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Abstract—This paper presents a state estimator that reliably
detects gait events during human walking with a portable
powered ankle-foot orthosis (AFO), based only on measurements
of the ankle angle and of contact forces at the toe and heel.
Effective control of the AFO critically depends on detecting these
gait events. A common approach detects gait events simply by
checking if each measurement exceeds a given threshold. Our
approach uses cross-correlation between a window of past mea-
surements and a learned model to estimate the configuration of
the human walker, and detects gait events based on this estimate.
We tested our approach in experiments with five healthy subjects
and with one subject that had neuromuscular impairment. Using
motion capture data for reference, we compared our approach
to one based on thresholding and to another common one based
on k-nearest neighbors. The results showed that our approach
reduced the RMS error by up to 40% for the impaired subject
and up to 49% for the healthy subjects. Moreover, our approach
was robust to perturbations due to changes in walking speed and
to control actuation.

Index Terms—Gait, State Estimation, Cross-correlation, Event
Detection, AFO

I. INTRODUCTION

GAIT is a cyclic task characterized by repetitive events,
and is defined from the initial ground contact of the foot

to the subsequent contact of the same foot. Gait events are
used to divide the cycle into phases and subphases each with
a functional objective that contributes to one of three main
functional tasks during gait: weight acceptance (stance), sup-
port and propulsion (stance), and limb advancement (swing)
[1]–[3]. Gait can be impaired by conditions including trauma,
incomplete spinal cord injuries, stroke, multiple sclerosis,
muscular dystrophies, polio or cerebral palsy [1]. These de-
ficiencies create impairments because they prevent or hinder
the functional tasks required for gait.

Ankle-foot orthoses (AFOs) are orthotic devices used to
correct gait deficiencies created by impairments to the lower
limbs. In the United States alone, sizable populations exist
with symptoms that can be treated with an AFO: stroke
(4.7M), polio (1M), multiple sclerosis (400K), spinal cord
injuries (200K) and cerebral palsy (100K) [4]. Clinically pre-
scribed AFO systems assist impaired individuals by providing
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support for the lower leg and foot while restricting unwanted
motion of the foot in a predetermined and fixed manner [5]–
[8]. Unfortunately, these fixed motion control properties can
impede gait and cannot adapt to a changing environment
[9]. Powered AFO systems address the limitations of passive
devices by using computer control to vary the compliance,
damping, or net power of the device for motion control and
torque assistance at the ankle joint [9]–[12].

The performance of a powered AFO depends critically on
the ability to do two things: first, detect gait events based
on measurements from onboard sensors (e.g., accelerometers,
potentiometers, and force sensors), and second, control applied
torque to meet the functional objective determined by each gait
event. Our focus in this paper is on the first of these things,
reliable detection of gait events.

Many state-of-the-art AFOs detect gait events simply by
checking if each sensor measurement at a particular time
exceeds a given threshold [9]–[18]. This approach has been
used to provide appropriately timed motion control and torque
assistance both for level walking and for stair climbing. How-
ever, this approach becomes less reliable when the individual’s
gait pattern changes, for example as the result of impairment,
fatigue, preference, or functional assistance from the orthosis.
Moreover, this approach may not even be possible when there
exists no unambiguous mapping from sensor measurements
to a gait event of interest, in particular an event other than
“heel-strike” or “toe-off.” These situations limit the number
and reliability of gait events that can be used for control.

In this paper we consider an alternative approach that
uses the time history of sensor measurements to compute an
estimate of body configuration and then detects gait events
based on this estimate. It is well known that body configuration
during cyclic gait can be approximated by a single state
variable, the “percent gait cycle,” and that gait events are
associated with particular values of this state variable [1].
Recent work has shown that it is possible to compute an
estimate of this state variable by comparing motion capture
data (producing measurements of lower-limb joint angles and
joint velocities) to a learned model [19]. We will do the same,
but must address the fact that a powered AFO typically does
not have access to motion capture data, nor to similarly rich
sensor measurements.

In particular, our approach computes a state estimate (i.e.,
an estimate of where an individual is in the gait cycle) based
only on measurements of the ankle angle and of contact
forces at the toe and heel. These measurements are taken only
from sensors mounted on the portable powered AFO (PPAFO)



IEEE/ASME TRANSACTIONS ON MECHATRONICS, FOCUSED SECTION ON SENSING TECHNOLOGIES FOR BIOMECHATRONICS 2

that we use in our experiments [18]. This sensor package
is comparable to what is found on other AFOs, including
those of Blaya and Herr [10] with joint angle and ground
reaction force sensors, Svensson and Holmberg [9] with a
joint angle sensor, and Hollander et al. [15] with a joint
angle sensor and foot switches. None of these sensor packages
are sufficient to compute a state estimate based only on one
set of measurements. However, due to the cyclic nature of
gait, sensor measurements from different gait cycles exhibit
a high degree of correlation. We take advantage of this fact
to compute a state estimate based on maximizing the cross-
correlation between a window of past sensor measurements
and a reference model learned from training data. When tested
in experiments with human subjects, our approach to event
detection was more accurate and more robust to changes in
gait than other approaches previously reported in the literature.

