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ABSTRACT 

One of the greatest threats facing civilization is climate change and the associated 

impacts to biodiversity, hydro-meteorological hazards, environmental degradation, and 

social vulnerability. We have the opportunity to mitigate such negative effects by 

embracing the restorative power of nature and strategically incorporating natural systems 

within the built environment. Nature-based solutions (NBSs) encompass various types of 

green infrastructure, which combine earthen and engineered materials, to reduce the flow 

of stormwater and capture pollutants at the source of collection. By increasing greenspace 

within the built environment, NBSs also store carbon emissions, improve societal well-

being, and restore ecosystem health. However, NBSs have not reached their full potential 

due to an inadequate understanding of how hydro-environmental dynamics and social 

characteristics interrelate within the overall system, particularly at the level of human 

activity and urban planning (i.e., the watershed-scale). Moreover, NBS implementation has 

been constrained due to elusive institutional and societal barriers that have yet to be fully 

understood and positioned within actionable policy frameworks. The challenges facing 

NBS adoption are not purely qualitative nor quantitative, as they exist at an interface 

between the social and physical sciences. Historically, much of the work involving human-

water systems has been conducted in rural environments, due in part to challenges of urban 

stormwater modeling. In order to foster sustainable solutions within the built environment, 

we must extend our systems-thinking approaches to thoroughly entangle one of the most 

complex systems available: the flood-prone metropolis. As such, this study amalgamates 

hydro-environmental science, social justice, and complex decision-making using 

intersectoral approaches to strengthen NBS adoption within the urban environment. 
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Specifically, this study bridges disciplinary divides to 1) advance NBS policy-making 

using stakeholder cognition and properties of network theory, 2) address overlapping NBS 

functionalities by developing a novel spatial data infrastructure system for the entire 

contiguous United States, and 3) optimize NBS planning at the watershed-scale by 

balancing economic, environmental, and social characteristics. NBSs are investigated as a 

holistic human-environmental system with many vantage points for analysis, thereby 

eliciting novel causal connections across institutional and spatial planning scales. 

 

  



vii 

 

TABLE OF CONTENTS 

DEDICATION.................................................................................................................. iii 

ACKNOWLEDGMENTS ............................................................................................... iv 

ABSTRACT ....................................................................................................................... v 

TABLE OF CONTENTS ............................................................................................... vii 

LIST OF TABLES ........................................................................................................... xi 

LIST OF FIGURES ........................................................................................................ 12 

LIST OF ACRONYMS .................................................................................................. 14 

1. INTRODUCTION ..................................................................................................... 1 

1.1 Overview ......................................................................................................... 1 

1.2 Research Objectives ........................................................................................ 7 

2. STATE OF KNOWLEDGE ................................................................................... 10 

2.1 Systems-based Paradigms in Hydrology ...................................................... 10 

2.1.1 The Systems-thinking Process .......................................................... 11 

2.1.1.1 Group Model Building ....................................................... 13 

2.1.1.2 Causal Loop Diagrams ...................................................... 14 

2.1.1.3 Fuzzy-cognitive Maps ........................................................ 16 

2.1.2 Systems-based Research in the NBS Literature................................ 18 

2.1.3 The Need for Integrated Approaches ................................................ 20 

2.1.4 Toward Policy Coherence: Synergies & Trade-offs ......................... 23 

2.2 Overlapping Co-benefits & Decision-making .............................................. 26 

2.2.1 Transdisciplinary Geospatial Data .................................................... 28 

2.2.2 Web-based Geospatial Information Systems .................................... 29 

2.2.3 Hierarchy of Data-Wisdom Relationships ........................................ 31 



viii 

 

2.3 Spatial Allocation Optimization ................................................................... 32 

2.3.1 NBS Optimization Tools................................................................... 32 

2.3.1.1 Screening Tools .................................................................. 33 

2.3.1.2 Spatial Allocation Optimization Tools ............................... 34 

2.3.1.3 Planning Support Systems ................................................. 36 

2.3.2 Integrated Optimization Frameworks ............................................... 37 

3. METHODOLOGY ................................................................................................. 39 

3.1 Holistic Systems-thinking for Policy Coherence .......................................... 39 

3.1.1 Stakeholder Workshop ...................................................................... 39 

3.1.2 Causal Loop Logic ............................................................................ 44 

3.1.3 Fuzzy Mapping ................................................................................. 47 

3.1.4 Simulating Management Strategies .................................................. 49 

3.1.5 Identifying Policy Synergies and Conflicts ...................................... 51 

3.2 National Spatial Data Infrastructure System................................................. 52 

3.2.1 System Architecture .......................................................................... 53 

3.2.2 Cloud-based Datasets ........................................................................ 54 

3.2.3 Sustainability Tool Framework......................................................... 58 

3.2.4 Value-added Functions ..................................................................... 59 

3.2.5 Suitability Evaluation........................................................................ 60 

3.3 Framework for Equity-based Optimization .................................................. 61 

3.3.1 Area Deprivation Index..................................................................... 62 

3.3.2 Hydro-environmental SWMM Model .............................................. 64 

3.3.2.1 Hydrological Modeling ...................................................... 64 



ix 

 

3.3.2.2 Pollutant Load Modeling ................................................... 66 

3.3.2.3 NBS Water Balance Modeling ........................................... 67 

3.3.2.4 Calibration & Validation ................................................... 70 

3.3.3 Spatial Allocation Optimization ....................................................... 75 

3.3.4 Multi-objective Gini Coefficient....................................................... 78 

4. RESULTS & DISCUSSION ................................................................................... 85 

4.1 Policy Coherence Embedded in Feedback Loops ......................................... 85 

4.1.1 Identification of Variables ................................................................ 85 

4.1.2 Causal Loop Diagram and Feedback Loops ..................................... 88 

4.1.3 Policy effectiveness and causal logic ................................................ 91 

4.1.4 Discussion of NBS Policy Coherence............................................... 97 

4.2 Multifunctional Data System: Hydrology, Ecology, Climate, Society ......... 98 

4.2.1 Results of Suitability Evaluation ...................................................... 98 

4.2.1.1 Characteristic #1: Openness ............................................. 98 

4.2.1.2 Characteristic #2: Spatial Analysis Functionality ........... 100 

4.2.1.3 Characteristic #3: Scalability .......................................... 103 

4.2.1.4 Characteristic #4: Geospatial Standards ........................ 104 

4.2.2 Discussion of NBS-Geo .................................................................. 105 

4.3 Equity-based Optimization for NBS Planning ............................................ 107 

4.3.1 Hydro-environmental Pareto Front Curve ...................................... 107 

4.3.2 Gini-based Optimization ................................................................. 110 

4.3.3 Discussion of Multi-objective Gini ................................................. 116 

  



x 

 

5. CONCLUSION ..................................................................................................... 118 

5.1 Advancing Data-driven Systems................................................................. 119 

5.2 Balancing Economic, Social, and Hydro-environmental Needs ................. 122 

5.3 Overlapping Co-benefits & Decision-making ............................................ 124 

5.4 Systems-based Approach to NBS Planning and Management ................... 126 

REFERENCES .............................................................................................................. 129 

APPENDICES ............................................................................................................... 181 



xi 

 

LIST OF TABLES 

Table 1. Summary of literature review of multifunctional NBS benefits. ....................... 27 

Table 2. Stakeholder roles and experience for NBS group workshop. ............................ 42 

Table 3. Literature review of key socio-institutional barriers to NBS adoption. ............. 43 

Table 4. Adjacency matrix for fuzzy cognitive map. ....................................................... 49 

Table 5. Geospatial datasets included in the NBS-Geo web tool..................................... 56 

Table 6. Atlas 14 rainfall coefficients for Houston, Texas, USA. ................................... 65 

Table 7. Pollutant load parameters for modeling total suspended solids (TSS). ............. 67 

Table 8. Water balance zones represented in the WOB case study. ................................ 69 

Table 9. Parameter controls for NBS design in Houston, Texas, USA............................ 70 

Table 10. Integral square error (ISE) numerical scores and rating classifications. .......... 73 

Table 11. ISE statistics between simulated and observed flows for calibration. ............. 75 

Table 12. ISE statistics between simulated and observed flows for validation. .............. 75 

Table 13. Definition of socio-institutional factors associated with NBS adoption. ......... 86 

Table 14. Balancing and reinforcing feedback loops. ...................................................... 90 

Table 15. Fuzzy cognitive mapping-based scenarios. ...................................................... 91 

Table 16. Rank of management strategies and NBS end-state vectors. ........................... 95 

Table 17. Multi-objective Gini coefficients for 5-YR storm series. .............................. 112 

Table 18. Comparison of 5-YR, SWMM-based versus Gini-based optimized models. 114 

 

 



xii 

 

LIST OF FIGURES 

Fig. 1. Framework of holistic systems-thinking for identifying policy coherence. .......... 12 

Fig. 2. Causal loop graphic depicting interacting feedback loops. ................................... 25 

Fig. 3. Hierarchy of data-wisdom interrelationships. ....................................................... 32 

Fig. 4. Typologies of common nature-based solution planning tools............................... 33 

Fig. 5. (top) raw variable elicitation, (bottom) amalgamated variable elicitation. ........... 44 

Fig. 6. (top) raw causal loop sketch (Loopy), (bottom) optimized CLD (Vensim). .......... 46 

Fig. 7. Key socio-institutional challenges and their connections. .................................... 48 

Fig. 8. Scenario output from FCM-based modeling. ........................................................ 51 

Fig. 9. NBS-Geo architectural framework. ....................................................................... 54 

Fig. 10. Web user-interface for NBS-Geo. ....................................................................... 59 

Fig. 11. Area deprivation index of White Oak Bayou watershed. .................................... 63 

Fig. 12. IDF curve and synthetic design storm for the White Oak Bayou watershed. ..... 66 

Fig. 13. Conceptual model of NBS water balance processes. .......................................... 68 

Fig. 14. PCSWMM basin model, stream gauges, and precipitation gauges for WOB. .... 71 

Fig. 15. PCSWMM SRTC storm event selection. ............................................................ 72 

Fig. 16. Normalized sensitivity analysis output for primary variables. ............................ 72 

Fig. 17. Calibration output hydrographs for USGS Gauge No. 08074500....................... 74 

Fig. 18. Validation output hydrographs for storm event Mar. 2021 to Aug. 2021. .......... 74 

Fig. 19. GreenPlan-IT optimization workflow. ................................................................ 76 

Fig. 20. Geospatial siting of potential NBS locations in the WOB watershed. ................ 77 

Fig. 21. Conceptual graph of Gini-based equality and Lorenz curve. .............................. 79 

Fig. 22. Stakeholder-derived causal loop diagram. .......................................................... 89 



xiii 

 

Fig. 23. Relative difference for individual variables toward system efficiency. .............. 96 

Fig. 24. Color-coded causal diagram with feedback loops. .............................................. 96 

Fig. 25. GreenPlan-IT output for (a) flow reduction as a function of cost-efficiency;  

(b) pollutant load reduction as a function of cost-efficiency, 5-YR storm. ... 109 

Fig. 26. Gini coefficients for (a) runoff volume efficiency, (b) pollutant load efficiency, 

(c) Area Deprivation Index, and (d) cumulative indicators, 5-YR storm. ..... 110 

Fig. 27. Series of Lorenz curves for select 5-YR, ~$1,000M optimization models. ...... 112 

Fig. 28. Spatial distribution for the 5-YR storm per (a) SWMM-based optimization,   

(b) ADI deprivation, (c) difference between SWMM-based and Gini-based 

optimization, and (d) weighted proportion of NBSs to ADI deprivation. ..... 114 

Fig. 29. Proportional representation of evaluation indicator efficiency for (a) SWMM-

based optimization model, and (b) Gini-based optimization model. ............. 115 



xiv 

 

LIST OF ACRONYMS 

ADI  Area Deprivation Index 

AJAX  Asynchronous JavaScript and XML 

API  Application programming interface 

BGI  Blue-green infrastructure 

BMP  Best management practices 

CDC  Centers for Disease Control 

CHANS Coupled human and natural systems 

CLD  Causal loop diagrams 

CN  Curve Number 

CONUS Contiguous United States 

CRED  Center for Research on the Epidemiology of Disasters 

DIKIW Data, information, knowledge, intelligence, wisdom 

EPA  Environmental Protection Agency 

Esri  Environmental Systems Research Institute 

FCM  Fuzzy cognitive mapping 

FEMA  Federal Emergency Management Agency 

GISP  Green Infrastructure Spatial Planning 

GIFP  Green Infrastructure Focus Planning 

GMB  Group model building 

GI  Green infrastructure 

GIS  Geospatial information system 

HEC-HMS Hydrologic Engineering Center’s Hydraulic Modeling System 

IPCC  Intergovernmental Panel on Climate Change 

ISO  International Organization for Standardization 

LID  Low-impact development 

MCDA Multiple criteria decision analysis 

NASA  National Aeronautics & Space Administration 

NBS  Nature-based solutions 



xv 

 

NCAR  National Center for Atmospheric Research 

NLCD  National Land Cover Database 

NOAA  National Oceanic and Atmospheric Administration 

NRCS  United States Natural Resources Conservation Service 

NSDI  National spatial data infrastructure 

NSGA  Nondominated Sorting Genetic Algorithm 

OGC  Open Geospatial Consortium 

PCSWMM Personal Computer Storm Water Management Model 

PSS  Planning support system 

REST  Representational state transfer 

SAOT  Spatial allocation optimization tool 

SDM  System dynamics modeling 

SFD  Stock-and-flow diagram 

SSURGO Soil Survey Geographic Database 

ST  Screening tool 

SuDs  Sustainable urban drainage systems 

SUSTAIN System for Urban Stormwater Treatment and Analysis Integration 

SVI  Social Vulnerability Index 

SWMM Storm Water Management Model 

TPL  Trust for Public Land 

UN  United Nations 

UNEP  United Nations Environment Programme 

UNISDR United Nations International Strategy for Disaster Reduction 

URL  Uniform resource locator 

USACE United States Army Corps of Engineers 

USDA  United States Department of Agriculture 

USGS  United States Geological Survey 

WEF  Water-energy-food 

WSUD  Water-sensitive urban design



1 

 

1. INTRODUCTION 

1.1 Overview 

Flooding is the most prevalent and influential natural disaster in the world, causing 

more economic damage and affecting more people than any other natural event  (UNISDR 

and CRED, 2015). Water processes are subject to stressors from intensified climate change 

and human development patterns, with over two-thirds of the global population projected 

to reside in urban areas by 2050 (United Nations, 2018). Climate change and urban 

densification increase flood risk exponentially while also threatening biodiversity, 

environmental degradation, and social vulnerability (Huong and Pathirana, 2013; 

Semadeni-Davies et al., 2008), thereby urging policy makers and scientists to transition 

toward innovative flood mitigation measures that address cross-cutting themes (Demuzere 

et al., 2014; Golden and Hoghooghi, 2018). Moreover, the era of the Anthropocene has 

highlighted the profound impact of human activity on the biosphere and has suggested a 

complete transformation of water science by including humans as an endogenous 

component of the watershed system (Vörösmarty et al., 2013).  

Traditional stormwater networks, known as greywater infrastructure, are typically 

comprised of concrete and metal conveyance systems that transport rainfall offsite and into 

bodies of water. Such infrastructure is often designed to accommodate existing conditions, 

which may quickly become obsolete. Conversely, nature-based drainage solutions 

strategically incorporate natural materials, such as vegetation and soil, into the urban fabric 

to slow the course of stormwater flow through on-site evaporation and infiltration 

(Demuzere et al., 2014). Nature-based solutions (NBSs) describe a collection of sustainable 

management approaches that emulate natural processes to address hydro-environmental 
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hazards while simultaneously providing social and ecosystem benefits. NBSs have evolved 

within the literature to encompass the urban drainage concepts of green infrastructure (GI), 

low-impact development (LID), best management practices (BMPs), sustainable urban 

drainage systems (SuDs), water-sensitive urban design (WSUD), and blue-green 

infrastructure (BGI) (Ruangpan et al., 2020). Common NBSs include rain gardens, green 

roofs, retention ponds, bioswales, water cisterns, and permeable pavements, which operate 

collectively to mitigate stormwater volume by improving infiltration capacity (Ruangpan 

et al., 2020). In addition to mitigating stormwater, NBSs have been associated with 

improved mental and physical health, social vulnerability, crime rates, and economic 

prosperity through enhanced levels of greenspace (Bowen et al., 2014; Bratman et al., 

2019; Hansen et al., 2019). NBSs provide environmental benefits through abatement of 

urban heat levels, air and water quality, noise pollution, and greenhouse gasses (Anderson 

and Gough, 2020; Berardi et al., 2014; van den Bosch and Ode Sang, 2017). Moreover, 

NBSs contribute to conservation efforts by enhancing ecosystem diversity and connectivity 

(Keesstra et al., 2018). The United Nations (UN) has deemed NBSs as an essential 

component toward achieving the goals of the Paris Climate Agreement, providing up to 

one-third the necessary carbon emissions’ reduction by 2030, thereby declaring an NBS 

Climate Manifesto to scale-up NBS adoption globally in upcoming years (UN 

Environment Programme, 2019). 

At the local scale (i.e., laboratory-, plot-, neighborhood-scale), NBS technologies have 

shown great promise in addressing both stormwater abatement goals and environmental 

restoration (Jato-Espino et al., 2016; Kabisch et al., 2016; Loperfido et al., 2014). At the 

regional scale, however, widespread use of NBS technologies has been limited due to a 
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lack of understanding the complex interactions between physical characteristics and social 

conditions (Lim and Welty, 2017; Zhang and Chui, 2018). The hydrological literature has 

suggested that NBSs, interacting with human processes, operate as a complex system with 

overlapping social and physical properties (Giacomoni and Zechman, 2010; Kuller et al., 

2017). We know that the location of human settlements can influence social factors that 

have been linked to NBS placement, such as improvements in communal well-being, 

mental health, recreation, and physical health (Alves et al., 2019; Fenner, 2017; H. Li et 

al., 2017). When planning for the overlapping co-benefits of NBS systems, there will exist 

inherent tradeoffs between spatial priority and functionality that must be considered in an 

optimization scheme.  

By focusing on drainage characteristics, however, NBS planning often promotes 

stormwater abatement while assuming additional co-benefits will somehow propagate 

naturally throughout the system. NBS systems are typically planned with either simplified 

data-overlay methods for defining hot-spots of vulnerable locations or complex hydro-

dynamic programs that prioritize stormwater functionalities (Madureira and Andresen, 

2014; Zhang and Chui, 2018), with the latter being limited in their scale of analysis due to 

large data requirements and computational difficulties (Barco et al., 2009). By relying on 

complex modeling tools, many NBS plans have tended to neglect the social dimension 

altogether in favor of Earth-system processes, thereby lacking optimal configurations for 

capturing the full scope of available co-benefits (Kandakoglu et al., 2019).  

We thereby have substantial knowledge gaps regarding informed NBS planning 

(Golden and Hoghooghi, 2018; Kabisch et al., 2016), as interactions between NBS 

phenomena and the social conditions with which they aim to address are poorly represented 
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in our existing frameworks (Lim and Welty, 2017). In this way, NBS multifunctionalities 

are not included as an explicit representation of their locational benefits, thus limiting the 

maximum potential of NBSs to mitigate cross-cutting issues within the urban fabric. For 

these reasons, widespread adoption of green infrastructure has generally remained stunted, 

despite the ongoing evidence that NBSs provide efficient stormwater mitigation, lower 

costs in comparison to traditional grey infrastructure, and numerous social improvements 

(Golden and Hoghooghi, 2018; Madureira and Andresen, 2014). To fully capture the 

multifunctionalities of NBS systems and improve implementation, we necessitate holistic 

frameworks encompassing the variety of physical and social functionalities associated with 

NBSs, which is a fertile area of research. 

In addition to a lack of social representation within NBS planning frameworks, the 

decision to implement NBSs within a given locale is also highly dependent on complex 

stakeholder buy-in (Van de Meene et al., 2011; Wihlborg et al., 2019). NBSs are unlike 

traditional stormwater infrastructure due to regular human interaction with the 

greenspaces. Many NBS technologies, such as roof gardens or rainwater harvesting 

systems, function as an optimal unit when implementation occurs on both public and 

private properties. In this respect, local community support is essential for achieving 

widespread NBS adoption. Observational case studies have identified several key 

challenges to NBS uptake, including public perception (Baptiste et al., 2015), local culture 

(Derkzen et al., 2017), institutional frameworks (Solheim et al., 2021), and technical roles 

(Zuniga-Teran et al., 2020). While these barriers have been studied as isolated events, we 

lack an understanding of how such factors operate holistically and influence one another. 

When human actors interact with NBS systems through planning and group behavior, 



5 

 

social and political constructs adapt to the new environment, which further refines local 

values and drives emergent phenomena. Each cycle of this complex system denotes an 

additional human-NBS response, which must be assessed according to altered 

characteristics. Therefore, we cannot mitigate the system by simply assigning policies that 

resolve select barriers and assume the results will be proportionally related. Instead, we 

must be able to incorporate human agency as an endogenous component that influences 

and co-evolves with the physical systems they seek to shape. For this, we require the 

coupling of human behavior with NBS responses, which may be accomplished through a 

holistic application of systems-thinking. Studies have also shown that attitudes regarding 

NBSs are improved when stakeholders can visualize and readily identify how NBS 

solutions will benefit their locale in a manner that extends beyond stormwater performance 

(Liu and Jensen, 2018; Sarabi et al., 2020; Wamsler et al., 2020). In other words, robust 

NBS implementation will not occur until decision-makers are able to identify and prioritize 

the multiple co-benefits involved in the NBS system, and to do so in an intuitive manner.  

The merging of Newtonian processes, such as infiltration or pollutant load runoff, with 

the Darwinian processes of social behavior will help us bridge the gaps between NBS 

research, design, politics, community acceptance, and management. In the age of the 

Anthropocene, where hydrologic, environmental, and social processes are being influenced 

and altered by human patterns, we are starting to study watersheds outside of the 

traditionally-fixed vacuum of ideal physical boundary conditions. Researchers are 

beginning to couple biophysical processes with societal influences through the flourishing 

fields of socio-hydrology, coupled human and natural systems (CHANS), socio-ecology, 

and others (Blair and Buytaert, 2016). The hydrological community is suggesting that we 
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address socio-environmental justices by integrating transdisciplinary variables into 

watershed modeling frameworks. Such integration from the social sciences might include 

considering the following variables in our planning paradigms: governance patterns, 

monitoring programs, financial aptitude, action plans, citizen involvement, and the general 

health and well-being of society (Kabisch et al., 2016). Enhanced integration of 

environmental phenomena, such as ecosystem services, pollutant dispersion, and sediment 

transportation, into hydrological models is an area of ongoing research (Grineski et al., 

2015; Szewrański et al., 2018). Much of the recent progress in socio-hydrology has evolved 

from a combination of exploratory frameworks (i.e. feedbacks, causal relationships, 

patterns) with water balance models and system dynamics (Kuil et al., 2016; Pande and 

Sivapalan, 2017). While such couplings have been widely noted within the literature, they 

are seldom quantitated and considered holistically in NBS management frameworks 

(Ruangpan et al., 2020). A workshop conducted by the UN Environmental Programme 

(UNEP) Intergovernmental Panel on Climate Change (IPCC) revealed that complex 

policy-making and social dynamics are the primary impediments to NBS uptake and 

recommended co-produced knowledge between practitioners and researchers to overcome 

implementation challenges (Frantzeskaki et al., 2019). 

In addressing such issues, increased emphasis is being placed on information-based 

science coupled with cognitive, systems-based modeling to explore connections between 

human behavior and the environment. Instead of relying solely on empirical theories about 

how catchments operate, we are trending toward rigorous hypothesis testing by learning 

from a combination of qualitative and quantitative models to better understand the rationale 

behind widespread socio-environmental phenomena (Konar et al., 2019). There now exists 
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opportunity to recast issues of catchment-scale NBS phenomena into a data-driven 

framework using real-world sites, stakeholders, hydro-dynamic models, and geospatial 

observations (Gaál et al., 2012; Peters-Lidard et al., 2017; Rakovec et al., 2016).  

To bridge this gap, three novel information-based frameworks are derived and 

investigated to improve our understanding of NBS phenomena. Specifically, stakeholder 

group-building and systems-thinking are used to define and relate institutional feedbacks 

associated with NBS systems and to explore policy coherence among disparate 

management strategies. A geospatial repository and data information system is derived to 

link decision-makers, resiliency stakeholders, planners, and researchers with a vast, curated 

suite of multifunctional datasets associated with NBSs. Moreover, spatial properties of 

social health and vulnerability are integrated into a comprehensive optimization scheme 

for NBS planning at the watershed-scale according to transdisciplinary characteristics of 

social equity, economic efficacy, environmental pollutant load reduction, and stormwater 

volume abatement.  

1.2 Research Objectives 

1. Identify areas of policy synergy and conflict among NBS management strategies. 

Numerous barriers to NBS adoption have been identified as stemming from human 

behavior, yet we lack an understanding of how such factors interrelate to inform policy 

design. The identification of synergies and trade-offs among diverse management 

strategies is necessary to generate optimal results from limited institutional resources. The 

aim of this research objective is to define and assess a novel framework for identifying 

areas of policy coherence from stakeholder collaboration and unique properties of network 

theory. This framework is demonstrated through a case study of NBS policy-making and 

socio-institutional feedbacks in Houston, Texas, USA. 
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2. Develop a national data system for improved visualization of NBS co-benefits. 

Comprehensive datasets for nature-based solutions (NBS) and their diverse relationships 

have not been accumulated into a deployable format. This research gathers and integrates 

geospatial datasets from the social, ecological, environmental, and hydrologic domains 

using seamless, cloud-based data services for the contiguous United States (CONUS). 

Decision-making and research are enhanced by assimilating web-based datasets into a user-

friendly sustainability tool that amalgamates quantitative watershed datasets with 

qualitative social co-benefits and climatic conditions. This spatial system serves to foster 

participatory planning capabilities and integrate local sustainability goals into decision-

support frameworks. Such a platform strengthens the knowledge base necessary for 

addressing multiple, co-evolving issues of societal relevance, an essential component of 

fully espousing NBSs within the realm of socio-technological systems.  

3. Optimize spatial allocation by combining social equity with hydro-dynamics.  

NBSs have been shown to improve social equity through enhanced physical health (e.g., 

heart disease, diabetes), mental health (e.g., post-traumatic stress disorder, depression), 

aesthetics, property values, recreational opportunities, community meeting spaces, cleaner 

air, and general societal well-being. However, current optimization frameworks for NBSs 

rely on stormwater quantity abatement and, to a lesser extent, economic costs and 

environmental pollutant mitigation. This research objective explores how strategic 

management strategies associated with NBS planning may be optimized while considering 

the tripartite interactions between water, environment, and social co-benefits. A large-scale 

NBS watershed is calibrated using standard hydro-environmental modeling and optimized 

on the basis of stormwater abatement, pollutant load reduction, and economic efficacy. The 



9 

 

resulting spatial allocation is integrated with properties of social equity through a novel 

framework involving the Area Deprivation Index (ADI) and the Gini coefficient. By 

embedding social equity into the fabric of the NBS planning process, social justice is 

improved within a balanced system. 
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2. STATE OF KNOWLEDGE 

2.1 Systems-based Paradigms in Hydrology 

The emergent field of socio-hydrology was established to study the evolution of 

interactions between water and society as a linked system (Sivapalan et al., 2012), whereby 

all watershed processes contain an inherent two-way feedback between impacting humans 

and being impacted by humans (Konar et al., 2019). The premise of socio-hydrology is that 

human agencies are endogenous factors that influence and co-evolve with the water 

systems they seek to shape. Instead of attempting to super-impose human dynamics on the 

results of physical models or as a pre-existing boundary condition, we are transitioning 

toward modeling frameworks that integrate human logic as a stimulus to interact with the 

environment and reveal emergent phenomena (Bouziotas and Ertsen, 2017). Socio-

hydrology relies heavily on the concept of system dynamics modeling (SDM), which 

simulate processes within a complex system according to a set of interrelated dynamical 

equations (Allen, 1988). Systems dynamic models are not designed for predictive purposes 

but instead are intended to provide insight into the feedbacks involved in complex issues. 

These concepts have been widely applied to hydrological issues of water-use, drought, 

and flooding (Di Baldassarre et al., 2019, 2015; Pande and Sivapalan, 2017) with 

significantly less attention throughout the NBS literature (Ruangpan et al., 2020; Schifman 

et al., 2017). While there have been numerous attempts to study the co-benefits that ensue 

from NBSs, there exists a limited understanding of how social phenomena directly impacts 

NBS adoption. In order to shift stormwater management regimes away from sole reliance 

on greywater infrastructure, we require an improved understanding of NBSs as a coupled 

human-water system. In addressing this gap, the broad domain of systems-thinking is a 
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useful paradigm for eliciting the role of society embedded within complex NBS 

phenomena. SDMs are one sub-component of systems-thinking, however, the systems 

theory extends far beyond formal dynamical models. 

