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ABSTRACT 

 This dissertation describes a new method called Constrained Least-Squares 

Spectral Analysis (CLSSA), an inversion-based algorithm for computing the time-

frequency analysis of reflection seismograms.  CLSSA is formulated and applied to 

modeled seismic waveforms and real seismic data.  The Fourier Series coefficients are 

computed as a function of time directly by inverting a basis of truncated sinusoidal 

kernels for a moving time window.  The method results in spectra that have reduced 

window smearing for a given window length relative to the Discrete Fourier Transform 

irrespective of window shape, and a time-frequency analysis with a combination of time 

and frequency resolution that is superior to both the Short-time Fourier Transform and 

the Continuous Wavelet Transform.  The reduction in spectral smoothing enables better 

determination of the spectral characteristics of interfering reflections within a short 

window.  The degree of resolution improvement relative to the Short-time Fourier 

Transform increases as window length decreases.  As compared to the Continuous 

Wavelet Transform, the method has greatly improved temporal resolution, particularly 

at low frequencies.   
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1. INTRODUCTION 

1.1.  Motivation for spectral analysis 

Seismic spectral decomposition (e.g., Partyka, et al., 1999) transforms each 

reflection seismogram into a time-frequency space that represents localized frequency 

content as a function of seismic record time.  Thus, individual seismic volumes are 

transformed into multiple frequency volumes that preferentially highlight geophysical 

responses that appear within particular frequency bands.  Commonly used spectral 

decomposition methods, such as the Fourier Transform and the Continuous Wavelet 

Transform generally require a tradeoff between time and frequency resolution that may 

render them ineffective in particular cases for certain interpretation applications, such 

as layer thickness determination and direct hydrocarbon detection.  The objective of 

this paper is to introduce and evaluate the effectiveness of Constrained Least Squares 

Spectral Analysis (CLSSA) as a seismic spectral decomposition method and show that it 

has resolution advantages over the conventional approaches. 

Fourier-based spectral decomposition uses a sliding temporal window, which 

limits both temporal and frequency resolutions.  In spectral analysis of seismic events 

that are near in time to other arrivals, it is often necessary to sacrifice frequency 

resolution by using a short time window to isolate the event of interest.  Figure 1 

illustrates this fundamental problem in spectral decomposition:  a pair of reflection 

coefficients from the top and base of a thin layer is bracketed by nearby strong 

reflection coefficients.  When convolved with a wavelet, the reflection event from the 
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thin layer has interference at its fringes with side-lobes from the bracketing reflections.  

The correct spectral response for the thin layer (a cosine function times the Ricker 

spectrum) should have a notch at 50 Hz corresponding to the first spectral notch of the 

even impulse pair.  As emphasized by Partyka (1999), the frequency at which this notch 

occurs could be used to determine the layer time thickness, which is of great potential 

utility for pre-drill estimates of reservoir volumetrics.  In order to make use of the notch 

occurrence, the window chosen for spectral analysis must be short enough to avoid 

interference with nearby reflectors, but long enough so that the window smearing 

effect on the spectrum does not change the notch location.  Unfortunately, as 

illustrated in Figure 1, this may not be achievable in practice.  A Hann window short 

enough to avoid interference (40 ms in this case) results in a Fourier spectrum that is 

dominated by the window spectrum, and the notch and peak frequencies do not 

directly reflect the layer characteristics – which would thereby yield an incorrect 

reservoir thickness estimate.  Longer windows yield spectral estimates that are 

corrupted by the interfering energy, and again yield misleading spectral notch 

frequencies that would result in incorrect thickness estimates.  In such a situation, it 

would be advantageous to be able to use a short window without the corresponding 

loss of frequency resolution inherent in the use of the Fourier Transform.   
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Short windows are desirable for the temporal isolation of particular portions of 

seismic traces in order to obtain spectra and spectral attributes (such as peak frequency 

and amplitude at peak frequency) that are relevant to the characteristics of a given 

layer.  However, the Fourier Similarity Theorem (e.g., Bracewell, 1986) requires that 

shorter windows of a given shape have poorer frequency resolution which can mask and 

modify spectral characteristics.  Using a given window shape, better frequency 

resolution can only be achieved with the Fourier Transform at the expense of poorer 

Figure 1). Windowed spectral analysis of an even reflection coefficient pair contained 
within a thicker even reflection coefficient pair. Horizontal lines represent windows 
of different lengths used to compute the spectra. Plots show (a) an even reflection 
coefficient pair (10 ms thick) within a series of Hann window limits with a thicker 
even reflection coefficient pair (100 ms thick) falling just at the limits of the longest 
DFT window, (b) the convolution of the reflectivity series with a 30 Hz Ricker 
wavelet, and (c) the Fourier Transform computed using the series of Hann windows 
and the analytical spectrum (black).   
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time resolution by increasing the window length.  Reducing the window effect in seismic 

time-frequency analysis is, thus, of great potential practical significance.   

One approach towards reducing the window effect is to circumvent the Fourier 

Transform, and solve directly for the Fourier Series coefficients using least-squares 

analysis within a window (Vaníček, 1969).  The Fourier Transform is indeed the least-

squares solution for the Fourier Series coefficients, only when the sinusoidal basis 

functions are orthogonal.  When seismic data are windowed, this definition is violated 

for those frequencies for which the window length is not an integer number of periods.  

The well-known consequence is smearing of the data spectrum computed with the 

Fourier Transform by the window transfer function.  However, this effect is a result of 

the definition of the Fourier Transform requiring that the sinusoidal bases are 

uncorrelated, not a necessary consequence of Fourier Analysis (which is the 

determination of the Fourier Series coefficients).  The Fourier Transform is only one of 

many possible means of solving for those coefficients.  From the point of view of 

determining the Fourier Series coefficients of a time series within a window, the window 

smearing effect arises from what can be considered the implicit requirement of the 

windowed Fourier Transform that the sinusoidal bases are orthogonal over the window 

length.  This results in the Fourier Transform yielding the spectrum of the windowed 

data rather than the spectrum of the data within the window.   Seismic time-frequency 

analysis by direct solution of the normal equations for the Fourier Series coefficients 

when the sinusoidal bases are not orthogonal has, perhaps surprisingly, not been 
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reported upon in the seismic spectral decomposition literature.   Such an approach is 

complicated by the fact that the inversion for these coefficients is non-unique, and 

constraints are thus required.   

We refer to the application of constraints to the solution of the normal 

equations for the Fourier Series coefficients as Constrained Least-Squares Spectral 

Analysis (CLSSA).  We can expect the results of CLSSA to be very dependent on the 

constraints applied, the assumptions made, and the parameters chosen.  Nevertheless, 

as time-frequency analysis is generally non-unique, this should not deter us from 

investigating the potential benefits of such a method.   

For our purpose of investigating possible improvements in seismic spectral 

decomposition that will allow the use of shorter windows than are practicable with the 

ordinary Fourier Transform, we formulate and apply an algorithm that applies model 

and data constraints in a particular manner using well known numerical methods that 

have been commonly used for other applications.  Use of other algorithms and other 

constraints to invert the normal equations are certainly feasible.  Our objective is only to 

show the potential value of the general CLSSA approach for time-frequency analysis of 

reflection seismograms.  In particular, we will assess the temporal and frequency 

resolution that can be achieved with our CLSSA algorithm, and compare results to the 

Short-Time Fourier Transform (STFT) and the Continuous Wavelet Transform (CWT) for 

synthetic and real seismic data, as these are presently the two most commonly used 

spectral decomposition methods in exploration geophysics practice. 



6 

1.2  Historical background 

Spectral decomposition of reflection seismograms was introduced as a seismic 

interpretation technique by Partyka (1999).  He recognized that seismic frequency 

spectra using short windows were greatly affected by local reflectivity spectra, and thus 

carried information about layer characteristics.  He showed that simple layers of certain 

thicknesses exhibit notched spectra, and that the pattern of frequencies at which these 

notches occur can sometimes be used to infer layer thickness.  He also showed that, for 

this reason, seismic images at different frequencies preferentially illuminate, or respond 

to, geological variations differently.  Spectral time-frequency analysis has since become 

an important practical seismic interpretation tool that has achieved widespread use.  

Early spectral decomposition work primarily used (1) the Short-time Fourier 

Transform (STFT), which is equivalent to the cross-correlation of the seismic trace with a 

sinusoidal basis over a moving time window, (2) the Continuous Wavelet Transform 

(CWT), which is the cross-correlation of the seismic trace against a wavelet dictionary, 

and (3) Matching Pursuit Decomposition (MPD), which is the decomposition of the 

seismic trace into basis atoms.  The use of these methods for seismic time-frequency 

analysis is discussed by Chakraborty and Okaya (1995).   

The literature is rich in papers discussing geological applications of seismic 

spectral decomposition, a few of which are mentioned here.  The STFT has been 

successfully applied for stratigraphic and structural visualization (e.g., Partyka, et al., 

1999; Marfurt and Kirlin, 2001).  Marfurt and Kirlin (2001) derive a suite of attributes, 
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including peak frequency, from spectral decomposition volumes in order to efficiently 

map stratigraphic features, particularly fluvial channels.  These frequency attributes are 

further described and applied by Liu and Marfurt (2007).  Sinha et al. (2005) apply the 

CWT for stratigraphic visualization and direct hydrocarbon indication.  Matos et al. 

