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ABSTRACT 1 

The market for graphene-based products, such as graphene oxide (GO), is projected to reach 2 

nearly $675 million by 2020, hence it is expected that large quantities of graphene-based wastes 3 

will be generated by then. Wastewater treatment plants will be one of the ultimate repositories 4 

for these wastes. Efficient waste treatment relies heavily on the functions of diverse microbial 5 

communities. Therefore, systematic investigation of any potential toxic effects of GO in 6 

wastewater microbial communities is essential to determine the potential adverse effects and the 7 

fate of these nanomaterials in the environment. In the present study, we investigate the acute 8 

toxicity, i.e. short term and high load, effect of GO on the microbial functions related to the 9 

biological wastewater treatment process. The results showed that toxic effects of GO on 10 

microbial communities were dose dependent, especially in concentrations between 50-300 mg/L. 11 

Bacterial metabolic activity, bacterial viability, and biological removal of nutrients, such as 12 

organics, nitrogen and phosphorus, were significantly impacted by the presence of GO in the 13 

activated sludge. Furthermore, the presence of GO deteriorated the final effluent quality by 14 

increasing the water turbidity and reducing the sludge dewaterability. Microscopic techniques 15 

confirmed penetration and accumulation of GO inside the activated sludge floc matrix. Results 16 

demonstrated that the interaction of GO with wastewater produced significant amount of reactive 17 

oxygen species (ROS), which could be one of the responsible mechanisms for the toxic effect of 18 

GO. 19 

 20 
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1. INTRODUCTION 1 

Graphene oxide (GO) is the functionalized form of graphene containing epoxy, hydroxyl, and 2 

carboxyl groups [1, 2]. GO possesses excellent electrochemical properties, hence, it has wide 3 

applications in electronics, biosensors, pipes, semiconductor, and packaging in both pure and 4 

nanocomposite forms [3, 4]. Due to the potential wide utilization of this nanomaterial, it is 5 

expected that wastes containing this nanomaterial will be generated and end up in landfills and 6 

wastewater treatment plants.  7 

A typical wastewater treatment plant utilizes the functions of diverse groups of microorganisms 8 

for degradation of organic matter, remediation of toxic or carcinogenic compounds and removal 9 

of excess nutrients (nitrogen and phosphorus) to reduce the pollution of receiving waters [5]. 10 

However, contaminants in the wastewater influent may adversely affect the functions of these 11 

microorganisms. In recent years, disposal and fate of nanomaterials in aquatic systems have 12 

become a matter of concern; however very few studies are available on this topic.  One study 13 

recently demonstrated that high loads (219 mg/L) of single walled carbon nanotubes (SWNT) 14 

can differentially impact various microbial communities in activated sludge processes and 15 

adversely affect treatment efficiency [6]. 16 

In the case of GO, no studies so far have investigated the effects of GO on the wastewater 17 

processes. However, the fact that SWNT, like GO, is also made of graphene and presents adverse 18 

effects to activated sludge processes, it is reasonable to hypothesize that GO will also present 19 

toxic effects to the wastewater microbial community. Additionally, several studies have reported 20 

that better dispersion and longer contact time of carbon-based nanomaterials with pure bacterial 21 

cultures increase their antimicrobial effects [7-10]. When comparing GO to SWNTs, GO 22 

presents stronger hydrophilic nature and is more stably dispersed in aqueous solution than 23 

SWNTs. Hence these properties can potentially enhance the contact of GO with microbial 24 
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communities and produce stronger adverse effects to the wastewater treatment process than 1 

SWNTs.  2 

Furthermore, in recent studies investigating the antibacterial properties of GO to pure bacterial 3 

cultures, it was demonstrated that GO is toxic to pure bacterial cultures (Gram-positive and 4 

Gram-negative) on both planktonic and biofilm stages [11-13]. In these studies, depending on the 5 

concentrations (~40-80 mg/L), significant levels of inactivation (~60-80%) were observed in 6 

pure cultures [12-14].
  