A. Overview

Throughout this paper, we will denote time by t ∈ R, the
state variable describing percent gait cycle by λ ∈ [0, 100),
and the vector of sensor measurements by y ∈ R3. Since
the mapping from λ to gait events is well known [1], our
goal is to compute an estimate λ̂(t) of the state λ(t) at the
current time t based on all sensor measurements {y(s)|s ∈
[0, t]} up to this time. In our experiments, we use the method
of [19] to compute a reference estimate λ∗(t) based on motion
capture data, and define the error in our own estimate by
λerr(t) = λ̂(t)− λ∗(t).

To examine the performance of our proposed cross-
correlation estimator, we compare it to two other estimators
and to a direct event detector. All three estimators that we
consider are based on a precomputed model ȳ(λ) that tells us
what sensor measurements to expect at a given state λ. This
model is given by regression analysis of training data (λ∗,y).
We also derive the average cycle period T from this model.
The estimators and direct event detector are as follows:

• Cross-Correlation (CC) The estimate λ̂CC minimizes the
sum-squared-error between sensor readings from the last
T seconds and training data with a phase shift of λ̂CC.

• k-Nearest-Neighbors (kNN) The estimate λ̂kNN mini-
mizes the squared-error between the current sensor read-
ing and training data at λ̂kNN.

• Fractional-Time (FT) The estimate λ̂FT is the time since
the last heel strike (determined by thresholding the heel
sensor) normalized by T .

• Direct Event (DE) DE uses thresholds on heel and toe
sensors to determine heel strike and toe off events. Be-
cause DE is limited to these two events, it is not a state
estimator.

FT is similar to what is found in the AFO literature [9]–[18],
kNN is similar to [19] but applied to AFO sensor data rather
than motion capture data, and CC is the approach that we
present here. We emphasize that cross-correlation is a classical
method of signal processing (e.g., [20]) that has been used
previously for gait analysis (e.g., [21], [22]). Our contribution
is the application of this approach to state estimation for a

Fig. 1. PPAFO system components: A) Power supply: a compressed CO2

bottle with regulator provides up to 120psi for the system; B) Valves: two
3-2 solenoid valves control the flow of CO2 to the actuator; C) Actuator: a
pneumatic rotary actuator provides up to 12Nm at 120psi; D) Sensors: two
force sensors under the heel and toe, and a potentiometer at the ankle joint.

powered AFO and the analysis of experiments with human
subjects necessary to demonstrate its performance.

The remainder of our paper proceeds as follows. Sec-
tion II describes the experimental methods used to quantify
the performance of each state estimator. Section III presents
the details of our CC state estimator and two others used
as a basis for comparison. Section IV provides the results
of experiments with five healthy subjects and one subject
that had neuromuscular impairment. Section V considers the
implications of these results in the context of AFO control.
Section VI gives concluding remarks.

II. EXPERIMENTAL METHODS

Three state estimators (CC, kNN, and FT) and DE were
implemented on a powered AFO capable of operation in
real-world environments outside of the laboratory or clinic.
A reference estimate λ∗ was also derived using kinematic
data from a motion capture system and kinetic data from an
instrumented treadmill. Experimental trials with five healthy
subjects and one subject with a neuromuscular impairment
were performed to assess the three AFO estimators on their
performance relative to the reference state model λ∗, ability to
identify relevant gait events during the cycle, and robustness
to speed and actuation perturbations. This section describes
the PPAFO system, the gait lab data collection procedure, and
the experimental setup.

A. Powered Orthosis System

The PPAFO in this work used a pneumatic power supply and
a rotary actuator at the AFO ankle joint for motion control and
propulsion assistance, Figure 1, [18]. The PPAFO control loop
and estimators ran at 66Hz, using sensor feedback sampled at
the same rate from two force sensors (0.5in circle, Interlink
Electronics, Camarillo, CA) mounted underneath the heel and
toe between the carbon fiber shell and the sole of the PPAFO
and a potentiometer (53 Series, Honeywell, Golden Valley)
that measured the angle between the shank and foot sections.
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B. Experimental Setup and Pre-Test Procedures

