interest is chosen for the remaining analysis. From now on, we will

use the word system and connected component to represent the model of relationships

between random variables and their graph-matrix representation respectively.

Remark 1.6.3. The choice and estimation of the similarity measurement and com-

pression of the data are modi�cations on standard spectral clustering described in

the next section.
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Graph and Random Walk Representations of a System with Similarities
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Figure 1.4: Undirected graph for �ve random variables where a line represents a
strictly positive similarity (a) before clustering red lines indicate which edges will be
removed and after clustering into two groups. (b) The corresponding random walk
for the graph di�erent colors indicate clusters black lines indicate removed edges.

1.6.2 Spectral clustering methods

The goal of spectral clustering is to remove the edges within (or cut) the graph to

create clusters of disconnected nodes while still maintaining as much information as

possible. The simplist way to approach this problem is to choose a partition of the

graph which minimizes the sum of all the weights of the cuts; however, this is not

reasonable in practice. Since an unbalanced graph (that is, one where the number
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of edges for each node varies) can result in clusters containing one or a few nodes.

Several solutions to this problem were proposed. Each is an optimization problem

which minimizes the weights between each cluster while simultaeously maximizing

the similarity within [47, 89, 31]. The normalized-cut problem [89] is given by,

NCut(C1, . . . , Ck) =
1

2

k∑
i=1

S(Ci, C̄i)

vol(Ci)

where C1, . . . , Ck is a partition of the graph, C̄i is the compliment of Ci, S(Ci, Cj) =∑
i∈Ci, j∈Cj Si,j is the similarity matrix and vol(Ci) is the sum of the weights of all

edges attached to vertices in Ci. A relaxation of this optimization problem yields

the following spectral clustering algorithm.

Spectral decomposition and reducing the dimension of the system

Spectral decomposition of the system is performed by calculated the normalized

Laplacian [52, 14.5.3] for the connected component given by

L = I −D−1/2SD−1/2

where I is the identity matrix, S = Si,j is the symmetric matrix of mutual information

between random variables within the connected component and D is the diagonal

matrix with entries Di,i =
∑h

j=1 Si,j. Every node in the connected component is

represented by an h-dimensional vector in S where L takes this h-dimensional vector

in S to an associated h-dimensional vector in Rh.

In keeping with the theme, we will discuss the inituition behind spectral clustering

from a probabilistic point of view. Let P = D−1S then P can be seen as a probability

transition matrix for a random walk on the associated graph of similarities. The
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largest eigenvalues of P indicate which eigenvectors carry the most information of the

system. Since an eigenvalue λ of P with eigenvector v implies 1−λ is an eigenvalue of

L = I−P 1 with eigenvector v we may look at a reduction of the system by projecting

each node into the J-dimensional subspace of eigenvectors of L corresponding to the

J lowest eigenvalues. This provides a way of reducing the dimension of the system

while maintaining as much information as possible. Clustering is then performed on

the reduced system where the goal is to remove edges which carry the lowest weight

and result in the highest weight within clusters. In the setting of a random walk,

this amounts to partitioning the graph in places where there is a low probability of

transitioning between clusters.

A special property of the normalized Laplacian is that the projections of each

h-dimensional node correspond to the row vectors of the reduced [h× J ] eigenvector

matrix of L. These vector projections serve as inputs into the K-means algorithm.

K-means clustering

The K-means clustering algorithm [52, 14.3.6] seeks to minimize cost by perform-

ing the following until a steady state on the objective function is reached:

min
N∑
K=1

M∑
l=1

||n(l)− C(K)||RJ

where M is the number of nodes n in the cluster K, C(K) is the centroid of cluster

K and N is the number of clusters.

1 This formulation of the Laplacian is used for simpli�cation and does not change the results since

L = I − P is similar to L = I −D−1/2SD−1/2.
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assignment step: Given an initial set of K random centroids, assign each observa-

tion to the cluster whose centroid has the least squared euclidean distance.

update step: Calculate the new means of the cluster to be the centroids of the

observations in the new clusters.

K-means provides a simple and relatively easily computed algorithm for data

clustering though it is not without limitations. Primarily these limitations exist

because J-dimensional data cannot be visualized. Since K means only considers

separations of clusters by hyper-planes it supplies a method of "�at" clustering.

By de�nition the K-means algorithm monotonically decreases the objective; how-

ever, this convergence is dependent upon the original choice of centroids. To overcome

this di�culty, many analyses consider multiple runs of the K means algorithm where

the best clustering can be loosely de�ned by the cluster with the lowest minimized

distance.

In the case when data is dispersed for one cluster and tight for another the mini-

mized distance may not provide the most accurate clustering solution. Determining

the accuracy of resulting clusters is a wide topic of discussion in unsupervised learn-

ing. For the purposes of this paper we will consider a good cluster one which has (1)

a low dispersion of points and (2) a large separation between centroids.

The Davies-Bouldin index [28], given by

1

N

N∑
1

max
MSEj +MSEi
||C(j)− C(i)||
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where i, j = 1, ..., N , N is the number of clusters and,

MSEj =
1

M

∑
n(l)∈C(j)

d(n(l), C(j))2

is often used to determine how separated a cluster is. Note that small values of the

Davies-Bouldin index indicate larger separation of clusters.

Remark 1.6.4. If the data cannot be separated appropriately by a hyper-plane, for

example in the case of complicated clusters such as the Donut and Ball, Horse Shoe

or Spiral, more accurate clustering can be obtained by implementing the Kernel K-

means algorithm. Kernel K-means considers functions φ on a Hilbert space where

the distance ||φ(n(l)) − φ(C(K))||RJ is minimized. Implementing Kernel K-means

may provide a more accurate cluster at the expense of computation e�ciency.

The number of clusters K presents another issue since a large number of clusters

will decrease the objective in an obvious way but give no usable information while

small numbers make the objective unable to decrease appropriately. Typically K is

chosen by running the algorithm several times for di�erent values of K, taking the

minimum value of the objective and comparing this across all K.

It is natural to ask why we perform spectral clustering rather that running K-

means explicitly on the data. Projection onto the full space Rh quite often result

in clusters which are unnecessarily complicated and unable to be easily separated.

Spectral decomposition takes clusters which are not separable by a hyperplane in Rh

into the lower dimensional space RJ where they may be separated. This produces

more reliable results with very little computational expense.
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A Toy Example for Clustering Comparison

(a) (b) (c)

Figure 1.5: (a) K-means clustering result. (b) Spectral clustering result. (c) Space
where K-means clustering is performed in the spectral clustering algorithm.

For completion of exposition, the adapted spectral clustering algorithm described

is listed below.

• Compute the normalized Laplacian given by L = I − D−1S where I is the

identity, S is the matrix of similarity and D is a diagonal matrix containing

the sum of all the row values of S.

• Compute the k smallest eigenvalues of L and their corresponding eigenvectors

by choosing a cut-o� point.

• Form a matrix U ∈ Rn×k with the eigenvectors as columns.

• Let yi ∈ Rk be the row-vectors of U . Cluster the set of points yi using the

K-means algorithm.
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Chapter 2

Growth Rates for Birkho� Sums of

Non-integrable Observables1

2.1 Background

Let (X,T, µ) be an ergodic, measure-preserving transformation, µ a probability mea-

sure absolutely continuous with respect to Lebesgue and ϕ a non-integrable observ-

able taken on the map. Since convergence for the Birkho� sum cannot be established

in this setting (see Chapter 1, Section 1.1), an interesting question to ask is about

the growth rates of the Birkho� sum. A useful result due to Aaronson [1, Proposition

2.3.1] states,

1 This chapter contains published work from Carney, M., and Nicol, M. (2017) Dynamical

Borel-Cantelli lemmas and rates of growth of Birkho� sums of non-integrable observables on

chaotic dynamical systems. Nonlinearity, 30(7), 2854-2870.
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Proposition 2.1.1. Suppose that ϕ : X → R is a non-integrable measurable func-

tion. If a(x) is increasing, limx→∞
a(x)
x

= 0 and∫
a(|ϕ(x)|)dµ <∞

then for µ a.e. x

lim
n→∞

a(|Sn|)
n

= 0.

Despite the generality of its assumptions, the above gives close to optimal upper

bounds on the lim supSn in many dynamical settings, as demonstrated later. Since

the Birkho� sum is greater than or equal to the sum of its maximum values, it is

natural to assume that optimal lower bounds on the lim inf Sn can be obtained by

counting the maximum contributions.

In [58] dynamical Borel Cantelli lemmas were used to give information on the

behavior of the maxima Mn := max{ϕ(x), ϕ(Tx), ϕ(T 2x), · · · , ϕ(T nx)} of a time

series on a variety of chaotic dynamical systems (T,X, µ) with observables of the

form ϕ(x) = − log d(x, q) and ϕ(x) = d(x, q)−k for a point q ∈ X, where d(., .)

was a Riemannian metric on the space X, a Riemannian manifold. Recall from

Chapter 1, Section 1.3, that observables of this type are motivated by applications

in extreme value theory. For the integrable observable ϕ(x) = − log d(x, q) under

relatively mixing conditions [58, Theorem 2.2] on the dynamical system a sequence

of scaling constants a(n) exists such that limn→∞
Mn

a(n)
= C > 0 almost surely for

some constant C, however, for observables of the form ϕ(x) = d(x, q)−k, k > 0 there

is no almost sure limit for Mn

a(n)
even if k is such that ϕ is integrable. The precise

result for ϕ(x) = d(x, q)−k is stated in the following version of [58, Theorem 2.7],
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Proposition 2.1.2. Suppose that (T,X, µ) is a probability measure-preserving sys-

tem with ergodic measure µ which is absolutely continuous with respect to Lebsegue

measure m. Suppose for a point q ∈ X there exists δ > 0, C > 0 and r0 > 0 such

that for all ε < r < r0:

|µ(B(q, r + ε))− µ(B(q, r))| ≤ Cεδ.

and 0 < dµ
dm

(q) <∞ where B(q, r) denotes the ball of radius r centered at q. Moreover

suppose that we have exponential decay of correlations in bounded variation norm

(BV) versus L1 (refer to Chapter 1, Section 1.1, and the Appendix A.1.2 for details)

in the sense that there exists C > 0 and 0 < θ < 1 such that for all ϕ1 of bounded

variation and all ϕ2 ∈ L1(m) we have:

∣∣ ∫ ϕ1 · ϕ2 ◦ T jdµ−
∫
ϕ1dµ

∫
ϕ1dµ

∣∣ ≤ Cθj||ϕ1||BV ||ϕ2||L1(m),

Then if ϕ(x) = d(x, q)−k for some k > 0 for any sequence u(n)→∞:

µ
(

lim
n→∞

sup
Mn(x)

u(n)
= 0
)

= 1, or µ
(

lim
n→∞

inf
Mn(x)

u(n)
=∞

)
= 1

The relation between Birkho� sums and extreme values, such as the maxima,

is investigated in the topic of trimmed Birkho� sums [3, 62, 88]. In this approach

the time series {ϕ(x), ϕ(Tx), ϕ(T 2x), · · · , ϕ(T nx)} is rearranged into increasing or-

der {ϕ(T i0x) ≤ ϕ(T i1x) ≤ ϕ(T i2x) · · · ≤ ϕ(T inx)} = {Mn
0 (x),Mn

1 (x), · · · ,Mn
n (x)}

so that ϕ(T inx) = Mn
n (x) = Mn(x). Almost sure limit theorems for trimmed sums

consider two sequences of constants a(n), b(n) so that the scaled truncated sum

1
a(n)

∑n−b(n)
j=0 Mn

j satis�es a strong law of large numbers with [3, 88] containing pre-

cise limiting behavior and choice of constants a(n) and b(n) for certain dynamical
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systems. The rate of growth of
∑n

j=n−b(n)+1M
n
j remains an open question; however,

the trimmed sum limit has been shown to provide good estimates on the lower bound

of the rate of growth of Sn particularly in the case of piecewise uniformly expanding

interval maps [88, Theorem 1.8] where our techniques present less optimal bounds.

In this chapter we consider the observable ϕ(x) = d(x, q)−k over chaotic dynami-

cal systems (T,X, µ) on probability spaces µ(X) = 1 for ergodic, measure-preserving

transformations and for values of k which ensure
∫
ϕ dµ = ∞. Most of the results

generalize to a wider class of functions of the form µ(ϕ > t) = L(t)
tγ

where 0 < γ < 1

and L(t) is a slowly varying function, as long as the sets (ϕ > t) correspond to sets

for which the dynamical Borel-Cantelli lemmas hold for large t. In a similar way

we may generalize further by considering observables ϕ with a �nite set of singular-

ities {q1, · · · , qm} such that for all t there exist constants C1, C2, r > 0 such that

0 < C1 <
ϕ(y)

d(y,qi)−k
< C2 for all y ∈ B(qi, r) and with integrable negative part i.e. if

ϕ− := max{0,−ϕ} then
∫
ϕ− dµ < ∞. The case when ϕ− is non-integrable is in-

teresting but the techniques outlined are not immediately applicable in this setting.

For interesting recent results on trimmed symmetric Birkho� sums in the setting of

in�nite ergodic theory (when the underlying probability space has in�nite measure)

refer to [2, 64].

2.2 Main Results

We assume that (T,X, µ) is an ergodic dynamical system and X is a probability

measure space and a Riemannian manifold with a Riemannian metric d. Letm denote
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the Lebesgue measure on X and assume µ � m. Let B(q, r) := {x : d(q, x) < r}

denote the ball of radius r about a point q with respect to the given metric d. The

following results utilize dynamical Borel Cantelli properties, in particular the QSBC

property, for shrinking balls (Bj) about a point q ∈ X. Please refer to Chapter 1,

Section 1.2, for detailed information on these topics.

Examples of systems for which the QSBC property has been proved for balls

nested at points q in phase space include Axiom A di�eomorphisms [21], uniformly

partially hyperbolic systems preserving a volume measure with exponential decay

of correlations [32], uniformly expanding C2 maps of the interval [82], and Gibbs-

Markov type maps of the interval [63] (All listed maps are de�ned precisely in the

Appendix A.1.1). For intermittent type maps with an absolutely continuous invari-

ant probability measure the work of Kim [63] and Gouëzel [45] gives a fairly complete

picture: the Borel Cantelli property holds for nested balls except those based at the

indi�erent �xed point. Other results on non-uniformly expanding systems include

one-dimensional maps modeled by Young towers with exponential decay of correla-

tions [46], the general framework of [54] and other hyperbolic settings [43, 59, 74, 75].

See Appendix A.1.2 for more details on Young towers.

2.2.1 Non-integrable observations.

Let ϕ(x) = d(x, q)−k for some distinguished point q ∈ X where dim(X) = D and

k > D and de�ne Sn =
∑n−1

i=0 ϕ ◦ T i(x).