(2010) compute CWT spectral decomposition phase residues as an attribute for 

stratigraphic interpretation.  Castagna et al. (2003) and Fahmy (2008) use MPD for direct 

hydrocarbon detection.  Partyka (2005) and Puryear and Castagna (2008) [Appendix A] 

describe the use of spectral decomposition as a driver for thin-layer reflectivity 

inversion. 

Higher resolution seismic spectral decomposition methods would assist in the 

interpretation of geological features masked by spectral smearing (when the STFT is 

used) or poor temporal resolution at low frequencies (when the CWT is used).  Toward 

this end, we revisit Fourier theory and then formulate an alternative approach to 

seismic spectral decomposition using Constrained Least Squares Spectral Analysis, which 

potentially has advantages over conventional methods such as the STFT and CWT in 

terms of improved temporal and/or frequency resolution of seismic reflection data.   

2. METHODS 

2.1.  Fourier Transform 

The Fourier Transform is the mathematical basis of the STFT used in spectral 

decomposition.  The Fourier Transform projects infinite sinusoidal bases on the signal 
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and is thus the Least Mean Square Error (LMSE) solution for the Fourier Series 

coefficients:   

                     2( ) ( ) i ftG f g t e dt







  ,         (1) 

where t  is time, f  is frequency, ( )g t  is the continuous time signal, and ( )G f  is the 

continuous complex spectrum.   This simple projection of the bases onto the time series 

is applicable because the bases are infinite and thus orthogonal.  The Fourier Transform 

spectrum is continuous and aperiodic in time and frequency (i.e. there are no periodic 

frequency wrapping effects in the limit dt →0).  In digital applications, however, use of 

the Discrete Fourier Transform (DFT) assumes discretely sampled and periodic series in 

both the time and frequency domains.   

The DFT is the modification of the Fourier Transform for application to discrete 

signals.  In computing the DFT, the sinusoidal basis functions are orthogonal only when 

their periods are integer fractions of the period of the fundamental frequency.  Such an 

orthogonal basis comprises the “DFT frequencies” (see Figure 2).   

The DFT is defined as follows: 

                                          
2

1

0

( ) ( )
i

N k fn t
N

n

G k f g n t e


   



   ,   k =0, …, N -1,                              (2) 

where N is the number of time samples, n  is the time sample index, t is the time 

increment, k  is the frequency sample index, f  is the frequency increment, ( )g n t is 
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the discretely-sampled time signal, and ( )G k f is the discretely-sampled complex 

spectrum.   

While the DFT yields integrated information about the entire trace, seismic 

signals typically contain variations in frequency content as a function of time.  In order 

to capture local anomalies related to stratigraphy, structure, and fluid content, we must 

apply a time-frequency transform that maximizes time-localization of spectral features.  

Figure 2). Fourier frequency components for a 20 ms window plotted together with a 
Ricker wavelet spectrum. df=1/20ms=50 Hz. Signal energy analyzed using the STFT 
must be projected onto the extremely sparse components that exist within the 
wavelet band. Clearly, the frequency resolution is not sufficient to produce any 
meaningful spectral information for this typical seismic band. The need arises to 
develop a transform that is not limited by the STFT definition. 
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The STFT is the DFT applied as a function of time using a sliding time window (that is 

usually tapered to have a desired transfer function).  This amounts to cross-correlation 

of orthogonal sinusoidal basis functions with a windowed segment of the signal.  First 

the time-time panel, wg , is derived from the windowed signal and expressed as a 

function of window center and window sample:  

                              
 

( , ) ( ) (( ) )

  0, , 1 and 1 / 2 ,..., ( 1) / 2  ,

wg n t m t w m t g n m t

n N m M M

     

      
                              (3) 

where n  is analysis time sample (center of the window), m  is the window sample index, 

M  is the number of samples in the window, ( )w m t is the window function (usually 

tapered towards zero at the endpoints in order to minimize the Gibbs Effect) and 

( , )wg n t m t   is the windowed time-time panel as a function of window position and 

window sample.  Second, the forward STFT is defined as the DFT of a time-time panel 

over the dimension of the window sample model.  This results in a time-frequency 

panel:  

                                           
2( 1)/2

( 1)/2

( , ) ( , )
iM
k fm t

M
w

m M

G n t k f g n t m t e


  

 

     .                          (4) 

The projection of the infinite sinusoidal bases onto the windowed portion of the 

time series by the DFT occurs only over the length of the window.  This is equivalent to 

truncating the bases to the window length; the sinusoidal kernels are then no longer 

generally orthogonal with the exception of those that have an integer number of cycles 
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within the window length.  Thus, the windowed DFT does not give the spectrum of the 

data within the window but the spectrum of the windowed time series that has data 

(perhaps tapered) within the window and zeros outside the window.  By the Fourier 

Convolution Theorem, this results in a spectrum that is the convolution of the true 

spectrum of the data with the spectrum of the window.  This spectral smoothing causes 

a loss of frequency resolution and an increase in the bandwidth of the spectrum.  Thus, 

for real time series, the standard deviation about the mean of the positive frequencies 

of the spectrum of the windowed data will always be greater than the standard 

deviation of the positive frequencies of the true spectrum. 

When the data are windowed, the sinusoidal uncorrelated bases are spaced at a 

frequency increment of 1/df T , where T  is the window time length M t .  When 

the orthogonality condition is not met, the DFT can be thought of as “leaking” energy 

among frequencies.  For an extensive treatment of the subject of Fourier Transform 

windowing and associated spectral leakage, see Bracewell (1986).   

However, the reduced frequency resolution of the STFT is not a fundamental 

limitation of Fourier theory.  It is a consequence of the STFT definition (i.e. the use of 

orthogonal basis functions inside a short time window).  For very short windows, the 

resulting spectrum may bear little resemblance to the spectrum of the data.  To compute 

the spectrum of the data within the window, rather than the spectrum of the windowed 

data, we must invert the normal equations with non-zero off diagonal terms and, thus, 

properly solve for the Fourier Series coefficients.  We shall see that such proper 
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application of Fourier theory can significantly increase the resolvability of frequency 

components, particularly when appropriate constraints are applied. 

2.2.  Continuous Wavelet Transform 

The CWT is a narrowband filter applied to the signal in the time domain using 

stretched versions of a mother wavelet; it decomposes the seismic data into octave or 

sub-octave scales of the original data.  The CWT is described by Grossman et al. (1989) 

and Mallat (1999).  Chakraborty and Okaya (1995) apply CWT spectral decomposition to 

seismic data.  For seismic applications, the semi-orthogonal Morlet wavelet is commonly 

preferred.  The forward CWT for a real wavelet dictionary is as follows: 

                                                         ( , )
1

( ) ( )a b
t b

W s t dt
aa


  ,                                             (5) 

where a  is a scaling parameter, b  is a translation parameter,  is the mother wavelet, 

( )s t  is the signal, and ( , )a bW  is the CWT scale decomposition.  As typically applied, the 

CWT produces scales of the data.  A scale corresponds to a more or less narrow 

frequency band, and one could view the center frequency of these bands as output 

frequencies.  In order to compute frequencies instead of scales, Sinha et al. (2005) 

define a time-frequency CWT, which is the DFT of the inverse CWT.  In this paper, we 

use the standard CWT process described by equation 5 above, with the frequency axis 

representing the center frequency of Morlet atoms, as this is a commonly employed 

method. 
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CWT solutions suffer from resolution limitations that are similar to the DFT, 

although CWT resolution varies with scale or frequency; the resulting decomposition has 

low time resolution/high frequency resolution at low frequencies and high time 

resolution/low frequency resolution at high frequencies (e.g., Sinha, et al., 2005; 

Puryear, et al., 2008 [Appendix B]).   

2.3.  Inversion-based spectral decomposition 

Seismic spectral decomposition is a trace-by-trace operation.  Because each                     

1-dimensional seismic trace is converted to a 2-dimensional time-frequency panel, the 

process expands the dimensions of the original data via a non-unique transformation, 

suggesting an inversion-based approach to the problem.  Several investigators have 

used different empirical criteria in order to define inversion-based spectral analysis 

methods.   

Vaníček (1969) iteratively finds the best least squares fit coefficients for sines 

and cosines, subtracts and repeats the process on the residual until the algorithm 

converges.  Oldenburg (1976) uses the first Dirichlet criterion of the Backus-Gilbert 

linear inverse in order to compute the DFT of potential field data, while minimizing the 

effects of recording gaps and noise.  Sacchi and Ulrych (1996) derive a similar functional 

using a Bayesian inversion approach to estimate the 2d spectral signature of a limited 

linear array of receivers.  The results show minimal side lobe artifacts, resulting in 

significant extrapolation of the wavefield aperture beyond the original receiver array.  In 

a method related to the Vaníček method, Xu et al. (2005) derive an algorithm for 
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reducing leakage of spatial spectra by iteratively solving for and subtracting the most 

energetic wavenumber components from the signal.   This is similar to matching pursuit 

decomposition with non-orthogonal wavelets, which can be unstable.  None of these 

methods have been applied to time-frequency analysis of reflection seismograms for 

interpretation of, or inversion for, layer characteristics. 