1) Experimental Setup: Subjects walked with the PPAFO
on an instrumented treadmill. For each trial, the subject wore
sleeveless top and snug-fitting shorts. Thirty-two reflective
markers were attached to the body, including torso, thighs,
shanks, feet and the PPAFO. Data from the healthy subject
were collected at the University of Illinois. Kinematic data
were collected using a 6-camera motion capture system sam-
pled at 150Hz (Model 460; Vicon, Oxford, UK). Ground re-
action force (GRF) data for each foot was collected on a split-
belt treadmill with embedded force plates sampled at 1500Hz
(Bertec, Columbus, OH, USA). Data from the impaired subject
were collected at Georgia Institute of Technology. Kinematic
data were collected using a 6-camera system sampled at 120Hz
(Model 460; Vicon, Oxford, UK). The kinetic data were
collected on a custom force-sensing instrumented split-belt
treadmill sampled at 1080Hz [23]. Joint angles were calculated
from kinematic data. Joint angles and GRF were filtered by a
low-pass, fourth-order, zero-lag, Butterworth filter with cut-
off frequency of 10Hz. All procedures were approved by
the institutional review boards of the University of Illinois
and Georgia Institute of Technology, and all participants gave
informed consent.

2) Subject Information:
a) Healthy Subjects: The five healthy male subjects

(28±4yrs; height 186±5cm; mass 72±8kg) had no gait im-
pairments and no history of significant trauma to the lower
extremities or joints.

b) Impaired Subject: The impaired male subject (51yrs;
height 175cm; mass 86kg) has a diagnosis of cauda equina
syndrome (CES) caused by a spinal disc rupture. This gait
deficit does not allow him to generate plantarflexor torque to
push his toes down. The subject walks without the use of
walking aids (i.e., cane or walker), but usually wears AFOs
bilaterally. For our testing, he wore his own pre-fabricated
carbon composite AFO (Blue RockerTM, Allard, NJ, USA)
on his left leg while walking with the PPAFO on his right leg.

3) Determining Self-Selected Speed: A self-selected walk-
ing speed for each subject was determined prior to testing.
For the healthy subjects, comfortable treadmill walking speed
was determined by averaging three self-selected speeds chosen
while wearing the PPAFO with no actuation. Average walking
speed for the five healthy subjects was 1.18±0.11m/s with
an average gait period of 1.16±0.09s over 30 seconds of
walking. The impaired subject’s comfortable walking speed
was determined while in his running shoes on the treadmill
with no assistive devices on either leg. This walking condition
was used because it was the impaired subject’s most difficult
condition. Walking speed for the impaired subject was 0.7m/s
with an average gait period of 1.09±0.04s over 30 seconds of
walking.

C. Training Data for Estimation Models

The PPAFO state estimators require a model derived from
data collected during a preliminary training process. Each
model is unique to each subject, and is not varied between
experimental trials. During this process, a subject walked

with the unactuated PPAFO on the treadmill for 30s at his
comfortable walking speed.

GRFZ data from the force-sensing treadmill were compared
to a threshold to identify heel strikes. The average period of
the gait cycle, T , was calculated from these data.

The data were also used to create regression models for
each of the PPAFO sensor measurements during gait cycles.
Models for different sensors were computed separately. Each
model is a function of cycle state λ, where λ ∈ [0, 100), and
describes the expected reading for a given sensor ȳ(λ). The
regression models were formulated in the following manner.

For each sensor, we use locally weighted regression (LWR)
analysis [24] to establish the functional relationship between
the normalized input/output pairs of state λ and sensor mea-
surement y.

(λ1, y1), . . . , (λN , yN ),

where N is the number of measurements collected from
training, and λ is the percent gait cycle found by normalizing
time between heel strikes.

Regression evaluates ȳ at the point λ. This evaluation
depends on the signed distance

xi = dist(λi − λ)

between λi and the query point λ. Because λi and λ ∈
[0, 100), the distance is defined as

dist(λi − λ) =


(λi − λ)− 100 if λi − λ > 50

λi − λ if − 50 ≤ λi − λ ≤ 50

(λi − λ) + 100 if λi − λ < −50

First, we select a fixed set of M polynomial basis functions

φ(xi) =
[
1, xi, . . . , x

M−1
i

]T
,

and denote

Φ =

φ(x1)T

...
φ(xN )T

 .
We also define

Y =

 y1...
yN


by concatenating the data associated with each output. We
select the row vector v ∈ RM of parameters that minimizes
the weighted sum-squared error e

e =

N∑
i=1

wi
(
yi − vTφ(xi)

)2
where

wi = exp

(
− x2i

2r2

)
for each i = 1, . . . , N

and r is a design parameter. Because wi depends explicitly
on λ, we must store and use the entire set of training
data (λ1, y1), . . . , (λN , yN ) to make predictions. Let

W = diag (w1, . . . , wN )
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Fig. 2. Locally-weighted linear regression analysis with M = 2 polynomial
basis functions and a weighting bandwidth of r = 0.02 applied to heel force,
toe force and ankle angle sensor measurements as a function of percent gait
cycle. 5 cycles of sensor measurements (gray dots) from healthy subject #3
walking at steady-state, self-selected speed were used to create a regression
model ȳ(λ), shown in black, for each sensor.

then the cost function can be rewritten in matrix form

e = (Φv − Y )
T
W (Φv − Y ) .