So far, all these studies on the antimicrobial properties of GO were done 7 

using microorganisms in pure cultures under controlled laboratory conditions. However, natural 8 

and engineered aquatic systems are more complex than the simplified system used in these 9 

studies in terms of microbial community, solution chemistry, nanomaterial aggregation, and 10 

presence of suspended particles and natural organic matter. Therefore, more complex 11 

environments need to be investigated to determine the real impact of GO to the environment and 12 

its effect on the normal functions of the ecosystem [11, 12]. 13 

The global market for graphene-based products, such as graphene, is projected to increase in 5 14 

years in 51.7% and reach a global market of $122.9 M in 2017 and $986.7 M in 2022 [4]. 15 

Therefore, wastewater treatment plants can potentially experience an acute exposure to this 16 

nanomaterial, i.e. short term exposure to high GO concentrations (ppm level). The objective of 17 

this study is to evaluate the effects of acute exposure of wastewater microbial communities to 18 

GO, using batch scale tests. The short term effects of GO on wastewater microbial communities 19 

were evaluated in terms of metabolic activity and bacterial inactivation. The effects of GO on 20 

wastewater process performance were evaluated through bacterial removal of organic carbon 21 

(Biochemical Oxygen Demand, BOD), removal of nutrients (ammonia nitrogen, NH3-N and 22 

phosphate, PO4
-
), effluent quality (turbidity), and sludge quality (dewatering properties). 23 



5 
 

2. MATERIALS AND METHODS 1 

2.1. GO Preparation and Characterization 2 

 GO was prepared by the modified Hummers method [15].  All chemicals were reagent grade 3 

and were purchased from Sigma-Aldrich and Fisher Scientific, USA. Briefly, graphite flakes 4 

(Alfa Aesar, USA) were allowed to react with NaNO3 and concentrated H2SO4 for 30 min in ice 5 

bath. Later, oxidation was carried out by adding KMnO4 and incubating at 35 °C for 12 h. 6 

Further oxidation was carried out by adding H2O2 at 90 °C in oil bath. The resultant mixture was 7 

sieved out with 425 and 250 µm US Standard Testing Sieves to remove any remaining graphite 8 

flakes. The resultant solution was centrifuged repeatedly with base and acid washing steps to 9 

neutralize pH to 7.0. The GO pellet was collected and washed with methanol and dried for 3 10 

days in a vacuum oven. Then, the dried GO pellets were suspended in deionized water (DI) to 11 

prepare GO stock solutions with a concentration of 500 mg/L and were homogenously dispersed 12 

by probe sonication (5 min) (Tekmar, USA) and bath sonication (24 h). Prior to the toxicity 13 

assays, the stock solution was vortexed for a few seconds. 14 

The characterization of the prepared GO was carried out using atomic force microscopy (AFM) 15 

to examine morphology and X-ray photoelectron spectroscopy (XPS) to determine the functional 16 

groups.  The topographical measurement of the nanomaterial was done under ambient conditions 17 

with a PicoSPM II (PicoPlus, Molecular Imaging-Agilent Technologies) using the intermittent 18 

contact mode. The GO sample used for AFM measurement was a spin coated GO film onto 19 

indium tin oxide (ITO) substrate.  20 

XPS measurements were performed using a PHI 5700 X-ray photoelectron spectrometer 21 

equipped with a monochromatic Al K X-ray source (h=1486.7 eV) incident at 90° relative to the 22 

axis of a hemispherical energy analyzer. The spectrometer was operated both at high and low 23 
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resolutions with pass energies of 23.5 eV and 187.85 eV, a photoelectron take off angle of 45 ° 1 

from the surface, and an analyzer spot diameter of 1.1 mm.  The survey spectra were collected 2 

from 0 to 1400 eV, and high resolution spectra were obtained for photoelectrons emitted from 3 

C1s and O1s. All spectra were collected at room temperature with a base pressure of 1 x10 
-8

 4 

torr. Electron binding energies were calibrated with respect to the C1s line at 284.5 eV (C-C). A 5 

PHI Multipak software (version 5.0A) was used for all data processing. The high resolution data 6 

were analyzed first by background subtraction using the Shirley routine and a subsequent non-7 

linear fitting to mixed Gaussian-Lorentzian functions. Complete characterization of the 8 

synthesized GO is presented in the Supporting Information section (Figure S2 and S3). 9 

2.2. Wastewater Sample Collection and Preparation 10 

 Activated sludge samples were collected from the aeration tank of Sims South Bayou 11 