Daubechies et al. (2008) describe the general mathematical convergence of Lp 

norm functionals, including the minimum support functional, for computationally  

cumbersome problems.  Although Daubechies et al. (2008) do not explicitly apply their 

method to the problem of time-frequency analysis of signals, we use a similar approach 

for application to the problem of seismic spectral decomposition.  Unlike Daubechies et 

al. (2008), in the particular implementation we use in this study, we apply Tikhonov 

regularization to the functional and, because our matrices are not computationally 

large, solve the problem analytically by Lagrange multipliers as described in the 

following section.  

2.4.  CLSSA description 

Following the Portniaguine and Castagna (2004) approach to seismic wavelet 

decomposition and reflectivity inversion, we invert the normal equations by applying an 

iteratively re-weighted least squares regularization algorithm to the complex spectral 

decomposition inverse problem using a minimum support functional, which is defined 

by Last and Kubik (1983) and Portniaguine and Zhdanov (1998).  This regularization 

scheme incorporates a priori constraints, differing from post-inversion weighting 
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schemes that impose constraints on the solution after the inversion process.  Prior 

publications do not describe the application of such a method to direct solution of the 

normal equations for the Fourier Series coefficients.  The following inversion 

formulation is applied to the data within each window centered at a time sample, then 

looped over each sample of a trace. 

We start with the definition of the forward problem:  

 Fm d ,       (6) 

where F is the kernel matrix with real or complex sinusoidal basis, m is the model 

parameter vector (unknown frequency coefficients), and d is the windowed seismic 

data.  For the problem of spectral decomposition of reflection seismograms, the data 

are real.  However, in the CLSSA algorithm we present here, we can take d to be a 

segment of a complex seismic trace,   

                                                                   ird d= + id ,                                                                (6a) 

where rd is the windowed segment of the real seismic trace, and id is the windowed 

segment of the Hilbert Transform of the seismic trace.  This is not a requirement of the 

CLSSA approach, but is a way of applying additional constraint to further stabilize the 

solution for short window lengths.  We further define d0 as the trace sample at the 

center of the window. 

The solution to (6) is achieved using well-known normal equations: 

                                                                     * *F Fm F d .                                                              (7) 
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We choose the columns of matrix F to consist of complex sinusoidal signals truncated by 

the endpoints of the window in the time domain:   

                                                , 2 2t f k fm t i k fm t    F( ) = cos + sin .                                      (8) 

 

The number of columns in F is the number of frequencies, and the number of rows in F 

is the number of samples in the time window.  Unless otherwise stated, the complex 

form of F is used for the examples in this dissertation (in some examples, only the real 

part is used).  The inverse problem objective is to compute m given F and d.  The 

ordinary LMSE solution to equation 6 from the normal equations is 

                                                               * 1 *( )m F F F d ,                                                             (9)               

where * denotes the complex conjugate transpose.  When the sinusoids are (or are 

assumed to be) uncorrelated, *F F = I  and (9) reduces to 

                                                                      *m F d ,                                                                (10)  

which is equivalent to the DFT of the trace segment.   

When the data are windowed, however, the elements of F are generally 

correlated, and constraints are required to achieve a unique solution.  In order to 

constrain the inversion of equation 6, we introduce diagonal matrices mW and dW , 

which are respectively model and data weights.  mW  changes iteratively.  The initial 

model weighting matrix on the first iteration is: 

                                                                 m IW ,                                                                 (11) 

dW  remains constant throughout the iterations.  For a Hann taper: 
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0

2
(0.5 0.5cos( )) ( )d

n t
abs d

l

 
 W Diag .                                 (12)                                                        

 where l  is window length, nΔ t  is time relative to the window center, 0( )abs d is the 

data envelope value (instantaneous amplitude) at the center of the window, which 

scales the sinusoids to the data, and the operator Diag () transforms a vector to a 

diagonal matrix containing the argument vector on the main diagonal.  Applying dW  and 

mW  to equation 6, we obtain 

                                                            1( )d m m d

 W FW W m W d .                (13) 

We introduce the weighted quantities  

                                                                    w d mF W FW  and   (14a) 

                                                                    w m -1m W m ; (14b) 

and recast equation 13 as a model and data weighted ill-posed inverse problem: 

                                                                      w w dF m W d . (15) 

To solve equation 15, we apply Tikhonov regularization, which is similar to the method 

of Marquardt (1963).  Following Tikhonov and Arsenin (1977), we reformulate ill-posed 

equation 15 by replacing it with a well-posed minimization problem.  This is 

accomplished by defining the Tikhonov parametric functional in the space of weighted 

model parameters (Portniaguine and Zhdanov, 1998): 

 
2 2

minw w d w  F m W d m , (16) 
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where   is a regularization parameter that can be varied to control the sparsity and 

stability of the solution.  We set   to a fraction of the maximum value along the 

diagonal of the weighted Gram matrix 

                                                      α = αF (max(diag (FwFw
*
))),                                               (17) 

where αF  is a fractional multiplier and the operator diag takes the diagonal of a matrix.  

Thus,  varies with each iteration step.  We choose the αF value empirically to allow 

from .1% to 1% misfit to the data.  As shown below, our selection of αF is chosen so that 

the method is robust to noise present in the data.  

Writing the analytical Lagrange solution to equation 16 (Portniaguine, 1999),  

                                                                * * 1( )w w w w dI m F F F W d+ .     (18) 

The matrix inversion in equation 18 is computed by Gaussian elimination.  The model 

parameters are reconstructed by 

                                                                             m wm W m= ,                                                                   (19) 

where m is the computed frequency spectrum of the data.   

This is the first step of an iteratively re-weighted least squares regularization 

algorithm (Ni =1, were Ni is the number of iterations).   When the window is a boxcar,  

Ni =1 and α = 0, and id is taken to be zero, m is equivalent to the DFT of the data if the 

frequencies selected are the DFT frequencies.  Otherwise, in this first step, when α ≠ 0 

and is small, m is a smooth spectrum that is tighter than the DFT.  Figure 3 shows 

spectra for a 30 Hz Ricker Wavelet windowed with a 40 ms Hann tapered window 
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centered on the waveform. The full CLSSA solution, m, using Ni =1 and αF =.001 closely 

approximates the analytical spectrum of the Ricker wavelet while the Fourier Transform 

is much broader and exhibits the wrong peak frequency.  The CLSSA result without 

utilizing the imaginary part, is not quite as good, but far better than the Fourier 

Transform.  This is significant because, as no Hilbert operator is applied, CLSSA using 

only the real waveform has precisely the same temporal resolution as the Fourier 

Transform while having greatly improved frequency resolution.  This indicates that, for a 

given window, CLSSA has a better Heisenberg Uncertainty Product (standard deviation 

of the waveform in time multiplied by the standard deviation of the spectrum) than 

does the Fourier Transform.  Thus far, we have not found a window for which this is not 

the case.   

Figure 3 does illustrate an issue at near zero frequencies.  The Ricker Wavelet is 

zero mean and thus should have zero amplitude at zero frequency.  However, the mean 

value over a short window is non-zero and time variant.  In fact, it is unclear what is 

meant by time localization at zero frequency.  Let us assume that we have a short time 

window over which the signal is a constant value.  This could be a windowed square 

wave, box car, step function, constant DC value etc.  All have different analytical spectra 

but no windowed spectral analysis method would have the ability to locally recognize 

the true spectrum in this case.  As a practical matter, the shorter the window, the less 

meaningful the low frequency values will be.  
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If more compact spectra are desired (as would be the case for known sparse 

spectra, or simply to sharpen frequency peaks for attribute analysis) additional 

iterations can be performed.  The model weights are updated by  

 

                                                          Diag(abs( ))m W m .                                              (20) 

Equation sequence (18)-(19)-(20) is iterated Ni times according to the desired 

compaction of the model space.  Useful rules of thumb seem to be Ni = 1 for least 

compactness, Ni = 3 for intermediate compactness, and Ni = 10 for most compactness 

Figure 3). Comparison of results for STFT, CLSSA (Ni=1, αF=.001) and real valued 
CLSSA (Ni=1, αF=.001) applied to a 30 Hz Ricker wavelet using a 40 ms Hann window 
function. Plots show: the Ricker wavelet with Hann window function and b) 
comparison of the analytical Ricker spectrum to STFT and CLSSA. CLSSA closely 
matches the analytical spectrum, while the STFT strongly broadens the spectrum.  
The real CLSSA solution is intermediate to the CLSSA and STFT. 
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(sparsest solution).  In general, the shorter the window, the greater the number of 

iterations needed to compact the spectrum. 

Figure 4 shows Ricker Wavelet spectra for a very short (20 ms) Hann window.  In 

this case, 2 iterations with αF =.001 were required for a close match to the analytical 

spectrum. This illustrates the need for synthetic modeling to empirically select CLSSA 

parameters. 