In order to minimize e, v can be solved as

v(λ) =
(
ΦTWΦ

)−1
ΦTWY

Now we can obtain the regression model for a given sensor
over one gait cycle as

ȳ(λ) = v(λ)Tφ(0)

For each subject, we precompute ȳ(λ) at λ = {0, 1, . . . , 99}
for all three sensors, and they will form the sensors regression
model matrix ȳ(λ). The results of applying this form of
regression analysis to multiple gait cycles of healthy subject
#3 are shown in Fig. 2.

D. Experimental Testing Procedure

Tests were conducted with two possible disturbances: actu-
ation and slow speed. The actuation disturbance modeled the
effect of providing assistive torque with the PPAFO. During
each gait cycle, a plantarflexor (toes down) disturbance torque
was applied if both the toe and heel sensors were loaded, and
a dorsiflexor (toes up) disturbance torque was applied if both
sensors were unloaded—otherwise, no disturbance torque was
applied. State estimates (from CC, kNN, or FT) could also
have been used to trigger the application of torque in these
experiments, but the use of a simple decision rule allowed for
a less biased comparison between estimators. Figure 3 shows
the resulting change in gait kinematics as a consequence of
actuation. The slow speed disturbance modeled the effect of
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Fig. 3. Ankle joint angle for healthy subject #3 (top) and the impaired
subject (bottom) with and without actuation at normal speed. The PPAFO was
able to generate a modest plantarflexor torque (12Nm) compared to a healthy
walker (105Nm for a 70kg individual). Only 3Nm of dorsiflexor torque was
required to support the foot during swing. Sensor readings without actuation
and with actuation are significantly different. Because the sensor regression
model was generated without actuation, these differences resulted in worse
correlation between current measurements and the model. For the impaired
subject, excessive dorsiflexion actuation during swing may have caused the
large variability of ankle joint position.

variable walking speed, which is a common gait perturbation.
It was created by slowing the treadmill.

Five experimental trials were used to evaluate the perfor-
mance of the PPAFO estimators under these two disturbances.
For each test, the subjects were given time to reach a steady
walking speed on the treadmill before data collection began.
Thirty seconds of data were recorded during steady-state
walking for trials 1-4.

1) Normal Speed – No Actuation (Healthy and Impaired):
This test compares the PPAFO estimators under nominal
conditions. Each subject walked at his self-selected speed
(normal speed) with no actuation from the PPAFO.

2) Normal Speed – Actuation (Healthy and Impaired):
Torque applied by the PPAFO can affect gait timing and sensor
readings, adversely impacting estimation. The PPAFO was
supplied with pneumatic power at 110psi and actuated by the
simple threshold rule described above.

3) Slow Speed – No Actuation (Healthy and Impaired):
The treadmill was set to 75% of the subject’s self-selected
speed, with no PPAFO actuation.

4) Slow Speed – Actuation (Healthy and Impaired): This
trial examined the effects of slow walking (75% of self-
selected speed) along with actuation. The actuation was in
the same manner as trial 2 above.
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5) Change in Speed (Healthy): Changing speed is a com-
mon gait perturbation. A speed change was introduced to
examine the effect of this perturbation on the accuracy of
the PPAFO estimators. Each healthy subject began walking at
his self-selected speed. After 20s, the treadmill was gradually
slowed to 75% of self-selected speed in approximately 5s. The
speed remained 75% of self-selected speed for the rest of the
trial. Sixty seconds of data were recorded during the trial.

E. Estimation Comparison Metrics

Two metrics were used to evaluate and compare the perfor-
mance of the PPAFO estimators for the tests in section II-D:

1) Event Detection: Temporal errors were compared be-
tween gait event times identified using gait lab data, event
times predicted by the three PPAFO estimators, the direct
event detector, and the reference state estimator λ∗. The
gait events selected for comparison were right heel strike,
left toe off, left heel strike and right toe off.

2) State Estimation: Errors were compared between ref-
erence state estimate λ∗ and the three PPAFO state esti-
mates throughout the cycle.

III. STATE ESTIMATION TECHNIQUES

The experiments described in the previous section tested
three state estimators (CC, FT, and kNN) and the direct event
detector (DE), all based on PPAFO sensor measurements in
comparison to a reference estimate (λ∗) based on motion
capture and treadmill data. In this section we will describe
how each state estimator was implemented.

