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Abstract

The financial crisis in 2007-2008 has inspired intensive research on the risk assessment

and control in financial networks that consist of nodes representing the financial institutions

and the links between them representing the interconnection among the financial institu-

tions. Many models and techniques have been proposed to estimate the risk and identify

strategy to mitigate the risk in financial networks. Among others, the clearing agent model

introduced by Eisenberg and Noe (2001) and its variants have been widely adopted in risk

analysis and control. A key concern in this model is the unavailability of complete informa-

tion regarding the interbank liabilities and the market shock to which the asset values of

the financial institutions subject. Most works in the literature assume that full information

is known or use an entropy optimization approach based on the so-called Kullback-Leibler

divergence to estimate the liability matrix. It has been observed, however, such an approach

has led to a significant underestimation of the risk in the financial system.

In this thesis, we propose to assess the systemic risk, and develop mitigation and control

strategies under partial information of the underlying financial network. First, we study

the vulnerability of the financial network where the asset vector subjects to market shocks.

We develop a new extended sensitivity analysis to characterize the conditions under which

a bank is solvent, default or bankrupted, and estimate the probability of insolvency and

the probability of bankruptcy under mild conditions on the market shock and the network

structure. Particularly, we show that while an increment in the social asset may not able

to improve the stability of the financial system, a larger asset inequality in the system

will reduce its stability. Moreover, under certain assumption on the market shock and the

network structure, we show that the least stable network can be attained at some network

with a monopoly node, which also has the highest probability of insolvency. The probability

of bankruptcy in the network when all the nodes receive shocks is estimated. We also study

the vulnerability of a well-balanced network with a monopoly node and explore the domino

effect of bankruptcy in it. Numerical experiments are presented to verify the theoretical

conclusions.
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In the second part, we study the case where only partial information regarding the lia-

bility matrix is revealed and the asset vector is fixed. We first propose two bi-level linear

optimization models to identify the least and most stable network structures under which

the overall repayment in the system is minimal and maximal, respectively. Then we com-

bine several classical optimization methods with new optimization techniques to develop an

integrated approach to identify the least and most stable structure in the network. Numer-

ical experiments illustrate that the contagious risk in the identified least stable network is

much more significant than what underestimated in the current literature, and the system

with the identified most stable network structure is the most resilient one.

In the third part, we propose a new mitigation strategy based on merging and acqui-

sitions to stabilize a financial system. For this, we first introduce some measurement to

estimate the benefits of mergers in the merging process based on the extended Eisenberg-

Noe model which takes the leverage ratio requirement and liquidation costs into account.

We consider subsidized merging where the social planner provides some bail-outs to cover

part of the liabilities of the insolvent bank, and develop a goal programming approach to

maximize the total merger gain of the merging banks and minimize the bail-out cost for the

social planner. We use major European banks linked to the adverse economic scenario used

in 2016 EU-wide stress testing for demonstration. The results show that our subsidized

merger policy may significantly reduce the bail-out cost compared to the generic public

bail-out. Several issues are of interests for future research which is discussed in the last

section.
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Chapter 1

Introduction

1.1 Background and Motivation

A typical financial network comprises multiple financial institutions such as firms, traders,

and banks. They interact with each other directly through loan contractual obligations, or

interconnect through overlapping portfolios. Each of these institutions has two categories

of assets: outside assets and interbank assets. Outside assets are claims on non-financial

entities, such as mortgages and commercial loans, and interbank assets are claims on other

banks in the network. The bank also has some liabilities including obligations to non-

financial entities and obligations to other banks in the network. The difference between the

assets and liabilities yields the equity of the bank. The data about the asset and liabilities

of each bank can be obtained from the balance sheet which is shown in Figure 1.1.

Figure 1.1: A sample of balance sheet

The balance sheets of the banks are strongly connected to each other. Such tight linkages

among financial institutions have various consequences in the global financial network. It

speeds up the transaction process and affects the asset prices by acquiring and processing

1



the related information more efficiently. There is also a trade-off between the stabilizing

effect of interconnections due to diversification and the amplifying effect under which shocks

can spread. In fact for the case that a sufficiently large market shock triggered the system, it

may cause some banks to default. If the payment shortfall is large enough, it can cause the

related bank to default as well, and so on. In such a case, the connectivity of the financial

institutions may help to diversify the risk in the system. On the other hand, it may provide

a link along which the failure of one institution can spread throughout the system, creating

a cascade of defaults (called domino effect), leading to a catastrophic disaster. This is

usually referred as the so-called systemic risk.

Figure 1.2: A sample of the international financial network, where the nodes represent major
financial institutions and the links represent the strongest existing relations among
them [66].

The financial crisis in 2007-2008 is piece of evidence of this disaster that has triggered

not only the entire U.S. financial industry but also several international financial markets

around the world. Motivated by the recent financial crisis, a large literature has been

established in the study of systemic risk in financial networks. With the unfolding of the

crisis, many concerns were raised that called for the reasons and causes of crisis, lessons

that might be drawn from it, as well as policies that should be employed to mitigate and

manage the crisis. For example, Flood et al. [38] state that one of the main reasons that the
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financial crisis happened is the inadequacies of the information infrastructure supporting

the US financial system. They identify some of the key reasons for data anarchy in the

financial industry, including multiple heterogeneous silos, the data quality gap, lack of

standards and the inherent complexity and uncertainty involved. To address this and other

shortcomings, the Dodd-Frank Wall Street Reform Act has created an Office of Financial

Research (OFR) with a mandate to establish a sound data-management infrastructure for

systemic risk monitoring.

Historical accounts of financial crises suggest that fear and greed are the key drivers of

these disruptive events. For example, fears of insolvency in the banking industry in August

2007, along with the sudden breakdown of interbank lending and short-term financing, were

the initial flash points of the crisis. These fears caused mortgage-related securities such as

collateralized debt obligations (CDOs) to lose value and become highly illiquid. The failure

of large credit default swap (CDS) counter-parties, the inaccuracy of AAA bond ratings,

regulatory lapses and forbearance, political efforts to promote the “homeownership society”,

and the implicit government guarantees of Fannie Mae and Freddie Mac can also be cited

as significant factors in creating the crisis [6].

Counter-party credit risk has proven to be one of the major drivers of the credit crisis.

For example, we can recall the credit events occurred in one month of 2008, involving Fannie

Mae, Freddie Mac, Lehman Brothers, and Kaupthing. It is also observed by Nathanaël [61]

that during the crisis roughly two thirds of the credit risk losses have been due to mark to

market of counter-party risk, with only one third due to actual defaults. This shows that

counter-party risk has been one of the most important sources of systemic risk, as market

participants were highly interconnected through overlapping credit exposures. This led the

Basel Committee to revisit the guidelines and moving towards a new set of rules called

“Basel III”. Such rules require banks to be subject to a capital charge for mark-to-market

losses due to changes in the credit spread of a counter-party [19].

The impact of such crisis has implications beyond the United States and extend to

several investment banks around the globe (e.g., Australia, China, France, and the UK).

3



The 2008 financial crisis timeline began in March 2008. It was triggered by the proliferation

of mortgage loans, the famous subprime loans, granted to low-income households. As a

consequence, major banks found themselves totally or nearly bankrupted. The first major

institution to go under was Countrywide Financial Corp., the largest American mortgage

lender. The next victim, in March, was the Wall Street investment house Bear Stearns,

which had a thick portfolio of mortgage-based securities. Then, Fannie and Freddie suffered

the same losses as other mortgage companies. With Bear Stearns disposed of, the markets

bid down share prices of Lehman Brothers and Merrill Lynch. Under pressure from the

Treasury, Merrill Lynch agreed on September 14 to sell itself to Bank of America for $50

billion, half of its market value within the past year. Lehman Brothers, however, could not

find a buyer, and the government refused a Bear Stearns-style subsidy. Lehman declared

bankruptcy the day after Merrill’s sale. Finally, AIG, an insurance company, was dragged

down by its subsidiary.

Figure 1.3: A breakdown of how much the 2008 financial crisis initially cost. [55]

As in the U.S., the financial crisis spilled into Europe’s overall economy. Asia’s major

economies were swept up by the financial crisis. Japan’s and China’s economy also got

affected by the financial crisis and by year’s end, all of the world’s major economies were in

recession or struggling to stay out of one [50].
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Figure 1.4: Global effect of financial crisis 2007-2008 [12]

That crisis called for a massive government intervention. For example, the U.S. and Eu-

ropean banks came together in an attempt to strengthen the money markets by allowing the

banks to use funds. The interest rates were reduced in order to assist them in encouraging

lending. The UK government provide its own bail-out to eight of the UK’s largest banks and

building societies. Governments came up with the plan to nationalize banks from Iceland to

France since the credit crunch triggered the economies around the world. Central banks in

the U.S., Canada and some parts of Europe took the unprecedented step in an effort to ease

the crisis. Some of the major institutions failed who were acquired by other institutions,

and some of them were subject to government bail-out. These included Lehman Brothers,

Merrill Lynch, Fannie Mae, Freddie Mac, Washington Mutual, Wachovia, and AIG (see

page 136 in [18]). The shortage of liquidity and the stock market crash contributed to a

rapid spread of financial distress from one institution to another in a domino effect.
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Figure 1.5: Global actions after the financial crisis 2007-2008 [12]

The crisis exposed the fact that very limited information about the interbank liabilities

between financial institutions are available to regulators and market participants. It also

exposed that there was not enough theoretical understanding about the relation between

interconnectedness and stability of the financial system. Moreover, the Lehman bankruptcy

consequeces explain the fact that multiple factors cause such contagion occur, e.g., informa-

tion contagion that spread fears to other money-market funds, a funding run as creditors

pulled back lending, and potential fire sales. Network opacity heightened uncertainty in the

lead-up to the Lehman bankruptcy. According to the FCIC report, there was no reliable

information on who would be owed how much and when payments would have to be made.

Such information would be critically important to analyze the possible impact of a Lehman

bankruptcy on derivatives counter-parties and the financial markets.

The cost of such financial crises has been immense. It has drawn significant research

on the causes of crisis, lessons that might be drawn from it, as well as policies that should

be employed to mitigate and manage the crisis. And yet, financial crises have continued to

happen, with its new challenges for its management. While it may not be possible to avoid

a financial crisis, it will certainly be possible to improve our management of the crisis to

minimize its costs and consequences on the financial system.
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1.2 Problem Description

In this dissertation, we focus on the vulnerability analysis of the financial network based

on a linear optimization model introduced in [30] (E-N model). We remark that several other

network contagion models are also developed to study the systemic risk in financial network.

For example, the model proposed by Rogers and Veraart [65] is a generalization of the E-N

model that takes into account bankruptcy and liquidation costs. Different from Rogers and

Veraart [65] , Glasserman and Young [44] define the insolvency cost of a default node in the

system via using a function proportional to the amount of default. An alternative to the

E-N model is the E-G-J model introduced by Elliot et al. in [31] where the authors consider

cross-holdings as direct claims on value of organizations. Default Cascades model (DC) is

also proposed by Battiston et al. [10, 9] where they study the propagation of losses from

defaulted banks to counter-parties directly in terms of a contagion process on the equity of

banks.

In E-N model, a financial system is considered as a network where its nodes represent

each financial institution and the links between them represent their interbank liabilities to

other nodes in the network. These nominal liabilities denote the promised payments due to

other nodes in the system. In the original formulation of the E-N model banks are assumed

to have no external liabilities. Bankruptcy costs and liquidation costs are not considered in

their model.

Remark that in [30], they proposed various optimization models to measure the systemic

risk in a financial network, and these optimization models variate in objective functions but

do share the same set of constraints and the same optimal solution. As such, we consider

only the linear optimization model in [30] where the objective is to maximize the total

payment in the system. Unfortunately, for Eisenberg-Noe’s linear optimization model, as

pointed out in [35], only limited information on the interbank liabilities such as total liability

and total claim of a financial institution is available while the asset of a financial institution

is typically subject to market shock. Such uncertainties in this model, poses a tremendous

challenge in estimating the market shock impact on the financial network and the real risk
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threatening the stability of the system.

1.3 Contribution of Dissertation

1.3.1 Issues in the existing analysis

One challenge is that the asset values of the financial institutions fluctuate constantly

due to some market shock triggering the system. However, the asset vector in the E-N

model is static. Based on this, we cannot estimate the impact of market shock on system’s

stability and also the resiliency of the financial institutions.

Another challenge is that the complete information about interbank liabilities is usually

not exposed and only partial information such as the total liabilities and the total claims of

a bank are available. In this regard, most works in the literature first compute the liability

matrix by solving some entropy optimization problem based on the KL divergence method,

and then analyze the contagious risk based on the estimated liability matrix. As observed

in [35], this has led to a significant underestimation of the risk in the financial system.

These challenges have motivated some research questions which this dissertation at-

tempts to answer.

1.3.2 Questions to be addressed

• Can we identify the bankruptcy/default in the network without knowing the full

liability matrix? To address this question, we conduct a new sensitivity analysis

to characterize the feasibility of Eisenberg-Noe’s model. Note that mathematically

speaking, the vulnerability of the financial network described in [30] can be identified

via analyzing the (in)feasibility of the corresponding constraint set. As such, we

consider only Eisenberg-Noe’s linear optimization model, and then relax the problem

by removing the non-negativity constraints in their original model and explore various

properties of the relaxed model. Under the assumption that only a single bank is

subject to a market shock, we give a precise estimate on the amount of shock under

which a bank will be bankrupted, solvent and default.
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• What is the worst-case scenario from the market fluctuation? Does an increase in

the asset inequality have a negative effect on the stability of the network? To answer

these questions, we consider the generic scenario where all the banks are subject to

market shocks. We first show that while a larger social asset may not improve the

stability of a financial network, a larger asset inequality between a default node and

a strictly solvent node in the network will reduce the stability of the network itself.

• What is the worst-case scenario in terms of asset distribution? What is the minimum

probability of bankruptcy in the system? In this regards, we study the network

with a monopoly node where a monopoly node owns an asset equals the total social

asset and dominates the entire network, an extreme scenario of the asset distribution,

and show that the least stable network can be attained at some network with a

monopoly node. We also estimate the probability of insolvency in the system under

certain assumptions on the market shock and network structure, and show that the

network with a monopoly node has the highest probability of insolvency and thus

is the most vulnerable one. By using duality theory in the linear optimization, we

derive lower bounds for the probability of bankruptcy in the network. We also study

the contagious effect of bankruptcy under the network with a monopoly node and

tridiagonal structure, and we identify that if the network has a tridiagonal structure

and a solvent monopoly node, then the bankruptcy of every non-monopoly node will

still have a significant domino effect.

• What’s the worst-case structure of the financial network? Does the network structure

affect the cascading failures? To answer these questions, we explore the uncertainty in

liability matrix with fixed asset vector to identify the worst-case network structure in

which the overall payment is minimal. For this, we introduce a bi-level (worst-case)

linear optimization model (WCLO) to account for the uncertainties in the liability

matrix. Then we propose two update schemes to update the liability matrix and the

payment vector alternatively to reduce the overall payment in the system depending

on the number of default nodes in the system. We also introduce a new scheme to
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further reduce the overall payment in the system based on the linear approximation

and line search techniques. By combining these three different updating schemes,

we develop an integrated algorithm for the proposed WCLO model, characterize the

obtained solution and explore the network structure in it.

• What’s the best-case structure of the financial network? How can we stabilize the

network without changing the total liabilities and total claims obtained from balance

sheet data? For this, we propose a bi-level optimization model to identify the most

stable network structure under which the overall payment in the system is maximal

and design an integrated approach for it. Note that such an algorithm is developed

under the assumption that the total liability and total claims remain invariant. This

provides means for us to rearrange the liabilities to improve the resiliency of the system

without changing the total liabilities and total claims of any bank.

We then compare the contagious risk under the least stable network, the most stable

network and the one based on the KL-divergence. Numerical experiment shows that

the propagation of risk under the least stable network is much more significant than

the other two networks. We also compare the systemic loss for three different networks

under random shocks. Our numerical experiment shows that the most stable network

has the minimal systemic loss, while the least stable network has the maximal loss.

• How can we stabilize a financial system? Does the merging strategy reduce the bail-out

cost comparing to the generic public bail-out? To address these questions, we propose

a new mitigation strategy based on merging and acquisitions to stabilize a financial

system. First we extend the E-N clearing model for financial networks by taking into

account bankruptcy and liquidation costs, and leverage ratio requirement. Second we

propose a new way to estimate the merging gain of a merging pair in the merging

process. Under the assumption that all the banks after merging become solvent, we

give an explicit formulae to compute the merging gain for all the merging pairs in the

network. Third, we introduce a goal programming approach to maximize the total
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merging gain and minimize the bail-out cost based on the estimated merging gains.

We also explore the relationship between the optimal solutions of the two optimization

models for the maximal merging gain and the minimal bail-out cost, respectively, and

show that under certain conditions, the optimal solution of these two models can be

obtained by solving only a single optimization model. Forth, we introduce a new

integer linear optimization model (ILP) to manage the trade-off between the merging

gain and the bail-out cost, and develop an effective Lagrangian search method for it.

1.4 Outcome

Journal Publication

• Aein Khabazian and Jiming Peng, “Vulnerability Analysis of the Financial Network”,

Management Science, 1–20, 2018.

• John Birge, Aein Khabazian, and Jiming Peng “Optimization Modeling and Tech-

niques for Systemic Risk Assessment and Control in Financial Networks”, Recent

Advances in Optimization and Modeling of Contemporary Problems, 64-84, 2018.

• Aein Khabazian and Jiming Peng “Stabilizing Financial Networks via Merging”, Sub-

mitted to IMA Journal of Management Mathematics, 2018.

• Aein Khabazian and Jiming Peng “A Bi-level Linear Optimization Model for As-

sessing Systemic Risk under Uncertain Liabilities”, Submitted to SIAM Journal on

Financial Mathematics (SIFIN), 2019.

Conference Presentation

• Aein Khabazian, Jiming Peng “Assessing Systemic Risk in Financial Network”, IN-

FORMS Annual Conference, Philadelphia, Pennsylvania, November 2015.

• Aein Khabazian, Jiming Peng “Vulnerability Analysis of the Financial Network”, IN-

FORMS Annual Conference, Nashville, Tenseness, November 2016.
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• Jiming Peng, Aein Khabazian “Assessing Systemic Risk under Uncertain Liabilities”,

INFORMS Annual Conference, Nashville, Tenseness, November 2016.

• Aein Khabazian, Jiming Peng “Assessment and Control of Systemic Risk Under Un-

certain Liabilities”, INFORMS Annual Conference, Houston, Texas, October 2017.

• Aein Khabazian, Jiming Peng “Stabilizing Financial Networks via Merging”, IN-

FORMS Annual Conference, Phoenix, Arizona, November 2018.

1.5 Outline of Dissertation

This dissertation is organized into six chapters as follows. In Chapter 2, we will review

some of the existing literatures on systemic risk assessment and network resilience in fi-

nancial network. In Chapter 3, we study the vulnerability of the financial system via the

sensitivity analysis and characterize the worst-case scenario in terms of the asset distri-

bution. In Chapter 4, we explore the uncertainties in the liability matrix and develop an

algorithm to identify the worst-case and best-case structure. It is also shown that under the

identified least stable network the contagious effect of failures are significant. In Chapter 5,

we propose a new mitigation policy based on merging to stabilize a financial system. The

results show that our subsidized merger policy may significantly reduce the bail-out cost

compared to the generic public bail-out. In Chapter 6, we discussed some future research

directions.
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Chapter 2

Literature review
As pointed out in the introduction a large literature has been established in the study

of systemic risk. Most existing works in the literature fit into the one of the following three

streams:

2.1 The Assessment of Systemic Risk

Works in the risk assessment can be mainly categorized into two groups. The first

group focuses on the development of various risk measurements and models. For example,

in their seminal paper, Eisenberg and Noe [30] introduce the clearing payment system

framework considering bankruptcy law to assess the systemic risk in inter-banking networks.

They describe the contagious effect of failure where the payment shortfall originating at a

single institution can transmit to other financial institutions. They also study the existence

and uniqueness of the clearing payment vector and propose an algorithm to compute the

clearing payment vector by tracking the sequence of default. Rogers and Veraart [65] extend

the Eisenberg and Noe’s model by taking into account bankruptcy and liquidation costs.

Different from Rogers and Veraart [65], Glasserman and Young [44] define the insolvency

cost of a default node in the system via a function proportional to the amount of default.

The existence and uniqueness of the clearing payment vector is also studied in [44]. Elliot

et al. [31] also develop a new model by considering cross-holdings as direct claims on the

value of organizations. Several different clearing algorithms have been studied by Barucca

et al. [7], Gai and Kapadia [42], and Rogers and Veraart [65]. For more details in this

direction, we refer to the monograph [49] and references therein.

The clearing agent model, of course, is not the only systemic risk measure. Huang,

Zhou and Zhu [48] use ex ante measures of default probabilities of individual banks and

forecasted asset return correlations to estimate expected credit losses above a given share
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of the financial sector’s total liabilities. Jonghe [29] presents estimates of tail betas for

European financial firms as their systemic risk measure. Adrian and Brunnermeier [3]

propose a new reduced-form measure of systemic risk, ∆CoVaR, that captures the (cross-

sectional) tail-dependency between the whole financial system and a particular institution.

Acharya et al. [2] focus on high-frequency marginal expected shortfall as a systemic risk

measure. They develop a way to measure each bank’s contribution to systemic risk.

Works in the second group focuses on empirically measuring risk based on market data.

For example, Furfine [40] measures the contagious effect of one or small number of insol-

vent institutions through the network by using federal funds exposure data. Sheldon and

Maurer [67] and Upper and Worms [70] used information from the banking systems in

Switserland and Germany in their analysis. Sheldon and Maurer [67] and Cocco et al. [26]

further observed that the liability matrix from the banking system is usually sparse, which

is very different from the complete liability matrix estimated based on KL divergence. Em-

pirical studies by Mistrulli et al. [59] and Degryse and Nguyen [28] also observed such a

difference between the estimated liability matrix and the real interbank structure.

2.2 The Stability and Resilience of Financial Networks

Works in the financial network resiliency and stability concentrate on exploring the

impact of market shocks and network structure on the stability of a financial system. For

example, Acemoglu et al. [1] , Chen et al. [22], Cont et al. [27], Elsinger et al. [34, 33, 32, 35]

Glasserman and Young [44] and Liu and Staum [57] study the contagions in a financial

system under different settings.

In a series of papers, Elsinger et al. [34, 33, 32, 35] study the financial stability of a

banking system considering the cascading impact of failures over the entire network. In

their model, the joint impact of two major sources of risk, the correlated exposure and

domino effect, is considered. Specifically, Elsinger et al. [34, 33] estimate the systemic risk

in the financial network in the UK and Austria based on data from banks in these two
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countries. As pointed out in [35], the data from banks usually reveal only partial informa-

tion regarding the interbank liabilities, while the assets are subject to market fluctuation.

To account for the uncertainties in the assets, Elsinger et al. [34, 33] use stochastic op-

timization and scenario generation to estimate the worst-case scenario for the underlying

linear optimization model. In this regard, they suggest to compute the liability matrix by

solving some entropy optimization problem based on the so-called Kullback-Leibler (KL)

divergence. Liu and Staum [57] apply the standard sensitivity analysis in Eisenberg-Noe’s

LP model to estimate the impact of the market shock to a single financial institution.

Some other scholars have argued that the presence of inequality played an important

role in the crisis. For example, Treeck [69] discusses that an increase in income inequality

was a main cause for the rapid growth of the US non-prime mortgage market and the global

balance of payment imbalances contributing to the Great Recession.

Several researchers study the impact of interbank liability structure on risk exposure.

In their pioneering work, Allen and Gale [5] first show that there exists a relation between

the specific pattern of interbank lending and the extent of contagion in financial system.

Gai and Kapadia [42] discuss contagious effect of failure in a random network and analyze

the knock-on effects of distress. They also observe that the impact of shock depends on the

network connectivity and the location of a node that is triggered by that shock. Battiston

et al. [8, 9] study how the credit risk diversification and network density affect systemic

risk. Acemoglu et al. [1] study the way that the network structure and the magnitude

of negative shock to a single financial institution in the network can affect the stability of

financial networks. Elliot et al. [31] also discuss the trade-off between diversification and

integration of the network and its impact of the stability of the financial system. Glasserman

and Young [44] study the contagion effects via network spillovers under assumptions on the

shock distribution and show that pure contagion effects are usually low for realistic inter-

banking networks. Chen et al. [24] explore the optimality conditions in Eisenberg-Noe’s

model to design a partition algorithm that can separate the default institutions and the

solvent ones in the network. They also estimate the impact of both market and liquidity
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channel in risk transmission using sensitivity analysis.

2.3 Policies and Strategies to Mitigate the Risk

This stream of related studies is exploring the impact of mitigation policies. For example,

Pokuta et al. [64] extend the Eisenberg-Noe’s model as a network flow problem and study

the effect of the bail-out strategy on the financial network. Capponi et al. [21] study

the impact of liability concentration on the loss profile of the system using the concept of

majorization of the liability matrix. They show that the size of risk exposure to individual

counter-parties in financial networks depends on the state of the system (i.e., balancing or

unbalancing) and the liability concentration. In [20], they develop a multi-period clearing

framework and investigate the impact of regulatory and preventive policies in order to either

limit the loss exposure towards financial institutions or increase the resilience of system

against financial failures. Bernard et al. [14] propose three intervention policies that a

social planner may use to stabilize the system, including bail-out, bail-in, and subsidized

bail-in. Kallio and Khabazian [51] propose a different strategy to mitigate the risk in the

network by formulating several coalitions of banks such that all the banks in the same

coalition collaborate with each other and pay the same fraction of their liabilities. Their

approach can serve as a decision support mechanism for such negotiations. Another set of

studies captures the effect of capital and liquidity requirements in order to mitigate systemic

risk (e.g., [25, 47, 41]).
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Chapter 3

Vulnerability Analysis of the Financial Network

3.1 Introduction

A typical financial network comprises multiple financial institutions interacting with

each other through borrowing and lending or interconnecting indirectly through the market

by holding similar shares or portfolios. In this network, a financial institution that cannot

make none of its required payments goes bankrupt, an institution that can payback partial

of its liabilities default and when it can fulfill its liabilities is solvent. The presence of

tight linkages in these financial institutions has various consequences in the global financial

market. On the one hand, it influences asset prices by acquiring and processing the related

information more efficiently, and as a result, large numbers of transactions can be proceeded

smoothly without any interruptions and the trading performance is improved. On the other

hand, whenever some institution bankrupts in the system, it may lead to a catastrophic

disaster by spreading this failure quickly over the entire system. This is usually referred as

the so-called systemic risk. As evidence we recall the 2008 financial crisis in U.S. that have

triggered not only the entire U.S. financial industries but also several international financial

markets around the world [60]. Another example is the European sovereignty debt crisis

that causes the European financial business to face serious loss of confidence [56].