 

 

 

 

 

The values of m  at iteration Ni comprise the frequency spectrum of the data at 

the center of the given time analysis window.  For time-frequency analysis, the window 

is shifted along the seismic trace, and wm is computed at each time sample in order to 

Figure 4). Comparison of results for STFT, CLSSA (Ni=2, αF=.001) and real valued 
CLSSA (Ni=2, αF=.001) applied to a 30 Hz Ricker wavelet using a 20 ms Hann window 
function. Plots show: the Ricker wavelet with Hann window function and b) 
comparison of the analytical Ricker spectrum to STFT and CLSSA. CLSSA closely 
matches the analytical spectrum, while the STFT strongly broadens the spectrum.  
The real CLSSA solution frequency resolution is slightly better than the STFT. 
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generate a complete 2D time-frequency panel.  Because only the data within the short 

window are inverted at any given computational step, the Gram matrix *

w wF F is small and 

memory limitations are not significant.   

The sequence described here is presented as only one representative means of 

constraining the least-squares spectral analysis.  Other constraints, analysis window 

types, or numerical methods can potentially be applied.  Our main objective is to 

demonstrate the improvements in resolution that can be obtained by solving directly for 

the Fourier coefficients using constrained least-squares. 

2.5.  Data and model resolution matrices 

In order to study the properties of the inversion formulation, we plot the data 

and model resolution matrices in Figures 5 and 6.  The relationship between the 

observed and predicted data is given by: 

                                    pre est g obs g obs obs  d Fm = F[F d ] = [FF ]d Nd ,                                         (21) 

where F is the kernel matrix, gF  is the generalized inverse of the kernel matrix, obsd is 

the observed data, pred is the predicted data, and N  is the data resolution matrix.  For 

our problem (equation 18),  

                                                                    * * 1( )w w w w I N F F F F + .                                                     (22) 

N is independent of the data and determines how well the data are resolved by the 

inverse operator.  The relationship between the estimated and true model parameters 

vector is: 

                                       est g obs g true g true true   m F d = F [Fm ] = [F F]m Rm ,                              (23) 
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where estm and truem are the estimated and true model parameter vectors.  For equation 

18, the model resolution matrix is then 

                                                          * * 1( )w w w wI R F F F F+ .                                                                (24) 

Analogous to N , R is independent of the model and determines how well the model 

parameters are resolved by the inverse operator.    

 Figure 5 contains plots of the data resolution matrices for relatively short (20 ms) 

and long (80 ms) windows using a complex sinusoidal kernel basis function.  These 

matrix operators are equivalent to averaging functions applied to the data.  Hence, 

smooth data are influenced less.  As is predicted by inverse theory, the data are better 

resolved for the 20 ms window than the 80 ms window along the diagonal.  Conversely, 

the model resolution is better for the 80 ms window than the 20 ms window (Figure 6).  

4. MODELING RESULTS 

4.1.  Thin layer example  

Figure 7 shows the application of CLSSA to the interfering thin layer example 

shown in Figure 1 where the Fourier Transform was unable to characterize the thin layer 

spectrum properly with any window length.  It can be seen that for the 40 ms window 

(which is the largest window without interference effects), CLSSA closely approximates 

the desired spectrum, locates the notch almost exactly, and yields a slightly wrong peak 

frequency.  This is in contrast to the Fourier Transform result with the same window 

length, which exhibits very misleading notch and peak frequencies. 
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Figure 5). Data resolution matrices of sinusoidal basis F  for (a) 20 ms and (b) 80 ms 
signals. The sharpness of the diagonal indicates data resolution. The data are better 
resolved for short windows and smoothed for longer windows.   
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Figure 6). Model resolution matrices of sinusoidal basis F  for (a) 20 ms and (b) 80 ms 
signals. The sharpness of the diagonal indicates data resolution. The data are better 
resolved for short windows and smoothed for longer windows.   
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4.2. Application to analytical waveforms (amplitude) 

Analytical waveforms with known frequency spectra are used to compare CLSSA 

to the STFT and CWT (see Figure 8).  Waveforms tested include six cases: (a) a single 20 

Hz sinusoid, (b) a pair of 20 Hz and 50 Hz beating sinusoids, (c) a 20 Hz to 50 Hz chirp 

signal, (d) a single 30 Hz Ricker wavelet, (e) an even pair of interfering Ricker wavelets, 

each with 30 Hz peak frequency and 10 ms spacing, and (f) an odd pair of interfering 

Ricker wavelets, each with 30 Hz peak frequency and 10 ms spacing.  The trace length is 

Figure 7). Windowed spectral analysis of an even dipole reflection pair contained 
within a thick even reflection coefficient (rc) pair. Plots show (a) an even reflection 
coefficient pair (10 ms thick) with a thicker even rc pair (100 ms thick) falling outside 
the window, (b) the convolution of the reflection coefficient series with a 30 Hz 
Ricker wavelet and (c) the spectrum computed using a 40 ms Hann windowed STFT 
(blue) and CLSSA [Ni=1, αF=.001] (red) together with the analytical spectrum (black).  
CLSSA locates the spectral notch much more accurately than the equivalent-window 
STFT.      
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200 ms, and the sample rate is 1 ms.  We computed the STFT and CLSSA of these models 

using a 40 ms Hann window (the CWT basis function length varies with frequency).   

 

 

 

 

Figure 8). Six trace models with length 200 ms and sampling rate 1 ms.  Plots show (a) 
a single sinusoid at 20 Hz, (b) a pair of sinusoids 20 Hz and 50 Hz superimposed, (c) a 
chirp frequency sweep between 20 Hz and 50 Hz, (d) a single Ricker wavelet with a 
peak frequency of 30 Hz, (e) an even pair of 2 interfering Ricker wavelets with peak 
frequencies of 30 Hz and 10 ms spacing, and (f) an odd pair of 2 interfering Ricker 
wavelets with peak frequencies of 30 Hz and 10 ms spacing.  The horizontal red lines 
represent a 40 ms time window centered at 101 ms. 
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Figure 9 shows the time-frequency panels from the application of the STFT to the 

six analytical waveforms shown in Figure 8.  On the sinusoid waveform frequency 

panels, we observe that the independent frequencies are poorly resolved due to 

frequency smearing.  This smearing is caused by the convolution of the data spectrum 

with the window transfer function.  The STFT results for all model waveforms have 

notches in time.   The time notch period in Figure 9a is inversely related to frequency:   

                                                sin sinT 1/ 2* F 1/ 2*20Hz 25 ms   ,                                (25) 

where sinF is the sinusoid frequency and sinT is the time notch period.  For multiple 

sinusoids (Figure 9b), we observe superposition of notches in time. The STFT of the chirp 

signal (Figure 9c) also shows frequency smearing around the smoothly varying peak 

frequency within the window and temporal notching.  For the Ricker wavelet models, 

note the smearing of sidelobe energy to zero frequency (referred to as DC).  Even and 

odd dipole pairs have characteristic notch periods in the frequency domain (Marfurt and 

Kirlin, 2001; Puryear and Castagna, 2008 [Appendix A]) that are determined by layer 

time thickness.  These notches are important interpretive features (Partyka, 1999) and 

also drive spectral inversion for layer thickness (Puryear and Castagna, 2008 [Appendix 

A]).  If the notches are misplaced, serious interpretation errors can result.  The 

frequency notch period ( bedF ) of an even dipole with thickness bedT = 10 ms is: 

                                                      bed bedF 1/ T 1/ .01s 100 Hz   .                                         (26) 
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Figure 9). Six amplitude panels illustrating application of the STFT using a window 
length of 40 ms to the six trace models with length 200 ms and sampling rate 1 ms 
shown in Figure 6.  Figures show (a) a single sinusoid at 20 Hz, (b) a pair of sinusoids 
at 20 Hz and 50 Hz superimposed, (c) a chirp frequency sweep between 20 Hz and 50 
Hz, (d) a single Ricker wavelet with a peak frequency of 30 Hz, (e) an even pair of 2 
interfering Ricker wavelets with peak frequencies of 30 Hz and 10 ms spacing, and (f) 
an odd pair of 2 interfering Ricker wavelets with peak frequencies of 30 Hz and 10 ms 
spacing.   
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For the analytical spectrum of the even pair, a peak occurs at 0 Hz and a notch occurs at 

Fbed/2 = 50 Hz.  On the STFT panel, we observe the notch at approximately 75 Hz due to 

spectral smearing.  In a conventional spectral decomposition analysis, this would result 

in a large error in layer thickness determination.  An analytical odd dipole pair has 

notches at 0 Hz and 100 Hz, which are not readily observable in these models due to 

limited wavelet bandwidth.  In general, on application of the STFT to real seismic data 

traces, we expect to observe time notching, frequency smearing, and artificial 

translation of reflectivity notches to other misleading frequencies.    