Wastewater Treatment Plant (Houston, TX). This treatment plant uses conventional activated 12 

sludge process (Supporting Information, Figure S1) with no enhanced phosphorus or nitrogen 13 

removal process. Briefly, fresh activated sludge samples were collected and transported to the 14 

laboratory inside a styrofoam container filled with ice packs to maintain the samples at 4
o
C. The 15 

collection and preparation of the wastewater samples were adapted from a previous study [16]. 16 

Briefly, activated sludge samples were aerated for 1 h and 20 ml was transferred to conical tubes 17 

(Corning, USA), which were used as batch reactors. Appropriate volumes of the GO stock 18 

solution were calculated and added in each reactor to attain final concentrations of 10, 20, 50, 19 

100, 200 and 300 mg/L of GO. The GO concentrations selected for this study were based on a 20 

preliminary metabolic assay study with the activated sludge (data not shown) and on previous 21 

studies investigating acute effects of heavy metals and other nanoparticles in activated sludge. In 22 

these studies, the concentrations used were between 1 to 3000 mg/L [6, 17-19].  The incubation 23 
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was carried out at room temperature in a shaker at 200 rpm (New Brunswick Scientific, USA).  1 

To evaluate short term toxic effects, the incubation time was ~5 hr according to previous similar 2 

studies [6, 18].  All the tests were performed in triplicates and a paired t-test statistical analysis 3 

was performed. To account for daily variations in the activated sludge properties, three sludge 4 

samples were collected in different days and triplicate analyses were performed with each 5 

collected sample. The physiochemical characteristics of the wastewater were measured 6 

according to the Standard methods and presented in Table 1[5]. 7 

Table 1. Physico-chemical characteristics of the activated sludge samples based on triplicate 8 

samples collected in three different weeks. 9 

Total suspended solids, TSS (mg/L) 2666.6±942.8 

Dissolved oxygen, DO (mg/L) 9.81±0.83 

pH                       7.3±0.37 

Ammonia-nitrogen, NH3-N (mg/L) 1.46±0.35 

Phosphate, PO4
-
 (mg/L) 5.3±0.56 

 10 

2.3. Bacterial Metabolic activity and Viability Assay 11 

 The microbial metabolic activity assay was performed with the activated sludge after interaction 12 

with GO according to previously reported procedure [20]. Briefly, triplicates of 100 µl of the 13 

activated sludge were exposed to different concentrations of GO for 5 h in a 96-well flat bottom 14 

plate (Corning, USA). A volume of 60 µl (based on calibration curve, Figure S4) of C12-15 

resazurin (Vybrant Cell Metabolic Assay kit, Molecular Probe, USA) was added to each well. 16 

The mixtures in the 96-well plates were incubated for 15 minutes at 37 °C in the dark. In the 17 

presence of metabolic active cells, C12 resazurin is reduced to red fluorescent C12-resofurin. The 18 

production of C12-resofurin by the activated sludge was quantified with a Synergy MIX 19 

Microtiter plate reader (BioTek, USA) at 530/587 nm wavelength. Bacterial viability test was 20 
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done according to the heterotrophic plate count agar methodology described in the Standard 1 

Methods [5]. 2 

2.4. Organic carbon degradation test 3 

 A Biochemical Oxygen Demand (BOD5) test was performed according to the Standard Methods 4 

to investigate the bacterial capacity to degrade organic carbon in presence of GO [5].  Briefly, 5 

after 5 h incubation, 15 ml of samples from each reactor were placed and mixed in 300 ml BOD 6 

bottles. A DO probe with stirrer (YSI Incorporated) was used to read the initial DO and final DO 7 

(after 5 d incubation).  8 

2.5. Removal of nutrients (Nitrogen and Phosphorus) 9 

 Removal of Nitrogen was measured by determining the conversion of ammonia (NH3-N) to 10 

nitrate (NO3
-
) (nitrification process), while removal of phosphorus was measured in terms of 11 

phosphate (PO4
-
) bacterial uptake.  Soluble ammonia-nitrogen (NH3-N), NO3

-
 and PO4

-
 were 12 

measured from the incubated samples according to previously described methods [5, 21]. Since 13 

nitrification is a slow process (~20 h), GO and activated sludge samples were incubated for 20 h 14 

prior to ammonia and nitrate final concentration measurements. These tests were done as 15 

follows: 5 ml of the control and the incubated activated sludge samples with GO were filtered 16 

through 0.22 µm membrane filters to remove the suspended flocs and 1 ml of the filtrate was 17 

diluted with DI water for ammonia, nitrate and phosphate quantifications. Colorimetric methods 18 

were used to quantify NH3-N, NO3
-
 and PO4

- 
in the filtrate with a DR3900 spectrophotometer 19 

(Hach, USA).  NH3-N, NO3
-
 and PO4

-
 were measured by the salicylic acid method (method 8155, 20 

Hach), cadmium reduction method (method 8039, Hach) and the ascorbic acid method (method 21 