The catastrophic consequences from these widespread phenomena have prompted exten-

sive study on the sources, effects and results of the crises, and developing tools to mitigate

and manage the systemic risk to increase the resilience of financial networks to encounter

economic crisis. To this end, a growing number of literatures has been devoted to assessing

the systemic risk and studying the contagion effect in a financial network. In a seminal
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paper, Eisenberg and Noe [30] introduce the clearing payment system framework consider-

ing bankruptcy law to assess the systemic risk in inter-banking networks. They show that

the failure of a single institution can transmit to other financial institutions, leading to a

contagion risk. Existence and uniqueness of the clearing payment vector are studied in the

paper. Moreover, they also propose an algorithm to compute the clearing payment vector

by tracking the sequence of default.

In a series of papers, Elsinger et al. [34, 33, 32, 35] study the financial stability of a

banking system considering the cascading impact of failures over the entire network. In

their model, the joint impact of two major sources of risk, the correlated exposure and

domino effects, is considered. Specifically, Elsinger et al. [34, 33] estimate the systemic risk

in the financial network in UK and Austrian based on data from banks in these two coun-

tries. As pointed out in [35], the data from banks usually reveals only partial information

regarding the interbank liabilities, while the assets are subject to market fluctuation. To

account for the uncertainties in the assets, Elsinger et al. [34, 33] use stochastic optimiza-

tion and scenario generation to estimate the worst-case scenario for the underlying linear

optimization model. They also suggest to compute the liability matrix by solving some

entropy optimization problem based on the so-called Kullback-Leibler divergence.

There exist several works focusing on the impact of interbank liability structure on the

risk exposure. In their pioneering work, Allen and Gale [5] first establish the connection

between the specific pattern of interbank lending and the extend of contagion in a financial

system. Gai and Kapadia [42] discuss how contagion spreads in a random network, and

analyze the knock-on effects of distress. Battiston et al. [8, 9] study the effect of credit

risk diversification and network density on systemic risk. Liu and Staum [57] apply the

standard sensitivity analysis in Eisenberg-Noe’s LP model to estimate the impact of the

market shock to a single financial institution. Acemoglu et al. [1] study the stability of

financial networks depending on the network structure and magnitude of negative shock to a

single financial institution in the network. Glasserman and Young [44] study the contagion

effects via network spillovers under assumptions on the shock distribution and show that
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pure contagion effects are usually low for realistic interbanking networks. Very recently,

Chen et al. [24] explore the optimality conditions in Eisenberg-Noe’s model to design a

partition algorithm that can separate the default institutions and the solvent ones in the

network. They also use sensitivity analysis to estimate the impact of both market and

liquidity channel in risk transmission.

Several studies have explored the impact of mitigation policies. For example, Pokuta

et al. [64] extend the Eisenberg-Noe’s model as a network flow problem, and study the

influence of the bail-out strategy on the financial network. Capponi and Chen [20] and

Capponi et al. [21] investigate the impact of regulatory and preventive policies in order

to either limit the loss exposure towards financial institutions or increase the resilience

of system against financial failures. Treeck [69] discuss the relationship between income

inequalities and financial crisis based on historical data.

Different from the above-mentioned works, in this paper we focus on the vulnerability

analysis of the financial network based on a linear optimization (LO) model introduced in

[30]. It is worthwhile mentioning that in [30], Eisenberg and Noe proposed various opti-

mization models to measure the systemic risk in a financial network, and these optimization

models variate in objective functions but do share the same set of constraints and the same

optimal solution. As such, in this work we consider only the LO model in [30]. Note that

one key issue in the vulnerability analysis of a financial network is to identify conditions

under which a bank in the network will default or be bankrupted and estimate the con-

tagious risk caused by the default or bankruptcy of that bank. A rich literature has been

established on contagious risk analysis in financial networks. For more details, we refer to

the survey paper [35], and the references therein. Unfortunately, as pointed out in [35],

most existing works have underestimated the contagious risk in the financial system. In

[35], the authors further speculate that the incomplete information on the financial network

may be one major reason for the underestimation of the risk. However, we noticed that

another possible reason for the underestimation of the risk in a financial system is the re-

strictive small shock assumption widely used in the existing literature. To see this, let us
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take a closer look at the reference [57] where the authors estimate the contagious risk under

two assumptions: One assumption is that the complete information of a financial network

is available and another assumption is that the market shock will not change the set of

default banks and the set of solvent banks. As shown in [57], under these two assumptions,

the contagious risk in the network can be estimated via the solution to the dual problem of

the LP problem in [30]. Note that the assumption that the sets of default banks and solvent

banks remain invariant implicitly implies that the market shock is insignificant or small,

which is very different from what happened during the financial crisis in 2007-2008 when

the large market shock had led to the bankruptcy of financial institution such as Lehman

Brothers. Clearly, the small shock assumption cannot be used in the analysis of bankruptcy

in a financial network. A challenge here is how to assess the systemic risk of a financial

network when only limited and incomplete information regarding the financial network is

available and the market shock is significant.

One main motivation of this work is to address the above challenge via developing a

new theoretical framework to analyze the vulnerability of a financial network under mild

assumptions on market shocks. To start, we mention that based on the LO model in [30],

the bankruptcy in a financial network corresponds to the infeasibility of the model itself.

For a given linear optimization problem in which all the data are available, we can refer

to the well-known Farkas lemma to detect its feasibility [71]. Unfortunately, for the LO

model in [30], as observed in [35], only limited information on the interbank liabilities such

as the total liability and total claim of a financial institution is available while the asset of

a financial institution is typically subject to market shock. In other words, both the data

matrix and right hand side of the constraints in the underlying linear optimization model

are uncertain. The presence of uncertainty in Eisenberg-Noe’s model poses a tremendous

challenge in estimating the market shock impact on the financial network and detecting the

model’s infeasibility.

Our first contribution in this work is to conduct a new extended sensitivity analysis

to characterize the (in)feasibility of the LO model in [30]. To achieve such a goal, we
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propose to relax the LO model in [30] by removing the non-negativity constraints in it.

Then, we explore various properties of the relaxed model. Particularly, we derive a simple

characterization for the feasibility of the relaxed model in terms of the summation of all the

assets in the network (the total asset). Under the assumption that only a single shock is

received by some bank in the network, we give a precise estimate on the amount of shock

under which the receiving bank will be bankrupted, default or solvent. We also assess the

impact of the single shock to all the non-receiving nodes in the system.

For the more generic scenario where all the banks are subject to market shocks, we first

show that while a larger total asset may not improve the stability of a financial network, a

larger asset inequality between a default node and a strictly solvent node in the network will

reduce the stability of the network itself. To the best of our knowledge, our result is the first

quantitative analysis showing that the asset inequality has a negative effect on the stability

of the network. Then we study the network with a monopoly node where the monopoly

owns an asset equals the total asset and dominates the entire network, representing an

extreme scenario of the asset distribution. We show that the least stable asset distribution

can be attained at some network with a monopoly node. We also estimate the probability

of insolvency in the system under certain assumptions on the market shock and network

structure, and show that the network with a monopoly node has the highest probability of

insolvency and thus is the most vulnerable one. By using duality theory in linear optimiza-

tion and stochastic optimization, we derive lower bounds for the probability of bankruptcy

in the network. Particularly, we show that if the monopoly node in a financial network is

liability free, then the probability of bankruptcy in the system is larger than 50%.

We also estimate the impact of bankruptcy in a financial network with a monopoly node.

We first show that the bankruptcy of the monopoly node in a network will cause all other

nodes in the network to be bankrupted, a catastrophical disaster to the entire system due

to the domino effect of bankruptcy. In other words, the monopoly node is too big to fail

(TBTF). We further explore the domino effect of bankruptcy in a financial network under

a tridiagonal structure. We show that even when the monopoly node in such a financial
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network is solvent, the bankruptcy of every non-monopoly node in the network will cause

other nodes following it to bankrupt consecutively.

The paper is organized as follows. In section 3.2, we first relax Eisenberg-Noe’s model

and explore various properties of the relaxation model. Then, we give a simple characteri-

zation on the (in)feasibility of the relaxation model. In section 3.3, we consider a scenario

of the network where only a single node receives the shock. We first characterize different

conditions under which the receiving node is solvent, default or bankrupted. We also de-

velop a new algorithm to estimate the indirect impact of a single shock to the non-receiving

nodes in the system. In section 3.4, we consider a scenario where all the nodes are subject to

market shocks. We first study the impact of asset inequality on the stability of the system.

Then, we estimate the probability that some bank in the network will be insolvent or be

bankrupted under assumptions on the market shocks and network structure. In Section 3.5,

we assess the impact of bankruptcy in a financial network with a monopoly node. Finally

we conclude the paper in Section 3.6 by discussing some future research directions.

3.2 A Relaxation Model and Its Properties

As pointed out in the introduction, though many optimization models were proposed

to measure the systemic risk of a financial network in [30]. To study the vulnerability of

the network, it suffices to investigate the linear optimization model. Consider a financial

network consisting of n banks denoted by n nodes where each bank borrows from one

another and thus it owes liabilities to others. A clearing agent is in charge of the process

of settling the liabilities among these nodes. The value of one node’s payment to settle its

obligations depends on the payment of other nodes to this node. Let L ∈ <n×n be the

interbank liability matrix where lij is the liabilities of node i toward node j. Since each

nominal claim is nonnegative and no node has a nominal claim against itself, therefore we

have lij ≥ 0 and lii = 0, ∀i, j = 1, ..., n. Let α be the exogenous operating cash flow that

consists of external investment plus the liquid and illiquid assets. The total liabilities of

node i is equal to pi =
∑n
j=1 lij . In Eisenberg-Noe’s model, the interbank payment made by
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node i to node j is xilij which can be obtained by solving the following linear optimization

problem:

max pTx (3.2.1)

s.t. (P − LT )x ≤ α,

0 ≤ x ≤ e,

where P =diag(p) and e is the all-ones vector. Note that the LP model has been used

in [24, 57, 64] with different notations and objective coefficients. In this model, for any

strictly positive coefficients in the objective function, the optimal solutions are the same

(see section 3.2 in [30]). Therefore, we choose a particular one as (3.2.1) which is more

convenient to analyze.

The Eisenberg-Noe’s model has attracted the attention from various researchers in recent

years and many results have reported in the literature. As pointed out in the introduction,

many existing results focus on how the contagion risk spreads over the network when some

bank in the network defaults, or the influence of the market shock to the network when the

shock happens to a single bank. For more details, we refer to recent works [1, 21, 24, 27,

34, 33, 35, 44, 57] and the references therein.

In this paper, we try to estimate the impact of the market shock when all the banks

are subject to market shocks from a certain distribution. We focus primarily on identifying

conditions under which some banks in the network will be bankrupted or default. For such

a purpose, we first suggest to remove the non-negativity constraint in (3.2.1), resulting in

the following relaxation.

max
x

p̄Tx (3.2.2)

s.t. (P − LT )x ≤ α;

x ≤ e.
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We note that at the optimal solution of (3.2.2) for each node i we have three conditions,

i.e., x∗i ≤ 0, x∗i ∈ (0, 1), and x∗i = 1, which are associated with the status of the bank i

depending on whether it is bankrupted, default, or solvent. In this model, when we have

x∗i ≤ 0, it means that node i cannot repay any of its liabilties and the its payements flows

backward.

Our next result establishes the equivalence between two problems (3.2.1) and (3.2.2)

under the assumption that problem (3.2.1) is feasible.

Proposition 3.2.1. Let x(1) be the optimal solution of problem (3.2.1) and x(2) be the

optimal solution of the problem (3.2.2). Then we have

x(2) = x(1).

Proof. The proof of the proposition is a minor modification of the proof of Theorem 2.1

in [64]. For self-completeness, we give the detailed proof here. Note that to prove the

above proposition, it suffices to show that x(2) ≥ 0. Let X1, X2 be the feasible set to

problems (3.2.1) and (3.2.2), respectively. Clearly bothX1 andX2 are bounded and convex.

Moreover, we have X1 ⊂ X2. Since problem (3.2.1) is feasible and thus, X1 is nonempty,

it follows that X2 is also nonempty. For the bounded nonempty set X2, let x̄ be the vector

whose element x̄i, i = 1, . . . , n is defined by

x̄i := sup
x∈X2

xi. (3.2.3)

It follows that for every i = 1, . . . , n, we have

x̄i := sup
x∈X2

xi ≥ sup
x∈X1

xi ≥ 0,

where the inequality follows from the fact X1 ⊂ X2.

We next show that x̄ is the unique optimal solution of problem (3.2.2). For every
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i ∈ {i = 1, 2, ..., n}, there is xi ∈ X2 such that xii = x̄i, thus

p̄ix̄i −
∑
j

ljix
i
j = p̄ix

i
i −

∑
j

ljix
i
j

holds. Because lji ≥ 0, we have

p̄ix̄i −
∑
j

ljix̄j ≤ p̄ix̄i −
∑
j

ljix
i
j ,

and we can conclude by the fact xi ∈ X2 that

p̄ix̄i −
∑
j

ljix̄j ≤ αi

i.e., x̄ is a feasible solution to problem (3.2.2). Clearly, x̄ maximizes
∑
i p̄ixi and therefore,

x̄ is the unique optimal solution to (3.2.2). This completes the proof of the proposition.

As discussed in Eisenberg and Noe’s paper, the optimal solution of problem (3.2.1) is

a clearing vector for the financial system that satisfies the so-called limited liability and

absolute priority. By following a similar process as in [30], we can obtain the following

result.

Corollary 3.2.1. At the optimal solution of problem (3.2.2), we have either

[(P − LT )x∗]i = αi or x
∗
i = 1, ∀i = 1, . . . , n.

From Propositions 3.2.1 and Corollary 3.2.1 we can see that there is no differences regard-

ing the properties of the optimal solutions to problems (3.2.1) and (3.2.2), and the optimal

solution of problem (3.2.2) can also be used as a clearing vector for the financial system.

However, as we shall see in our later analysis, a key difference between problems (3.2.1)

and (3.2.2) lies in the fact that a simple characterization of the (in)feasibility of prob-

lem (3.2.2) can be derived, which further facilitates the feasibility analysis of model (3.2.1).

Before stating our main result in this section, we need the following definition
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Definition 3.2.1. Two banks i and j in the financial network are said to be connected if

there exists a path i = i0 → i1 → · · · → iK−1 → iK = j such that

lik−1ik > 0, ∀k = 1, . . . ,K.

A financial network is said to be fully connected if every pair of banks in the network is

connected.

In the paper, we make the following assumption:

Assumption 3.2.1. The financial network is fully connected.

We remark that Assumption 3.2.1 is rather mild because if the financial network is not

fully connected, then we can divide it into two independent subnetworks such that there

exists no connections between these two subnetworks. Correspondingly, we can solve two

smaller linear optimization problems to obtain the clearing vectors for these two independent

systems.

We next present a technical result that will be used in the analysis later on.

Lemma 3.2.1. Suppose that the financial network is fully connected. Let λ∗ be a solution

of the following system of linear inequalities

(P − L)λ ≤ 0, λ ≥ 0. (3.2.4)

Then, it must hold λ∗ = ce for some c ≥ 0.

Proof. Without loss of generality, we assume λ 6= 0. Let λi∗ = maxi=1,...,n λi, and define the

index set Ii∗ = {j 6= i∗ : li∗j > 0}. From the definition of p̄i∗, we have p̄i∗ −
∑
j∈Ii∗ li∗j = 0.

It follows from (3.2.4) that

0 ≥ p̄i∗λi∗ −
∑
j∈Ii∗

li∗jλj ≥ λi∗(p̄i∗ −
∑
j∈Ii∗

li∗j) = 0. (3.2.5)
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From (3.2.4) and (3.2.5) we can conclude

λj = λi∗ = max
i=1,...,n

λi, ∀j ∈ Ii∗.

Similarly, for every i ∈ Ii∗ and the index set Ii = {j 6= i : lij > 0}, we have

λj = λi∗, ∀j ∈ Ii. (3.2.6)

Now let us choose arbitrary any index j∗. Since the network is fully connected, there exists

a path i∗ = i1 → i2 · · · → iK−1 → ik = j∗. By following a similar vein as in the proof of

(3.2.6), we can conclude λj∗ = λi∗. This completes the proof of the lemma.

Now we are ready to state the main result in this section.

Theorem 3.2.1. Problem (3.2.2) is infeasible if and only if

∑
i

αi < 0. (3.2.7)

Proof. First, we note that the dual problem of (3.2.2) reads as

min
λ

αTλ+ eT p̄− eT (P − L)λ (3.2.8)

s.t. (P − L)λ ≤ p̄;

λ ≥ 0.

Using the Farkas Lemma, we see that problem (3.2.2) is infeasible if and only if the following

problem has a solution.

αTλ− eT (P − L)λ < 0, and (3.2.9)

(P − L)λ ≤ 0; (3.2.10)

λ ≥ 0.
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It remains to show that (3.2.9) has a nontrivial solution if and only if (3.2.7) holds.

If eTα < 0, from the definition of liability matrix L we have (P −L)e = 0. This implies

that for any c > 0, ce is a feasible solution of system (3.2.9), and therefore, problem (3.2.2)

is infeasible.

On the other hand, suppose that system (3.2.9) has a nontrivial feasible solution. From

Lemma 3.2.1 we can conclude that λ = ce for some c ≥ 0. It follows from (3.2.9) that

cαT e < 0, and thus it must hold αT e < 0. This completes the proof of the theorem.

Theorem 3.2.1 indicates that we can use the total asset as an indicator for the infeasibility

of the relaxed problem (3.2.2) and such an indicator is independent of the liability matrix.

We next explore the financial meaning of Theorem 3.2.1. For this, let us consider a scenario

where the clearing agent has a superpower to redistribute the assets of all the banks in the

system. Under the assumption that the total asset is fixed, the agent would like to use

its power to maximize its revenue, leading to the following two-stage linear optimization

problem

max
α

max
x

p̄Tx (3.2.11)

s.t. (P̄ − LT )x ≤ α;

x ≤ e;∑
i

αi = ᾱ.

We have

Proposition 3.2.2. If the total asset is non-negative (ᾱ ≥ 0), then the optimal solution to

problem (3.2.11) can be attained at some α∗ such that x∗i (α∗) = 1, ∀i = 1, . . . , n.

Proof. We first consider the special case when all the nodes in the system are well-balanced.

In this case, we have (P̄ − LT )e = 0. This implies that for every asset vector α∗ satisfying

α∗i ≥ 0, ∀i = 1, . . . , n, we have x∗(α∗) = e and thus, all the nodes in the system are solvent.
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Next we consider the generic case
∑
i p̄i =

∑
i(LT e)i. In this case, one can show that if

we choose the asset vector α∗ by α∗i = ᾱ/n+ p̄i − (LT e)i, ∀i = 1, . . . , n, then we still have

x∗(α∗) = e. This shows that all the nodes in the system are solvent.

From Theorem 3.2.1 and Proposition 3.2.2 we can conclude that the value of the total

asset ᾱ indicates whether we can redistribute the assets to make all the nodes in the network

solvent or there exists no ways to make all the nodes solvent. Since problem (3.2.2) is a

relaxation of problem (3.2.1), the condition ᾱ < 0 can also be viewed as a sufficient condition

for the infeasibility of problem (3.2.1). It is interesting to note that Theorem 3.2.1 holds

true for the generic class of financial networks that are fully connected, which shows that

the vulnerability of the financial network may not depend on the liability matrix L.

Our next theorem explore various properties at the optimal solution of problem (3.2.2).

Theorem 3.2.2. Suppose that the total asset of the financial network is nonnegative (ᾱ =

αT e ≥ 0). Let x∗ be the optimal solution of problem (3.2.2). Then the following conclusions

hold.

(i) There exists at least one index i such that x∗i = 1;

(ii) For every i = 1, . . . , n, if αi < p̄i − (LT e)i, then x∗i < 1;

(iii) For every i = 1, . . . , n, if x∗i = 1, then αi ≥ p̄i − (LT e)i;

Proof. We start with the proof of Conclusion (i). Let us first consider the case when ᾱ > 0.

Suppose to the contrary that Conclusion (i) does not hold, i.e., at the optimal solution x∗

of problem (3.2.2), we have

x∗i < 1, ∀i = 1, . . . , n.

From Proposition 3.2.1, the following condition holds

(P − LT )x∗ = α.
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Because eT (P −LT ) = 0, it follows that eTα = ᾱ = 0, which contradicts to the assumption

ᾱ > 0. To prove the conclusion when ᾱ = 0, let us define a new vector αε where

αε1 = α1 + ε, αεi = αi, ∀i = 2, . . . , n.

It is easy to see that

eTαε = ᾱ+ ε > 0, ∀ ε > 0.

Now let us consider a variant of problem (3.2.2) where α is replaced by αε and let us denote

its optimal solution by x∗(ε). Since eTαε > 0, there exists some index i such that x∗i (ε) = 1.

Now let us choose a sequence of εk → 0. By restricting us to a subsequence if necessary,

we can see that there exists an index i such that x∗i (εk) = 1. Recall that problem (3.2.2) is

a linear program, by using the continuity of the solution sets for linear programs [58], we

have

x∗i = x∗i (0) = lim
k→∞

x∗i (εk) = 1.

This completes the proof of conclusion (i).

To prove the second conclusion, we note that at x∗, the following inequality

p̄ix
∗
i −

∑
j 6=i

ljix
∗
j ≤ αi, ∀ i = 1, . . . , n,

holds. Therefore, for every i = 1, . . . , n, we have

p̄ix
∗
i ≤ αi +

∑
j 6=i

ljix
∗
j ≤ αi +

∑
j 6=i

lji = αi + (LT e)i < p̄i, (3.2.12)

where the second inequality follows from the constraint x∗ ≤ e, and the last inequality from

the assumption αi < p̄i − (LT e)i. From (3.2.12) we immediately obtain

x∗i < 1.

The third conclusion follows directly from Conclusion (ii). This completes the proof of the
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theorem.

Conclusion (i) in Theorem 2.2 shows that when the total asset is non-negative, at least

one bank remains solvent in the system. Based on the second conclusion in Theorem 2.2,

we can estimate the upper bound for the asset value of bank i under which bank i will

be insolvent in the system. We note this upper bound can be obtained from the current

market information.

We remark that though the results of Theorem 3.2.2 are established for problem (3.2.2),

from Proposition 3.2.1 one can easily see that these results also hold true for problem (3.2.1)

when it is feasible. We note that similar results like Conclusions (ii) and (iii) in Theo-

rem 3.2.2 have been obtained in [24] where the authors used them to design an effective

algorithm, and estimate the impact of a single shock to the system based on the classical

sensitivity analysis in linear optimization and probability theory. In this paper, we shall

use these results to estimate the impact of market shocks on the financial network.

We next provide a numerical example to verify the conclusions in the theorem. For

convenience, we introduce the following definition.

Definition 3.2.2. A financial network is said to be well-balanced, if for each node i, its

total liability equals its total claim, i.e.,

p̄i = (LT e)i, ∀i = 1, . . . , n.

Example 3.2.1. We consider a complete financial network with four banks in which the

total asset equals zero (ᾱ = eTα = 0). The liability matrix is extracted from the liability

matrix (see Table 6 in [24]) by considering the first four banks in the network. The asset

vector and the optimal solution are also listed below.

In the above example, we first consider an asset vector α1 satisfying ᾱ1 = 0. All the

nodes in the example are well-balanced, i.e., p̄i − (LT e)i = 0 for i = 1, . . . , 4. One can see

that only nodes 2 and 4 can fulfill their liabilities while nodes 1 and 3 default. This is also

consistent with the conclusions in Theorem 3.2.2. Then, we reduce the value of α1 slightly
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Table 3.1: An Example for the Relaxed Model of Financial Network.

Liability Matrix
Node 1 2 3 4 p̄ α1 α2

1 0 4857 9971 11306 26134 -6700 -9400
2 4857 0 10625 12047 27529 1790 32790
3 9971 10625 0 24734 45330 740 -8100
4 11306 12047 24734 0 48087 4170 12358.2

Claims 26134 27529 45330 48087 147080 0 27648.2

Optimal Solution
x∗1 x∗2 x∗3 x∗4

0.7269 1 0.9562 1 α1

0.5329 1 0.7186 1 α2
1− = −9400

-1.2097 1 -0.1232 0.1597 α2
1+ = −37048.2

such that α1
1 = −7600.1 and thus ᾱ < 0. In this case, problem (3.2.2) becomes infeasible.

One can show that by changing the coefficient matrix L, problem (3.2.2) is still infeasible,

and we cannot find any feasible solution as long as the total asset is below zero (eTα1 < 0).

We also consider problem (3.2.2) with another asset vector α2 such that ᾱ2 > 0. By

reducing the value of α2
1− to α2

1+ = −37048.2, we obtain a new total asset value 0, and

thus, problem (3.2.2) remains feasible. We observe that at the optimal solutions, we have

x2
1 < 0 and x2

3 < 0, which implies that problem (3.2.1) is infeasible. By checking the

optimal solutions again, we can also find that as a consequence of the change in α2
1, the

solvent node (4) has changed to a default one ( x∗4(α2
1−) = 1 and x∗4(α2

1+) = 0.15 < 1). This

demonstrates that the sets of default nodes and solvent nodes may change whenever the

asset vector changes.

3.3 The Vulnerability of A Financial Network under A Single Shock

In this section, we consider a scenario where only a single node receives the market

shock and study the impact of the shock on the whole system. The section consists of

two subsections. In the first subsection, we estimate the direct impact of the shock on the

receiving node, and in the second subsection we study the indirect impact of the shock on

other nodes in the system.
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3.3.1 The impact of a single shock on the receiving node

In this subsection, we consider a scenario where only a single node receives the market

shock and present a deterministic characterization on conditions under which the receiving

node (i) will be solvent, default or bankrupted. For such a purpose, we consider the following

modified variant of problem (3.2.2)

max
n∑
i=1

p̄ixi (3.3.1)

s.t. (P̄ − LT )x ≤ α+ s;

x ≤ e,

where s has only a single nonzero element si 6= 0 at some index i. We can interpret s as

the influence of the market shock on bank i. Our purpose is to characterize the behavior

of the optimal solution x∗(s) of problem (3.3.1) in terms of s. Particularly, we are mainly

interested in conditions under which the i-th element x∗i (s) at the optimal solution will

satisfy one of the following conditions:

x∗i (s) ≤ 0, (3.3.2)

x∗i (s) ∈ (0, 1), and (3.3.3)

x∗i (s) = 1. (3.3.4)

Note that the above conditions are associated with the status of the bank i depending on

whether it is bankrupted, default, or solvent. We also call node i insolvent when x∗i (s) < 1.

Next, we first present a technical result.