2.1.1 The Systems-thinking Process 

The systems-thinking process involves a series of phases, often performed in sync with 

modelers and stakeholders, to understand how complex systems operate. These phases (i.e., 

dynamic-thinking, causal-thinking, feedback-thinking, and strategy-thinking) are depicted 

in Fig. 1 (loosely adapted from Kim et al. (2017)) and described in terms of the common 

phenomena they seek to address. The premise of systems-thinking is that complex issues 

can be better understood when the individual components of the system are identified and 

the causal links between them are associated (Allen, 1988). The initial stages of systems-

thinking include 1) Group Model Building (GMB), which is used to derive a community 

understanding of the dynamic problem and associated variables through stakeholder 

interactions (e.g., workshops, interviews), and 2) Causal Loop Diagrams (CLD), which are 

simplified graphical representations of the stakeholder-defined variables and their 

interactions that form feedbacks (Forrester, 1994). These feedbacks may connect to form 

closed loops, which define the system trajectory as either balancing (i.e., trending toward 

equilibrium) or reinforcing (i.e., propagating change) (Sternam, 2002).  Large causal 

systems are often too convoluted for practical inference of policy implications from a visual 

analysis alone, due to the many interactive feedbacks within the system (Bureš, 2017; 

Osoba and Kosko, 2019). System dynamics modeling (SDM) is the translation of these 

complex feedbacks into a quantified model to simulate the associated dynamics, which 

may be used to test unique hypotheses for robust decision-making (Richmond, 1993). A 

common SDM technique is a stock-and-flow diagram (SFD), which simulates 
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accumulations and changes within the system through a set of integral equations. SFD 

models require numerical descriptions of system performance over time, which are not 

often available when considering novel policies and the dynamics of human behavior 

(Bureš et al., 2020). An alternative to SDM is fuzzy cognitive mapping (FCM), which 

combines the strengths of stakeholder knowledge with network theory to produce semi-

quantitative scenarios of system change. 

 

Fig. 1. Framework of holistic systems-thinking for identifying policy coherence. 

There have been calls within the literature to more clearly identify policy effects from 

dynamic systems by exploring the causal loops underlying the system structure and 

simulating their resulting behaviors (de Gooyert et al., 2016). Feedbacks and adaptations 

amongst complex human-environmental systems must be understood and explicitly 

accounted for in order to optimize system-wide sustainability with limited resources. To 

address this gap, this research proposes a thorough integration of qualitative and semi-

quantitative systems-based approaches, which are further described in Section 2.1.1.1, to 
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reveal policy-oriented relationships that would not be clear from causal logic alone, but 

which also do not require the complex numerical modeling associated with SFDs. 

2.1.1.1 Group Model Building 

Group model building is a stylized approach for eliciting complex system components 

and their inter-relationships from stakeholder knowledge (Vennix, 1999). GMB 

emphasizes capacitance building for framing and visualizing the problem, identifying 

potential leverage points, analyzing policies, and designing effective solutions within 

dynamical systems. GMB highlights the problem-structuring process, rather than the end-

goal of a simulation model, to form a dynamic hypothesis of how the system operates 

through real-world experiences shared by a collective group. Common GMB techniques 

include behavioral simulations, role playing games, stakeholder workshops, white board 

sketches, and curated interviews (Pahl-Wostl, 2007). Such processes are often facilitated 

through the use of scripts, which were spawned by Andersen and Richardson's (1997) call 

to strengthen the scientific basis of GMB by thoroughly documenting the techniques used 

in community modeling. The scripts are typically intended for live workshops and 

encompass a range of topics, including GMB preparation (stakeholder selection, room 

logistics, scheduling), group interaction (complex-thinking skills, hopes and fears), causal 

loop modeling (variables, causal relationships, dynamic structure), and follow-up (model 

review, reflection, feedback, action) (Hovmand et al., 2011). 

When confronted with a complex system comprising many interacting components, 

humans typically try to reduce the problem complexity by rationalizing simplified 

connections, thereby misperceiving the feedback structure of the system. Such inability to 

identify the dynamics of a complex system often results in missed opportunities or 

unintended consequences from well-intended interventions (Sterman, 2001). The mental 
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models held by humans describe an internal representation of a real system as shaped by 

interacting social actors within the environment, including their cognitive biases, values 

and goals, which have been derived from lived experiences (Jones et al., 2011). By 

elucidating such mental models through structured protocols, we are better positioned to 

evoke the dynamic relationships necessary for sound decision-making. 

GMB has been widely used within the environmental sciences to support stakeholders 

in identifying information feedbacks and empowering a diversity of cross-sectoral voices 

in policy-making (e.g., Butler and Adamowski (2015), Stave (2002)). In addressing issues 

of water management, GMB has been used to foster an understanding of long-term effects 

resulting from interventions to river basins and urban water systems (Winz et al., 2009). 

GMB has also been demonstrated as a useful tool for exploring the implications of climate 

change in water resources planning (Langsdale et al., 2009). Moreover, GMB has been 

used as a diagnostic tool to develop indicator frameworks for integrated management 

strategies (Vugteveen et al., 2015). GMB exercises have been demonstrated to positively 

support communication of complex system dynamics with decision-makers and to 

facilitate visualization of causal feedbacks (Scott et al., 2016). Stakeholder-led models 

allow us to define the co-evolution of environmental phenomena, as impacted by social 

norms and beliefs, when such relationships would otherwise elude formal definition. 

2.1.1.2 Causal Loop Diagrams 

A primary step involved in systems dynamic modeling includes forming dynamic 

hypothesis about how the system functions through CLDs to showcase relationships 

between variables (Sternam, 2002). In CLD diagrams, individual links are marked as 

positive (+), such that related variables change in the same direction, or negative (-), where 

a change in one variable has the opposite impact on the linked variable. The feedbacks 
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within the CLD are described as balancing loops (an odd number of negative links) or 

reinforcing loops (an even number of negative links). Reinforcing loops indicate that an 

effect of variation within individual variables propagates throughout the loop and causes 

rapid change within the system through growth or decline. Balancing loops counteract 

change and trend the system toward equilibrium (Sternam, 2002). 

This methodology is useful for demonstrating how feedbacks between rapidly changing 

infrastructure decisions and co-evolving social phenomena may be visualized at a general 

level through causal relationships, thereby elucidating new knowledge between disparate 

phenomena. CLD models have been noted as beneficial tools within socio-hydrological 

investigations because they (Inam et al., 2015; Kotir et al., 2017; Zare et al., 2019): 

✓ Represent and simplify complex interactions, 

✓ Identify key hydrologic, social, economic, and institutional drivers, 

✓ Assess long-term impacts of dynamic factors and how they are related, 

✓ Suggest how policy changes will impact the system at the regional scale, 

✓ Examine the future of systems within existing social constructs, 

✓ Provide a visual interpretation of complex systems for holistic planning, 

✓ Facilitate participation of system stakeholders and sharing of information, and 

✓ Prioritize components that require additional in-depth studies. 

CLDs are conceptual in nature and are intended to increase a holistic understanding of 

the water resources system for improved management. The resulting model is cyclical, 

rather than linear, and explains non-linear behavior within the catchment in terms of critical 

socioeconomic, policy, and institutional processes. Feedback loops are formed that 

integrate key drivers to explain the resulting variability in the hydrologic response, which 

is of paramount importance for understanding how the system behavior is governed. The 

dominant loops within the resulting CLD inform management where key leverage points 
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are located and what types of action would result in the system equalizing or changing 

exponentially. Institutional changes focused on such leverage points improve the balance 

within the feedback loops and increase overall efficacy of the coupled human-water 

system. 

2.1.1.3 Fuzzy-cognitive Maps 

While CLD's provide information regarding the direction and central relationships of 

the system, an understanding of how the system will play out dynamically over time is 

necessary for decision-making. For this, fuzzy cognitive maps provide a semi-quantitative 

basis for simulating complex dynamics according to the system structure and the strengths 

of variable relationships. FCMs were first proposed by Kosko (1986) for quickly 

simulating the dynamics of complex causal maps. FCM theory is based on a pseudo 

combination of cognitive mapping (Axelrod, 1976), fuzzy logic (Zadeh, 1975), semantic 

networks (Richens, 1956), and neutral networks (McCulloch and Pitts, 1943) for 

representing systems with a high degree of uncertainty by leveraging stakeholder 

knowledge (Glykas, 2005). Cognitive mapping is a means for capturing the subjective 

knowledge of individuals, which fosters systems-thinking and awareness of internal 

assumptions regarding how a system operates. According to the structure of the causal 

map, FCMs are represented by fuzzy directed diagraphs, which describe the feedback 

linkages between variables as a set of neural processing units, each with signed and 

weighted properties (Nápoles et al., 2018). As human behaviors, tendencies, and feelings 

are difficult to measure empirically, FCMs provide a systems-based approach to 

numerically depict and simulate abstract concepts by identifying the strengths between 

variables without necessitating robust datasets over time.  
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FCMs represent indirect causality by structuring and parameterizing CLDs according 

to fuzzy logic from group beliefs, which are defined as a numerical representation of 

qualitative strengths (e.g., low, medium high) between variables, typically using weighted 

edges between -1 (strong negative causality) and +1 (strong positive causality) (Gray et al., 

2014). Mathematical pairwise associations are then summarized within a square adjacency 

matrix, which may be simulated to better understand current and projected system states 

(Özesmi and Özesmi, 2004). According to Henly-Shepard et al. (2015), FCMs are popular 

for assessing the dynamics of socio-ecological systems but are not often used to iteratively 

measure conceptual change for stakeholder-derived assessment of unique policy changes 

and holistic planning within the system. Effective policy design necessitates understanding 

how system variable changes will result in alterations to specific state vectors, which may 

fail if the modeler or planner does not consider the causal chain(s) driving the policy 

effects. As such, the mechanistic nature of FCMs is beneficial to identify such causal chains 

and improve choosing the most effective policy design amongst many options (Capano and 

Howlett, 2019). Such modeling provides a roadmap for policy-making whereby future 

changes within the system are simulated and compared to a base-line scenario to better 

understand how specific variables influence the overall system dynamics. 

To calculate the FCM network, the variables within the system are denoted as 

equivalent to neurons that can be turned “on” (where variables are clamped to a state vector 

value of +1) or “off” (where variables are set to a state vector value of 0) during simulation 

while also adopting in-between states (i.e., “fuzzy” states). A value of +1 indicates the 

variable is strengthened to the maximum possible weight at the beginning of the simulation, 

thereby influencing all connecting feedbacks, while a clamped value of 0 means the 
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variable does not change at the system on-set and rather is only influenced by causal 

connections within the system. In other words, if a variable is “activated” for the system 

simulation, the vector state of that variable is represented as a neuron that fires and impacts 

all variables that are causally dependent upon it. The activated variable state is multiplied 

by the entire adjacency matrix at each time step, which may then alter the state vector 

values of non-activated concepts (Jetter and Schweinfort, 2011). The multiplication rules 

are chosen according to a threshold function (e.g., bivalent, trivalent, sigmoid, hyperbolic 

tangent, step-wise, linear) describing when the system should stop iterating upon reaching 

equilibrium, further described by Bueno and Salmeron (2009) and Tsadiras (2008). The 

extent to which the “off” variables are altered throughout the simulation depend on the 

direction of causal feedbacks and their strengths, which may in turn activate other system 

variables, thereby spreading in a non-linear fashion until the system reaches equilibrium. 

When applied to policy-making, a series of artificial scenarios are simulated by 

activating unique policy variables and comparing the end-state vectors against a baseline 

model, where all variables are simulated in the “off” position. The extent of change 

between the activated and the baseline scenario projects how the system will respond to 

unique policies according to causal interactions throughout the entire model. 

2.1.2 Systems-based Research in the NBS Literature 

Several state-of-the-art reviews have highlighted a rise in systems-thinking approaches 

within the fields of sustainability, water resources, environmental science, and hydrology 

(Mashaly and Fernald, 2020; Moon, 2017; Turner et al., 2016; Zomorodian et al., 2018). 

Researchers have incorporated systems modeling in various human-water applications to 

identify complex causal relationships and co-evolving feedbacks in the planning of water 

supply and demand (House-Peters and Chang, 2011), river basin management, flooding 
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(Ahmad and Simonovic, 2015; Perrone et al., 2020), and irrigation (Pluchinotta et al., 2018; 

Saysel et al., 2002). System thinking approaches have proliferated in the management of 

hydro-environmental systems, due in large part to pressing challenges associated with 

urbanization and climate change (Turner et al., 2016). These studies describe the dynamic 

complexities associated with water resources management and how to account for their 

feedbacks when planning systems that will impact society (Mirchi et al., 2012). Such 

studies have shown that systems modeling is an effective tool for describing the linkages 

between social phenomena and physically-based hydrological processes (Blair and 

Buytaert, 2016; Fernald et al., 2012; Kotir et al., 2017; Zomorodian et al., 2018). 

Research has begun to emerge where systems-thinking has been applied to NBSs to 

facilitate an understanding of overlapping co-benefits and to promote stakeholder 

involvement  (Coletta et al., 2021; Giordano et al., 2020; Gómez Martín et al., 2020; 

Pagano et al., 2019; Santoro et al., 2019). Many of these studies have applied dynamic- 

and causal-thinking to define the nature of complex human-environmental systems 

(Mashaly and Fernald, 2020). Some studies have also explored alternative management 

strategies through FCM-based scenarios (e.g., Giordano et al., 2020; Gómez Martín et al., 

2020; Kokkinos et al., 2020) and SFD models (e.g., Kotir et al., 2016; Pagano et al., 2019; 

Sušnik et al., 2012). Additional research has applied feedback-thinking to characterize 

system behavior into archetypes, which are typically described with storylines and 

narratives (e.g., Bahri, 2020; Gebrai et al., 2021). These studies operate under the 

assumption that dominant feedback loops within the system may be used to inform 

management of key leverage points and to facilitate which types of action would result in 

optimal results. Such research has been useful in demonstrating the potential for systems-
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thinking to facilitate an understanding of NBS benefits and tradeoffs regarding institutional 

policies and stakeholder perceptions.  

2.1.3 The Need for Integrated Approaches 

Previous studies have typically focused on investigating the effectiveness of NBS 

management through increased stakeholder involvement (Gómez Martín et al., 2020) 

rather than a baseline understanding of how social characteristics impact NBS phenomena 

as a holistic system (Ruangpan et al., 2020). Systems-based research within the NBS 

literature has generally considered the effect of different environmental phenomena on 

NBS system performance (e.g., land use change, climate change, co-benefits production), 

with lesser attention to specific management strategies. Studies that have applied systems-

thinking to policy design have relied on a visual assessment of complex CLD feedback 

loops by describing their interactions through a lengthy narrative or story-line (e.g., Collins 

et al., 2013; Paterson and Holden, 2019; Stepp et al., 2009). Given the large magnitude of 

many causal systems, such manual interpretations are often impractical. 

For example, Brennan et al. (2015) applied a systems-thinking approach to better 

understand how various policies could impact social health across a large community. This 

study resulted in 50 unique CLDs with an astounding 1555 feedback loops. To derive 

useful insights from the data, the 50 CLDs were synthesized into one composite diagram 

using the variables that were consistently identified by 20% of the stakeholders. In such an 

approach, it could be argued that much of the causal richness is lost when ~80% of the 

variables proposed by the community are discarded. Aggregation of causal relationships to 

aid human understanding is a common necessity within system dynamics (Ryan et al., 

2021), especially considering the limitation of reliable datasets for robust model 

quantification (e.g., SFDs) (Mirchi et al., 2012). However, when informing policy 
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strategies for complex systems, some fashion of quantitative modeling is necessary to 

adequately capture the many causal interactions and their dynamic behaviors. 

FCM-based scenarios for evaluating policies have tended to highlight the strengths of 

individual variables toward system goals with lesser discussion of how the internal 

feedback loops interact (e.g., Olazabal et al., 2018; Singh and Chudasama, 2020). For 

example, in Martinez et al. (2018), climate change and water availability were identified 

as key drivers impacting the water-energy-food (WEF) nexus in Andalusia, Spain. Such 

findings may aid decision-making specific to the Andalusian agricultural community, but 

an overall understanding of why the WEF system was driven by specific variables is 

lacking. Causal logic, which elicits deep insights of system behavior according to how the 

reinforcing and balancing loops interact, would facilitate knowledge that is transferable to 

other locations. Instead, the complexities of feedback loops are often embedded within 

FCM-based simulations and are not used to inform the logic underlying the system (Harich, 

2010). As such, FCM-based scenarios, when used in isolation, may be deemed black-box 

methods that obscure the non-linear developments emerging from within the model to 

influence dynamic behavior (Kaljonen et al., 2012).  

As described by Richardson (2011), the foundations of systems-thinking extend far 

beyond stakeholder participation and derivation of system structures. When applied 

holistically, systems-thinking can be used to reveal how human actions impact the state of 

a system according to dynamic simulations and supporting causal logic. Dynamic, causal, 

and feedback-thinking elicits crucial information about the direction and central 

relationships of a system, which could reveal compensatory effects of human-environment 

behavior (Richardson, 2011). However, without an understanding of the strengths of the 
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system feedbacks (e.g., through FCM-based modeling), identifying such compensations 

may become elusive. For this reason, many studies reveal only a portion of the overall 

insights attainable from systems-based methods. In order to understand how specific 

interventions may shift the system trajectory toward or against policy goals, we must 

appreciate the full scope of systems-thinking as an integrated paradigm. While scenario-

building may be used to specify high-leverage variables within the system, causal logic is 

necessary to reveal the source of system behavior. Particularly, when we aim to implement 

composite management strategies involving numerous altered variables, the system may 

diverge to produce unexpected outcomes resulting from complex interactions between  

opposing feedback loops. 

Fuzzy logic employs the strengths of tacit stakeholder knowledge, which is knowledge 

embedded within stakeholder mental maps, but which may be difficult to explain 

comprehensively. By performing a mechanistic approach to elucidating system behavior, 

FCMs allow us to define the structure of the system using simple, pairwise relationships 

between two variables incrementally. Then, the 2nd-order effects of policy feedback 

processes may be simulated with the aid of computational software to identify when 

negative consequences of policy actions may be activated and/or to identify optimal 

combinations of synergistic policies (Capano and Howlett, 2019). As promoted by Richard 

Levins’ theory of loop analysis, semi-qualitative modeling of signed diagraphs, alone, are 

insufficient for enhancing our understanding of policy strategies (Puccia and Levins, 1991). 

Instead, when feedback loops begin to interact beyond the initial order of behavior, the 

system may diverge into unexpected outcomes, which we must understand to reveal the 

underlying theory regarding system behavior in response to disparate policies. For 
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example, system stability resulting from an FCM-based scenario may reveal strong 

pathways for specific feedback loops in comparison to other loops. Opposing outcomes 

may result from a positive (i.e., reinforcing) feedback loop being embedded within the 

system that is not immediately obvious to the modeler. System behavior that alternates 

between outcomes could reveal a delayed positive feedback effect within the system. While 

CLDs inform a rich understanding of system interactions through qualitative storylines, 

and FCMs provide a mathematical basis for modeling such complex systems, scenario-

based modeling alone “does not do justice to either the richness of the stories or the 

complexity of the models,” (Kok, 2009). Therefore, this research promotes the integration 

of qualitative analysis (i.e., identifying and assessing feedback loops within a CLD) with 

semi-quantitative modeling (i.e., simulating system trajectory with FCM-based scenario 

building) to facilitate deep insight. 

2.1.4 Toward Policy Coherence: Synergies & Trade-offs 

Policy coherence is used to describe the extent to which a set of unique policies 

imposed on a system result in optimal (or sub-optimal) interactions between the system 

components toward achieving a common goal. While the literature is not consistent in 

defining policy coherence, this term is typically understood to define the areas of synergy 

and conflict between sets of policy choices within the system (Muscat et al., 2021; Reyes-

Mendy et al., 2014). Policy conflict is used within the environmental literature to describe 

a phenomenon known as “policy resistance”, where well-intentioned management 

strategies are hindered by unforeseen consequences evolving from systematic feedbacks 

(Sternam, 2002). Kotir (2020) describes policy resistance as “the tendency for an 

intervention to be jeopardized by the system’s response to the intervention itself.” Within 

the system dynamics literature, the primary means for circumventing policy resistance is 
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to transition the planning paradigm from a reductionist worldview toward a greater 

awareness of and appreciation for complexity. By approaching the problem as a dynamic 

structure of moving parts, each impacting one another through causality, an assessment of 

interacting feedbacks is assumed to reveal how the system would react if one of the 

components were altered by policy intervention (Roxas et al., 2019). However, as 

previously discussed, such assessments by visualization alone become impossible as the 

system grows larger. As noted by John Sterman, a leader in the field of SDM: 

“Even if our cognitive maps of causal structure were perfect, learning, especially 

double-loop learning, would still be difficult. To use a mental model to design a 

new strategy or organization we must make inferences about the consequences of 

decision rules that have never been tried and for which we have no data. To do so 

requires intuitive solution of high-order nonlinear differential equations, a task far 

exceeding human cognitive capabilities in all but the simplest systems.” (Sternam, 

2002). 

Policy synergy is a term used to describe how well combined management strategies 

interact as a cohesive unit to accomplish more than the sum of separate policies. In other 

words, policies that exhibit synergy reinforce one another, according to the dynamic 

properties of the system feedbacks and their internal strengths, to manifest the policy 

objectives (Muscat et al., 2021; Nilsson et al., 2012). In adopting the view that policy 

coherence is an increase in synergies and a reduction in conflicts, it becomes clear that we 

should both identify the interacting feedback loops (e.g., causal mapping) and also identify 

which loops tend to drive the system response according to their inherent feedback 

strengths (i.e., FCM-based modeling). Failure to understand these processes often results 

in reductionist interventions aimed at “fixing” one facet of the problem, which may initiate 

non-optimal system behavior and defeat the original policy goal (Agyepong et al., 2012). 

To address such complex questions, this study stresses that the full scope of systems-

thinking provides the optimal means for elucidating policy coherence by seizing and 



25 

 

integrating the strengths of distinct, but complementary, systems-based approaches. An 

example is presented in Fig. 2 to demonstrate the concept of policy coherence as stemming 

from interacting feedback loops. 

 

Fig. 2. Causal loop graphic depicting interacting feedback loops.  

This graphic represents a common approach in floodplain management where natural 

streams are converted into concrete-lined channels to reduce riverine overflow by rapidly 

transitioning water further downstream. Here, a balancing loop is denoted with “B” to 

describe the tendency of channel straightening to reduce riverine flooding by increasing 

stream velocity. A synchronous reinforcing loop is denoted with “R” to highlight the 

amplifying effects of the channel intervention on stream discharge and, potentially, riverine 

flooding elsewhere within the system. Increased stream velocities at the project location 

may result in flooding elsewhere if the downstream discharge is not carefully balanced to 

accommodate additional inflow. Ideally, the reinforcing loop in Fig. 2 would remain 

weaker than the balancing loop through careful engineering. However, this figure 

showcases how a policy change in one portion of the system could result in adverse impacts 
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elsewhere (e.g., amplified flooding downstream), thereby highlighting the need to 

understand the causal structure of the system and the strengths of the interacting loops. 

2.2 Overlapping Co-benefits & Decision-making 

NBSs have been shown to provide significant abatement of air and water pollutants, 

aid ecosystem connectivity, and preserve biodiversity through enhanced greenspaces in the 

urban environment (Anderson and Gough, 2020; García et al., 2020; Hansen et al., 2019; 

Song et al., 2019). Additional co-benefits have been widely demonstrated throughout the 

literature, including improvements in societal well-being, mental health, recreation, 

community, energy demand, urban heat, carbon sequestration, social capital, economic 

viability, crime, and noise pollution (Alves et al., 2019; Fenner, 2017; H. Li et al., 2017). 

By providing enhanced greenspaces and social gathering places, NBSs have been linked to 

a reduction in cardiovascular disease, diabetes, cancer, mental disorders, and chronic 

respiratory diseases, which are disproportionately higher among racial and ethnic 

minorities and the socioeconomically disadvantaged (Astell-Burt and Feng, 2021; Brown 

et al., 2016; Fuertes et al., 2014; Gascon et al., 2016; Maas et al., 2009; Mitchell and 

Popham, 2008; Ray and Jakubec, 2014). Table 1 summarizes the co-benefits associated 

with NBSs according to a recent, comprehensive literature review. According to Ruangpan 

et al. (2020), consideration of multiple co-benefits has been increasingly valued as a 

desirable goal throughout the NBS literature, yet the majority of planning studies have 

continued to prioritize stormwater abatement, due in part to a lack of comprehensive, geo-

referenced datasets that are readily accessible. A right first step toward integrating coupled 

benefits within NBS planning is to represent various overlapping phenomena (societal, 

hydrological, environmental, and ecological) as explicit functions of space, encompassing 

the variety of scale and domains associated with holistic NBS systems. 
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Table 1. Summary of literature review of multifunctional NBS benefits. 

 Challenge Demonstrated NBS Co-benefit Reference 

S
o

ci
et

y
 

Morbidity 

Improvements in various non-communicable diseases, 

including heart disease, diabetes, cancer, mental 

disorders, and chronic respiratory diseases. 

(Mitchell and 

Popham, 2008) 

Social 

Vulnerability 

Improved health and social outcomes, particularly in 

lower socio-economic populations. (Luck et al., 2009) 

Economic 

Health 

Improved land values. Increased tourism. Indirect  

economic benefits from improvements to local health. 
(Vandermeulen et 

al., 2011) 

Mental 

Health 

Improvements in mental stress, depression, general 

emotional well-being, sleep, anxiety, mood, aggression, 

and pain management. 

(van den Berg et al., 

2010) 

Physical 

Health 

Improved levels of physical activity. Reduced obesity. 

Improved birth outcomes and pregnancy health. 
(Kaczynski and 

Henderson, 2007) 

Crime 
Reduction in crime rates, including improvements in 

incidences of theft and assault.  (Branas et al., 2011) 

Social 

Cohesion 

Improved sense of community and pro-social behavior. 

(de Vries et al., 2003) 

E
co

sy
st

em
 Diversity 

Higher levels of biodiversity in various plant, insect, 

bird, mammal, and aquatic species. (Tzoulas et al., 2007) 

Imperiled 

Species 

Habitat preservation for native and non-native wildlife, 

including endangered and threatened species. 
(Planchuelo et al., 

2019) 

Habitat 

Connection 

Increased movement of plants and animals between 

fragmented areas, resulting in improved conservation. 
(Gilbert-Norton et al., 

2010) 

E
n

v
ir

o
n

m
e
n

t 

Air Pollution 
Improved air quality, including abatement of particulate 

matter, carbon, ozone precursors, and indoor air. (Nowak et al., 2006) 

Urban Heat 

Island 

Evaporative outdoor cooling effects. Reduced indoor 

energy consumption and improved energy savings. (Bowler et al., 2010) 

Noise 

Pollution 

Improved levels of urban noise, including from air and 

traffic-related sources. 
(Dzhambov and 

Dimitrova, 2014) 

Soil Erosion 
Reduced risk of shallow landslides. Reduced soil 

erosion and enhanced catchment sedimentation. 
(de Jesús Arce-Mojica 

et al., 2019) 

Water 

Quality 

Removal of contaminants in greywater reuse. Improved 

water quality, including levels of nutrients, metals, 

suspended solids, oil/grease, oxygen, and chemicals. 
(Boano et al., 2020) 

H
y

d
ro

lo
g

y
 

Flooding 

Improved peak runoff, delay, and attenuation. 

Reduction in total runoff volume. Reduced 

hydrological flashiness. 

(Ruangpan et al., 

2020) 

Coastal 

Protection 

Coastal habitat protection. Mitigation for storms and 

sea-level rise. 
(Ruckelshaus et al., 

2016) 

Sewer 

Overflow 

Reduced occurrence and magnitude of combined sewer 

overflows. (Pennino et al., 2016) 

Drought 
Agricultural protection. Improved irrigation, water 

availability and food security. 
(Lottering et al., 

2015) 
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2.2.1 Transdisciplinary Geospatial Data 

Comprehensive data information systems for NBS functions have not been 

accumulated into a deployable format, particularly using the latest technological advances 

of web-based geospatial information systems (GIS). To amalgamate GIS services toward 

enhanced NBS decision-making, we necessitate multidisciplinary datasets that are 

geospatially robust, user-friendly, and curated for specific properties of societal and 

environmental importance. Within the NBS literature, some studies have linked 

stakeholder interaction with web-apps for enhanced decision-making (Meerow, 2019). 

However, in such applications, the users are still required to supply the local data layers 

and are limited in which types of information the tools will accept (i.e., it is not possible to 

search various data layers and then decide which criteria are most important). Other 

applications have compiled various datasets pertinent to NBS planning into a web-based 

platform (GLA, 2018) but are location-specific and are generally presented at a coarse 

scale. Many of the latest NBS web applications described by Ruangpan et al. (2020) tend 

to be information portals designed to inform the user of generalized co-benefits through 

textual descriptions and do not contain spatial evidence for local siting. The UN IPCC 

panel noted a considerable research gap regarding holistic data frameworks for NBS spatial 

trade-offs, including a substantial lack of integrated social reference data, thereby urging 

rapid development toward novel data streams that could facilitate transdisciplinary NBS 

research (Frantzeskaki et al., 2019). By harnessing the power of web-based GIS, a 

measurable data framework is achievable to better understand how NBSs impact the 

surrounding environment while also investigating how local characteristics, in turn, impact 

the efficacy and co-benefits of NBSs. 
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2.2.2 Web-based Geospatial Information Systems 

Web-based GIS is defined here as a GIS system that utilizes cloud technologies to 

communicate data, functionality, and user-interface through online mapping. Web-based 

GIS applications have increased significantly in recent years due to improvements in cloud 

computing and storage (Veenendaal et al., 2017). As high-resolution datasets for Earth-

system sciences have proliferated with advances in remote sensing technologies, web-

based GIS tools for environmental applications have become more common  (Guo et al., 

2017). Many remote sensing datasets used in hydrological modeling represent multiple 

decades of observations and are approaching, or exceeding, the petabyte-scale in data 

volume (1 petabyte (PB) = 1,000,000 gigabytes (GB)) (McCabe et al., 2017). For example, 

the uncompressed size of the global terrain dataset geo-referenced in NBS-Geo, alone, is 

over 90 petabytes (Esri, 2021a). As such, large-volume geospatial datasets for 

environmental applications are becoming increasingly difficult to manage on local 

computers and servers. To meet this challenge, web-based GIS data tools have been 

proposed to better assess issues of societal and environmental importance through 

geospatial visualization (Iadanza et al., 2021; Kitsiou et al., 2021; Mhangara et al., 2019; 

Tian and Huang, 2019; Vacca et al., 2018). 