Theorem 2.2.1. Suppose that (T,X, µ) is an ergodic dynamical system where X
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is a Riemannian manifold with Riemannian metric d. Suppose dim(X) = D. Let

ϕ(x) = d(x, q)−k for some distinguished point q. Suppose there exist constants C1,

C2 such that 0 < C1 <
dµ
dm

(q) < C2 and that the SBC property holds for nested balls

about q.

If k > D then for µ a.e. x and any ε > 0

(a) lim sup
n→∞

Sn
nk/D(log n)k/D+ε

= 0

and for any ε > 0

(b) lim inf
Sn

nk/D−ε
=∞

while

(c)Sn ≥ nk/D logk/D n in�nitely often

If moreover the QSBC property holds for nested balls about q the for any ε > 0

(d) lim inf
n→∞

Sn

nk/D(e−(logn)1/2+ε)k/D
=∞

Proof. We assume �rst k > D. It is known from Aaronson [1, Proposition 2.3.1] that

if a(x) is increasing, limx→∞
a(x)
x

= 0 and∫
a(ϕ(x))dµ <∞

then for µ a.e. x

lim
n→∞

a(Sn)

n
= 0

Our assumptions imply that µ(B(q, r)) ∼ rD. In fact using spherical coordi-

nates our assumption on the density implies that for any integral f : X → R such
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that
∫
fdµ =

∫
fh(x)dx =

∫
f(θ1, . . . , θD−1, r)K(θ1, ..., θD−1)rD−1h(r)drθ1 . . . dθD−1

where 0 < c1 < K(θ1, ..., θD−1) < c2 for some constants c1,c2.

By the Borel Cantelli lemma µ(T nx ∈ B(q, 1
n1/D+δ ) i. o.) = 0 for any δ > 0. Hence

given δ > 0 for µ a.e. x ∈ X there exists a time N(x) such that T ix 6∈ B(q, 1
n1/D+δ )

for all i > N(x). This implies that ϕ ◦ T j ≤ nk(1/D+δ) for all j ≥ N(x). Thus Sn ≤

C(x)n1+k(1/D+δ) for large n where C(x) is a constant. Hence log(Sn) ≤ c(x) log(n)

for some constant c(x) > 0. Choosing a(x) = xD/k

log(x)1+η
for η > 0 then

a(Sn) =
(Sn)D/k

log(Sn)1+η
≥ (Sn)D/k

[c(x) log(n)]1+η

Hence for any ε > 0

lim sup
Sn

nk/D[log(n)]k/D+ε
= 0

Assume now that the SBC property holds for nested balls about q. First note

that if rn = (n)−1/D then T nx ∈ B(q, rn) i.o. Let Bj := B(q, 1
j1/D

). From the SBC

property
∑n

j=1 1Bj ◦ T j(x) ∼ log(n).

If we de�ne nl := max{0 < j ≤ n} such that T jx ∈ B(q, rj) (the notation "l� in nl

suggests the "last time� ) then for µ a.e. x ∈ X, for anyM > 0, limn→∞
nl
n1−δ > M for

any δ > 0. To see this, for a generic x ∈ X, limn→∞
Sn

logn
= 1. By de�nition of nl(x),

Snl = Sn and hence limn→∞
Snl
logn

= 1. As limn→∞
Snl

lognl
= 1 we see limn→∞

lognl
logn

= 1,

which implies the result.

Since Sn > Mnl , lim inf Sn
nk/D−ε

=∞ for any ε > 0.

Suppose now that we have a quantitative error estimate in the form of the QSBC
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Illustration of Shrinking Targets

q

(a)

q

(b)

Figure 2.1: Iterations of shrinking balls (shrinking targets) of (a) radius 1√
n
and (b)

radius 1
n
. (a) The balls about point q shrink slow enough so that almost every point

under the map will return to the shrinking ball in�nitely often. (b) The balls shrink
too quickly so that at a large enough time step almost every under the map will not
return to the shrinking ball.

property,
n∑
j=1

1Bj ◦ T j(x) = En +O(E1/2+δ
n )

Remark 2.2.2. Since the general QSBC property does not provide much more

optimal results a simpler version is used in the proofs of this chapter to avoid clutter

of variables.

Then

Sn = En +O(E1/2+δ
n )

Snl = Enl +O(E1/2+δ
nl

)

By de�nition of nl, Snl = Sn and hence

En − Enl = O(E1/2+δ
n )
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We obtain

log n− log nl = O(E1/2+δ
n )

which implies that

nl ≥ ne−(logn)
1
2+δ

for any δ > 0.

Hence lim inf Sn

nk/D(e−(logn)
1
2+ε

)k/D
=∞ for any ε > 0.

The proofs of (a) and (c) in the case k = D are unchanged, and estimates (b)

and (d) are immediate consequences of the ergodic theorem.

Remark 2.2.3. The assumptions of Theorem 2.2.1 are satis�ed by Anosov di�eo-

morphisms [17], uniformly expanding C2 maps of the interval [82] and Gibbs-Markov

type maps of the interval [63]. Kim also shows that for all q ∈ (0, 1] in a class of

intermittent maps of the unit interval preserving an absolutely continuous probabil-

ity measure the conditions hold, except at the indi�erent �xed point x = 0. Recent

work of Tanja Schindler [88, Theorem 1.8] on trimmed Birkho� sums has shown

that for Gibbs-Markov maps the limit in�mum estimate (d) can be improved to

lim inf Sn(log logn)k−1+ε

nk
=∞ for any ε > 0.
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2.2.2 Non-integrable observables on a class of intermittent

type maps.

A simple model of intermittency, a form of Manneville-Pommeau map, is the class

of maps Tα introduced by Liverani, Saussol and Vaienti in [71]

Tα(x) =


x+ 2αx1+α, 0 ≤ x ≤ 1/2

2x− 1, 1/2 ≤ x ≤ 1

0 ≤ α < 1 (2.1)

The LSV Map

0 1
0 x

Tα(x)

(a)

0 1
0 x

Tα(x)

(b)

Figure 2.2: The Liverani-Saussol-Vaienti (LSV) map for (a) α = 0.2 and (b) α = 0.9.

The map Tα has a unique absolutely continuous probability measure µα if 0 ≤

α < 1. We will only consider the case of a probability measure, rather than an in�nite

measure-preserving system. The density hα(x) is Lipschitz and strictly positive on

any interval of form [a, 1], a > 0 but is unbounded at x = 0, where hα(x) ∼ x−α,

α > 0.

Kim [63, Proposition 4.1] has shown that if q 6= 0 then any nested sequence of

balls about q has the SBC property. In this section we improve this result to obtain

59



the quantitative (QSBC) property and establish the following.

Theorem 2.2.4. Suppose (Tα, [0, 1], µα) is a Liverani-Saussol-Vaienti map with 0 ≤

α < 1. Let q ∈ [0, 1] and ϕ(x) = d(x, q)−k with k ≥ 1. De�ne Sn =
∑n

j=1 ϕ ◦ T jα.

Then if q 6= 0, for µα a.e. x and any ε > 0

lim inf
n→∞

Sn

nk(e−(logn)
1
2+ε

)k
=∞

and

lim sup
n→∞

Sn
nk[log(n)]k+ε

= 0

In particular

lim
n→∞

logSn
log n

= k

If q = 0 then for any ε > 0

lim inf
n→∞

Sn
nk+α−ε =∞

and

lim sup
n→∞

Sn
nk+α+ε

= 0

In particular

lim
n→∞

logSn
log n

= k + α

Remark 2.2.5. For generalized Manneville-Pommeau maps Dedecker, Gouëzel and

Merlevede [29] proved that a strong law of large numbers with good error rates can

be obtained for a large class of unbounded, but integrable observables.

Proof.

Case 1: q 6= 0
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Proposition 2.2.6. [46] Let X be a compact interval and let P be a countable partition

of X into subintervals. Suppose that (T,X, µ,P) is a Gibbs-Markov system. Let (Bn)

be a sequence of intervals in X for which there exists C > 0 such that µ(Bj) ≤ Cµ(Bi)

for all j ≥ i ≥ 0. If
∑∞

n=0 µ(Bn) = ∞, then denoting En =
∑n

j=1 µ(Bj) for any

ε > 0,
n∑
j=1

1Bj ◦ T j(x) = En +O(E1/2+ε
n )

for µ a.e. x ∈ X.

A �rst return time Young Tower (see Appendix A.1.2) (F, ν,∆) may be con-

structed for this class of intermittent maps with base ∆ = [1/2, 1] [96]. Every point

q 6= 0 has a unique representation in such a �rst return time Tower, in the sense that

there is a unique min t for each q such that F−t(q) ∈ ∆. Hence Proposition 2.2.6

shows that if q 6= 0 and (Bj) is a sequence of nested sequence of balls based about q

then
n∑
j=1

1Bj ◦ T jα(x) = En +O(E1/2+ε
n )

for µα a.e. x ∈ X.

Hence by the proof of Theorem 2.2.1 for µα a.e. x

lim inf
Sn

(ne−(logn)
1
2+ε

)k
=∞

for any ε > 0, and as a consequence of Aaronson [1, Proposition 2.3.1] for any ε > 0

lim sup
Sn

nk[log(n)]k+ε
= 0

Case 2: q = 0
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Dynamics of the LSV Map

x

Tα(x)

(a)

x

Tα(x)

(b)

Figure 2.3: Shrinking target about q = 0 for the �rst branch of the LSV map with (a)
α = 0.2 and (b) α = 0.9. Points indicate iterations of a point under the map. Note
that it takes longer for a point to escape the shrinking target for larger α values.

Now we consider the case q = 0. For nested intervals based at q = 0 an interesting

failure of the dynamical Borel-Cantelli lemma occurs, described in [63].

To understand this phenomenon let T1 and T2 be the two branches of the map

Tα, with domains [0, 1/2] and [1/2, 1] respectively. Consider the sequence of balls

Bj = [0, 1
jγ

) for any 1 < γ ≤ 1
1−α . Kim notes that

∑
n µα(Bj) diverges (due to

hα(x) ∼ x−α) while
∑

nm(Bj) <∞. Note that T−1
1 (Bj) ⊂ Bj. Hence the only way

that T jα(x) can enter Bj for in�nitely many j is that T j−1
α (x) ∈ T−1

2 (Bj) for in�nitely

many j. However the density hα(x) is strictly positive and Lipschitz on any interval

[a, 1] for a > 0 and so
∑

j µα(T−1
2 (Bj)) ∼

∑
jm(T−1

2 (Bj)) < ∞ and the sequence

(Bj) is not Borel-Cantelli.

We now consider the case of q = 0 and ϕ(x) = d(x, 0)−k. In this setting using
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Aaronson [1, Proposition 2.3.1] we solve
∫
a(ϕ) 1

xα
dx < ∞ which gives an upper

bound roughly of form lim sup Sn
nk/(1−α)

= 0, which is not optimal (being too large as

we will see).

To get a better estimate we will consider the dynamics near the indi�erent �xed

point. The following local analysis of a large class of Manneville-Pommeau maps (of

which the Liverani-Saussol-Vaienti map is a subclass) is taken from [97].

Fix ε0 > 0, let x0 ∈ (0, ε0] and de�ne the sequence xn by xn−1 = Tαxn. Young

shows that xn ∼ 1
nβ

where β = 1
α
. In fact there is a uniform bound on the number

of intervals [ 1
(m+1)β

, 1
mβ

] that meet each [xn+1, xn] and vice-versa.

This implies that if x = 1
2

+ 1
2mγ

then Tαx = 1
mγ

. Writing 1
mγ

= xn for some

sequence as described above we have 1
mγ

= 1
nβ
, hence it takes n ∼ mγ/β = mγα

iterates j for T j+1
α x to escape the region [0, ε0] i.e. T j+1

α x < ε0 for j < mγα. Note

that
∑n

j=1 ϕ(xj) ≥
∑n

j=1 j
kβ as xj ∼ 1

jβ
and hence Sn ≥ nkβ+1. Hence if

x =
1

2
+

1

2mγ

then
n∑
j=1

ϕ ◦ T jαx ≥ m(γ/β)(kβ+1) = mγ(k+α) (�)

This gives a lower bound on lim inf Sn since if we de�ne nl(x) = max{1 ≤ j ≤ n}

such that T jα(x) ∈ [1/2, 1/2+ 1
j
] then for any ε > 0, lim inf nl

n1−ε ≥ 1 by the arguments

of the previous section (we use the weaker SBC estimate as the stronger QSBC

estimate does not help in this argument). Furthermore once T nαx enters [1/2, 1/2+ 1
n
]

it spends ∼ nα iterates in the region (0, ε0) whence Sn+nα ≥ nk+α−ε. As α < 1 this

implies that lim inf Sn
nk+α−ε

=∞ for any ε > 0.
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We will now show lim sup Sn
nk+α+ε

= 0 for any ε, hence limn→∞
logSn
logn

= k + α.

We �rst sketch our argument. Let 0 < η < 1 and q ∈ (0, 1]. Then
∑n

j=1 1B(q, 1
jη

) ◦

T jα(x) ∼ n1−η for µα a.e. x. Note that if δ > 0 then by Borel-Cantelli µα a.e.

x ∈ X has the property that T nαx ∈ B(q, (n log1+δ n)−1) for only �nitely many n.

Asymptotically almost every x has the property that T jαx ∈ B(q, 1
jη

) for ∼ n1−η

iterates j in the interval 1 ≤ j ≤ n, after a certain L(x), i.e. for j ≥ L(x), the

maximum value that ϕ ◦ T j+1
α x attains if T jα(x) enters B(q, 1

nη
) is nk logk(1+δ) n. We

break up Sn for large n into the times j that T jα(x) enters B(q, 1
nη

), roughly n1−η

times where the value ϕ◦T j+1
α (x) is bounded by nk logk(1+δ) n which thus contributes

at most n1−ηnk+α logk(1+δ) n to Sn and the times j that T jα(x) enters Bc(q, 1
nη

), which

contributes at most n.nη(k+α) = n1+η(k+α) to the sum Sn (using the estimate of line

(�)). Incorporating the log term into the exponent, by choosing η = k+α
k+α+1

we obtain

lim supSn ≤ nk+ 1
k+1

+α.

We will iterate this procedure. Choose 1 > η1 > η2 > . . . ηm > 0 and for simplicity

of notation let Bηi = B(q, 1
nηi

).