Lemma 3.3.1. Suppose that x∗(s) be the optimal solution of problem (3.3.1) where s has

only a single nonzero element si 6= 0 for some i. Then the following conclusions hold.

(i) For every index j ∈ {1, . . . , n}, x∗j (s) is nondecreasing in terms of si;

(ii) For index i, x∗i (s) is locally strictly increasing in terms of si if x∗i (s) < 1;
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Proof. We start with the proof of Conclusion (i). Let x∗(s1) and x∗(s2) denote the optimal

solutions of problem (3.3.1) corresponding to s1 and s2 respectively, where s1
i < s2

i . We

want to show that x∗j (s1) ≤ x∗j (s2) for every index j ∈ {1, . . . , n}. Assume to the contrary

that there is an index k such that x∗k(s1) > x∗k(s2). Since we assume that s1 < s2, it follows

that

X1
s ⊆ X2

s , (3.3.5)

where X1
s and X2

s are the feasible sets corresponding to s1 and s2 respectively. According

to the proof of Proposition 3.2.1, for every index i, we have

x∗i (s) = sup
x∈Xs

xi. (3.3.6)

where Xs is the feasible set of problem (3.3.1). From (3.3.5) and (3.3.6) we can conclude

that x∗k(s1) ≤ x∗k(s2) which contradicts the assumption and finishes the proof of the first

conclusion.

To prove the second conclusion it suffices to show that for s1
i < s2

i , x∗i (s1) 6= x∗i (s2).

Suppose to the contrary that x∗i (s1) = x∗i (s2). Now let us define the index sets

I1 = {i : p̄ix∗i −
∑
j 6=i

ljix
∗
j = (α+ s)i}, I2 = {i : x∗i = 1}.

From Proposition 3.2.1, we can conclude that x∗ is the unique solution of the following

linear equation system

p̄ix
∗
i −

∑
j 6=i

ljix
∗
j = (α+ s)i, ∀i ∈ I1, and (3.3.7)

x∗i = 1, ∀i ∈ I2. (3.3.8)
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Let us denote the coefficient matrix in the above system by A. Clearly A is a so-called M -

matrix. On the other hand, since I2 is nonempty by Theorem 3.2.2, under the assumption

that the financial network is fully connected, one can show that A is nonsingular. Since we

assume that x∗i (s) < 1, we have

x∗(si) = A−1α+ siA
−1
:i ,

where A−1
:i is the i-th column of A−1. Note that the inverse matrix of an M -matrix is

nonnegative (see [13]). Using the fact that Aii is the only positive element in the i-th row

of A and A−1 is nonnegative, we can conclude A−1
ii > 0. This implies that for s1

i < s2
i ,

x∗i (s1) < x∗i (s2) which contradicts to the assumption. This completes the proof of the

lemma.

Now we are ready to state the main result in this section.

Theorem 3.3.1. Let x∗(s) be the optimal solution of problem (3.3.1). Then, x∗i (s) < 0 if

and only if

si < max(−ᾱ,∆i − αi), (3.3.9)

where

∆i = −max
∑
j 6=i

ljixj (3.3.10)

s.t. p̄jxj −
∑

k 6=j,k 6=i
lkjxk ≤ αj , ∀j 6= i;

xj ≤ 1, ∀j 6= i.

Proof. For simplicity, we consider only the special case s1 6= 0. To prove the sufficiency of

the theorem, we consider the following two cases: Case (i): s1 < −ᾱ. Case (ii): −ᾱ ≤ s1 <
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∆1 − α1. In the first case, we have

eTα+ s1 < 0.

It follows from Theorem 3.2.1 that problem (3.3.1) is infeasible which implies that prob-

lem (3.2.1) is also infeasible.

Now we consider case (ii) where −ᾱ ≤ s1 < ∆1−α1. In such a case, we have ᾱ+ s1 ≥ 0

and thus the relaxed problem (3.3.1) is feasible. It remains to show that x∗1 < 0 at the

optimal solution x∗ of problem (3.3.1). Let us consider the following specific variant of

problem (3.3.1)

max
n∑
i=1

p̄ixi (3.3.11)

s.t. p̄1x1 −
∑
j 6=1

lj1xj ≤ ∆1;

p̄ixi −
∑
j 6=i

ljixj ≤ αi, ∀i = 2, . . . , n;

x ≤ e.

One can verify that the above problem and problem (3.3.10) have the same optimal solu-

tion, which further implies x∗1(s1) = 0 when s1 = ∆1 − α1. According to Conclusion (ii)

in Lemma 3.3.1 we can conclude that x∗1(s1) is locally strictly increasing in terms of s1.

Therefore, we have x∗1(s1) < 0 whenever s1 < ∆1 − α1. This proves the sufficiency of the

theorem.

Now we consider the necessity of the theorem. It suffices to consider the case where

problem (3.3.1) is feasible and x∗1(s1) < 0. Suppose to the contrary that the relation (3.3.9)

does not hold, i.e.,

s1 ≥ max(−ᾱ,∆1 − α1). (3.3.12)
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The above relation indicates

s1 + ᾱ ≥ 0, s1 + α1 ≥ ∆1. (3.3.13)

Recall x∗1(∆1 − α1) = 0, from Lemma 3.3.1 we immediately obtain

x∗1(s1) ≥ 0,

which contradicts to the assumption. This completes the proof of the theorem.

We remark that |∆i| represents the maximum amount of repayments that bank i received

from other banks in the system under the condition that bank i does not make any payment

to other banks in the system, i.e., x∗i = 0. Theorem 3.3.1 provides an estimate on the amount

of negative shock that a financial institution can survive bankruptcy under the condition

that only the corresponding institution is affected by the shock. We also mention that

the estimated amount of negative shock in Theorem 3.3.1 depends only on the current

market information, not on the future market fluctuation. Such a result allows the financial

institution to estimate the worst-case scenario it can survive under the current market

conditions on the assets and interbank liabilities, which may help the financial institution

in its decision making to hedge future risk.

We next present a numerical example to verify the theoretical conclusions of Theo-

rem 3.3.1.

Example 3.3.1. Consider a network of four financial institutions where the liability matrix

is the same as in Example 3.2.1. The asset vector α = (−9400, 32790,−8100, 12358.2)T with

ᾱ = eTα = 27648.2 > 0.

Table 3.2: Bankruptcy Example in Financial Network

Optimal Solution
x∗1 x∗2 x∗3 x∗4

0.0001 1 0.46 0.75 α1 = −17893
0 1 0.46 0.75 α1 = ∆1 = −17894.736

-0.0001 1 0.46 0.75 α1 = −17896
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For the above example, we estimate the maximum amount of negative shock (s) via (3.3.9),

where ∆ is also obtained by solving problem (3.3.10). The results are shown in the following

table.

Table 3.3: ∆ and s estimated for Example 3.3.1

Node ∆ s

1 -17894.736 -8494.736
2 5141.80 -27648.20
3 -23981.652 -15881.652
4 -10635.42 -22993.62

As one can see in the above table, ∆1 = −17894.736. Based on Theorem 3.3.1, we can

conclude that if the negative amount of shock is more than 8494.736 (s1 < −8494.736), then

at the optimal solution we have x∗1 < 0, i.e., bank 1 will be bankrupted. To verify that, we

consider three different scenarios where s1 = −8493 > −8494.736, s1 = −8494.736 , and

s1 = −8496 < −8494.736 respectively. Then, we change the values of α1 accordingly as

listed in Table 3.2. As one can see from Table 3.2, in all these cases, we have ᾱ > 0 and thus,

problem (3.2.2) is feasible. However, we note that when α1 = −17896 (or s1 < −8494.736),

it holds x∗1 = −0.0001 < 0, which indicates problem (3.2.1) is infeasible.

We also estimate the amount of negative shock that a solvent node in the system can

survive. For the solvent node (4) in the above example, from Table 3.3 we see that s4 =

−22993.62. This implies that if the negative shock (to node 4) is more than 22993.62 (i.e.,

s4 < −22993.62), then it will be bankrupted.

We next compare Theorem 3.3.1 with the results in [57] where they used standard

sensitivity analysis to estimate the impact on the payments with respect to some changes in

the asset vector (called the partial derivative of the repayments with respect to the assets).

As shown in [30], problem (3.2.1) can be solved via solving n decomposed problems where

the objective is to maximize the payment for every node i subject to the same constraint

set as in the original problem (3.2.1) 1. Therefore, the partial derivatives of the repayments

with respect to the assets are precisely the shadow prices for the decomposed problems.
1In the proof of Proposition 3.2.1, we constructed a similar decomposition for problem (3.2.2) in the form

of (3.2.3).
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The matrix of shadow prices computed in [57] is given as

∂p∗

∂α
≈



1.09 0 0.41 0

0 0 0 0

0.24 0 1.09 0

0 0 0 0


,

where p∗i = x∗i ∗ p̄i. For example, based on the above estimate, we have that ∂p∗1
∂α1
≈ 1.09

indicating that a decrease of $1 in asset value of the first node cause the payment made

by that node to drop approximately $1.09. Unfortunately, such a result remains valid only

for small shocks such that when both the set of default nodes and the set of solvent nodes

remain invariant, and the result will not hold any more for reasonably large shocks where

one solvent node becomes a default one. Take for example, for node 4 we have ∂p∗4
∂α4
≈ 0 when

the node remains solvent. This illustrates that the results in [57] cannot be used to predict

when a node will be bankrupted as a negative shock to the asset vector may change the

sets of default and solvent nodes. In contrast, Theorem 3.3.1 shows that if α4 < −10635.42,

then node (4) will be bankrupted.

In what follows we study the solvency of a financial institution in the system, i.e., to

characterize when x∗i (s) = 1 for a given index i.

Theorem 3.3.2. Suppose that x∗(s) be the optimal solution of problem (3.3.1). Then we

have x∗i (s) = 1 if and only if

si ≥ p̄i + Γi − αi, (3.3.14)

where

Γi = −max
∑
j 6=i

ljixj (3.3.15)

s.t. p̄jxj −
∑

k 6=j,k 6=i
lkjxk ≤ αj + lij , ∀j 6= i;

xj ≤ 1, ∀j 6= i.
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Proof. Let us consider only the special case s1 6= 0. To prove the sufficiency of the the-

orem, we assume that condition (3.3.14) holds. Since s1 = p̄1 + Γ1 − α1, we can rewrite

problem (3.3.1) as follows

max
n∑
i=1

p̄ixi (3.3.16)

s.t. p̄1x1 −
∑
j 6=1

lj1xj ≤ p̄1 + Γ1;

p̄ixi −
∑
j 6=i

ljixj ≤ αi, ∀i = 2, . . . , n;

x ≤ e.

One can easily verify that problem (3.3.16) and (3.3.15) have the same optimal solution,

which implies that we have x∗1(s1) = 1 if s1 = p̄1 + Γ1 − α1. From Conclusion (i) of

Lemma 3.3.1 we know that x∗(s1) is nondecreasing in terms of s1. Therefore, we have

x∗1(s1) = 1 for s1 ≥ p̄1 + Γ1 − α1. This proves the sufficiency of theorem.

Now we consider the necessity of the theorem. Suppose that x∗1(s1) = 1. Suppose to

the contrary that inequality (3.3.14) does not hold, i.e.,

s1 < p̄1 + Γ1 − α1.

From the constraints of problem (3.3.1) we obtain

p̄i −
∑
j 6=i

ljix
∗
j = p̄ix

∗
i −

∑
j 6=i

ljix
∗
j ≤ αi + si, (3.3.17)

where the equality follows from the assumption that x∗i (si) = 1. Therefore, we have

si ≥ p̄i + Γi − αi,

which contradicts to the assumption. This finishes the proof of the theorem.

We remark that |Γi| denotes the maximum amount of repayments that solvent bank i
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received from other banks in the system. Theorem 3.3.2 provides an estimate on the mini-

mum amount of positive shock or market gain for a financial institution to become solvent.

We mention that the estimated positive shock in Theorem 3.3.2 depends on the current

asset value and interbank liabilities. This allows the financial institutions to estimate the

asset increment (such as the exogenous investment or profit gain) they need in order to be-

come solvent. Theorem 3.3.2 also provides an estimate on the maximum amount of negative

shock a solvent node can sustain to remain solvent. The results in Theorem 3.3.2 may help

financial institutions in their decision making regarding its investment in the market. We

also point out that the results in Theorem 3.3.2 are very different from the results in [57]

based on standard sensitivity analysis in linear optimization. Different from our work, [20]

estimate the liquidity assistance loan via the proposed multi-period clearing payment sys-

tem. They also study the impact of two mitigation strategies on the vulnerability of the

system in terms of number of default nodes.

We next use the same financial network as in Example 3.3.1 to verify the conclusions in

Theorem 3.3.2.

Example 3.3.2. L and α are the same as in Example 3.3.1.

Table 3.4: Solvency Example in Financial Network

Optimal Solution
x∗1 x∗2 x∗3 x∗4

0.99 1 0.82 1 α1 = 1780
1 1 0.82 1 α1 = Γ1 + p̄1 = 1781.714
1 1 0.82 1 α1 = 1782

Table 3.5: Γ and s estimated for Example 3.3.2

Node Γ s

1 -24352.286 11181.714
2 -22270.348 -27531.348
3 -41743.584 11686.416
4 -35845.652 -116.852

In the above example, Γ1 + p̄1 = 1781.714 was obtained by solving problem (3.3.15).

For this example, if the first node can manage to increase its asset (by attracting exogenous

investment or investing smartly), then its repayment ability will be improved as well. In the
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case that the increment of asset value reaches s1 = 11181.714, then the first node will become

solvent. To verify that, we consider three different scenarios where s1 = 11180 < 11181.714,

s1 = 11181.714, and s1 = 11182 > 11181.714 receptively. Then, we change value of α1

accordingly as listed in Table 3.4. As you can see when α1 ≥ 1781.714, it holds x∗1 = 1 at

the optimal solution.

We also estimate the amount of shock for solvent nodes 2 (or node 4) in the system.

As one can see in Table 3.5, Γ2 + p̄2 = 5258.652 (or Γ4 + p̄4 = 12241.348). Based on

Theorem 3.3.2, one can show that if the amount of negative shock is less than 27531.348

(s2 ≥ −27531.348) (or 116.852 (s4 ≥ −116.852)), we have x∗2 = 1 (or x∗4 = 1) which shows

that node 2 (or node 4) remains solvent in the system.

It is also interesting to note that standard sensitivity analysis for linear optimization

problem can also be used in some special case in Theorem 3.3.2. Take for example, using the

standard sensitivity analysis as in [57], we have ∂p∗1
∂α1
≈ 1.09 (see discussion in Example 3.3.1).

This shows that when α1 is increased by 11182.7158, the first node can repay it liabilities

in full, i.e. x∗1 = 1. In such a case, we have

[(P − LT )x∗]1 = α1, x∗1 = 1.

The above example represents a borderline case where node 1 changes from a default node

to a solvent one. In other words, the sets of the default and solvent nodes did not change

before α1 reaches the value 11182.7158. Therefore, the estimate based on the standard

analysis is similar to what we obtained from Theorem 3.3.2. For solvent nodes 2 and 4,

from the standard sensitivity analysis we have ∂p∗2
∂α2
≈ 0 and ∂p∗4

∂α4
≈ 0, which implies that the

asset value of those nodes does not have any impact on their repayment ability. In contrast,

Theorem 3.3.2 shows that if α2 < 5258.651 (or α4 < 12241.348), then node 2 (or node 4)

will default.

Theorems 3.3.1 and 3.3.2 provide an upper bound and a lower bound of the magnitude

of shock si such that bank (i) is bankrupted or solvent. Combining the results in these two

theorems, we immediately obtain the following result.
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Corollary 3.3.1. If

si ∈ (max(−ᾱ,∆i − αi), p̄i + Γi − αi), (3.3.18)

then the relation 0 < x∗i (si) < 1 holds at the optimal solution x∗(si) of problem (3.3.1).

We call interval (3.3.18) as the default window. The default window can be used as an

indicator for the resistance of a default bank i to market shock. The larger the window is,

more resistant to market shock the bank is. It worths estimate the length of the default

window. Since ∆i and Γi are obtained by solving problems (3.3.10) and (3.3.15) respectively,

we have

Γi ≤ ∆i.

It follows that

p̄i + Γi − αi −max(−ᾱ,∆i − αi) ≤ p̄i + Γi −∆i ≤ p̄i.

In other words, the maximal magnitude of shock that a default bank i can resist is bounded

above by its total liability.

3.3.2 The indirect impact of the shock on other nodes in the system

In this subsection, we study the impact of a single shock to other nodes in the system.

To start, we point out that [24] and [44] study the contagion impact of a single shock on

other non-receiving nodes in the system. Different from the results in these two papers,

we will estimate the magnitude of a single shock under which some non-receiving node will

be bankrupted. For simplicity of discussion, throughout this subsection we assume that

the first node is the receiving node with shock s1. In such a case, we can consider the

decomposed problem as follows

max xj (3.3.19)
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s.t. p̄1x1 −
∑
j 6=1

lj1xj ≤ α1 + s1;

p̄ixi −
∑
j 6=i

ljixj ≤ αi, ∀i = 2, . . . , n;

x ≤ e.

Particularly, we are mainly interested in estimating the minimum amount (denoted by s̄1j)

of s1 such that bank j become bankrupted, i.e.,

s̄1j := arg max x(j)
j (s1) = 0, (3.3.20)

where x(j)
j (s1) denotes the objective function value at the optimal solution of problem (3.3.19).

One can easily see that s̄11 = max{−ᾱ,∆1 − α1}. Let us define

s̄max1 = max
j=1,...,n.

s̄1j .

The following result follows directly from the above definition.

Proposition 3.3.1. Suppose the system is triggered by a single shock s1. If s1 < s̄max1 ,

then some node in the system will be bankrupted.

In what follows we consider the issue of how to estimate s̄max1 . Let us start by considering

the issue of which node is more sustainable under the single shock s1. For this, we introduce

the following definition.

Definition 3.3.1. Let s̄1j be defined by (3.3.20). We say a node i is more sustainable than

another node j under the single shock s1 if s̄1i ≤ s̄1j .

We next present a result on how to determine whether one node in the system is more

sustainable than the receiving node itself . We have

Theorem 3.3.3. Let x∗(s1) be the optimal solution of problem (3.3.10) with i = 1. For

every j > 1, we have

(i) If x∗j (s1) > 0, then node j is more sustainable than the receiving node 1;
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(ii) If x∗j (s1) ≤ 0, then node j is less sustainable than the receiving node;

(iii) If x∗j (s1) > 0,∀j > 1, then s̄max1 = s̄11.

Proof. Based on Conclusion (i) in Lemma 3.3.1, we can claim that x∗j (s1) is nondecreasing

in terms of s1. By following a similar vein as in the proof of Proposition 3.2.1, we can show

that

x∗j (s1) := sup
x(s1)∈X(s1)

xj(s1), ∀j = 2, . . . , n,

where X(s1) is the feasible set of problem (3.3.10). Since problem (3.3.10) and (3.3.19) have

the same feasible set, x∗(s1) is a feasible solution of (3.3.19). Clearly, x∗(s1) maximizes xj

and therefore, x∗(s1) is the unique optimal solution to (3.3.19). This implies that the

optimal solution of problem (3.3.10) can be obtained by solving n− 1 decomposed problem

in the form of problem (3.3.19). Now, because

x
(j)
j (s̄1j) > 0, ∀j > 1,

from (3.3.20) it follows

s̄1j ≤ s̄11.

This proves the first conclusion in the theorem. The second conclusion follows similarly.

We consider that x∗j (s1) ≤ 0 which implies that

x
(j)
j (s̄1j) ≤ 0, ∀j > 1.

Based on (3.3.20) we have

s̄1j ≥ s̄11.

This proves the second conclusion in the theorem. The last conclusion follows directly from

the definition of s̄max1 . This completes the proof of the theorem.

Theorem 3.3.3 provides a simple way to determine whether a non-receiving node in the
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system is more sustainable than the receiving node itself by solving problem (3.3.10). Note

that when α > 0, one can show that at the optimal solution x∗(s1) of problem (3.3.10), we

have x∗j > 0 for all j > 1. It follows from Theorem 3.3.3 that

Corollary 3.3.2. Suppose a system is triggered by a single shock. If all the nodes in the

system have positive assets, then every non-receiving node in the system is more sustainable

than the receiving node itself.

The above corollary shows that for problem (3.2.1), if the initial asset vector α is positive,

and only α1 is subject to the shock s1, then node 1 will be bankrupted first. Corollary 3.2

also implies that if the system is triggered by multiple shocks such that only one node

receive a negative shock, then the node receiving the negative shock will become bankrupt

first.

We next discuss how to estimate s̄max1 when there exists some non-receiving node j > 1

that is less sustainable than the receiving node 1. For this, we recall conclusion (i) of

Lemma 3.3.1, which shows that x∗j (s1) is nondecreasing in terms of s1. One way to locate

s1j is applying a line search procedure based on the monotonicity of x∗j (s1). Let us assume

that problem (3.2.1) is feasible and thus, we can obtain an upper bound us = 0 for s1j .

From Theorem 3.2.1, we can also obtain a lower bound ls = −ᾱ for s1j . We are now ready

to describe a bisection search algorithm for locating s1j .

A Bisection Search Algorithm

S.0 Input: L, p̄, α, ls = −ᾱ, us = 0, and a stop criteria ε;

S.1 While u− l > ε Do;

S.1.1 s1 := ls+us
2 ;

S.1.2 Solve problem (3.3.19);

S.1.3 If x∗j (s1) > 0, then

S.1.4 Set u = s1,

S.1.5 else
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S.1.6 Set l = s1,

S.1.7 endif

S.2 Output: s1j = s1

For illustration, we use the same financial network as in Example 3.3.1 and adapt the

bisection search algorithm to estimate s̄ij .

Example 3.3.3. L and α are the same as in example 3.3.1.

Table 3.6: Bankruptcy Example in Financial Network

Optimal Solution
x∗1 x∗2 x∗3 x∗4

0.5329 1 0.7186 1 α1 = −9400
0 1 0.4624 0.7454 α1+ = ∆1 = −17894.736

-0.9551 1 0 0.2830 α1− = α1 − s̄13 = −33017.514

For the above example, we first estimate ∆i, ∀i = 1, . . . , 4 by solving problem (3.3.10)

which is also shown in Table 3.3. We also use the bisection search algorithm to estimate

s̄ij ,∀i, j = 1, . . . , 4, as listed in the following table.

Table 3.7: sij estimated for Example 3.3.3

Node s̄1j s̄2j s̄3j s̄4j

1 -8494.736 -27648.2 -17546.0 -17546.0
2 -27648.2 -27648.2 -27648.2 -27648.2
3 -23617.514 -27648.2 -15881.652 -23617.0
4 -27648.2 -27648.2 -27648.2 -22993.62

From Table 3.6, one can see that under a single shock s1, the receiving node 1 is the least

sustainable node and bankrupts first, while node 2 remains solvent as well as problem (3.2.1)

remains feasible. When the amount of the negative shock |s1| is sufficiently large such that

s1 ≤ s̄13, then node 3 becomes bankrupted.

From Table 3.7, we can see that if the single shock is received by either node 1 or 3,

then the receiving node is the least sustainable node. However, when node 4 is the receiving

node, then we have s̄max4 = s̄41, which indicates that node 1 is less sustainable than the

receiving node 4.
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3.4 The Vulnerability of A Financial Network under Multiple Shocks

In this section, we estimate the vulnerability of a financial network in a generic scenario

where all the nodes are subject to market shocks. The section consists of three subsections.

In the first subsection, we estimate the impact of asset inequality on the stability of the

network, and show that, the least stable financial network can be attained at some network

with a monopoly node. Then, we characterize conditions for bankruptcy in a financial

network with a monopoly node. In the second and third subsections, we estimate the

probabilities of insolvency and bankruptcy in the network respectively.

3.4.1 Asset inequality and stability of the financial system

In this subsection we estimate the vulnerability in a financial system when all the nodes

are exposed to market shocks. First we point out that, as proved in Lemma 3.3.1, the

solution x∗(s) of problem (3.3.1) is component-wise monotone with respect to the market

shock when only a single bank receives the shock. In such a case, we can conclude that

x∗(s) is also monotone in terms of total asset (ᾱ), i.e., the financial network will be more

stable as the total asset increases. Such a result has also been used in [44] to estimate

the probability of insolvency in the network caused by the shock to a single node (i). It

is of interests to see whether the monotone relationship between the repayments and the

shocks still holds when all the nodes receive shocks. For this, we introduce the following

two definitions.

Definition 3.4.1. A node (i) in the financial system is said to be strictly solvent node if

x∗i = 1, [(P − LT )x∗]i < αi,

where, x∗i is the optimal solution of (3.2.1) or (3.2.2). The asset inequality is defined as a

gap between the asset of one strictly solvent node and some default or bankrupted nodes

in the system.
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Definition 3.4.2. Consider two financial systems with the same network structure L with

asset vectors α1 and α2 satisfying eTα1 = eTα2 = ᾱ. The first system is said to be less

stable than the second one if

p̄Tx∗(α1) < p̄Tx∗(α2),

where x∗(α1) and x∗(α2) denote the optimal solution of (3.2.1) with α = α1 and α = α2,

respectively.

We remind the readers that based on Definition 3.4.2, the stability of a financial system

is measured in terms of the optimal objective value of problem (3.2.1). This is different

from what’s in the reference [1] where the authors suggested to use the number of nodes

affected by the shock to measure the stability of the system.

We now consider a financial network with total asset ᾱ1 where problem (3.2.1) is feasible

and there exists some default bank, and strictly solvent node. Without loss of generality, let

us further assume that bank 1 defaults, i.e., at the optimal solution x∗ of problem (3.2.2),

we have 0 < x∗1 < 1, and bank n is strictly solvent, i.e., x∗n = 1, [(P − LT )x∗]n < αn. Now

let us consider a new financial system with total asset ᾱ2 = ᾱ1 such that α2
1 = α1

1 − ε and

α2
n = α1

n + ε. Since x∗n(α1) = 1, it holds x∗n(α2) = 1. It follows from Lemma 3.3.1 that

x∗1(α2) < x∗1(α1), x∗i (α2) ≤ x∗i (α1),∀i = 2, . . . , n.

From the above discussion we immediately obtain the following result.

Proposition 3.4.1. Suppose that the summation of the assets of one default node and

another strictly solvent node remain invariant. A larger asset inequality between these two

nodes will decrease the stability of the financial network.

We remark that since increasing the asset value αn will not help to improve the stability

of the underlying network, this implies that an increase in the total asset may not improve

the stability of the network. The following example demonstrates such an phenomenon.

Example 3.4.1. We consider the same data matrix as in Example 3.2.1 with three different
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vectors of asset

α1 = (−400, 3790, 100, 1358.2)T , α2 = (−500, 4000, 100, 1358.2)T ,

α3 = (−1000, 4000, 100, 3358.2)T

such that at least one of the nodes in the system defaults.