Web-based GIS platforms have been applied to hydro-environmental studies since the 

early 2000s (Sugumaran and DeGroote, 2010) through decision-support systems for water 

resources management (Engel et al., 2003) and environmental planning (Granell et al., 

2010; Sugumaran et al., 2004). Data discovery, visualization, processing, and analysis 

techniques have been improved through web-based GIS for various topics such as 

hydrology (i.e., HydroDesktop (Ames et al., 2012)), ecology (Boyd and Foody, 2011; 

Flemons et al., 2007), earth-observations (i.e., JEODPP (Soille et al., 2018), Google Earth 
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Engine (Gorelick et al., 2017)), and site-specific issues of integrated phenomena (Khalil et 

al., 2014; Lehmann et al., 2017; Mekonnen and Gorsevski, 2015). While such data 

platforms have successfully linked users with vast amounts of spatial information, the 

results continue to be in the format of search-and-discovery, with the user needing an idea 

of what types of data to investigate for their specific end-goals. These GIS services have 

also been typically constrained to a singular domain and/or study area with limited 

inclusion of sociological information. 

To accommodate transdisciplinary data analysis, spatial mashups have become 

common components of web-based GIS where numerous geospatial layers are overlaid 

within one user interface for easy access and rapid assessment of multiple sets of 

information (Zhou et al., 2014). Such web-based data mashups are becoming increasingly 

popular in environmental applications (Feng et al., 2020; Granell et al., 2016; Sun et al., 

2019; Zhang et al., 2019). Spatial mashups were spawned after the advent of Asynchronous 

JavaScript and XML (AJAX) technologies, which are used to send and receive datasets 

from a remote server without disrupting user interactions. The success of AJAX led to the 

development of various Application Programming Interfaces (APIs), which allowed 

combination of remotely sensed and user-defined local data to create curated mashups. 

APIs provide software-to-software capabilities, beyond the traditional user-to-software 

interactions, thereby facilitating combination of different web services and rapid retrieval 

and linkage of numerous online repositories simultaneously (Veenendaal et al., 2017). 

Esri’s Living Atlas, which is a core component of the approach described in Section 3.2, 

is an example of a widespread geospatial mashup that leverages API technologies to 

connect users with data and additional interactive capabilities, including widgets and 
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spatial tools, to foster communication and collaboration across disciplines. In the Living 

Atlas, numerous maps and map servers are packaged through a standardized interface 

known as the Representational State Transfer (REST) API. This service-based architecture 

allows for a bridging of the knowledge gap between data and end-users, thereby facilitating 

engagement of multiple disciplines across varying scales (Veenendaal et al., 2017). 

2.2.3 Hierarchy of Data-Wisdom Relationships 

Comprehensive data systems, alone, will not translate into actionable decisions and 

useful insights without human interaction. The DIKIW pyramid (Data, Information, 

Knowledge, Intelligence, Wisdom) is a popular construct within data systems science to 

represent the hierarchy of relationships between foundational datasets and user-derived 

wisdom (Veenendaal et al., 2017). Data, which are recorded readings represented by 

symbols, function as the basis for wisdom. Data, however, is meaningless without context 

or systematic organization, which when incorporated, becomes information. Information 

then transforms into knowledge upon integration of human expertise. Intelligence develops 

when human agents are able to consider multiple rationales (i.e., uncertain futures) about 

the environment through the use of organized datasets. Wisdom, then, evolves from the 

incorporation of human capacitance to withstand or transform decisions regarding future 

scenarios through experiential learning (Liew, 2013). 

The DIKIW classification scheme, depicted in Fig. 3 (adapted loosely from Veenendaal 

et al. (2017)), is a visualization of how robust GIS web applications contribute to deeper 

systemic insights regarding overlapping phenomena. Web applications transcend beyond 

standard GIS portals, which contain vast amounts of ‘big data’, toward curated subsets of 

multidisciplinary information to begin discovering spatial patterns through the lens of the 

observer. As patterns become elucidated, the user is then able to consider multiple future 
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scenarios, thereby fostering intelligence toward actionable decisions. As such, this research 

emphasizes not only the GIS technologies underlying a novel NBS data system but also 

the usability of such a platform and the insights that may be garnered through added-value 

interactive capabilities (e.g., Sections 3.2.4, 4.2.2).  

 
Fig. 3. Hierarchy of data-wisdom interrelationships. 

2.3 Spatial Allocation Optimization 

2.3.1 NBS Optimization Tools 

Optimization tools are used in sustainability modeling to determine the priority 

locations of desired benefits. Systems-based optimization modeling for water resources 

was first pioneered by the Harvard Water Program (1955-1960), where multi-objective 

optimization methods were proposed for enhancing economic development and planning 

of large-scale water infrastructure in the post-war construction era (Sivapalan and Blöschl, 

2017). As NBSs became increasingly popular, various spatial planning tools have been 

proposed for enhanced implementation. Spatial optimization tools are used to analyze co-

evolving factors that have been shown to result in conflicting NBS responses depending 
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on local conditions (i.e., spatial aggregation, impervious coverage, contributing drainage 

area, slope of terrain, distance to receiving stream) (Zhang and Chui, 2018). In other words, 

the ideal arrangement of NBSs is debatable, and we require modeling tools to investigate 

the optimal spatial allocation in a location-dependent manner (Kabisch et al., 2016; Sarabi 

et al., 2019; Zhang and Chui, 2018). According to Zhang and Chui (2018), the following 

hierarchy of tool typologies have been commonly used to evaluate the optimal spatial 

placement of NBS systems, with specific examples shown in Fig. 4:  

1) Screening Tool (ST) – Identifies general locations of NBSs at the regional scale by 

overlaying geospatial datasets with historical areas of flooding. 

2) Spatial Allocation Optimization Tool (SAOT) – Combines topography with 

hydrological modeling to simulate optimized locations according to the local 

hydrograph response.   

3) Planning Support System (PSS) – Enhances STs with data visualization and 

weighting criteria for stakeholder interaction. 

 

Fig. 4. Typologies of common nature-based solution planning tools. 

2.3.1.1 Screening Tools 

STs are preliminary tools used to define a general planning area from coarse datasets, 

and as such, are not highly accurate. Most of these tools use GIS for prioritization and may 
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integrate spatial distribution of co-benefits at this stage, although many do not. STs are also 

used to determine the general selection of NBS types from various options (i.e., green 

roofs, bioswales, permeable pavement, detention ponds). Such preliminary assessments are 

often used to narrow the planning focus for further detailed modeling and optimization 

(Zhang and Chui, 2018). SUDSLOC is a popular GIS-based decision support tool that 

combines watershed modeling with biophysical and socio-economic suitability criteria. 

Retrofit-SuDS is another NBS ST that informs the user of general site suitability locations 

using a decision tree matrix (Kuller et al., 2017). 

2.3.1.2 Spatial Allocation Optimization Tools 

Spatial allocation optimization tools (SAOTs) integrate physically-based models with 

high-resolution topography and optimization techniques, but these complex tools lack 

inclusion of social co-benefits and participatory planning. Advanced SAOTs apply 

optimization algorithms to generate sample populations of placement scenarios. The most 

common optimization techniques used in NBS SAOTs are classic optimization (linear 

programming, dynamic programming), evolutionary algorithms, and particle swarm 

optimization (Duan et al., 2016; Limbrunner et al., 2013; Reed et al., 2013; Zhang and 

Chui, 2018). NBS SAOTs are typically coupled with two-dimensional hydrological and 

hydraulic modeling software, which contain limitations in the scale of analysis due to 

lengthy data and computational requirements (Macro et al., 2019; Ruangpan et al., 2020).  

The most popular two-dimensional modeling programs used for NBS analysis are SWMM 

and SUSTAIN, where numerous studies have been conducted to analyze hydrograph 

characteristics for sub-watershed NBS implementation with varying results regarding 

optimal siting (Huang et al., 2019; Jarden et al., 2016; Jato-Espino et al., 2016; Radinja et 

al., 2019; Zellner et al., 2016). Both SWMM and SUSTAIN are considered process-based 
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approaches where simulations are conducted only for small-scale processes (i.e., 

infiltration, evapotranspiration, conveyance routing) due to the significant amounts of data 

and computational processing required. 

Several SAOTs have been developed that couple optimization techniques with high-

resolution models. A popular SAOT tool for coupling NBS optimization with SWMM 

modeling is the EPA-SUSTAIN program, which models urban stormwater and optimizes 

spatial placement as a function of cost (Lee et al., 2012). OSTRICH-SWMM was designed 

to incorporate multi-objective optimization into SWMM modeling for low impact 

development (LID) systems (Macro et al., 2019). GreenPlan-IT is another popular SAOT 

that was built upon the SWMM model for optimizing NBS drainage system allocation. 

Many additional studies have coupled the popular Nondominated Sorting Genetic 

Algorithm II (NSGA-II) with modeling to identify optimal NBS locations and analyze 

tradeoffs between hydrological efficiency and cost (Alamdari and Sample, 2019; 

Giacomoni and Joseph, 2017; Krebs et al., 2013; Mani et al., 2019; Muleta and Boulos, 

2007; Oraei Zare et al., 2012; Raei et al., 2019; Tao et al., 2014; Zhang et al., 2013). 

An alternative to the process-based, small-scale model optimization is the practice-

based approach where hydrological effects are aggregated into one parameter value, 

typically the curve number (CN) (Ahiablame et al., 2012). A popular practice-based tool 

in NBS optimization is L-THIA-LID, which is used to simplify hydrological processes for 

widespread planning (Liu et al., 2017, 2016b, 2016a). Liu et al. (2016b) presented a multi-

objective optimization tool that is coupled with L-THIA-LID through a lookup table. This 

tool incorporated the efficiency of a parallel computing framework and a multi-level/multi-

algorithm spatial optimization to investigate optimal NBS placement configurations in 
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terms of hydrologic efficiency with the CN methodology (Liu et al., 2016b, 2016a). 

StormWISE is another optimization framework for NBS planning that couples L-THIA-

LID and the CN methodology (McGarity, 2012). While these decision-support tools 

combine hydrological modeling with NBS optimization at the watershed scale, they lack 

stakeholder interaction and are limited to efficacy in terms of water balance without 

considering additional social factors or co-benefits. 

2.3.1.3 Planning Support Systems 

PSSs combine selection and evaluation processes into an integrated decision support 

system for enhanced stakeholder involvement. Two popular examples of nature-based 

PSSs are the Green Infrastructure Spatial Planning Model (GISP) (Meerow and Newell, 

2017) and the London Green Infrastructure Focus Map (GIFP) (GLA, 2018). These tools 

provide stakeholder options for assigning weights that prioritize preferred NBS benefits 

(i.e., flood risk, water quality, air quality, social vulnerability, green space, and heat island) 

according to the value of each identified variable. Hydro-environmental factors are 

incorporated as pre-defined maps of areas that typically flood (i.e., 1% annual inundation 

boundary) which are superimposed in GIS and are not further evaluated through modeling 

or optimization algorithms. The most common approach used in PSSs involves multi-

criteria decision analysis (MCDA), which assigns stakeholder weights to geospatial 

datasets to derive hotspots for optimal planning (Alves et al., 2018; Loc et al., 2017). Such 

PSSs integrate data with stakeholder preferences for identifying general tradeoffs, hotspots, 

and synergies between stormwater abatement and other co-benefits. They rely on 

geospatial data compilation to define risks and benefits without considering the complex 

processes that underlie NBS performance as spatial configurations are altered. Typically, 

PSSs are simplified GIS representations of various options and neglect to capture the 
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dynamics of NBS processes through hydro-environmental modeling (Kuller et al., 2017; 

Scholz, 2006).  

2.3.2 Integrated Optimization Frameworks 

There exists a large knowledge gap regarding how to investigate NBSs on a large-scale 

while incorporating societal characteristics. PSSs are a right first step in this direction, 

however, PSSs do not typically include water balance modeling. Multi-objective 

optimization tools capture watershed processes while lacking stakeholder participation. As 

described, NBS multifunctionalities are often implied within the literature but are rarely 

accounted for explicitly within spatial optimization tools, where stormwater volume 

reduction remains the primary driver for NBS allocation (Madureira and Andresen, 2014). 

Social phenomena are not typically captured within SAOTs in a manner that also considers 

dynamic hydro-environmental changes. For this reason, studies are beginning to approach 

NBS optimization comprehensively, where environmental, social, economic, and 

stormwater conditions are integrated into one framework (Frini and Ben Amor, 2019; 

Kuller et al., 2017; J. Li et al., 2017). For example, (Kaykhosravi et al., 2019) presented a 

framework for optimizing NBS decision-making by using publicly-available geospatial 

datasets and GIS-MCDA to derive spatial indices for hydrologic, socioeconomic, and 

environmental demands. However, we necessitate further research in this direction. 

The lack of integrated ST+SAOT+PSS tools to capture NBS multifunctionalities while 

exchanging information between modelers and stakeholders has been noted within the 

literature (Kabisch et al., 2016; Ruangpan et al., 2020; Zhang and Chui, 2018). Robust 

decision-support tools are needed in the early stages of NBS planning that integrate 

sustainability, multifunctionality, urban ecology, socio-economics, and resilience thinking 

in a manner that engages key decision-makers for cohesive action toward preferred 
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solutions (Lovell et al., 2014). As such, there exists an opportunity to optimize NBS 

planning by integrating watershed processes, social co-benefits, and stakeholder 

participation into a unified framework. Instead of relying on highly-complex modeling, or 

overly-simplified priority weightings, this study suggests a middle-ground for NBS 

frameworks that can be applied at cascading scales.  
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3. METHODOLOGY 

3.1 Holistic Systems-thinking for Policy Coherence 

To explore the feedback effects of system dynamics on NBS policies, a half-day 

virtual workshop was conducted with stakeholders from the greater-Houston metropolitan 

region. A GMB session was executed to elucidate prominent relationships between NBS 

adoption and various social and institutional constructs. A semi-structured scripting 

protocol was used to guide the stakeholders in deriving a shared CLD and identifying the 

strengths of internal relationships. The causal system was then transposed into a weighted 

FCM, which was used to simulate various “what-if” management approaches. For each 

simulation, a unique policy (or set of policies) was propagated throughout the system to 

identify relative change of NBS implementation. The collective strategies were compared 

and ranked to elucidate areas of policy synergy and conflict. Finally, the balancing and 

reinforcing properties of the CLD feedback loops were used to confirm and better 

understand the policy implications resulting from the FCM-based scenarios. 

3.1.1 Stakeholder Workshop 

The virtual stakeholder workshop was held on July 9, 2021 to capture the mental 

models of experts who had recently been involved with NBS implementation efforts in 

Houston, Texas, USA. The workshop included nine participants across three jurisdictional 

scales (i.e., local, municipal, and regional-level). Each of the stakeholders were well-

known within the community as having a historical involvement in NBS adoption and/or 

policy design. Several of the participants were previously involved in developing 

guidelines associated with NBS initiatives and frameworks. For example, NBS adoption 

was encouraged through the “Incentives for Green Development” program, which 
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supported green development with project awards, tax abatements, and expedited permits 

(Bloom et al., 2019). The “Resilient Houston” strategy also promoted sustainable 

infrastructure by identifying goals for green development and by highlighting the role of 

NBSs in climate mitigation, social equity, and water management (Aho and Sarkozy-

Banoczy, 2020). A community-driven “Houston Climate Action Plan” provided evidence-

based strategies to achieve carbon neutrality, which included enhanced levels of green 

space (City of Houston, 2020). Regional partners encouraged nature-based development 

through numerous design standards, planning guidelines, and pilot projects (HCFCD, 

2020; RGME, 2021; Storey et al., 2011). Moreover, several taskforces were deployed to 

integrate community members with city and county officials for NBS development. Table 

2 summarizes the various institutions, roles, and NBS backgrounds represented in the GMB 

workshop. The workshop was facilitated by leading the participants through a series of 

GMB scripts from the open forum “Scriptapedia” (detailed in Appendix A), which have 

been verified by the SDM community and are considered best-practices for CLD group 

modeling. The following scripts were used for the NBS case study: 

1) Logistics and Room Set-up: Used to format the virtual environment by identifying 

necessary tools and exploring options within the workshop platform. 

2) Chicken and Eggs Example: Used to introduce the concept of a dynamic systems 

and causal loop models by depicting a story of chickens who needed to cross a busy 

road due to over-population. Feedbacks included birth, death, and management 

interventions to aid the chicken population (e.g., installing traffic barriers, building 

a fence, removing chickens). 

3) Variable Elicitation: Used to facilitate a group discussion and identify causal 

variables to describe social and institutional feedbacks associated with nature-based 

solutions (including both barriers to and responses from successful implementation 

of nature-based solutions). 

4) Causal Mapping with Seed Structure: Used to quickly illustrate a system of 

interacting feedbacks using seed variables from Script 3, demonstrating concepts 

of causation, polarity, balancing and reinforcing loops, and dynamic change. 
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5) Creating Causal Loop Diagram from Variable List: Used to translate the identified 

variables into causal relationships and to define the strength of each feedback. 

6) Model Review: Used to elicit the balancing and reinforcing loops within the system 

and to guide reflection of the major feedbacks where model-based insights emerge 

from the interaction of multiple feedback loops. 

The stakeholders were guided through each of the above scripts in successive order. 

Hypothesized variables were identified on a virtual whiteboard through a collective group 

discussion. The facilitator then drew the causal relationships, as defined by the 

stakeholders, within a web-based platform for real-time visualization and optimization. 

After the workshop, the causal loop sketch was converted into a CLD using Vensim 

software and then emailed to the stakeholders for validation. A verbal transcript of the 

recorded session was reviewed during the translation process to ensure variables and causal 

relationships were correctly identified and to highlight any areas of ambiguity. Prior to the 

workshop, the author identified key socio-institutional variables impacting NBS 

implementation per a recent literature review and grouped the factors within four primary 

themes to differentiate the dynamic components of the system (e.g., community buy-in, 

social culture, institutional characteristics, and engineering and maintenance). These 

themes where then further categorized into socio-institutional barriers, management 

opportunities, and exogenous factors for the workshop. During the preparation phase 

(Script 1), a virtual whiteboard was drafted with themed boxes, each color-coded for 

coherency of variable-types throughout the GMB process. One seed variable was inserted 

within each box as a preliminary example. During the workshop, the stakeholders were 

introduced to a CLD example (Script 2), which provided a foundation for the types of 

variables to be considered in systems modeling. The stakeholders were then shown the 

virtual whiteboard and asked to consider how unique factors have limited or advanced NBS 
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efforts according to their local experiences. Through a group discussion, participants 

described numerous causal factors associated with NBS implementation (Script 3). The 

variables were documented by the facilitator in real-time and grouped according to theme. 

The live whiteboard sessions for variable elicitation are depicted in Fig. 5. 

Table 2. Stakeholder roles and experience for NBS group workshop. 

Scale Role NBS Experience 

Local 
Community 

Engagement 

Environmental coalitions and local communication of grassroots efforts. 

✓ Houston Climate Action Plan 

✓ Resilient Houston Strategy 

Local Ecology Conservation leadership of local ecological restoration. 

Local Civil Engineering 
Engineering for design and construction of numerous NBS projects 

throughout greater-Houston region. 

Local 
Environmental 

Engineering 

Sustainability consulting expert and engineer for numerous NBS 

projects, involving a variety of community builders. 

✓ Harris County Residential Green Infrastructure Standards 

✓ Houston Incentives for Green Development 

✓ Harris County Community Flood  

Resilience Task Force 

✓ Member, Houston Drainage Task Force 

City 
Public Works 

Planning 

Rehabilitation, construction, and planning of water resources and 

environmental projects. 

✓ Resilient Houston Strategy 

City 
Infrastructure 

Maintenance 

Maintenance of public works facilities, including green development. 

City 
Sustainability & 

Recovery 

Transdisciplinary resilience-building efforts for region, including 

natural disasters, infrastructure, and social inequality. 

✓ Houston Climate Action Plan 

✓ Resilient Houston Strategy  

✓ Incentives for Green Development 

Region 
Stormwater 

Planning 

Regional drainage planning for county, including stormwater 

conveyance and quality for NBS. 

✓ Harris County Low Impact Development Infrastructure 

Design Criteria 

Region 
Public Works 

Planning 

✓ County engineering and planning for regional low-impact 

development and green infrastructure. 

✓ Harris County Low Impact Development Infrastructure 

Design Criteria 

✓ Houston Drainage Task Force 
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Table 3. Literature review of key socio-institutional barriers to NBS adoption. 

 Variable References Key Considerations 

C
o

m
m

u
n

it
y

 B
u

y
-i

n
 Economic 

Incentives 

(Baptiste et al., 2015; Tayouga 

and Gagné, 2016; Vogel et al., 

2015) 

Subsidies, grants, loans, fee reductions. 

Incorporated into local development plants. 

Drainage tax/fee reduction for individual residents. 

Educational 

Opportunities 

(Chaffin et al., 2016; Derkzen et 

al., 2017; Thorne et al., 2018) 

Community perceptions and understanding of NBS 

functionality and benefits. Outreach programs. 

Media reporting. 

Public 

Participation 

(Bissonnette et al., 2018; Cohen-

Shacham et al., 2019) 

Adaptive governance structure. Targeted and 

strategic citizen involvement in selection and 

planning process. Neighborhood workshops. 

S
o

ci
a

l 
C

u
lt

u
re

 Cultural 

Values 

(Derkzen et al., 2017; Solheim et 

al., 2021; Thorne et al., 2018) 

Traditional versus progressive engineering culture. 

Public perception shift. Fear of perceived risk to 

change. Lack of sense of urgency. 

Resilience 

Strategies 

(Derkzen et al., 2017; Zuniga-

Teran et al., 2020) 

Capacitance building in vulnerable and 

marginalized communities. 

Co-benefits 
(O’Donnell et al., 2017; Ramírez-

Agudelo et al., 2020) 

Identification of co-benefits to support shared set of 

values and community support 

In
st

it
u

ti
o

n
a

l 
C

h
a

ra
ct

er
is

ti
cs

 Fragmentation 

(Chaffin et al., 2016; Ellis and 

Lundy, 2016; Kabisch et al., 

2016; Ramírez-Agudelo et al., 

2020; Solheim et al., 2021; 

Vásquez et al., 2016; Wamsler et 

al., 2020) 

Central, singular NBS department. Integrated 

across sectors, separate from other utilities. 

Transverses multiple jurisdictions. Interagency 

work. Active cohesion. 

Financing 

(H. Li et al., 2017; McRae, 2016; 

O’Donnell et al., 2017; Solheim 

et al., 2021; Thorne et al., 2018; 

Zuniga-Teran et al., 2020) 

Understanding cost comparison to grey-

infrastructure. Quantification of co-benefits. 

Combined funding sources. Adequate economic 

resources. Competing priorities. 

Regulatory 

Frameworks 

(Dhakal and Chevalier, 2016; 

Gersonius et al., 2016; Levy et 

al., 2014; O’Donnell et al., 2017; 

Sarabi et al., 2020; Solheim et al., 

2021) 

Less stringent than grey-water, improves costs and 

implementation. Defined legal standards. 

Thresholds to trigger NBS stormwater 

management. Confusion/conflicting provisions. 

Regulations regarding long-term maintenance 

requirements. 

E
n

g
in

ee
ri

n
g

 &
 M

a
in

te
n

a
n

ce
 

Design 

Standards 

(Kronenberg, 2015; Solheim et 

al., 2021; Zuniga-Teran et al., 

2020) 

Uncertainties regarding how NBSs work locally. 

Technical manuals. Spatial planning guidelines. 

Technical 

Experience 

(H. Li et al., 2017; O’Donnell et 

al., 2017; Solheim et al., 2021; 

Wamsler et al., 2020; Zuniga-

Teran et al., 2020) 

History of past project success. Certified expertise. 

Workshops and trainings. Staff turnover of NBS 

expertise. 

Maintenance 

(Kabisch et al., 2016; H. Li et al., 

2017; Ramírez-Agudelo et al., 

2020; Thorne et al., 2018) 

Regular inspections, monitoring guidelines. Cost of 

regular maintenance versus low-maintenance 

design options. 

Pilot Projects 
(H. Li et al., 2017; Li et al., 2018; 

Zuniga-Teran et al., 2020) 

Political leadership and champions. Successful 

community pilot projects (e.g., tours, educational 

signage, press coverage). 

 



44 

 

 

 

Fig. 5. (top) raw variable elicitation, (bottom) amalgamated variable elicitation. 

3.1.2 Causal Loop Logic 

The facilitator then selected several variables from the elicitation exercise and drew 

them as nodes within a live web-based platform called Loopy (ncase.me/loopy). Causal 

relationships and feedback loops were described and demonstrated visually within the 

shared web interface (Script 4). The participants were then asked to describe their 

understanding of dynamic behavior between the different elements (Script 5). During the 

live modeling session, CLD connections were drawn as one-way arrows between variables 

using the following polarity notations: positive (+), such that related variables changed in 

the same direction, or negative (-), where a change in one variable had an opposing impact 
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on the linked variable. The stakeholders discussed causal relationships between the 

identified variables, which led to group agreement or uncertainty, often stimulating deeper 

considerations of the underlying dynamics. As the stakeholders communicated, the 

facilitator moved variable nodes within the Loopy platform and marked the causal links to 

correspond with the group understandings. The stakeholders were also asked to define, 

qualitatively, the strength of connections between each variable, which were recorded by 

the facilitator. Feedbacks that were deemed to be particularly strong were denoted with 

three causal arrows in Loopy, and moderate connections were identified with two 

overlapping arrows. All other causal relationships were depicted with a single arrow. For 

purposes of simplicity, this GMB exercise did not consider time delays, as the resulting 

CLD was not intended for predictive modeling. This approach was meant to mimic the use 

of color-coded sticky notes often used in GMB (Andersen and Richardson, 1997; Inam et 

al., 2015), thereby facilitating a virtual workshop environment with interactive group 

discussions and real-time causal loop diagramming. The causal loop sketches derived from 

the live workshop are depicted in Fig. 6. 
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Fig. 6. (top) raw causal loop sketch (Loopy), (bottom) optimized CLD (Vensim). 
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The facilitator then translated the causal loop sketch into a CLD using the Vensim 

software, which is a widely-used system dynamics platform (Eberlein and Peterson, 1992). 

During the translation process, causal connections were compared to the recorded 

workshop transcript and optimized, where necessary, for coherency and accurate 

representation of the stakeholder discussions. For example, floods and climate change were 

deemed redundant variables (as they both provide a similar exogenous impact in the 

system) and were therefore merged by the modeler. The optimized CLD was emailed to all 

stakeholders for final validation, and no discrepancies were noted. 

3.1.3 Fuzzy Mapping 

The preceding steps identified the stakeholders’ understanding of key system variables 

and how they interact amongst one another to facilitate, or hinder, local NBS 

implementation. These system components provided the qualitative foundation for 

explaining causal relationships. Next, the CLD was transposed into a semi-quantitative 

FCM model using the web-based mapping suite Mental Modeler (Gray et al., 2013), a 

necessary step to structure the system for dynamic scenario-building of decision-making 

strategies (Gray et al., 2015). The CLD variables and causal connections were depicted 

graphically within Mental Modeler (Fig. 7). To prepare the map for scenario development, 

the causal variables needed to be further categorized according to: 1) Those variables which 

the stakeholders have agency to change (i.e., management opportunities), and 2) Those 

variables that impacted the system but which this specific cohort of stakeholders did not 

possess decision-making power to change (i.e., exogenous factors).  
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Fig. 7. Key socio-institutional challenges and their connections. 

The degree of influence for each causal link was then defined with fuzzy logic 

according to the stakeholder perceptions during the  GMB session. A weight of -1 to +1 

was used to identify the strengths of system feedbacks according to the following 

categories and respective scores: low strength (±0.25), medium strength (±0.50), high 

strength (±0.75), where ‘+’ represented positive causality, and ‘-‘ described negative 

causality. A score of 1 was reserved for “clamping” key decision variables for scenario 

development, described further in Sect. 3.1.3. Because FCMs are derived from graph 

theory, the system structure may also be represented mathematically by a square adjacency 

matrix (𝑖 x 𝑗 variables). The NBS cognitive map was translated into an adjacency matrix, 

as shown in Table 4, which summarized the strengths of connection between all of the 

FCM variables. 
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Table 4. Adjacency matrix for fuzzy cognitive map. 
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Development ¼ -½ ¼

Laws ¾

Population ¾

Climate -¼ ½

NBSs -½ ¼

Outreach ¼

Training ¼ ½

Pilots ½ ¼ ½

Grants ¾ ¾

Incentives ¼ -¼

Advocates ¼ ¼ ¼

Habitat -¼

Buy-in ½

Equity -¼

Politics ¼ ¾ ¾

Co-benefits ½

Maintenance ½ -¾

Funding ½ ¼

Regulation -¼ ½  

3.1.4 Simulating Management Strategies 

The management opportunities were incorporated into “what-if” scenarios to better 

understand how a change in local policy would impact the resulting state of the NBS 

variable. FCM-based scenarios are used to alter specific variables and trace causal 

propagation throughout the system. FCM simulations use the adjacency matrix to represent 

the strengths of interconnections and end-state vectors to characterize the degree of 

variable change once a scenario is activated. Here, the degree of activation for each variable 

within the proposed management strategy was assigned a value of +1.00, also known as 

“clamping” within the FCM literature (Gray et al., 2015), and the feedback effects on the 

NBS state vector were noted. FCM-based scenarios quantify dynamic interactions between 
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system components for discrete time-steps until the system converges to equilibrium by 

applying formalized activation rules and transformation functions to the adjacency matrix. 

This study used the Kosko’s activation rule, Eq. (1), and the hyperbolic-tangent 

transformation function, Eq. (2), in Mental Modeler, which are detailed by Gray et al. 