The contribution of the iterates j that enter Bη1 we bound by the product of the

maximum value they may attain, namely the value nk+α logk(1+δ) n and the num-

ber of times the point enters this sequence of sets n1−η1 to arrive at nk+α+1−η1

(incorporating the log term into the exponent). This accounts for those iterates

that enter Bη1 ⊂ Bη2 and we bound the contribution of those that enter Bη2 \ Bη1

by n1−η2 .nη1(k+α) = n1−η2+η1(k+α). We bound the contribution of those that enter

Bη3 \ Bη2 by n1−η3nη2(k+α) = n1−η3+η2(k+α). Continuing in this way we have a sum

of contributions of form n1−ηj+1+ηj(k+α) terminating with the last contribution, those
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Iterations of Shrinking Balls for Optimal Upper Bound Estimation

q

(a)

q

(b)

Figure 2.4: (a) Shrinking balls for two nested sets of radius 1
nη1

(blue) and 1
n log1+δ n

(green). Orbits of points may enter the blue sequence in�nitely many times while
only enter the green sequence �nitely many times. Red dots indicate the maximum
of the orbit after the point leaves green but continues to remain in blue. (b) Pink
indicates a shrinking set of radius 1

nη2
where maximum values of the orbit after the

point leaves blue but remains in pink are marked by red dots.

iterates j that lie in Bc
ηm whose contribution we bound by nηm(k+α) · n = n1+ηm(k+α).

If k ≥ 1, choosing ε = 1
(k+α)m

and ηi = 1− (k+α)i−1ε for i = 1, . . . ,m the leading

term is nk+α+ε corresponding to nk+α+1−η1 , thus lim supSn ≤ mnk+α+ 1
(k+α)m which

implies the result as m was arbitrary.

2.2.3 Dynamical systems with Lp, (p > 1), densities and ex-

ponential decay of correlations.

In this section, we consider dynamical systems with exponential decay of correlations,

which possess absolutely continuous invariant measures (with respect to Lebesgue
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measure m) with densities dµ
dm

in Lp(m), p > 1.

Suppose (T,X, µ) is an ergodic measure-preserving map of a probability space X

which is a Riemannian manifold with Riemannian metric d. We assume:

(A) For all Lipschitz functions ϕ, ψ on X we have exponential decay of correlations

in the sense that there exist constants C, 0 < θ < 1 (independent of ϕ, ψ) such

that

|E(ϕ ψ ◦ T k)− E(ϕ)E(ψ)| < Cθk‖ϕ‖Lip‖ψ‖Lip.

(B) There exist r0 > 0, 0 < δ < 1 such that for C > 0, all q ∈ X and all

0 < ε < r ≤ r0

µ{x : r < d(x, q) < r + ε } < Cεδ.

Under assumptions (A) and (B) Haydn, Nicol, Persson and Vaienti [54] showed:

Proposition 2.2.7. Assume (T,X, µ) satis�es assumptions (A) and (B). Suppose

µ(Bi) ≥ C logβ i
i

for some β > 0, then if En =
∑n

j=1 µ(Bj) for µ a.e. x ∈ X.

n∑
j=1

1Bj ◦ T j(x) = En +O(E1/2+ε
n )

for any ε > 0.

In fact the density assumption h := dµ
dm
∈ Lp(m), p > 1 implies assumption (B).

Lemma 2.2.8. Suppose m is Lebesgue measure on a D-dimensional manifold X and

h := dµ
dm
∈ Lp(m), p > 1. Then for all 0 < r < r0

µ{x : r < d(x, q) < r + ε } < εδ
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for some δ > 0

Proof. Let p be the conjugate of q, so that 1
q

+ 1
p

= 1. Then
∫
Br+ε(q)/Br(q)

dµ =∫
Br+ε(q)/Br(q)

hdx ≤ ‖h‖qm(x : r < d(x, q) < r + ε)
1
p which implies the result.

Remark 2.2.9. Any exponentially mixing volume preserving system satis�es (A)

and (B), for example Sinai dispersing billiard maps with �nite and in�nite horizon [97,

17]. Furthermore for a volume preserving dynamical system the density h(x) = dµ
dm

of the invariant measure is bounded above and is strictly positive. We consider the

consequences of this in the next theorem.

Theorem 2.2.10. Suppose a dynamical system (T,X, µ) satis�es (A) and q ∈ X has

density h = dµ
dm

satisfying 0 < C1 < h(q) < C2 for some constants C1, C2. Suppose

also dim(X) = D. Then if ϕ(x) = d(x, q)−k, k > D,

lim sup
n→∞

Sn

nk/D[log(n)]
k
D

+ε
= 0

and

lim inf
n→∞

Sn

nk/D(e−[log(n)]
1
2+ε

)
k
D

=∞

for µ a.e. x and any ε > 0.

Remark 2.2.11. By ergodicity in the case k = D

lim inf
n→∞

Sn
n

=∞

Proof. Note that if B(q, r) is a ball of small radius r > 0 nested at q then µ(B(q, r)) ∼

CrD. Suppose k > D. Let ϕ(x) = d(x, q)−k and a(x) = |x|Dk /(| log |x||)1+η. Then
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∫
a(ϕ(x))dx <∞. If we de�ne Sn =

∑n
j=1 ϕ ◦ T j, then by [1, Proposition 2.3.1]

a(Sn)

n
→ 0

for µ a.e. x ∈ X. Hence for any ε > 0, for µ a.e. x ∈ X

lim sup
Sn

nk/D[log(n)]
k
D

+ε
= 0

To obtain a limit in�mum estimate we modify our previous argument. Let Bj be

balls of µ (hence m) measure ∼ logβ n
n

nested about q. Let En :=
∑n

j=1 µ(Bj)

De�ne nl := max{0 ≤ j ≤ n} such that T j(x) ∈ Bj as before we have

n∑
j=1

1Bj ◦ T j = En +O(E1/2+δ
n )

nl∑
j=1

1Bj ◦ T j = Enl +O(E1/2+δ
nl

)

By de�nition of nl,
∑nl

j=1 1Bj ◦ T j =
∑n

j=1 1Bj ◦ T j and hence

En − Enl = O(E1/2+δ
n )

We obtain

log1+β n− log1+β nl = O(log1/2+γ(n))

where γ = δ + β
2
. As x− y ≤ x1+β − y1+β for large y and x > y we see that

nl ≥ ne−(logn)
1
2+ε

for any ε > 0. Note that balls of radius r based at q satisfy µ(B(q, r)) ∼ CrD, and

so we are able to bound Sn below by Mnl ≥ (ne−[log(n)]
1
2+ε

)
k
D . Hence

lim inf
Sn

(ne−[log(n)]
1
2+ε

)
k
D

=∞

for any ε > 0.
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The following recent result [86, Corollary B] extends a class of interval maps to

the Lp case.

Proposition 2.2.12. Let T be a non-degenerate smooth interval map having an

exponentially mixing absolutely continuous invariant probability measure µ. Then

there is p > 1 such that the density h of µ with respect to Lebesgue measure m is in

Lp(m). Moreover, µ can be obtained through a Young tower with an exponential tail

estimate.

For maps which satisfy these properties if the invariant density at q is h(x) ∼

Cd(q, x)−α, α > 0, then the following holds,

Theorem 2.2.13. Suppose a dynamical system (T,X, µ) satis�es (A) and q ∈ X has

density satisfying h(x) ∼ Cd(q, x)−α, α > 0 for x near q. Suppose also dim(X) = D.

Then if ϕ(x) = d(x, q)−k, k ≥ D − α,

lim sup
n→∞

Sn
nk/(D−α)[log(n)]k+ε

= 0

and

lim inf
n→∞

Sn

nk/(D−α)(e−[log(n)]
1
2+ε

)
k

D−α
=∞

for µ a.e. x any ε > 0. Hence

lim
n→∞

logSn
log n

=
k

D − α

Proof. The proof is an obvious modi�cation of the proof of the previous theorem.

Let D̃ = D − α and de�ne a(x) = |x|D̃/k
(log |x|)1+η . Then

∫
a(ϕ(x))dx < ∞ and by [1,

Proposition 2.3.1] a(Sn)
n
→ 0 and hence

lim sup
Sn

nk/(D̃)[log(n)]k+ε
= 0

69



We now obtain our limit in�mum estimate.

Let Bj be balls of µ measure ∼ logβ n
n

nested about q. De�ne nl := max{0 ≤ j ≤

n} where T j(x) ∈ Bj as before we have

n∑
j=1

1Bj ◦ T j = En +O(E1/2+δ
n )

nl∑
j=1

1Bj ◦ T j = Enl +O(E1/2+δ
nl

)

and hence

En − Enl = O(E1/2+δ
n )

We have

log1+β n− log1+β nl = O(log1/2+γ(n))

where γ = δ + β
2
. As x− y ≤ x1+β − y1+β for large y large and x > y we see that as

in the previous theorem

nl ≥ ne−(logn)
1
2+ε

for any ε > 0. Note that balls of radius r based at q satisfy µ(B(q, r)) ∼ CrD̃ we see

that Sn ≥Mnl implies

lim inf
Sn

(ne−[log(n)]
1
2+ε

)
k

D−α
=∞

for any ε > 0.

Corollary 2.2.14. Suppose T (x) = 4x(1 − x) is a unimodal map of the interval

[0, 1]. Let ϕ(x) = d(x, q)−k, then if q = 0 or q = 1

lim
n→∞

log(Sn)

log n
= 2k
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while if q ∈ (0, 1)

lim
n→∞

log(Sn)

log n
= k

Proof. This map has invariant density h(x) = 1√
πx(1−x)

. First note that the unimodal

map has density h(x) ∼ 1√
x
for q = 0 and q = 1 which implies the result.

2.3 Numerical Results

Numerical simulations to illustrate Birkho� sum growth rates under the Theorems

described in this chapter are given for a few example dynamical maps.
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Doubling Map and Hyperbolic Toral Automorphism. [Theorem 2.2.1]

(a)

(b)

Numerical results for the Birikho� sum with �xed point q = 0.25 and q = 0 on
(a) the doubling map and (b) an Anosov di�eomorphism. Predicted value of the
convergence is marked in a dotted line.
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Tent Map. [Theorem 2.2.10] and Unimodal Map. [Corollary 2.2.14]

(a)

(b)

Figure 2.6: Numerical results for the Birikho� sum with �xed point q = 0.25 and
q = 0 on (a) the tent map and (b) the unimodal map. Predicted value of the
convergence is marked with a dotted line.

73



Liverani-Saussol-Vaienti Map. [Theorem 2.2.4]

(a) (b)

(c) (d)

Numerical results for the Birikho� sum with �xed point q = 0.25 and q = 0 on the
LSV map. (a) α = 0.5 and (c) α = 0.9 with initial value near zero and (b) α = 0.5
and (d) α = 0.9 with initial value near 1. Predicted value of the convergence is
marked with a dotted line.
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Chapter 3

REPP Distribution for 2-D

Hyperbolic Systems with

Singularities1

3.1 Background

Much of the work done in this chapter was motivated by a desire to understand

mathematical billiards with chaotic behavior. What has come to be known as the

dispersing billiard model was introduced by Yakov Sinai (1970) [91] and has been

widely studied [11, 12, 96, 97, 23] for its physical relevance. The dispersing billiard

1 This chapter contains published work from Carney, M., Nicol, M., and Zhang, H.K. (2017)

Compound Poisson Law for Hitting Times to Periodic Orbits in Two-Dimensional Hyperbolic

Systems with Singularities. Journal of Statistical Physics, 169(4), 804-823.
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Billiard Flow on the Torus

Figure 3.1: Billiard �ow with in�nite horizon on the torus with circular barriers.
Collisions are represented by points.

model was �rst introduced as a particle moving within a box with elastic bound-

aries while throughout the last half-century this has been extended to include more

complex two and three dimensional models with blockades. In this chapter we limit

results to the two-dimensional planar dispersing billiard model [23] as a subset of

two-dimensional hyperbolic systems with singularities.

Planar Dispersing Billiard Model

Suppose Γ = {Γi, i = 1 : k} is a family of pairwise disjoint, simple connected C3

curves with strictly positive curvature on the two-dimensional Torus T2. The billiard

�ow Bt is the dynamical systems generated by the motion of a particle inside the

space Q = T2 \ ∪ki=1interior Γi moving at constant velocity inside Q until it hits Γ.

Once the particle collides with Γ it is re�ected with angle of incidence equal to the

angle of re�ection.
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It is common to reduce this system to its corresponding billiard map T : ∂Q →

∂Q, derive the statistical properties in this setting and then deduce the properties

of the �ow. The billiard map only considers points of collisions of the particle so

that if r is a one-dimensional coordinatization of Γ given by arc-length and n(r)

the outward normal then for each r ∈ Γ the tangent space at r consists of two unit

vectors (n(r), v) ≥ 0 where v is identi�ed with an angle θ ∈ [−π/2, π/2]. Finally, the

phase space M := ∂Q = Γ × [−π/2, π/2] and consists of points (r, θ). T : M → M

is known as the Poincaré map that gives the position T (r, θ) = (r1, θ2) after a point

�ows under Bt and collides with Γ.

Reducing the Billiard Flow to the Billiard Map

(a)

θv

n
r

(b)

Figure 3.2: (a) Billiard �ow on the torus with circular barriers. Collisions are rep-
resented by points. (b) Illustration of the reduction to the billiard map for a single
collision point.

The billiard map, T , was proved to be ergodic [91] and preserves a measure

dµ = cM cos θ drdθ which is equivalent to two-dimensional Lebesgue measure dm =

dr, dθ with density ρ(x) where x = (r, θ). Exponential decay of correlations for
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Hölder continuous observables was shown to hold by Young (1998) [96] and again by

Chernov and Dolgopyat (2006) [22]. Bunimovich and Sinai (1981) [10] proved that

T satis�es the central limit theorem. Finally, a critical lemma known as the growth

lemma was established for unstable curves generated by T [16].

Background

Informally, a map T is said to be hyperbolic if the phase space can be separated

into stable and unstable manifolds where expansion happens along the unstable di-

rection in the tangent space under iterations of the map (similarly, contraction along

the stable direction) [60]. The space M can be broken up into set of these stable

and unstable curves where a curve is a branch of the manifold itself. This is referred

to as a foliation of the space. The unstable curve W u is de�ned in the billiard map

by the trace of a convex front on M . W u is characterized by an increase in the

(r, θ) coordinates and is invariant and expanding under T . In particular, ∃Λ > 1

such that d(Tx, Ty) ≥ Λd(x, y), ∀W u and ∀x, y ∈ W u where d is some distance

metric. Moreover, it has been shown that "most" unstable curves are "long" where

the growth lemma provides a quanti�able estimate on this.

In a general way we consider (X,T, µ) a two-dimensional hyperbolic system with

singularities and an observable ϕ(x) = − log d(x, p) where d is a metric de�ned in

terms of the stable and unstable foliation. Let Xn = ϕ ◦ T n for n ≥ 0 and consider

the stochastic process generated by the time series {Xn}. Let the maxima of the time

seriesMn := max{X0, · · · , Xn−1} and un be de�ned by limn→∞ nP(X0 > un(τ)) = τ .
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Unstable Curves for the Billiard Map

(a)

r

θ

(b)

Figure 3.3: (a) Trace of the convex front on M showing an increase in the angle of
collision and (b) the corresponding billiard map for (r, θ) depicting the expansion of
the unstable curve.