8048, Hach), respectively.  22 



9 
 

2.6. Effluent quality and sludge dewatering property 1 

 To determine the effluent quality and sludge dewatering ability, turbidity of the supernatant 2 

(nephelometric turbidity unit, NTU) and capillary suction time (CST) were measured, 3 

respectively, after the settling of the activated sludge. Both the NTU and CST were measured 4 

according to the Standard Methods [5]. Briefly, after 5 h incubation with GO, batch reactors with 5 

activated sludge samples were left to settle for a period of 2 h, which is the average residence 6 

time in the clarifier. The supernatant was removed carefully for turbidity measurement, while the 7 

settled sludge was used for CST measurement. Briefly, for the CST measurement, a stainless 8 

steel tube with inner radius of 1.5 inch was placed on a coarse type filter paper (Whatman, UK) 9 

and a 5 inch radius circle was drawn around the tube on the filter. Settled sludge (2 ml) samples 10 

were quickly released inside the tube and the time to wet the filter from radius 1.5 to 5 inch was 11 

recorded as CST. 12 

2.7. Scanning electron microscopy (SEM) and Fluorescence imaging 13 

 To observe the interaction of activated sludge flocs and microorganisms with GO, SEM and 14 

fluorescence microscopy were conducted [10, 16, 22]. Briefly, for the SEM samples, at the end 15 

of 5 h incubation, 0.5 ml of solution was taken from each reactor and fixed with 2% 16 

gluteraldehyde in 0.05M cacodyle buffer solution (Fisher Scientific, USA). Fixed samples were 17 

serially dehydrated with increasing concentrations of ethanol (25%, 50%, 75%, 95% and 100%). 18 

SEM images were acquired at 10 Kev accelerated voltage with JSM 6010LA (Jeol, USA). For 19 

fluorescence imaging, 0.2 ml of each sample was stained with 0.2 µl of green dye (SYTO9, 20 

Invitrogen, USA) and images were taken with a fluorescence microscope (OLYMPUS, Japan). 21 
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For each sample, 10 representative images were recorded. GO dispersion in DI water was 1 

imaged under bright field condition with a fluorescence microscope (OLYMPUS, Japan). 2 

2.8. Reactive Oxygen Species (ROS) production and oxidative stress 3 

Dose dependent  ROS production by GO was reported in previous studies [23]. ROS are known 4 

to cause oxidative stress in cells, hence ROS production by GO in wastewater was investigated 5 

[8, 23, 24]. ROS production was quantified as oxidation of glutathione (GSH) according to 6 

Ellman’s Assay method described elsewhere [24]. GSH is a thiol containing polypeptide present 7 

in prokaryotic and eukaryotic cells which is known to protect the cells from stress caused by 8 

ROS [23-25]. Oxidation of GSH in aqueous solution in presence of nanomaterials is an indirect 9 

measure of ROS production. Briefly, various GO concentrations in wastewater were filtered and 10 

were spiked with GSH in bicarbonate buffer solution in a 12 well-plate. Then, the plate was 11 

incubated for 2 h in dark to prevent any photochemical reaction. After the incubation period, the 12 

Ellman’s reagent, 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB), was added and the resultant 13 

yellow solution was filtered with a 0.22 µm filter to remove GO from the solution. DTNB reacts 14 

with aqueous GSH which can be quantified colorimetrically. A volume of 200 µL of the solution 15 

was placed in a 96-well plate and quantified at 412 nm wavelength with the Synergy MIX 16 

Microtiter plate reader (BioTek, USA). The negative control did not contain GO, whereas in the 17 

positive control contained 1 mM of H2O2 for oxidation of the GSH. 18 

3. RESULTS AND DISCUSSIONS  19 

3.1. Effects on bacterial metabolic activity and viability 20 

 The acute toxicity effects of GO was first evaluated through the metabolic activity assay of the 21 

wastewater bacterial community in the presence of different concentrations of the nanomaterial. 22 