(2013, 2015). The activation rule is given by 

𝐴𝑖
(𝑡+1) = 𝑓 (∑𝑤𝑗𝑖𝐴𝑗

(𝑡)

𝑛

𝑗=1

) , (1) 

where, 𝐴𝑖
(𝑡+1)

 is the value of variable 𝑉𝑖 at time step 𝑡 + 1, 𝑤𝑗𝑖 is the weight of connection 

between variable 𝑉𝑖 and 𝑉𝑗, 𝑛 describes the total number of variables in the system, 𝐴𝑗
(𝑡)

 

represents the numerical value of variable 𝑉𝑗 at time step 𝑡, and 𝑓 is the transformation 

function (e.g., sigmoid function, hyperbolic tangent function, step function).  

The hyperbolic-tangent function was chosen since values were allowed to become 

negative throughout the simulation (meaning, a negative policy could become less efficient 

after the simulation than had no policy been implemented) (Kokkinos et al., 2020). The 

hyperbolic-tangent transformation equation for any function 𝑓(𝑥) is described by 

𝑓(𝑥) =  
𝑒2𝑥 − 1

𝑒2𝑥 + 1
. (2) 

The final FCM contained 9 management opportunities out of the 19 total system 

variables. From these variables, 129 fuzzy scenarios were identified by assuming the 

stakeholders would implement either a single policy (n=9), a combined set of two policies 

(n=36), or a combined set of three policies (n=84), further described in Sect. 3.1.5. An 

example of the outputs from FCM-based scenario-building is demonstrated in Fig. 8, where 

unique variables are clamped to assess dynamic system change in the remaining state 
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variables. Here, the policy variable(s) listed in each chart title are clamped to a value of 

+1.00, and the system is activated according to Kosko’s activation rule and the hyperbolic 

transformation function. The system stabilizes after a number of time-steps, and the 

changes in each variable state vector between the status quo and the final dynamic 

simulation are graphed as a relative percentage. NBSs, which are the goal variable for this 

system, are shown in green within Fig. 8. 

 

Fig. 8. Scenario output from FCM-based modeling. 

3.1.5 Identifying Policy Synergies and Conflicts 

Policy analysis describes the sensitivity of the model to the policies, or rules of human 

control, regarding the overall system behavior. By altering one of the model variables and 

assessing the resulting system outcome, patterns begin to emerge that reveal which policies 

would lead to optimal results or policy resistance (Barlas, 2002). Here, the single-policy 

strategies were compared with the multiple-policy strategies to identify areas of synergy 
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(i.e., combined policies produce a more favorable state change than policies implemented 

in silo) or conflict (i.e., interacting policies produce a lesser state change than had each 

policy been implemented separately) embedded within the dynamic behavior of the system 

(Stepp et al., 2009). These concepts are represented by Eq. (3) and Eq. (4), respectively: 

Policy Synergy 

∆𝑆𝑘𝑗 >∑ ∆𝑆𝑘𝑖
𝑛

𝑖=1
, (3) 

Policy Conflict 

∆𝑆𝑘𝑗 ≤⋂∆𝑆𝑘𝑖

𝑛

𝑖=1

, (4) 

where ∆𝑆𝑘𝑗 describes the change in state vector for each strategy 𝑘 (𝑘 = EO, TT, PP, IP, 

AL, PW, MT, FU, RE), 𝑗 represents a combined set of 𝑘 policies, which are comprised of 

single-policies 𝑖, up to a total number of 𝑛 policies within each strategy (see Table 15). 

The nomenclature ⋂ ∆𝑆𝑘𝑖
𝑛
𝑖=1  represents the mathematical “OR” logic where policy conflict 

occurs if the change in the overall model of the NBS vector value using a set of combined 

policies is less than any of the individual policies, 𝑖, comprising the cohort 𝑗. 

Areas of policy synergy and conflict were compared to the reinforcing and balancing 

feedback loops from the CLD to better understand the implications and to explain them as 

a form of causal logic, elucidated with the aid of FCM-based scenario modelling. 

3.2 National Spatial Data Infrastructure System 

This section describes the development of NBS-Geo, an open-access web mapping 

application that gathers and integrates geospatial datasets from the social, ecological, 

environmental, and hydrologic domains using seamless, cloud-based data services 

throughout the contiguous United States. The tool’s underlying data and system 
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architecture is described, and then the robustness of NBS-Geo is evaluated according to 

geospatial characteristics to better understand the tool’s strengths, limitations, and 

suggestions for future research. The efficacy of the proposed platform is assessed to serve 

as a holistic data information system by exploring several characteristics associated with 

geospatial science, namely, openness, spatial functionality, scalability, and standardization. 

Recommendations are included for facilitating geospatial technologies to strengthen the 

amalgamation of broad co-benefits and multidisciplinary influences of natural systems. 

In the resulting prototype, called NBS-Geo, comprehensive geospatial datasets 

associated with NBS co-benefits are curated from a cloud-based GIS server (described in 

Section 3.2.2) and delivered to users through a web-mapping application (described in 

Section 3.2.3). The web app contains capabilities for deriving rapid insight through value-

added widgets (Section 3.2.4), including: 1) A time-series slider to analyze differences in 

land use projections, 2) A screening tool to analyze socio-demographic properties within 

the dynamic viewport, 3) A method for integrating local, high-resolution datasets with the 

national, cloud-based data layers, and 4) A geospatial toolbox for downloading select 

datasets toward local modeling and investigation. The NBS-Geo framework is presented 

as a means of representing overlapping characteristics of land use, environment, ecology, 

climate, hydrology, and society to encourage interdisciplinary data exploration. 

3.2.1 System Architecture 

Model architecture describes a combination of structural layout and functional 

capability of the webGIS platform (Agrawal and Gupta, 2017). A national information 

system is derived using cloud-based geospatial data layers that are seamless across the 

entire CONUS by extrapolating from Esri’s ArcGIS Online service-oriented architecture. 

ArcGIS Online is an online gateway to cloud-based maps, layers, and data services, 
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whereby a user interface forms the basis for accessing an array of spatial datasets and 

functions. The ArcGIS online platform is leveraged to create a curated spatial mashup 

applicable to various NBS functionalities. The ensemble data mashup was derived from 

Esri’s Living Atlas of the World data repository, which is an extensive collection of ready-

to-use geospatial data layers from governmental, academic, and civil service users 

throughout the world. The Living Atlas uses REST servers to host and transfer the data 

layers, which may be accessed in the ArcGIS portal through a simple web uniform resource 

locator (URL) (Esri, 2021b). This geospatial architecture is demonstrated in Fig. 9.  

 

Fig. 9. NBS-Geo architectural framework. 

3.2.2 Cloud-based Datasets 

Representative geospatial layers were located within the Living Atlas data repository 

and curated for the NBS-Geo mapping application to encompass cross-domain NBS 

functionalities (Table 5). The data sources referenced from the Living Atlas cloud had 

been previously hosted by various governmental agencies, academic institutions, non-

profit organizations, and geospatial corporations. The datasets selected for inclusion within 

NBS-Geo were categorized into the following themes: 1) NBS-multifunctionality, which 
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integrated various social, ecological, environmental, and hydrological co-benefits 

associated with NBSs, 2) Prediction, which comprised several projected data layers for 

supporting scenario analyses of future climatic and societal conditions in NBS planning, 

3) Reference datasets, which were added to assist the user with general spatial grounding 

and further cross-domain spatial considerations, and 4) Hydrological datasets, 

encompassing watershed properties used in standard hydrological modelling schemes.  

Each hosted data layer had been categorized within ArcGIS Online as authoritative, 

subscriber, or premium content. Authoritative content includes data from a national 

mapping agency or governmental entity that has been reviewed and vetted by Esri as 

reliable. Such content is recommended as the best-available data from the hosting agency 

and is proposed to be well-maintained over time. Subscriber content layers require an 

organizational subscription for access, including various satellite-based, large-scale data 

layers, demographical layers, and historical maps. An organizational subscription for Esri 

content is free, although many web users do not have organizational account access.  

To eliminate this hindrance, and to provide NBS-Geo to the general public at no cost, 

the University of Houston’s organizational account credentials were leveraged to pre-

authorize subscriber content via the layer’s source (i.e., the REST service endpoint) 

(Szukalski, 2021), thereby enabling use of the full web mapping application functionality 

without logging in to an Esri account. Premium content is subscriber content that consumes 

credits within the subscriber’s organizational account. The only layer within NBS-Geo that 

had been categorized as premium content was the crime index. This data layer was pre-

authorized through the University of Houston’s organizational account to allow public 

access. Daily usage limitations of this dataset were then imposed within the web 
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application (Szukalski, 2021), which are only triggered when the crime index layer is 

selected for display, in order to minimize overall consumption of organizational 

subscription credits. 

Table 5. Geospatial datasets included in the NBS-Geo web tool. 

 Dataset Attribution Description 
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Vegetation Index * ‡ U.S. Dept. of Agriculture 
(USDA) 

High-resolution aerial imagery describing 
intensity of vegetation on the Earth’s surface 
through the normalized difference vegetation 
index (NDVI). 

Open Spaces * 
U.S. Geological Survey 
(USGS) 

Open space lands protected by federal, state, 
and local governments, as well as private 
conservation easements. 

Intact Habitat Cores Esri 

National core index of minimally-disturbed 
natural areas, modeled as part of Esri’s Green 
Infrastructure Initiative. 

Air Quality 
National Aeronautics & 
Space Admin. (NASA) 

Aggregated data in 50 km hexagonal bins of 
average annual particular matter (sized ≤ 2.5 
micrometers, PM2.5), in microgram/m3, for 
years 1998-2016. 

Opportunity Zones 
U.S. Department of the 
Treasury (DOT) 

Qualified federal opportunity zones, per 2017 
Tax Cuts and Jobs Act, for economic 
development in low-income neighborhoods. 

Social Vulnerability 
U.S. Centers for Disease 
Control (CDC) 

Social Vulnerability Index (SVI), created 
from U.S. census data to determine social 
vulnerability according to key themes: socio-
economic, housing composition and 
disability, minority status and language, 
housing, and transportation. 

Health Statistics University of Wisconsin 

Composite county health rankings, including 
health behaviors (smoking, diet, and 
exercise), access to care, socio-economics, 
and life expectance. 

Urban Heat Islands * The Trust for Public 
Land (TPL) 

Relative heat severity during summers 2018 
and 2019, from Landsat 8 imagery, ground-
level thermal sensors. 

Building Footprints OpenStreetMap 
Building feature outlines from 
OpenStreetMap data, updated every minute. 

Soils Erodibility * ‡ 
U.S. Natural Resources 
Cons. Service (NRCS) 

K-factor for national soil survey using 
Universal Soil Loss Equation. 

Crime Index * ф Applied Geographic 
Solutions 

Total crime score for 2020, including 
personal and property crime indices 
compared to national crime average. 
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Table 5 (continued): 

 Dataset Attribution Description 

P
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Temperature Anomaly 
National Center for 
Atmo. Research (NCAR) 

Projected anomalies for RCP 6.0 using mean 
results of future-scenario climate models. 
Anomalies represent average differences 
between years 2040-2059 compared with 
baseline conditions for 1986-2005. 

Precipitation Anomaly 
National Center for 
Atmo. Research (NCAR) 

Land Cover Change,  
Year 2050 ‡ 

Clark University 

Predicted land cover for year 2050, projected 
from historical land cover patterns in the 
2018-2018 European Space Agency Climate 
Change Initiative maps. 
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Environmental Facilities 
U.S. Environmental 
Protection Agency 
(EPA) 

Locations of facilities within the EPA Facility 
Registry Service (FRS), including brownfield 
sites, sources of pollution, superfund sites, 
radioactive sites, toxic release sites, 
greenhouse gas emitters, and power plants. 

Air Quality Monitors 
U.S. Environmental 
Protection Agency 
(EPA) 

Live (hourly) air quality data from local 
monitoring sites, displaying the average Air 
Quality Index (AQI). 

Stream Gauges * 
U.S. Geological Survey 
(USGS) (and others) 

Live stream gauge observations, including 
discharge and stage height. 

Flood Hazards ‡ 
Federal Emergency 
Mgmt. Assoc. (FEMA) 

Federal flood insurance rate map special flood 
hazard area classifications. 

Dam Inventory 
U.S. Army Corps of 
Engineers (USACE) 

National inventory of dams, regulated by 
federal and state agencies, meeting large-
scale or high-hazard potential classification 
criteria. 

Wetlands * ‡ 
Fish and Wildlife 
Service 

National wetlands inventory with detailed 
characteristics of each area. 
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Rainfall * ‡ WorldClim 
Average global mean precipitation from 
WorldClim, per interpolated rainfall stations, 
for 1970-2000 (mm). 

Soils Hydrology * ‡ 
U.S. Natural Resources 
Cons. Service (NRCS) 

Hydrologic soil group classifications (A-D), 
depicting the rate of precipitation infiltration 
capability, from SSURGO soils data. 

Terrain Elevation * ‡ Various 
Digital terrain elevation model showing 
ground height (m) from various sources, 
depending on highest-resolution available. 

Land Cover * ‡ 
National Land Cover 
Database (NLCD) 

Time series of land cover (according to 
modified Anderson Level-II scheme), 2001-
2016. 

Impervious Cover* ‡ 
National Land Cover 
Database (NLCD) 

Time series of percent imperviousness, 30-m 
resolution. 

*: authoritative content, ‡: subscriber content, ф: premium content   
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3.2.3 Sustainability Tool Framework 

By linking users to holistic datasets through organizational web credentials, cloud-

based data repositories are leveraged for improved integration of spatial data directly 

within environmental decision-making (Fu et al., 2019). Pre-assembled data servers 

alleviate the need to manually: 1) Search from a variety of diverse institutional websites 

and validate each source, 2) Download, extract, and compile numerous datasets, each with 

unique formats (i.e., ASCII, FTP, TIFF, LAS, XYZ, CAD, NetCDF, etc.), 3) Extract and 

mosaic the datasets to the study area, and 4) Process the layers into common projections 

and typologies for spatial analysis operations. The web map, and thus the referenced 

datasets, were hosted through the University of Houston ArcGIS organizational account to 

provide open access for all public visitors to the mapping website. Descriptive metadata 

was added to the NBS-Geo homepage (http://tinyurl.com/nbsgeohome) for proper 

accreditation and ease of locating the tool online through common keywords. A brief 

demonstration video was also created and linked to the NBS-Geo homepage to showcase 

the various user-friendly mapping features. The web map was then converted into a web 

application using the ArcGIS Web AppBuilder wizard, which involved selecting a pre-

defined theme and customizing the user interface of the map with curated widgets. The 

cloud-based data layers within the web map were further categorized within the web app 

according to NBS functionality, reference datasets for spatial grounding, catchment 

datasets for hydrological modelling, and projected climate and land use datasets, as shown 

in Fig. 10. Detailed information for each layer was provided through the “More Info” link 

within the web-app ribbon, referencing URLs that describe the dataset authors, licenses of 

usage, background, symbols, and assumptions.  

http://tinyurl.com/nbsgeohome
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Fig. 10. Web user-interface for NBS-Geo. 

3.2.4 Value-added Functions 

A widget was added to the NBS-Geo ribbon (far-right icon, *, in Fig. 10) that allows 

users to download select extractable datasets, including live air monitoring, environmental 

facilities, power plant facilities, dams, air quality, social vulnerability, opportunity zones, 

and health statistics, to the user’s computer according to a specified spatial boundary. For 

a featured data layer to be extractable within the ArcGIS Online platform, the data owner 

must have specifically enabled user-exportation capabilities. Many of the data layers 

pertinent to landscape analysis and hydrological modelling were not enabled for direct 

web-based extraction. Therefore, a tool called HMS-PrePro (Castro and Maidment, 2020) 

was adapted which connects the user with the Esri Living Atlas servers through temporary 

cloud-based feature images to extract pertinent datasets to the local computer according to 

a user-defined geospatial boundary. HMS-PrePro was designed for rapid pre-processing of 

cloud-based data layers into a format compatible with HEC-HMS hydrological software 

modelling. The capabilities of HMS-PrePro were used to leverage image server layer 

capabilities and aid in bridging the gap between robust datasets and the end-user through 
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cloud-based technologies. Several of the datasets available for extraction using the 

customized toolbox included: soils erodibility factor, soils hydrologic group, flood hazard 

areas, average precipitation, terrain elevation (low- and high-resolution), land cover (years 

2016 and 2050), and impervious coverage. The “Download Data” link in the middle of 

NBS-Geo toolbar (*) (Fig. 10) routes the user to a GitHub repository containing the 

ArcMap Toolbox for data download.  

Additional added-value widgets were included in the web application, as identified in 

Fig. 10 with the (†) symbol. The bottom-left (†) icon represents a screening widget 

customized to allow visual exploration of various social vulnerability themes and their 

respective compositions within the user viewport. In the top-right toolbar of NBS-Geo, a 

sliding tool widget was added (†) for exploring the spatial differences between current and 

projected land cover classifications. This toolbar also includes an added-value widget, 

identified with the (∆) symbol, to allow uploading of user-defined geospatial data layers 

into the web mapping application for locally-curated visualization. For example, if a 

jurisdiction possessed higher-resolution datasets than what is contained within the Esri 

Living Atlas server, the end-user could easily add their own geospatial data layers to the 

web mapping application for a fully customized assessment of local conditions. By 

utilizing such added-value widgets and tools, we transition from a large assortment of 

disparate geospatial datasets toward increased knowledge and user-derived wisdom. 

3.2.5 Suitability Evaluation 

Here, the applicability of NBS-Geo is evaluated as a robust data system and web 

mapping prototype for planning and researching NBSs across disparate domains. To this 

end, the extent to which NBS-Geo supports common GIS metrics of usability and 

reliability are analyzed, namely: 1) Openness, 2) Spatial Analysis Functionality, 3) 
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Scalability, and 4) Geospatial Standards. Recommendations for how improved geospatial 

web applications and data technologies could facilitate such goals are summarized in 

Section 4.2.1. This work builds upon the work presented by Choi et al. (2016), where the 

authors assessed the applicability and effectiveness of a national spatial data information 

(NSDI) system to progress urban sustainability rooted in equitable principles. In this study, 

Choi et al. (2016) proposed a qualitative evaluation of three common characteristics 

associated with geospatial systems. First, a robust NSDI must contain a high degree of 

openness to encourage collaboration amongst public and private domains and improve 

widespread accessibility (Paradis, 2020). Second, the system should foster an ability for 

functional spatial analysis through streamlined formats and value-added data attributes. 

Finally, the geospatial standards associated with the NSDI must be consistent, easily 

accessible, combinable, and interoperable across platforms. This approach is extended to 

also consider the suitability of a NSDI framework for use across nested spatial scales, as 

suggested by the UN Intergovernmental Panel on Climate Change (IPCC) regarding NBSs 

and data science (Frantzeskaki et al., 2019). 

3.3 Framework for Equity-based Optimization 

In this section, a novel equity-based indexing framework is proposed to better 

understand how we might optimize social and physical functionalities of NBS systems as 

a function of transdisciplinary characteristics. Specifically, this  study explores the spatial 

tradeoffs associated with NBS allocation by first optimizing a local watershed-scale model 

according to traditional metrics of efficacy (e.g., cost efficiency, hydrological runoff 

reduction, and pollutant load reduction). The statistical dispersion of social vulnerability is 

then identified using the Area Deprivation Index (ADI), which is a spatial account of 

neighborhood disadvantage according to United States census characteristics. The ADI is 
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incorporated into the optimization scheme using a novel area Gini coefficient and Lorenz 

curve, further described in Section 3.3.4.  

3.3.1 Area Deprivation Index 

The ADI was introduced in 2016 as a proxy indicator of socio-economic status from 

census results that have been curated to reflect the highest risk factors associated with long-

term health (Knighton et al., 2016). The ADI is primarily used within the medical literature 

to measure social determinants that have been shown to influence public health issues, such 

as cancer rates (Kurani et al., 2020), hospital admissions (Hirshberg et al., 2019; Ingraham 

et al., 2021), asthma (Nkoy et al., 2018), obesity (Ludwig et al., 2011), diabetes (Addala et 

al., 2021), mental health (Martikainen et al., 2004), and mortality (Chamberlain et al., 2020; 

Singh, 2003), each of which are impacted by NBS systems (van den Bosch and Ode Sang, 

2017). The ADI merges characteristics of income, employment, education, and housing 

from the United States census to represent social disadvantage (Kind and Buckingham, 

2018), which have been shown collectively to influence communal health (Link and 

Phelan, 1995). 

An advantage of using the ADI for NBS planning, as opposed to other social indices, 

involves its highly-granular geospatial scale. The ADI provides a unique measurement of 

social deprivation for each census block group within the United States. Other standard 

metrics of social vulnerability, such as the Center for Disease Control (CDC) Social 

Vulnerability Index (SVI) (Flanagan et al., 2020), are delineated at the census tract-scale, 

thereby lacking spatial heterogeneity to assess key differences at the local-scale. [Note: 

Census tracts are subdivisions of counties encompassing approximately 4,000 residents 

within each bound. Block groups are subdivisions of census tracts encompassing 

approximately 250-550 housing units, demarcated by local streets (Schlossberg, 2003).] 
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The ADI for the study area was downloaded from the University of Wisconsin’s 

Neighborhood Atlas for year 2019  (Kind and Buckingham, 2018). The weighted ADI 

values within each spatial unit are represented at the national-level by a percentile (1-100) 

and at the state-level by a decile (1-10), with lower values denoting greater disadvantage 

(University of Wisconsin School of Medicine and Public, 2019). For example, an ADI 

value of 1 on the national-scale represents an area that is more disadvantaged than the 

remaining 99% of census blocks within the nation. At the state-scale, an ADI of 1 implies 

that the given census block is more disadvantaged than 90% of the other census blocks 

within that state.  Here, the national-level ADI was used to depict spatial variation of social 

inequity throughout the White Oak Bayou (WOB) watershed in Houston, Texas, USA. The 

WOB watershed was chosen for this case study as it contains a highly-heterogeneous 

representation of socio-economic status across space, as represented in Fig. 11.  

 

Fig. 11. Area deprivation index of White Oak Bayou watershed. 
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3.3.2 Hydro-environmental SWMM Model 

3.3.2.1 Hydrological Modeling 

The basin model for the WOB watershed was initialized using the HMS-PrePro tool, 

which rapidly delineates a watershed into subcatchments according to the local terrain, 

connects hydrological topology in a format consistent with standard hydrological modeling 

software, and estimates common hydrological parameters to represent basin infiltration, 

runoff, and channelized routing of flow (Castro and Maidment, 2020). The Green-Ampt 

method was used to represent infiltration losses within each subcatchment according to 

local empirical values used in FEMA-effective hydrology models for the WOB watershed 

(HCFCD, 2019) (initial content = 0.067, saturated content = 0.46, suction = 3.553 inches, 

conductivity = 0.032 inches/hour). The SWMM software routes overland flow to the 

subcatchment outlet using a property called the ‘characteristic width’, which is defined as 

the subcatchment area divided by the average maximum overland flow length (Rossman 

and Huber, 2016). The longest flow path for each subcatchment was calculated in HMS-

PrePro according to 2018 LiDAR at 10-centimeter resolution (TNRIS, 2019). The time of 

concentration for each subcatchment was calculated using the TR-55 methodology for 

urban watersheds (USDA, 1986). Other principal inputs for modeling subcatchments in 

SWMM include average land use, impervious coverage, subcatchment area, and terrain 

slope, which were each estimated using HMS-PrePro. 

PCSWMM version 7.4.3240 (Hamouz et al., 2020), which is a proprietary software 

designed as a user-friendly interface to the Environmental Protection Agency (EPA) 

SWMM program, was used to convert the preliminary basin into a SWMM model. To route 

flow through the watershed stream network, the PCSWMM Transect Tool was used to 

create average cross-sections for each system channel from the 2018 LiDAR elevation 
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model (CHI, 2014). Design storm data for the Houston region were obtained from Barrett 

(2019) and COH (2019) to represented the latest Atlas 14 precipitation frequency estimates 

in Texas, according to the National Oceanic and Atmospheric Administration (NOAA) 

(Perica et al., 2018). The rainfall intensity values for the Houston-area are summarized in 

Table 6, which were used to develop intensity-duration-frequency (IDF) curves in 

PCSWMM for varying annual exceedance probability (AEP) storm events. The IDF curve 

estimates a frequency of occurrence for extreme precipitation events, which is commonly 

used to design urban stormwater infrastructure (Koutsoyiannis et al., 1998). PCSWMM 

translates the IDF curve of each subcatchment into a synthetic rainfall distribution for 

estimating peak flow and total runoff volume, as depicted in Fig. 12. 

Table 6. Atlas 14 rainfall coefficients for Houston, Texas, USA.  

Rainfall Frequency 
b 

(inches) 

d 

(minutes) 
e 

2-Year  (50% AEP) 47.25 8.94 0.7263 

5-Year (20% AEP) 54.09 8.34 0.7051 

10-Year (10% AEP) 55.26 7.30 0.6752 

25-Year (4% AEP) 56.72 6.12 0.6397 

50-Year (2% AEP) 57.94 5.47 0.6166 

100-Year (1% AEP) 56.68 4.46 0.5857 

500-Year (0.2% AEP) 54.26 2.72 0.5129 

The design rainfall intensity 𝐼 (inches/hour) is calculated according to 

                              𝐼 =
𝑏

(𝑡𝑐 + 𝑑)𝑒
, (5) 

where 𝑏, 𝑑, and 𝑒 are coefficients from the NOAA frequency-duration curves, and 𝑡𝑐 is the 

time of concentration for each subcatchment in minutes. 
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Fig. 12. IDF curve and synthetic design storm for the White Oak Bayou watershed. 

3.3.2.2 Pollutant Load Modeling 

The event mean concentration (EMC) method was used to estimate non-point water 

pollution within each subcatchment according to 

𝐸𝑀𝐶𝑠 =
∫𝐶𝑠𝑄𝑠 𝑑𝑡

∫𝑄𝑠 𝑑𝑡
, (6) 

where 𝐸𝑀𝐶𝑠 is the event mean concentration, 𝐶𝑠 is the standard concentration of a target 

pollutant, and 𝑄𝑠 is the runoff volume (in cfs) for each subcatchment, 𝑠, changing over the 

time of simulation, 𝑡. 

Local stormwater monitoring data was obtained from the National Stormwater Quality 

Database (NSQD), which contains public water quality meta-data from over 9,000 runoff 

events for approximately 200 municipalities in the United States, including 41 monitoring 

stations within Harris County, Texas (Pitt et al., 2015). Since the GreenPlan-IT algorithm 

searches for the most cost-effective solution according to an individual pollutant type 

(further described in Section 3.3.3), total suspended solids (TSS) were chosen as the 

criteria pollutant due to the strong adsorption effects of TSS on other contaminants (Liu et 

al., 2019; Rossi et al., 2006). Pooled values of TSS concentrations were obtained for each 
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land use type within the NSQD, as summarized in Table 7. In watershed-scale modeling, 

pooled load concentrations are common and have not been shown to pose a significant 

impact on the resulting model outcomes, particularly when the purpose of analysis is for 

comparison between scenarios (Lin, 2004; White et al., 2015). 

Table 7. Pollutant load parameters for modeling total suspended solids (TSS).  

  Removal Efficacy (%) 

Land Use 
TSS 

(mg/L) 

Porous 

Pavement 

Bioretention 

Cell 
Tree Box 

Industrial 145.43 

60% 50% 50% 

Residential 146.00 

Mixed Use 72.93 

Commercial 92.56 

Open Space 211.33 

The land use values in the WOB basin model were obtained from the 2016 National 

Land Cover Database (NLCD), which contains 16 unique land classifications based on the 

modified Anderson Level II scheme (Yang et al., 2018). The NLCD land uses were re-

classified to correspond with the five land use types used in the NSQD, as shown in Table 

7. The removal efficiencies for each of the NBS types modeled in this study were obtained 

from the 2020 International Stormwater BMP Database (Clary et al., 2020), which 

corresponded well with average removal efficiencies in the NBS literature for watershed-

scale stormwater modeling (e.g., Eckart et al. (2017); Liu et al. (2015)). 

3.3.2.3 NBS Water Balance Modeling 

EPA’s SWMM engine calculates the water balance for NBS-driven systems using a 

nonlinear reservoir model according to a unique set of infiltration, storage, and evaporation 

properties that describe, on a per-unit-area basis, how NBS structures impact hydrological 

behavior. A subset of zones and water fluxes as a function of NBS behavior is depicted in 

Fig. 13 (Rossman and Huber, 2016). 
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Fig. 13. Conceptual model of NBS water balance processes. 

The water fluxes are defined by: 

𝜕𝑑1
𝜕𝑡

= 𝑞0 − 𝑒1 − 𝑓1 − 𝑞1, (7) 

𝑑2
𝜕𝜃

𝜕𝑡
= 𝑓1 − 𝑒2 − 𝑓p, (8) 

and

𝜕𝑑3

𝜕𝑡
= 𝑓𝑝 − 𝑓3 − 𝑞3, (9) 

where 𝑑1 is the depth of ponded water on the surface zone with outflow 𝑞1 (cfs), 𝑑2 is the 

depth of the soil zone with moisture content 𝜃, 𝑑3 is the depth of the storage zone with 

outflow 𝑞3 (cfs), 𝑞0 describes the inflow to each NBS cell (cfs), 𝑒1 and 𝑒2 represent the 

evapotranspiration from the surface zone and the soil zone, respectively, 𝑓1 describes 

infiltration between the surface and soil zone, 𝑓p is percolation between the soil and storage 

zone, and 𝑓3 is infiltration from the storage zone to the underdrain layer. The flux terms (𝑞, 

𝑒, 𝑓) are functions of the water content within each layer and subcatchment site conditions.  

This set of equations is solved at each runoff time step, according to the Green-Ampt 

method, to calculate how the inflow hydrograph to the NBS unit is converted to a runoff 

hydrograph, further described by Rossman (2014). Within NBS systems, the surface zone 
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represents the ground surface, which stores excess inflow and generates outflow either 

overland or to an adjacent drainage system. The soil zone is comprised of an engineered 

soil mixture that allows water to percolate into the underlying zone, which consists of rock 

and gravel for additional storage. The underdrain system conveys water out of the storage 

layer and into an engineered outlet. The three NBS features used in this case study 

(bioretention cells, porous pavement, and tree boxes) are described in Table 8 as a function 

of the representative water balance layers modeled in PCSWMM. In the WOB case study, 

tree boxes were modeled as bioretention cells with no outflow drain. 