We say that an extreme value law exists for {Mn} provided,

lim
n→∞

µ(Mn ≤ un) = e−θτ

where θ ∈ [0, 1] is called the extremal index. Refer to Chapter 1, Section 1.3, for

a detailed description. For certain one-dimensional uniformly expanding maps and

Anosov toral automorphisms (refer to the Appendix A.1.1 for a detailed description of

these systems) a strict dichotomy has been observed: θ = 1 if p is not periodic and θ <

1 otherwise [36, 40, 61]. In this chapter we investigate the extremal index when p is a

periodic point in the setting of two-dimensional hyperbolic systems with singularities.

Poisson return time statistics for generic points in a variety of billiard systems (both

polynomially and exponentially mixing) were established in [53]. Related results on

Poisson return time statistics were obtained for Young Towers with polynomial tails

in [80]. However the result of both [53, 80] were limited to a full measure set of

generic points, which excluded periodic orbits.

Our goal is to establish an extreme value law in the setting of two-dimensional
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hyperbolic systems with singularities (of which the Sinai dispersing billiard model

is a subset) when ϕ(x) = − log d(x, p) is assumed to be uniquely maximized at

a periodic point p. We will extend the results of [53] in a similar way to that

of [13] to prove the existence of a rare event point process model. We show that

the resulting REPP follows a compound Poisson distribution known as the Pólya-

Aeppli distribution of index θ. The techniques used here are outlined in Chapter 1,

Section 1.4. In particular, we prove the dynamical variant dependence conditions

D∗q(un) and Ä′q(un) hold in this setting. The main di�culty in proving this comes

from the presence of singularities in the system which result in a fragmentation of

phase space and slow down the global expansion of unstable manifolds. This "slow

down" a�ects the recurrence assumption Ä′q(un). We are able to use the growth

lemma and a property of the system called one-step expansion [20] to overcome

these di�culties. See Figure 3.6 for an illustration of this phenomenon.

3.2 Main Assumptions

Let X be a two-dimensional compact Riemannian manifold, possible with boundary.

Let Ω ⊂ X be an open subset and let T : Ω → X be a C1+γ di�eomorphism of Ω

onto T (Ω) (here γ ∈ (0, 1]). We assume that S1 = X \Ω is a �nite or countable union

of smooth compact curves. Similarly, S−1 = M \ T (Ω) is a �nite or countable union

of smooth compact curves. If X has boundary ∂X, it must be a subset of both S1

and S−1. Call S1 and S−1 singularity sets for the maps T and T−1, respectively.

Let Ωi, i ≥ 1 be the connected components of Ω; then T (Ωi) are the connected
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components of T (Ω). Assume that T |Ω is time-reversible, and the restriction of the

map T to any component Ωi can be extended by continuity to its boundary ∂Ωi,

through extensions ∂Ωi

⋂
∂Ωj for i 6= j need not agree. Similarly, for each i the

restriction of T−1 to any connected component T (Ωi) can be extended by continuity

to its boundary ∂T (Ωi).

Assume the map T is hyperbolic as de�ned by Katok and Streclyn [60] such that

T preserves a probability measure µ. The formal de�nition of hyperbolicity can be

found in the Appendix A.1.2. Moreover, µ a.e. x ∈ X has two Lyapunovexponents:

one positive and one negative. Also, the �rst and second derivatives of T and T−1

do not grow too rapidly near their singularity sets S1 and S−1 respectively and the ε-

neighborhood of the singularity set has measure O(ε); this is to ensure the existence

and absolute continuity of stable and unstable manifolds at µ-a.e. x ∈ X. Let

Wu =
⋂
n≥0 T

n(X \ S1). Wu is (mod 0) the union of all unstable manifolds, and

we assume that the partition Wu of X into unstable manifolds is measurable, so

that µ induces conditional distributions on µ-almost all unstable manifolds (see the

de�nition and basic properties of conditional measures in [23, Appendix A]. Most

importantly, we assume that the conditional distributions of µ on unstable manifolds

W ⊂ Wu are absolutely continuous with respect to the Lebesgue measure onW . This

means that µ is the so called Sinai-Ruelle-Bowen (SRB) measure. We also assume

that our SRB measure µ is ergodic and mixing. In physics terms, µ is an equilibrium

state for the potential − logDT |Wu.

For n ≥ 1, let

Sn =
n−1⋃
i=0

T−iS1 and S−n =
n−1⋃
i=0

T iS−1.

81



Then the map T n : X \ Sn → X \ S−n is a C1+γ0 di�eomorphism.

The following speci�c assumptions on the system (X,T, µ) provide su�cient con-

ditions for exponential mixing rates and the coupling lemma. These assumptions

have been made in other analyses [18, 22, 23, 24].

(h1) Hyperbolic cones for T 1. There exist two families of cones Cu
x (unstable)

and Cs
x (stable) in the tangent spaces TxX, for all x ∈ X \ S1, and there exists

a constant Λ > 1, with the following properties:

(1) DxT (Cu
x ) ⊂ Cu

Tx and DxT (Cs
x) ⊃ Cs

Tx, wherever DxT exists.

(2) ||DxT (v)|| ≥ Λ||v||, ∀v ∈ Cu
x and ||DxT

−1(v)|| ≥ Λ||v||, ∀v ∈ Cs
x.

(3) These families of cones are continuous on X and the angle between Cu
x

and Cs
x is uniformly bounded away from zero.

We say that a smooth curve W ⊂ X is an unstable (stable) curve if at every

point x ∈ W the tangent line TxW belongs in the unstable (stable) cone Cu
x

(Cs
x). Furthermore, a curveW ⊂ X is an unstable (stable) manifold if T−n(W )

is an unstable (stable) curve for all n ≥ 0.

(h2) Singularities. The boundary ∂X is transversal to both stable and unstable

cones. Every other smooth curve W ⊂ S1 \ ∂X (resp. W ⊂ S−1 \ ∂X) is

a stable (resp. unstable) curve. Every curve in S1 terminates either inside

another curve of S1 or on the boundary ∂X. A similar assumption is made for

S−1. Moreover, there exists C > 0 such that for any x ∈ X \ S1

||DxT || ≤ Cdist(x, S1)−1, (1)
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and for any ε > 0,

µ(x ∈ X : dist(x, S1) < ε) < Cε. (2)

Note that (2) implies that for µ-a.e. x ∈ X, there exists a stable and unstable

manifoldW u/s(x), such that T nW s(x) and T−nW u(x) does not intersect S1 for

any n ≥ 0.

De�nition 3.2.1. For every x, y ∈ X, de�ne s+(x, y), the forward separa-

tion time of x, y to be the smallest integer n ≥ 0 such that x and y belong

to distinct elements of X \ Sn. Fix β ∈ (0, 1), then d(x, y) = βs+(x,y) de�nes a

metric on X. Similarly we de�ned backwards separation time s−(x, y).

(h3) Regularity of stable/unstable curves. We assume that the following fam-

ilies of stable/unstable curves, denoted byWs,u
T are invariant under T−1 (resp.,

T ) and include all stable/unstable manifolds:

1. Bounded curvature. There exist B > 0 and cM > 0, such that the

curvature of any W ∈ Ws,u
T is uniformly bounded from above by B, and

the length of the curve |W | < cM .

2. Distortion bounds. There exist γ0 ∈ (0, 1) and Cr > 1 such that for

any unstable curve W ∈ Wu
T and any x, y ∈ W ,

| logJW (T−1x)− logJW (T−1y)| ≤ Crdist(x, y)γ0 (3)

3. Absolute continuity. Let W1,W2 ∈ Wu
T be two unstable curves close to

each other. Denote

W ′
i = {x ∈ Wi : W s(x) ∩W3−i 6= ∅}, i = 1, 2.
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The map h : W ′
1 → W ′

2 de�ned by sliding along stable manifolds is called

the holonomy map. We assume h∗µW ′1 ≺ µW ′2 . and furthermore, there

exist uniform constants Cr > 0 and ϑ0 ∈ (0, 1), such that the Jacobian of

h satis�es

| logJ h(y)− logJ h(x)| ≤ Crϑ
s+(x,y)
0 , ∀x, y ∈ W ′

1 (4)

Similarly, for any n ≥ 1 we can de�ne the holonomy map

hn = T n ◦ h ◦ T−n : T nW1 → T nW2,

and then (4) and the uniform hyperbolicity (h1) imply

logJ hn(T nx) ≤ Crϑ
n
0 (5)

(h4) One-step expansion. We have,

lim
δ→0

inf sup
W :|W |<δ

∑
n

( |W |
|Vn|

)α
· |T

−1Vn|
|W |

< 1

where the supremum is taken over regular unstable curves W ⊂ X, |W |

denotes the length ofW , and Vn, n ≥ 1, the smooth components of T (W ),

α ∈ (0, 1].

Lemma 3.2.2. Growth Lemma. Let W be a small unstable curve and mW the

Lebesgue measure on W . De�ne Gε as the set of points in W that are at most ε from

the boundary,

Gε = {x ∈ W : d(x, ∂W ) ≤ ε}

and Hε as the set of points in W that will be at most ε from the boundary,

Hε = {x ∈ W : d(Tx, ∂(TW )) ≤ ε}.
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There exists a constant λ < Λ, independent of W , such that

mW (Hε) ≤ λmW (Gε/Λ)

where Λ is the rate of expansion of W .

Remark 3.2.3. The assumptions h1-h4 are satis�ed by the billiard map associated

to Sinai dispersing billiards with �nite and in�nite horizon.

Remark 3.2.4. The assumptions h1-h4 along with the Growth Lemma imply the

existence of a Young Tower with exponential tails [24, Lemma 17].

3.3 Main Results

Fix a hyperbolic point p ∈ X with prime period q > 1, and let ϕ : X → R ∪ {+∞}

be give by,

ϕ(x) = − log(d(x, p))

where d is a metric on X speci�ed later. We assume that iterates of p do not lie

on the singularity sets S1 ∪ S−1. Our metric d will be adapted to the chart given

by the stable and unstable manifolds of p, denoted as W s(p) and W u(p). If the

stable manifold of x denoted as W s(x) intersects W u(p), say at a point x̃, then we

de�ne xs := distWu(p)(x̃, p) i.e. the distance of x̃ and p measured along the unstable

manifold W u(p). Note that if W u(x) is very short and does not reach W s(p), then

we may extend W u(x) as an unstable curve, thus xu can be similarly de�ned. If

the unstable manifold (or extension to an unstable curve) of x, denoted as W u(x)

intersects W s(p) at x̃, we de�ne xu := distW s(p)(x̃, p). The foliation of stable and
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unstable curves of a su�ciently small neighborhood of p will be Hölder continuous.

Moreover, if both x, y lie in the same local chart determined by stable and unstable

manifolds (or stable and unstable curves) so that x = (xu;xs), y = (yu; ys), we de�ne

d(x, y) = max{|xu − yu|, |xs − ys|}

In this dynamically adapted metric [13] has shown that for q not periodic the REPP

follows a compound Poisson process with parameter given by the extremal index θ of

the EVL so that θ = 1− 1
|DT qu(p)| where DT

q
u(p) is the derivative of T q in the unstable

direction at p.

Comparing the Euclidean and Adapted Metric

W s

Wu

(a)

W s

Wu

(b)

Figure 3.4: The sets Aqn := {X0 > un, Xq < un} in (a) the usual Euclidean metric
and (b) the adapted metric.

Theorem 3.3.1. Let p be a periodic orbit of period q, p /∈ S1 ∪ S−1, and de�ne

ϕ(x) = − log(d(x, p)),

where d is the metric adapted to the chart given by the stable and unstable foliation.

De�ne Mn := max{ϕ, . . . , ϕ ◦ T n−1}. Then

lim
n→∞

µ(Mn ≤ un) = e−θτ ,
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where θ = 1− 1
|DT qu(p)| .

To establish Theorem 3.3.1 is su�ces to prove conditions Äq(un) and Ä′q(un)

stated in Chapter 1, Section 1.4, since if both conditions hold then the limit exists

and

lim
n→∞

µ(Mn ≤ un) = e−θτ

The proof of condition Äq(un) is somewhat standard [?, 13] and is not stated in this

section. For completeness of exposition it has been assigned to the Appendix A. The

novelty of this analysis comes the proof of condition Ä′q(un) which uses the growth

lemma of [16] applied to unstable curves to overcome issues with singularities.

Proof. Condition Ä
′

q(un) Before checking Ä
′

q(un), we note that we need only to

consider the sum up to time (log n)1+δ, for δ > 0 since by exponential decay of

correlations, the remaining sum goes to 0.

We assume that p ∈ X does not lie on a discontinuity. Let Ωn be the square of side

length 1/
√
n centered at p corresponding to the set {ϕ > un} so that µ(Ωn) = O( 1

n
).

We will say that a point x ∈ Ωn fully crosses Ωn if W u(x) is a smooth connected

unstable manifold touching both stable manifolds de�ning the boundary ∂Ωn.

Let Bn = {x ∈ Ωn : W u(x) does not fully cross Un} and Gn = {x ∈ Ωn ∩Bc
n}.

Short returns.

We consider points which leave our neighborhood after the �rst iterate and return

at the jth iterate. For simpli�cation we consider F = T q, so that p is a �xed point

for F . Clearly for large n, Aqn = {X0 > un, X0 ◦ F < un} since (un) increase as
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n→∞.

Recall that DF u
p ∼ λ > 1 is the expansion in the unstable direction at the �xed

point p. We only consider points on the unstable manifold since by the growth lemma

we have that any x not on an unstable manifold will reach an unstable manifold a

�nite number of iterates. If W u(x) is an unstable manifold for x ∈ Ωn ∩Gn, the set

Au(x) := Aqn ∩W u(x) has two connected components (right and left subintervals) of

W u(x) ∩ Ωn which are roughly a distance 1
λ
√
n
from p. In this case we only consider

points contained in Ωn ∩ Gn since any point x ∈ Ωn ∩ Bn will take longer to leave

Ωn.

Expansion of Aqn Under the Map T

Ωn

p
O( 1√

n
)

A1 = {x ∈ Ω(n), Tx /∈ Ω(n)}

TA1
W s

W u

Figure 3.5: Expansion of the set Aqn out of Ωn under the map T .

For large n, on Ωn the map F acts onW u(p)∩Ωn as an expansion in the unstable

direction for a number of iterates. We see that λj 1
n
< 1 and solving for j implies

that for all 0 < j < C log n the unstable manifold is not long enough to fully wrap

around the torus and hence, if mu is Lebesgue measure on W u(p), then mu((Au(x)∩

W u(p)) ∩ F j(Au(x) ∩W u(p))) = 0 for all 0 < j < C log n for some C > 0. We will
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estimate an upper bound for C for su�ciently large n by solving λk 1√
n
∼ n−β for a

�xed 0 < β < 1
2
. We see that taking C ∼ 1/2−β

log λ
will do. Given that we are using an

adapted metric this implies that µ((Au(x))∩F j(Au(x))) = 0 for all 0 < j < C log n.