Figure 10 shows the time-frequency panels from the application of the CWT to 

the six analytical waveforms shown in Figure 8.  The CWT was computed with a Morlet 

wavelet dictionary.  On the sinusoid waveform frequency panels, we observe that the 

CWT has better low frequency spectral resolution than does the STFT (Figure 10a).  

Furthermore, the CWT has better spectral resolution at 20 Hz than at 50 Hz (Figure 10b).  

In Figure 10c, we observe a smooth decrease in frequency resolution as a function of 

increasing frequency and decreasing Morlet basis independence.  However, for the 

CWT, higher frequency resolution is achieved at the cost of time resolution.  The Ricker 

panels show very significant smoothing across time at low frequencies; this smoothing 

effect diminishes as frequency increases.  For the even dipole pair CWT (Figure 10e), the 

reflectivity notch occurs at approximately 60 Hz compared to the analytical notch at 50 

Hz.  On application of the CWT to real seismic data traces, we expect poor time  
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Figure 10). Six amplitude panels illustrating application of the CWT with a Morlet 
wavelet dictionary to the six trace models with length 200 ms and sampling rate 1 ms 
shown in Figure 6.  Figures show (a) a single sinusoid at 20 Hz, (b) a pair of sinusoids 
20 Hz and 50 Hz superimposed, (c) a chirp frequency sweep between 20 Hz and 50 
Hz, (d) a single Ricker wavelet with a peak frequency of 30 Hz, (e) an even pair of 2 
interfering Ricker wavelets with peak frequencies of 30 Hz and 10 ms spacing, and (f) 
an odd pair of 2 interfering Ricker wavelets with peak frequencies of 30 Hz and 10 ms 
spacing. 
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resolution and high frequency resolution at low frequencies and high time resolution 

and poor frequency resolution at high frequencies.   

Figure 11 shows the time-frequency panels from the application of the CLSSA to 

the six analytical waveforms shown in Figure 8.  For models a-c, Ni = 10; and for models 

d-f, Ni = 1. On the sinusoid waveform frequency panels, we observe nearly perfect 

resolution of frequency content.  The frequency coefficients are not smeared into their 

neighbors (i.e. there is no significant window smearing effect or spectral leakage).  This 

observation is significant in that the neighboring frequency components are not well 

separated by the STFT.  The CLSSA Ricker wavelet results also show obvious 

improvement in low-frequency time-resolution relative to the CWT and frequency 

resolution relative to both the STFT and CWT.  The CLSSA Ricker spectra are more 

compact because they are not broadened by windowing effects.  In Figure 11e, the 

expected thin-bed notch appears close to the correct location (50 Hz) within the wavelet 

band.  On application to real seismic data traces, we expect significant improvement in 

frequency resolution and the time-frequency resolution product over the STFT and CWT.  

In order to further illustrate differences among the STFT, CWT, and CLSSA, we 

extract line spectra at the time midpoint of the analytical waveform traces and compare 

them to their respective analytical spectra (Figure 12).  In Figures 12a and 12b, the STFT 

has a very strong DC component that is more representative of the spectrum of the 

Hann taper than of the data themselves.  The CWT produces a spectrum that is more  
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Figure 11). Six amplitude panels illustrating application of the CLSSA using a window 
length of 40 ms to the six trace models with length 200 ms and sampling rate 1 ms 
shown in Figure 6.  Figures show (a) a single sinusoid at 20 Hz, (b) a pair of sinusoids 
20 Hz and 50 Hz superimposed, (c) a chirp frequency sweep between 20 Hz and 50 
Hz, (d) a single Ricker wavelet with a peak frequency of 30 Hz, (e) an even pair of 2 
interfering Ricker wavelets with peak frequencies of 30 Hz and 10 ms spacing, and (f) 
an odd pair of 2 interfering Ricker wavelets with peak frequencies of 30 Hz and 10 ms 
spacing.  For models a-c,  Ni = 10; and for models d-f, Ni = 1. 
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Figure 12). Six amplitude plots comparing the STFT, CWT, CLSSA, and the analytical 
spectra of the six trace models shown in Figure 6 at the center of the trace (t = 101 
ms).  The STFT and CLSSA used a window length of 40 ms.  Figures show the 
comparison for (a) a single sinusoid at 20 Hz, (b) a pair of sinusoids 20 Hz and 50 Hz 
superimposed, (c) a chirp frequency sweep between 20 Hz and 50 Hz, (d) a single 
Ricker wavelet with a peak frequency of 30 Hz, (e) an even pair of 2 interfering Ricker 
wavelets with peak frequencies of 30 Hz and 10 ms spacing, and (f) an odd pair of 2 
interfering Ricker wavelets with peak frequencies of 30 Hz and 10 ms spacing.  For 
models a-c, Ni = 10; and for models d-f, Ni = 1.  Reflectivity notching patterns 
obscured by the DFT and CWT are apparent in the CLSSA 2D spectral panel result.   
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narrowly centered on the model sinusoid frequencies, although frequency resolution is  

still imperfect.  The CLSSA closely matches the exact analytical solution.  The waveform 

illustrated in Figure 12c has no analytical solution since frequency varies continuously 

with time.  However, the average frequency within the centrally located window is 

approximately 35 Hz.  In applying the 40 ms window, the window smearing effect 

renders the STFT ineffective for spectral analysis of the waveform.  The CLSSA computed 

spectra of the Ricker wavelet waveforms are narrower than those computed using the 

DFT and CWT and closer to the analytical spectrum.  Note the accurate position of the 

notch in Figure 12e. 

4.3.  Application to analytical waveforms (phase) 

We compute cosine of the phase from STFT, CWT, and CLSSA on the models 

shown in Figure 8 d-f using the same parameters defined in the previous section, and 

plot the results in Figures 13-15 respectively.  We study cosine of the phase instead of 

the unmodified phase output in order to eliminate phase wrapping effects.  In general, 

although the single Ricker and even Ricker models are zero phase, phase changes occur 

as the analysis point slides through the model due to the location of moving window.  

For all single Ricker plots and even Ricker models, zero phase occurs at the center of the 

models; and, for the odd Ricker pair, a phase polarity reversal occurs as the window 

slides across the center lobe because the waveform is anti-symmetric.  The CWT and 

CLSSA have longer phase tails at low frequency due to the frequency dependent window  
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Figure 13). Six phase panels illustrating application of the STFT using a window length 
of 40 ms to the six trace models with length 200 ms and sampling rate 1 ms shown in 
Figure 6.  Figures show (a) a single Ricker wavelet with a peak frequency of 30 Hz, (b) 
an even pair of 2 interfering Ricker wavelets with peak frequencies of 30 Hz and 10 
ms spacing, and (c) an odd pair of 2 interfering Ricker wavelets with peak frequencies 
of 30 Hz and 10 ms spacing.   
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Figure 14). Six phase panels illustrating application of the CWT using a window length 
of 40 ms to the six trace models with length 200 ms and sampling rate 1 ms shown in 
Figure 6.  Figures show (a) a single Ricker wavelet with a peak frequency of 30 Hz, (b) 
an even pair of 2 interfering Ricker wavelets with peak frequencies of 30 Hz and 10 
ms spacing, and (c) an odd pair of 2 interfering Ricker wavelets with peak frequencies 
of 30 Hz and 10 ms spacing.   
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Figure 15). Six phase panels illustrating application of the CLSSA using a window 
length of 40 ms to the six trace models with length 200 ms and sampling rate 1 ms 
shown in Figure 6.  Figures show (a) a single Ricker wavelet with a peak frequency of 
30 Hz, (b) an even pair of 2 interfering Ricker wavelets with peak frequencies of 30 Hz 
and 10 ms spacing, and (c) an odd pair of 2 interfering Ricker wavelets with peak 
frequencies of 30 Hz and 10 ms spacing.   
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and Hilbert Transform respectively.  A feature of interest is the analytical amplitude 

notch location previously computed for the even Ricker model.  This notch should occur 

at 50 Hz.  On phase plots, the notch corresponds to the location of a phase reversal on 

the frequency axis, which is particularly prominent in plots.  In the even Ricker pair 

models for each transform, white arrows show the location of the phase reversal.  We 

observe that the reversal approaches 50 Hz sequentially for STFT, CWT, and CLSSA 

respectively.  Thus, the accuracy interpretation of layering characteristics using phase 

can be improved by using CLSSA. 