Table 8. Water balance zones represented in the WOB case study.  

NBS Feature Surface Soil Storage Underdrain 

Porous Pavement X  X X 

Bioretention Cell X X X X 

Tree Box X X X  
 

Various input parameters are also required within a SWMM model (e.g., conductivity 

rate, vegetation volume, clogging properties, surface roughness, etc.) to depict the 

engineered design of local NBS features, which were obtained from the City of Houston 

design guidelines for low impact development (COH, 2019b), as summarized in Table 9. 

. 
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Table 9. Parameter controls for NBS design in Houston, Texas, USA. 

 Parameter NBS Feature Units 

 Bioretention 

Cells 

Porous 

Pavement 

Tree 

Boxes 
 

S
u
rf

ac
e 

Berm height 9 0 12 Inch 

Vegetation volume 0 0 0.2 Fraction 

Surface roughness 0.1 0.1 0.1 - 

Surface slope 1.0 1.0 1.0 Percent 

P
av

em
en

t Thickness - 4 - Inch 

Void ratio - 0.15 - Voids/solids 

Impervious surface - 0 - Fraction 

Permeability - 100 - Inch/hour 

S
o
il

 

Thickness 18 0 21 Inch 

Porosity 0.5 0.5 0.5 Volume fraction 

Field capacity 0.2 0.2 0.2 Volume fraction 

Wilting point 0.1 0.1 0.1 Volume fraction 

Conductivity 5 0.5 50 Inch/hour 

Conductivity slope 10 10 10 - 

Suction head 3.5 3.5 3.5 Inch 

S
to

ra
g
e 

Thickness 12 24 6 Inch 

Void ratio 0.75 0.75 0.75 Voids/solids 

Seepage rate 0.5 5 0.5 Inch/hour 

Clogging factor 0 0 0 - 

D
ra

in
 Drain coefficient 5 100 50 Inch/hour 

Drain exponent 0.5 0.5 0.5 - 

Drain offset height 12 8 0 Inch 

 

3.3.2.4 Calibration & Validation 

The hydrological basin parameters were calibrated to observed streamflow 

measurements for United States Geological Survey (USGS) stream gauges #08074020 and 

#08074500 (USGS, 2021a, 2021b). One year of daily precipitation values were obtained 

from the Harris County Flood Warning System (HCFWS) precipitation gauges #530, #535, 

#550, #555, #560, #570, #582, #590, and #595 (HCFCD, 2021), encompassing the totality 

of the White Oak Bayou watershed, as shown in Fig. 14.  
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Fig. 14. PCSWMM basin model, stream gauges, and precipitation gauges for WOB. 

The first six-months of precipitation data (October 2, 2020 – March 2, 2021) were used 

to calibrate the model, while the latter six-months of data (March 3, 2021 – August 2, 2021) 

were used to validate the model. The PCSWMM sensitivity-based radio tuning calibration 

(SRTC) tool was used to aid in identifying the most sensitive parameters within the model, 

according to user-identified uncertainty, and for calibrating the model to match observed 

streamflow (CHI, 2015). The annual set of hydrographs for the basin model was 

disaggregated for wet weather conditions with a criterion of at least 500 cfs flow for a 

minimum of 4 consecutive hours, resulting in ten unique storm events for calibration and 

eight unique storm events for validation, as demonstrated in Fig. 15. The wet weather flow 

hydrographs were calibrated using the PCSWMM SRTC tool by selecting uncertainties for 

control parameters based on their data source and sensitivity gradient, per guidelines 
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proposed by Choi and Ball (2002) and James (2003). The gradients for the parameters with 

the greatest model sensitivity are shown in Fig. 16. The basin model was simulated with 

the calibrated parameters and compared to observed streamflow and resulting error metrics 

to measure goodness-of-fit. 

 

Fig. 15. PCSWMM SRTC storm event selection. 

 

Fig. 16. Normalized sensitivity analysis output for primary variables. 
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The error metric employed in this study was the integrate square error (ISE), which 

amalgamates differences between observed and calibrated values according to overall 

storm runoff volume, peak flow, mean flow, and the hydrograph time to peak (James, 

2003). The ISE is advantageous over the traditional Nash-Sutcliffe efficiency (NSE) or 

coefficient of determination (R2) because these latter error metrics are both sensitive to 

outliers and tend to converge on one measure of hydrological efficacy (i.e., total runoff or 

peak flow or average runoff) (CHI, 2020). The ISE is recommended for large-scale 

watershed planning due to its capability to assess goodness-of-fit over a range of historical 

rain events and hydrograph parameters, rather than potentially biasing the model to one 

specific event or metric of performance (CHI, 2015). Moreover, the ISE is beneficial in 

urban watersheds that are modeled without sub-surface flow because sewer system 

hydraulics may be indirectly calibrated using the ISE, whereas the NSE is dominated solely 

by overland flow conditions (Sarma et al., 1973). 

The ISE is expressed by 

𝐼𝑆𝐸 =  
√∑(𝑦𝑜𝑏𝑠

𝑖 − 𝑦𝑐𝑜𝑚𝑝
𝑖 )

2

∑𝑦𝑜𝑏𝑠
𝑖

, (10)
 

where 𝑦𝑜𝑏𝑠
𝑖  is the observed value, and 𝑦𝑐𝑜𝑚𝑝

𝑖  is the computed value for the 𝑖-th observation. 

Then, the rating of the resulting ISE error metric may be defined on a qualitative scale from 

“poor” to “excellent”, according to Table 10 (Sarma et al., 1973).  

Table 10. Integral square error (ISE) numerical scores and rating classifications. 

Rating ISE 

Excellent < 3 

Very Good 3 - 6 

Good 6 – 10 

Fair 10 – 25 

Poor > 25 
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The model calibration and validation hydrographs and ISE error metrics are 

demonstrated in Fig. 17 - Fig. 18 and Table 11 – Table 12, respectively. 

 

Fig. 17. Calibration output hydrographs for USGS Gauge No. 08074500. 

 

Fig. 18. Validation output hydrographs for storm event Mar. 2021 to Aug. 2021. 
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Table 11. ISE statistics between simulated and observed flows for calibration. 

  Gauge No. 08074500 Gauge No. 08074020 

Storm Event No. Date Rating (ISE) 

1 Nov. 27, 2020 Good (8.4) Good (6.3) 

2 Dec. 2, 2020 Good (8.9) Good (10.0) 

3 Dec. 11, 2020 Good (9.3) Fair (11.3) 

4 Dec. 13, 2020 Fair (13.7) Good (6.3) 

5 Dec. 19, 2020 Very Good (5.9) Good (8.3) 

6 Dec. 30, 2020 Good (10.0) Very Good (6.0) 

7 Jan. 6, 2021 Good (10.7) Fair (11.0) 

8 Jan. 10, 2021 Good (7.2) Good (7.5) 

9 Feb. 11, 2021 Good (8.3) Good (7.5) 

10 Feb. 17, 2021 Very Good (4.6) Good (7.1) 

Table 12. ISE statistics between simulated and observed flows for validation. 

  Gauge No. 08074500 Gauge No. 08074020 

Storm Event No. Date Rating (ISE) 

1 Apr. 30, 2021 Very Good (4.7) Very Good (5.9) 

2 May 16, 2021 Very Good (5.9) Very Good (5.9) 

3 May 22, 2021 Very Good (4.8) Very Good (4.9) 

4 Jun. 2, 2021 Good (6.8) Good (7.6) 

5 Jun. 27, 2021 Good (8.8) Very Good (4.6) 

6 Jul. 3, 2021 Very Good (4.5) Very Good (4.9) 

7 Jul. 8, 2021 Very Good (5.2) Good (9.0) 

8 Jul. 15, 2021 Very Good (5.6) Good (6.4) 

 

3.3.3 Spatial Allocation Optimization 

A decision support tool, called GreenPlan-IT, was used to optimize the fully-calibrated 

watershed model according to levels of runoff reduction, pollutant load abatement, and cost 

effectiveness (Wu et al., 2019). The workflow for the optimization scheme is demonstrated 

in Fig. 21, adapted from (SFEI, 2018). GreenPlan-IT couples the nondominated sorting 

genetic algorithm (NSGA-II) with the EPA SWMM software according to the Pareto front 

solution (SFEI, 2018). The GreenPlan-IT package combines several unique tools that 

operate in succession to identify the optimal spatial allocation of NBS features, including: 
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1) GIS-based Site Locator Tool (SLT): Merges spatial characteristics of NBS types 

with regional geospatial information to identify all possible NBS locations within 

the study area. 

2) EPA SWMM Basin Model: Establishes baseline conditions for runoff and pollutant 

loading prior to NBS optimization. 

3) GreenPlan-IT Optimization Tool: An executable file that runs through the user’s 

command prompt to identify optimal combinations of NBS types within each 

catchment area according to a cost-benefit analysis (where costs are defined by the 

user, and benefits are calculated using SWMM to assess the reduction in stormwater 

runoff and pollutant loads for many simulations). 

 

Fig. 19. GreenPlan-IT optimization workflow. 

The GIS-based SLT was used to identify all potential locations of NBS features within 

the WOB watershed, as shown in Fig. 20. Potential locations for bioretention cells, 

permeable pavement, and tree boxes were defined according to open space land use parcels, 

areas of existing pavement, and adjacent land near existing sidewalks, respectively. 

Corresponding data layers were obtained from the City of Houston GIS Data Hub (COH, 

2021). The SLT locations were summarized according to subcatchment and used as input 

for the GreenPlan-IT Optimization Tool, as detailed in Appendix B. 
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Fig. 20. Geospatial siting of potential NBS locations in the WOB watershed. 

Baseline flows and TSS loads were quantified within the SWMM model for various 

design storm events, as described in Section 3.3.2. The SLT output then served as a spatial 

constraint for the GreenPlan-IT optimization tool, which executes several hundred SWMM 

models according to unique spatial allocations of NBS features within the permissible areas 

(i.e., the shaded areas shown in Fig. 210). The optimization tool compares the performance 

of various NBS strategies to the baseline scenario, which represents watershed conditions 

prior to NBS implementation. Model performance is defined by three objectives:  

1) Minimized total relative cost of NBS implementation, 2) Maximized reduction in 

hydrological runoff, and 3) Maximized abatement of pollutant loads within the study area.  

Relative cost estimates for the case study were obtained from the EPA National 

Stormwater Calculator (NSWC), which provides annual costs for NBS implementation and 

maintenance within unique geographical regions. At the time of study, the NSWC cost 
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estimates for the Houston-area included: pervious pavement = $8.68/SF, bioretention cells 

= $6.07/SF, and tree planter boxes = $9.46/SF (Bernagros et al., 2021). 

The NSGA-II algorithm, originally presented by (Deb et al., 2002), searches for the 

optimal solution among numerous possible scenarios by first modeling a random set of 

NBS placements and comparing their outputs for non-dominance. Non-dominance occurs 

when a solution performs no worse than any other solution for all objectives (e.g., cost, 

runoff, and pollutant load efficiency) and also performs better than all other solutions 

within the cohort for at least one objective. This cohort (known as a generation), then sorts 

each of the sub-routines within the series (known as populations) for non-dominance. 

Another generation is run using the previous generation’s non-dominant solutions and 

relative population samples. This iteration continues until the system either reaches a 

maximum number of generations or until no further changes are observed between two 

consecutive populations. The GreenPlan-IT tool contains a threshold of 200 generations, 

each with a population size of 100, for a maximum of 20,000 watershed simulations (SFEI, 

2018). The model outputs are plotted as a function of cost (x-axis) versus runoff or load 

reduction (y-axis), resulting in a Pareto curve (see Section 4.3.1). Each point along the 

convex of the Pareto curve (known as the Pareto front) represents a unique, quasi-optimal 

solution for NBS spatial allocation according to the cost and reduction targets located on 

the Pareto curve axes (Wu et al., 2019). 

3.3.4 Multi-objective Gini Coefficient 

The Gini coefficient, which was originally identified by Gini (1912), is a statistical 

representation of inequality across a population. The Gini coefficient is based on the 

Lorenz curve, depicted in Fig. 21, which describes the cumulative proportion of values 

along the x-axis compared with the cumulative proportion of values along the y-axis. 
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Within the social sciences, the Gini-based approach is commonly used to assess the degree 

of matching between population (x-axis) and income/wealth (y-axis) for economic 

purposes to quickly compare and rank disparate geographic entities (Giorgi and Gigliarano, 

2017).  

In a perfectly-equal scenario, the distribution of income matches the distribution of the 

population, shown as the diagonal line in Fig. 21. In a more realistic scenario, the 

normalized percentage of population to percentage of household income typically follows 

an exponential distribution, known as the Lorenz curve, which delineates state spaces 𝐴 

(e.g., the inequality gap) and 𝐵 (e.g., the actual income distribution), Fig. 21.   

 

Fig. 21. Conceptual graph of Gini-based equality and Lorenz curve. 

The Gini coefficient (𝐺) is expressed graphically by 

𝐺 =  
𝐴

(𝐴 + 𝐵)
, (11) 

where 𝐴 represents the total area between the line of equality and the Lorenz curve 

distribution, and 𝐵 represents the area between the Lorenz curve and the base axes. 
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A numerical form of the Gini coefficient (𝐺𝑖) is given by 

𝐺𝑖 = 1 −∑ (𝑌𝑖 − 𝑌𝑖−1)(𝑋𝑖 + 𝑋𝑖−1)
𝑛

𝑖=1
, (12) 

where  𝑋𝑖 is the cumulative percentage of the variable on the x-axis, and 𝑌𝑖 is the cumulative 

percentage of the variable on the y-axis, for data point 𝑖, from 𝑖=1 to 𝑖= 𝑛 total data points. 

Gini coefficient value ranges from 0 to 1, where 0 indicates absolute equality, and 1 

represents absolute inequality. Due to the popularity of the Gini coefficient to quickly 

identify statistical differences in equality, studies have begun applying this economic 

concept to issues of energy allocation (Jacobson et al., 2005; Saboohi, 2001), 

environmental inequity (Boyce et al., 2016; Heerink et al., 2001; White, 2007), water 

resources allocation (Cho and Lee, 2014; Du et al., 2021; Hu et al., 2016; Yan et al., 2018), 

flood drainage rights (D. Zhang et al., 2020), and other topics regarding distribution of 

limited resources (Josa and Aguado, 2020). Many of the recent applications of the Gini 

concept to issues of environmental concern utilize the area-based Gini coefficient. The 

area-based Gini (“AR-Gini”) compares a social metric, calculated on an area basis, to a 

distributed social good, calculated on a resource basis (Druckman and Jackson, 2008). The 

AR-Gini may be used to compare spatial patterns of space-based resources and population-

based social metrics to reveal internal relationships, improve planning frameworks, and 

identify useful cross-disciplinary spatial indicators. An example of using the AR-Gini 

coefficient beyond the traditional scope of economic wealth disparity is given by Sun et al. 

(2010) where wastewater discharge permitting was optimized using the Gini index and a 

multi-criteria assessment of land, population, income, and environmental capacity. In Sun 

et al. (2010), the conflict between wastewater efficiency and social equality was bridged 

by balancing tradeoffs between various policy-making goals amidst limited resources. 



81 

 

The method presented here uses a novel representation of the AR-Gini to advance 

sustainability planning by combining hydrological, environmental, and social efficiencies 

within NBS spatial allocation optimization. In this study, the cumulative area of NBS 

allocation as a proportion of each subcatchment area is plotted on the y-axis, normalized 

on a scale from 0-100. Unique evaluation indicators (i.e., stormwater runoff, stormwater 

quality, and social equity) are then plotted on the x-axis, such that each potential 

optimization model contains three different Gini coefficients. Hydrological efficiency is 

represented as the percent difference of stormwater runoff volume between baseline and 

optimized conditions as a function of cost. Environmental efficiency is described as the 

percent difference of pollutant load abatement between baseline and optimized conditions 

according to cost. Social equity is a function of the average neighborhood disadvantage 

over the weighted area of NBS allocation within each subcatchment. By minimizing the 

sum of these multi-objective Gini coefficients, this novel approach reveals the state space 

of optimal hydrological efficacy and distribution of NBSs in socially-vulnerable locations.  

Minimizing the Gini coefficient as a function of hydrological efficiency and social 

justice provides the novel framework for allocating NBSs according to both their 

hydrological functionality and also the social characteristics of persons that would be 

influenced by varying spatial arrangements. A high Gini coefficient would reveal that the 

distribution of NBSs using only hydrological efficacy does not maximize the multi-

functional goals of improving societal health through improved access to nature. To my 

knowledge, this is the first attempt to utilize the Gini coefficient for optimizing allocation 

of NBSs according to combined social equity and hydro-environmental efficacy. Here, 

several of the SWMM-based optimization scenarios from the GreenPlan-IT tool are 
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calculated using the multi-functional Gini calculations, described below, to better 

understand the trade-offs between hydro-environmental/economic efficiency and spatial 

equality when planning watershed-scale NBS solutions. The first objective is to maximize 

the economic benefit efficiency of hydro-environmental spatial optimization. The second 

objective is to maximize social equity using a composite AR-Gini coefficient. In doing so, 

a hypothesis is generated from robust hydro-dynamic modeling, which is then tested 

against the spatial representation of social deprivation to elicit a numerical hypothesis of 

holistic NBS conditions that are optimally distributed to maximize urban greening in areas 

of highest social vulnerability. The following equations are applied in deriving the multi-

objective Gini coefficient: 

𝜔𝑠 =∑𝑧𝑗𝑠𝐴𝑗

𝑛

𝑗=1

, (13) 

where 𝜔𝑠 is the allocation of NBS area per subcatchment 𝑠, 𝑛 is number of unique NBS 

feature types 𝑗 = bioretention cells, porous pavements, or tree boxes, 𝑧 is the number NBSs 

per subcatchment, 𝐴𝑗 is the area of each NBS feature type (𝐴𝑗: bioretention cells = 500 SF, 

porous pavements = 5,000 SF, tree boxes = 60 SF), 

𝜂𝑠 =
(
𝑎𝑠 − 𝑏𝑠
𝑎𝑠

) ∗ 100

∑ 𝑧𝑗𝑠𝐴𝑗𝑐𝑗
𝑛
𝑗=1

, (14) 

where 𝜂𝑠 is the percent efficiency of hydro-environmental improvement between the 

baseline model, 𝑎, and the optimized model, 𝑏 for each subcatchment 𝑠 as a function of the 

cost for each NBS feature, 𝑐𝑗 (𝑐𝑗 = $6.07/SF, $8.68/SF, $9.46/SF for 𝑗=bioretention cells, 

porous pavements, and tree boxes, respective); 𝑎 and 𝑏 represent the total stormwater 

runoff volume (VR, in million gallons) for hydrologic efficiency and the total pollutant load 
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runoff (TSS, in lbs) for environmental efficiency, from SWMM modeling. 

µ𝑠 =
𝐴𝐷𝐼𝑠
∑ 𝜔𝑠
𝑚
𝑠=1

, (15) 

where µ𝑠 is the percent of social inequality addressed by the optimized model according to 

the total NBS allocated area within each subcatchment, 𝜔𝑠, for all subcatchments 𝑚, and 

the social inequality within the subcatchment is measured by the average spatial Area 

Deprivation Index (ADI) score within each subcatchment 𝐴𝐷𝐼𝑠. 

To eliminate differences in measurement units and magnitudes among evaluation 

choices, each indicator is then normalized on a scale of 0 to 100 per 

�̃� =
𝑥 − 𝑥𝑚𝑖𝑛
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

∗ 100, (16) 

where �̃� is the normalized value of each 𝑥 = hydrologic efficiency (𝜂𝑠), environmental 

efficiency (𝜂𝑠), and social equity (µ𝑠). 

Consequently, the sum of the normalization series for each Lorenz curve axis is 100. 

The Lorenz curve and Gini coefficient is then calculated by Eq. (17)-(19): 

𝑌𝑠 = 𝑌𝑠−1 +
𝜔�̃�

∑ 𝐴𝑠
𝑚
𝑠=1

∗ 100, (17) 

𝑋𝑠 = 𝑋𝑠−1 + (
𝜂�̃�

∑ 𝜂�̃�
𝑚
𝑠=1

) ∗ 100, (18a) 

𝑋𝑠 = 𝑋𝑠−1 + (
µ�̃�

∑ µ�̃�
𝑚
𝑠=1

) ∗ 100, (19b) 

and

𝐺𝑖 = 1 − ∑ (𝑋𝑠 − 𝑋(𝑠−1))(𝑌𝑠 − 𝑌(𝑠−1))
𝑚
𝑠=0 , (20) 

where  𝑌𝑠 is the y-axis value on the Lorenz curve, 𝑋𝑠 is the x-axis value on the Lorenz curve 

(Eq. 18a is the 𝑋𝑠 value for the hydrologic and pollutant load efficiency indicators, and 
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Eq. 18b is the 𝑋𝑠 value for the social deprivation indicator), 𝐴𝑠 is the area of each 

subcatchment 𝑠, with total subcatchments 𝑚, and 𝐺𝑖 is the Gini coefficient corresponding 

to the evaluation index, 𝑖 = runoff volume efficiency, pollutant load efficiency, or social 

equity distribution. 𝑋𝑠 and 𝑌𝑠 are plotted on the Lorenz curve by sorting 𝑌𝑠 in ascending 

order, where 𝑋0 and 𝑌0 each equal 0. 

Finally, the composite optimization objective is represented by 

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒:min (
∑ 𝐺𝑖
𝐼
𝑖=1

𝐼
) , (21) 

where  𝐺𝑖 is the multi-functional Gini coefficient average for each indicator, 𝑖, for a total 

number of indicators 𝐼.  

In summary, the following steps are applied to calculate the composite Gini index for 

amalgamating a series of NBS efficiency indicators according to both social deprivation 

and hydro-environmental risk: 

1. Select a set of potential NBS allocation scenarios according to hydro-

environmental SWMM-based optimization modeling, 

2. Calculate Lorenz curve values for each efficiency indicator (hydrologic, 

environmental, and social) and NBS scenario according to Eq. (13)-(18), 

3. Plot the Lorenz curves and calculate each 𝐺𝑖 using Eq. (11) or Eq. (19), 

4. Aggregate the objective functions and compare Lorenz curves according to the 

multi-criteria Gini coefficient, Eq. (20), 

5. Identify the greatest distribution of social equality and hydro-environmental 

efficiency by minimizing the objective function in Eq. (20). 
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4. RESULTS & DISCUSSION 

4.1 Policy Coherence Embedded in Feedback Loops 

4.1.1 Identification of Variables 

The stakeholders nominated 26 total variables, which were optimized within Vensim to 

reveal 19 unique variables and 37 causal links. These results corresponded well with the 

average number of variables (n=23) and connections (n=37) observed in typical FCMs, 

according to the meta-study by Özesmi and Özesmi (2004). Interesting insights from the 

group stakeholder session included unique trade-offs associated with the group 

understanding of NBS socio-institutional barriers compared with the general consensus 

within the NBS literature. Several institutional barriers were suggested by the group that 

were not generally found within the NBS literature, such as a general opinion that 

regulations at the state and federal level strongly hindered NBS implementation ability. 

Moreover, the stakeholders did not associate co-benefits with an improved capability of 

implementation in this locale, which has been strongly linked within the NBS literature. 

Other surprising insights from the workshop included a robust debate regarding how 

increased vegetation within the urban fabric is not necessarily desired by local constituents, 

as a lack of maintenance had promoted habitat overgrowth, leading to pests, rodents, and 

other nuisances. Other contradictions between stakeholder-identified variables within the 

group discussions were noted, including conflicting perceptions about the efficacy of local 

design specifications, community will, stormwater mitigation, and decision-making 

frameworks. Interestingly, the GMB discussions suggested a culture that was predisposed 

to working in silos, yet the stakeholders were not keen to list this as a barrier associated 

with NBS growth. The stakeholders demonstrated difficulty in defining the term ‘political 
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will’, although all agreed this factor was extremely important for NBS efforts. Such 

discrepancies highlight the importance of understanding local conditions and clarifying 

stakeholder insights when assessing causal feedbacks and policy dynamics regarding 

complex socio-ecological issues. To aid in validating the CLD, several participants 

requested clarification of variable meanings and roles. Therefore, each variable was 

uniquely defined to represent the group’s collective understanding (Table 13) and emailed 

to the stakeholders for use during the CLD validation phase. 

Table 13. Definition of socio-institutional factors associated with NBS adoption.  

No. Variable Definition 

1 
Climate  

Intensification 

Intensification of extreme climate events, including urban heat, 

air quality reduction, greenhouse gas emissions, and rainfall 

patterns (leading to flooding). 

2 
Community  

Buy-in 

Reduced public fears regarding perceived risks/nuisances of 

NBSs. Local neighborhoods and developers excited to 

implement NBSs. Grassroots efforts toward more NBS projects. 

Community involvement in NBS taskforces and politics. 

Neighborhood workshops. Dialogue within civil groups. 

3 
Educational  

Outreach 

Outreach programs targeted at improving community perception 

and understanding of NBS functionality and co-benefits. 

Includes media reporting. Targeting strategic citizen 

involvement in the selection, planning, funding, and 

maintenance of NBSs.  

4 
External 

Grants 

Enhanced partnerships across institutions, including academia, 

local-regional, state, federal toward winning NBS grants. 

5 

External  

Regulations / 

Laws 

Funding requirements/incentives and regulatory requirements to 

prove multiple co-benefits beyond stormwater mitigation at the 

state and federal level. 

6 
Habitat 

Growth 

Vegetation overgrowth into swamp-like conditions, including 

unwanted pests, rodents, and other invasive species, due to lack 

of maintenance of NBS projects. 

7 
Incentives  

Programs 

Incentives for local development. Subsidies, grants, loans, fee 

reductions, incorporated into local development plans (includes 

federal and state subsidies). 

8 
Increased  

Development 

Encompasses population growth, reduced land space, building 

“up”, more tax revenue, and less natural pervious coverage. 
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Table 13 (continued): 

No. Variable Definition 

9 

Local 

Advocates 

& Leaders 

Local staffing for NBS funding, regulations, trans-institutional 

partnerships. Designated champion(s) with resources to make 

change. Central, singular, NBS department that is integrated 

across sectors and separate from other utilities. 

10 
Local 

Funding 

Combined funding sources for public implementation of NBSs. 

Local non-profits, local capital improvement project funding, 

ear-marked drainage tax revenue. Understanding that hybrid 

NBSs are cheaper than grey-infrastructure. Quantifying co-

benefits as economic/health benefits in cost-benefit analyses. 

11 
Local  

Political Will 

Transition from reliance on traditional engineering (grey 

systems) to hybrid (green-grey) approaches. Increase of 

institutional urgency for more NBSs. Increased inter-agency 

cohesion for green projects. 

12 
Local  

Regulation 

Design and implementation regulations that are less stringent 

than grey-water. Clear legal guidelines (no conflicting 

provisions). Rapid permitting. Long-term maintenance 

regulations. Regular site inspections. Mandatory green space 

allowance for new and retrofit construction projects. 

13 
Maintenance 

Programs 

Technical capacitance for green maintenance; designated O&M 

funds; partnership with developers, contractors, and public 

residents for long-term ownership. 

14 
Nature-based 

Solutions 

Increase in implementation of NBSs, including urban-type (e.g., 

green roofs, rain barrels, bioswales, pervious pavement) and 

best-management practices (e.g., bioretention ponds).  

15 
Pilot  

Projects 

Community NBS projects funded and promoted by local 

government. Includes tours, educational signage, press 

coverage. 

16 
Population 

Growth 

Increase in local population, resulting in changes of land use 

type, impervious coverage, equity. 

17 
Social  

Equity 

Clear frameworks for capacitance building in vulnerable and 

marginalized communities with reference to NBSs. 

18 
Technical  

Training 

Design and maintenance training of engineers, environmental 

consultants, and governmental staff. Support of local expertise 

certifications (i.e., LEED). Additional workshops and trainings. 

Limited staff turnover with NBS expertise. 

19 
Visualization of  

Co-benefits 

Accepted understanding of NBS benefits that extend beyond 

stormwater quantity and quality (air quality, health, recreation, 

crime, noise). Visualizing how NBSs impact one’s backyard. 
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4.1.2 Causal Loop Diagram and Feedback Loops 

The final causal loop diagram from the GMB exercise and stakeholder validation is 

depicted in Fig. 22. Reinforcing loops propagate the direction of change within the system, 

which would theoretically continue to grow (or decrease) over time as one linked variable 

is altered. Conversely, balancing loops counteract the direction of change and transition 

the system toward states of equilibrium. From the CLD model, four primary reinforcing 

loops and two balancing loops were identified. Reinforcing loop R1 was noted as the 

“Maintenance Loop”, whereby improved maintenance (from local regulations) would 

ideally reduce habitat over-growth and improve community buy-in of NBS technologies, 

spurring political will and additional local regulations. Reinforcing loop R2, the “Funding 

Loop”, was identified as an opportunity to increase NBSs by using local funds to 

implement more pilot projects, enhance visualization of co-benefits, and strengthen 

community buy-in. The reinforcing loop R3, “Community Loop”, describes the general 

stakeholder belief that enhanced external regulations would drive local regulation, negating 

the need for local incentives programs (which were observed to have a negative effect on 

community buy-in due to their volunteering nature), which in turn would drive additional 

local political will, feeding into the overall political will of the federal and state 

governmental constructs. Reinforcing loop R4, the “Advocacy Loop”, describes the 

condition where local political will could be used to increase the amount and influence of 

local advocacy departments and NBS champions, thereby driving implementation of 

additional pilot projects, trainings, and outreach to bolster community acceptance. The 

balancing loop B1, “Climate Loop”, was identified as an opportunity to balance the system 

of NBS implementation upon achieving a desirable level of climate mitigation (e.g., urban 

heat regulation, stormwater flow abatement, water quality enhancement, carbon 
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sequestration), depending on local goals and conditions. The balancing loop B2, “Equity 

Loop”, was observed as an opportunity to counteract the negative impacts of population 

growth (and thus increased levels of non-pervious development) while also improving 

community buy-in. These overarching themes were used to drive the assessment of causal 

feedbacks and their influence on policy effectiveness, further described in Section 4.1.3.  