A. Estimate Based on Cross-Correlation (CC)

The CC estimator slides a window of actual sensor data
across the regression model of the sensor data, and finds the
point where the mean-square-error is minimized (i.e., where
the data and model best align). Given the regression model ȳ
and the average period T , we can apply the CC approach to
estimate λ at each time t. We do this in the following way.
We have precomputed ȳ[λ] at λ = {0, 1, . . . , 99} using the
locally weighted linear regression approach mentioned above.
We take a time-history of sensor data y1, . . . ,ym sampled at
m particular times t1, . . . , tm ∈ [t−T, t]. For all j = 1, . . . ,m,
we normalize these times according to

λj = 100

(
tj − (t− T )

T

)
,

then generate an index set I = I1, . . . , Im according to

Ij = round (λj) ,

so that each Ij will be an integer index between 0 and 100.
We denote the measurements by y[j] = yj . We wrap the
regression model around periodic borders by setting ȳ[i] =
ȳ[i± 100] for all i. The state estimate λ̂CC is the integer k ∈
{0, . . . , 99} that minimizes

m∑
j=1

(ȳ[Ij + k]− y[j])
T

(ȳ[Ij + k]− y[j]) .
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Fig. 4. The ankle angles of healthy subject #3 aligned at heel strike for
ten cycles. The angle is plotted with respect to time, percent gait cycle, and
reference estimate λ∗.

B. Estimate Based on Fractional Time (FT)

The fractional time (FT) estimator assumes that the state
estimate λ̂ increases linearly with time from heel-strike:

λ̂FT = 100(t− ths)/T,

where ths is the time of last heel strike as determined by
thresholding y(ths), and T is the average cycle period.

C. Estimate Based on k-Nearest Neighbor (kNN)

Another common way to estimate state is to compute
the best match between current sensor measurements
y and the regression model learned from training data ȳ:

λ̂kNN = arg min
λ∈[0,100)

‖y(t)− ȳ(λ)‖2

This approach can be improved by averaging the k best
matches (“k nearest neighbors” [25]). We chose k = 3.

D. Reference Estimate (λ∗)

We use an estimator generated from motion capture and
treadmill data as a reference for comparing the PPAFO estima-
tors. The joint angle information expands 8 variables (vertical
ground reaction forces, and bilateral hip, knee, and ankle
angles) and their derivatives to a 16-dimension state space. We
build a linearly weighted regression model, q̄, using data from
multiple cycles to form a closed curve in this 16D state space.
This curve is divided into 100 sections and labeled linearly
with time. λ∗ is the label of the nearest neighbor on the curve
to the current measurement vector, as in [19].

At time t the sensors return an 16-element vector q(t). We
compare this vector to the regression model q̄. The state λ∗

at time t is defined as

λ∗(t) = arg min
λ∈[0,100)

‖q(t)− q̄(λ)‖2

Figure 4 illustrates how normalizing the data by λ∗ aligns
sensor measurements across different trials better than by time
or percent gait cycle.
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TABLE I
EVENT DETECTION ERROR RESULTS FOR EACH TECHNIQUE DUE TO SPEED AND ACTUATION PERTURBATION

EFFECTS FOR HEALTHY AND IMPAIRED SUBJECTS

5 Healthy Subjects
Actuation Speed Method RMS Error Ave. Error Worst

(ms) (ms) (ms)

0psi Normal

CC 14.8±4.8 -1.7±2.9 35.5±19.1
FT 14.8±5.6 1.7±1.5 30.5±9.7
kNN 65.0±29.0 -14.8±9.6 208.1±194.3
λ∗ 6.4±1.2 -1.2±2.0 14.7±3.0

DE† 5.8±2.8 2.3±2.0 13.2±6.8

110psi Normal

CC 45.9±15.0 17.0±36.7 113.8±54.8
FT 41.9±11.8 27.6±15.3 106.5±52.4
kNN 93.6±38.0 1.2±26.4 307.0±184.2
λ∗ 7.6±1.4 -0.9±2.6 18.7±5.6

DE† 31.3±13.2 13.3±11.9 77.2±66.4

0psi Slow

CC 49.4±23.9 -29.0±25.2 37.7±26.1
FT 69.6±15.7 -41.8±15.9 49.7±32.2
kNN 77.8±32.4 10.8±18.9 289.7±199.0
λ∗ 9.5±4.2 0.3±2.7 30.4±28.5

DE† 14.2±5.1 -0.9±5.2 25.3±28.6

110psi Slow

CC 84.0±53.2 -51.5±52.9 47.7±24.6
FT 82.9±20.9 -35.0±24.0 81.2±30.1
kNN 112.7±88.7 3.9±27.2 272.0±190.9
λ∗ 16.0±18.5 7.3±13.4 33.3±29.8