Thus

lim
n→∞

n

C log(n)∑
j=1

µ((Aqn) ∩ T−j(Aqn)) = 0

Intermediate returns.

The argument here is based on that of [13] in which a corresponding result was

proven for linear toral automorphism. The main idea is that if an unstable manifold

W u(x)∩Aqn of Aqn is to intersect Aqn for an intermediate iterate j, so that T j(W u(x)∩

Aqn)∩Aqn 6= 0, then T j(W u(x)∩Aqn) must be quite long (and perhaps have 'wrapped

around' the torus several times) and so the length of [T j(W u(x) ∩ Aqn) ∩ Aqn] as a

fraction of the length of T j(W u(x) ∩ Aqn) is small (as Ω(n) itself has diameter only

1√
n
). And by bounded distortion (which poses no problem in the case of a linear toral

automorphism) the fractional measure of T−j[T j(W u(x)∩Aqn)∩Aqn]∩ [W u(x)∩Aqn]

is small also, say of order 1√
n
|W u(x)∩Aqn|. This implies, by a Fubini type argument,

that µ(T−j(Aqn) ∩ Aqn) ≤ C 1
n3/2 , and hence

lim
n→∞

n

(logn)1+δ∑
j=C logn

µ((Aqn) ∩ T−j(Aqn)) ≤ (log n)1+δ

√
n

which limits to zero as n→∞.

We will replicate this argument in the setting of hyperbolic billiards. But there are

several di�culties to overcome, as the presence of singularities causes the unstable

manifolds to fragment under iteration, the expansion is not uniform and care is

needed with bounded distortion arguments.
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Two Outcomes of Expansion of Aqn Under T

Aq
n ∩ T j(Aq

n)

Ωn

(a)

Aq
n ∩ T j(Aq

n)

Ωn

(b)

Figure 3.6: (a) Expansion of the set Aqn under the map T before it hits a singularity
point. (b) Fragmentation of the unstable direction of Aqn under the map T after it
hits a singularity point. This represents the "worst-case senario" where estimates
are needed to ensure the fragmented pieces do not remain in the intersection for "too
long".

First we note that the components W u(x) ∩ Aqn do not hit a singularity set in

the �rst C log n iterates. To see this recall that the point p is a �xed distance ε > 0

away from the singularity set. F acts as a di�eomorphism on a su�ciently small

neighborhood of p, which contains Ωn. By expansion we have that λk 1
n
∼ n−β for

0 < β < 1 so that for large n, n−β < ε and points in Ωn do not hit that singularity

set in C log n iterates.

Now we consider µ(An ∩ T−j(An)) for C log n ≤ j ≤ (log n)1+δ. Suppose x ∈ Gn

then F j(W u(x) ∩ An) consists of two connected components for j ≤ C log n. For

simplicity we will focus on the 'right hand' component of W u(x)∩Aqn (the argument

for the left hand is the same). We de�ne γ(x) to be the right hand component of

F [C logn](W u(x) ∩ Aqn). By expansion |γ(x)| ∼ n−β. If we iterate this component

further such that F jγ(x), j > 0 hits a singularity then we may decompose F jγ(x)
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into smooth connected components Vn and their preimages Un so that T j maps Un

onto Vn di�eomorphically and with uniformly bounded distortion. Applying one-step

expansion for p ∈ γ(x) gives, ( |γ(x)|
|Vn(p)|

)α∣∣∣Un(p)

γ(x)

∣∣∣ < 1

Fix γ(x) and for every point y ∈ γ(x) let dµγ(y) = Un(y)
γ(x)

be the density of a

probability measure µγ(y) on γ(x) and f(x) =
( |γ(x)|
|Vn(y)|

)α
a function on this probability

space. Then {y ∈ γ : Vn(y) < n−(1+ε)β} ⊂ {y ∈ γ(x) : f(y) > nβαε} and by Markov's

inequality mγ{y ∈ γ : Vn(y) < n−(1+ε)β} ≤ n−βαε. We choose ε su�ciently small so

that ρ1 := 1
2
− (1 + ε)β > 0 (recall β < 1

2
) and de�ne ρ := min{1

2
− (1 + ε)β, βαε}.

With our choice of ε if |Vn| ≥ n−(1+ε)β then |Vn∩A
q
n|

|Vn| ≤ C1n
−ρ.

By bounded distortion of the map F [C logn] : W u(x) ∩ Aqn → γ(x),

|Un ∩ T−j(Aqn)|
|Un|

≤ C2n
−ρ

and by bounded distortion again, if i > q[C log n] then

|W u(x) ∩ Aqn ∩ T−i(Aqn)|
|W u(x) ∩ Aqn|

≤ C3n
−ρ.

This provides a bound on the length of the intersection of a single unstable

manifold. We may now use the fact that µ decomposes as a product measure on Un

so that if we consider all manifolds of x ∈ Gn we have for i > q[C log n],

µ((Gn ∩ An) ∩ T−i(An)) ≤ C4n
−1−ρ.

Finally, to deal with the set Bn of x for which the unstable manifold does not fully

cross Ωn we may assume by the growth lemma that µ(Bn)
µ(Ωn)

≤ (log n)−(1+δ) and hence,

µ((Bn ∩ Aqn) ∩ T−i(Aqn)) ≤ n−1(log n)−(1+δ).
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Orbit of a Periodic Point Under the Billiard Flow

p

Figure 3.7: A periodic point p for the billiard �ow on the torus with circular barriers.

Putting these results together implies,

lim
n→∞

n

log(n)1+δ∑
j=C log(n)

µ((Aqn) ∩ T−j(Aqn)) = 0.

Condition Ä′q(un) follows.

Remark 3.3.2. The value of the EI θ is computed similarity to that of [13, Section

6]. These calculations are rather complicated and left out of this discussion for

simplicity.

Theorem 3.3.3. Let p be a periodic orbit of period q, p /∈ S1 ∪ S−1, and

ϕ(x) = − log(d(x, p))

where d is the metric adapted to the chart given by the stable and unstable foliation.

De�ne Xn = ϕ ◦ T n and Mn := max{X0, . . . , Xn−1}. Let (un)n∈N be a sequence

satisfying limn→∞ nP(X0 > un(τ)) = τ for some τ ≥ 0 and (vn)n∈N be given by

vn = 1/µ(X0 > un). Consider the REPP Nn as in Chapter 1, Section 1.4. Then

the REPP Nn converges in distribution to a compound Poisson process with intensity
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θ = 1− 1
|DT qu(p)| and geometric multiplicity d.f. G∗ given by G∗(k) = θ(1− θ)k−1, for

all k ∈ N.

Proof. To establish Theorem 3.3.3 is su�ces to prove condition Ä′q(un) and a condi-

tion related to Äq(un), which we call Condition D∗q(un) [41] (see also the discussion

in [13, Section 8.1]). The proof of condition D∗q(un) follows from Äq(un) by [Propo-

sition 4.4.1][73].
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Chapter 4

Modeling Real-World Temperature

Extremes

Extreme temperature events can make considerable impacts on society, most obvi-

ously on human health and power consumption. As a result there has been a growing

interest in examining temperature extremes in relation to climate change [44, 37, 65,

85, 95, 33, 38]. In particular in the last decade the Texas Gulf Coast region has

experienced high pro�le heat waves, such as the summer of 2011, and momentous

summer rainfall and �ooding [50]. In this paper we address the question of whether

the probability of extreme summer temperatures in this region has increased by using

clustering techniques and �tting generalized extreme value [27] (GEV) models to the

data which allow for forecast modeling of the maxima by estimating the probability

of high temperatures. Although the classical GEV model requires the mean and vari-

ance of the maxima to be stationary (not change in time) it is possible to adapt this
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probability model to allow for prediction in non-stationary scenarios[51, 15, 44, 9].

We �nd compelling evidence that the probability of extreme temperatures during

summer has increased.

It is necessary to have comprehensive information on extreme weather events

to make reasonable conclusions from the data. Clustering techniques allow enlarge-

ment of the time series data to permit better modeling. This is especially useful when

determining macroscopic weather changes since natural variability, such as human

in�uence over the environment [26], causes nonuniform changes [94, 70, 49, 98]. We

apply clustering techniques to Texas wide weather stations to provide a larger pool

of data for GEV �ts of the distribution of maximum temperatures. Our approach

is particularly e�ective when looking at large scale climate data and global envi-

ronmental zones [100, 99]. We use a combination of clustering methods, including

K-means [52], with mutual information as a measure of similarity between weather

stations. In this way we give a comprehensive extreme value analysis of summer

extreme temperatures throughout Texas.

Recent extreme weather events in Houston, Texas, provide motivation for our

station choice in this paper. Anecdotally, higher extreme temperature patterns have

been recorded in Houston for the July-August months when compared to records 40

years prior. The National Oceanic and Atmospheric Administration (NOAA) reports

the longest stretch of record high temperatures August 1st - August 24th 2011 with

the highest temperature ever recorded in Houston occurring on August 27, 2011 and

yearly record highs near this value occuring in the summer of 2013 and 2015 [67].

Preliminary results on the temperature vector from the Houston station suggest a
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signi�cant change in the mean and variance of temperature maxima after year 1981.

In particular a stationary GEV model was shown to �t the summer temperature

maxima prior to 1981 at the α = 0.05 signi�cance level with poor �ts after year

1981. Moreover, an analysis of the QQ plots indicate poor �ts in the tail of the

GEV distribution after 1981 suggesting a non-stationary scale parameter. Nonpara-

metric trend tests con�rmed this hypothesis. Other studies have also recorded more

incidences of higher temperature outliers after 1980 [48, 39, 76, 84] with claims that

this increase in temperature extremes can be attributed to global warming due to

human-made greenhouse gases. This provides motivation in the following analysis

for breaking the time series into time windows 1941-1981, 1982-2017 and 1941-2017.

We test these periods for stationarity and �nd across clusters the period 1941-1981

is stationary but this is not the case for the periods 1982-2017 and 1941-2017. Based

on these results we �t non-stationary GEV models to estimate the probability of

current temperature extremes in our clusters. We do not consider rainfall patterns

or the interaction between summer temperatures and rainfall in this paper.

We end with a brief discussion on extreme temperatures for the December-

January period where no evidence of change in probabilities of extremes across Texas

is found. We estimate generalized extreme value (GEV) and generalized Pareto (GP)

distributions [27] for the winter temperature maxima. Even after accounting for

dependence and nonstationarity, goodness of �t tests return poor results for both

models for winter data. We hypothesize that these poor �ts may be due to Cana-

dian air�ow temporarily lowering extremes throughout Texas and leading to a mixed

extreme distribution.
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4.1 Preliminary results on Houston, Texas, summer

temperature extremes

The block maxima method described in Chapter 1, Section 1.5, was performed on

the vector of temperature measurements where each block contains hourly records

over 10 days, with the ultimate goal of �tting a GEV model to the block maxima

of the time series. In order to test for independence the time series was compressed

by the following: if the next time step increased, a value of 1 was assigned to the

compressed time series, if it decreased a value of −1 was assigned and value 0 if it

remained the same. A count matrix was created across each 10 day block and the

chi-square test of independence.(See Appendix A.2.2 for more details on this test)

was performed on this matrix. All blocks reported independence at the α = 0.05

signi�cance level. (See Figure 4.14 for the histogram of p values.) The maximum is

taken over each 10 day block of the uncompressed time series.

Remark 4.1.1. It is important to note that the compression performed for chi-

square independence testing is separate from compression for mutual information

calculation in the next section. Since daily cycles are typically the cause of temper-

ature dependence we test increases and decreases across 10 day cycles to determine

whether the one 10 day temperature cycle determines another. The compression

performed in the following section seeks to maximize mutual information (maintain

as much information as possible) between whole time series.

Maximum likelihood estimation (MLE) is performed iteratively using the Nelder-

Mead simplex method [77] to estimate the value of the three parameters for the GEV
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function over all 76 years of block maxima (76 × 60/10 = 456 maximum tempera-

ture values). Anderson-Darling goodness of �t tests were performed on the binned

data with MLE parameters. (See Appendix A.2.2 for more information on the test

statistic.)

(a) (b)

(c)

Figure 4.1: Generalized extreme value distribution for the Houston station for 10-day
maximum temperatures for 1941-2017 with MLE parameters (a) cumulative density
function, (b) probability density function, and (c) qq plot. Anderson-Darling p-
value= 4.9e− 3.
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Comparing the Anderson-Darling goodness of �t results across Figures, in partic-

ular the QQ plot, note that poor �ts for the GEV model of maximum values occur in

the tails of the distribution and point to possible nonstationarity (varying in time) of

the location µ and scale σ parameters. It is interesting to ask whether this nonsta-

tionarity is consistent. The time series is broken roughly in half and a GEV model

is �t to the block maxima over the �rst 40 years (240 maximum values) and over the

last 36 years (216 maximum values) with the following results.

Interestingly, a good �t for the GEV model at the α = 0.05 signi�cance level

is found over maximum values for the �rst 40 years followed by poor �ts over the

last 36 years. These results suggest nonstationarity of the GEV model parameters

occur after 1981 and support further investigation of summer temperature extremes

on a larger geographic scale. Other studies have also recorded more incidences of

higher temperature outliers after 1980 [48, 39, 76, 84]. All this provides motivation

for breaking the time series into time windows 1941-1981, 1982-2017 and 1941-2017

in the following analysis.

Since this preliminary analysis only considers only one time series for the Houston

station, we calculate the 3-year mean and variance values (a single variance value

calculated from 18 maximum data points). When clustering is performed in the

next section, we calculate the 1-year mean and variance values since more data is

available. The nonparametric Mann-Kendal p-values are given for each time window.

These results support the hypothesis that the scale parameter is non-stationary after

1981 for the Houston station.
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(a) (b)

(c)

Figure 4.2: Generalized extreme value distribution for the Houston station with MLE
parameters for 10-day maximum temperatures for 1941-1981 (a) cumulative density
function, (b) probability density function, and (c) qq plot. Anderson-Darling p-
value= 0.25.

4.2 Analysis of summer temperature extremes through-

out the Texas region

In this section, spectral clustering is applied to Texas wide weather stations to pro-

vide a larger pool of data for GEV �ts of the distribution of maximum temperatures.
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(a) (b)

(c)

Figure 4.3: Generalized extreme value distribution for the Houston station with MLE
parameters for 10-day maximum temperatures for 1982-2017 (a) cumulative density
function, (b) probability density function, and (c) qq plot. Anderson-Darling p-
value= 4.9e− 4.