 

Fig. 22. Stakeholder-derived causal loop diagram. 

Table 14 summarizes the feedback loops and their average strengths. The average 

strengths were adapted from FCM definitions for weighted in-degree and out-degree 

(Özesmi and Özesmi, 2004), given by 

𝑤𝑓
(𝑡=0)

= ±
∑ ∑ |𝑤𝑖𝑗|

𝑀
𝑗=1

𝑀
𝑖=1

𝑀
, (22) 
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where 𝑤𝑓 describes the average strength of each feedback loop 𝑓, 𝑤𝑖𝑗 is the stakeholder-

defined strength between variable 𝑖 and 𝑗 in the loop, and 𝑀 is the total number of unique 

connections within the loop. The causal strength is then assigned a polarity of ‘+’ for 

reinforcing loops and ‘-‘ for balancing loops. 

Table 14. Balancing and reinforcing feedback loops.  

Loop Variable Connectivity & Feedback Strengths (wf) 

R1 

Local Political Will 
+𝟎.𝟕𝟓
→    Local Regulation 

+0.50
→    Maintenance 

−0.75
→    Habitat Growth 

−0.25
→    Community Buy-in 

+0.50
→    Local 

Political Will 

0.35 

R2 

Local Political Will 
+𝟎.𝟕𝟓
→    Local Funding 

+0.25
→    External Grants 

+0.75
→    Pilot Projects 

+0.50
→    Visualization of Co-benefits 

+0.50
→    

Community Buy-in 
+0.50
→    Local Political Will 

0.54 

R3 

Local Political Will 
+𝟎.𝟐𝟓
→    External Regulations / Laws 

+0.75
→    Local 

Regulation 
−0.25
→    Incentives Programs 

−0.25
→    Community Buy-in 

+0.50
→    Local Political Will 

0.40 

R4 

Local Political Will 
+𝟎.𝟓𝟎
→    Local Advocates 

+0.25
→    Pilot Projects 

+0.25
→    Technical Training 

+0.25
→    Educational Outreach 

+0.25
→    

Community Buy-in 
+0.50
→    Local Political Will 

0.33 

B1 
Local Political Will 

+𝟎.𝟕𝟓
→    Local Funding 

+0.50
→    Nature-based 

Solutions 
−0.50
→    Climate Intensification 

+0.50
→    Local Political Will 

- 0.56 

B2 

Social Equity 
–𝟎.𝟐𝟓
→    Population Growth 

+0.75
→    Increased 

Development 
+0.25
→    Local Funding 

+0.25
→    Nature-based 

Solutions 
+0.50
→    Social Equity 

- 0.40 

Naturally, the feedback loop weights will change during the dynamic simulation as the 

loops are influenced by other loops and variables over time. However, by identifying the 

initial feedback loop strengths according to Eq. (21), it becomes possible to complement 

our understanding of the FCM-based scenario results with insights regarding loop 

dominance, as well as shifts in loop dominance, according to how the loops inter-relate 

within the system.  
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4.1.3 Policy effectiveness and causal logic 

The dynamics of the system resulted in a positive increase in the state of the NBS 

variable for all of  the modeled management strategies. The relative change in NBS 

implementation for each strategy (𝑛 =1,2,3) is shown in Table 15 as a percentage (∆𝑆𝑘). 

Typically, when performing FCM-based scenario modeling for policy assessment, the 

change in the end-state vector for the goal variable is calculated as the difference between 

the baseline-scenario and the strategy-scenario. In such cases, the baseline scenario is 

defined as the state vector of the model when all driver variables (i.e., variables that have 

no input feedbacks) are clamped to a value of +1.00 (Singh and Chudasama, 2020). 

However, the FCM model for this study had no driver variables, meaning all variables were 

ordinary and contained both input and output feedbacks (Özesmi and Özesmi, 2004), 

therefore the baseline NBS state vector was null (∆SNBS =0). As such, ∆Sk represents the 

state vector value for the NBS variable after each policy, or set of policies, was modeled 

within the Mental Modeler scenario-builder, expressed as a percentage. 

Table 15. Fuzzy cognitive mapping-based scenarios. 

 𝑘𝑖 ∆𝑆𝑘𝑖  𝑘𝑗 ∆𝑆𝑘𝑗 𝑘𝑗 ∆𝑆𝑘𝑗 𝑘𝑗 ∆𝑆𝑘𝑗 

1
 P

o
li

cy
 (
𝑛

 =
 1

) 

EO 9% 

2
 P

o
li

ci
es

 (
𝑛

 =
 2

) 

EO-TT 11% TT-IP 18% PP-MT 51% 

TT 5% EO-PP 52% TT-AL 39% *PP-FU 84% 

PP 48% EO-IP 21% TT-PW 56% PP-RE 47% 

IP 12% EO-AL 41% TT-MT 7% IP-AL 50% 

AL 36% EO-PW 56% TT-FU 66% IP-PW 74% 

PW 56% EO-MT 13% TT-RE 3% IP-MT 18% 

MT 5% EO-FU 66% PP-IP 60% IP-FU 76% 

*FU 65% EO-RE 8% PP-AL 60% IP-RE 16% 

RE 0% TT-PP 50% PP-PW 76% AL-PW 68% 
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Table 15 (continued): 

 𝑘𝑗 ∆𝑆𝑘𝑗  𝑘𝑗 ∆𝑆𝑘𝑗 𝑘𝑗 ∆𝑆𝑘𝑗 

2
 P

o
li

ci
es

 (
n

 =
 2

) 
AL-MT 39% 

3
 P

o
li

ci
es

 (
n

 =
 3

) 

EO-PW-MT 56% PP-IP-RE 62% 

AL-FU 81% EO-PW-FU 73% PP-AL-PW 79% 

AL-RE 35% EO-PW-RE 55% PP-AL-MT 61% 

PW-MT 56% EO-MT-FU 67% PP-AL-FU 88% 

PW-FU 73% EO-MT-RE 10% PP-AL-RE 58% 

PW-RE 55% EO-FU-RE 63% PP-PW-MT 76% 

MT-FU 66% TT-PP-IP 62% PP-PW-FU 85% 

MT-RE 2% TT-PP-AL 61% PP-PW-RE 75% 

FU-RE 62% TT-PP-PW 76% PP-MT-FU 84% 

3
 P

o
li

ci
es

 (
n

 =
 3

) 

EO-TT-PP 53% TT-PP-MT 51% PP-MT-RE 48% 

EO-TT-IP 24% TT-PP-FU 84% PP-FU-RE 82% 

EO-TT-AL 42% TT-PP-RE 48% IP-AL-PW 81% 

EO-TT-PW 56% TT-IP-AL 53% IP-AL-MT 53% 

EO-TT-MT 14% TT-IP-PW 64% IP-AL-FU 88% 

EO-TT-FU 67% TT-IP-MT 20% IP-AL-RE 52% 

EO-TT-RE 9% TT-IP-FU 77% IP-PW-MT 74% 

EO-PP-IP 64% TT-IP-RE 19% IP-PW-FU 84% 

EO-PP-AL 63% TT-AL-PW 68% IP-PW-RE 74% 

EO-PP-PW 76% TT-AL-MT 40% IP-MT-FU 77% 

EO-PP-MT 54% TT-AL-FU 81% IP-MT-RE 18% 

EO-PP-FU 84% TT-AL-RE 37% IP-FU-RE 77% 

EO-PP-RE 50% TT-PW-MT 56% AL-PW-MT 68% 

EO-IP-AL 55% TT-PW-FU 73% AL-PW-FU 80% 

EO-IP-PW 74% TT-PW-RE 42% AL-PW-RE 67% 

EO-IP-MT 27% TT-MT-FU 66% AL-MT-FU 81% 

EO-IP-FU 77% TT-MT-RE 4% AL-MT-RE 36% 

EO-IP-RE 24% TT-FU-RE 63% AL-FU-RE 79% 

EO-AL-PW 68% PP-IP-AL 71% PW-MT-FU 73% 

EO-AL-MT 43% PP-IP-PW 86% PW-MT-RE 55% 

EO-AL-FU 81% PP-IP-MT 62% PW-FU-RE 72% 

EO-AL-RE 39% *PP-IP-FU 90% MT-FU-RE 63% 

where: Educational Outreach = EO, Technical Training = TT, Pilot Projects = PP, 

Incentives Programs = IP, Advocacy and Leadership = AL, Political Will = PW, 

Maintenance = MT, Funding = FU, Regulations = RE. ‘*’ denotes highest effectiveness 

within each cohort of strategies. Green denotes synergy, and red denotes conflict. 

Policy combinations that were synergistic, meaning they worked together to produce a 

greater NBS state change than had the policies been implemented in silo, are highlighted 



93 

 

in Table 15 with green. Policy combinations that were conflicting, meaning they interacted 

to produce an NBS state vector that was less than (or equal to) that of the corresponding 

individual policies, are noted in red. For example, strategy PP-RE (pilot projects and local 

regulations) is a conflicting policy, which resulted in ∆SPP-RE=47%. However, had pilot 

projects (∆SPP=48%) been implemented as a single strategy, we observe a greater change 

in NBS implementation potential (∆SPP>SPP-RE). Such results may be explained by 

investigating the location of PP and RE within the CLD and assessing how the feedback 

loops interact. Pilot projects are included in loop R2 (Funding Loop, wR2=0.54) and R4 

(Advocacy Loop, wR4=0.33), whereas local regulations are impacted by loop R1 

(Maintenance Loop, wR1=0.35) and R3 (Community Loop, wR3=0.40). The initial strength 

of the interacting loops for PP (wR2+R4=0.87) is much greater than the initial strength of the 

interacting RE loops (wR1+R3=0.70). As such, the combination of these policies would not 

produce a greater end-result after dynamic simulation of the clamped variables, and it could 

be concluded that implementing the RE policy is not an optimal use of resources. 

A similar investigation is used here to explain policy synergy. For example, the 

combined strategy IP-PW resulted in a state change of ∆SIP-PW=74%. Had each of these 

policies been implemented at separate times, and the dynamic interactions not considered, 

the NBS state would only be 68% (∆SIP=12%+∆SPW=56%). In checking the corresponding 

feedback loops, IP is only included within R3 (wR3=0.40), which is much weaker than the 

numerous reinforcing loops impacted by PW (wR1+R2+R3+R4=1.62). Even when consider the 

balancing effects of loop B1 on political will (wB1= - 0.56), it becomes clear that combing 

the PW policy with the IP policy results in stronger system dynamic change. 
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While such manual interpretations of all policy combinations and feedback loops 

within the system would quickly become burdensome, the proposed CLD+FCM-based 

scenario approach presented here provides a rapid assessment of how strategies may 

interact within the system dynamics to produce synergy or conflict. Similar insights may 

be derived, for example, by ranking the final NBS state vectors (i.e., the ∆Sk values) and 

noting the occurrence of variables, as shown in Table 16. The local funding (FU) variable 

is present within almost all of the highest-efficiency strategies (i.e., upper quartile). The 

political will (PW) variable is highly representative within the top-half of strategies, while 

the only instances of PW within the bottom-half are indeed those combinations that were 

identified as policy conflicts. In exploring the interaction of associated feedback loops, FU 

is a component of both the strong balancing loop B1 and the strong reinforcing loop R1, 

which may have trended the system toward equilibrium had there been no other dynamic 

forces involved. However, loop R1 triggers each of the additional reinforcing loops, 

thereby amplifying total systematic change. This causal logic also explains why pilot 

projects (PP) and political will (PW) are highly associated with greater NBS impact in the 

system. Other system variables that interacted with balancing loop B1, but which did not 

have the added reinforcement from loops R2 and R3 to counter-act the balancing forces, 

showcased less favorable outcomes and often policy conflict. 

Fig. 23 demonstrates the relative efficiency of management variables by summing the 

∆Sk values for each corresponding k. RE, TT, and MT exhibit weak efficiencies when 

combined with other policy options. An assessment of the associated feedback loops 

(which are color-coded in Fig. 24 for improved visualization) demonstrates how these 

variables are each located on only one feedback loop, thereby triggering less change and 
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momentum in the overall system trajectory than those variables that are leveraged at the 

intersection of many overlapping loops.  

Table 16. Rank of management strategies and NBS end-state vectors. 

Strategy Strategy Strategy Strategy

(k ) (k ) (k ) (k )

PP-IP-FU 90% EO-IP-PW 74% TT-PP-AL 61% EO-TT-AL 42%

PP-AL-FU 88% IP-PW-MT 74% PP-AL-MT 61% TT-PW-RE 42%

IP-AL-FU 88% IP-PW-RE 74% PP-IP 60% EO-AL 41%

PP-IP-PW 86% PW-FU 73% PP-AL 60% TT-AL-MT 40%

PP-PW-FU 85% EO-PW-FU 73% PP-AL-RE 58% TT-AL 39%

PP-FU 84% TT-PW-FU 73% EO-PW 56% AL-MT 39%

EO-PP-FU 84% PW-MT-FU 73% TT-PW 56% EO-AL-RE 39%

TT-PP-FU 84% PW-FU-RE 72% PW-MT 56% TT-AL-RE 37%

PP-MT-FU 84% PP-IP-AL 71% EO-TT-PW 56% AL-MT-RE 36%

IP-PW-FU 84% AL-PW 68% EO-PW-MT 56% AL-RE 35%

PP-FU-RE 82% EO-AL-PW 68% TT-PW-MT 56% EO-IP-MT 27%

AL-FU 81% TT-AL-PW 68% PW-RE 55% EO-TT-IP 24%

EO-AL-FU 81% AL-PW-MT 68% EO-IP-AL 55% EO-IP-RE 24%

TT-AL-FU 81% EO-TT-FU 67% EO-PW-RE 55% EO-IP 21%

IP-AL-PW 81% EO-MT-FU 67% PW-MT-RE 55% TT-IP-MT 20%

AL-MT-FU 81% AL-PW-RE 67% EO-PP-MT 54% TT-IP-RE 19%

AL-PW-FU 80% EO-FU 66% EO-TT-PP 53% TT-IP 18%

PP-AL-PW 79% TT-FU 66% TT-IP-AL 53% IP-MT 18%

AL-FU-RE 79% MT-FU 66% IP-AL-MT 53% IP-MT-RE 18%

EO-IP-FU 77% TT-MT-FU 66% EO-PP 52% IP-RE 16%

TT-IP-FU 77% EO-PP-IP 64% IP-AL-RE 52% EO-TT-MT 14%

IP-MT-FU 77% TT-IP-PW 64% PP-MT 51% EO-MT 13%

IP-FU-RE 77% EO-PP-AL 63% TT-PP-MT 51% EO-TT 11%

PP-PW 76% EO-FU-RE 63% TT-PP 50% EO-MT-RE 10%

IP-FU 76% TT-FU-RE 63% IP-AL 50% EO-TT-RE 9%

EO-PP-PW 76% MT-FU-RE 63% EO-PP-RE 50% EO-RE 8%

TT-PP-PW 76% FU-RE 62% TT-PP-RE 48% TT-MT 7%

PP-PW-MT 76% TT-PP-IP 62% PP-MT-RE 48% TT-MT-RE 4%

PP-PW-RE 75% PP-IP-MT 62% PP-RE 47% TT-RE 3%

IP-PW 74% PP-IP-RE 62% EO-AL-MT 43% MT-RE 2%

Lower Quartile (Q1)Upper Quartile (Q3)

Efficacy 

(S k ), %

Efficacy 

(S k ), %

Efficacy 

(S k ), %

Efficacy 

(S k ), %

Middle Quartile (Q2)
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Fig. 23. Relative difference for individual variables toward system efficiency. 

 

Fig. 24. Color-coded causal diagram with feedback loops. 
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4.1.4 Discussion of NBS Policy Coherence 

Mainstreaming NBSs into urban agendas is a key challenge that must be overcome in 

order to realize global climate goals (UNEP, 2019), which necessitates understanding the 

human feedbacks within the system to identify transition variables that, if strengthened, 

could improve implementation. This research schematized interactions within a complex 

human-NBS system according to loops and linkages derived from real-world stakeholder 

input. A holistic approach to systems-thinking provided a means for describing complex 

behavior and assessing the relative effectiveness of various management strategies in NBS 

planning. 

The initial stages of systems-thinking capture the overall concept of a system from 

stakeholder knowledge by representing key variables and their interrelationships. An 

analysis of the resulting feedback loops explains how the system responds to change in a 

resistant or complementary manner. Policy conflict and synergy stem from these 

underlying mechanisms that are often difficult to disentangle visually, even at simple 

scales. Instead, incorrect assessments of interacting feedback loops may lead to the failure 

of systematic learning and undermine implementation of the most beneficial policies. As 

systems increase in complexity, computer-based simulations are often necessary to 

understand how interventions alter the state of the system. Simulation modeling enhances 

our ability to elicit insights from complex systems by capturing long-term accumulation 

processes and trajectory shifts. However, SDM-based simulations are typically conducted 

using data-intensive dynamic models (e.g., SFDs), which are not always feasible when 

considering human-environmental feedbacks. FCM-based scenario-building is a practical 

tool for simulating CLD systems by assigning a degree of influence between components, 

clamping plausible variables, and assessing changes to the goal element (Gray et al., 2014). 
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This approach assigns meaning to processes that are otherwise difficult to compute by 

leveraging knowledge embedded within stakeholder experiences and their previous 

interactions within the system.  

A benefit of transposing CLDs into FCMs involves the mathematical foundation of 

FCMs in graph theory, which provides a computationally-efficient method for rapidly 

simulating system trajectories. Although coupled CLD-FCM modeling has been 

demonstrated in the literature (Coletta et al., 2021; Giordano et al., 2020, 2007; Shahvi et 

al., 2021), it is not commonly used to assess social interactions in policy-making. To 

transition toward management-oriented research for socio-environmental phenomena, this 

study encourages the coupling of traditional SDM approaches (e.g., GMB, CLD), which 

identify the nature of the system, with FCM-based scenarios, which simulate the structure 

of the system. By integrating qualitative and semi-quantitative modeling, this approach 

reveals systemic interactions that would not be clear from CLD or FCM alone, but which 

also do not require complex modeling with robust datasets. Instead, empirical data for 

weighted connections may be elicited from the stakeholders at the same time as the GMB 

session. Such an interactive process transforms elusive systematic barriers into a broad 

vision of adaptive management opportunities. 

4.2 Multifunctional Data System: Hydrology, Ecology, Climate, Society 

4.2.1 Results of Suitability Evaluation 

4.2.1.1 Characteristic #1: Openness 

Openness describes the extent to which geospatial data platforms are attainable by 

interested users. Open and seamless geospatial technologies are more easily adopted by 

decision-makers who are not well-versed in GIS data processing. While the traditional suite 

of Esri desktop-based software is proprietary and requires a paid license subscription for 
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access, the web version of ArcGIS Online may serve as a platform for sharing GIS data 

layers through semi-open architecture APIs and geospatial standards. The varying degrees 

of openness presented by Choi et al. (2016) are assessed (e.g., fully-open, limited-open, 

permitted-open, or private). Fully-open describes the condition where all datasets and 

underlying metadata are available to all interested parties, fostering access across both 

public and private sectors. Limited-open means the complete dataset is not available to the 

public, but select sub-sets are available in an aggregated manner. Permitted-open describes 

the condition where datasets are available but are subject to additional limitations and 

permissions, according to the hosting agency’s conditions of use (Choi et al., 2016). Private 

datasets are only available to authorized users within the hosting agency’s internal 

organization. In crafting the NBS-Geo web mapping application, various levels of 

openness were encountered within the Living Atlas repository. 

Since the Living Atlas uses a combination of publicly authoritative and private vendor-

based users for hosting created content, the resulting GIS web app was a mixture of fully-

open, limited-open, permitted-open, and private datasets. To facilitate public access for the 

web app without requiring prior ArcGIS organizational account credentials, some fully-

private datasets that may have been otherwise included in the NBS-Geo curated content 

were strategically removed from the final web version (i.e., NatureServe’s biodiversity 

maps). Organizational costs associated with gathering, managing, and hosting geospatial 

data may limit its fully-open accessibility. Even so, this research encourages additional 

ongoing development to facilitate the use of fully-open datasets across disparate 

epistemologies. Particularly within the United States, there is an increasing urge toward 

geospatial data transparency, in which information produced using public expenditures 
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(i.e., tax-payer money) should be made fully-open and freely available to improve public 

involvement and policy-making (Vitolo et al., 2015).  

While this approach of pre-authorizing the ArcGIS Online organizational credentials 

provided a functional solution for public dissemination of NBS-Geo, several limitations 

associated with the semi-open nature of the Esri Living Atlas are noted. For example, the 

user must still supply organizational credentials in order to download and subsequently 

perform spatial analyses on the underlying data. (The pre-authorization technique imposed 

for public access only provides visualization capabilities and does not allow data extraction 

without a licensed Esri account.) This requirement for association with an organizational 

account is one of the main hindrances of widespread usage of the Living Atlas, as 

evidenced in its limited representation within the literature. Instead of necessitating a 

lengthy process of pre-authorization through personal credentials, an ongoing transition 

toward fully-open geospatial data repositories is essential, especially considering how 

much of the underlying information contained in these layers stemmed from open-access, 

governmental datasets. The issue regarding geospatial data availability is not a matter of 

cost, as many governmental organizations host their GIS data online for free (i.e., FEMA, 

USGS, NOAA). Rather, we lack strategic selection and amalgamation of these many 

disparate datasets, each hosted in a unique format and location across the internet, into a 

readily deployable application that may be quickly used by technical and non-technical 

audiences for informed decision-making. 

4.2.1.2 Characteristic #2: Spatial Analysis Functionality 

Spatial analysis functionality within webGIS refers to the integration of data and people 

according to geospatial relationships disseminated through a web-based user interface 
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(Veenendaal et al., 2017). Location is used as a common denominator to link the user’s 

visualization inquiry with a select subset array from large-scale datasets. While such 

functionality provides rapid data access for browsing, users often necessitate performing 

additional analysis upon the curated subsets to understand local scenarios. Spatial analysis 

of correlated datasets describes the usage of functional properties (i.e., geospatial location 

and/or attributes) to transform data into new formats and to impose modifications toward 

a specific goal. For example, in the hydrological sciences, spatial analysis is commonly 

performed to transform landscape datasets, such as terrain elevation, soils, and land use, 

into standardized formats, which are then further merged, processed, and assessed to derive 

representative model elements and describe the flow of water throughout the watershed.  

In the NBS-Geo web app, much of the data accessed from the Living Atlas repository 

was found to be analysis-ready, both in terms of webGIS and local processing. The primary 

spatial analysis limitations associated with this web app involved the difficulties 

encountered with extracting data subsets to a local computer, which is necessary for 

performing robust geospatial operations. High-resolution watershed modelling was thereby 

limited by the need for the user to obtain organizational credentials for proper data 

downloading and also the need to possess costly Esri license extensions on the local 

computer (i.e., Spatial Analyst, 3D Analyst; See Castro and Maidment (2020) for an 

example of standard hydrological terrain processing steps within a GIS environment 

utilizing such extensions.) Furthermore, several out-of-the-box widgets were implemented 

in the NBS-Geo web application, which were intended by Esri to provide value-added 

spatial functionalities within a web application without necessitating complex coding skills 

by the developer (Esri, 2017). While in theory, pre-built widgets would aid facilitation of 
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cloud-based GIS data and user-friendly web applications, practical usage of such tools were 

found to be hindered by the underlying geospatial limitations of the Esri web app suite.  

For example, the “swipe widget” used in NBS-Geo was not intuitive in terms of how 

to achieve proper data overlays and transparency symbologies to showcase overlapping 

land use classifications. When using this widget, the user is required to manually turn on 

all land use layers while turning off all other layers for proper visualization. The “screening 

widget”, used here to showcase the CDC’s SVI vulnerability themes within the user’s 

viewport, did not provide the capability to modify the legend nomenclature for clarity and 

resulted in small text that was sometimes hidden from view. To mitigate user understanding 

of this widget information, a text link was included within the widget for the CDC’s SVI 

data documentation. A demonstration video was added to the tool’s homepage to help 

clarify how these widgets may be used. However, further improvements regarding ready-

to-use webGIS widgets would facilitate spatial analysis functionality for the end-users 

without necessitating additional or ongoing training by the developers. Additional widgets 

created by Esri for robust spatial investigations were investigated, such as user-defined 

hotspot mapping and cloud data extraction, but various limitations in the types of data that 

could be incorporated into such widgets hindered practical usage. Only data layers that had 

been identified by the hosting agency as fully-open and extractable could be used in several 

of the added-value Esri widgets, thereby limiting robust application within a 

comprehensive collection of datasets, each containing varying levels of openness. 

Spatial functionality also includes the management of GIS datasets and value-added 

tools for long-term user functionality. During the course of this tool development, several 

datasets within the Esri Living Atlas had been depreciated by the hosting agencies and 
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updated with newer data. This necessitated manual re-linking of the underlying data REST 

URLs within the NBS-Geo web map in order to update the datasets on visualization portal. 

Dataset depreciation was typically notified by a user of the NBS-Geo tool and not 

immediately informed by the developers of the dataset or the hosting repository. 

Identification of new datasets that may be applicable for holistic NBS planning also 

required manual searching of the Living Atlas repository on a periodic basis. This brings 

up the question: Whose responsibility is such data management, maintenance, and curation 

when the underling information is derived from a variety of sources? Data depreciation is 

likely to occur at-scale as new data is derived by the GIS community, which necessitates 

improved best management practices regarding large-scale data hosting repositories (e.g., 

automated user notification of depreciation, automated linkage to latest datasets within web 

applications) for optimal use in transdisciplinary research frameworks. 

4.2.1.3 Characteristic #3: Scalability 

As the cloud web mapping era has increased, the scalability of mass information has 

become a key observed benefit (Veenendaal et al., 2017). Here, scaling refers to the ability 

of the two-way feedbacks between data and end-users to occur at cascading levels of 

computing power, size of data, and geographical area of interest. The cloud computing 

within ArcGIS Online, which uses a software-as-a-service platform, fosters scalable 

computing and storage using immense technological resources to iterate data queries in 

rapid time. Several of the datasets referenced in NBS-Geo were provided in real-time (i.e., 

stream gauges, air pollution monitors, wind data), which necessitates instant context and 

dynamic data display from the local- to the regional-, and even the national-scale. The 

cloud-based computing technologies then leverage resources from disparate servers to 

scale up user queries within the web mapping applications and perform geospatial 
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operations for real-time situational awareness (Dangermond, 2019). Cloud-based datasets 

can contain a significant number of pixels for data visualization, and limits to the scale in 

which the user may view the datasets is often incorporated into the data symbology 

attributes for enhanced functionality over the internet. For example, the building footprints 

layer hosted in NBS-Geo was automatically set for a visibility range of 1:10,000 square 

meters by the hosting agency, meaning the dataset will not display until the user is zoomed 

in to a map area of 10,000 square meters or less (approximately street- or neighborhood-

scale). The benefits of such scale-dependent data mapping are enhanced organization 

among potentially convoluted sets of data and computational performance improvements; 

however, scale-dependent rendering may also limit data visualization at larger scales, 

which are important for regional planning. Through the exercise of building NBS-Geo from 

the Living Atlas, there exists a robust opportunity to scale data using such a framework 

from local to regional areas. This capability promotes place-based risk assessments 

according to community priorities across institutional boundaries. 

4.2.1.4 Characteristic #4: Geospatial Standards 

Another important component of web mapping applications is adherence to an agreed-

upon set of geospatial standards and specifications. One of the most common sets of 

geospatial standards was developed by the Open Geospatial Consortium (OGC), which 

provides ease of accessibility, interoperability, and combination with other software suites 

(M. Zhang et al., 2020). Another set of fundamental standards was derived from the 

International Organization for Standardization (ISO) for describing inherent data 

construction, quality management approaches, and workflow implementation (Veenendaal 

et al., 2017). Within the Living Atlas, hosted datasets are intended to be well-documented 

according to OGC or ISO geospatial standards. However, during development of NBS-
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Geo, there existed many instances where the hosted datasets did not contain adequate 

metadata for fully understanding how the datasets were created. In attempting to better 

understand the scientific basis for several datasets, manual contact of the hosting agencies 

was necessary to obtain pertinent background documentation. There also existed many 

instances where the nomenclature for the geospatial attributes used within a hosted data 

layer was not intuitive, which required additional searching online for core documentation 

and legend descriptions (i.e. CDC (2016), Jin et al. (2019)). Such information, which is 

necessary for data dependability and reproduction capability, should be easily accessible 

directly within the geospatial metadata descriptions.  

Due to the manner in which the Esri Living Atlas data is compiled by contributions 

from a plethora of user-types (i.e., commercial, academic, general GIS users, 

governmental), and not all datasets have been vetted as authoritative, we necessitate further 

efforts to comprehensively document the underlying datasets involved in holistic NBS 

planning and research. While this study benefited from the use of a comprehensive web-

based geospatial repository for amalgamating an interdisciplinary traffic of ideas and cross-

domain datasets, the end-users will likely stem from a siloed domain of understanding and 

will therefore require easy-to-understand and easy-to-find metadata descriptions for 

digesting and adequately using the information available within GIS web applications. 