Table 3.8: Stability of a Financial System VS Asset Inequality.

Optimal Solution
x∗1 x∗2 x∗3 x∗4

0.9842 1 0.9987 1 α1

0.980 1 0.9978 1 α2

0.959 1 0.9932 1 α3

In the above example, we change the value of α1 such that the asset value of the first

node is decreased while the asset values of all other nodes are increased and thus, the total

asset is increased as well. As you can see from Table 3.8, we have

x∗1(α1) > x∗2(α2) > x∗3(α3), ᾱ1 < ᾱ2 < ᾱ3.

The example shows clearly that an increase in the total asset may not improve the stability

of the financial network. With a close look at the example, we find that the asset inequality

has also increased as the total asset grows. This illustrates that the asset inequality in the

financial network has a negative effect on the stability of the network. Next, we study the

stability of a network with a dominant node, which represents an extreme distribution of

the assets defined as follows.

Definition 3.4.3. A node i in a financial network is said to be a monopoly node if

αi = ᾱ, αj = 0, ∀j = 1, . . . , i− 1, i+ 1, . . . , n. (3.4.1)

We next show that under the assumption that total asset is fixed, the network is the least
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stable one when it has a monopoly node. To start, let us consider the following problem

min
α

max
x

p̄Tx (3.4.2)

s.t. (P̄ − LT )x ≤ α;

x ≤ e;∑
i

αi = ᾱ;

α ≥ 0.

For a given α, let f(α) denote the objective function value of problem (3.2.2). Then we can

rewrite the above problem as

min
α

f(α) (3.4.3)

s.t.
∑
i

αi = ᾱ;

α ≥ 0.

Note that by using the duality theorem for linear optimization, we have

f(α) := min
λ

αTλ+ eT p̄− eT (P − L)λ

s.t. (P − L)λ ≤ p̄;

λ ≥ 0.

From the above definition, one can see that f(α) is concave with respect to α. Therefore, the

optimal solution of (3.4.3) can be obtained in one of the extreme points of the constrained

set, which is precisely a network with a monopoly node. From this, we immediately have

the following result.

Proposition 3.4.2. Suppose that the total asset is fixed. The least stable financial network

can be attained at some network with a monopoly node. Moreover, if the monopoly node

in a network is strictly solvent and there exists some default node in the system, then the
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stability of network can be improved by redistributing the assets in the network.

Proof. We need only to prove the second conclusion of the proposition. Let assume that

the first node is the monopoly node that is strictly solvent. Thus, we have

x
(1)
1 = 1, [(P − LT )x(1)]1 < α1.

In this case, there exist at least one default node i > 1 in the system such that

x
(1)
i < 1.

Now if we slightly increase α1
i to α2

i = α1
i + ε and decrease α1

1 to α2
1 = α1

1 − ε such that

[(P − LT )x(1)]1 ≤ α1
1 − ε, we can conclude that

x(2) > x(1),

where x(1) and x(2) are the optimal solutions of (3.2.1) when α = α1 and α = α2 respectively.

Note that the above inequality follows from conclusion (ii) in Lemma 3.3.1 which states that

x
(1)
i (si) is strictly increasing in terms of si. This finishes the proof of the proposition.

Proposition 3.4.2 shows that the worst-case scenario for problem (3.2.1) w.r.t. the asset

distribution is the network with a monopoly node. We remark that there are several empir-

ical studies showing that the presence of inequality played an important role in the crisis.

For example, [68] studies the two-way relation between income inequality and economic

fluctuation and their impact on the creation of crisis. [69] also discusses the impact of in-

come inequality on the Great Recession. However, our result is the first one using rigorous

analysis to study the impact of asset inequality on the stability of a financial network.
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3.4.2 Probability analysis on the vulnerability of a financial network

In what follows we explore the vulnerability of a network with a monopoly node when all

the nodes receive shocks under certain assumption of the shock distribution. First, we recall

that, as illustrated by Example 3.4.1, the monotonicity between the repayments (x∗(s)) and

the shocks (s) does not hold in general if all the nodes receive shocks. Fortunately, as shown

in Conclusion (ii) of Theorem 3.2.2, a node i is insolvent if αi ≤ p̄i − (LT e)i. Since the

total liability of a financial institution p̄i and its total claims (LT e)i are usually known in

advance, this allows us to estimate the probability of insolvency in the financial network

under the following assumption.

Assumption 3.4.1. (i) The financial network is well-balanced and the assets are non-

negative;

(ii) All the shocks follow the same independent normal distribution with a zero mean and

variance σ2, i.e., si ∼ N (0, σ2).

We have

Theorem 3.4.1. Suppose that Assumption 3.4.1 holds. For a fixed total asset (ᾱ), the

following conclusions hold.

(i) The network with a monopoly node has the highest probability of insolvency and is

the most vulnerable one. Moreover, it holds

P (∃i : x∗i < 1) ≥ 1− (0.5)n−1. (3.4.4)

(ii) The system is most stable when the assets are evenly distributed, i.e., αi = ᾱ
n , ∀i =

1, . . . , n.

Proof. We start with the first conclusion. Under Assumption 3.4.1, from Conclusion (ii) of
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Theorem 3.2.2, we obtain that x∗i < 1, if αi < p̄i − (LT e)i = 0. Thus, we have

P (∃i : x∗i < 1) = P (∃i : αi + si < 0).

Therefore, the most vulnerable network can be identified via solving the following optimiza-

tion problem

min
α

∏
i

(1− P (si < −αi)) =
∏
i

F (αi) (3.4.5)

s.t.
∑
i

αi = ᾱ;

αi ≥ 0,

where F (·) is the cumulative distribution function of normal distribution with a density

function f(·). Note that the equality in the objective function follows from the symmetry

of the shock distribution. Since F (·) is strictly monotone, we can rewrite the problem as

min
α

∑
i

lnF (αi) (3.4.6)

s.t.
∑
i

αi = ᾱ;

αi ≥ 0.

Because the objective and constraint functions in problem (3.4.6) are differentiable, the

optimal solution to the above problem must satisfy the Karush-Kuhn-Tucker (KKT) con-

ditions [17], i.e.,

∂ lnF (αi)
∂αi

+ λ− νi = 0, ∀i = 1, . . . , n; (3.4.7)∑
i

αi = ᾱ, and (3.4.8)

νiαi = 0, ∀i = 1, . . . , n; (3.4.9)

αi ≥ 0, ∀i = 1, . . . , n;

νi ≥ 0, ∀i = 1, . . . , n,
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where λ and ν are the Lagrange multipliers. From (3.4.9), it is easy to see that for every

index i, either αi or νi must be zero. Let us define the index sets based on the element

values of ν by

I0 = {i : νi = 0}, I1 = {i : νi 6= 0}. (3.4.10)

It follows immediately that

αi = 0, ∀i ∈ I1.

Using the above relation, we can rewrite the KKT conditions as

f(αi)
F (αi)

+ λ = 0, ∀i ∈ I0;

αi = 0, ∀i ∈ I1;∑
i∈I0

αi = ᾱ.

Since the function f(·)/F (·) is a bijective map, from the above relations we can claim that

αi = ᾱ

k
, ∀i ∈ I0,

where k is the number of nodes in I0. Based on this, the objective function of (3.4.5) can

be written as a function of k, i.e.,

g(k) = F (ᾱ/k)kF (0)(n−k) = (2F (ᾱ/k))k(1/2)n.

We next show that g(k) is an increasing function with respect to k. For this, we take the

first derivative of ln g(k) with respect to k as

∂ ln g(k)/∂k = ln 2F (ᾱ/k)− (ᾱ/k)f(ᾱ/k)/F (ᾱ/k). (3.4.11)
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We also have that

lim
k→∞

ln 2F (ᾱ/k)− (ᾱ/k)f(ᾱ/k)/F (ᾱ/k) = 0. (3.4.12)

Now, if we take the second derivative of ln g(k) with respect to k, we have

∂2 ln g(k)/∂k2 = −ᾱ3f(ᾱ/k)/σ2F (ᾱ/k)− ᾱ2f(ᾱ/k)2/k3F (ᾱ/k)2 < 0. (3.4.13)

From (3.4.12) and (3.4.13), we can conclude that for small value of k, ∂ ln g(k)
∂k > 0, which

implies that g(k) is increasing in k. Based on this, one can conclude that the objective value

of (3.4.5) attains its minimum when k = 1, i.e., there exists an index i such that

α∗j = ᾱ, α∗i = 0, ∀i 6= j.

From the above relation and the symmetry of the shock distribution we obtain

P (∃i : x∗i < 1) = 1−
∏
i

(1− P (si < −αi));

≥ 1−
∏
i 6=j

(1− P (si < −αi));

= 1− (0.5)n−1,

where the inequlity follows from the fact that (1− P (sj < −αj)) ≤ 1.

Similarly, since k ≤ n, we can conclude that the maximum value of g(k) can be obtained

when the assets are evenly distributed as α∗i = ᾱ
n , ∀i = 1, . . . , n. This finishes the proof of

the theorem.

Theorem 3.4.1 shows that for problem (3.2.1), the monopoly case is the most vulnerable

in terms of probability of insolvency. We note that Glasserman and Young [44] estimated

the probability of a subset of nodes to default caused by the shock received by a single

node not in that subset, and obtained a similar result as Conclusion (ii) of Theorem 3.4.1

(see Proposition 1 and Corollary 1 in [44]). Chen et al. [24] also extend the results in
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[44] by considering the impact of the liquidity concentration on the bank. It is worthwhile

mentioning that the proof of the theorem depends only on the two properties that the

function (f(·)/F (·)) is bijective, and the function g(k) is decreasing. This implies that the

results in Theorem 3.4.1 can be extended to any shocks that follows some distribution with

a density function and an accumulative function such that these two properties are satisfied.

3.4.3 Probability of bankruptcy in the system

In this subsection, we estimate the probability of bankruptcy in the system. Throughout

this subsection, we make the following assumption.

Assumption 3.4.2. All the shocks follow some independent normal distributions with a

zero mean and variance σ2
i , i.e., si ∼ N (0, σ2

i ).

Theorem 3.4.2. Suppose that Assumption 3.4.2 holds. Then the probability that some

bank (i = 1, . . . , n) will be bankrupted is larger than

1−
∏
i

(1− P (si ≤ ∆i − αi)). (3.4.14)

Proof. Without loss of generality, we assume x∗i = 0. Given any i, we rewrite the reduced

problem (3.3.10) w.r.t. the shock s as

−∆i(s) = max
∑
j 6=i

ljixj (3.4.15)

s.t. p̄jxj −
∑

k 6=j,k 6=i
lkjxk ≤ αj + sj , ∀j 6= i;

xj ≤ 1, ∀j 6= i.

The dual problem of (3.4.15) reads as

−∆i(s) = min
∑
j 6=i

(αj + sj − p̄j +
∑

k 6=j,k 6=i
ljk)yj +

∑
j 6=i

lji (3.4.16)
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s.t. p̄jyj −
∑

k 6=j,k 6=i
ljkyk ≤ lji, ∀j 6= i;

y ≥ 0.

Let Y denotes the feasible set of problem (3.4.16). Since all the variables sj ∀j = 1, . . . , n

are independent random variables sj ∼ N (0, σ2
j ), it follows from Theorem 3.3.1 that

P (x∗i ≤ 0) = P (si ≤ −E[min
y∈Y

∑
j 6=i

(αj + sj − p̄j +
∑

k 6=j,k 6=i
ljk)yij +

∑
j 6=i

lji]− αi),

where E[·] denotes the expected value of −∆i(s). Note that the dual problem (3.4.16) is a

linear optimization problem parameterized by the random noise s. From a computational

perspective, we can use stochastic programming and scenario generation to estimate the

probability P (x∗i < 0). In what follows we present a simple way to obtain a lower bound

on the the probability P (x∗i < 0). Since the objective function in problem (3.4.16) is linear

in terms of s, −∆i(s) is concave with respect to s. It follows immediately

E[min
y∈Y

∑
j 6=i

(αj + sj − p̄j +
∑

k 6=j,k 6=i
ljk)yj +

∑
j 6=i

lji]

≥ min
y∈Y

∑
j 6=i

E(αj + sj − p̄j +
∑

k 6=j,k 6=i
ljk)yj +

∑
j 6=i

lji

= min
y∈Y

∑
j 6=i

E(αj − p̄j +
∑

k 6=j,k 6=i
ljk)yj +

∑
j 6=i

lji

= −∆i,

where the first inequality follows from the concavity of −∆i(s) w.r.t. s and the fact that

all the parameters in (3.4.16) except s are constant, and the first equality follows from the

assumption E[sj ] = 0, ∀j = 1, . . . , n. Thus, we have

P (x∗i ≤ 0) ≥ P (si ≤ ∆i − αi), (3.4.17)
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which further implies

1−
∏
i

(1− P (x∗i ≤ 0)) ≥ 1−
∏
i

(1− P (si ≤ ∆i − αi)).

This completes the proof of the theorem.

Theorem 3.4.2 provides an estimation on the lower bound for the probability that some

bank will be bankrupted in the system. Such an estimate depends on the current asset

vector and interbank liability matrix. Therefore, it may help the clearing agent to identify

the future risk of bankruptcy in the system based on the current market information, and

implement policies to avoid such a risk in advance.

We next study the vulnerability of a specific network with monopoly node under some

assumption about the monopoly node in it. For this, we first introduce the following

definition.

Definition 3.4.4. A node i in the financial network is said to be liability-free, if we have

lij = 0, ∀j = 1, . . . , n, j 6= i.

We have

Theorem 3.4.3. Given a network with a monopoly node in which the monopoly node is

liability-free, and all the other nodes are well-balanced. Suppose that Assumption 3.4.2

hold. Then we have

P (∃j : x∗j ≤ 0) ≥ 0.5.

Proof. W.l.o.g., we assume that the first node is the monopoly node. In this case, we have

l1j = 0, ∀j = 1, . . . , n, and αi = 0,∀i 6= 1. In such a case, we can rewrite problem (3.2.2) as

follows

max
∑
i

p̄ixi (3.4.18)

s.t. p̄1x1 −
∑
k≥2

lk1xk ≤ α1 and

59



p̄jxj −
∑
k≥2

lkjxk ≤ sj , ∀j = 2, . . . , n; (3.4.19)

xj ≤ 1, ∀j = 1, . . . , n.

By summing up the left-had sides of the constraints (3.4.19), we obtain

n∑
j=2

p̄jxj −∑
k≥2

lkjxk

 =
∑
k≥2

lk1xk ≤
n∑
j=2

sj , (3.4.20)

where the first equality follows from the fact that all the non-monopoly nodes are balanced.

From (3.4.20), we can conclude that if all the elements of x are positive, then it must hold∑n
j=2 sj > 0. In other words, if

∑n
j=2 sj ≤ 0, then x must have some element less than or

equal 0. It follows from the symmetry of the shock distribution that

P (∃j : x∗j ≤ 0) ≥ P (
n∑
i=1

si ≤ 0) = 0.5.

This completes the proof of the theorem.

Theorem 3.4.3 indicates that for problem (3.2.1), if the liability matrix L has a row

whose elements are zeros and the corresponding node is a monopoly in the system, then

even when all the other non-monopoly nodes are well-balanced, under mild assumption on

the shock distribution, the probability of bankruptcy in the system is larger than 50%. The

theorem also implies that if a monopoly node in the system bankrupts, then there is a high

probability of bankruptcy in the reduced system consisting of all the non-monopoly nodes.

We next provide some numerical examples to verify our theoretical results.

Example 3.4.2. We consider the same data matrix as in Example 3.2.1. The vector of

asset α1 = (7674.5, 7674.5, 7674.5, 7674.5)T is computed based on data from Table 3 in [24]
2. We also generate a new asset vector α2 = (30698, 0, 0, 0)T such that ᾱ1 = ᾱ2.

2 As reported in a recent FDIC report [36], the total equity (which we call asset in this paper) is about
14.4% of the total liability.
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Table 3.9: Bankruptcy in a Financial Network with Random Shock

0 < x∗i < 1 x∗i ≤ 0
∑

i
(αi + si) < 0

9493 2 505 α1

8854 582 564 α2

Node α1 α2

∆i P (si ≤ ∆i − αi) ∆i P (si ≤ ∆i − αi)
1 -23023.5 0.0000013 0.000028 0.0000013
2 -23023.5 0.0000040 -15833.2 0.0107076
3 -23023.5 0.0033758 -21063.5 0.0315362
4 -23023.5 0.0053317 -21873.7 0.0344167

We use MATLAB function NORMRAND to generate random vectors of shock with

Normal distribution under the assumption that si ∼ N (0, σ2
i ), ∀i = 1, . . . , n. For each node

i, we consider σi = 0.25p̄i. Then we solve 10000 random instances of problem (3.3.1) by

using CVX under MATLAB R2015b. The results are summarized in Table 3.9.

For α1 where all the nodes have positive assets, as shown in Table 3.9, there are 507

bankruptcy cases observed in our experiments, showing an empirical probability bound

P (x∗i < 0) = 0.0507. For each i = 1, 2, 3, 4, we also compute the value of ∆i via solving

problem (3.3.10). Based on the values of ∆is, we have

1−
∏
i

(1− P (si ≤ ∆i − αi)) = 0.0086 ≤ 0.0507.

We next consider a monopoly network with the monopoly node 1 corresponding to the

asset vector α2. Note that in the original system, all the banks have nonnegative assets

and the network is well-balanced, thus all the banks in the network are solvent. According

to Theorem 3.4.1, it has the highest probability of insolvency and is the most vulnerable

scenario of a well-balanced network. As shown in Table 3.9, the empirical probability of

bankruptcy is 0.1146. Based on the computed values of ∆is, we derive a lower bound (3.4.14)

as

1−
∏
i

(1− P (si ≤ ∆i − αi)) = 0.0748 ≤ 0.1146.

One can easily see from Table 3.9 that the values of ∆is are much larger in a monopoly
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network.

We also note that based on Table 3.9, for all the generated 10000 scenarios of the

monopoly network with α2, there are insolvent nodes in the system, indicating an empirical

probability of insolvency 1. Note that, from Theorem 3.4.1 we have the following theoretical

lower bound for the probability of insolvency

P (∃i : x∗i < 1) ≥ 1− (0.5)3 = 0.875.

Example 3.4.3. We next consider a financial network with a liability-free monopoly node.

The liability matrix and the asset vector are given in Table 3.10.

Table 3.10: Bankruptcy in a financial network with liability free monopoly node

Liability Matrix
Node 1 2 3 4 p̄ α

1 0 0 0 0 0 30698
2 4857 0 10625 12047 27529 0
3 9971 10625 0 24734 45330 0
4 11306 12047 24734 0 48087 0

Claims 26134 22672 35359 367810 120946 30698

0 < x∗i < 1 x∗i ≤ 0
∑

i
(αi + si) < 0

4057 5518 371

We use the same way as in Example 3.4.2 to generate random shocks. Based on empirical

results shown in Table 3.10, there are 5889 bankruptcy cases observed, showing an empirical

probability of bankruptcy P (x∗i < 0) = 0.5889, which is larger than the theoretical bound

provided by Theorem 3.4.3.

3.5 The Domino Effect of Bankruptcy in A Financial Network with A

Monopoly Node

In this section, we estimate the domino effect of bankruptcy in a well-balanced network

with a monopoly node. This is motivated by several observations. First of all, as shown in

the previous section, the network with a monopoly node is the most vulnerable one in terms

of asset distribution. Second, massive bankruptcies had been observed during the 2007-2008
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financial crisis. Due to the severe consequence of the domino effect of bankruptcy, it is of

interests to explore the network structure under which the bankruptcy of some node in the

network will cause other nodes to be bankrupted.

The following result regarding the domino effect of the monopoly node’s bankruptcy is

intuitive. For self-completeness, we also include a proof.

Proposition 3.5.1. Given a fully connected and well-balanced financial network with a

monopoly node. If the monopoly node is bankrupted, then all other nodes in the system

will be bankrupted as well.

Proof. For simplicity we assume that the first node is the monopoly node. Therefore, we

can rewrite problem (3.2.2) as

max p̄Tx and (3.5.1)

s.t. p̄1x1 −
∑
k>2

lk1xk ≤ ᾱ, and

p̄jxj −
∑
k>2

lkjxk − l1jx1 ≤ 0, ∀j = 2, . . . , n− 1; (3.5.2)

x ≤ e.

Now let us consider that the monopoly node is bankrupted, i.e., x∗1 ≤ 0. In this case, we

first show that at the optimal solution of (3.5.1) we have

x∗j = c, ∀j ≥ 2, c ∈ <. (3.5.3)

To show this, suppose to the contrary that (3.5.3) does not hold. Then there exists an index

j∗ such that x∗j∗ = maxj=2,...,n x
∗
j . Based on this, by rewriting feasibility condition (3.5.2)

for index j∗, we have

p̄j∗x
∗
j∗ −

∑
k>2

lkj∗x
∗
k ≤ l1j∗x∗1 ≤ 0.

Using the connectivity of the underlying network and following a similar vein as in the

proof of Lemma 3.2.1, we can conclude that (3.5.3) holds at the optimal solution of problem
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(3.5.1). Now it suffices to show that c ≤ 0. Since the network is fully connected, there exists

m ≥ 2 satisfying l1m > 0. Now recall the feasibility condition (3.5.2) for index m, we have

l1mx
∗
m = (p̄m −

∑
k>2

lkm)x∗m ≤ 0,

where the equality follows from the fact that the network is well-balanced. This implies

that x∗m = c ≤ 0, which completes the proof of the proposition.

Proposition 3.5.1 illustrates that the bankruptcy of the monopoly node will cause all

other nodes in the system to be bankrupted, which is consistent with the “too big to fail”

theory. Next we study how the bankruptcy of a non-monopoly will affect the system. For

this, we consider a well-balanced network with a tridiagonal structure specified below.

Assumption 3.5.1. A financial network is said to have a tridiagonal structure if it satisfies

the following relations:

lij > 0, ∀(i, j) ∈ {(i, j) : |i− j| ≤ 1, ∀i, j = 1, . . . , n}. (3.5.4)

We remark that the above structure is identified in recent work by [54]. Next we study

the domino effect of bankruptcy in a balanced network with a tridiagonal structure and the

first node as a monopoly node.

Proposition 3.5.2. Given a well-balanced network with a tridiagonal structure and a

monopoly node. If a non-monopoly node is bankrupted, then all the nodes following it will

be bankrupted.

Proof. Let us rewrite problem (3.2.2) as

max p̄Tx and (3.5.5)

s.t. p̄1x1 − l21x2 ≤ ᾱ;

p̄jxj − l(j−1)jxj−1 − l(j+1)jxj+1 ≤ 0, ∀j = 2, . . . , n− 1; (3.5.6)
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p̄nxn − l(n−1)nxn−1 ≤ 0;

x ≤ e.

Since the network is well-balanced and has a tridiagonal structure, we have p̄n = l(n−1)n

and p̄1 = l21. Based on this, at the optimal solution of (3.5.5), we have

x∗n ≤ x∗n−1. (3.5.7)

Now, let us consider (3.5.6) for j = n− 1. In this case, we have,

p̄n−1xn−1 − l(n−2)(n−1)xn−2 − l(n)(n−1)xn

= l(n−2)(n−1)(xn−1 − xn−2) + l(n)(n−1)(xn−1 − xn) ≤ 0. (3.5.8)

The equality follows from the fact that p̄n−1 = l(n−2)(n−1)+l(n)(n−1). From (3.5.7) and (3.5.8),

we have

x∗n ≤ x∗n−1 ≤ x∗n−2.

Following a similar procedure for j ≤ n− 2, we can obtain

x∗n ≤ x∗n−1 ≤ · · · ≤ x∗1.

This implies that when a non-monopoly node i becomes bankrupted, i.e., x∗i ≤ 0, we have

x∗n ≤ x∗n−1 ≤ · · · ≤ x∗i ≤ 0.

This finishes the proof of this proposition.

Proposition 3.5.2 shows that if the network has a tridiagonal structure and a solvent

monopoly node, then the bankruptcy of every non-monopoly node will still have a significant

domino effect. In other words, the solvency of big banks cannot avoid massive bankruptcies

if the financial network has a tridiagonal structure and is dominated only by a few big banks.
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We remark that during the 2007-2008 financial crisis, the federal government bailed out

numerous major banks to stabilize the market. Nevertheless, a large number of banks still

bankrupted during the crisis period. Proposition 3.5.2 provides an interesting interpretation

to such a phenomenon.

Next, we provide a numerical example to verify the conclusions in the proposition.

Example 3.5.1. We consider a tridiagonal financial network with four banks in which the

first node is the monopoly node (ᾱ = α1). The liability matrix is extracted from the liability

matrix (see Table 8 in [24]) by considering the first four banks in the network. The asset

vector and the optimal solutions are also listed below.

Table 3.11: Domino Effect of Bankruptcy in a Tridiagonal Financial Network with a Monopoly
Node.

Liability Matrix
Node 1 2 3 4 p̄ α

1 0 31855 0 0 31855 32698
2 31855 0 18016 0 49871 0
3 0 18016 0 73185 91201 0
4 0 0 73185 0 73185 0

Claims 31855 49871 91201 73185 246112 32698

Optimal Solution
x∗1 x∗2 x∗3 x∗4
1 1 1 1 α

1 0 0 0 α2− = −31855

In this example, a shock of magnitude s1 < −ᾱ will cause node 1 to be bankrupted

(x∗1 < 0). Following this, the whole system will be bankrupted. In other words, the

bankruptcy of the monopoly node will be propagated to the whole network. This domino

phenomenon is consistent with the so-called “too big to fail” theory, which advocates for

government’s intervenience in a period of financial crisis.

Example 3.5.1 demonstrates that not only the failure of the monopoly node in the

network, but also the failure of a non-monopoly node may lead to a catastrophic disaster.

As one can see from Table 3.11, under a negative shock of magnitude s2 = −31855 triggering

node 2 we have x∗2 = 0. Following this, we have x∗3 = x∗4 = 0. This shows that the monopoly
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network with a tridiagonal structure is very fragile, and the bankruptcy of a non-monopoly

node in the network may have a domino effect too.

3.6 Conclusions

In this paper, we study the vulnerability of the financial network via analyzing the

infeasibility of Eisenberg-Noe?s linear optimization model and its relaxation. We show

that as long as the total asset is nonnegative, the relaxation model is feasible. Under the

assumption that only a single bank is exposed to market shock, we characterize conditions

under which a single bank is solvent, default, or bankrupted.

For the generic scenario where all banks are triggered by market shocks, we show that

both the total asset and the asset inequality may affect the stability of financial network.