DE† 37.9±12.6 5.9±15.5 59.8±22.4

Impaired Subject
Actuation Speed Method RMS Error Ave. Error Worst

(ms) (ms) (ms)

0psi Normal

CC 36.8 -3.6 76.7
FT 53.2 -1.4 138.2
kNN 104.6 -1.4 441.6
λ∗ 19.0 -6.2 33.3

DE† 39.1 3.0 78.2

110psi Normal

CC 87.6 -64.2 23.4
FT 113.4 -86.0 44.1
kNN 353.2 -25.1 762.9
λ∗ 15.5 0.5 57.4

DE† 51.3 -25.8 19.2

0psi Slow

CC 74.8 -47.2 62.3
FT 108.8 -33.8 157.9
kNN 110.9 -5.3 576.3
λ∗ 18.4 -0.5 30.6

DE† 47.9 -8.6 78.0

110psi Slow

CC 105.5 -81.1 21.5
FT 175.7 -103.5 167.6
kNN 214.8 17.2 681.9
λ∗ 14.2 2.3 59.3

DE† 50.2 -19.4 67.6

†The direct event detector (DE) can only detect toe off and heel strike on the right foot.
True event times for left and right heel strike and toe off events are detected using treadmill force sensors. Gait period T = 1.16± 0.09s for healthy and
1.09±0.04s for impaired. For the healthy subjects, errors are reported as mean±1 standard deviation. The best PPAFO estimator for each case is bolded and
highlighted in dark gray. DE and the reference estimate λ∗ are highlighted in light gray and were not included in this comparison between estimators.

TABLE II
STATE ESTIMATION ERROR RESULTS FOR EACH TECHNIQUE DUE TO SPEED AND ACTUATION PERTURBATION

EFFECTS FOR HEALTHY AND IMPAIRED SUBJECTS

5 Healthy Subjects
Actuation Speed Method RMS Error Ave. Error Worst

(λ) (λ) (λ)

0psi Normal
CC 1.3±0.4 -0.1±0.1 4.5±1.2
FT 1.3±0.5 -0.0±0.3 4.7±1.7
kNN 6.2±1.0 0.2±0.5 34.4±9.1

110psi Normal
CC 3.5±1.6 -1.1±3.5 7.9±1.9
FT 3.2±0.8 -1.5±1.6 9.7±2.4
kNN 8.9±2.0 0.2±2.2 41.3±9.4

0psi Slow
CC 3.9±1.8 2.8±2.1 13.2±8.3
FT 7.7±1.7 6.4±1.5 18.1±3.6
kNN 8.5±1.1 -2.6±1.5 37.8±7.3

110psi Slow
CC 7.1±3.7 5.6±4.3 13.9±5.6
FT 9.3±3.6 7.4±3.2 21.3±6.3
kNN 8.2±3.5 -0.0±1.3 25.7±13.8

Impaired Subject
Actuation Speed Method RMS Error Ave. Error Worst

(λ) (λ) (λ)

0psi Normal
CC 2.9 0.4 7.7
FT 4.3 1.5 11.4
kNN 12.9 -2.4 49.4

110psi Normal
CC 8.0 7.1 18.9
FT 12.4 11.8 25.8
kNN 21.6 6.1 49.0

0psi Slow
CC 7.1 6.2 14.6
FT 10.0 8.2 26.4
kNN 10.8 -0.5 48.0

110psi Slow
CC 9.6 8.4 19.9
FT 15.7 13.7 32.0
kNN 15.6 -1.9 51.5

For the healthy subjects, errors are reported as mean±1 standard deviation. The best estimator for each case is highlighted. Errors
are the difference between PPAFO estimators and reference estimation λ∗.

IV. RESULTS

CC and FT outperformed kNN for all tests. For the impaired
subject, CC demonstrated the best accuracy for all tests, reduc-
ing event detection RMS error by up to 40% compared to FT.
For the healthy subjects, FT and CC performed comparably
during normal speed walking, but CC was more accurate
during slow walking tests (Tables I and II).

1) Normal Speed – No Actuation (Healthy and Impaired):
For the healthy subject, both CC and FT worked well for
event detection and state estimation, while kNN did not. FT
had low state estimate error around heel strike, but the error

increased as time progressed in the gait cycle (Figure 5A)
while CC stayed relatively low. For the impaired walker, the
CC technique had a smaller average error (Figure 5B and 6).
The FT estimate diverged more during swing (Figure 5B).