4.2.2 Discussion of NBS-Geo 

Historically, spatially-distributed social data sets have been a significant missing link 

in forming a cohesive spatial framework for complex, overlapping multifunctionalities of 

human-earth-water systems (Cumming, 2011). Latest improvements in geospatial 

technologies have strengthened our ability to access social datasets as a function of space 

toward amalgamating social phenomena with physical properties. NBS-Geo is a 
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representative of that potential by providing systematic access to multidisciplinary 

information regarding the full scope of NBS functions. This study presents the overall 

framework behind NBS-Geo to link disparate systems and foster identification of unique 

feedbacks between social and hydro-environmental patterns. As sustainability emphasizes 

the compounded properties of societal and environmental importance, NBS-Geo 

incorporates overlapping geospatial datasets encompassing quality of life metrics, 

environmental degradation, and social vulnerability. When addressing properties of 

resilience, both baseline and future conditions must be considered. NBS-Geo amalgamates 

the long-term and acute stressors of climate change, immediate weather conditions, and 

land use changes resulting from projected urbanization trends toward a holistic framework 

for planning compound climate solutions.  

One of the novelties of the NBS-Geo framework includes the curated collection of web-

based datasets that reflects the current state-of-the-art in NBS efficacy across a variety of 

distinct, albeit complementary, domains. By combining open-source and proprietary 

geospatial technologies for data generation, management, sharing, and visualization, NBS-

Geo improves research and planning that links disparate systems to increase our 

understanding of complex hydro-socio-environmental connections. By providing a 

framework that connects users with comprehensive NBS data at a high-level planning 

stage, NBS-Geo is customizable to any geographic region (within the limitations of the 

datasets) and may be used to elucidate generalizable understandings regarding engineered 

NBS technology in urban environments. The practical implications of this research will 

enhance the user-friendliness of NBS spatial planning in a flexible manner while merging 

well-established hydrological considerations with a vast spectrum of NBS co-benefits.  
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Moreover, GIS licensures, access credentials, and data maintenance presents an 

additional layer of challenges that must be overcome for full embracing of GIS web app 

technologies in cross disciplinary research and planning. Integrated data resources that 

enable robust data discovery and usage toward derived wisdom must contain the primary 

geospatial attributes discussed in this study, namely: 1) Openness, 2) Spatial Analysis 

Functionality, 3) Scalability, and 4) Geospatial Standards. This study elicits areas of 

strength and further research opportunities in the field of GIS toward achieving such goals. 

Future best-practices for interdisciplinary data mash-ups are highlighted by assessing the 

current suite of cloud-based GIS datasets accessible during this study and assessing their 

fitness-of-use for actionable decision-making. As such, this research highlights the 

importance of robust data technologies and management schemes to overcome challenges 

of interdisciplinary data science in the era of the Anthropocene, where human interaction 

and accessibility of information are just as important as the datasets themselves. 

4.3 Equity-based Optimization for NBS Planning 

4.3.1 Hydro-environmental Pareto Front Curve 

The GreenPlan-IT optimization tool for the WOB watershed converged after 100 

generations, each with approximately 250 population values (i.e., series) per generation. 

The 2-, 5-, and 100-year rainfall events were chosen as representative design storms for 

demonstrating the hydro-environmental optimization results, as demonstrated in Fig. 25. 

An example of planning for NBS expenditure of $1,000M is shown in the dashed lines 

where the optimal Pareto front results in a flow reduction of 3.22%, 3.62%, and 4.37% and 

a TSS pollutant load reduction 11.69%, 11.65%, and 9.55% of for the 2-, 5-, and 100-year 

design storms, respectively. The cost-effectiveness curves (i.e., the Pareto fronts) suggest 

there exists a largely linear relationship between the level of NBS implementation and TSS 
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pollutant load reduction between the 2-year and 5-year design storms. Decision-makers 

can then use these results to determine optimal NBS planning according to target 

expenditures. The cost-effectiveness curve in Fig. 25 informs which Generation and 

Population model provides the most efficient hydro-environmental outcomes from the 

~25,000 scenarios that were simulated in SWMM. By assessing the far-right portion of the 

Pareto front, decision-makers may identify at which point further investment in NBS 

technologies yield no additional improvement in hydro-environmental goals. As such, 

hydrologic versus environmental efficacy goals may be compared and contrasted between 

scenarios as a function of cost distribution and intensity of design storm metrics (SFEI, 

2020). For example, if decision-makers had a goal of reducing the 100-YR storm flow by 

5% (equating to a total cost of $1,187M on the hydrologic cost-effectiveness curve), 

stakeholders could quickly visualize the flow reduction efficiency for additional design 

storms and the tradeoffs associated with pollutant load abatement at this cost point. To 

demonstrate how such optimization outputs may be combined with the multi-objective Gini 

coefficient described in Sect. 3.3.4, the 5-YR storm event with $1,000M NBS expenditure 

was chosen for further analysis. Here, Generation 97, Population 117 produced the most 

optimal NBS allocation scenario according to hydro-environmental efficiency. In 

comparing the spatial distribution of NBSs from this model with the areas of highest social 

deprivation in the WOB watershed (reference Fig. 28a-b), we may note how sole reliance 

upon hydrological characteristics for NBS planning could result in a missed opportunity to 

address potential social benefits from enhanced urban greening. As such, the multi-

objective Gini is explored to refine the NBS optimization results. 
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Fig. 25. GreenPlan-IT output for WOB: (a) flow reduction as a function of cost-efficiency; 

(b) pollutant load reduction as a function of cost-efficiency for the 5-YR storm. 
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4.3.2 Gini-based Optimization 

A Gini coefficient less than or equal to 0.4 is commonly used as a threshold denoting 

fair distribution between the indicators on the x- and y-axes of the Lorenz curve (Groves-

Kirkby et al., 2009; Sadras and Bongiovanni, 2004). By plotting the Lorenz curves for the 

SWMM-based optimization model (Generation 97, Population 117) in Fig. 26, the Gini 

coefficients according to hydrologic efficiency, pollutant load efficiency, and social equity 

were calculate as 0.17, 0.10, and 0.46, respectively. Such results suggest a greater equity 

in NBS allocation on the basis of hydro-dynamics compared with social characteristics. 

The large area between the Lorenz curve arc and the line of equality in Fig. 26b reveals 

poor allocation fairness corresponding to spatial distribution of neighborhood deprivation.  

 

Fig. 26. Gini coefficients based on (a) runoff volume efficiency, (b) pollutant load 

efficiency, (c) Area Deprivation Index, and (d) cumulative indicators for the  

5-YR storm. 
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A sample set of outputs from the GreenPlan-IT tool was selected from the 5-YR storm 

event, each resulting in a total NBS implementation cost of ~$1,000M, to assess how the 

optimal allocation scheme may shift when the multi-objective Gini coefficient is applied. 

As shown in Fig. 27 and summarized in Table 17,  a series of 10 possible NBS planning 

scenarios were evaluated on the basis of the composite Gini coefficient for hydrologic, 

environmental, and social indicators. By comparing the width of the Lorenz curves and 

minimizing the total Gini coefficient between these scenarios, Fig. 27 reveals that the 

greatest distribution of equality occurs in planning scenario Generation 22, Population 246. 

The ideal Gini-based scheme provides a more equal distribution of overall benefits in 

comparison to the optimal scenario based solely on SWMM modeling, despite a similar 

investment in financial resources. The construction of a multi-objective Lorenz curve is 

demonstrated here as a simple plot of cumulative NBS spatial allocation against cumulative 

evaluation indicators (Fig. 27), allowing for easily interpretable comparisons across 

planning scenarios. The area between the Lorenz curve and the diagonal is proposed as a 

holistic index of socio-environmental-hydrological benefits in NBS planning. A larger area 

below the Lorenz curve suggests that the risk of stormwater-based metrics and social-based 

metrics are more variable within the planning paradigm, while a smaller area under the 

curve indicates a more uniform distribution of spatial planning for achieving multiple 

objectives. The Gini index is a straightforward calculation that could be used in NBS 

planning to merge holistic benefits using simple algebra. Since the coefficient of derivation 

under the Lorenz curve is calculated as a standard deviation according to the coefficient of 

variation, variation is relative, and thus invariant to changes in spatial scale, providing a 

transparent tool of the average impact fractions for multi-objective planning (Lee, 1997). 
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Fig. 27. Series of Lorenz curves for select 5-YR, ~$1,000M optimization models. 

 

Table 17. Multi-objective Gini coefficients for 5-YR storm series.  

Gen 

Pop 

G4 

P111 

G22 

P246 

G29 

P102 

G31 

P250 

G33 

P58 

G40 

P256 

G47 

P119 

G64 

P144 

G87 

P225 

G96 

P256 

GADI 0.436 0.443 0.448 0.442 0.449 0.455 0.444 0.482 0.452 0.442 

GVR 0.210 0.157 0.161 0.158 0.163 0.146 0.179 0.178 0.150 0.155 

GTSS 0.108 0.072 0.078 0.074 0.080 0.081 0.097 0.112 0.073 0.086 

  Gi 0.251 0.224 0.229 0.225 0.231 0.333 0.240 0.256 0.225 0.228 

 

The optimal allocation of NBSs throughout the planning area may now be adjusted 

according to the results of the composite Gini coefficient. In Fig. 28, the spatial distribution 
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of NBS allocation according to SWMM-based optimization (i.e., Generation 97, 

Population 117, from the Pareto front curve) is compared to the spatial distribution of NBSs 

from the Gini-based optimization (i.e., Generation 22, Population 246, from the minimized 

composite Gi). By plotting the subcatchments in each scenario as a weighted proportion of 

NBSs to ADI deprivation, Fig. 28d demonstrates a higher influence of NBS area on the 

allocation of social equity in the Gini-based scheme, thereby promoting improved societal 

conditions while maintaining robust hydro-environmental efficiency. As summarized in 

Table 18, both allocation scenarios produced similar runoff volume and pollutant load 

reduction benefits for roughly the same implementation cost. However, the unique spatial 

allocation of the NBS features within the Gini-based scenario addresses an additional 

18.48% of land areas with high neighborhood disadvantage, as measured by the ADI index. 

The pattern of total allocation of benefits between the SWMM-based and the Gini-

based framework is further demonstrated in Fig. 29, where the pie charts represent the 

weighted efficiency achieved in each subcatchment according to hydrologic, 

environmental, and social aspects. The green portions of the pie charts in Fig. 29 reveal a 

greater influence of NBS allocation to ADI improvement in Generation 22, Population 246. 

The primary reason for this disparity is that areas highly prone to flooding or environmental 

quality issues are not always spatially proportional to areas of high social deprivation. As 

such, reliance upon a ‘worst-first’ approach to NBS planning through the lens of hydro-

dynamics may result in non-optimal allocation for addressing the many societal benefits 

provided by NBS solutions.   
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Fig. 28. Spatial distribution for the 5-YR storm per (a) SWMM-based optimization,  

(b) ADI deprivation, (c) difference between SWMM-based and Gini-based 

optimization, and (d) weighted proportion of NBSs to ADI deprivation. 

 

Table 18. Comparison of 5-YR, SWMM-based versus Gini-based optimization model.  

 

G97 

P117 

G22 

P246 

Cost ($M) $1006 $1000 

Runoff Volume Reduction 3.45% 3.38% 

Pollutant Load Reduction 11.15% 11.28% 

No. Bioretention Cells 168,459 189,385 

No. Porous Pavements 8,705 7,772 

No. Tree Boxes 239,001 154,824 

% ADI Addressed by NBSs 16.84% 35.32% 
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Fig. 29. Proportional representation of evaluation indicator efficiency for (a) SWMM-

based optimization model, and (b) Gini-based optimization model. 
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4.3.3 Discussion of Multi-objective Gini 

By solely relying on hydro-environmental modeling, the relative benefits addressed by 

NBS solutions are limited and are not able to be optimized according to unique exposures 

of socio-economic and health-related conditions. The framework presented here converts 

hydro-environmental risk and social disparity into a common unit for comparison to 

adequately capture variation across spatial domains. The Gini index and Lorenz curve are 

presented as an alternative fundamental approach for optimal NBS planning.  

This study demonstrates how real-world social and hydro-environmental complexities 

may be amalgamated using a novel application of the area Gini coefficient for actionable 

science.  The White Oak Bayou case study investigates how social equity and watershed 

dynamics propagate throughout the NBS system, which is fundamental to planning for an 

equitable environment. This study harmonizes multi-indicator planning by facilitating an 

explicit integration of social determinants within the framework of natural-planning using 

data-driven science. Improving resiliency begins with valuing the entangled nature of 

social well-being and water dynamics. The framework demonstrated optimizes NBS 

strategies by assessing unique scenarios and minimizing the Gini coefficient across three 

disparate, but equally important, human-water domains of NBS systems using existing 

tools and methods in a novel way. As we continue to have increased access to heterogenous 

datasets, the spatial Gini coefficient maximizes our understanding of spatial risks and 

benefits to answer challenging questions associated with multi-functional planning.   

The practical implications of this research will enhance the user-friendliness of NBS 

spatial planning in a flexible manner while merging well-established hydrological 

methodologies with NBS social functionalities (Kuller et al., 2017). When we are better 

able to select the optimal location of NBSs at a large-scale, the specific typologies and 
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precise placement may be analyzed using the numerous platforms that currently operate 

through small-scale physical modeling. To date, there has been very little research on NBS 

optimization at the catchment-scale and even less progress in combining numerical 

modeling with comprehensive social benefits and human impacts. This study successfully 

integrates various types of NBS co-benefits into one inter-related framework that combines 

stormwater abatement, pollutant load modeling, cost-efficiency, and social equity-based 

decision-making for robust spatial optimization of NBS systems at the planning scale. 
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5. CONCLUSION 

Renewed global mandates have encouraged a proliferation of NBSs for addressing 

overlapping benefits of hydrological impact, social conditions (e.g., mental and physical 

health, sense of well-being, vulnerability), and environmental health. According to UNEP 

(2019), widespread use of NBSs could reduce global greenhouse gasses by up to one-third 

the total emissions required to meet the Paris Climate Agreement. Robust investment in 

NBSs will help to offset the negative financial consequences of climate change while 

providing new jobs, reducing poverty, and supporting the UN Sustainable Development 

Goals through improved livelihoods, food security, and ecosystem restoration. NBSs are 

an essential component toward the overall global effort of establishing resilient and 

sustainable societies by promoting harmony between people and nature in a cost-effective 

manner. Specifically, NBSs are important for conserving and improving terrestrial 

ecosystems, freshwater resources, sustainable agriculture, and just transitions from rural to 

urban migration (UN Environment Programme, 2019). However, the decision to 

implement nature-based solutions in an optimal manner is posed with challenges that 

transpose complex interactions between human behavior and physical watershed 

phenomena. In the burgeoning era of Anthropogenic science, NBSs serve as a prime 

foundation for exploring linkages between climate change, rapid urban development, 

quality of life goals, and a scarcity of resources for addressing hydro-meteorological 

challenges. NBSs serve numerous cross-cutting themes by utilizing nature to address 

climate and environmental adversaries while also promoting the human capacity to adapt 

to these adverse impacts. To amalgamate such inter-woven goals, decision-makers seek the 

ability to identify priority planning areas that guide equitable investment for multi-
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dimensional benefits (Marchese et al., 2018). To-date, NBS planning paradigms have faced 

numerous challenges regarding adequate spatial distribution of social and physical health 

characteristics due to a lack of comprehensive datasets, equity-based planning frameworks, 

and socio-institutional governance strategies. We therefore necessitate enhanced 

approaches to integrate science with policy toward the informed use of NBSs. This study 

explored the transdisciplinary complexities of NBSs through the lens of socio-hydrology 

and proposed several novel approaches for incorporating human characteristics within 

large-scale NBS planning. 

5.1 Advancing Data-driven Systems 

A novel NSDI was derived that uses real-time, dynamic mapping to promote 

information sharing and access from various governmental, non-profit, and private 

agencies by binding loose geospatial datasets across the NBS paradigm into a coupled 

information network. A comprehensive spatial framework for NBS characteristics has been 

hitherto missing within the literature and is necessary for addressing the overlapping 

challenges of global climate change and urban development. When considering how to 

unlock the full potential of NBSs, a strong spatial component of NBS mitigation metrics is 

essential for informed research and decision-making. However, due to the disparate 

domains associated with NBS systems, a large number of geospatial datasets with varying 

spatial resolutions is necessary, thereby increasing the complexity of sound and actionable 

data management. Traditionally, spatial data queries for generating multidisciplinary maps 

are run against many thousand GIS features, which pose challenges with data access for 

users outside of the hosting organization. Therefore, a robust metadata server and searching 

tool becomes critical for simplifying this process to support applications that extend 

beyond the data’s original intent. We currently invest billions of dollars to automate and 
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integrate geospatial information for focused use, yet this has not yet been done for NBSs 

in a manner that is publicly-accessible. Toward this goal, a comprehensive NSDI will allow 

us to better understand the spatial elements associated with NBS complexity and support 

widespread data collection, access, and decision-making strategies. 

An NSDI system is a geospatial framework that connects users with multiple sources 

of spatial data to enhance understanding of the physical and social environment. NSDIs 

consist of conglomerate datasets with corresponding documentation (metadata) for 

accessing, discovering, visualizing, and evaluating large amounts of information. NSDIs 

enable trans-institutional GIS data management by distributing the information costs 

among many users, thereby reducing redundancy in data gathering and creation, further 

allowing data collected for a specific goal to be used by the broader community in a 

generalized format. At the core of NSDIs is the concept of collaborative research across 

institutions and organizations for the public good, whereby costs and benefits of 

widespread data management are shared communally. Through interoperability, users 

become embedded within the system at a semantic level and act as agents to decode vast 

amounts of information and elicit value-added insights (Working Group on Planning 

(GTplan), 2013). To be successful, NSDI systems must be interoperable, meaning the data 

is accessible irrespective of the user’s platform, physical location, or organizational 

affiliation, while providing robust decision-making and coordination capabilities through 

strategically harmonized and curated datasets. As such, this study extended beyond 

providing a useful NSDI for NBS planning by also performing a detailed assessment of the 

current geospatial capabilities available for advanced NSDI interoperability. Specifically, 

the geospatial framework presented here was measured against the primary components of 
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a reliable NSDI (namely, openness, standardization, scalability, and spatial analysis) to 

ensure seamless operation of end-use searches across the web interface.  

 The proposed NSDI application, called NBS-Geo, combined long-term and acute 

stressors of climate change, land-use, urbanization trends, quality of life metrics, ecological 

health, and hydrological risk toward a holistic, risk-based framework. The four domains 

integrated within NBS-Geo (social, hydrologic, environmental, and ecological) comprise 

an amalgamation of biotic and abiotic components, which must be viewed as a system of 

interacting and unified goals that, when linked collectively, describe the overall system 

(Stokols et al., 2013). By approaching the system as a linkage of spatial properties, this 

study highlights the important synergies associated with multiple human-water objectives, 

thereby reducing the potential for systemic underperformance (sustainability) or 

deformation in light of outside stressors (resilience) (Marchese et al., 2018). By 

amalgamating candidate NBS datasets into one platform, the proposed NSDI provided the 

critical function of data interoperability across organizations, which is necessary to 

generate useful insight from disparate domains as we attempt to scale-up compounded 

climate solutions. Moreover, by integrating various epistemologies, this novel analytical 

approach serves as a representation of complex landscape functionality and their 

interactions for improved systems science. The importance of location, connectivity, and 

social context may now be revealed according to the spatial variation of socio-hydro-

enviro-ecological patterns and processes at cascading scales. Given the rapid increase in 

high-resolution, reliable, and transdisciplinary global datasets as a function of space, NBS-

Geo serves as a framework for bridging the gap between end-user and data contributor as 

we work collectively toward enhanced Global Spatial Data Infrastructure (GSDI) systems 
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(Working Group on Planning (GTplan), 2013). The detailed assessment of NSDI metrics 

within the NBS-Geo framework reveals the current state of GIS science and highlights 

further efforts necessary to create consistent and useful web-based geospatial data servers. 

5.2 Balancing Economic, Social, and Hydro-environmental Needs 

In addition to a lack of spatially-distributed datasets linking the human and physical 

properties of NBSs, widespread adoption is often further challenged by social and 

institutional constructs that are not well-understood. A key issue in designing effective 

NBS policies includes the inability to examine a range of complex system properties and 

to describe alternative management strategies. Policy-making with limited resources and 

external human influence requires an understanding of social dynamics within planning 

frameworks, as a shift in one system variable could trigger self-regulating and/or divergent 

outcomes elsewhere (Frantzeskaki, McPhearson, Collier, et al., 2019). As such, proper co-

development of NBS plans should include expert input from scientists, practitioners, and 

local community constituents for a weaving together of pertinent insights across diverse 

disciplines. Toward this goal, a novel framework was presented and demonstrated that 

applies a series of soft-systems approaches to elicit the complex interactions between the 

physical processes served by NBSs and their human-directed management opportunities.  

Flows of information throughout the human-water cycle are often transformed by belief 

systems embedded within stakeholder cognition. This study employed a novel semi-

quantitative scenario-based assessment, coupled with causal loop logic, to identify and 

better understand such flows of information amongst a plethora of decision-making 

options. Typically, sole reliance upon scenario-based modeling obscures the feedback loop 

logic embedded within the system. Conversely, causal loop diagrams alone may quickly 

become convoluted, which are difficult to decipher from human visualization when we 
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encounter double and triple loop influences. By combining both loop analysis and scenario-

based modeling within one framework, we are better able to identify areas of policy 

effectiveness while also explaining the emergence of synergies and trade-offs according to 

causal loop logic. The community-led application highlighted stakeholder collaboration as 

a means for balancing complex governmental structures when working with multiple 

agencies. Unique synergies and conflicts between potential NBS management strategies 

were revealed and described as function of policy coherence. Demonstrated by the WOB 

case study, unexpected system feedbacks were discovered that resulted from complex 

causal influences across the social and hydrological domains (e.g., the influence of climate 

change, flood memory, advocacy, political will, and benefit visualization). As such, several 

major barriers associated with NBS implementation, which had hitherto been studied as a 

series of siloed case studies, were revealed holistically by combining the strengths of 

system dynamics with cognitive mapping. 

The framework demonstrated here promotes a deeper awareness of dynamic feedbacks 

in the initial planning of complex systems and denotes the elucidation of policy coherence 

as a primary goal for holistic systems-thinking. By amalgamating cognitive modeling with 

causal loop logic, we extend beyond identifying the nature of the system to also elucidate 

the behavior and structure of the system amidst complex policy-driven interactions. Such 

a framework is applicable to a variety of complex systems with overlapping socio-hydro-

environmental processes that are influenced by political decision-making across 

institutional scales. This study highlights how identifying the nature of the system must be 

supplemented by also identifying the social context within which the system is embedded, 

demonstrated here through a novel representation of NBS planning as a complex human-
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environmental system. This integrative approach enriches the theoretical merging of 

systems-thinking epistemology (i.e., embedding human cognition within the system), with 

ontology (i.e., using the underling structure of the system to elicit insights). In summary, 

this novel framework demonstrates how we may approach human-earth problems as a web 

of interlinked connections with weighted interdependencies through the lens of systems-

thinking, thereby providing a mechanism based on cognitive reality to better understand 

management actions within a rapidly changing world. 

5.3 Overlapping Co-benefits & Decision-making 

This improved understanding of NBS decision-making and geospatial properties may 

be leveraged to inform an explicit representation of social equity within holistic planning 

frameworks. As described in Section 2.2, NBS systems have been shown to improve social 

conditions by providing enhanced metrics of mental well-being, physical health, aesthetic 

appeal, recreational opportunity, and general livelihood. A right first step toward fully 

encompassing such NBS multi-functionalities is to represent disparate phenomena (i.e., 

stormwater runoff, water quality, and social well-being) as unique functions of space and 

to quantify their tradeoffs through the lens of overlapping disciplines. However, traditional 

NBS optimization schemes have prioritized drainage characteristics in lieu of social 

functionality throughout space, while assuming such co-benefits will somehow propagate 

naturally throughout the system (Ruangpan et al., 2020; Zhang & Chui, 2018). By relying 

primarily on hydro-environmental optimization, existing NBS planning frameworks do not 

fully espouse human characteristics (e.g., socio-economics, health metrics) in a manner 

that impacts the overall communal benefits able to be realized by the system. In other 

words, the unique spatial exposures of social deprivation that could benefit from NBSs are 

not well-captured in current optimization models. Instead, general estimates of social 
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vulnerability are incorporated within preliminary planning stages through coarse 

visualization of geospatial hotspots and are not embedded directly within high-resolution 

planning schemes. A recent state-of-the-art review described how consideration of social 

co-benefits has been increasingly valued as a desirable goal throughout the NBS literature, 

yet the majority of NBS planning has continued to prioritize stormwater abatement, due in 

part to a lack of integrated socio-hydrological frameworks (Ruangpan et al., 2020). As 

such, explicit representation of the social co-benefits of NBS systems is one of the most 

critical barriers to overcome for widespread success in this field (Adib & Wu, 2020). 

This study presented and demonstrated a novel framework to integrate hydro-

environmental modeling, economic efficiency, and social deprivation using a 

dimensionless Gini coefficient, which is intended to spur the positive connection of social 

and physical influences within robust NBS planning. Hydro-environmental risk and social 

disparity were combined within a common measurement unit to capture variation across 

spatial domains and to optimize fair distribution across the study area. Advances in 

neighborhood-scale datasets for measuring social deprivation were leveraged to improve 

fundamental, multi-objective planning in human-water systems. A case study in the White 

Oak Bayou watershed in Houston, Texas, USA was used to demonstrate how the optimal 

spatial allocation of NBSs is location-dependent with varying tradeoffs across overlapping 

goals (e.g., stormwater runoff mitigation, water quality abatement, economic efficiency, 

and equity-based allocation). Current stormwater management within the study area is 

based on a ‘worst-first’ framework (Despart, 2019), where hydrological improvements are 

prioritized according to flood risk reduction and the number of persons benefited, 

irrespective of their socio-economic conditions. Such frameworks do not address inherent 
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vulnerabilities within the populations served, such as ability to recover from a storm or the 

reinforcing impacts of hydro-environmental hazards on socio-economics. 

This study is the first known attempt to incorporate NBS synergies and tradeoffs 

between hydrology, social depravation, environmental quality, and cost efficiency into a 

single framework using robust, data-driven optimization. In doing so, this study re-shapes 

the NBS planning process by transcending beyond flood risk to also include equal 

distribution of social benefits as an explicit policy-making mechanism. The composite Gini 

coefficient demonstrated how water resources planning may be addressed as a holistic 

system of human-water phenomena to minimize tradeoffs across disparate domains. Social 

justice was improved in the Gini-based optimization scheme, while the overall costs and 

hydro-environmental efficiencies were similar to the optimal NBS scenario based solely 

on watershed modeling. By constructing model with such inter-disciplinary elements, this 

framework strengthens the foundation for novel research regarding the complex 

associations between social patterns and watershed physiological characteristics. As such, 

water resources planning may be improved by more thoroughly balancing economic, 

social, and hydro-environmental needs to ensure equitable allocation of climate solutions. 

5.4 Systems-based Approach to NBS Planning and Management 

In the era of the Anthropocene, change is occurring rapidly, and we must better 

understand complex socio-hydrological systems to address variability in climate and 

human patterns. Instead of attempting to super-impose human dynamics on the result of 

physical models, or as a pre-existing boundary condition, we must transition toward 

coupled modeling frameworks that integrate human characteristics as a stimulus that 

interacts with the environment (Bouziotas & Ertsen, 2017). We can no longer study 

watershed systems as fixed within a vacuum of ideal boundary conditions and static forces. 
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In order to prepare for the rapidly changing world, we must understand and account for the 

multifunctional components involved in all of these processes, and we must do so in a 

coherent fashion for optimal impact in the coming era of water science. While coupled 

social and physical models have proliferated within the general realm of water security 

(e.g., droughts, water use, hydro-meteorological hazards, migration, agriculture, etc.), the 

foundation of such a framework has been hitherto lacking within the NBS scientific 

literature. In considering the rising popularity of urban green infrastructure, we are 

presented with an opportunity to re-cast how decision-making operates in order to 

maximize the numerous co-benefits associated with NBSs. In doing so, we begin to identify 

important feedbacks and transitional variables that, if strengthened, could improve the 

adaptability of the overall system regarding climate concerns, societal injustices, political 

forces, and other complex challenges through a socio-technocratic lens (Penny & Goddard, 

2018; Schlüter & Pahl-Wostl, 2007).  

In this light, strategic NBS planning requires real-world empirical datasets (e.g., human 

behavior, geospatial properties) and actionable frameworks (e.g., equity-based planning) 

to aid in optimal planning amongst disparate social and physical domains (Frantzeskaki, 

McPhearson, Collier, et al., 2019). This study revealed how transdisciplinary methods of 

analysis can help decision-makers, from community participants to regional decision-

makers, improve NBS planning in light of overlapping themes. When we are better able to 

connect the dots between social constructs, environmental processes, and the hydrological 

cycle, which are all dynamic adaptations that transform and co-evolve amongst one 

another, we can establish patterns within the seemingly chaotic network of NBS sub-

processes. From there, we can better understand how the system will respond to changes, 
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such as intensified climate change or rapid urbanization, and how our decisions at present 

might improve or undermine the overarching system stability.  

This research transitioned beyond the standard focus of NBS landscape characteristics 

to investigate the complex associations relating social patterns and hydro-environmental 

efficacy. This study integrated methods from diverse fields (e.g., geomatics, hydrology, 

environmental science, social science, multi-objective optimization, systems-thinking, 

decision science) to strengthen actionable NBS frameworks and to explore the interplay 

between NBS design, policy-making, and watershed organization. In light of ongoing 

climate change and urban development, this study amalgamated robust hydrologic 

modeling with novel theories regarding human behavior and equitable planning to 

strengthen NBS adoption and further support vital ecosystem services, social livelihoods, 

and hydro-meteorological risk reduction through strategic use of greenspaces within the 

built environment. 
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APPENDICES 

Appendix A. Scripts for group modeling building of a causal loop diagram. 