In this assay, only viable bacteria are able to reduce non-fluorescent resazurin to red-fluorescent 23 
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resofurin [20]. The results of this assay showed that, at all GO concentrations tested, significant 1 

inhibition of the wastewater microbial community metabolic activity (~20-70%) was observed 2 

(Figure 1). Additionally, the results show that the toxicity of the nanomaterial is concentration 3 

dependent, since at higher GO concentrations (100-300 mg/L), significantly higher inhibition of 4 

bacterial metabolic activity (~50-70%) was observed. The GO concentration at 300 mg/L 5 

showed statistically significant inhibition of metabolic activity compared to the other GO 6 

concentrations. These results agree with several toxicity studies with bacterial pure cultures, 7 

where significant inhibition of the bacterial metabolic activity was observed in the presence of 8 

GO and other carbon-based nanomaterials (e.g. carbon nanotubes and fullerenes) [8, 11, 12, 26]. 9 
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Figure 1. Metabolic activity of the bacteria in activated sludge after 5 h incubation with different 12 
concentrations of GO. * refers to statistically significant different results between control and the 13 

corresponding sample. Control sample does not contain any nanomaterial. 14 

The antibacterial effect of GO in wastewater was further verified by the plate count method. The 15 

results from the plate counts corroborated the metabolic activity assay, since the increase in GO 16 

concentrations resulted in reduced numbers of viable bacteria (Figure 2). 17 
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Figure 2. Enumeration of total viable bacterial cells (CFU/ml) in activated sludge after 5 h 4 
incubation with different concentrations of GO. * refers to statistically significant different 5 
results between control and the corresponding sample. Control sample does not contain any 6 

nanomaterial. 7 

 8 

The significant reduction of metabolic activity (~50-70%) at GO concentrations of 100-300 9 

mg/L, resulted in ~35% bacterial growth inhibition. This difference in the bacterial growth 10 

inhibition compared to bacterial metabolic activity was previously observed in antibacterial 11 

studies with other carbon-based nanomaterials [8]. This difference was explained by the fact that 12 

bacterial cells will, under unfavorable conditions, reduce their metabolic activity and resume 13 

growth when switched to favorable conditions (i.e., addition of nutrients or removal of an 14 

inhibitor), like a bacteriostatic agent [8, 27]. This reduced bacterial metabolic activity and 15 

viability results suggest that GO can potentially inhibit the essential biological functions of 16 

bacteria in the activated sludge process. 17 

3.2. Inhibition of biodegradation of organic carbon 18 

 In order to verify the acute effect of GO in the wastewater treatment process, a standard BOD5 19 

test was conducted to determine the ability of microorganisms to remove the organic matter in 20 
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the wastewater under aerobic conditions. The results showed > 50% reduction in the BOD5 at all 1 

concentrations of GO (Figure 3). These results can be explained by the lower bacterial metabolic 2 

activity observed in the metabolic activity assay (Figure 1). During the BOD5 tests, the lower 3 

metabolic activity of microorganisms in the presence of the nanomaterials led to reduced oxygen 4 

consumption by aerobic microorganisms during the metabolization of the organic waste in the 5 

wastewater, hence leading to a reduction in the BOD5 values. It is noteworthy that the different 6 

GO concentrations in the activated sludge did not show considerable variation in their effect on 7 

the BOD values, which suggests that the minimum concentration to inhibit degradation of 8 

organic matter is around 10 mg/L. In a similar study with multi-walled carbon nanotubes 9 

(MWNT), ~50 % BOD reduction was observed at various concentrations. However, with 10 

MWNT, the concentrations used were much higher (1440 to 3240 mg/L) than the GO 11 

concentrations used in this study [28].  12 

 13 
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Figure 3. 5-day BOD results of the activated sludge samples with different concentrations of 1 

GO. * refers to statistically significant different results between control and the corresponding 2 

sample. Control sample does not contain any nanomaterial. 3 

3.3. Effects of GO on the biological process of Nitrogen removal and Phosphorus 4 

accumulation 5 

 Nitrogen (as NH3-N) and phosphorus (as PO4
-
) are two major nutrients that must be removed 6 

from the influent during wastewater treatment. The microbial communities in the activated 7 

sludge responsible for removing nitrogen and phosphorus are ammonia oxidizing bacteria (AOB) 8 

and polyphosphate accumulating organisms (PAO), respectively. Details of the chemical 9 

processes of nitrogen and phosphorus removal are described in the Supporting Information 10 

section.  Briefly, in a functional activated sludge process, ammonia is converted to nitrate, 11 

through the aerobic process of nitrification. In our study, with increasing GO concentrations, we 12 

observed ammonia accumulation due to reduced conversion of ammonia to nitrate (Figure 4), 13 

which suggests inhibition of nitrifying bacteria in the activated sludge sample in the presence of 14 