4.4.  Effect of varying αF 

The variation of parameter αF creates a tradeoff between stability and goodness 

of fit.  For a linear problem, increasing αF is equivalent to increasing the energy on the 

diagonal, thereby stabilizing the inversion.  Figure 16 illustrates the loss of accuracy in 

terms of residual as a percent of total amplitude that results from increasing αF for a 40 

ms Hann window centered on a Ricker wavelet signal.  As αF is increased to .1, the 

residual grows to a significant percentage of the total amplitude.  Thus, inversion 

accuracy is compromised by introducing a large αF.  As previously stated, we set αF=.001 

as default in our implementation.  This generally produces solutions that are robust to 

noise without significantly sacrificing accuracy. 
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4.5.  Effect of varying Ni 

In order to assess the impact of varying the number of iterations Ni of the 

method, we plot solutions for different Ni values applied to a 30 Hz Ricker wavelet 

within a 40 ms window in Figure 17.  It is clear that while the CLSSA result for Ni =1 

closely approximates the true Ricker spectrum, increasing the number of iterations 

generates progressively sparser solutions.  In the limit, these solutions tend toward a 3-

sinusoid model as Ni increases.  Thus, the Ricker wavelet within the windowed portion  

Figure 16). Illustration of varying α in computing the 40 ms Hann window CLSSA 
(Ni=1, αF=.001) spectrum centered on a Ricker wavelet.   As α is increased, the 
goodness of fit decreases, while the stability of the solution increases.     
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Figure 17). Solutions for different Ni values applied to a 30 Hz Ricker wavelet within a 
40 ms window.  While Ni=1 closely approximates the true Ricker spectrum, increasing 
the number of iterations generates progressively sparser solutions.  In the limit, these 
solutions tend toward a 3-sinusoid model as Ni increases (i.e. Ni=9).  Thus, the Ricker 
wavelet within the windowed portion of the data could be accurately modeled as 3 
beating sinusoids.   
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Figure 18). Time-domain reconstruction of the Ricker wavelets within the window for 
the suite of Ni values.  Note that, while all values of Ni closely match the signal within 
the window, the smooth Ni=1 spectrum produces the best match outside the 
window and most compact time domain representation of the signal.  As further 
iterations (i.e. Ni>1 ) drive more frequency compactness, one observes increasing 
energy outside of the analysis window because the signal is approximated by fewer 
sinusoidal waveforms.  However, note that notched spectra dominated by reflectivity 
might be better modeled by Ni>1. 
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of the data can be modeled well as 3 beating sinusoids.  Figure 18 shows the time-

domain reconstruction of the Ricker wavelets within the window for the suite of Ni 

values.  Note that, while results for different Ni closely match the signal within the 

window, the smooth Ni =1 spectrum produces the best match outside the window and 

the most compact time domain representation of the signal.  As further iterations (i.e. 

Ni>1) drive more frequency compactness, one observes increasing energy outside of the 

analysis window because the signal is approximated by fewer sinusoidal waveforms.   

4.6.  Application to layered synthetic traces 

We constructed layered blocky impedance synthetic models comprised of even 

and odd reflectivity dipoles in series.  Time thicknesses are varied from 0 ms to 32 ms 

with a layer center spacing of 100 ms.  The wavelet, reflectivity models, and resulting 

convolutional synthetic models are illustrated in Figures 19 a-c and 20 a-c.  We applied 

the STFT, CWT, and CLSSA (Ni = 1) to the even and odd synthetic events (Figures 19 d-f 

and 20 d-f).  The STFT artifacts obscure the systematic reflectivity patterns and event 

identification in the frequency domain.  The CWT suffers from the use of low frequency 

wavelets to analyze the low frequency components.  These wavelets are temporally 

non-localized, and mix information from disparate reflectors.  Hence, interferences 

between not only the bounding surfaces of individual thin layers but also interferences 

between nearby layers themselves are observed in the time-frequency panels as low 

frequency streaking artifacts.  This effect can lead to false inferences about local  
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Figure 19). Even dipole pair synthetic reflectivity model with increasing thickness as a 
function of time.  In order to demonstrate robustness in the presence of noise, we 
added noise having an L2-norm equal to .1 times the L2-norm of the signal.  Figures 
show (a) reflectivity model, (b) Ricker wavelet with center frequency = 30 Hz, (c) 
synthetic model trace, (d) STFT applied to the synthetic trace using a window length 
of 40 ms, (e) CWT using a Morlet wavelet dictionary applied to the synthetic trace, 
and (f) CLSSA (Ni =1) applied to synthetic trace using a window length of 40 ms.  The 
three methods show comparable robustness in the presence of noise.  Reflectivity 
notching patterns related to thickness are obscured by the DFT and CWT, and 
apparent in the CLSSA spectral panel result.  Temporal separation of events is better 
for the CLSSA result, which resolves layers as thin as approximately 12 ms at high 
frequencies (arrow).  For beds thinner than this threshold, the events merge.   
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Figure 20).  Odd dipole pair synthetic reflectivity model with increasing thickness as a 
function of time.  In order to demonstrate robustness in the presence of noise, we 
added noise having an L2-norm equal to .1 times the L2-norm of the signal.    Figures 
show (a) reflectivity model, (b) Ricker wavelet with center frequency = 30 Hz, (c) 
synthetic model trace, (d) STFT applied to the synthetic trace using a window length 
of 40 ms, (e) CWT applied to synthetic trace, and (f) CLSSA (Ni = 1) applied to 
synthetic trace using a window length of 40 ms.  The three methods show 
comparable robustness in the presence of noise.  None of the events are resolved by 
the STFT and CWT.  Reflectivity notching patterns obscured by the CWT are apparent 
in the STFT and CLSSA spectral panels.  CLSSA exhibits sharper spectral notches 
defining thin bed dipoles in the time domain.  Temporal separation of events is 
observed for layers as thin as approximately 24 ms at high frequencies (arrow).  For 
layers thinner than this threshold, the notching, observed at high frequencies, moves 
outside the data.  The three methods show robustness in the presence of noise. 
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reflectivity.  The CWT spectrum is not instantaneous; and, therefore, cannot quantify 

localized reflectivity spectra.  In contrast, the CLSSA resolves the systematic shift in 

reflectivity notches (decreasing notch frequency with increasing thickness) and resolves 

top and base events 12 ms thick and greater for the even pair and 24 ms thick and 

greater for the odd pair.  This difference in apparent resolution is due to the fact that a 

perfectly odd dipole conforms to the classical Widess (1973) resolution limit while the 

even impulse pair does not (see Puryear and Castagna, 2008).  Also, the odd dipole pair 

notch occurs at higher frequencies than the even dipole notch (and can be outside the 

band of the data), thereby obscuring high frequency expressions of temporal thickness.  

In order to assess robustness in the presence of noise, we added different types of noise 

to the CLSSA models and plotted the results in Appendix C.  Furthermore, examples of 

Matlab CLSSA code to produce Figures 19 c and f and 20 c and f are given in Appendix D.    

4.7.  Resolution analysis 

In order to better understand the time and frequency resolution characteristics 

of the STFT and the CLSSA (Ni = 1), we applied the transforms using a range of window 

lengths centered on a Hann tapered Ricker Wavelet, and quantified the results using the 

standard deviation from the peak frequency of the spectrum as a measure of frequency 

resolution.  This analysis would not be meaningful on the CWT because the effective 

window length is a function of frequency.  In Figure 21, we plot the frequency standard 

deviation around peak frequency normalized by peak frequency vs. the window length 
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normalized by the period of the peak frequency.  The normalization is therefore scale 

independent.   

As windowing always broadens the Fourier spectrum, the standard deviation is 

traditionally used to measure frequency resolution (see discussion of Heisenberg’s 

Uncertainty Principle in Bracewell, 1986).  We used CLSSA both with and without the 

Hilbert operator.  When using only the real waveform, CLSSA has exactly the same 

window length as the Fourier Transform; the plot thus proves that real CLSSA has better 

frequency resolution and Heisenberg uncertainty product than the Fourier Transform. 

For full CLSSA, the Hilbert operator senses data somewhat outside of the analysis 

window, so the comparison to Fourier is less exact.  Nevertheless, the improvement in 

frequency resolution is clear, particularly for window lengths greater than twice the 

period corresponding to the peak frequency, where real and full CLSSA converge in 

resolution.  As window length is reduced towards the period of the peak frequency, 

resolution of real CLSSA approaches that of the Fourier Transform.  Below the period of 

the peak frequency, real CLSSA becomes unreliable and the comparison is less 

meaningful. It can be seen that for short windows, the stabilizing influence of using the 

Hilbert operator results in superior frequency resolution.  
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Figure 21).  Frequency Resolution test for Hann windowed STFT and CLSSA (Ni=1, 
αF=.001) spectra of a Ricker wavelet.  We compute standard deviation from the peak 
frequency.  Plots show: (a) a 30 Hz Ricker wavelet signal, (b) the true Ricker wavelet 
spectrum and equivalent Gaussian function plotted to one standard deviation (c) 
weighted standard deviation computed on the STFT, CLSSA (Ni=1, αF=.001), and real 
CLSSA (Ni=1, αF=.001) frequency spectra (normalized by the peak frequency) for 
Hann windows ranging from 20 ms to 100 ms (normalized by the dominant period in 
the plot) applied to the Ricker wavelet.  CLSSA has a significantly smaller weighted 
standard deviation than the STFT (i.e. the computed spectra are narrower for all 
window lengths within this standard use range).  Real CLSSA shows similar 
advantages for longer windows (Window Length/Dominant Period>2).  For very long 
windows, the standard deviation results of all methods converge.   
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4. REAL DATA RESULTS 

4.1.  Real data trace frequency panels 

We compare the STFT, CWT, and CLSSA using frequency panels for a seismic data 

set with a bright spot associated with a known hydrocarbon accumulation. If well 

control is available, Ni should be chosen based on synthetic modeling.  In the absence of 

well control, we chose Ni=3 because it reveals high-resolution peak frequency trends in 

the up-dip and down-dip example traces.  In Figures 22 and 23, we display frequency 

panels through the formation at the bright spot (t = 350 ms) and correlative down-dip  

(t = 365 ms) sand locations.  Displayed are the original trace, time-frequency gathers for 

the STFT, CWT, and CLSSA, peak frequency for each method, and standard deviation in 

frequency for each method.  In order to fix the time resolution while studying frequency 

resolution, we applied the STFT and CLSSA using identical 20 ms Hann tapered windows.   