Particularly, we show that while a larger total asset may not improve the stability of the

network, a larger asset inequality will reduce the stability of the network. We estimate the

probability of insolvency and the probability of bankruptcy under certain assumptions on

network structure and shock distribution. Particularly, we carry out a deterministic analysis

showing that the least stable network can be attained at some network with a monopoly

node, and show that the such a network has the highest probability of insolvency and is

the most vulnerable network. We also study the contagious effect of bankruptcy under the

network with a monopoly node and tridiagonal structure.

Several issues are of interests for future research. The first issue is how to identify

the structure of the liability matrix such that the resulting system is the most or least

stable one. Progress in such a topic will provide insights for the clearing agent on which

kind of policies should be implemented in advance to prevent a catastrophic disaster. The

second issue is, though we have provided a lower bound for the probability of bankruptcy

in the network, we do observe in our experiments that there is a large gap between the

empirical bound and the theoretical lower bound. Further study is needed to close such a

gap. Finally we point out that after the financial crisis in 2007-2008, new regulations have

been implemented/enforced for the financial market. It will be interesting to incorporate
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the new regulations in the assessment of systemic risk.
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Chapter 4

A Bi-level Linear Optimization Model for Assessing

Systemic Risk under Uncertain Liabilities

4.1 Introduction

A financial network consists of nodes representing financial institutions and links rep-

resenting the interactions of institutions through borrowing and lending or interconnecting

indirectly through the market by holding similar shares or portfolios. The strong inter-

connections among financial institutions has various consequences in the global financial

market. In one hand, it may help to diversify risk exposures for each financial institution.

On the other hand, the interconnections may create a channel along which the failure of

financial institutions can quickly spill over through the entire system and leading to a catas-

trophic disaster. This is usually referred as the so-called systemic risk. One such example is

the 2008 financial crisis in the United States where the entire U.S. financial industries and

several international financial markets were affected by large exposures of banks failure [60].

Another example is the European sovereignty debt crisis that causes the European financial

business to face serious loss of confidence [56].

The catastrophic disaster from the financial crisis has inspired intensive study on the

sources, effects, and results of the crises, and developing tools to mitigate and manage the

systemic risk to increase the resilience of financial networks to encounter economic crisis.

In a seminal paper, Eisenberg and Noe [30] introduce a clearing payment system framework

to assess the systemic risk in inter-banking networks, where the clearing payment satisfies

the bankruptcy law. In their framework, a financial institution is called solvent when it

can fulfill its total liabilities, and default when it is able to meet a fraction of its liabilities.
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They describe the cascading impact of failure where the payment shortfalls originating at a

single institution can transmit to other financial institutions. They also study the existence

and uniqueness of the clearing payment vector and present an algorithm to compute it.

In a series of papers, Elsinger et al. [34, 33, 32, 35] investigate the contagious effect of

failures on the stability of a banking system considering the joint impact of two major sources

of risk, the correlated exposure and domino effects. As pointed out in [35], the detailed

information regarding the interbank liabilities is never publicly available. To deal with the

incomplete information about interbank liabilities, they suggest to first solve an entropy

optimization problem based on the so-called Kullback-Leibler (KL) divergence to compute

the liability matrix. Such an approach has been adopted in numerous works [20, 24, 44, 57].

However, as observed by Cocco et al. [26] and Sheldon and Maurer [67], the KL-divergence

method always lead to a fully connected network structure which is different from liability

matrix in banking systems. For example, [67] use the KL-divergence to impute the missing

network data considering the balance sheet information of the banking system in Swiss and

German, and observe that the usage of the interbank liabilities estimated based on the KL-

divergence in the risk assessment model usually leads to substantial underestimation of the

real risk in the system. Similar observation were also made in [70]. Sheldon and Maurer [67]

and Cocco et al. [26] further observe that the liability matrix from the banking system

is usually sparse, which is very different from the network based on the KL-divergence.

Empirical studies by Mistrulli et al. [59] and Degryse and Nguyen [28] also noticed such a

difference.

Several researchers study the contagious risk in financial systems corresponding to cer-

tain network structure. For example, Allen and Gale [5] first show that the extend of

contagion in a financial system is influenced by the topology of its interbank lending. Gai

and Kapadia [42] study the cascading impact of failures in a random network and analyze

the knock-on effects of distress. Liu and Staum [57] apply the standard sensitivity analysis

for linear optimization to assess the contagious risk in a financial network. Battiston et

al. [8, 9] study the systemic risk considering the effect of credit risk diversification and

70



network density. Acemoglu et al. [1] study the effect of types of network structure on the

stability of a financial system under certain assumptions on the balance sheets and discrete

shocks. Chen et al. [24] study the impact of both network and liquidity channel in risk

transmission. They also discuss how to estimate the liability matrix using the incomplete

information from the EBA data. Glasserman and Young [44] use node-level data (asset size,

leverage, and total liabilities) to bound contagion and amplification effect in the financial

network regardless of the network structure. Glasserman and Young [44] study the cascades

of failure via network spillovers under continuous shocks and show that the contagious risk

is usually small. Unfortunately, as pointed out in a recent survey by Elsinger et al. [35],

most existing works have substantially underestimated the contagious risk in the financial

system. They further speculate that unavailability of the complete information on the fi-

nancial network may be one major reason for the underestimation of the risk in the current

literature.

The main goal of our work is to address the issue of risk underestimation in the literature

on risk assessment for a financial network in which only partial information on the interbank

liabilities is available. It should be pointed out that two recent papers have studied such

an issue. For example, in [21] Capponi et al. compare the stability of two financial systems

with the same asset vector but different liability matrices. They show that when one liability

matrix is majorized by another one, the systemic loss corresponding to the majorized matrix

dominates the loss in the system with another liability matrix. Feinstein et al. [37] perform

a sensitivity analysis of the clearing payment vector with respect to the interbank liabilities

based on the clearing agent model. They show that perturbations to the interbank liabilities

could lead to an underestimation of the risk of contagion.

Different from these two papers, in this work we introduce a bi-level (worst-case) linear

optimization model (WCLO) to assess the systemic risk in a financial system where only

partial information such as the total liabilities and the total claims of the banks are known.

Then we propose various update schemes to update the liability matrix and the payment

vector alternatively to reduce the overall payment in the system iteratively. By combining
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these different updating schemes, we develop an integrated algorithm to identify the least

stable network structure and show that the least stable network structure identified in our

work has different characteristics from the least stable network structure identified in [1].

Our preliminary experiments demonstrate that the contagious risk in the identified least

stable network is much more significant that what has been underestimated in the current

literature [44, 57].

We also propose a bi-level optimization model to identify the most stable network struc-

ture under which the overall payment in the system is maximal and design an integrated

approach for it. We compare the contagious risk under the least stable network, the most

stable network and the one based on the KL-divergence. Numerical experiments show that

the contagious risk under the least stable network is the most significant and is much more

substantial than the other two cases, while the contagious risk in the most stable network

is very close to the one based on the Kl-divergence. Since most existing works on systemic

risk assessment are based on a liability matrix computed based on the KL-divergence, our

results demonstrate clearly that the usage of the liability matrix based on the KL-divergence

is one major reason for the underestimation of the contagious risk in the financial network

in the current literature.

Our approach is very different from the recent works by Capponi et al. [21] where the

authors used the concept of majorization to study the stability of the system in terms of

liability concentration. As we shall see later, if one liability matrix is majorized by another

one, then the total claims from these two liability matrices may not be the same. In other

words, the work [21] compares the loss in two financial systems with different total claims

(or equities) for the nodes in the system while we compare the loss in two system under

the same total liabilities and claims for all the nodes in the system. In [37], Feinstein et al.

use directional derivatives to quantify the sensitivity of the payment vector to estimation

errors in the liability matrix. In their framework, they assume that the estimation error is

sufficiently small so that the set of default nodes and solvent nodes remain invariant, while

we study the generic case where different liability matrices may lead to different sets of
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default banks and solvent banks in the system.

The paper is organized as follows. In Section 4.2, we present the relaxed Eisenberg

and Noe’s model and provide a motivational numerical example for this paper. Then, we

introduce the WCLO model to identify the least stable network structure. In Section 4.3,

we present an integrated algorithm to solve the proposed WCLO model and explore the

properties at the obtained solution. In Section 4.4, we introduce another bi-level LO model

to identify the most stable network structure and design an integrated approach for it.

We also propose a new strategy to mitigate the contagious risk in the system based on

the identified most stable network structure. In Section 4.5, we evaluate the contagious

effect of the failure through the identified least stable and most stable network structure,

and compare with that of the network with a liability matrix estimated based on the KL-

divergence. Finally we conclude the paper in Section 4.6 by discussing some future research

directions.

4.2 The Clearing Payment Model and Its Worst-case Scenario

We first describe the linear optimization model introduced in [30]. Consider a financial

network with n banks (represented by n nodes) interconnected to each other. A clearing

agent is in charge of the process of settling the liabilities among these nodes. The ability

of one node to settle its obligations depends on the repayment of other nodes to this node

and also its own asset. Let L ∈ <n×n be the interbank liability matrix where lij is the

liability of node i toward node j. Since each nominal claim is nonnegative and no node has

a nominal claim against itself, we have lij ≥ 0 and lii = 0, ∀i, j = 1, ..., n. Let α be the

exogenous asset. The total liability of node i is equal to pi =
∑n
j=1 lij . The payment made

by node i to node j, i.e., xilij is obtained by solving the following problem [30]:

max
x

pTx and (4.2.1)

s.t. (P − LT )x ≤ α;
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0 ≤ x ≤ e.

where P =diag(p) and e is the all-ones vector. In [52], we consider the following relaxation

of model (4.2.1): In [52], we consider the following relaxation of model (4.2.1):

max
x

pTx and (4.2.2)

s.t. (P − LT )x ≤ α; (4.2.3)

x ≤ e.

Here, at the optimal solution of (4.2.2) we have three conditions, x∗i ≤ 0, x∗i ∈ (0, 1), and

x∗i = 1, which are associated with the status of the bank i depending on whether it is

bankrupted, default, or solvent.

As proved in [52], the relaxed model (4.2.2) enjoys several appealing properties as sum-

marized in the following proposition, which is a combination of Propositions 2.1, Corollary

2.1, and Theorem 2.1 in [52].

Proposition 4.2.1. Let x(1) be the optimal solution of problem (4.2.1) and x(2) be the

optimal solution of problem (4.2.2). Then we have:

(i) x(2) = x(1);

(ii) [(P − LT )x(2)]i = αi or x
(2)
i = 1, ∀i = 1, . . . , n;

(iii) If the network is fully connected, then problem (4.2.2) is feasible if and only if
∑
i αi ≥

0.

In [52], we analyze the vulnerability of the financial system based on problem (4.2.2)

with uncertain asset vector α, and identify the most vulnerable scenario of the system with

respect to the asset distribution. Particularly, when only a single node i in the system

receives a shock si, the available asset would be αi + si, and based on this, we have the

following result (see Theorems 3.1 and 3.2 in [52]).
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Theorem 4.2.1. Let x∗ be the optimal solution of problem (4.2.2). Then,

(i) x∗i ≤ 0 if and only if si ≤ max(−eTα,∆i − αi), where

∆i = −max
∑
j 6=i

ljixj and (4.2.4)

s.t. pjxj −
∑

k 6=j,k 6=i
lkjxk ≤ αj , ∀j 6= i;

xj ≤ 1, ∀j 6= i.

(ii) x∗i = 1 if and only if si ≥ pi + Γi − αi, where

Γi = −max
∑
j 6=i

ljixj and (4.2.5)

s.t. pjxj −
∑

k 6=j,k 6=i
lkjxk ≤ αj + lij , ∀j 6= i;

xj ≤ 1, ∀j 6= i.

In this paper, we focus on the stability of the financial system under uncertainties in

liability matrix L. As pointed out in a recent survey [35], the full liability matrix L is usually

not exposed and only partial information such as the total liabilities and the total claims

of a bank (corresponding to the summations of all the elements in a row and a column of

L ) is available. To estimate the systemic risk in the system, most works in the literature

first compute the liability matrix by solving some entropy optimization problem based on

the KL-divergence, and then analyze the contagious risk based on the estimated liability

matrix. As observed in [35], this has led to a significant underestimation of the risk in the

financial system. We next present one numeric example to illustrate such an issue.

Example 4.2.1. Consider a complete financial network with the first 8 banks extracted

from one example in [24] (see Table 6 in [24]). The liability matrix, total liabilities, total

claims and asset vector (α) are listed in Table 4.1. For demonstration, we use an asset

vector such that only one bank (node 1) has a negative value.

In all our experiment, we use CVX [45] under MATLAB R2015 to solve the linear
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optimization models. We list the optimal primal and dual solutions of problem (4.2.2) in

Table 4.1. From Table 4.1 one can see that the last two nodes are solvent while the first six

nodes default and can repay more than 90% of their liabilities. We note that the contagious

risk from the default of node 1 has caused banks 2,3,4,5 and 6, to default too. On the other

hand, by checking the optimal solution to the dual problem of (4.2.2) (which represents

the contagious impact factors in the system according to [57]), we find that there is no

significant contagious effect in the system, which indicates the system is rather stable.

Table 4.1: The liability matrix based on KL-divergence

Node 1 2 3 4 5 6 7 8 p α

1 0 4857 9971 11306 6753 5413 712 2213 41225 -1690
2 4857 0 10625 12047 7196 5768 758 2358 43609 0
3 9971 10625 0 24734 14774 11841 1557 4841 78343 0
4 11306 12047 24734 0 16751 13427 1766 5489 85520 0
5 6753 7196 14774 16751 0 8020 1055 3279 57828 0
6 5413 5768 11841 13427 8020 0 845 2628 47942 10
7 712 758 1557 1766 1055 845 0 349 7042 1000
8 2213 2358 4841 5489 3279 2628 349 0 21157 2500

claim 41225 43609 78343 85520 57828 47942 7042 21157 382666 1820

Optimal Solutions to the Primal and Dual Problems
x∗1 x∗2 x∗3 x∗4 x∗5 x∗6 x∗7 x∗8

0.9059 0.9428 0.9428 0.9428 0.9428 0.9430 1.00 1.00
λ∗1 λ∗2 λ∗3 λ∗4 λ∗5 λ∗6 λ∗7 λ∗8

12.96 12.95 12.84 12.81 12.91 12.94 0.00 0.00

We next resolve problem (4.2.2) with the worst-case liability matrix identified by the

proposed algorithm in this work. Note that for the identified worst-case instance, the total

liabilities, the total claims and the asset vector all remain the same as in the first instance,

and only the elements of the liability matrix have been changed.
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Table 4.2: The identified worst-case liability matrix

Node 1 2 3 4 5 6 7 8
1 0 41225 0 0 0 0 0 0
2 41225 0 2384 0 0 0 0 0
3 0 2384 0 75959 0 0 0 0
4 0 0 61519 0 24001 0 0 0
5 0 0 14440 9561 0 33827 0 0
6 0 0 0 0 33827 0 0 14115
7 0 0 0 0 0 0 0 7042
8 0 0 0 0 0 14115 7042 0

Optimal Solutions to the Primal and Dual Problems
x∗1 x∗2 x∗3 x∗4 x∗5 x∗6 x∗7 x∗8

0.0019 0.0428 0.7517 0.7606 0.8310 0.8810 1.00 1.00
λ∗1 λ∗2 λ∗3 λ∗4 λ∗5 λ∗6 λ∗7 λ∗8

81.96 80.97 45.39 43.24 34.17 25.11 0.00 0.00

From Table 4.2, one can see that the repayment rates for the first two nodes are close to

zero and the rest of the nodes can repay more than 70% of their liabilities in the system. By

checking the optimal solution to the dual problem of (4.2.2), we find that there is a very high

contagious risk in the system. Further, by using the results in Theorem 4.2.1, one can see

that bank 1 will be bankrupted if it receives a very small negative shock s1 = −3.13. This

demonstrates the high vulnerability of the system under the identified worst-case scenario.

Since a financial crisis usually happens under some extreme circumstances, for the first

time, the above example provides an interesting illustration close to what observed during

a period of financial crisis.

Motivated by the above example, in this paper we first consider the issue of how to

identify the worst-case network structure under which the system is the least stable one.

For convenience, we adopt a similar measurement as in [21] and [52] for the stability of a

financial system through the optimal objective value of problem (4.2.2).

Definition 4.2.1. Consider two financial systems with the same asset vector (α) with

liability matrices L1 and L2 satisfying eTL1 = eTL2, and L1e = L2e. The first system is

said to be less stable than the second one if pTx∗(L1) < pTx∗(L2), where x∗(L1) and x∗(L2)

denote the optimal solution of (4.2.2) when L = L1 and L = L2 receptively.

We remind the readers that the above definition is different from what used in [1] where
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the number of nodes affected by the shock is used to measure the stability of the system.

Definition 4.2.1 implies that the stability of a financial network can be influenced by both

the asset vector (α) and liability matrix (L). In [52], we have analyzed the stability of the

financial system with respect to uncertainties in the asset vector α. In this work, we assess

the stability of the financial system with respect to uncertainties in the liability matrix L

under the assumption that the asset vector α is fixed. For this, we introduce the following

worst-case linear optimization model (WCLO):

min
∆L∈UL

max
x

pTx (4.2.6)

s.t. (P − LT −∆LT )x ≤ α, x ≤ e,

where L is the input liability matrix, and the uncertainty set UL is defined as follows:

UL =
{

∆L : ∆Le = ∆LT e = 0,∆lii = 0,∀i = 1, . . . , n,−lij ≤ ∆lij ,∀i, j
}
.

We remark that the first constraint in the uncertainty set follows from the assumption that

total claims and total liabilities for each node must remain the same. The second one is

due to the fact that l+ii = lii = 0 (L+ = L + ∆L) and the last constraint follows from the

assumption that l+ij ≥ 0.

4.3 Identifying the Least Stable Network Structure

In this section, we develop an integrated approach for the WCLO problem (4.2.6). The

section consists of four subsections. In the first subsection, we consider the case where there

exists only one default node in the system, and discuss how to update the liability matrix

to reduce strictly the stability of the underlying network, or verify the optimality of the

current solution. In the second subsection, we consider the case where there exist multiple

default nodes in the system and develop an algorithm that updates the liability matrix and

contagious factors alternatively to reduce the stability of the system. In the third subsection,
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we present an algorithm based on the linear approximation and line search technique to

further reduce the stability of the system. In the fourth subsection, we combine all these

three algorithms to develop the integrated approach for problem (4.2.6). We establish the

convergence of the integrated approach and explore the network structure at the obtained

solution.

At first, we point out that by applying the duality theorem for linear optimization

to the sub-problem in (4.2.6), we can rewrite problem (4.2.6) as the following single-level

non-convex quadratic optimization problem with non-convex quadratic constraints.

min
∆L∈UL

min
λ

(αT − eT (P − L))λ+ eT∆Lλ+ eT p and (4.3.1)

s.t. (P − L−∆L)λ ≤ p, λ ≥ 0.

Since eT∆L = 0, the above problem reduces to

min
λ,∆L

(αT − eT (P − L))λ+ eT p and (4.3.2)

s.t. (P − L−∆L)λ ≤ p;

λ ≥ 0, ∆L ∈ UL.

Note that problem (4.3.2) involves some non-convex quadratic (bilinear) constraints and

thus finding a global solution to it is very difficult. Several approaches for generic bilinear

optimization problems have been proposed in the literature, see [4, 39, 46] and the references

therein. One popular approach is to update the different sets of variables alternatively. For

example, we can first fix the dual variables λ (λ = λ∗) and update L+ = L+ ∆L to reduce

the objective function value in (4.3.2). Then we fix L and update λ via solving problem

(4.3.2). There are numerous issues in such an alternative approach need to be addressed

with respect to problem (4.3.2). One is that when we fix the dual variables and update the

liability matrix, since the objective function in (4.3.2) is independent of ∆L, it is critical to

choose a suitable objective function depending on ∆L that will reduce the objective function

value in (4.2.2) after updating the liability matrix. There are also other issues such as how
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to characterize the relationship between the solutions before and after one update of the

liability matrix in the alternative approach and what to do if the alternative approach can

not be applied.

For convenience of discussion, let us introduce the following index sets:

I = {1, . . . , n}, I1 = {i : λ∗i > 0}, I2 = I − I1, (4.3.3)

where λ∗ and µ∗ are the optimal solution that can be obtained from the dual problem

of (4.2.2):

min
λ,µ

αTλ+ eTµ (4.3.4)

s.t. (P − L)λ+ µ = p, λ, µ ≥ 0.

Note that these two index sets are associated with the status of bank i, i.e., whether node

i defaults in the system. We next consider the following assumption:

Assumption 4.3.1. The index set I1 is precisely the set of default nodes.

Proposition 4.3.1. Suppose that Assumption 4.3.1 holds, then at the optimal solution of

(4.3.4) we have:

λ∗iµ
∗
i = 0, ∀i ∈ I.

Proof. From the feasibility condition in (4.3.4) we have that λ∗iµ∗i ≥ 0. Thus, it suffices to

show that both µ∗i and λ∗i cannot be non-zero at the same time. Suppose to contrary that

there exists i ∈ I1 such that µ∗i > 0 and λ∗i > 0. In this case, based on the complementary

condition, we have:

[(P − LT )x∗]i = αi, x∗i = 1.

This contradicts the assumption that the set of default nodes and solvent nodes are well-

separated, which finishes the proof of this proposition.

80



From Proposition 4.3.1, it follows immediately that for every i ∈ I, if x∗i < 1, then

i ∈ I1. Similarly one can also see that at the optimal solution of (4.2.2), it holds

λ∗i = 0, x∗i = 1, ∀i ∈ I2.

Using these index sets, we can rewrite matrix ∆L as

∆L =

∆LI11 ∆LI12

∆LI21 ∆LI22

 , (4.3.5)

where ∆LI11 ,∆LI12 ,∆LI21 and ∆LI22 denote the elements of matrix with indexes (i, j) ∈

I1 × I1, I1 × I2, I2 × I1 and I2 × I2 respectively.

Next we consider a special case where all the banks in the system are solvent. In this

case, one can easily see that for every ∆L ∈ UL, we have f(L + ∆L) = f(L), where f(L)

and f(L + ∆L) denote the optimal value of (4.2.2) with liability matrix L and L + ∆L

respectively. From this, we immediately obtain the following result.

Proposition 4.3.2. The structure of the liability matrix does not have any impact on the

stability of the financial network when all the nodes in the system are solvent.

4.3.1 Dealing with the case that |I1| = 1

In this subsection, we study the case that only one node defaults in the system, i.e.,

|I1| = 1. For simplicity, we assume that |I1| = {1}. In order to find an update scheme

L+ = L+∆L to reduce the stability of the system, we solve a series of optimization models:

∆Lj = arg max δj and (4.3.6)

s.t. [(P − L−∆L)Tx∗(L)]j = αj + δj ; (4.3.7)

∆L ∈ UL,
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where x∗(L) denotes the optimal solution of (4.2.2) when the liability matrix is L. We note

that for every fixed j, problem (4.3.6) might have multiple optimal solutions, however, its

optimal value δj is unique. Now we are ready to state the following result.

Theorem 4.3.1. Suppose that |I1| = {1}. Let f(L) and f(L+) denote the optimal value

of (4.2.2) with liability matrix L and L+, respectively. Then the following conclusions hold:

(i) Suppose that there exists j ∈ I2 such that the objective function at the optimal

solution of problem (4.3.6) has a positive value and let L+ = L+ ∆Lj . Then it holds

f(L+) < f(L);

(ii) If the objective function at the optimal solution of problem (4.3.6) has a non-positive

value for every j ∈ I2, then for every ∆L ∈ UL, it holds f(L+) ≥ f(L).

Proof. Clearly, we have x∗1(L) < 1 and x∗i (L) = 1, ∀i 6= 1. Since ∆LT e = 0, we obtain

p1x
∗
1(L)−

∑
i 6=1

l+i1 = [(P − L)Tx∗(L)]1 = α1. (4.3.8)

Now suppose that for some j ∈ I2, the objective function value at the optimal solution

of problem (4.3.6) is positive. Let x∗(L+) be the optimal solution of (4.2.2) with liability

matrix L+. We first show that:

x∗1(L+) ≤ x∗1(L). (4.3.9)

Suppose to the contrary that x∗1(L+) > x∗1(L). It follows from (4.3.7) that

p1x
∗
1(L+)−

∑
i 6=1

l+i1x
∗
i (L+) > p1x

∗
1(L)−

∑
i 6=1

l+i1 = α1,

which contradicts to the fact that x∗(L+) is a feasible solution of (4.2.2) with liability matrix

L+. Therefore, the relation (4.3.9) holds. We next show that there exists some index j ∈ I2
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satisfying x∗j (L+) < x∗j (L). Suppose to the contrary that x∗j (L+) = x∗j (L) = 1, ∀j ∈ I2. It

follows

pj − l+j1x
∗
1(L+)−

∑
i 6=1,j

l+ji ≤ αj < pj − l+j1x
∗
1(L)−

∑
i 6=1,j

l+ji.

The above relation holds true only when x∗1(L+) > x∗1(L), which contradicts to (4.3.9).

From the above discussion we can conclude

x∗j (L+) ≤ x∗j (L), ∀j = 1, . . . , n,

with at least one inequality holds strictly. This proves the first conclusion of the theorem.

To prove the second conclusion, we observe that if for every j ∈ I2, the objective function

at the optimal solution of problem (4.3.6) has a non-positive value, then we have

[(P − L+)Tx∗(L)]j ≤ αj , ∀j ∈ I2,∀∆L ∈ UL.

Combining the above relation with (4.3.8) we can conclude that x∗(L) is a feasible solution

of (4.2.2) with liability matrix L+. It follows from (4.2.2) that f(L+) ≥ f(L). This

completes the proof of the theorem.

Theorem 4.3.1 shows that if only one node defaults in the system, by solving at most

n − 1 optimization problems in the form of (4.3.6), we can either find an update scheme

L+ = L+ ∆L to strictly reduce the stability of the system, or provide a certificate that the

current system is the least stable one. We next describe update scheme I that combines the

producer discussed in this subsection.

Algorithm 1 Update Scheme I
Inputs: L, α
Output: L+

1: for j ∈ I2 do
2: Solve problem (4.3.6) to find ∆L;
3: if the optimal objective value of (4.3.6) is positive then
4: Update the liability matrix via L+ = L+ ∆L;
5: end if
6: end for
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4.3.2 An alternative update scheme

In this subsection, we study the financial system with multiple default nodes and intro-

duce a scheme for problem (4.3.2) that updates the liability matrix and the dual variables

λ alternatively. A key component in such an alternative update scheme is how to update

L for a temporarily fixed λ∗. Note that for fixed λ = λ∗, the feasible set of problem (4.3.2)

reduces to a polyhedron as

(P − L−∆L)λ∗ ≤ p and (4.3.10)

∆L ∈ UL. (4.3.11)

For convenience, we denote such a set by U∗L. Since λ = λ∗ is the optimal solution to the

dual problem of (4.2.2) defined below:

min
λ

(αT − eT (P − L))λ+ eT p and (4.3.12)

s.t. (P − L)λ ≤ p, λ ≥ 0. (4.3.13)

we have

Theorem 4.3.2. Suppose that λ∗ be the optimal solution of (4.3.12). Let ∆L ∈ U∗L and

L+ = L+ ∆L, then we have:

f(L+) ≤ f(L),

where f(L) and f(L+) denote the objective value of (4.2.2) with liability matrix L and L+,

respectively.