GO. 15 

 16 
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Figure 4. Concentrations of NH3-N and NO3
-
,
   

measured in activated sludge samples incubated 1 

with different GO concentrations. * refers to statistically significant different results between 2 
control and the corresponding sample. Control sample does not contain any nanomaterial. 3 

 4 

Another important microbial community in the wastewater treatment process is the PAO 5 

community, which is responsible for removing phosphorus nutrients from the wastewater. In the 6 

wastewater process, phosphorus exists as PO4
-
 which gets accumulated by PAO and hence 7 

removed from the wastewater. 8 
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Figure 5. Concentrations of PO4

-
,
 
measured in activated sludge samples incubated with different 10 

GO concentrations. * refers to statistically significant different results between control and the 11 
corresponding sample. Control sample does not contain any nanomaterial. 12 

 13 

In our results (Figure 5), significant effects of GO on the PAO microbial community were 14 

observed at higher concentrations of GO (200 – 300 mg/L). At these high concentrations, the 15 

activity of PAO was inhibited since PO4
- 
concentrations in the wastewater did not decrease over 16 

time as observed in the control samples.  17 

Therefore, these results suggest that acute exposure of the wastewater microbial community to 18 

GO, especially at higher concentrations (~100-300 mg/L), can inhibit the activated sludge 19 
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microbial community functions, such as ammonia degrading and phosphate accumulating 1 

microbial communities.  2 

3.4. ROS Production and oxidative stress 3 

Several studies have shown that carbonaceous nanomaterials like GO can produce chemically 4 

reactive species in aqueous solution and can adversely impact microbial and eukaryotic cell 5 

structures [23-25, 29]. In our study, significantly higher ROS production was found at high 6 

concentrations of GO in the wastewater samples when compared to the control samples (Figure 7 

6). Previous studies with GO in aqueous solution demonstrated ROS production was a dose 8 

dependent phenomena [23]. The increased loss of GSH at higher concentrations of GO samples 9 

(200 and 300 mg/L) suggests that ROS production could be contributing to the increasing 10 

toxicity observed (~60-70%, Figure 1) to the microbial community at those concentrations. 11 

Although we did not determine the exact toxicity mechanism generated by the ROS on the 12 

wastewater microbial community, other studies suggest that ROS can cause severe damages to 13 

bacterial DNA, proteins and cell membranes as a cause for GO toxicity [8, 11, 16]. 14 
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  1 

Figure 6. Loss of Glutathion as an indicator of ROS production. * refers to statistically 2 

significant different results between control and the corresponding sample. Control sample does 3 

not contain any nanomaterial. + Control contains H2O2 as oxidizing agent.  4 

3.5. Effects of GO on sludge settling and dewatering 5 

 In a typical activated sludge process, turbidity of the effluent is an indicative of the effectiveness 6 

of the treatment process and successful removal of organic matter from the wastewater. High 7 

turbidity carries two implications in the disinfection process before the discharge into receiving 8 

waters. First, higher turbidity signifies higher organic matter content in the water. To treat such 9 

wastewater, higher concentrations of disinfecting agent (chlorine) will be required, since organic 10 

matter can reduce the availability of free chlorine for microbial disinfection [30]. Secondly, the 11 

presence of organic matter increases formation of carcinogenic disinfection by-products (DBP), 12 

since chlorine reacts with organic matter to produce DBP [31]. Therefore it is important to 13 

determine the effect of GO on the turbidity of the effluent. In a typical wastewater treatment 14 

plant, turbidity of the supernatant of the settled sludge in a clarifier unit is routinely measured to 15 

monitor the effectiveness of the treatment process. We performed similar settling tests in the 16 

batch reactors to observe any potential effects of GO on the turbidity of the supernatants. 17 
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Figure 7. Turbidity (NTU) of the supernatant of activated sludge samples after 2 h settling 2 
period.* refers to statistically significant different results between control and the corresponding 3 