This is especially useful when determining macroscopic weather changes since nat-

ural variability, such as human in�uence over the environment, causes nonuniform

changes. The increased e�ectiveness of this clustering analysis comes from the modi-

�cations made on standard spectral clustering techniques including choice of mutual
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Mann-Kendall Values for Houston

parameter µ σ2

years 1941-1981 1981-2017 1941-2017 1941-1981 1981-2017 1941-2017
M-K p-value 0.12 0.06 0.90 0.48 4.4e-3 0.23

Table 4.1: Table of Mann-Kendall p-values for the 3-year mean and variance of the
Houston station.

information as a similarity measurement, estimation of mutual information by gra-

dient ascent and consideration of time-dependent clusters.

4.2.1 Data

Hourly temperature measurements (in Celsius) were obtained from the National

Oceanic and Atmospheric Administration (NOAA) Integrated Surface Data (ISD)

lite. The ISD lite data set comprises hourly weather observations from over 100

sources providing global climate information [72]. A subset containing the hourly

temperature measurements for stations across Texas and New Orleans, Louisiana,

for the July-August months from 1941-2017 was created. New Orleans, Louisiana

was included because of recent similar extreme events to that of Houston. The 31st of

each month was not considered for 10 day block divisibility. Though many stations

were listed by the NOAA across Texas, the following stations (see Table 4.2 and

Figure 4.4 on page 105) were chosen for this analysis because they contain complete

records aside from possible one to two year gaps. For clari�cation a time series in

this analysis will be de�ned as the hourly temperature vector for July-August, 1941-

2017 for a single station. We convert the time series from Celsius to Fahrenheit for

pragmatic reasons.
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Quality control at the integration level was performed by the NOAA on the data

in two phases. We list the most relevant for our purposes. Phase one ran a check that

the temperature values indeed came from the same time and location as listed. This

was done by comparing hourly coincident data over each day to obtain a percent score

for the day. The criteria of 1-degree variance in Celsius was used as a pass/fail limit

for each, with an overall 70% score for the day required for integration into the data

set. Phase two performed a "two-sided" continuity validation on each temperature

value per day in the following way: an increase by at least 8 degrees Celsius in one

data point followed by an increase of at least 8 degrees Celsius in the next point was

assumed to indicate a possible erroneous value and was replaced by a missing value

(similarly for downward spikes).

Observations for the ISD lite data set were selected from the available data sets for

a single location by de�ning a capture window to extract temperature measurements

closest to the top of the hour. In many cases there was more than one element at the

same observation time. In these situations, a single element was chosen according

to a ranking schema which took into account data quality of the set and origin [78].

Despite this ranking system, the observation time for each element can di�er by as

much as ten minutes. This does not pose a problem for our purposes since we are

interested in investigation the long-term behavior of the time series.

Some of the stations chosen for this analysis have up to one to two year intervals

where data is missing. Common forms of missing data replacement including moving

average or linear interpolation are reasonably accurate in a small time window but

break down when these large gaps occur. A more accurate model to replace this
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data may exist, however, dependence and trend reports for these time periods could

not be trusted to represent the true �uctuations. For this reason, missing data was

excluded from this analysis.

Station Map

 105° W  100° W   95° W   90° W

 25° N  

 30° N  

 35° N  

Figure 4.4: Map of all listed stations.

This data set does not account for the urban heat island [79] which may contribute

to an observed increase in mean temperature due to human activity; however, the

stations chosen for analysis are far enough away from cities that this should not

pose an issue. Although urbanization of the surrounding area can cause bias in the

long-term trend behavior of the temperature, we argue that the number of stations

in which this occurs is small and contributes a minor amount to the cluster as a

whole.
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Station List

Station ID Location Type
1 690190 Abilene, TX Airport
2 722310 New Orleans, LA Airport
3 722436 Houston, TX Airport
4 722505 Harlingen, TX Airport
5 722517 Alice, TX Airport
6 722530 San Antonio, TX Airport
7 722533 Hondo, TX Airport
8 722535 San Antonio, TX Lackland AFB
9 722536 San Antonio, TX Randolph AFB
10 722560 Waco, TX Airport
11 722580 Dallas, TX Airport
12 722595 Fort Worth, TX Naval Air Station
13 722615 Del Rio, TX Laughlin AFB
14 722640 Marfa, TX Airport
15 722660 Abilene, TX Airport
16 722700 El Paso, TX Airport
17 723510 Wichita, Falls, TX Sheppard AFB
18 723630 Amarillo, TX Airport

Table 4.2: Table of all stations used in this analysis with location and type.

4.2.2 Results

4.2.2.1 Clustering Results

We brie�y describe the techniques used for clustering in this section. For a more

detailed explanation refer to Chapter 1, Section 1.6. The continuous time series of

temperature measurements was compressed by giving values −1, 0, or 1 to measure-

ments which fall into the intervals [−∞, a], [a, b], and [b,∞] respectively. Values for

a and b were chosen by gradient ascent of the mutual information between two time

series. Mutual information is taken as a measure of similarity. In this analysis mu-

tual information between two time series was only calculated over non-missing years

for both time series. See Figure 4.5 for histogram of maximized mutual information
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and Figure 4.6 for the error on the maximized mutual information.

(a) 1941-1981 (b) 1982-2017

(c) 1941-2017

Figure 4.5: Calculated maximized mutual information between stations.

An undirected graph was created from the resulting similarity matrix where nodes

correspond to stations and an edge represents a strictly positive mutual information

between stations. If the mutual information between two stations was less than 0.1

it was assumed to be zero.

The normalized Laplacian and its eigenvalues and corresponding eigenvectors

were calculated and sorted in ascending order. The sum of the eigenvalues s(k) =∑k
i=1 λk and the ratio R(k) = s(k)

s(h)
for k = 1 . . . h were calculated and a cut o�

106



(a) 1941-1981 (b) 1982-2017

(c) 1941-2017

Figure 4.6: Calculated error on mutual information between stations after maximiza-
tion.

point was chosen such that the number of nodes before this point are approximated

0.15 ∗ h where h is the total number of nodes in the connected component. This

resulted in a projection of each node (row vector in the normalized Laplacian) onto

the J = 3 dimensional subspace of eigenvectors corresponding to the 3 smallest

eigenvalues. These projections were used as the inputs into the K-means algorithm.

See Figure 4.8 for eigenvalues and ratios. See Chapter 1, Section 1.6, for details on

spectral clustering
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Graph Representation of Station Similarity

(a) (b)

Figure 4.7: Graph of nodes and edges where nodes represent stations and an edge
represents a strictly positive mutual information. (a) The graph of full dimension
where edges to be removed after spectral clustering are highlighted in red. (b) The
reduced system after spectral clustering.

Figure 4.8: Ratio of eigenvalues and chosen cuto�.
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The minimized cost values were collected for di�erent values of K in the K-

means algorithm (see Figures 4.9 and 4.10) and the value K = 4 was chosen as the

appropriate number of clusters. The K-means algorithm was run 1,000 times on the

reduced set of vectors and the Davies-Bouldin index was calculated for each run of the

K-means algorithm. The set of clusters associated to the minimum Davies-Bouldin

index was used in the following extreme value analysis. For more information see

Chapter 1, Section 1.6.

Figure 4.9: Minimized cost for di�erent values of K.

Table 4.3 and Figure 4.13 re�ect results of clustered stations associated to the

minimum Davies-Bouldin index. The similarity matrix was created as an additional

support of cluster reliability. Note that after reordering by cluster higher similarities

should occur near the diagonal of the matrix with 4 squares along the diagonal

representing each cluster (see Figures 4.12 and 4.11). Clusters are stable for each

time window. Geographical locations of clusters are given by (1) Coastal (2) Southern
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Figure 4.10: Minimized distances for each iteration of K-means K = 4.

Figure 4.11: The J = 3 dimensional projection of the nodes into the space of spectral
clustering. Colors represent di�erent clusters.

Texas (3) Northern Texas (4) Along the Central Band.
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Figure 4.12: Similarity matrix for stations after clustering. Lighter colors indicate
higher similarity.

Clusters for Each Time Period

time window 1941-1981 1982-2017 1941-2017
cluster (1) 2,3,4,5 " "
cluster (2) 6,7,8,9,13 " "
cluster (3) 1,11,12,15,17,18 " "
cluster (4) 10,14,16 " "

Davies-Bouldin index 7.75e-4 8.94e-4 6.34e-4

Table 4.3: Table of minimum Davies-Bouldin index clusters.

4.2.2.2 The Stationary Model

Just as in preliminary testing a chi-square test of independence was performed over

blocks of 10 days with the result that every 10 day block re�ects independence

at the α = 0.05 con�dence level for each time series. (See Figure 4.14 for the

histogram of p values.) The cluster of time series of maximum temperature is �t

by maximum likelihood estimation to a generalized extreme value distribution with

location parameter µ, scale parameter σ and shape parameter k. For clari�cation
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Clustered Station Map

 105° W  100° W   95° W   90° W

 25° N  

 30° N  

 35° N  

Figure 4.13: Regional map with clustered stations where symbols represent clusters.

we note that a single maximum is de�ned at the maximum over a 10-day block so

that there are ∼ 456 maxima for each time series and our distribution represents

the combined maxima of all the time series in the cluster which is now ∼ 456 times

the number of time series in the cluster. MLE distributional parameters were used

to create a theoretical GEV distribution. The Anderson-Darling (A-D) goodness of

�t test was performed on the binned maxima with null hypothesis that the data �t

the theoretical GEV distribution. Ten points were chosen uniformly within the 95%

con�dence intervals associated to each of the 3 MLE parameters and a total of 1,000

permutations of these 3 parameters were tested for goodness of �t. The histogram

of 1,000 p values associated to each run of the A-D test for 1941-1981, 1982-2017
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and 1941-2017 was used to determine whether a di�erence in GEV �t exists between

each time interval.

Results from the Anderson-Darling goodness of �t test suggest a better �t for

1941-1981 and 1982-2017 when compared to 1941-2017 for all clusters (See Table 4.4).

The histogram of p-values (See Figure 4.15) for clusters (1) and (2) show higher

likelihoods of being below the α = 0.05 con�dence limit (e.g. conclude the data

do not come from the speci�ed distribution) for groups 1982-2017 and 1941-2017.

Clusters (3) and (4) show higher likelihoods of being below α = 0.05 con�dence limit

for 1941-2017.

For all clusters the GEV model with maximum likelihood estimates does not �t

the whole of 1941-2017. Moreover, it is reasonable to conclude from A-D goodness

of �t results that a change in parameters occurs between time intervals 1941-1981

and 1982-2017.

Goodness of Fit for Stationary Model

years cluster(1) cluster(2) cluster(3) cluster(4)
1941-1981 0.23 0.05 0.06 0.04
1982-2017 0.03 0.01 0.08 0.03
1941-2017 0.03 7.17e-4 0.01 6.21e-4

Table 4.4: Table of Anderson-Darling p-values associated to stationary GEV model
of MLE parameters.

4.2.2.3 Location and Scale Trend Results

In this analysis the non-parametric Mann-Kendall and Theil-Sen and parametric lin-

ear regression tests were performed on the yearly mean and variance of the combined

cluster of time series.A mean change-point analysis was also performed on the yearly
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Figure 4.14: Chi-square independence p-values for (a) summer and (b) winter time
series. The Houston station p-values referenced in the preliminaries is included.

mean and variance of the combined cluster of time series (See Table 4.5). These

results suggest a change in the mean and variance parameters near 1981 for clusters

(1), (2) and (4). It is important to note that the change-point analysis assumes at

least one change point exists apriori which may not be the case. Moreover, it is un-

clear what constitutes a high or low residual error for this test. For more information

on the statistics of these tests please refer to the Appendix A.2.2.

Cluster (4) was seen to have anomalous readings which was the result of an

unusually large variance recorded from station 14. Since we could not trust the

veracity of the temperature vector from this station it was removed from cluster (4)

before analysis.

The Mann-Kendall test returns no monotonic trend in the variance over 1941-1981

and 1982-2017 for all clusters and a monotonic trend (e.g. a rejection of the null) for
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(a) cluster(1) (b) cluster(2)

(c) cluster(3) (d) cluster(4)

Figure 4.15: histogram of Anderson-Darling p-values obtained by varying the esti-
mated parameters within the 95% con�dence interval of the MLE parameters.

clusters (1) (2) and (4) over the time period 1941-2017 at the α = 0.05 con�dence

level (See Table 4.7 and refer to A.2.2 in the Appendix for more information on

this test.). Though cluster (3) does not report a monotonic trend for 1941-2017 it

does return a lower p-value when compared to 1941-1981 and 1981-2017. Such a

result suggests a signi�cant di�erence in variance between 1941-1981 and 1982-2017.
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Higher correlation coe�cients returned by linear regression for 1941-2017 support

conclusions from the Mann-Kendall test. Theil-Sen and linear regression models

have similar values for slopes and intercepts. See Table 4.6. Results from all three

tests provide motivation for �tting the variance parameters for 1941-2017 to a linear

model.

Regression results for cluster (1) report sign changes between 1941-1981 and

1982-2017 which suggest a possible quadratic trend exists for the variance. Our

justi�cation for keeping a linear model for cluster (1) comes from the existence of a

monotonic trend over 1941-2017 and all other clusters favoring a linear model.

The mean change point analysis checks at what point in time the mean of the

yearly mean and the mean of the variance re�ect a signi�cant change. Change-point

results for the yearly mean of clusters (1) (2) and (4) occurs between 1980 and 1990

and around 1960 for cluster (3). Arguably more interesting are the mean change-

point results for the yearly variance of each cluster which report a change between

1970-1980 for clusters (1) (3) and (4) and around 1993 for cluster (2).