Proof. Because ∆L ∈ U∗L, λ∗ is a feasible solution of (4.3.12) with liability matrix L+. It

follows immediately f(L+) ≤ f(L), which completes the proof of this theorem.
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Theorem 4.3.2 shows that for any ∆L ∈ U∗L, the stability of the system decreases under

the updated liability matrix L+. We next develop the following optimization model to

identify the updated liability matrix L+ under which the stability of the system strictly

decreases.

max
∆L

eTI1∆Lλ∗ (4.3.14)

s.t. ∆L ∈ U∗L;

where eI1 is a vector such that its i-th element equal 1 for all i ∈ I1, and the rest of its

elements equal 0. We have:

Theorem 4.3.3. Let ∆L∗ denote the optimal solution of problem (4.3.14) and L+ =

L + ∆L∗. Let f(L) and f(L+) denote the objective value of (4.2.2) with liability matrix

L and L+, respectively. If Assumption 4.3.1 holds and [∆L∗λ∗(L)]i > 0, ∀i ∈ I1, then we

have:

f(L+) < f(L).

Proof. Suppose to the contrary that f(L+) = f(L). Since λ∗(L) is the feasible solution

of (4.3.12) with liability matrix L+, we can conclude that λ∗(L) = λ∗(L+). We have that

[∆L∗λ∗(L)]i > 0,∀i ∈ I1, which implies that

(P − L+)λ∗(L) < p.

From (4.3.12) we can see that for arbitrary ε it holds

ε(αT − eT (P − L))λ∗(L) < 0, ε(P − L)λ∗(L) < εp.

By choosing a sufficiently small ε satisfying

ε(P − L)λ∗(L) ≤ εp ≤ (1 + ε)∆L∗λ∗(L),
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we have that

(P − L+)(1 + ε)λ∗(L) ≤ p.

Therefore, (1 + ε)λ∗(L) is a feasible solution for problem (4.3.12) with liability matrix L+.

One can see the fact (1 + ε)(αT − eT (P − L))λ∗(L) < (αT − eT (P − L))λ∗(L) contradicts

to the assumption that λ∗(L) is the optimal solution of (4.3.12). Therefore, we have

f(L+) < f(L).

This finishes the proof of the theorem.

In Theorem 4.3.3 we show that if the objective function value of (4.3.14) is positive, by

updating the liability matrix via solving problem (4.3.14) the stability of the system strictly

decreases. It can also be shown that under such update scheme the set of default nodes

with liability matrix L is the subset of the set of default nodes with liability matrix L+,

i.e., I1(L) ⊆ I1(L+).

Next we present a new update scheme such that the contagious impact factors (denoted

by λ∗(L+)) after the update dominates the contagious factors (denoted by λ∗(L)) before

the update, and the repayment ratios after the update (denoted by x∗(L+)) is dominated

by the repayment ratios ( denoted by x∗(L) ) before the update. For this, we introduce the

following definition:

Definition 4.3.1. Given two vectors λ, λ+ ∈ Rn. λ+ is said to dominate λ (or λ is

dominated by λ+) if the following relations hold:

λ+
i ≥ λi, ∀i = 1, . . . , n.

Let us first introduce several technical results that will be used in our later analysis.
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As shown in [52] (See Proposition 2.1 and its proof in [52]), the optimal solution to prob-

lem (4.2.2) can be obtained via solving the following decomposed problems:

max pixi and (4.3.15)

(P − LT )x ≤ α;

x ≤ e, (4.3.16)

all i ∈ I. The dual of the above problem can be written as

min
λ

(αT − eT (P − L))λ+ pi and (4.3.17)

s.t. (P − L)λ ≤ piei, λ ≥ 0,

where ei is the unit vector which has a unique positive element at its i-th element equal 1.

For every i ∈ I, let λ̂i denote the optimal solution to problem (4.3.17) and let λ̂ =
∑
i∈I λ̂

i.

Since x∗i = 1 for every i ∈ I2, it follows directly

λ̂i = 0, ∀i ∈ I2.

Because λ̂ is a feasible solution of problem (4.3.2), we thus have λ̂ = λ∗. Recall definition

(4.3.3), we have:

[(P − L)λ∗]i = pi, ∀i ∈ I1.

Combining the above two relations, we can claim that for every i ∈ I1, it must hold:

[(P − L)λ̂i]i = pi, [(P − L)λ̂i]j = 0, ∀j 6= i ∈ I1. (4.3.18)

We next propose to solve the following optimization model in order to find an update scheme
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for ∆L to reduce the stability of the system and keep the dominance relations.

max
∆L

eTI1∆Lλ∗ and (4.3.19)

s.t. ∆L ∈ U∗L;

∆Lλ̂i ≥ 0, ∀i ∈ I1, (4.3.20)

where eI1 is a vector such that its i-th element equal 1 for all i ∈ I1, and the rest of its

elements equal 0. We have:

Theorem 4.3.4. Let ∆L∗ denote the optimal solution of problem (4.3.19) and L+ =

L+∆L∗. Let x∗(L), λ∗(L) and x∗(L+), λ∗(L+) denote the optimal solution and the optimal

dual solution of (4.2.2) with liability matrix L and L+, respectively. If eTI1∆L∗λ∗ > 0, then

the following conclusions hold:

(i) For all i ∈ I we have λ∗i (L+) ≥ λ∗i (L), and there exists i ∈ I1 such that λ∗i (L+) >

λ∗i (L);

(ii) For all i ∈ I we have x∗i (L+) ≤ x∗i (L), and there exists i ∈ I1 such that x∗i (L+) <

x∗i (L).

A detailed proof of the above theorem is provided in Appendix A.1.

Theorem 4.3.4 shows that if we update the liability matrix via solving problem (4.3.19),

then there exists some dominance relation between the payment ratios and the contagious

risk factors before and after the update, and there exists at least one default node whose

repayment ratio strictly decreases while its contagious impact factor strictly increases. It

should be pointed out that in our update scheme, we keep the total liabilities and claims

for all the nodes in the system invariant. We note that [21] study the dominance relation

among the clearing payment ratios and the loss in two financial systems based on liability

concentration. In their study, they assume that the liability matrices in two financial systems

satisfy the following relation L1 = L2M , where M is a doubly stochastic matrix. One can

easily verify that for a generic doubly stochastic matrixM , (L1)T e 6= (L2)T e if all the nodes
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in the second systems have different total claims, i.e., (L2)T e 6= te for some scalar t.

We also mention that a simple sufficient condition to ensure constraint (4.3.20) is ∆lij ≥

0,∀i, j ∈ I1. Finally, though we introduce two schemes for updating the liability matrix via

solving two optimization models (4.3.14) and (4.3.19), respectively, we do observe in our

experiments that model (4.3.14) works better than (4.3.19). Based on this, we present the

following algorithm which combines several procedures described in this subsection.

Algorithm 2 Update Scheme II
Inputs: L, α
Output: L+

Step 1. Solve problem (4.3.4);
Step 2. Solve problem (4.3.14) to find ∆L;
Step 3. Update the liability matrix via L+ = L+ ∆L.

It is easy to see that update scheme II works well when the objective function at the

optimal solution of (4.3.14) is positive. In the next subsection, we discuss how to further

improve the optimal objective value of (4.2.2) when the alternative update scheme does not

work.

4.3.3 An update scheme based on linear approximation and line search

In this subsection, we consider the financial network where we could not find any mean-

ingful solution ∆L satisfying condition (4.3.10). To deal with such a scenario, we develop

a new updating scheme based on linear approximation to update the liability matrix.

To start, we mention that for all non-solvent nodes, the following equation system:

pjλj −
∑

k∈I1,k 6=j
ljkλk = pj , ∀j ∈ I1, (4.3.21)

holds. The following assumption will be used throughout this section.

Assumption 4.3.2. Submatrix (P − L)I11 is diagonally row dominant and with at least

one row that is strictly dominant.

We remark that both Assumptions 4.3.1 and 4.3.2 are rather mild. To see this, we
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recall that matrix P − L itself is diagonally dominant. Thus, if LI12 6= 0, then Assump-

tion 4.3.2 always hold. Under Assumption 4.3.2, one can show that submatrix (P − L)I11

is nonsingular. Therefore, we have

λI1 = [(P − L)−1
I11
pI1 ].

Assumption 4.3.1 excludes the boundary case where a solvent node belongs to the index set

I1. Now let consider the following update of the liability matrix:

L+ = L+ β∆L,

where β is the step size (β ∈ (0, 1]) and ∆L is in the form specified by (4.3.5). Under

Assumption 4.3.1, one can show that for sufficiently step size β, the set of default nodes

and solvent nodes will not change. Let f(L+ β∆L) denote the objective function value of

sub-problem (4.3.1). We thus have

f(L+ β∆L) = (αT − eT (P − L− β∆L)I1)(P − L− β∆L)−1
I11
pI1 .

Consequently, we can rewrite problem (4.3.1) as the following:

min
∆L

(αT − eT (P − L− β∆L)I1)(P − L− β∆L)−1
I11
pI1 , and (4.3.22)

s.t. ∆L ∈ UL.

Note that the objective function in (4.3.22) is highly nonlinear, and it is hard to solve. Next,

we use a local linear approximation to f(L+ β∆L) based on directional derivative of f in

terms of matrix ∆L (denoted by D∆Lf(L)) as follows (see Definition 2.5 in [37]):1

D∆Lf(L) = (αT − eT (P − L))I1(P − L)−1
I11

∆LI11(P − L)−1
I11
pI1 .

1For self-completeness, we also give a simple way to estimate the directional derivative (D∆Lf(L)) in
Appendix A.2.
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Based on this, we propose to solve the following linear approximation model:

min
∆L

(αT − eT (P − L))I1(P − L)−1
I11

∆LI11(P − L)−1
I11
pI1 and (4.3.23)

s.t. ∆L ∈ UL;

||∆L||1 ≤ 2 min{lij > 0, ∀i, j ∈ I}. (4.3.24)

It is easy to see that if the objective function at the optimal solution (∆L∗) of (4.3.23)

has a negative value, then we can apply a line search procedure to find a suitable step

size β to update the liability matrix such that the objective function value in (4.3.22) is

reduced. Note that constraint (4.3.24) is included to ensure the corresponding direction is

the steepest descent direction within a certain neighborhood of the current iterate.

We also point out that in [37], Feinstein et al. develop a similar optimization model

to find the worst-case perturbation of the liability matrix such that the payment rate is

minimal. In their model, they also impose the constraints that the total liabilities and total

claims of each bank remain unchanged by the perturbation. They further assume that the

sets of solvent and default nodes also remain unchanged under the perturbation. Under

these assumptions, they develop high-order schemes to approximate the nonlinear objective

function in (4.3.22). However, in our approach, we assume that the sets of solvent and

default nodes may change after one update of the liability matrix. Also, we solve only the

simple linear approximation model (4.3.23). As we will see in our later analysis, such a

simple approach can help to explore the structure of the identified least stable network.

We next use the following line search algorithm to find the best value for step size β

such that the objective function value in (4.3.22) decreases.
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Algorithm 3 A Line Search Procedure
1: Inputs: τ = 1

2 , L, ∆L
2: Output: L+

3: set β(0) = 1, k = 0;
4: while f(L+ β(k)∆L) ≥ f(L) do
5: set β(k+1) = τβ(k);
6: set k = k + 1;
7: end while
8: set β = β(k);
9: set L+ = L+ β∆L;

Combining the linear approximation model (4.3.23) and the line search procedure, we

obtain the following update scheme:

Algorithm 4 Update Scheme III
Inputs: L, α
Output: L+

Step 1. If the optimal value of (4.3.23) is negative go to Step 2; otherwise, stop;
Step 2. Solve problem (4.3.23) to find search direction ∆L, then go to Step 3.
Step 3. Use Algorithm 3 to perform a line search to find a suitable step size;
Step 4. Update the liability matrix via L+ = L+ β∆L .

4.3.4 An Integrated Approach

We first present an integrated algorithm that combines several update schemes described

in previous sub-sections.
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Algorithm 5 The Integrated Algorithm
1: Inputs: α, LKL 2

2: Output: LWC

3: if |I1| = 1 then
4: update the liability matrix via update scheme I;
5: end if
6: while |I1| > 1 do
7: if the optimal objective function value of problem (4.3.14) is positive then
8: update the liability matrix via update scheme II;
9: else

10: if the optimal value of (4.3.23) is negative then
11: update the liability matrix via update scheme III;
12: end if
13: Stop;
14: end if
15: end while

Next we explore the properties of the sequence from Algorithm 5.

Theorem 4.3.5. Let LWC be the liability matrix obtained from Algorithm 5. Then, the

sequence generated from Algorithm 5 converges to a stationary point of (4.3.2). Particularly,

if Assumption 4.3.1 holds at the final solution and the optimal solution to problem (4.3.23)

is unique and trivial with ∆L∗ = 0, then the solution provided by the integrated algorithm

is locally optimal.

Proof. Let (LWC , λWC) denote the solution provided by Algorithm 5. To prove this theo-

rem, we consider the following three cases: Case (i): the system is solvent. Case (ii): there

is only one default node in the system. Case (iii): there are more than one default node

in the system. In the first case, as discussed in Proposition 4.3.2, Algorithm 5 will fail to

improve the optimal value of (4.2.2). Now we consider case (ii) where |I1| = 1. In this

case, as it is shown in Theorem 4.3.1, Algorithm 5 will fail if for all solvent nodes (j) prob-

lem (4.3.6) is infeasible or it has non-positive optimal value. For the third case, Algorithm 5

will fail to improve the optimal value of (4.2.2) when the objective function value at the

optimal solutions of both problems (4.3.14) and (4.3.23) are zero. In this case, we have

D∆L∗f(L) = 0. Since ∆L∗ is the optimal solution of (4.3.23), for every feasible solution
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∆L, it holds D∆Lf(L) ≥ 0. This shows that (LWC , λWC) is a stationary point of (4.3.2).

Note that if Assumption 4.3.1 holds at the final solution and the optimal solution to

problem (4.3.23) is unique with ∆L∗ = 0, then for every nontrivial ∆L 6= 0 ∈ UL, it holds

D∆Lf(L) > 0, which further implies that (LWC , λWC) is locally optimal.

Next we explore the network structure of the liability matrix at the solution provided

by Algorithm 5. For such a purpose, we need to construct some graph (G = (V,E))

corresponding to the liability matrix identified by Algorithm 5. One way to do that is as

follows. We first cast all the non-zero elements of the liability matrix, i.e., V = {(i, j) :

lij > 0}. Now we describe an algorithm to construct the edges in the induced graph.

Algorithm 6 Constructing the Induced Graph
1: Input: V
2: Output: E : the set of edges
3: for i 6= j = 1 to |V | do
4: if vi and vj are from the same row or the same column then
5: add (vi, vj) to E;
6: end if
7: end for

We note that the induced graph G is different from the financial network. Since ∆L ∈

UL, we are interested in the extreme points of UL such that each extreme point represents

a ∆-loop defined below.

Definition 4.3.2. A ∆-loop in UL is a matrix such that each of its nontrivial row (or

column) contains exactly two nonzero elements, one with value +∆ and another with −∆.

On the other hand, for every ∆L defined by (4.3.5), there exists some positive integer

K satisfying the following relation:

∆L =
K∑
k=1

∆Lk,

where ∆Lk is a ∆-loop for every k = 1, . . . ,K. Therefore, one can conclude that if the

objective function value at the optimal solution of problem (4.3.23) is negative, then there

must exist a ∆-loop (denoted by ∆L̃) satisfying
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D∆L̃f(L) < 0.

From Theorem 4.3.5 we immediately obtain the following result:

Corollary 4.3.1. Suppose that induced graph G is constructed using Algorithm 6 based

on the liability matrix provided by Algorithm 5. If there exists no cycles in G, then the

solution provided by Algorithm 5 is locally optimal.

Next we characterize some structure of the liability matrix under which the associated

graph contains no cycles. One such example is the so-called tridiagonal structure specified

as

lij

 > 0 if |i− j| ≤ 1;

= 0 Otherwise.
(4.3.25)

It is worthwhile mentioning that in our recent work [52], we show that there exists a signif-

icant domino effect of bankruptcy in the system if the system is dominated by a monopoly

node and the liability matrix has a tridiagonal structure. We also point out that the iden-

tified worst-case liability matrix in Example 4.2.1 does not have a tridiagonal structure,

however its corresponding graph does not have any cycle and thus the solution provided by

Algorithm 5 is locally optimal. One can further show that if any cycle in the constructed

induced graph (G) does not include any vertex associated with some element in sub-matrix

L11, then the solution provided by Algorithm 5 is still locally optimal. There may exist other

network structures under which the solution provided by Algorithm 5 is locally optimal, we

leave such exploration to interested readers.

We note that the identified network structure in this paper is different from [1], where

they show that complete network is the most stable one for small shock and is the least

stable one for large shock.
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4.4 Identifying the Most Stable Network Structure

In this section, we consider the issue of identifying the most stable structure of the

financial system under which the total repayment of the financial institutions is maximal.

For this, we introduce the following optimization model (BCLO):

max
∆L∈UL

max
x

pTx (4.4.1)

s.t. (P − LT −∆LT )x ≤ α;

x ≤ e.

Next we develop two update schemes to update both x and ∆L alternatively. Like in

Section 3, we consider the following two cases:

(i) : |I1| ≤ 1; (ii) : |I1| > 1.

Note that in case (i), there is at most one default node in the system. In such a case,

one can show that for any ∆L ∈ UL, the objective function value at the optimal solution

of (4.2.2) can not be improved. This shows that the current network structure is the best

case in terms of the stability of the system.

Next, we consider case (ii) where there are multiple default nodes in the system. In

this case, we develop two update schemes II′ , and III′ to update the liability matrix and

the repayment vector (x) alternatively. Let x∗ be the optimal primal solutions of problem

(4.2.2) with the liability matrix L. In order to find a scheme to update the liability matrix

(L+ = L+ ∆L), we solve the following problem:

max
∆L

eTI1∆LTx∗ (4.4.2)

s.t. ∆LTx∗ ≥ (P − LT )x∗ − α;

∆L ∈ UL.
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Correspondingly, we obtain the new update scheme II′ where we replace problem (4.3.14)

in Scheme II by problem (4.4.2).

Next we use the linear approximation approach and line search to improve the optimal

objective value of (4.2.2) when update scheme II′ does not work. In this case, when di-

rectional derivative (D∆Lf(L)) has positive value, we can choose the step size such that

the optimal value of (4.2.2) strictly increases. Based on this, we change optimization

model (4.3.23) as follows:

max
∆L

(αT − eT (P − L))I1(P − L)−1
I11

∆LI11(P − L)−1
I11
pI1 (4.4.3)

s.t. ∆L ∈ UL.

||∆L||1 ≤ 2 min{lij > 0,∀i, j ∈ I}.

Correspondingly, we obtain a new update scheme III′ where we replace problem (4.3.23) in

Scheme III by problem (4.4.3). If the optimal value of (4.4.3) is positive, then we adopt

the line search procedure to find a step size to update the liability matrix (L+ = L+ β∆L)

to ensure that the optimal objective function of problem (4.2.2) can be improved after

the update of the liability matrix. Now we are ready to described the modified integrated

algorithm for problem (4.4.1). Our next result establishes the convergence of the sequence

Algorithm 7 The Modified Integrated Algorithm
1: Inputs: α, LKL
2: Output: LBC
3: while |I1| > 1 do
4: if the optimal objective function value of problem (4.4.2) is positive then
5: update the liability matrix via update scheme II′ ;
6: else
7: if the optimal objective function value of problem (4.4.3) is negative then
8: update the liability matrix via update scheme III′ ;
9: end if

10: stop;
11: end if
12: end while

generated by Algorithm 7.
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Theorem 4.4.1. Let LBC be the liability matrix obtained from Algorithm 7. Then, the

sequence generated from Algorithm 7 converges to a stationary point of (4.4.3). Particularly,

if Assumption 4.3.1 holds at the final solution and the optimal solution to problem (4.4.3)

is unique and trivial with ∆L∗ = 0, then the solution provided by Algorithm 7 is locally

optimal.

The proof of the above theorem follows a similar vein as that of Theorem 4.4.1, thus

omitted here.

4.5 Numerical Results

In this section, we report some numerical results to assess the resilience/vulnerability

of a financial network under the identified worst(best)-case structure. The section consists

of two parts. In the first subsection, we study the contagious effect of failure under three

network structures, i.e., the identified best-case, worst-case, and the one estimated based

on the KL-divergence. In the second subsection, we compare the systemic loss generated in

the financial network with the above-mentioned three structures under different scenarios

of the asset vector.

4.5.1 Contagious Effect of Failure

We first use an example to evaluate the contagious risk under the identified worst-case

network structure, the best-case network structure and the one estimated based on the

KL-divergence. For this, we consider the same data matrix as in Example 4.2.1. The asset

vector is αT = (160, 0, 0, 0, 1000, 1700, 1570, 1670)T with eTα = 6100. Since the system is

well-balanced, all the nodes are solvent. In this case, based on the results in Theorem 4.3.2

the stability of the system does not depend on its network structure.

To identify the least stable network structure in such a circumstance, we consider some

specific scenario where a small negative shock is received by one of the three nodes (nodes

2,3 and 4) whose asset has zero value and a positive shock is received by one of the solvent

nodes. We also assume that the total asset in the system remains invariant. Under this
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setting, we have fifteen different scenarios. Then, we use Algorithm 5 to find the worst-case

structure. We observe that the identified worst-case structures are the same for all these

fifteen scenarios which is given in Table 4.2. We also identify the best-case structure via

Algorithm 7 for all fifteen scenarios. It also gives us the same network structure as shown

in Table 4.3.

Table 4.3: The identified best-case liability matrix.

Node 1 2 3 4 5 6 7 8
1 0 5713.3 8922.9 10088.2 7057.2 6144.2 1189.7 2109.6
2 2495.8 0 10571.7 11965.3 8297.3 7167.4 1034.9 2076.6
3 2902.7 10469.5 0 31710.1 15096.8 11846.2 1274.3 5043.4
4 2990.6 11895.7 31715.5 0 18076.3 13655.7 1306.4 5879.8
5 2705.6 8243.7 15222.3 18216.6 0 9128.5 1158.7 3152.5
6 2616.3 7110.6 11910.6 13539.8 9300.3 0 1078.0 2386.4
7 6441.8 91.5 0 0 0 0 0 508.7
8 21072.2 84.8 0 0 0 0 0 0

To assess the effect of the network structure on the stability of the system, we solve

problem (4.2.2) with randomly generated shocks s under three different structures. In our

experiments, we use MATLAB function NORMRAND to generate fifteen random shocks

satisfying si ∼ N (0, σ2), σi = 0.25p̄i∀i = 1, . . . , n,. Figure 4.1(a) gives the number of default

nodes and the number of bankrupted nodes in these scenarios.
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((a)) The number of insolvent nodes in the system,
when L = LKL, L = LW C , and L = LBC .
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((b)) The number of bankrupted nodes in the system,
when L = LKL, L = LW C , and L = LBC .

Figure 4.1: The horizontal axis shows fifteen different scenarios where a random shock triggered
the system.

From Figure 4.1(a), one can see that the number of insolvent nodes under the identified

worst-case structure is larger than that number under two other network structures. We
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have also observed bankruptcy in the system under the worst-case network structure for

four scenarios. However, under the best-case structure and the KL case, we do not have

any bankruptcy in the system. This implies that the system under the worst-case network

structure is the least stable one.

To examine the contagious effect in the system with three different structures, we list

the optimal solutions of (4.3.12) for three shocks in Table 4.4. As one can see, the shadow

price under the best-case network structure is the smallest, while the shadow price under the

worst-case network structure is the largest. This is consistent with our theoretical conclusion

that the identified best-case structure is more vulnerable (than any other network structure)

to market shocks.

Table 4.4: The shadow price when the financial system is subjected to shock vectors s under three
different network structure (LKL, LW C , LBC).

Optimal dual solution when L = LKL

λ∗1 λ∗2 λ∗3 λ∗4 λ∗5 λ∗6 λ∗7 λ∗8
0.00 1.18 1.23 1.22 0.00 0.00 0.00 0.00 α = α1

2.54 2.53 2.42 2.39 0.00 0.00 0.00 0.00 α = α2

2.54 2.53 2.42 2.39 0.00 0.00 0.00 0.00 α = α3

Optimal dual solution when L = LW C

λ∗1 λ∗2 λ∗3 λ∗4 λ∗5 λ∗6 λ∗7 λ∗8
0.00 0.66 4.30 3.76 0.00 0.00 0.00 0.00 α = α1

47.80 46.80 11.22 9.07 0.00 0.00 0.00 0.00 α = α2

47.80 46.80 11.22 9.07 0.00 0.00 0.00 0.00 α = α3

Optimal dual solution when L = LBC

λ∗1 λ∗2 λ∗3 λ∗4 λ∗5 λ∗6 λ∗7 λ∗8
0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 α = α1

2.38 2.32 2.31 2.26 0.00 0.00 0.00 0.00 α = α2

2.38 2.32 2.31 2.26 0.00 0.00 0.00 0.00 α = α3

To better characterize the vulnerability of the system under three different structures, we

next consider a specific scenario corresponding to the asset vector (α = α12). We estimate

the maximum amount of negative shock (s−KL, s
−
WC , s

−
BC) that a node can survive without

being bankrupted (Conclusion (i) in Theorem 4.2.1), the minimum amount of positive shock

(or asset gain) (s+
KL, s

+
WC , s

+
BC) via (Conclusion (ii) in Theorem 4.2.1) that a default node

needs to become solvent. Note that, if the underling node i is solvent, then s+
i refers to the
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maximal negative shock under which the solvent node can remain solvent. The results are

summarized in Table 4.5.

Table 4.5: The maximum amount of negative shock and the minimum amount of positive shock
estimated when α = α12

KL WC BC

s−KL s+KL s−W C s+W C s−BC s+BC

1 -6100 1840 -132.9 1840 -6100 1840
2 -6100 448 -236.0 1840 -6100 456.31
3 -6100 732.06 -5015.4 1840 -6100 693.14
4 -6100 788.09 -5141.9 1840 -6100 744.63
5 -6100 -176.6 -6100 840 -6100 -182.03
6 -6100 -1040 -6100 -860 -6100 -1027.79
7 -6100 -2483.2 -6100 -2570 -6100 -2471.50
8 -6100 -2400.2 -6100 -2670 -6100 -2418.67

From Table 4.5, one can see that under the identified worst-case structure, the maximum

amount of negative shock that financial institutions can survive is the least, while the

minimum amount of positive shock (upper bound) for default institutions to become solvent

under the identified worst-case structure is the largest.