sample. Control sample does not contain any nanomaterial. 4 
 5 
The results of the sludge settling test showed that with the increase in GO concentrations, the 6 

turbidity of the effluent steadily increased (Figure 7). Microscopic analysis of the supernatant 7 

revealed that increased turbidity is attributed to the presence of both suspended GO and attached 8 

organic matters onto GO surfaces (Figure S5). Overall it was observed that the addition of GO to 9 

the wastewater effluent increased the final effluent turbidity. The turbidity in the presence of GO 10 

was higher than the recommended value of 5 NTU for wastewater effluent discharge. 11 
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Figure 8. Capillary suction time (CST) required for dewatering of settled activated sludge 1 

samples after 2 h settling period. * refers to statistically significant different results between 2 
control and the corresponding sample. Control sample does not contain any nanomaterial. 3 

 4 

The sludge dewatering, or removing water from the sludge, is the final process in the wastewater 5 

treatment. The dewatering of sludge is very important since dewatered solids are cheaper and 6 

easier to incinerate, produce less offensive smells, and reduce volume and disposal costs in 7 

landfills [32]. The typical values of CST for the municipal sludge dewatering are variable, but 8 

usually are >100 seconds, these values are highly dependent on the sludge composition and 9 

treatment steps (addition of polymer or other thickeners) [32].  In the present study, the results of 10 

the dewatering tests showed that with increasing GO concentrations, the dewatering capacity of 11 

the activated sludge is significantly reduced, since the capillary suction time (CST) increased. 12 

Increase of dewatering time was observed to be ~45% at GO concentrations of 50 mg/L and 13 

above compared to controls (Figure 8). The possible cause for this phenomenon could be a 14 

combination of both chemical reactivity and antimicrobial characteristics of GO. However these 15 

potential mechanisms need to be further investigated. 16 

3.6. Interaction of GO and Activated sludge 17 

The fluorescence images from the sludge samples incubated with GO shows that GO nanosheets 18 

accumulated inside the floc matrix (Figure 9c). SEM images show adsorption of bacteria and 19 

other microorganisms to the GO nanosheets (Figure 9f). Several studies suggested that the 20 

accumulation of nanomaterial in activated sludge flocs could result into longer retention of GO 21 

in the treatment system and therefore pose chronic toxicity [16]. Future studies are needed to 22 

better understand the effects of GO accumulation in the activated sludge flocs as well as the 23 

potential chronic toxicity of this nanomaterial to the microbial community. 24 
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(a) (b) (c)

(d) (e) (f)

10 µm

10 µm

10 µm 10 µm

10 µm 10 µm

 1 

Figure 9. (a) Bright field image of aqueous suspension of GO; (b) fluorescence image of control 2 

activated sludge (no GO); (c) fluorescence image of activated sludge with GO; (d) SEM image 3 

of aqueous suspension of GO; (e) SEM image of control sludge (without GO; (f) SEM image of 4 

activated sludge with GO. Fluorescence and SEM imaging were done at 40x and 1000x 5 

magnifications, respectively. Red arrow sign indicates GO sheets in sludge flocs. 6 

 7 

4. Conclusion 8 

This study shows that acute exposure of activated sludge to GO can impact the wastewater 9 

microbial communities. Bacterial metabolic activity was significantly compromised in the 10 

presence of GO, which indicates that GO has the potential to hinder the essential microbial 11 

functions needed in activated sludge processes, such as removal of organic matter and other 12 

nutrients from the wastewater. The presence of GO in the activated sludge led to  reduced BOD5 13 

values and low nitrogen and phosphorus removal by the biological treatment process, which can 14 

potentially lead to excess of organic matter, nitrogen and phosphorus, respectively, discharge 15 
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into receiving waters from the treatment plants. Furthermore, GO also negatively impacted the 1 

effluent quality and sludge dewaterbility, which can cause regulatory violations and increased 2 

disposal cost of sludge, respectively. As applications and disposal of engineered nanomaterials, 3 

such as GO, are in rapid rise, these findings suggest that further studies, especially on the chronic 4 

exposure of these nanomaterials to the wastewater microbial community is needed. Both acute 5 

and chronic microbial exposures to GO are essential for a complete understanding of the effects 6 

of GO to the wastewater treatment process and prevention of their adverse effects to the 7 

treatment performance.  8 
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Table 1. Physico-chemical characteristics of the activated sludge samples based on triplicate 

samples collected in three different weeks. 