Mean Change Points

µ σ2

cluster year r year r
(1) 1983 147.40 1975 2032.69
(2) 1992 280.78 1993 1313.54
(3) 1957 321.86 1970 2418.32
(4) 1982 267.90 1971 17640.78

Table 4.5: Table of mean change points for the yearly mean and variance of each
cluster.
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Location Trend Results

cluster (1) (2)
years 1941-1981 1981-2017 1941-2017 1941-1981 1981-2017 1941-2017

M-K p-value 2.20e-3 1.4e-3 6.82e-5 0.01 0.13 0.55
T-S slope -0.08 0.05 0.04 -0.08 0.05 0.01
REG slope -0.07 0.06 0.04 -0.09 0.04 0.01
REG r -0.46 0.44 0.45 -0.48 0.24 0.10

cluster (3) (4)
years 1941-1981 1981-2017 1941-2017 1941-1981 1981-2017 1941-2017

M-K p-value 0.03 0.32 0.74 0.29 0.92 3.61e-4
T-S slope -0.09 0.04 4.3e-3 -0.03 3.3e-3 -0.04
REG slope -0.07 0.05 3.82e-4 3.9e-3 0.01 -0.03
REG r -0.35 0.26 3.9e-3 0.02 0.09 -0.32

Table 4.6: Mann-Kendall, Theil-Sen and Linear Regression results for yearly mean
of the cluster.
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Scale Trend Results

cluster (1) (2)
years 1941-1981 1981-2017 1941-2017 1941-1981 1981-2017 1941-2017

M-K p-value 0.66 0.54 0.02 0.21 0.15 1.74e-4
T-S slope 0.03 -0.04 0.06 0.05 0.13 0.09
REG slope 0.01 -0.03 0.06 0.06 0.12 0.09
REG r 0.02 -0.05 0.25 0.18 0.22 0.43

cluster (3) (4)
years 1941-1981 1981-2017 1941-2017 1941-1981 1981-2017 1941-2017

M-K p-value 0.55 0.71 0.36 0.14 0.75 1.26e-6
T-S slope 0.06 0.03 0.03 0.17 0.04 0.27
REG slope 0.09 0.05 0.03 0.27 -0.07 0.34
REG r 0.16 0.10 0.11 0.32 -0.04 0.41

Table 4.7: Mann-Kendall, Theil-Sen and Linear Regression results for yearly variance
of the cluster.

4.2.2.4 The non-stationary Model

The non-stationary GEV model chosen is based on trend results and considers a

quadratic location parameter µ(t) = β0 + β1t + β2t
2 and linear scale parameter

σ(t) = α0 + α1t for each cluster of time series. Since the cluster of time series

with µ(t) and σ(t) would be under-determined for likelihood estimation, the estima-

tion of parameters β0, β1, β2, α0, α1, k is given by MLE of the log-likelihood function

`(µ(t), σ(t), k) for each station in the cluster. The location and scale parameters for

the cluster are estimated by the following. For a distribution created from n samples

of m distributions the mean of the distribution is given as,

µ =

∑m
i=1 nx̄i
mn
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where x̄i is the mean of the sample coming from one of the m distributions. The

variance of the combined distribution is given as,

σ2 =

∑m
i=1 n(s2

i + d2
i )

mn

where s2
i is the variance of the sample and di = x̄i − µ. From this observation the

time-dependent location parameter for the cluster is taken to be,

µ̂(t) =

∑m
i=1 nx̄(t)i
mn

and the scale parameter

σ̂(t) =

√∑m
i=1 n(s2

i (t) + d2
i (t))

mn

where n is the number of block maxima for each station and m is the number of

stations in the cluster, x̄i = β0 + β1t + β2t
2 is the location parameter of the ith

station in the cluster with MLE parameters β0,1,2 and si = α0 + α1t is the scale

parameter of the ith station in the cluster with MLE parameters α0,1. Normalizing

the block maxima for the cluster by subtracting the maxima for each station by µ̂(t)

and scaling by σ̂(t) allowed us to perform maximum likelihood estimation on the

normalized block maxima and goodness of �t tests for the non-stationary model.

Anderson-Darling goodness of �t p-values before and after non-stationary mod-

eling of the combined GEV for each cluster are given. See Table 4.8. Con�dence

intervals for the normalized location and scale parameters were checked for model

credibility. Normalized GEV distributions with non-stationary location (quadratic)

and scale (linear) parameters report signi�cantly better �ts from the stationary GEV

distribution for all clusters. Moreover, clusters (1) and (3) conclude the normalized
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block maxima come from the GEV distribution with MLE parameters at the α = 0.05

signi�cance level over all time intervals.

Goodness of Fit for Non-stationary Model

cluster (1) (2) (3) (4)
years before after before after before after before after

1941-1981 0.23 0.52 0.05 0.14 0.06 0.18 0.04 0.34
1982-2017 0.03 0.19 0.01 0.01 0.08 0.70 0.03 0.50
1941-2017 0.03 0.26 7.16e-4 4.60e-3 0.01 0.17 6.21e-4 0.50

Table 4.8: Anderson-Darling goodness of �t p-values before an after non-stationary
�tting of the location and scale parameters.

4.2.3 Conclusions

These results demonstrate that temperature extremes for the years 1941 to 2017 in

Texas are not stationary and that a non-stationary GEV model for the maximum of

temperature values for each cluster of stations is needed. Particularly interesting are

the di�erences in GEV �t between 1941-1981 and 1982-2017 which suggest signi�cant

di�erences in the mean and variance parameters. A comparison of GEV distribu-

tional �ts for 1941 and 2017 re�ect an increase in the probability for right-hand

(higher) temperature extremes for all clusters particularly for temperature values

greater than 100 degrees Fahrenheit. In fact, we see that the probability of occur-

rence in 2017 is double1 that of 1941. See Tables 4.9, 4.10 and 4.11.

The GEV distributions generated for 1941 and 2017 based on parameter model-

ing are provided. Since the shape parameter of the distributions is assumed to be

1 Where this is seen in the tails depends on the location of the pdf.
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stationary the shape parameter estimated by MLE for 1941-2017 was used to gen-

erate the GEV PDFs for 1941 and 2017. (See Figure 4.16). Note that, in general, if

variance parameters of the cluster change a signi�cant amount only a small amount

of change is seen in the mean (see clusters (2) and (4)). Conversely, if a small amount

of change is seen in the variance a signi�cant amount of change is seen in the mean

(see clusters (1) and (3)). We observe that the most prominent example of mono-

tonic trend in variance occurs in cluster (2) while the most prominent example of

monotonic trend in mean occurs in cluster (1).

It would be interesting and useful to adapt cluster techniques to analyze tem-

perature extreme phenomena such as heatwaves or successive days over a threshold

temperature, as in [66][87]. A related investigation would be the probability of ex-

cessive precipitation and how it relates to temperature extremes (as considered in

[84]). This question is very timely given the unprecedented �ooding seen in Houston,

Texas, in August 2017. These projects are the subject of future work.
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Location and Scale Comparison

values µ σ
cluster 1941 2017 1941 2017
(1) 95.18 96.70 13.76 13.28
(2) 97.58 97.81 10.13 18.13
(3) 97.98 99.09 18.07 18.84
(4) 97.95 98.45 12.66 13.71

Table 4.9: Location and scale comparisons for 1941 and 2017 GEV models.

Extreme Probability Distribution Comparisons

values P (X ≥ 100) P (X ≥ 105) P (X ≥ 107) P (X ≥ 110)
cluster 1941 2017 1941 2017 1941 2017 1941 2017
(1) 0.07 0.09 0.01 0.02 2.20e-3 6.80e-3 0.0 1.00e-4 7.00e-4
(2) 0.11 0.09 0.02 0.04 4.40e-3 0.021 0 4.80e-3
(3) 0.09 0.09 0.04 0.06 0.02 0.03 5.50e-3 1.13e-2
(4) 0.10 0.10 0.03 0.04 0.01 0.02 1.00e-3 2.90e-3

Table 4.10: Probability distribution comparisons for 1941 and 2017 GEV models.

Extreme Probability Comparisons

2017/1941 P (X ≥ 100) P (X ≥ 105) P (X ≥ 107)
(1) 1.32 1.89 3.09
(2) 0.80 1.88 4.86
(3) 0.99 1.30 1.57
(4) 0.99 1.26 1.51

Table 4.11: Ratios of probability comparisons for 1941 and 2017 GEV models.
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(a) cluster(1) (b) cluster(2)

(c) cluster(3) (d) cluster(4)

Figure 4.16: Non-stationary generalized extreme value pdfs.
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4.3 A brief discussion of winter temperature extremes

throughout the Texas region

4.3.1 Data, Clusters and Preliminaries

In this section a time series is similarly de�ned to that in section 4.2 with the

replacement of December-January measurements.

The previously outlined clustering analysis was performed on the winter time

series from each station. Results for the winter di�er only by the movement of

station 10 from cluster (4) to cluster (3) 4.12. Clusters are stable over all time

window.

Clusters for Each Time Period for Winter Data

time window 1941-1981 1982-2017 1941-2017
cluster (1) 2,3,4,5 " "
cluster (2) 6,7,8,9,13 " "
cluster (3) 1,10,11,12,15,17,18 " "
cluster (4) 14,16 " "

Davies-Bouldin index 7.75e-4 8.94e-4 6.34e-4

Table 4.12: Table of minimum Davies-Bouldin index clusters.

4.3.2 Generalized Extreme Value Distribution

All time series reported independence across 10 day blocks from the chi-square test of

independence at the α = 0.05 signi�cance level (see Figure 4.17). (See Table 4.13 for

the histogram of p values.) The 10 day block maximum was calculated. Maximum

likelihood estimation to �t a generalized extreme value distribution was performed
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on the resulting time series of maximum values for each cluster. Anderson-Darling

goodness of �t tests report poor �ts over all clusters for time window 1941-2017 with

poor �ts over time windows 1941-1981 and 1981-2017 for clusters (1), (2) and (3).

Comparing QQ plots (Figure 4.20) suggest a poor �t for all clusters in the tails of

the distributions, in particular at the lower end of the probability distribution where

block maximum values report unusually low records (see Figure 4.20).

Figure 4.17: Chi-square independence p-values for winter time series.

Goodness of Fit for the Stationary Model

years cluster(1) cluster(2) cluster(3) cluster(4)
1941-1981 1.11e-4 1.48e-3 6.66e-7 0.75
1982-2017 5.59e-3 1.11e-4 7.09e-4 0.03
1941-2017 1.03e-6 3.10e-7 2.29e-7 0.02

Table 4.13: Table of Anderson-Darling p-values associated to stationary GEV model
of MLE parameters.

Nonstationarity in the parameters is assumed to be the primary cause of poor

distributional �ts. This hypothesis is tested against the trend tests used in analysis
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(a) cluster(1) (b) cluster(2)

(c) cluster(3) (d) cluster(4)

Figure 4.18: QQ plots for the true block maximum and the maximum likelihood
estimated generalized extreme value distribution for winter temperature extremes
for 1941-2017.

for summer data. See Table 4.16. Non-parametric Mann-Kendall and Theil-Sen

were performed on the yearly mean and variance of the cluster of time series for each

time window. Mann-Kendall results suggest no monotonic trend exists in the mean

for the whole of 1941-2017; however a monotonic trend is observed over the time

windows 1941-1980 and 1981-2017 for all aside from cluster (4). Theil-Sen values

for the mean over time windows 1941-1980 and 1981-2017 change signs and point

towards a quadratic trend in the mean. All tests con�rm no trend in the yearly
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variance for every cluster over every time window.

Based on trend results for the yearly mean and variance the non-stationary GEV

model was calculated using maximum likelihood estimation for each cluster with

stationary variance and quadratic mean models. Likelihood ratio results suggest

no signi�cant di�erence between the stationary and non-stationary quadratic mean

model for most stations within the clusters. (See Table 4.15.) Anderson-Darling

results con�rm this analysis with poor �ts for the non-stationary GEV model. (See

Table 4.14.)

Goodness of Fit for the Winter Non-Stationary Model

cluster (1) (2) (3) (4)
year before after before after before after before after

1941-2017 1.03e-6 1.26e-6 3.10e-7 3.10e-7 2.29e-7 2.29e-7 2.43e-2 2.47e-2

Table 4.14: A-D goodness of �t p values before and after non-stationary modeling.

Log-likelihood Comparisons

cluster (1) (2)
station 2 3 4 5 6 7 8 9 13
p value 0.05 1.36e-4 0.06 0.06 0.09 0.07 0.58 0.86 2.95e-5

cluster (3) (4)
station 1 10 11 12 15 17 18 14 16
p value 2.9e-3 0.01 0.93 0.87 0.61 0.11 0.53 0.06 0.06

Table 4.15: Log likelihood p values for comparing stationary and non-stationary
models.
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Winter Location and Scale Trend Results

cluster (1)
parameter µ σ
years 1941-1981 1981-2017 1941-2017 1941-1981 1981-2017 1941-2017

M-K p-value 2.36e-4 6.58e-5 0.02 0.45 0.04 0.31
T-S slope -0.15 0.12 0.03 0.19 -0.51 0.08

cluster (2)
parameter µ σ
years 1941-1981 1981-2017 1941-2017 1941-1981 1981-2017 1941-2017

M-K p-value 0.19 6.2e-3 0.28 0.45 0.12 0.61
T-S slope -0.06 0.13 0.02 0.10 -0.37 -0.04

cluster (3)
parameter µ σ
years 1941-1981 1981-2017 1941-2017 1941-1981 1981-2017 1941-2017

M-K p-value 0.53 1.6e-4 0.40 0.50 0.82 0.85
T-S slope -0.04 0.22 0.01 0.27 -0.07 0.03

cluster (4)
parameter µ σ
years 1941-1981 1981-2017 1941-2017 1941-1981 1981-2017 1941-2017

M-K p-value 0.73 0.26 0.15 0.49 0.54 0.21
T-S slope -0.02 0.04 0.02 0.14 0.11 0.08

Table 4.16: Mann-Kendall and Theil-Sen results for yearly mean and variance of the
cluster.

4.3.3 Generalized Pareto Distribution

For completion of exposition we consider the peaks over threshold (POT) method

where the maximum values are �t by a generalized Pareto distribution (GP) with

scale parameter σ and shape parameter k. The POT approach allows nonstationarity

of the location parameter to be ruled out in extreme value analysis [?].

For each cluster a threshold was chosen by looking at the mean residual life plots

(see Figure 4.19) so that a linear trend is observed at the start of the threshold. A
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maximum value of the time series is de�ned as any value which exceeds the set thresh-

old.The generalized Pareto distribution is �t by maximum likelihood estimation of

the log-likelihood function,

lσ,k = −n log σ − (1 + 1/k)
n∑
i=1

log(1 + k
xi
σ

)

for the scale σ and shape k parameters to the maxima of the whole cluster of time

series.

Although the scale parameter can be assumed to be stationary from previous

results, Anderson-Darling tests continue to re�ect poor �ts for the GPD. (See Ta-

ble 4.17.)

Goodness of Fit for the Winter Stationary Pareto Model

years cluster(1) cluster(2) cluster(3) cluster(4)
1941-2017 1.36e-6 1.54e-6 7.41e-6 1.63e-6

Table 4.17: Table of Anderson-Darling p-values associated to stationary GPD model
of MLE parameters.