4.5.2 The Systemic Loss in the Financial System

In this subsection, we evaluate the systemic losses generated in the system under on the

identified best-case, worst-case structure and the one estimated based on the KL-divergence

. For this, the system consisting of the banking sectors in eight European countries for

December 2009 is considered. We consider the same data matrix and asset vector as in [21]

(see Table 1 and Table 2 in [21]). In this example when we have α = α(0) all the nodes in

the system are solvent, and therefore we have |I1| = 0. In this case, from Theorem 4.3.2,

we can conclude that by updating the liability matrix the stability of the system remains

the same. Here we use the same procedure as described in the previous subsection to

generate ten random shocks. Correspondingly, we denote the resulting asset vector for the

generated scenarios by α(n), n = 1, . . . , 10. Next we solve problem (4.2.2) under the asset

vector (α(n)), and then use Algorithm 5 and 7 to find the worst-case and best-case liability

matrix, respectively. The results show that at every scenario, the number of insolvent nodes
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under the worst-case structure is larger than the number under the most stable network

structure. For every scenario, we also compute the total loss in the system under different

network structure. The results are summarized in Figure 4.2.
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Figure 4.2: Systemic losses in the system.

As one can see from Figure 4.2 that for every scenario, the network under the least

stable structure (LWC) has the maximal systemic loss, while the network with the most

stable structure has the minimal systemic loss.

4.6 Conclusion

In this paper, we study the issue of assessing systemic risk in a financial network. For

this, we introduce two bi-level linear optimization models to identify the least stable and the

most stable network structure, and develop two integrated approaches to solve these new

optimization models respectively. Numerical experiment demonstrates that the contagious

effect of failure is the most significant under the identified least stable network, while the

total loss in the system is minimal under the identified most stable network.

Several issues are of interests for future research. For example, the integrated algorithm

developed in this paper can only find a local optimal solution to the underlying optimization

model. It will be interesting to design new effective global algorithms for the model, and

characterize the network structure at the global solution and investigate the domino effect of
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bankruptcy in such a network. We also note that after the financial crisis in 2007-2008, new

regulations have been implemented/enforced for the financial market. It will be interesting

to incorporate the new regulations in the optimization model for risk assessment and develop

new resolution techniques accordingly.
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Chapter 5

Stabilizing Financial Networks via Merging

5.1 Introduction

A typical financial network is comprised of multiple financial institutions that interact

with each other through borrowing and lending or some indirect interconnections through

the market by holding similar shares or portfolios. The tight linkages within the financial

networks has a two-fold effect. On the one hand, it improves the trading performance within

the network and helps to diversify the risk. On the other hand, it also creates a channel

through which the failure of some institution can quickly spill over to the entire system.

This is usually referred as the so-called systemic risk. The Asian banking crisis in the late

1990s, and the more recent financial crisis in 2007-2008 are two pieces of the evidence of

this disaster.

The catastrophic disaster of the above-mentioned financial crisis has caught a growing

attention from different researchers and a large literature has been established in the study

of systemic risk assessment, the contagion effect in the financial network, and the policies

and strategies to mitigate the risk. In a seminal paper, Eisenberg and Noe [30] introduce

the basic clearing agent model (E-N) to assess the systemic risk in financial networks. They

propose a clearing algorithm, called Fictitious Default Algorithm to solve the basic clearing

agent model. They also establishes the existence and uniqueness of the clearing payment

vector. Elsinger et al. [33, 35] study the impact of market shocks on the stability of a

financial system. Several different variants of the E-N model are proposed in the literature.

These include Rogers and Veraart [65] and Glasserman and Young [44], where the authors

extend the E-N model by taking the bankruptcy and liquidation costs into account. Several
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researchers study the stability and resilience of financial networks via exploring the impact

of market shock and network structures on the stability of the financial system. Works in

this direction include Acemoglu et al. [1], Glasserman and Young [44], and Khabazian and

Peng [52].

Various policies/strategies have been proposed by different researchers to stabilize the

financial system. For example, Pokuta et al. [64] extend the E-N model to identify optimal

bail-out strategies to minimize the loss in the financial system under certain constraints

on bail-out budget. Rogers and Veraart [65] discuss how to form a rescue consortium to

help the failing banks in the system. They extend the E-N model by incorporating the

liquidation cost for both the outside asset and inter-banks asset. They show that if there

is no liquidation costs, then there is no incentive for solvent banks to rescue the insolvent

banks in the system. Kallio and Khabazian [51] propose cooperative private bail-outs to

stabilize the financial system. Bernard et al. [14] consider three intervention policies, bail-

outs, bail-ins and subsidized bail-ins to stabilize a financial system. They analyze the impact

of shock size, the size of the recovery rate, and the level of inter-bank connectivity.

In this paper, we propose a new mitigation strategy based on merging and acquisitions

to stabilize a financial system. Here, the merger refers to the case when two financial

institutions agree to merge into a single financial institution, and acquisition is the case

where a financial institution buys all the shares of another institution which may be later

merged with the buying institution. Subsequently, a merger may refer to an acquisition as

well.

A critical issue in merging is how to measure the merger gain. In this work, we propose

to quantify the merger gain of a merging pair in terms of the gap between the total loss of the

merging pair (or a single bank when the bank is unmerged) before and after the merging.

To compute the merger gain, we introduce a two-step procedure. We first consider the

extended E-N model, which take the liquidation and bankruptcy cost into account similar

to the models used in [65] and [44]. By solving the extended E-N model, we obtain the loss

for every bank in the network. Moreover, we can divide the banks into two sets, the set
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of ‘fundamentally insolvent banks’ with negative equity (book value) and its complement

set, the set of solvent banks. Now let us consider a matching matrix ξ whose elements

have values 0 or 1, where ξij = 1 indicates an insolvent bank i will merge with another

solvent bank j. For a given matching matrix, we obtain a new merger network consisting of

the merged pairs corresponding to the nonzero elements of ξ, and some banks that do not

involve in merging. The liabilities in the new merger network can be computed in a similar

vein as the consortium in [65]. Like in [65], we also define the so-called merging incentive

for a solvent bank to merge with another insolvent bank as the change in the equity of the

solvent bank after the merging. Then, we resolve the extended E-N model for the merger

network to compute the loss for all the merger pairs in the network. The total merger gain

is computed by summing up the difference between the loss of a merger pair (or a single

bank if it is unmerged) before and after the merging. Let us define the total merger gain

as a function g(ξ) of the matching matrix ξ. The major task of this work is to identify the

matching matrix ξ∗ whose merger gain attains the maximum.

Mathematically speaking, the problem of finding the optimal matching matrix (ξ∗) can

be casted as a bi-level optimization where the subproblem involves solving the extended

E-N model to evaluate g(ξ) for a given matching matrix ξ. However, since the function g(ξ)

does not have an explicit form and is not continuously differentiable in general, solving such

a bi-level optimization problem is rather challenging. As a remedy for such an issue, we

consider a subsidized merger where the social planner (SP) provides some bail-out money

bij to cover part of the liabilities of the insolvent bank and merging cost. We assume that

with the subsidies from the social planner, all the banks in the new merger network are

solvent. Such an assumption is reasonable if we restrict us to the network of systemically

important banks, as the SP would like to rescue all these important banks. Note that

for a given merging pair (i, j), the minimum subsidy it needs to become solvent and has

incentive to rescue another insolvent bank can be computed explicitly and thus the merger

gain can also be estimated easily. This allows us to develop a goal programming approach

to identify the optimal matching matrix that minimizes the total subsidy and maximizes
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the merging gain, respectively. We explore conditions under which one can achieve the

maximal gain with the minimal bail-out cost simultaneously. When these two goals can not

be realized simultaneously, we present a new integer linear optimization model to maximize

the merging gain under constraint on the bail-out budget, and develop a Lagrangian search

method for it. We compare the public bail-out cost of the strategy proposed in our work

with that of several other strategies in the literature using major European banks and a

scenario linked to the adverse economic scenario used in 2016 EU-wide stress testing. Our

numerical results demonstrate that our subsidized merger policy can significantly reduce

the cost of other policies based on the public bail-out.

The major contributions of our work are as follows. First we extend the E-N clearing

model for financial networks by taking into account bankruptcy and liquidation costs, and

leverage ratio requirement. Second we propose a new way to estimate the merging gain of a

merging pair in the merging process. Under the assumption that all the banks after merging

become solvent, we give an explicit formulae to compute the merging gain for all the merging

pairs in the network. Third, we introduce a goal programming approach to maximize the

total merging gain and minimize the bail-out cost based on the estimated merging gains. We

also explore the relationship between the optimal solutions of the two optimization models

for the maximal merging gain and the minimal bail-out cost, respectively, and show that

under certain conditions, the optimal solution of these two models can be obtained by solving

only a single optimization model. Forth, we introduce a new integer linear optimization

model (ILP) to manage the trade-off between the merging gain and the bail-out cost, and

develop an effective Lagrangian search method for it.

Our approach is different from Khallio and Khabazian [51] and Bernard et al. [14]

where they consider two-level problems where the SP first makes certain choices and the

banks choose thereafter. In [51] the SP chooses the threat tax level applicable in case the

cooperative private bail-outs fail, and the banks either choose to collaborate and agree on

bail-out payments or not. In [14], the SP first proposes the amount of subsidies to the

insolvent banks and suggests the way that solvent and insolvent banks should be matched.
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Second, the banks individually can accept or reject SP’s proposal. Finaly, depends on the

outcome of the second stage, the SP may face additional choices. Bernard et al. [14] consider

such three stage game in extensive form and the unique sub-game perfect equilibrium is

considered as a solution of the model.

The paper is organized as follows. Section 5.2 introduces the clearing equilibrium and

instruments for clearing payments. Section 5.3 introduces two optimization models to max-

imize the merging gain and minimize the bail-out cost respectively. An integer linear opti-

mization model is introduced to maximize the merging gain subject to constraints on the

bail-out cost and an effective algorithm for it is developed. Section 5.4 evaluates the per-

formance of the proposed models using a network of major European banks. Section 5.5

concludes the paper by discussing future research topics.

5.2 The Clearing Agent Model

We first describe the linear optimization model introduced in [30]. Consider a financial

network with n banks (represented by n nodes) interconnected to each other. A clearing

agent is in charge of the process of settling the liabilities among these nodes. The ability of

one node to settle its obligations depends on the repayment of other nodes to this node and

also its own asset. Let L ∈ <n×n be the interbank liability matrix where lij is the liability of

node i toward node j. Since each nominal claim is nonnegative and no node has a nominal

claim against itself, we have lij ≥ 0 and lii = 0, ∀i, j = 1, ..., n. Let α be the exogenous

asset and κ be the outside liability. The total liability of node i is equal to pi + κi where

pi =
∑n
j=1 lij , and the total receivables of bank i from other banks in the system is equal

to ri =
∑
j lji. In the balance sheet, the equity of bank i satisfies:

ei = αi + ri − pi − κi.

We assume that the outside liabilities have seniority and they are cleared first, thus the

available asset of bank i for the clearing can be obtained as α̂ = α− κ. Based on this, the
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payment made by node i to node j, i.e., xilij is obtained by solving the following problem:

min
x

pT (~1− x) and (5.2.1)

s.t. (P − LT )x ≤ α̂;

0 ≤ x ≤ ~1,

where ~1 is the all ones vector. Based on (5.2.1), the leverage ratio for node i is defined by

γi = [α̂− (P − LT )x]i
(1− xi)pi

.

We note that after financial crisis in 2007-2008, Basel III imposed a minimum leverage ratio

requirement at 3% Basel. In July 2013, the U.S. Federal Reserve announced that the mini-

mum leverage ratio would be 6% for eight systemically important financial institutions Basel

III. By incorporating the minimum ratio requirement (denoted by γ) into model (5.2.1), we

drive the following extended model:

min
x

pT (~1− x) and (5.2.2)

s.t. [(P − LT )x]i ≤ α̂i − γ(1− xi)pi, ∀i = {1, . . . , n};

0 ≤ x ≤ ~1,

where 0 < γ < 1. We remark that the above model is very close to model by Glasserman

and Young [44], indicating that Glasserman and Young’s model implicitly imposes some

minimum leverage ratio requirement.

Next, we extend model (5.2.2) by taking the loss factor (β) into account as in [65]. We

consider that when institution i defaults in the system, only a fraction (1− β) of its asset,

i.e., (1 − β)α̂i is available for the clearing. Based on this, we drive the following extended

model:

min
x

pT (~1− x) and (5.2.3)
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s.t. [(P − LT )x]i ≤ α̂i − γ(1− xi)pi − βα̂iIxi<1, ∀i = {1, . . . , n};

0 ≤ x ≤ ~1,

where Ixi<1 is a binary indicator variable taking value 1 if xi < 1 and value 0 otherwise.

Note that problem (5.2.2) is a mixed integer linear optimization problem. We next

propose an iterative approach to solve problem (5.2.2). Let I denote the set of default

nodes. We can rewrite problem (5.2.3) as the following problem:

min
x

pT (~1− x) and (5.2.4)

s.t. [(P − LT )x]i ≤ α̂i − γ(1− xi)pi − βα̂iIi∈I , ∀i = {1, . . . , n};

0 ≤ x ≤ ~1,

where Ii∈I is a binary indicator variable taking value 1 if i ∈ I and value 0 otherwise. Note

that if I is empty, then problem (5.2.4) reduces to problem (5.2.2). Now we are ready to

describe the iterative procedure for problem (5.2.3).

Algorithm 8
1: Inputs: Liability matrix L, asset vector α̂, loss factor β and leverage ratio γ.
2: Set k = 0, Ik = ∅;
3: Find the optimal solution (denoted by x(k)) to problem (5.2.4) with index set Ik;
4: Update k = k + 1, Ik = {i : x(k−1)

i < 1};
5: while Ik 6= Ik−1 do
6: Solve problem (5.2.4) with index set Ik;
7: Set k = k + 1, Ik = {i : x(k−1)

i < 1};
8: end while
9: Outputs: I∗ = Ik, x∗ = x(k).

From the above procedure, one can obtain the following relation:

Ik ⊂ Ik+1 ⊂ {1, 2, · · · , n}, ∀k = 1, 2, · · · .

It follows immediately

Theorem 5.2.1. The optimal solution of (5.2.3) can be located by Algorithm 8 within at
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most n-iterations.

Given the optimal payment share vector (x∗) obtained from Algorithm 8, we can find

the equity of node i after clearing (denoted by e−i ) as

e−i = α̂i +
∑
j 6=i

ljix
∗
j − pix∗i − γ(1− x∗i )pi − βα̂iIi∈I , (5.2.5)

Using the optimal solution obtained from Algorithm 8, we can introduce the following index

sets:

N = {1, . . . , n}, I∗ = {j : e−j = 0}, J ∗ = N − I∗,

The set I∗ consists of defaulting banks, and the set J ∗ consists of solvent banks.

5.3 Subsidized merging policies

In this section, we introduce two optimization models for matching solvent banks J ∗

and insolvent banks I∗ to determine merging pairs. The section consists of two subsections.

In the first subsection, we consider the merger gain to identify the merging banks. In

the second subsection, we take into account the incentive of the solvent bank to help the

insolvent one to justify the merger pair.

We first discuss how to estimate the merging gain. We assume that the merger pair

(i, j) is associated with a merging cost denoted by cij . If solvent node i and insolvent node

j are merged together, then cost of size cij occurs. Now we describe how to find the new

asset vector and liability matrix after the merger of two banks in the system as follows.

Definition 5.3.1. Suppose banks i ∈ J ∗ and j ∈ I∗ are merged into new bank denoted by

ij. In this case, the new vector α+ of outside assets is as follows: Given k 6= i and k 6= j,

we have α+
k = α̂k and α+

ij = α̂i + α̂j − cij . For the revised liability matrix L+, we have

l+ij,k = lik + ljk, l+k,ij = lki + lkj and l+ij,ij = 0, while the liabilities among non-merging banks

remain unchanged and the liabilities between banks i and j are canceled.
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5.3.1 Maximizing the merger gain and minimizing the bail-out cost

In this subsection, we study the case that the merger pair will benefit from the merger.

Let consider the merger pair (i, j) ∈ N̂ such that i = j or i ∈ J ∗ and j ∈ I∗. The total loss

for both nodes before the merging is `i+`j =
∑
k∈I∗ lki(1−x∗k)−e

−
j . Under the assumption

that the merger pairs will become solvent after the merging, the total loss of the merger

pair (i, j) can be obtained, i.e., `+ij = cij . Based on this, we define the subsidized merger

gain as the gap between the total loss of the merger pair before and after the merging, i.e.,

gij =
∑
k∈I∗

lki(1− x∗k)− e−j − cij . (5.3.1)

Here we assume that if an insolvent bank j remains unmerged, then it will bankrupt and

thus its equity value (e−j ) equals zero.

We next describe a matching model. For all (i, j) ∈ N̂ , let a binary variable ξij be 1 if

bank i is matched with bank j and 0 otherwise. Each bank is matched with another bank

or with itself. If ξii = 1, then i stays unmerged. Hence, we require

∑
i∈J ∗

ξij = 1 ∀ j ∈ I∗, and (5.3.2)

ξii +
∑
j∈I∗

ξij = 1 ∀ i ∈ J ∗. (5.3.3)

Relaxing the integrality requirements for ξij in (5.3.2)–(5.3.3) and maximizing the total

merger gain leads to the linear programming problem of finding ξij , for (i, j) ∈ N̂ , to

max {
∑

(i,j)∈N̂

gijξij | (5.3.2), (5.3.3), and ξij ≥ 0 ∀ (i, j) ∈ N̂ }. (5.3.4)

Note that in certain cases, the subsidized merger gain gij may be negative due to the

merging cost (cij) and thus the two banks may not be interested in merging. To encourage

merging, the SP can provide some amount of bail-out bij to cover part of the liabilities of

insolvent banks and merging cost. The minimal amount of bail-out to ensure a nonnegative
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merger gain can be computed as follows:

bij = max{0,−gij}. (5.3.5)

Correspondingly, we call bij + gij the subsidized merger gain. We note that if gij < 0,

both i and j would be better off without merger ij. If gij > 0, merger is possible but the

subdivision of the excess gij among i and j is subject to negotiation. Based on this bail-out

policy, we propose to solve the following optimization model to find the matching matrix:

min {
∑

(i,j)∈N̂

bijξij | (5.3.2), (5.3.3), and ξij ≥ 0 ∀ (i, j) ∈ N̂ }. (5.3.6)

Since both problems (5.3.4) and (5.3.6) have the same constraint set but with different

objective functions, we can cast them as a typical goal programming. Note that from

(5.3.5), we can easily verify that bij = −gij if gij ≤ 0, ∀i, j ∈ N̂ . It follows immediately:

Theorem 5.3.1. Let ξg be the optimal solution to problem (5.3.4). Then the following

conclusions hold:

(i) If gij ≤ 0, ∀(i, j) ∈ N̂ , then ξg is also the optimal solution to problem (5.3.6);

(ii) If gij ≥ 0 for every meaningful matching pair (satisfying ξgij = 1), then ξg is also the

optimal solution to problem (5.3.6).

It should be pointed out that in general, problem (5.3.4) and problem (5.3.6) may have

different optimal solutions. In such cases, we are more interested in finding a solution that

minimizes the total amount of bail-out subject to constraint that the total amount of gain

is also close to the optimal value of (5.3.4). For this, we propose the following integer linear

optimization problem:

min {
∑

(i,j)∈N̂

bijξij |∆ ≥ g∗ −
∑
ij

gijξij , (5.3.3), (5.3.2), and ξij ≥ 0 ∀ (i, j) ∈ N̂ }.(5.3.7)
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Here ξg is the optimal solution of (5.3.4), g∗ is the objective function value at the optimal

solution of problem (5.3.4) (g∗ =
∑
ij gijξ

g
ij), and ∆ > 0 is a parameter indicating how

close is the merging gain at the optimal solution of problem (5.3.7) to g∗. However, due

to the new constraint on merging gain, problem (5.3.7) is nontrivial hard to solve. Next

we develop a Lagrangian search method for problem (5.3.7). Let us consider the following

parameterized Lagrangian problem:

min { (1− λ)
∑
ij

bijξij + λ(g∗ −
∑
ij

gijξij) | (5.3.3), (5.3.2), and ξij ≥ 0 ∀ (i, j) ∈ N̂ },(5.3.8)

where λ ∈ [0, 1] is a parameter. For each fixed λ ∈ [0, 1], problem (5.3.8) reduces to a

standard matching problem that can be solved effectively by many existing optimization

solvers. For a fixed Lagrangian multiplier λ, let ξ(λ) denote the optimal solution of (5.3.8)

and define fb(λ) =
∑
ij bijξ(λ)ij , fg(λ) = g∗ −

∑
ij gijξ(λ)ij . We have

Theorem 5.3.2. The function fg(λ) is decreasing in terms of λ while the function fb(λ) is

increasing in terms of λ.

Proof. Without loss of generality, we consider two different parameters λ1, λ2 ∈ (0, 1). Let

ξ(λ1) and ξ(λ2) denote the optimal solution of (5.3.8) when λ = λ1 and λ = λ2 respectively.

By the optimality of ξ(λ1) and ξ(λ2), we have that:

∑
ij

bijξ(λ1)ij + λ1

1− λ1 fg(λ
1) ≤

∑
ij

bijξ(λ2)ij + λ1

1− λ1 fg(λ
2);

∑
ij

bijξ(λ2)ij + λ2

1− λ2 fg(λ
2) ≤

∑
ij

bijξ(λ1)ij + λ2

1− λ62fg(λ
1).

Adding the above two inequalities, we obtain:

λ1

1− λ1 fg(λ
1) + λ2

1− λ2 fg(λ
2) ≤ λ1

1− λ1 fg(λ
2) + λ2

1− λ2 fg(λ
1),
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which further yields

(λ1 − λ2)(fg(λ1)− fg(λ2)) ≤ 0.

Therefore, fg(λ) is decreasing in terms of λ. The proof for fb(λ) follows similarly.

Based on Theorem 5.3.2, the optimal solution to problem (5.3.7) can be obtained via

solving the following problem

min λ (5.3.9)

s.t. fg(λ) ≤ ∆.

One can easily see that when λ = 0, problem (5.3.8) reduces to problem (5.3.6) and we

thus have fg(0) > ∆. If λ = 1, problem (5.3.8) reduces to problem (5.3.4) and we have

fg(1) = 0 < ∆. By using Theorem 5.3.2 and the above observation, we present the following

line search algorithm to solve problem (5.3.7).

Algorithm 9 A Binary Line Search Algorithm
1: Inputs: ∆, g∗, and a stop criteria ε.
2: Set l = 0, u = 1;
3: while u− l > ε do
4: set λ = (l + u)/2;
5: Solve problem (5.3.8);
6: if fg(λ) ≤ ∆ then
7: Set u = λ,
8: else
9: Set l = λ,

10: end if
11: end while
12: Output: λ = (u+ l)/2.

5.3.2 Maximizing the merging incentive

In this subsection, we consider the case where the solvent banks will always benefit from

the merger. Note that if gij ≥ 0, then the insolvent bank j will always benefit from merging.

However, for the solvent bank i, the high merging cost may make it unwilling to merge. To

see this, let us consider the merging incentive (similar to the rescue incentive in [65]). Let
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e+
ij denote the equity of the merger after merging, i.e., e+

ij = e+
i +e+

j . We define the merging

incentive by

δi = e+
ij − e

−
i − cij . (5.3.10)

From (5.3.1) we have that δi ≤ gij , if bank j is fundamentally default. This implies that

even when the merging gain is positive, the merging incentive is negative and thus there is

no incentive for bank i to rescue the insolvent bank j. To encourage bank i to merge with

bank j, the minimal bail-out (bincij ) must satisfy the following condition

e+
ij − e

−
i ≥ cij − b

inc
ij , or bincij = max{0,−δi}; i ∈ I∗, j ∈ J ∗. (5.3.11)

Condition (5.3.11) ensures that the equity of the solvent node i will not decrease after the

merging, and thus there is an incentive for bank i to merge with bank j. Correspondingly,

we call bij + δi the subsidized merging incentive.

Next, we consider a variant of problem (5.3.4) that incorporates the merging incentive

condition (5.3.11) as

max {
∑
i

δiξij | (5.3.2), (5.3.3), and ξij ≥ 0 ∀ (i, j) ∈ N̂ }. (5.3.12)

In this model, all the solvent banks have incentives to merge with some insolvent bank j.

Based on merging incentive condition, we can rewrite problem (5.3.6) as

min {
∑

(i,j)∈N̂

bincij ξij | (5.3.2), (5.3.3), and ξij ≥ 0 ∀ (i, j) ∈ N̂ }. (5.3.13)

Here bincij is defined by (5.3.11).

Problem (5.3.12) and (5.3.13) have the same feasible set but different objective function,

and therefore we can cast them as a typical goal programming. Note that from (5.3.11), we

can easily verify that bincij = −δij if δij ≤ 0, ∀i, j ∈ N̂ . It follows immediately:
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Theorem 5.3.3. Let ξδ be the optimal solution of problem (5.3.12). Then the following

conclusions hold:

(i) If δij ≤ 0, ∀(i, j) ∈ N̂ , then ξδ is also the optimal solution to problem (5.3.13);

(ii) If δij ≥ 0 for every meaningful matching pair (satisfying ξδij = 1), then ξδ is also the

optimal solution to problem (5.3.13).

We note that in general problem (5.3.13), and (5.3.12) may have different optimal solu-

tions. In such cases, we use the similar idea as in the previous subsection, and we propose

to solve the following integer linear optimization model:

min{
∑

(i,j)∈N̂

bincij ξij | ∆ ≥ δ∗ −
∑
ij

δijξij , (5.3.3), (5.3.2), and ξij ≥ 0 ∀ (i, j) ∈ N̂}.(5.3.14)

Here ξδ is the optimal solution of (5.3.11) and δ∗ is the objective function value at the

optimal solution of (5.3.11) (δ∗ =
∑
ij δijξ

δ
ij). ∆ > 0 is a parameter indicating how close is

the merging incentive at the optimal solution of problem (5.3.11) to δ∗. As we mentioned,

this problem is hard to solve. Therefore, we next develop a Lagrangian search method for

problem (5.3.14). Let us consider the following parameterized Lagrangian problem:

min{(1− λ)
∑
ij

bincij ξij + λ(δ∗ −
∑
ij

δijξij) | (5.3.3), (5.3.2), and ξij ≥ 0 ∀ (i, j) ∈ N̂}.(5.3.15)

Here λ ∈ [0, 1] is a parameter. Similarly, we can use the binary search algorithm to find the

best value for λ.