The CWT has very poor time resolution at low frequencies, and is dominated by 

the mixing of low frequency energy from nearby reflectors in the temporal vicinity of 

the bright spot (Figure 22c).  The STFT result includes the doublet artifact of the trough 

over peak reservoir event, resulting from a strong DC bias when the short window 

predominantly isolates a single positive or negative waveform loop.  Although the STFT 

and CLSSA show comparable time resolution fixed by the choice of window length, the 

CLSSA frequency section yields superior detail of the frequency characteristics of the 

bright spot sand.  The STFT frequency energy is smeared across the spectrum and 

outside the bandwidth of the data, yielding poor frequency resolution and shifting the 
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peak frequency to the high end of the spectrum.  CLSSA spectral energy is not smeared 

outside the actual data bandwidth at the upper limit, although a local DC component 

appears at the side-lobes due to the short window.  It is noteworthy that the CLSSA 

yields high frequency resolution and accuracy using such a short window, while spectral 

distortion from the STFT renders it unsuitable for spectral analysis using the same short 

window.   

We computed peak frequencies and standard deviations where trace sample 

amplitudes were greater than 2 percent of the maximum amplitude, excluding DC peak 

frequencies (an artifact of the short window).  Peak frequency vs. time for the up-dip 

sand is shown in Figure 22e.  Note the significantly higher STFT peak frequencies at the 

reservoir and the correlative down-dip sand due to spectral smearing.  In general, the 

CLSSA yields higher peak frequency estimates than the CWT, which is biased toward low 

frequency energy.  Mean peak frequencies are 40.56 for the STFT, 16.67 for the CWT, 

and 25.95 for CLSSA.  Standard deviation vs. time for the up-dip sand is plotted in Figure 

22f.  Like peak frequencies, standard deviations about the mean frequency of the STFT 

are consistently and significantly higher than those of the CWT and CLSSA.  CLSSA 

generally has lower standard deviation values than the CWT (it has better frequency 

resolution).  Mean standard deviations are 4.98 for the STFT, 2.02 for the CWT, and 1.59 

for CLSSA.    
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On the down-dip trace (Figure 23), it is also clear that CLSSA is more sensitive to 

local peak frequency variation than STFT and CWT and that its standard deviations are 

lower.  We anticipate that CLSSA will produce better stratigraphic resolution on 

frequency attribute maps.  While amplitudes are dimmer on the down-dip section, peak 

frequencies are lower, indicating possible changes in the reflectivity spectrum.   

Figure 22).  Up-dip real data trace with spectral decomposition and associated 
attributes (reservoir is at approximately t = 350 ms).  Plots show (a) the original 
synthetic trace, (b) the 20 ms window STFT result, (c) the CWT result, (d) the 20 ms 
window single iteration CLSSA (Ni = 3) result, (e) thresholded peak frequencies where 
amplitude is greater than 2 percent of maximum amplitude and DC peak frequencies 
are excluded, and (f) thresholded amplitude-weighted standard deviations where 
amplitude is greater than 2 percent of maximum amplitude.   
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4.2. Turbidite bright spot 3D example 

We apply the methods studied in this paper to a Gulf of Mexico seismic dataset 

that images a leveed turbidite channel.  The data show a shale-filled turbidite with 

bright spot overbank deposits that are producing reservoirs.  An amplitude extraction on 

the turbidite horizon is shown in Figure 24.  The large-scale stratigraphic feature masks 

many smaller features that can potentially be revealed using spectral decomposition. 

Figure 23).  Down-dip real data trace with spectral decomposition and associated 
attributes (down-dip brine is at approximately t = 365 ms).  Plots show (a) the original 
synthetic trace, (b) the 20 ms window STFT result, (c) the CWT result, (d) the 20 ms 
window single iteration CLSSA (Ni = 3) result, (e) thresholded peak frequencies where 
amplitude is greater than 2 percent of maximum amplitude and DC peak frequencies 
are excluded, and (f) thresholded amplitude-weighted standard deviations where 
amplitude is greater than 2 percent of maximum amplitude. 
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Figure 25 shows the original data with a prominent brightspot overbank deposit 

and CWT isofrequency vertical sections along the black section line shown in Figure 24.  

To illustrate variability in the spectrum, we display spectral components from 5 to 35 Hz 

with a 10 Hz frequency increment.  The CWT shows major variation in temporal 

resolution across the spectrum as expected.  Because window length is directly 

proportional to frequency for the CWT, a step from 5 Hz to 15 Hz imples a 3 fold shift in 

temporal resolution.  This effect is observed in the plots.  Furthermore, as frequency 

increases, progressively thinner sections of the overbank deposit are highlighted by the 

Figure 24).  Amplitude on horizon of a leveed turbidite channel system from a Gulf of 
Mexico dataset. Black line shows the location of vertical sections in figures 25-34.   
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CWT.  Figure 26 yields another look at the channel response.  We pick a horizon (Figure 

26a) across a trough of the channel in order to further understand the local response 

relative to adjacent strata.  The spectrum is computed at each location along the 

horizon and plotted in the trace number vs frequency panel (Figure 26b).  Again, lower 

frequencies highlight thicker parts of the overbank deposit, and the spectral response 

migrates outward with increasing frequency.  Figure 26c shows a plot of correlations 

among frequency components, and illustrates the strength of the CWT in terms of 

frequency discrimination.  Low frequencies are strongly independent, and frequency 

discrimination gradually deteriorates to the upper limits of the spectrum.  Overall, the 

CWT is a good tool for interpreting the frequency (but not temporal) characteristics of 

the channel response. 

Figures 27-28 show the result computed with the 20 ms STFT.  In Figure 27, 

Amplitude energy is spread across the spectrum and outside the wavelet band, and the 

frequency components show markedly less variability than the CWT from the low to 

high end of the spectrum.  We infer that this lack of discrimination is related to the low 

frequency resolution of the very short STFT (df=1/20 ms=50 Hz ).  In order to further 

study this phenomenon, we look to Figure 28.  Visually, we note strong homogeneity  

across the spectrum on the trace number-frequency panel, which is further quantified in 

the component correlation plot (Figure 28c).  Clearly, frequency components are highly 

correlated across the spectrum, and the very short 20 ms window does not provide 

adequate spectral resolution for any type of quantitative interpretation.    
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Figure 25).  Original seismic data and CWT vertical isofrequency sections through the 
black section line show in Figure 24.  Plots show the (a) vertical seismic section, (b) 5 
Hz section output, (c) 15 Hz section output, (d) 25 Hz section output , and (e) 35 Hz 
section output.  At low frequencies, the CWT simply integrates the channel with 
surrounding amplitude information and the thicker section of the overbank deposit is 
preferentially highlighted.  Higher frequencies emphasize progressively thinner 
sections of the overbank deposit.   
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Figure 26).  Seismic data section and CWT spectrum through the black section line 
shown in Figure 24.  Plots show the (a) vertical seismic section with picked horizon, 
(b) frequency panel up to 60 Hz (high limit of the seismic data band) on the horizon, 
and (c) component correlation matrix for the CWT components plotted in (b).  The 
horizon is picked along a trough, and the frequency panel is extracted on the horizon.   
Amplitude energy is largely restricted to the wavelet band for the CWT.  Frequency 
components are well-resolved (low correlation) at low frequencies and frequency 
discrimination decreases as frequency increases.      
 



57 

 

 

 

 

 

 

Figure 27).  Original seismic data and 20 ms STFT vertical isofrequency sections 
through the black section line show in Figure 24.  Plots show the (a) vertical seismic 
section, (b) 5 Hz section output, (c) 15 Hz section output, (d) 25 Hz section output , 
and (e) 35 Hz section output.  The frequency sections show low variation as a 
function of frequency, a consequence of poor frequency resolution.   
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Figure 28).  Seismic data section and 20 ms STFT spectrum through the black section 
line shown in Figure 24.  Plots show the (a) vertical seismic section with picked 
horizon, (b) frequency panel up to 60 Hz (high limit of the seismic data band) on the 
horizon, and (c) component correlation matrix for the 20 ms STFT components 
plotted in (b).  The horizon is picked along a trough, and the frequency panel is 
extracted on the horizon.   Amplitude energy is spread across the spectrum and 
outside the wavelet band (Figure 28b).  Frequency components are very poorly 
resolved across the spectrum (Figure 28c), which corresponds to the lack of 
frequency discrimination observed in Figure 27. 
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Figures 29-30 show the result computed with the 20 ms CLSSA (Ni=1, αF=.001).  