4.3.4 Conclusions

Even after accounting for dependence and nonstationarity, both extreme value distri-

bution models re�ect poor �t results for the maxima of each cluster of time series. In

view of the unusually low maximum values observed in each cluster (see Figure 4.20)

we note that it is possible that the temperature throughout Texas is a�ected by

Canadian winds during winter which may lead to a mixed distribution for the winter

extremes of the time series.
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(a) cluster(1) (b) cluster(2)

(c) cluster(3) (d) cluster(4)

Figure 4.19: Mean residual life plots for each cluster. Chosen threshold is marked
with a red dashed line.
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(a) cluster(1) (b) cluster(2)

(c) cluster(3) (d) cluster(4)

Figure 4.20: Generalized extreme value distribution for the winter with MLE param-
eters for 10-day maximum temperatures for 1941-2017 probability density function.
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4.4 Concluding Remarks

We have established statistical properties for certain chaotic dynamical systems using

information about their extreme values and recurrence probabilities. We have shown,

under certain ergodic and regularity assumptions, growth rates on the Birkho� sum

can be obtained where the Birkho� ergodic theorem fails. In a probabilistic setting,

this is comparable to obtaining rates on the growth of the time average for systems

with no strong law of large numbers. These results hold for a large number of

chaotic systems. By using example chaotic maps, we included numerical estimations

as support for the established theorems. These numerical estimations were obtained

through simulations created in code.

We have extended previous results to more complex, physically relevant systems

such as the Sinai dispersing billiard model. One of the theorems we have proven

shows the existence of a maximal probability distribution. When used in practice,

this result provides a way of estimating the probability that a maximum over a certain

threshold will occur in this system. We have also proven the existence of a rare event

point process, which provides the probabilities of returns of these maximums. Moti-

vated by local climate concern, this discussion also included an analysis on summer

and winter temperature extremes throughout Texas from 1941-2017. This project

required the implementation of relatively new and sophisticated machine learning

techniques. These techniques provided a way of clustering stations throughout Texas

so that regional conclusions could be made about the data. We were then able to

use results from extreme value theory (with data-speci�c modi�cations) to model
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the maximum temperatures for the cluster. We found compelling evidence that the

probability of observing higher summer temperature maximums has increased in the

last 40 years. Modeling these changes in extremes allows us to better predict and

take action against a changing climate.

We used a combination of theoretical, numerical, and applied approaches of math-

ematics to investigate the statistical properties of extremes in a variety of chaotic

systems. The theoretical work performed here will allow us to build more sophis-

ticated analytical tools for the future; while the applied work allows us to make

conclusions about what is happening in the present. With continued e�ort, using

combined approaches to problems, we can help shape the future in a more positive

way for the next generation.
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Appendix A

Appendix

The appendix contains supplementary material.

A.1 Supporting Dynamical De�nitions and Proofs

A.1.1 Descriptions of relevant dynamical maps

Anosov di�eomorphisms

Let M be a compact Riemannian manifold without boundary, with metric d on M

derived from the Riemannian metric. For x ∈M let TxM denote the tangent space at

x and let TM denote the tangent bundle. Let T : M →M be a C1 di�eomorphism

of M and let DxT : TxM → TT (x)M denote the derivative of T . We say that

T : M →M is an Anosov di�eomorphism if the tangent bundle TM has a continuous
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splitting into a direct sum of two DT -invariant sub-bundles TM = Es ⊕ Eu such

that there exists constant C > 0 and λ ∈ (0, 1) such that for all n ≥ 0,

||DxT
nv|| ≤ Cλn||v||, ∀v ∈ Es

x,

||DxT
−nv|| ≤ Cλn||v||, ∀v ∈ Eu

x .

We call Es and Eu the stable and unstable sub-bundles, respectively.

Uniformly expanding C2 maps of the interval

Let ([0, 1], d) be a metric space and f ∈ C2([0, 1]) then f : [0, 1] → [0, 1] is called

expanding if there exists λ > 1 such that for any x, y ∈ [0, 1],

d(f(x), f(y)) ≥ λd(x, y)

Gibbs-Markov maps

Let (X,B,m) be a Lebesgue probability space with X ⊂ R. Let P be a countable

measurable partition of X such that m(α) > 0 for all α ∈ P .

A measure-preserving map T : X → X is said to be aMarkov map if the following

are satis�ed.

1. P generates B under T

2. (Markov property) For all α, β ∈ P , if m(T (α) ∩ β) > 0 then β ⊂ T (α).

3. (local invertibility) For all α ∈ P , T |α is invertible.
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For integer n ≥ 0, let Pn be the partition of X de�ned by

Pn =
n−1∨
i=0

T−i(P)

Let JT = d(m◦T )
dm

.

The quintet (X,B,m, T,P) is said to be a Gibbs-Markov system if T is a Markov

map and the following properties also hold.

1. (full branches) For all α ∈ P , T (α) = X, mod m.

2. (uniform expansion) There exists K1 > 0 and γ1 ∈ (0, 1) such that m(α) ≤

K1γ
n
1 for all n ≥ 0 and α ∈ Pn.

3. (distortion control) There exists K2 > 0 and γ2 ∈ (0, 1) such that for all n ≥ 0

and α ∈ Pn, we have

| log

(
JTn(x)

JTn(y)

)
| ≤ K2γ

n
2 (A.1)

for all x, y ∈ α.

Remark A.1.1. Some authors weaken the full-branch condition in the de�nition

of Gibbs-Markov systems by requiring merely that m(T (α)) > K > 0 for some K

independent of α.

Intermittent type maps

The family of intermittent maps can be described as maps which are expanding

everywhere except at a neutral �xed point, where hyperbolicity is lost; where the

local behavior of the map di�ers.
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A.1.2 Dynamical De�nitions

Bounded Variation

Let I ⊂ R be an interval and consider the collection Π of ordered points a1 < a2 <

· · · < aN+1 ∈ I, where N ∈ N. The total variation of f is given by,

TV (f) := sup{
N∑
i=1

|f(ai+1)− f(ai)| : (a1, . . . , aN+1) ∈ Π}

Let I ⊂ R be an interval. A function f : I → R is said to have bounded variation if

its total variation TV is bounded.

Young towers

Young Tower with exponential return time tails for a map T : M → M of a

Riemannian manifold M equipped with Lebesgue measure m.

A Young Tower has a base set ∆0 with a hyperbolic product structure as in

Young [96] with an L1(m) return time function R : ∆0 → N. There is a countable

partition Y0,i of ∆0 so that R is constant on each partition element Y0,i. We denote

R|Y0,i by Ri. The Young Tower is de�ned by

∆ =
⋃

i∈N,0≤l≤Ri−1

{(x, l) : x ∈ Λ0,i}

equipped with a tower map F : ∆→ ∆ given by

F (x, l) =


(x, l + 1) if x ∈ Y0,i, l < Ri − 1

(TRix, 0) if x ∈ Y0,i, l = Ri − 1

.
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We will refer to ∆0 := ∪i(Y0,i, 0) as the base of the tower ∆ and denote Yi := Y0,i.

Similarly we call ∆l = {(x, l) : l < R(x)}, the lth level of the tower. A key role is

played by the return map f = TR : ∆0 → ∆0 by f(x) = TR(x)(x), which is uniformly

expanding Gibbs-Markov.

De�nition of hyperbolic

Let M be a compact Riemannian manifold (perhaps, with boundary and corners),

N ⊂M an open and dense subset and F : N →M a Cr (with r ≥ 2) di�eomorphism

of N onto F (N). Note that all the iterations of F are de

ned on the set

Ñ =
∞⋂

n=−∞

F n(N).

Assume that F preserves a probability measure µ on M and µ(Ñ) = 1.

Theorem A.1.2. [23, Theorem 3.1] Suppose∫
M

log+ ||DxF ||dµ(x) <∞ and

∫
M

log+ ||DxF
−1||dµ(x) <∞,

where log+ s = max{log s, 0}. Then there exists an F -invariant set H ⊂ Ñ , µ(H) =

1 such that for all x ∈ H there is a DF -invariant decomposition of the tangent space

TxM = E(1)
x ⊕ · · · ⊕ E(m)

x

with some m = m(x), such that for all nonzero vectors v ∈ E(i)
x

lim
n→±∞

1

n
log ||DxF

nv|| = λ(i)
x

where λ
(1)
x > · · · > λ

(m)
x .
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The values of λ
(i)
x are called Lyapunov exponents of the map F at the point x.

De�nition A.1.3. A point x ∈M is said to be hyperbolic if Lyapunov exponents

exists at x and none of them equals zero.

A.1.3 Proof of Äq(un) for 2-D hyperbolic maps with singular-

ities

Tje scheme of this proof comes from [13]. Recall the de�nition of a young tower A.1.2.

We may form a quotiented tower (see [96] for details) by introducing an equivalence

relation for points on the same stable manifold. This operation helps in our decay

of correlations estimates, as it allows decay rates for the indicator function of com-

plicated sets to be estimated in the L∞ norm.We now list the features of the Tower

that we will use.

There exists an invariant measure m0 for f : ∆0 → ∆0 which has absolutely

continuous conditional measures on local unstable manifolds in ∆0, with density

bounded uniformly from above and below.

There exists an F -invariant measure ν on ∆ which is given by ν(B) = m0(F−lB)∫
Y0
Rdm0

for a measurable B ⊂ Yl, and extended to the entire tower ∆ in the obvious way.

There is a projection π : ∆→ M given by π(x, l) = T l(x) which semi-conjugates F

and T , so that π ◦ F = T ◦ π. The invariant measure µ, which is an SRB measure

for T : M → M , is given by µ = π∗ν. Denote by W s(x) the local stable manifold

through x and by W u(x) the local unstable manifold.
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Let B(x, r) denote the ball of radius r centered at the point x.

We lift a function φ : M → R to ∆ by de�ning φ(x, l) = φ(T lx) (we keep the

same symbol for φ on ∆ and φ on M).

Under the assumption of exponential tails, that is if m(R > n) = O(γn1 ) for some

0 < γ1 < 1 then Young shows [96] there exists 0 < Λ1 < 1 such that for all Lipschitz

φ, ψ we have ∣∣∣∣∫ φ · ψ ◦ T ndµ−
∫
φdµ

∫
ψdµ

∣∣∣∣ ≤ CΛn
1‖φ‖Lip‖ψ‖Lip (A.2)

for some constant C. Moreover, if the lift of ψ is constant on local stable leaves of

the Young Tower, then∣∣∣∣∫ φ · ψ ◦ T n dµ−
∫
φ dµ

∫
ψ dµ

∣∣∣∣ ≤ CΛn
2‖φ‖Lip‖ψ‖∞. (A.3)

Let D be a set whose boundary is piecewise smooth and �nite length, and de�ne

Hk(D) =
{
x ∈ D : T k(W s(x)) ∩ ∂D 6= ∅

}
.

Proposition A.1.4. There exist constants C > 0 and 0 < τ1 < 1 such that, for all

k,

µ(Hk(D)) ≤ Cτ k1 . (A.4)

Proof. As a consequence of the uniform contraction of local stable manifolds, there

exists 0 < τ1 < 1 and C1 > 0 such that d(T n(x), T n(y)) ≤ C1τ
n
1 for all y ∈ W s(x). In

particular, this implies that |T k(W s(x))| ≤ C1τ
k
1 . Therefore, for every x ∈ Hk(D),
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the stable manifold T k(W s(x)) lies in an "annulus� of width 2C1τ
k
1 around ∂D. By

the invariance of µ the result follows.

A.2 Supporting Statistical Information

A.2.1 Relevant derivations

Total Error on the Mutual Information

The number of values zk in the kth state of our newly compressed time series

can be seen as binomally distribution with E(zk) = Npk and variance V (zk) =

Npk(1− pk) where the true probability of being in the kth state is given by pk and

N is the length of the time series. Then the error ε̃k on the estimated proportion

p̂k = zk/N has normal distribution with E(ε̃k) = 0 and V (ε̃k) = p̂(1− p̂)/N for large

enough N . The relative error size εk on p̂k log p̂k is taken as

εk =
∑
k

δ(p̂k log p̂k)

δp̂k
ε̃k

but E(εk) = 0 so,

V (εk) =
∑
k

(1 + log p̂k)
2 p̂k(1− p̂k)

N

Note that by choosing threshold values resulting in a uniform distribution for zk, we

have that the V (εk) ≈ 0 (entropy is maximized) for each time series so that we take

the relative error to be the V (εk) taken over the approximate joint entropy.
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A.2.2 Description of statistical tests

Mean change-point analysis

The algorithm employed by the MATLAB function

findchangepts.m

performs the following steps to detect the mean change-point:

- Chooses a point and divides the signal (time series) into two sections.

- Computes an empirical estimate of the mean for each section.

- At each point within a section, measures how much the property deviates from

the empirical estimate. Adds the deviation for all points.

- Adds the deviations section-to-section to �nd the total residual error.

- Varies the location of the division point until the total residual error attains a

minimum.

Chi-square test of independence

The chi-square test of independence tests two blocks of categorical variables with

null hypothesis that the two data blocks are independent and alternative that the

two data blocks are dependent. The test statistic is given by,

χ2 =
(Oi,j − Ei,j)2

Ei,j
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where

Ei,j =

∑c
i=1Oi,j

∑r
k=1 Ok,j

N

is the expected value, O is a matrix where the �rst column corresponds to the �rst

variable and the second column to the other. For purposes of the analysis laid out

in Chapter 4, the �rst block of data corresponds to the compressed block of 10 days

(240 data points) the second to another compressed block of 10 days. The blocks are

compared within a single station and across all stations to determine independence.

Anderson-Darling test for goodness of �t

The Anderson-Darling has a test statistic given by,

A2 = −n− 1

n

n∑
i=1

(2t− 1) · [logF (xi) + log(1− F (xn−i+1))]

where F is value of the empirical cumulative distribution function (CDF) taken at

the value of the ordered data x.The Anderson-Darling test calculates the weighted

sum of the distance between the empirical and theoretical CDF mutliplied by the

weight function [F (x)(1 − F (x))] so that the greatest value occurs in the tails of

the distribution. Anderson-Darling tests the null hypothesis is that the data follow

the speci�ed distribution against the alternative that the data does not follow the

speci�ed distribution.

Non-parametric Mann-Kendall test of trend

The Mann-Kendall tests a null hypothesis of no monotonic trend and an alternative

that there exists a monotonic trend. Cyclic changes in the data will not be detected
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in this test. The test statistic is given by,

S =
n−1∑
k=1

n∑
j=k+1

sgn(xj − xk)

with

sgn(x) =


1 x > 0

0 x = 0

−1 x < 0

where in our case, x is the variance or mean vector calculated per year. As such,

the results of the mann-kendall test are not impacted by the magnitude of extreme

values. (Note that each data point is compared with all preceding data points so

that there are n(n− 1)/2 comparisons.)

Non-parametric Theil-Sen test of trend

The Theil-Sen estimator m is determined by taking the median of the slopes between

all pairs of sample points (xi, yi). The regression line is created by setting the setting

the intercept b to be the median of the values yi −mxi.

Parametric regression test of trend

Results for the slope m, intercept b and correlation coe�cient r are given by linear

least squares estimation of each point where −1 ≤ r ≤ 1.
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