Script 1: Logistics and Room Set Up 

This script is used to create an inviting and conducive environment for group model-

building (GMB) participants before the GMB session begins. 

 

Status: Best practices 

 

Primary nature of group task: Offline 

 

Time 

• Preparation time: 30 minutes 

• Time required during session: 0 minutes 

• Follow-up time: 0 minutes 

Materials: The materials needed for group model building session 

 

Inputs: A discussion for how the room should be set up. 

 

Outputs: A plan for room set-up [Zoom]. 

 

Roles: Facilitators experienced in GMB and the design of the workshop. 

 

Steps 

1. Arrange the table, chairs, and flip charts in the room in a manner conducive to 

upcoming activities and scripts. Consider how participants should be sitting. 

2. In a semicircle facing either the wall where a model is projected, the white board, 

or the chalkboard. 

3. In clusters of tables so participants can work in small groups. [N/A] 

Pre-built Zoom Whiteboard template for Variable Elicitation script. 

4. Arrange power cords, tables, and chairs for members not sitting at the table with 

participants (e.g., recorders, modelers, coaches). 

5. Secure any power cords and extension cables with tape to minimize the risk that 

people may trip.[N/A] Enable Zoom Whiteboard for variable elicitation. 

• Virtual Sticky Notes 

• Virtual Text Boxes 

• Export Image (PNG) of Whiteboard periodically during group-building. 

6. Arrange refreshments in a place that is convenient for participants to get up and 

access during the session. [Include several virtual breaks during workshop.] 

  

https://en.wikibooks.org/wiki/Scriptapedia/Roles_in_Group_Model_Building
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Evaluation Criteria: Thoughtful room set-up that will contribute to participants’ comfort, 

engagement, and understanding. 

 

Authors: Andersen and Richardson 

 

History: Documented by Annaliese Calhoun in 2010 based on Luna-Reyes et al. (2006). 

 

Revisions: Peter Hovmand (2013) to provide more details on room arrangements. 

 

References: Luna-Reyes, L. F., Martinez-Moyano, I. J., Pardo, T. A., Cresswell, A. M., 

Andersen, D. F., & Richardson, G. P. (2006). Anatomy of a group model-building 

intervention: Building dynamic theory from case study research. System Dynamics Review, 

22(4), 291-320. 

 

Notes: Successful GMB sessions require the qualities and comfort of the physical facilities 

and the smooth handling of logistics for the sessions. This should include removing the 

participants from their phones and work site and providing a relaxing change from routine 

work. Multi-day sessions should be located and planned to provide high-quality lodging, 

meals, and opportunities for social interaction. 

 

Script 2: Chickens and Eggs Example 

This script is used to introduce concepts of causal loop diagram (CLD) and provide an 

example of feedback loops.to those without knowledge of system dynamics. The purpose 

of the script is to provide a universal and easy to understand metaphor for complex systems. 

 

Status: Promising 

 

Primary nature of group task: Presentation 

 

Time 

• Preparation time: 5 minutes 

• Time required during session: 10 minutes 

• Follow-up time: 0 minutes 

Materials 

• Markers or pens.  

• A white board or flip chart papers. 

Inputs 

• A story of chickens’ reproduction, growth, overcrowding, and injuries. 

• A graph over time of chicken population growth dynamic. 

• A drawing with chicken crossing roads if preferred.  
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Outputs 

• A causal loop diagram of chicken population growth dynamic with variables, 

polarity, feedback loops, and delays. 

• Familiarity with the concepts of feedback loops (reinforcing and balancing), 

causal relationships with polarities between variables, and how to interpret 

dynamics from a causal loop diagram. 

Roles: Modeler with training in system dynamics or community-based system dynamics. 

 

Steps 

1. First, the facilitator will tell a story of chickens reproducing, population growth, 

overcrowding, and injuries, while drawing a picture of the narrative. 

2. Then, the facilitator will present a graph over time to describe this dynamic – of 

chicken population growth with a hope of sustained growth, and a fear of collapse. 

3. The facilitator then draws a causal loop diagram to represent the reinforcing and 

balancing loops of the story.  The facilitator then explains that the model functions 

as a “dynamic hypothesis” of the structure that may create this behavior. 

The presentation should highlight: 

• Polarity, 

• What a variable means (it varies) 

• Feedback loops (reinforcing and balancing) 

• Delays 

4. (S)he then asks if there are other factors or structures, and can add on other sources 

of injuries, other factors that reduce eggs, etc. and maps those factors onto the CLD, 

to demonstrate that models are meant to be tools for dialogue and thinking.  As 

participants nominate additional links, the facilitator adds those links to the model. 

 

Evaluation Criteria: Participants contribute variables indicating understanding of 

dynamic variables. 

 

Authors: Originally developed by Brian Biroscek. Refined and expanded by Peter 

Hovmand, Ellis Ballard and the Social System Design Lab. 

 

Script 3: Variable Elicitation 

This script is used to facilitate consensus-based group discussion about the model problem 

and boundaries early in the modeling process. 

 

Status: Best practices 

 

Primary nature of group task: Divergent 

 

Time 

• Time required during session: 20 minutes 

• Follow-up time: 0 minutes 
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Materials 

• Markers or pens and paper.  

• A white board or flip chart papers. 

Inputs: None [Keep list of variables from literature review to the side of the screen for 

group guidance during live-session, if necessary.] 

 

Outputs: Prioritized list of variables. 

 

Roles 

• Facilitator with moderate expertise in SD and small group facilitation. 

• Wall builder with moderate expertise in SD. 

• Runner (optional) to transfer variables from facilitator to wall builder. 

Steps 

1. The facilitator gives each participant sheets of blank paper and markers. [Introduce 

virtual Whiteboard with blank, colored boxes and titles of each theme to be 

considered]. 

2. The facilitator writes a task-focusing question such as, “What are the key variables 

affecting the process and outcomes of the [project name] project?” on the 

whiteboard. 

3. The facilitator asks participants to write as many problem-related variables as they 

can on the sheets of paper. Each variable should be listed on its own sheet of paper. 

Participants are given a few minutes to work individually on their lists. 

4. Once the participants have finished the individual exercise, the facilitator has the 

participants share their variables one at a time in a round-robin fashion similar to 

the process used in the “Hopes and Fears” script. When a variable name is open to 

several interpretations, the facilitator asks for a brief description or definition of the 

variable, including the units in which the variable can be measured. 

5. The facilitator (or runner) hands each variable to the wall builder, who tapes them 

on the wall in thematic clusters. 

6. Once all of the variables have been shared, the wall builder reflects back the themes 

that emerged from wall-building and asks participants for feedback. The wall 

builder may ask questions such as “Does this resonate with you? Are there other 

themes you notice, or any variables you think should be moved?” 

7. Optionally, the facilitator asks the participants to prioritize the variables by simple 

voting mechanisms. Individuals can vote for as many variables as they want. The 

number of votes for each variable is also written down on the board. 

8. The facilitator makes a summary of the variables on the board, while the recorder 

captures the products of the process either photographically or in a word processor. 

9. The facilitator suggests which variables can be considered stocks as they are 

mentioned. If the participants agree, the facilitator can add the words “level of” to 

these variables. 

  

https://en.wikibooks.org/wiki/Scriptapedia/Roles_in_Group_Model_Building
https://en.wikibooks.org/wiki/Scriptapedia/Roles_in_Group_Model_Building#Wall_Builder
https://en.wikibooks.org/wiki/Scriptapedia/Roles_in_Group_Model_Building#Runner
https://en.wikibooks.org/wiki/Scriptapedia/Hopes_and_Fears
https://en.wikibooks.org/wiki/Scriptapedia/Roles_in_Group_Model_Building#Runner
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Evaluation Criteria: Identification of key variables and stocks. 

 

Authors: Andersen and Richardson 

 

History: Originally described in Luna-Reyes et al. (2006). 

 

References: Luna-Reyes, L. F., Martinez-Moyano, I. J., Pardo, T. A., Cresswell, A. M., 

Andersen, D. F., & Richardson, G. P. (2006). Anatomy of a group model-building 

intervention: Building dynamic theory from case study research. System Dynamics Review, 

22(4), 291-320. 

 

Notes: A variation of this script is the Nominal Group Technique. Based on group size, 

decide whether to break participants into subgroups. In smaller groups (N<10), allow 

individuals to work and present independently. In larger groups (N >10), divide 

participants into subgroups of roughly 10. Ask the subgroups to sit together. 

 
Script 4: Causal Mapping with Seed Structure 

This script is used to elicit causal structures at the beginning of a group model building 

process when there is an interest in quickly illustrating how a focal problem or situation 

could involve a system of interacting feedback loops. 

 

Status: Best practices 

 

Primary nature of group task: Divergent 

 

Time 

• Preparation time: 180 minutes 

• Time required during session: 90 minutes 

• Follow-up time: 90 minutes 

Materials 

• Data projector 

• Computer running modeling software (e.g., Vensim) 

• Recorder's materials 

• Flip charts with key words posted in the room 

Inputs: Stock-flow seed structure from prior work with core modeling team. 

 

Outputs: Causal map of reinforcing and balancing feedback loops that identify variables 

and structures related to a focal problem. 

 

  

https://en.wikibooks.org/wiki/Scriptapedia/Nominal_Group_Technique
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Roles 

• Modeler with expertise in system dynamics modeling who can draw diagrams 

in real time. 

• Facilitator familiar with the situation and language used by participants to 

discuss the problem, and strong group facilitation skills appropriate to the 

culture of participation. 

• Recorder with some exposure to system dynamics and/or familiarity with the 

context of the issue. 

Steps 

1. The modeler, who is sitting with a laptop connected to a data projector, and the 

facilitator are at the front of the room. The modeler could also be drawing the 

structure by hand on a white board or paper, as long as it is visible to the entire 

group. 

2. The facilitator begins by explaining, “We’re going to spend the next 90 minutes or 

so doing a causal mapping exercise [on the previously identified issue].” 

3. The modeler explains that the diagram that will result from this will be available to 

them. The modeler then introduces the seed structure with the stock and flows. 

4. If changes are suggested or needed, the facilitator affirms the changes while the 

modeler captures the changes. 

5. The facilitator then explains that participants can talk about their own experience 

or what they see in their family or community. 

6. The recorders document working definitions used for key words. 

7. The facilitator then asks questions that help identify impact and causal relations 

between identified key variables. 

8. As someone suggests something, the modeler draws the link on the model in front 

of the room. The facilitator and modeler will then encourage participants to add 

variables and relationships. The modeler tries to get things recorded using exactly 

the same terms as the participants. 

9. Meanwhile, the recorders are taking notes on the variables named, relationships 

being described, and quotes or stories that help put some context around the story. 

If necessary, the recorder uses the number chart developed earlier to help identify 

who is saying what. 

10. The modeler explains the notation as the structure is drawn on the board. This 

includes arrows, polarity (‘+’, ‘-‘), and feedback loops as they appear in the 

diagram. 

11. The recorders write down relationships and should, as much as possible, use arrows 

in causal chains with ‘+’ and ‘–‘ signs to indicate the direction of the relationship. 

A ‘+’ sign indicates that increasing one leads to an increase in the other, and a 

decrease in one leads to a decrease in the other. A ‘-‘ sign indicates an opposite 

effect where increasing one leads to a decrease in the other, and a decrease in one 

leads to an increase in the other. 

 

https://en.wikibooks.org/wiki/Scriptapedia/Roles_in_Group_Model_Building
https://en.wikibooks.org/wiki/Scriptapedia/Roles_in_Group_Model_Building
https://en.wikibooks.org/wiki/Scriptapedia/Roles_in_Group_Model_Building
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12. The recorders should avoid interrupting the flow of the conversation between 

participants and generally avoid asking clarifying questions or adding comments. 

They should simply make a note of the questions or comments in the margins and 

distinguish them from things that participants said, such as by using an asterisk (*) 

symbol. 

13. The modeler will interject when the first feedback loop has been formed. 

14. If the group begins to slow down and there is time, or no feedback loop has been 

formed, the modeler will ask if there are any relationships between the identified 

variables that have not been discussed. Doing this will help create loops that might 

otherwise have been missed. 

15. The process continues until there are about 5 minutes left in the exercise, at which 

point the modeler points out, “We’ve only spent a little time, less than 90 minutes, 

coming up with some of these relationships and already it is looking pretty 

complicated.” However, this is still much simpler than the reality they are trying to 

manage in practice and research. Ask if there are any other important variables or 

relationships that haven't been described. 

Evaluation Criteria 

• Energized participants interested in more modeling 

• A causal map with multiple feedback loops 

• Recognizing that there is a feedback system producing the reported behavior 

Authors: Unknown 

 

History: This particular script was first based on an activity conducted with Save the 

Children UK, Mongolia in 2006 and was formalized as part of the Missouri Transformation 

Project. Lune-Reyes et al. (2006) describes a similar activity. 

 

Revisions: Revised 2013 by Peter Hovmand to reflect current practices. 

 

References: Luna-Reyes, L. F., Martinez-Moyano, I. J., Pardo, T. A., Cresswell, A. M., 

Andersen, D. F., & Richardson, G. P. (2006). Anatomy of a group model-building 

intervention: Building dynamic theory from case study research. System Dynamics Review. 

 

Notes: This exercise is based on a more general, common activity in system dynamics 

modeling that follows from using system dynamics modeling software in classrooms, 

workshops, and group model building. The exercise works well for quickly (1) conveying 

the idea that systems are complex, (2) introducing the language of system dynamics (e.g., 

balancing and reinforcing feedback loops, stocks and flows), and (3) grounding the 

emerging model in participants’ language. The exercise can be conducted with large groups 

up to about 50 or 60 individuals, but participation tends to be limited after the group size 

exceeds 20 individuals. The design of the seed structure is critical and should be piloted 

before attempting to conduct this exercise. 

 

  



188 

 

Script 5: Creating Causal Loop Diagram from Variable List 

This can be used to introduce causal loop diagramming after a list of variables have been 

identified (e.g., from a variable elicitation, connection circle, or graphs over time exercise). 

 

Status: Promising practice 

 

Primary nature of group task: Convergent 

 

Time 

• Preparation time: 10 minutes 

• Time required during session: 40 minutes 

• Follow-up time: 15 minutes 

Materials 

• Flip chart paper for each group or large whiteboard/chalkboard. 

• Markers. 

Inputs: List of variables (e.g., from variable elicitation, connection circle exercise, or 

graphs over time). 

 

Outputs: Set of causal loop diagram. 

 

Roles: Modeler/facilitator with experience drawing causal loop diagrams and comfortable 

introducing conventions. 

 

Steps 

1. Introduce the exercise by reviewing the variable list. 

2. Either in the same groupings or new groupings, instruct the teams to now construct 

a causal loop diagram based on the connection circles. Sample instructions: 

We’re now going to create a causal loop diagram identifying hypothesized causal 

relationships between variables. These connections can be based on the literature, your 

own research or conjectures. 

To do this, begin by picking variables that are important and transferring them to [your 

sheet of paper/the whiteboard] and then drawing a casual arrow from the cause to the effect. 

Then add a plus or minus sign to indicate the direction of influence with plus signs 

representing change in the same direction or positive associations, and minus signs 

representing change in the opposite direction or negative associations. If you can’t decide 

if a link should be plus or minus, and this is because you’re not sure as a group, use a 

question mark. If it could be both, then draw two separate causal links, one positive and 

one negative. 

As the number of links increases, look for positive and reinforcing feedback loops. 

For example, as education increases, income increases, and as income increases, there are 

more opportunities for even more education. This represents a reinforcing loop because the 

direction of change is reinforced. This same loop can either be a virtuous cycle or vicious 

cycle. For example, if I lose my job and income decreases, it may limit my ability to get an 

https://en.wikibooks.org/wiki/Scriptapedia/Roles_in_Group_Model_Building
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education, which in turn may make it even hard to get a job or future promotion, and this 

in turn would lower my income (draw the CLD shown in Figure 1). 

Of course, this can’t go on forever (either in the vicious or the virtuous cycle). As I go to 

school and get more education, the hours per week that I can work decreases, which in turn 

leads to less income (draw the balancing loop so that the CLD matches what is shown in 

Figure 2). Notice that less hours per week leads to less income. The converse is also true, 

more hours per week leads to more income. This is what kind of link, plus or minus? 

Answer: plus, correct. However, now with less income, there is also a limit on education. 

This forms a balancing loop: as I increase education, my hours per week decreases, leading 

to less income, which then leads to a decrease in education. I started with an increase 

education and ended up with a decrease in education, hence the behavior of this outer loop 

counteracts or balances the initial direction of change. 

Our goal in this exercise is to develop a causal loop diagram, meaning we’re looking to 

identify the individual linkages between variables as well as the loops. So, a good strategy 

here is to look for ways to “close the loop”. We do this by looking for variables that don’t 

have any arrows going into them and seeing if there is another variable in our model that 

might influence this variable. If there is, we can then draw a link. 

 
Figure A.1. Single reinforcing loop (R1) 

 

 
Figure A.2. Reinforcing loop R1 with 

the addition of a balancing loop (B1) 

 

3. As groups work on their causal loop diagrams, facilitators walk around the room, 

observe how the groups are doing, and coach them. Consider the focus of coaching 

in three phases: 

• (Beginning, first 5 minutes): focus on clarifying the instructions and provide 

positive reinforcement that they are on the right track. For example: “That 

looks great. You have several variables representing [topic] and causal links 

with polarities identified.” 

• (Middle): Focus on helping groups improve their skills in developing the 

diagrams and representing their discussion. For example: “Remember, if 

you want to show a relationship that goes in both directions, draw two 

separate lines,” or “Seems like you’re having a lot of disagreement about 

whether the variable is the same for all communities. Why don’t you try 

https://commons.wikimedia.org/wiki/File:CLD_figure1.png
https://commons.wikimedia.org/wiki/File:CLD_figure2.png
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adding a second variable and representing both ideas on the page, even if 

they feel a bit contradictory, or only relevant for some communities.” 

• (End, last 5 minutes): look for a group that has a good example to start the 

next exercise, and role model how one explains the connections: “You have 

5 minutes left before we return to large group,” or “That looks great. I see 

how [variable 1] is influencing [variable 2], and this is influencing [variable 

3], which then affects [variable 4]. You also have a couple of feedback 

loops. This one is reinforcing (point to loop and talk it through) and this one 

is balancing (point to loop and talk it through). Nice job!” 

4. Tell the groups to stop after 15 minutes and ask each group to present their 

connection circles. 

• What were some of the main themes your group ended up discussing? 

• Where did you see the most interesting feedback loops? 

Evaluation Criteria: Participants created a rich causal loop diagram (CLD) based on their 

thoughts and stories. 

 

Authors: Peter Hovmand 2017 

 

History: This was originally based on the Hovmand and Kraus (2013) “Creating Causal 

Loop Diagram from Connection Circles” script as part of Raising St. Louis in 2013 where 

the connection circle exercise provided a “warm up” for a group and an initial set of 

associations for the CLD. This was found to be helpful for groups that tended to feel more 

comfortable in correlational thinking and the barrier too steep for jumping directly into 

operational thinking from the feedback perspective. However, relying on the connection 

circles as a starting point often meant that the group did not get a sense to develop a shared 

view of the dynamics of the system as might be typical through the graphs over time 

exercise. Although going from a graphs over time to connection circle exercise, and then 

from the connection circle exercise to a causal loop diagram might have been an option, it 

seemed that one might be able to go directly from graphs over time to causal loop 

diagramming with some groups. Hence, the basis for this script. 

 

Script 6: Model Review 

This script is used to summarize dynamic insights and stories, clarify fuzzy ideas, capture 

additional information about model structure, and elicit feedback from participants after 

causal structures have been developed, typically at the end of a session. 

 

Status: Best practices 

 

Primary nature of group task: Convergent 

 

Time 

• Preparation time: 5 minutes 

• Time required during session: 15 minutes 

Materials: Screen/whiteboard 
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Inputs: Diagram of model. 

 

Outputs 

• List of main feedback loops and dynamics identified. 

• List of insights gained from the connection circle exercise. 

Roles 

• Modeler with experience building models. 

• Reflector with experience building and analyzing system dynamics models. 

• Recorder with note-taking experience. 

Steps 

1. At the start of the model review, the modeler moves up to the front of the room. 

2. The modeler describes the causal loop diagram and stresses that this is another 

reflection of the exact same linkages and variables discussed during the exercise 

and that none of these elements have been changed. Modeler notes that plus and 

minus signs mean the same as in the previous exercise. 

3. In a causal diagram, the modeler takes care to explain reinforcing and balancing 

loops by tracing examples within the model (if available). Modeler introduces the 

reflector so that the reflector can discuss more insights regarding feedback within 

the model. 

4. The reflector reviews key insights from the causal map and reads back the stories 

associated with major reinforcing and balancing feedback loops, intervention 

points, etc. 

5. After the reflector has reviewed the diagram, the reflector then initiates questioning 

regarding what didn’t get recaptured or is missing from the diagram. The reflector 

assesses confirmation of the adequacy of the diagram as a representation of the 

group thinking. The recorders document the insights shared. 

6. The reflector also will point out subsequent, important changes in structure, help 

the group identify what is happening with the modeling, and highlight model-based 

insights that emerge. 

 

Evaluation Criteria 

• A revised causal loop diagram that is based on an initial discussion. 

• A shared understanding of the changes in the model and insights that have 

emerged. 

History: Based on the original script “Causal Mapping from Discussion” by Peter 

Hovmand, created on April 19, 2010. 

 

Revisions: Revised May 22, 2012 by Alison Kraus and Peter Hovmand. Revised March 4, 

2012 by Meagan Colvin and Peter Hovmand. 

 

References: Richardson, G. P. (1997). Problems in causal loop diagrams. System 

Dynamics Review, 13(3), 247-25 

 

https://en.wikibooks.org/wiki/Scriptapedia/Roles_in_Group_Model_Building#Modeler
https://en.wikibooks.org/wiki/Scriptapedia/Roles_in_Group_Model_Building
https://en.wikibooks.org/wiki/Scriptapedia/Roles_in_Group_Model_Building


192 

 

Appendix B. GreenPlan-IT Optimization Tool subcatchment input file. BIOR: 

“Bioretention cell”, PMPV: “Permeable pavement”, TRBX: “Tree box”. 

 

   No. Possible NBS Features 

Subcatchment 

No. 

Area 

(AC) 

Impervious 

Cover (%) 
BIOR PMPV TRBX 

1 709.4 43.7 4904 96 7761 

2 1420.5 45.4 18158 317 17632 

3 683 40.7 8178 37 10573 

4 363.1 47.6 1449 43 9745 

5 588.5 33.5 6639 229 214 

6 358.6 51.5 1815 4 9404 

7 712 32.5 17376 93 3208 

8 815 46.5 12339 362 4034 

9 913 43.7 11430 157 14351 

10 432.8 40.9 4932 96 387 

11 584.9 52 4521 133 9299 

12 62.4 32.6 1385 4 22 

13 86.7 47.8 937 0 1984 

14 1018.4 34.8 7250 192 11130 

15 519.2 50.7 6103 194 8295 

16 358.4 33.9 4273 38 3359 

17 270.7 54.7 1537 35 8309 

18 256.3 59 680 17 10540 

19 871.2 59 6796 333 12400 

20 300.7 24.7 1780 123 259 

21 197.7 59.1 1602 195 231 

22 399.5 64.3 3392 313 5719 

23 519 31.4 8859 55 0 

24 382.5 42.9 3635 183 547 

25 226.8 52.6 1843 18 3654 

26 447.7 41.8 6841 87 643 

27 502.9 59.5 5273 217 7760 

28 358.4 39.2 3186 143 168 

29 282.3 20.1 4122 10 0 

30 614.4 41.7 6045 7 4934 

31 42.5 65.9 284 69 154 

32 153.3 31.6 3360 0 1519 

33 340.4 51.1 6349 341 131 

34 83.4 62.3 1074 63 145 

35 261.7 44 1175 7 488 
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Appendix B (continued): 

   No. Possible NBS Features 

Subcatchment 

No. 

Area 

(AC) 

Impervious 

Cover (%) 
BIOR PMPV TRBX 

36 458.3 54.5 3629 44 11804 

37 966.4 51.6 12159 287 9376 

38 279.7 43.4 1746 87 968 

39 1004 37.3 5286 31 1553 

40 47 28.4 1330 0 105 

41 480.7 43.8 6856 215 857 

42 169.6 38.6 2098 0 4163 

43 391 31.5 1486 13 1441 

44 341.4 51.6 5228 174 157 

45 413.6 43.5 4583 31 1472 

46 69.5 18.6 1041 0 339 

47 467.3 49.7 4184 311 302 

48 1197.9 51.8 11504 399 16692 

49 590.3 52.2 4907 96 14166 

50 250.2 53.9 1181 88 6201 

51 562 41.4 5508 23 12750 

52 549.5 42.9 4888 28 11791 

53 312.8 57.8 1122 14 10247 

54 333.8 38.6 5519 51 884 

55 108.4 39.6 1592 77 0 

56 431.6 41.5 4998 8 8551 

57 349.6 22.6 3603 30 1829 

58 712.5 43.2 5598 60 11214 

59 96.6 37.1 1051 0 2461 

60 35.2 54.9 443 0 64 

61 358.6 37.3 3386 24 6237 

62 318.4 63.7 3010 343 866 

63 61.4 42.8 352 0 909 

64 302.1 42.1 1288 32 2621 

65 811.4 47.7 6421 248 6760 

66 182.1 49.6 2088 121 2277 

67 0.7 13.8 25 0 0 

68 326.9 49.4 1317 29 3681 

69 1903.1 55.1 13296 1533 18592 

70 171.7 61.5 1461 135 1313 

71 1017 29.8 21837 97 6886 
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Appendix B (continued): 

   No. Possible NBS Features 

Subcatchment 

No. 

Area 

(AC) 

Impervious 

Cover (%) 
BIOR PMPV TRBX 

73 501.5 39.8 6885 29 3604 

74 909.5 55.3 13125 525 3490 

75 237.6 73 1157 241 52 

76 596.7 51.5 8741 299 2639 

77 275.4 40.3 2623 12 3336 

78 1023.3 52.4 8928 816 9392 

79 404.2 59.7 3704 442 3597 

80 93.8 48.5 542 36 376 

81 163.5 73.3 534 164 1366 

82 1398 62.6 6316 1408 15463 

83 314.7 55.6 3722 141 1979 

84 123.5 34.2 1365 4 828 

85 551.8 49.5 4846 335 2798 

86 388.8 32.5 5615 7 2605 

87 564.6 40 6756 103 2275 

88 1.2 58.9 14 0 11 

89 1190.6 55.6 7910 463 18147 

90 489.7 65.1 3051 472 4521 

91 634.5 40.4 5931 143 2033 

92 293.6 54.7 3685 215 233 

93 814.7 67.1 3245 915 6251 

94 407.7 38.4 6199 48 5144 

95 448.8 59.3 2304 301 2699 

96 484.7 35.2 11246 123 2632 

97 142.4 43.8 1735 27 915 

98 317.7 47.5 2468 87 6240 

99 488.3 62.1 4068 354 5290 

100 219.5 48.7 1717 80 2722 

101 375.6 61 4213 207 2548 

102 627.4 47.2 3638 141 8215 

103 185.9 44.6 1712 23 2889 

105 103.5 54.8 913 61 701 

106 90.2 59 339 19 1367 

107 604.3 51 2368 221 12431 

108 947.3 55 5377 183 18362 

109 589.4 46.3 2149 195 6186 
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Appendix B (continued): 

   No. Possible NBS Features 

Subcatchment 

No. 

Area 

(AC) 

Impervious 

Cover (%) 
BIOR PMPV TRBX 

111 339.2 68.4 1326 371 2715 

112 236.7 61.1 621 115 7151 

113 45.8 72.1 72 68 339 

114 518.8 53.8 2244 150 12494 

116 278.7 47.1 1650 42 3050 

117 11.1 44.5 18 0 26 

118 350.3 55.5 1165 186 4659 

119 413.9 38.5 6706 26 4730 

120 150.9 64.9 572 207 2181 

121 264.1 43.1 1289 101 1848 

123 144.6 56 528 98 984 

124 383.9 56.2 2068 186 3162 

125 252.5 60.8 637 141 4223 

126 10.6 47.9 7 0 0 

127 24.6 72.9 50 52 57 

128 489 48.5 1604 91 2793 

129 258 59 403 159 2750 

130 367.1 58.1 1306 232 2556 

131 6.4 53.2 11 0 119 

132 284.7 60.3 765 233 3487 

133 314.7 60.6 532 155 3444 

134 296.5 63.3 1974 206 1981 

135 484.7 51.3 1866 255 4755 

136 335.2 80.9 486 687 3635 

137 1051.4 63.4 2509 880 16024 

138 753.6 56.7 2267 471 10215 

139 448.8 80.6 617 921 3912 

140 721.4 57.3 2162 329 11066 

141 291.7 59.4 1007 126 2480 

143 263.4 64.1 824 212 4076 

144 747.2 68.3 345 698 23024 

145 725.4 60.9 1298 395 15412 

146 247.3 47.2 1255 23 5297 

147 38.5 43 307 6 478 

148 411.3 65.1 81 110 16841 

149 147.6 68.7 107 96 4682 

      



196 

 

Appendix B (continued): 

   No. Possible NBS Features 

Subcatchment 

No. 

Area 

(AC) 

Impervious 

Cover (%) 
BIOR PMPV TRBX 

151 392.6 65.1 154 61 17508 

152 379.4 55.9 916 171 9809 

153 10.9 33.6 114 0 225 

154 540.7 68.2 1114 314 10807 

155 820.9 64.3 3071 998 12983 

156 593.4 60.4 223 37 23936 

157 94.3 56.3 596 13 2427 

158 218 56.1 874 23 8214 

159 177.2 55.1 982 62 4267 

160 660.5 64.6 2867 750 13880 

161 483.1 69 1038 559 8147 

162 486.4 70.5 590 395 11047 

 

 

 



 

 

 