2) Normal Speed – Actuation (Healthy and Impaired): This
task verified that FT and CC can successfully track the system
state, even when actuated. The RMS error for state estimate
is under 4% for the healthy subjects and around 10% for the
impaired subject. For the healthy subjects, FT and CC have
similar performance, with FT having slightly higher accuracy.
CC for the impaired subject has 23% lower RMS error than
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FT, a decrease in RMS state error from 12.4 to 8.0 (Table II).
3) Slow Speed – No Actuation (Healthy and Impaired): For

the healthy subjects, this test shows the largest improvements
of CC over FT in both event detection and state estimate error.
For both healthy and impaired subjects, the CC reduced the
state estimate error by at least 29%, from 10 to 7.1 and the
event detection error by at least 30%, from 69.6 to 49.4ms
(Tables I and II).

4) Slow Speed – Actuation (Healthy and Impaired): The
combined speed and actuation perturbations make this the only
test where kNN becomes competitive with other estimators.
The healthy subjects were best estimated using CC. For the
healthy subjects the state estimate RMS error was reduced
25% from FT to CC. For the impaired subject the results are
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Fig. 7. Estimation error of healthy subject #3 during the change in speed
test. The walking speed changed from 1.16m/s to 0.86m/s. Top: estimate error
as a function of time. Bottom: overall estimate error as a function of state
during the slow speed section. Note the high variance in the FT error at the
slower speed caused by the cycle period T increasing from 1.16±0.09s to
1.32±0.09s.

striking: a 40% reduction in state estimate error from FT to
CC, from 15.7 to 9.6 (Table II).

5) Change in Speed (Healthy): This test reduced the walk-
ing speed by 25% midway through the trial. Figure 7 shows the
errors from the three estimators as a function of overall time
for this test. The error variance for FT illustrates unreliability
at the slower walking speed, while CC maintains accuracy.
The RMS and worst case for FT were all reduced by a factor
of 2 by the CC estimate.

V. DISCUSSION

We have presented a new method of state estimation for
powered PPAFOs (CC) that can be used to detect gait events.
We also presented results from testing this method and three
others (FT, kNN, and DE) in experimental trials during tread-
mill walking with both healthy and impaired subjects. In this
section we will discuss the performance, robustness, appli-
cations to control, and limitations of these state estimation
schemes.

A. Performance During Healthy Unperturbed Gait

The CC and FT estimators performed comparably during the
healthy subject normal speed walking trials. The CC estimator
correlates a window of past sensor readings to a regression
model of normative sensor data to estimate the state. The FT
estimator is an extension of the direct event (DE) estimator
using thresholds, and only requires a model of the subject’s
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gait period. The FT has the advantage of simple implementa-
tion, but as we will discuss below, the CC estimator was more
robust to disturbances.

The kNN estimator performed poorly during all subject tri-
als. This estimator is based on [19], but uses PPAFO sensor
data rather than motion capture data as in [19]. The poor per-
formance of kNN was due to the limited data used to construct
the subject’s state configuration, and that kNN only makes use
of the current sensor measurements. This shortcoming is com-
pounded because the PPAFO sensor data contain large sections
with nearly identical readings (Figure 2, e.g., 70-100% gait
cycle). As a result, kNN cannot reliably compute gait state
during these periods.

B. Robustness To Speed and Actuation Disturbances
The robustness of the estimators was evaluated during trials

with speed and actuation disturbances. A decrease in speed
was used to perturb gait because preliminary experimentation
demonstrated greater estimation errors after a decrease rather
than an increase in speed. Future work could examine the
robustness of the CC estimator by applying time varying
disturbances such as sinusoidal speed variations, accelera-
tions/decelerations and gait initiation/cessation. A simple de-
cision rule, rather than using the state estimators, was used
to determine the timing of the actuation disturbance to allow
for an unbiased comparison. This approach enabled the per-
formance of the individual estimation schemes to be evaluated
in the presence of the same disturbances. Our use of the term
“actuation disturbance” may seem unusual, since the nominal
purpose of the PPAFO is to provide assistance with applied
torque. However, by choosing to view applied torque as a
disturbance, we are hoping to ensure that estimators perform
well regardless of the control policy used.

On average, the speed disturbance increased estimation er-
ror by a factor of 2.4 for healthy subjects and 1.9 for the
impaired subject, and the actuation disturbance increased error
by a factor of 2.6 for healthy subjects and 1.6 for the impaired
subject.

The CC estimator was more robust to the speed perturba-
tion and performed better during the impaired walking trials
(both with and without actuation) as compared to the FT and
kNN estimator (Tables I and II). The performance of FT and
CC estimators were comparable during healthy walking trials
perturbed by actuation. The kNN estimator was not robust to
either of the disturbances.