Total suspended solids, TSS (mg/L) 2666.6±942.8 

Dissolved oxygen, DO (mg/L) 9.81±0.83 

pH                        7.3±0.37 

Ammonia-nitrogen, NH3-N (mg/L) 1.46±0.35 

Phosphate, PO4
-
 (mg/L) 5.3±0.56 

 



 Source File  

1 
 

Investigation of acute effects of graphene oxide on wastewater microbial 

community: A case study  

Farid Ahmed 
a
 and Debora F. Rodrigues

 a
* 

 

a
 Department of Civil and Environmental Engineering                                                              

University of Houston, Houston, TX 77204-4003 (USA) 

 

 

 

 

Corresponding Author: Debora F. Rodrigues Ph.D. 

                                       N136, Engineering Bldg 1 

                                       4800 Calhoun Rd, Houston, Tx 77204 

 

                                  E-mail: dfrigirodrigues@ uh.edu 

                                  Phone: +1-713-743-1495 Fax: +1-713-743-4260 

 

 

 

 

 

 

 

 

 

 

Figure(s)



 Source File  

2 
 

 

 

Table 1. Physico-chemical characteristics of the activated sludge samples based on triplicate 

samples collected in three different weeks. 

Total suspended solids, TSS (mg/L) 2666.6±942.8 

Dissolved oxygen, DO (mg/L) 9.81±0.83 

pH                        7.3±0.37 

Ammonia-nitrogen, NH3-N (mg/L) 1.46±0.35 

Phosphate, PO4
-
 (mg/L) 5.3±0.56 

 

 

Control10 mg/L20 mg/L50 mg/L100 mg/L200 mg/L300 mg/L

0

1x10
4

2x10
4

3x10
4

4x10
4

*

*
*

*

*

3001005020 20010

F
lu

ro
re

s
c
e

n
c
e

 a
t 

O
D

 5
3

0
/5

8
7

SaGO Concentrations (mg/L)mple
0

*

 

Figure 1. Metabolic activity of the bacteria in activated sludge after 5 h incubation with different 

concentrations of GO. * refers to statistically significant different results between control and the 

corresponding sample. Control sample does not contain any nanomaterial. 
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Figure 2. Enumeration of total viable bacterial cells (CFU/ml) in activated sludge after 5 h 

incubation with different concentrations of GO. * refers to statistically significant different 

results between control and the corresponding sample. Control sample does not contain any 

nanomaterial. 
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Figure 3. 5-day BOD results of the activated sludge samples with different concentrations of 

GO. * refers to statistically significant different results between control and the corresponding 

sample. Control sample does not contain any nanomaterial. 
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Figure 4. Concentrations of NH3-N and NO3
-
,
   

measured in activated sludge samples incubated 

with different GO concentrations. * refers to statistically significant different results between 

control and the corresponding sample. Control sample does not contain any nanomaterial. 
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Figure 5. Concentrations of PO4
-
,
 
measured in activated sludge samples incubated with different 

GO concentrations. * refers to statistically significant different results between control and the 

corresponding sample. Control sample does not contain any nanomaterial. 
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Figure 6.  Loss of Glutathion as an indicator of ROS production. * refers to statistically 

significant different results between control and the corresponding sample. Control sample does 

not contain any nanomaterial. + Control contains H2O2 as oxidizing agent 
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Figure 7. Turbidity (NTU) of the supernatant of activated sludge samples after 2 h settling 

period.* refers to statistically significant different results between control and the corresponding 

sample. Control sample does not contain any nanomaterial. 
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Figure 8. Capillary suction time (CST) required for dewatering of settled activated sludge 

samples after 2 h settling period. * refers to statistically significant different results between 

control and the corresponding sample. Control sample does not contain any nanomaterial. 
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Figure 9. (a) Bright field image of aqueous suspension of GO; (b) fluorescence image of control 

activated sludge (no GO); (c) fluorescence image of activated sludge with GO; (d) SEM image 

of aqueous suspension of GO; (e) SEM image of control sludge (without GO; (f) SEM image of 

activated sludge with GO. Fluorescence and SEM imaging were done at 40x and 1000x 

magnifications, respectively. Red arrow sign indicates GO sheets in sludge flocs. 
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