5.4 A case study on European banks

In this section, similar to [51], we use banks listed by the EBA as Global Systemically

Important Institutions (G-SIIs) to demonstrate our approach. The EBA data base provides

the following data for 36 G-SIIs: total exposures, intra-financial system assets and intra-

financial system liabilities, which we use as total assets, receivables from other banks and

liabilities to other banks, respectively. For the equity (net value) of each bank we use Tier 1
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capital1 which is obtained from the EBA data base or from banks’ annual reports of 2015.

Consequently, we obtain the data for all the 36 banks in the data base. Like in [51], we also

use 22 of these banks for the demonstration. The complete network structure is obtained

from the information criterion by [70].

Table 5.1: Bank data for an adverse economic scenario. αi = outside assets in the adverse scenario
(bn ); ri = intra-network assets (bn ); κi = outside liabilities (bn ); pi = intra-network
liabilities (bn ); ei = equity before clearing (bn );

i bank αi κi pi ri ei

1 B1 352.95 384.95 55.81 90.95 3.14
2 B3 1106.46 1117.90 210.81 232.12 9.87
3 B5 691.63 634.37 93.80 72.96 36.42
4 B7 1673.93 1579.08 197.30 187.01 84.56
5 B8 1033.68 916.45 127.63 93.18 82.78
6 B9 371.27 368.14 134.09 127.02 -3.93
7 B10 1189.41 1153.42 171.23 174.74 39.51
8 B11 510.46 522.08 72.26 115.02 31.15
9 B12 375.32 398.05 20.61 58.27 13.75
10 B13 1167.22 1127.87 219.49 237.52 57.38
11 B18 2305.71 2169.08 260.19 225.94 102.38
12 B19 931.39 912.22 131.32 148.36 36.21
13 B20 476.49 477.85 70.71 127.36 55.28
14 B22 300.47 289.94 22.46 23.60 11.67
15 B24 818.65 832.34 84.30 69.21 -28.78
16 B27 465.32 495.47 47.93 98.49 20.41
17 B29 642.64 607.80 46.97 27.32 15.19
18 B30 718.34 749.24 167.16 155.84 -42.23
19 B31 1233.11 1159.70 148.26 95.92 21.07
20 B32 274.47 253.20 41.21 33.38 13.43
21 B33 1009.79 1012.04 174.65 151.30 -25.60
22 B36 752.16 717.82 202.33 155.00 -12.99

total 18400.87 17879.02 2700.50 2700.50 520.67

We note that using the available data for the outside assets no banks default. To have

some default banks in the system, we randomize the outside assets by following a log-normal

distribution as in [51]. Table ?? shows the resulting outside assets αi, outside liabilities κi,

total liabilities pi, intra-network assets ri and equity levels before clearing ei, assuming that

total liabilities pi and intra-network assets ri remain at the base case levels at the end of

2015. Under such a setting, we have 5 fundamentally defaulting banks (banks 6, 15, 18, 21

and 22 with negative equity (ei < 0)) and 17 solvent banks with positive equity (ei > 0).
1Tier 1 capital is the core measure of a bank’s financial strength from a regulator’s point of view. It is

composed primarily of common stock and disclosed reserves (or retained earnings).
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Based on this, we can calculate the minimal bail-out cost to ensure all the banks in the

system are solvent as

b∗ = −
∑
i:ei<0

ei = 113.53.

For convenience, we call it the cost of public bail-out.

5.4.1 Clearing without merging

Next, we use Algorithm 8 to find the clearing payment ratio x∗ under generated random

outside asset αi, when γ = 0.03 and for five different value of β = 0.1, 0.2, 0.3, 0.4, 0.5. We

assume that the all the banks clear their outside liabilities first. Based on this, the available

asset of each back for the clearing can be obtained as αi−κi. As one can see from Table ??,

in all five different cases, we have 7 default banks including 5 fundamentally defaulting

banks with ei < 0 and 2 contagiously defaulting banks i (banks 1 and 2) with ei > 0 and

x∗i < 1.

5.4.2 Subsidized merging cases

Given lack of data for the merger cost cij , for demonstration we use cij = εij
√

(αi + αj),

where parameters εij were drawn independently from the uniform distribution (εij ∼ U(−1, 1)).

Then we solve problem (5.3.4) to find the best matching matrix ξg. In this subsection,

we only consider the case that β = 0.1 for illustration. The results for the case that

β = 0.2, 0.3, 0.4, 0.5 are given in Appendix B.1.

Table ?? shows the merger gain obtained from (5.3.1) among all the possible merger

pairs for the case that β = 0.1. As one can see from Table ??, the merger gains for all

the merging pairs at the optimal solution are positive, and therefore the minimal amount

of bail-out in this case is zero. This illustrates that the merging strategy can significantly

reduce the contagion risk.

Next, we estimate the merging incentive (δ) for a solvent bank (i) when merged with a

default bank (j) as listed in Table ??. As one can see from Table ??, for insolvent banks 15,

18, 21, and 22, the merging incentives for all the solvent banks are negative, which indicates
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Table 5.2: The clearing solutions based on Algorithm 8 with γ = 0.03. x∗
i = share of liabilities

repaid; `i = loss of bank i without merging (bn ).

β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5
i x∗i `i x∗i `i x∗i `i x∗i `i x∗i `i

1 0.89 -3.14 0.82 -3.14 0.75 -3.14 0.68 -3.14 0.61 -3.14
2 0.96 -9.87 0.95 -9.87 0.93 -9.87 0.92 -9.87 0.91 -9.87
3 1.00 4.91 1.00 5.47 1.00 6.02 1.00 6.57 1.00 7.13
4 1.00 13.14 1.00 14.63 1.00 16.11 1.00 17.59 1.00 19.08
5 1.00 6.36 1.00 7.07 1.00 7.79 1.00 8.51 1.00 9.23
6 0.90 3.93 0.89 3.93 0.88 3.93 0.87 3.93 0.86 3.93
7 1.00 12.15 1.00 13.52 1.00 14.89 1.00 16.27 1.00 17.63
8 1.00 7.69 1.00 8.55 1.00 9.42 1.00 10.29 1.00 11.16
9 1.00 3.82 1.00 4.25 1.00 4.68 1.00 5.11 1.00 5.54
10 1.00 16.88 1.00 18.78 1.00 20.69 1.00 22.59 1.00 24.48
11 1.00 16.33 1.00 18.17 1.00 20.02 1.00 21.84 1.00 23.69
12 1.00 10.15 1.00 11.29 1.00 12.44 1.00 13.58 1.00 14.73
13 1.00 8.51 1.00 9.47 1.00 10.43 1.00 11.39 1.00 12.34
14 1.00 1.55 1.00 1.72 1.00 1.90 1.00 2.07 1.00 2.25
15 0.58 28.78 0.56 28.78 0.54 28.78 0.51 28.78 0.49 28.78
16 1.00 6.52 1.00 7.26 1.00 8.00 1.00 8.73 1.00 9.47
17 1.00 1.81 1.00 2.01 1.00 2.21 1.00 2.42 1.00 2.62
18 0.67 42.22 0.65 42.22 0.62 42.22 0.59 42.22 0.57 42.22
19 1.00 6.60 1.00 7.34 1.00 8.09 1.00 8.83 1.00 9.57
20 1.00 2.21 1.00 2.45 1.00 2.70 1.00 2.95 1.00 3.20
21 0.79 25.59 0.79 25.59 0.78 25.59 0.77 25.59 0.76 25.59
22 0.86 12.99 0.85 12.99 0.82 12.99 0.80 12.99 0.77 12.99
Loss 219.12 232.50 245.90 259.26 272.62

that no solvent banks are willing to merge with those insolvent banks unless some subsidies

are provided from the social planner. We also solve problem (5.3.12) to find the best

matching matrix ξδ. Since in model (5.3.12), all the insolvent banks must be merged with

one of the solvent banks in the system, and therefore, at the optimal solution of (5.3.12), we

obtain a negative total incentive for the identified matching pairs. This implies that such

a merging plan is not attractive for the solvent banks. To ensure all the involved solvent

banks have nonnegative incentives, we solve problem (5.3.13) to obtain the merging pairs

with minimal bail-out cost.
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Table 5.3: The optimal solution of model (5.3.4).

i gij

j 1 2 6 15 18 21 22
3 -0.44 2.70 4.10 -1.95 -4.40 -1.58 0.70
4 6.88 -0.97 10.00 9.88 6.62 -5.84 -0.88
5 -12.07 1.89 -4.22 4.63 -4.53 0.05 2.63
7 8.53 5.34 4.63 7.27 10.60 9.80 9.69
8 7.69 7.69 7.69 7.69 7.69 7.69 -0.46
9 3.82 3.82 3.82 3.82 3.82 3.82 2.43
10 16.74 6.99 5.11 12.44 14.35 15.12 8.57
11 2.36 14.74 8.16 -5.11 1.59 8.23 -1.81
12 10.15 9.36 6.61 9.53 10.15 2.49 -3.33
13 8.51 8.51 8.35 8.51 8.51 8.51 6.14
14 1.55 1.55 -3.92 1.55 1.55 -4.15 -2.34
16 6.52 6.52 6.52 6.52 6.52 6.52 3.70
17 -1.14 0.54 -8.99 -6.33 -0.43 -8.00 1.58
19 -5.86 -1.18 -7.13 -1.28 0.47 2.12 0.74
20 2.21 0.37 -7.41 2.11 2.21 0.11 -3.51

Table 5.5: The optimal solution of model (5.3.13)

i binc
ij

j 1 2 6 15 18 21 22
3 0.00 0.00 0.00 30.72 46.62 27.18 12.28
4 0.00 0.00 0.00 18.91 35.62 31.45 13.89
5 8.95 0.00 8.16 24.16 46.77 25.57 10.38
7 0.00 0.00 0.00 21.50 31.64 15.80 3.30
8 0.00 0.00 0.00 21.08 34.54 17.91 13.45
9 0.00 0.00 1.29 26.14 39.59 22.96 11.74
10 0.00 0.00 0.00 16.33 27.88 10.47 4.42
11 0.00 0.00 0.00 33.90 40.66 17.38 14.82
12 0.00 0.00 0.00 19.25 32.09 23.11 16.33
13 0.00 0.00 0.00 20.27 33.73 17.10 6.86
14 0.00 0.00 7.85 27.23 40.68 29.75 15.33
16 0.00 0.00 0.00 22.26 35.71 19.08 9.29
17 0.00 0.00 12.92 35.11 42.66 33.59 11.41
19 2.73 0.00 11.07 30.06 41.76 23.49 12.25
20 0.00 0.00 11.34 26.67 40.02 25.48 16.49

Table ?? shows the resulting minimal amount of bail-out (binc). As one can see from

Table ?? and ??, the optimal matching pair obtained from two models (5.3.12) and (5.3.13)

are different. As a compromise, we then solve problem (5.3.15) to find a solution that min-

imizes the total amount of bail-out subject to constraint on the total amount of incentives.

In our example, we use ∆ = 0.5. The optimal matching pairs for all four models when

β = 0.1 are given in Table ??.
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Table 5.4: The optimal solution of model (5.3.12)

i δij

j 1 2 6 15 18 21 22
3 2.70 12.57 0.17 -30.72 -46.62 -27.18 -12.28
4 10.00 8.88 6.06 -18.91 -35.62 -31.45 -13.89
5 -8.95 11.74 -8.16 -24.16 -46.77 -25.57 -10.38
7 11.67 15.21 0.70 -21.50 -31.64 -15.80 -3.30
8 10.83 17.56 3.76 -21.08 -34.54 -17.91 -13.45
9 5.77 12.50 -1.29 -26.14 -39.59 -22.96 -11.74
10 19.88 16.86 1.18 -16.33 -27.88 -10.47 -4.42
11 5.48 24.59 4.21 -33.90 -40.66 -17.38 -14.82
12 13.28 19.22 2.68 -19.25 -32.09 -23.11 -16.33
13 11.64 18.37 4.42 -20.27 -33.73 -17.10 -6.86
14 4.69 11.42 -7.85 -27.23 -40.68 -29.75 -15.33
16 9.66 16.39 2.59 -22.26 -35.71 -19.08 -9.29
17 2.00 10.40 -12.92 -35.11 -42.66 -33.59 -11.41
19 -2.73 8.69 -11.07 -30.06 -41.76 -23.49 -12.25
20 5.34 10.24 -11.34 -26.67 -40.02 -25.48 -16.49

Table 5.6: The merging pairs obtained from four different problems when β = 0.1

Model
Total Total Bail-out Bail-out

Merging Pairs
gain incentive with without

incentive incentive
Model (5.3.4) 77.50 -23.04 73.57 0.00 (4,6),(7,22),(8,15),(10,1),(11,2),(12,18),(13,21)
Model (5.3.12) 77.50 -23.04 73.57 0.00 (4,6),(7,22),(8,15),(10,1),(11,2),(12,18),(13,21)
Model (5.3.13) 56.26 -44.27 64.77 0.00 (3,2),(4,15),(7,22),(10,21),(12,18),(16,6),(20,1)
Model (5.3.15) 77 .38 -23.17 71.40 0.00 (4,15),(7,22),(8,6),(10,1),(11,2),(12,18),(13,21)

As one can see from Table ??, in this case the optimal solution from model (5.3.4) and

(5.3.13) are the same. The solution from model (5.3.4) achieves the maximal merger gain

with the maximal bail-out cost, while the solution from model (5.3.13) has the minimal

bail-out cost and the minimal (negative) merger gain. The solution from model (5.3.15)

reaches a good balance between the merger gain and the bail-out cost. We also would like

to point out that the bail-out cost in all the above four cases is smaller than the cost of

the public bail-out. Particularly, if we do not take the incentives for the solvent banks into

account in the model such as in model (5.3.4), then the corresponding bail-out cost can be

very small.
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5.5 Concluding discussion

In this paper, we have developed various models to identify optimal policies for the sub-

sidized mergers to stabilize the financial network. For this, we first extend the Glassermann-

Young model to estimate the merger gain for any given merging pair in the network. Based

on the computed merger gains, we develop a goal programming approach to find the match-

ing pairs with the maximal gain and minimal bail-out cost respectively. We identify con-

ditions under which the maximal gain and the minimal bail-out can be obtained simulta-

neously. We also develop similar models to maximize the incentives for the solvent banks

involved in merging, and minimize the bail-out used to subsidize the solvent banks, and

discuss how to manage the trade-off between the incentive and the bail-out cost. We test

the proposed models on a network of major European banks and a scenario linked to the

adverse economic scenario used in 2016 EU-wide stress testing. Our numerical experiments

demonstrate that the proposed subsidized merging can significantly reduce the bail-out cost

compared with the cost of the public bail-out.

Several issues are of interests for future research. The first issue is how the proposed

merging strategy can be implemented in practice. One possible way is that the SP first

provides some recommendations (without considering the merging incentive) for the banks

to merge. Then the banks can make their choices whether to merge with another bank

or not. If they do not accept the recommendations, the SP will provide some subsidies

by taking into account the merging incentive or they provide public bail-out, and then

the banks can choose among these options. We also point out that a similar approach is

proposed in [14]. The second issue is that the merging may lead to the so-called “too big

too fail" risk . Further study is needed to investigate how to avoid such a risk.

123



Chapter 6

Future work
In this chapter, we explain future studies in order to extend and improve the current

results of this dissertation.

6.1 Studying the Systemic Risk Assessment by Taking into Account the

Market Impact on the Asset Liquidation

For the case that a bank has to liquidate some of its assets to pay its liabilities, there

is usually a loss caused in the liquidation process. Note that in such a case, the bank itself

may be solvent after the liquidation. However, it still incurs a liquidation loss. Moreover,

based on works in asset liquidation (see Chen et al. [23] and the references therein), the

liquidation loss is usually nonlinear in terms of the amount of liquidated assets. This is

very different from the literature in systemic risk study [44, 65] where linear functions are

adopted to measure the loss, which implies the market impact on the liquidation has been

neglected. More study is needed to address such an issue.

6.2 Studying How to Avoid “Too Big to Fail” Risk

The merging policy that we proposed in Section 5 may lead to the so-called “too big to

fail” risk. It will be interesting to investigate how to avoid such a risk.

6.3 Analyzing the Vulnerability of Financial Network with Cross-holding

We can extend the results in Chapter 3 and 4 by considering a network of banks which

are linked with each other by financial obligations and cross holdings. Cross holding is a

situation where a financial institution owns shares or stock in another institution which

leads to a well-known problem of inflating book values. We can do some analysis to see
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how the presence of cross-holding will impact the size of risk exposure and what is the best

mitigation strategy to reduce such negative effect.
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Appendix A

Supplement for the Results in Section 4
A.1 Proof of Theorem 4.3.4

We first present a technical result.

Lemma A.1.1. Let λ̂i be the optimal solution of (4.3.17). Then for every j ∈ I1, λ̂ij is

also the optimal solution of the following linear optimization problem:

max
λI1

λj (A.1.1)

s.t. (P − L)I1λI1 ≤ piei, λI1 ≥ 0;

Proof. From (4.3.18) we can conclude that λ̂iI1 is a solution of the following linear equation

system.

(P − L)I1 λ̂iI1 = piei.

Now, let us consider the following optimization problem:

max
λI1

∑
j∈I1

λj , and (A.1.2)

s.t. (P − L)I1λI1 ≤ piei; (A.1.3)

λI1 ≥ 0.

We next show that at the optimal solution of (A.1.2) constraint (A.1.3) is active for all

i ∈ I1. Suppose to the contrary that at the optimal solution of (A.1.2), constraint (A.1.3)

is not active for all i ∈ I1. Here, we have two cases:

(i) Constraint (A.1.3) is not active for i ∈ I1;
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(ii) Constraint (A.1.3) is not active for j 6= i ∈ I1.

We first consider the first case. Thus, we have

[(P − L)I1 λ̂iI1 ]i < pi.

From (4.3.17) we can see that for arbitrary ε > 0, it holds

ε(αT − eT (P − L))λ̂iI1 < 0, ε(P − L)λ̂iI1 ≤ εpiei.

By choosing a sufficiently small ε satisfying

ε[(P − L)λ̂iI1 ]i ≤ εpi ≤ (1 + ε)[∆L∗λ̂iI1 ]i,

we have that

[(P − L+)(1 + ε)λ̂iI1 ]i ≤ pi.

Therefore, (1 + ε)λ̂iI1 is a feasible solution for problem (4.3.17) with liability matrix L+.

One can see the fact that
∑
j∈I1(1 + ε)λ̂ij >

∑
j∈I1 λ̂

i
j contradicts to the assumption that λ̂i

is the optimal solution of (A.1.2). Next we consider case (ii). In this case, we have

[(P − L)I1 λ̂iI1 ]j < 0.

We can choose a vector λ̂εiI1 whose elements are defined by

λ̂εik = λ̂ik, ∀k 6= j ∈ I1, λ̂
εi
j = λ̂ij + ε,

where ε is sufficiently small to ensure that

[(P − L)I1 λ̂
εi
I1 ]j ≤ 0.
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Since λ̂εiI1 > λ̂iI1 , we have

[(P − L)I1 λ̂
εi
I1 ]k − (P − L)I1 λ̂iI1 ]k ≤ 0, ∀k 6= j.

From the above relations we can conclude that λ̂εiI1 is a feasible solution for problem (4.3.17).

One can see the fact that
∑
j∈I1 λ̂

εi
j >

∑
j∈I1 λ̂

i
j contradicts to the assumption that λ̂i is the

optimal solution of (A.1.2). Therefore, at the optimal solution of (A.1.2) constraint (A.1.3)

is active for all j ∈ I1.

Let λ̄I1 be a vector whose i-element λ̄i be the objective function value at the optimal

solution of problem (A.1.1). Let λ̂i be the optimal solution of (A.1.1) and thus, we have

λ̄i = λ̂ii. Then we have:

piλ̄i −
∑
j 6=i

lij λ̂
i
j = piλ̂

i
i −

∑
j 6=i

lij λ̂
i
i ≤ pi,

which implies that

piλ̄i −
∑
j 6=i

lij λ̄j ≤ pi.

This shows that λ̄I1 is the unique solution to problem (A.1.1). This completes the proof of

the lemma.

Next we prove Theorem 4.3.1. We start with the first conclusion. Let us consider

decomposed problem (A.1.1). In this case, from feasibility condition (4.3.20) we have that

(P − L+)λ̂i(L) ≤ piei,

which implies that λ̂i(L) is the feasible solution of (A.1.1) with liability matrix L+. It

follows immediately

λ̂i(L+) ≥ λ̂i(L), ∀i ∈ I,

where λ̂i(L) and λ̂i(L+) denote the optimal solution of (4.3.17) with liability matrix L and

L+, respectively. Since eTI1∆L∗λ∗ > 0, we can conclude that ∃i ∈ I1 such that [∆L∗λ∗]i > 0.
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Based on this, following the similar vein as in the proof of Lemma A.1.1, we can conclude

that ∃i ∈ I1 such that the following holds.

λ̂ij(L+) > λ̂ij(L), j ∈ I1. (A.1.4)

Since λ∗ =
∑
i∈I λ̂

i, we have that

λ∗j (L+) > λ∗j (L), j ∈ I1.

Next we consider the second conclusion. Since λ̂i(L) is the feasible solution of (4.3.17), it

follows immediately that

(αT − eT (P − L))λ̂i(L+) + pi ≤ (αT − eT (P − L))λ̂i(L) + pi, ∀i ∈ I.

Based on duality theorem Bazaraa, we have that

x∗i (L+) ≤ x∗i (L), ∀i ∈ I.

Now it suffices to show that strict inequality holds for insolvent nodes. Similarly, since we

have eTI1∆L∗λ∗ > 0, we can conclude that ∃i ∈ I1 such that [∆L∗λ∗]i > 0. Therefore,

inequality (A.1.4) holds. Based on this, and from Lemma A.1.1 we have

(αT − eT (P − L))λ̂i(L+) + pi < (αT − eT (P − L))λ̂i(L) + pi. (A.1.5)

Thus, based on duality theorem Bazaraa we can conclude that x∗i (L+) < x∗i (L). This

finishes the proof of the theorem.

A.2 Estimating the Directional Derivative of f

In this section, we provide more details on how to estimate the directional derivative

(D∆Lf(L)). We follow a similar vein as in [37] where they estimate the directional derivative
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of a clearing payment vector with respect to a perturbation matrix. Let us consider the

equality constraint as

(P − L− β∆L)I11λI1(L+) = pI1 ,

where λI1(L+) is the optimal solution of (4.3.12) when the liability matrix is L+ and

β ∈ (0, 1]. Since (P − L)I11 is nonsingular, we can multiply each side of the equality by

(P − L)−1
I11

and obtain λI1(L+) as

λI1(L+) = β(P − L)−1
I11

∆LI11λI1(L+) + (P − L)−1
I11
pI1 . (A.2.1)

Based on this, we have

λI1(L) = (P − L)−1
I11
pI1 . (A.2.2)

From the feasibility condition we have that eT∆L = 0. Thus,

(αT − eT (P − L+))I1 = (αT − eT (P − L))I1 . (A.2.3)

From (A.2.1), (A.2.2), and (A.2.3) we can obtain the following.

D∆Lf(L) = (αT − eT (P − L))I1(P − L)−1
I11

∆LI11λI1(L); (A.2.4)

= (αT − eT (P − L))I1(P − L)−1
I11

∆LI11(P − L)−1
I11
pI1 .
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Appendix B

Supplement for Numerical Experiment in Section 5
B.1 Numerical Results for Section 5

Table B.1: The merging pairs obtained from four different problems when β = 0.2

Model
Total Total Bail-out Bail-out

Merging Pairs
gain incentive with without

incentive incentive
Model (5.3.4) 82.81 -17.68 59.70 0.00 (4,15),(7,18),(8,6),(10,1),(11,21),(12,22),(13,2)
Model (5.3.12) 82.81 -17.68 59.70 0.00 (4,15),(7,18),(8,6),(10,1),(11,21),(12,22),(13,2)
Model (5.3.13) 62.75 -37.74 56.32 0.00 (3,6),(4,2),(7,15),(10,18),(11,21),(12,22),(20,1)
Model (5.3.15) 81.98 -18.51 56.46 0.00 (4,15),(7,2),(8,6),(10,18),(11,21),(12,22),(13,1)

Table B.2: The merging pairs obtained from four different problems when β = 0.3

Model
Total Total Bail-out Bail-out

Merging Pairs
gain incentive with without

incentive incentive
Model (5.3.4) 100.55 0.05 50.88 0.00 (4,15),(7,22),(8,6),(10,18),(11,1),(12,2),(13,21)
Model (5.3.12) 100.55 0.05 50.88 0.00 (4,15),(7,22),(8,6),(10,18),(11,1),(12,2),(13,21)
Model (5.3.13) 66.49 -34.03 48.32 2.88 (3,6),(4,15),(7,22),(10,21),(11.18),(14,1),(20,2)
Model (5.3.15) 94.13 -6.37 48.32 0.00 (4,15),(7,22),(8,6),(10,21),(11,18),(12,1),(13,2)

Table B.3: The merging pairs obtained from four different problems when β = 0.4

Model
Total Total Bail-out Bail-out

Merging Pairs
gain incentive with without

incentive incentive
Model (5.3.4) 107.02 6.48 57.17 0.00 (4,21),(7,18),(8,2),(10,6),(11,1),(12,22),(13,15)
Model (5.3.12) 107.02 6.48 57.17 0.00 (4,21),(7,18),(8,2),(10,6),(11,1),(12,22),(13,15)
Model (5.3.13) 75.39 -25.17 51.15 0.00 (3,1),(4,21),(7,18),(8,6),(10,15),(13,22),(20,2)
Model (5.3.15) 102.30 1.76 51.19 0.00 (4,21),(7,6),(8,2),(10,18),(11,1),(12,22),(13,15)
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Table B.4: The merging pairs obtained from four different problems when β = 0.5

Model
Total Total Bail-out Bail-out

Merging Pairs
gain incentive with without

incentive incentive
Model (5.3.4) 115.16 14.65 54.17 0.00 (4,15),(7,21),(8,6),(10,22),(11,2),(12,1),(13,18)
Model (5.3.12) 115.16 14.65 54.17 0.00 (4,15),(7,21),(8,6),(10,22),(11,2),(12,1),(13,18)
Model (5.3.13) 68.98 -31.55 45.43 9.08 (3,6),(4,22),(5,2),(7,21),(10,15),(12,18),(16,1)
Model (5.3.15) 112.50 11.99 45.61 0.00 (7,22),(7,21),(8,6),(10,18),(11,2),(12,1),(13,15)
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