The CC estimator performed well during all of the perturbed
walking trials. The results from the impaired subject are par-
ticularly noteworthy because these results are representative of
the intended population for this assistive device. During both
perturbed and unperturbed gait of the impaired subject, the
CC estimator outperformed the FT estimator by a minimum
state estimation RMS error of 29% and a minimum event de-
tection error of 23% (Tables I and II). The benefits of the CC
estimator are also highlighted by the healthy walking trials
with the speed perturbation, where the state estimate RMS
error and event detection RMS error were up to 49% and 29%
smaller than the errors resulting from the FT estimation. Dur-
ing the healthy walking trials with the actuation perturbation,

the performance of the CC estimator was comparable to the
FT estimator. Actuation perturbation introduced differences to
the sensor readings with little change to the cycle period (T
for 0psi Normal: 1.16±0.09s vs. 110psi Normal: 1.18±0.04s).
As a result, the FT estimator maintained accuracy, while the
CC estimator was adversely affected by the weaker correla-
tion between sensor measurements and the sensor regression
models, Figures 3 and 5.

While the FT estimate performed well with the healthy
walkers during normal speed walking and with actuation
perturbation, this estimator was not robust to the speed pertur-
bation. Figure 7 clearly shows the degradation in performance
of the estimator following the decrease in speed. The speed
perturbation changed the cycle period, leading to a reduction
in FT estimator performance because FT was dependent on
a predetermined cycle period. The FT estimator did not
outperform the CC estimator during any impaired walking
trials.

Table I shows that direct event detection (DE) RMS er-
ror was up to 6 times larger for the impaired subject than
the healthy subjects during the normal walking trials. The in-
creased event detection error is a significant component in
the degradation of FT estimator performance for all impaired
walking trials. Certain impaired walking patterns make event
detection difficult, causing the DE estimator and any estimator
relying on DE to perform poorly. In contrast, CC bases its
estimate on the raw sensor measurements, not an assumed
model of gait and thus is more robust to gait impairments.

C. Applications to Control
As we have emphasized throughout this paper, many pow-

ered AFOs rely on gait events to determine control objec-
tives [9]–[18], and so reliable event detection is required for
system control. Notable exceptions are powered orthotic sys-
tems that use surface EMG to directly control actuation [26].
That approach eliminates the necessity of gait event detection,
but is limited by surface EMG signal reliability and availabil-
ity.

In the current study, we have demonstrated that the CC
estimator is able to accurately and robustly determine events
during the gait cycle using data from PPAFO sensors. How-
ever, the CC estimator has broader applicability than just the
PPAFO. In particular, a similar approach could be applied to
provide state estimates for the control of any other assistive
device (e.g., another orthosis or prosthesis) that has quasi-
periodic inputs and outputs.

As we discussed in Section I, the control problem for an
AFO has two parts, gait event detection and the controlled
application of torque to meet the functional objective deter-
mined by each gait event. Our experiments showed the results
(Tables I and II) of using state estimators to detect gait events
but did not use these detected events as the basis for control-
ling torque. Future work will evaluate PPAFO performance
during walking trials when state estimates (in particular, those
provided by CC or FT) are used to control the actuation timing.

D. Current Limitations
The key limitation of our current approach to state es-
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timation is that it requires a preliminary training process.
This process was necessary to construct models used for state
estimation. Inaccuracies in the CC estimate were created by
mismatched training and actual testing conditions. One ap-
proach to reduce these inaccuracies would be to parameterize
the models with respect to other gait variables such as gait
period T . In this scenario, gait period would be measured
directly from one of the sensors (e.g., heel sensor) and used
to select the appropriate model from a library of predetermined
models in real time. The training process was also time
consuming and could serve as an impediment for use in a
clinical setting. This issue could be addressed by continuously
updating the regression model during gait. Such an approach
could allow the system to adapt to changing environments,
reduce the amount of training required to build the models,
and improve session to session robustness since the models
would be constructed as the subject walked.

The key limitation of our experimental study was that we
only examined estimator performance during steady state, level
walking on a treadmill in the gait lab. In order to success-
fully implement the estimation techniques outside of the lab,
modes such as overground walking, ramp walking and stair
ascent/descent must also be addressed. One approach would
be to generate individual models for each mode and apply a
methodology to switch between them. We will address these
issues in future work.

VI. CONCLUSION

Accurate state estimates allow a powered AFO to adapt
to changing environmental and functional needs. In contrast
to previous methods of state estimation that rely largely
on thresholding sensor measurements, this paper presented a
method of state estimation based on cross-correlation between
a window of past sensor measurements and a learned model.
This approach—along with three others for comparison—was
implemented on a powered AFO. Experiments with healthy
and impaired subjects suggested that our cross-correlation state
estimator provided the best overall performance.
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