In Figure 29, there are significant differences between 5 Hz and 15 Hz, while at higher 

frequencies, for example 25 Hz and 35 Hz, differences appear much less significant.  As 

previously discussed, CLSSA preferentially incorporates low frequency information in the 

window due to the Hilbert transform operator.  Thus, even for a very short window (in 

this case 20 ms), a high level of low frequency discrimination is achieved.  Also, note 

that at higher frequencies, spreading amplitude lobes appear that could correspond to 

thinner sections of the overbank deposit.  These are not distinct on the CWT or 20 ms 

STFT results.  Figure 30b captures heightened spectral variability at low frequencies, and 

Figure 30c component correlation matrix illustrates the preferential spectral resolution 

at low frequencies. 

Figures 31-32 show the result computed with the 40 ms STFT.  In Figure 31, 

Amplitude energy is spread across the spectrum and outside the wavelet band, although 

this spreading effect is less pronounced than with the 20 ms STFT.  For this window 

length, spectral resolution is doubled over the 20 ms STFT, and variation is observed 

across the spectrum.  However, the tuned peaks visible on the 20 ms CLSSA (Ni=1, 

αF=.001) are not obvious on the 40 ms STFT.  The component correlation matrix (Figure 

32) confirms significantly greater frequency discrimination than the 20 ms STFT and 

slightly poorer than the 20 ms CLSSA (Ni=1, αF=.001) at high frequencies.   

 



60 

 

 

 

 

 

 

Figure 29).  Original seismic data and 20 ms CLSSA (Ni=1, αF=.001) vertical 
isofrequency sections through the black section line show in Figure 24.  Plots show 
the (a) vertical seismic section, (b) 5 Hz section output, (c) 15 Hz section output, (d) 
25 Hz section output , and (e) 35 Hz section output.  The frequency sections show 
variability as a function of frequency at low frequencies, which diminishes at high 
frequencies.  Spreading amplitude peaks not obvious on the 20 m STFT are seen at 
high frequencies, indicating thickness variation. 
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Figure 30).  Seismic data section and 20 ms CLSSA (Ni=1, αF=.001) spectrum through 
the black line shown in Figure 24.  Plots show the (a) vertical seismic section with 
picked horizon, (b) frequency panel up to 60 Hz (high limit of the seismic data band) 
on the horizon, and (c) component correlation matrix for the 20 ms CLSSA (Ni=1, 
αF=.001) components plotted in (b).  The horizon is picked along a trough, and the 
frequency panel is extracted on the horizon.   The low frequency discrimination/high 
frequency lack of discrimination noted in Figure 29 is observed in the frequency 
panels and the correlation component plots.      
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Figure 31).  Original seismic data and 40 ms STFT vertical isofrequency sections 
through the black section line show in Figure 24.  Plots show the (a) vertical seismic 
section, (b) 5 Hz section output, (c) 15 Hz section output, (d) 25 Hz section output , 
and (e) 35 Hz section output.  The frequency sections show significantly greater 
variability as a function of frequency across the spectrum than the 20 ms STFT result.   
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Figure 32).  Seismic data section and 40 ms STFT spectrum through the black line 
shown in Figure 24.  Plots show the (a) vertical seismic section with picked horizon, 
(b) frequency panel up to 60 Hz (high limit of the seismic data band) on the horizon, 
and (c) component correlation matrix for the 40 ms STFT components plotted in (b).  
The horizon is picked along a trough, and the frequency panel is extracted on the 
horizon.   Amplitude energy is spread across the spectrum and outside the wavelet 
band.  The component correlation matrix confirms significantly greater frequency 
discrimination than the 20 ms STFT and poorer than the 20 ms CLSSA (Ni=1, αF=.001), 
especially at low frequencies.   
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Figures 33-34 show the result computed with the 40 ms CLSSA (Ni=1, αF=.001).  

There are significant differences across the spectrum (including high frequencies), 

indicating improved spectral resolution over previous examples.  Figure 34b captures 

heightened spectral variability, and Figure 34c component correlation matrix illustrates 

significant improvement in resolution over the 40 ms STFT, particularly at low 

frequencies. 

Figure 35 shows several spectral decomposition peak frequency results on the 

horizon shown in Figure 24.  The turbidite channel is not interpretable on the CWT 

result due to interference with neighboring events (poor temporal resolution).  The 20 

ms CLSSA result shows slightly more detail than the 20 ms STFT result, which gravitates 

toward very high frequency components due to the lack of spectral resolution. 

df=1/20ms=50 Hz, so 50 Hz is the first non-zero spectral component.  A 40 ms window is 

needed in order to capture adequate frequency detail of the channel.  Because the 

results are strongly biased toward the 25 Hz component for the 40 ms STFT, the peak 

frequencies of the channel fall within the background, and the channel is not captured 

by the 40 ms STFT.  By contrast, the CLSSA result shows useful frequency details that are  

used to map channel thickness variation.  Figure 36 illustrates the corresponding 

thickness variation maps for each method.  For an odd dipole pair, the thickness is 

computed in ms by 1/(2*fpeak), where fpeak is peak frequency.  
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Figure 33).  Original seismic data and 40 ms CLSSA (Ni=1, αF=.001) vertical 
isofrequency sections through the black line show in Figure 24.  Plots show the (a) 
vertical seismic section, (b) 5 Hz section output, (c) 15 Hz section output, (d) 25 Hz 
section output , and (e) 35 Hz section output.  As compared to preceeding examples, 
the frequency sections show stronger variability across the spectrum.   
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Figure 34).  Seismic data section and 40 ms CLSSA (Ni=1, αF=.001) spectrum through 
the black section line shown in Figure 24.  Plots show the (a) vertical seismic section 
with picked horizon, (b) frequency panel up to 60 Hz (high limit of the seismic data 
band) on the horizon, and (c) component correlation matrix for the 40 ms CLSSA 
(Ni=1, αF=.001) components plotted in (b).  The horizon is picked along a trough, 
and the frequency panel is extracted on the horizon.   As compared to previous 
examples, amplitude spectrum energy is compacted and the component correlation 
matrix confirms superior frequency discrimination and recognition of the wavelet 
bandwidth.      
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Figure 37 shows spectral decomposition peak amplitude results corresponding to 

the peak frequency results in Figure 35 on the horizon shown in Figure 24.  The turbidite 

channel is not easily interpretable on the CWT result due to interference with 

neighboring events (i.e. channel amplitudes are suppressed). For each method, the 

results are comparable for 20 ms and 40 ms windows. The CLSSA results show improved 

delineation of the channel features over the STFT due to significantly increased dynamic 

range.    

4.3.  Barnett 3D Example 

A second dataset comprises the combined processed Harris and Gleason 3D 

surveys in Hamilton County, Texas, which totals approximately 88.28 square miles of 3D 

data. The Gleason 3D survey data were acquired in 2005, and the Harris 3D survey data 

were acquired in 2006.  Hamilton County is located in the Fort Worth Basin, which is an 

important petroleum system that is normally faulted against the Muenster Arch to the 

North and East.  The primary reservoir is the Barnett, a dense, organic-rich shale gas 

reservoir covering more than 5,000 square miles and stretching across 20 counties in 

North Central Texas.  Some experts believe the Barnett Shale could contain more than 

an estimated 40 trillion cubic feet of natural gas, making it one of the largest onshore 

natural gas fields in the United States.  The Barnett is a “tight” gas reservoir, meaning 

that gas is not easily extracted by conventional means.  In some locations, the Barnett is 

divided into upper and lower members of the Forestburg Limestone.  In the Barnett, 

producers have observed a correlation between thickness and hydrocarbon  
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Figure 35).  Spectral decomposition peak frequency results on a horizon picked on a 
turbidite channel. Plots show (a) amplitude extraction on the original horizon, (b) 
CWT peak frequency extraction, (c) 20 ms STFT peak frequency extraction, (d) 20 ms 
CLSSA (Ni=1, αF=.001) peak frequency extraction, (e) 40 ms STFT peak frequency 
extraction, and (f) 40 ms CLSSA (Ni=1, αF=.001) peak frequency extraction. The 
turbidite channel is not interpretable on the CWT result due to interference with 
neighboring events. While the 20 ms CLSSA result shows slightly more detail than 
the 20 ms STFT result, a 40 ms window is needed in order to capture subtle detail.  
Because the results are strongly biased toward the 25 Hz component for the 40 ms 
STFT, the peak frequency analysis does not capture the channel as an anomaly.      
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Figure 36).  Spectral decomposition two-way time thickness calculation on a horizon 
picked on a turbidite channel. Plots show (a) amplitude extraction on the original 
horizon, (b) CWT thickness calculation, (c) 20 ms STFT thickness calculation, (d) 20 
ms CLSSA (Ni=1, αF=.001) thickness calculation, (e) 40 ms STFT thickness 
calculation, and (f) 40 ms CLSSA (Ni=1, αF=.001) thickness calculation. The turbidite 
channel is not interpretable on the CWT result due to interference with neighboring 
events. Thickness variation is best highlighted on the 40 ms CLSSA map.      
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Figure 37).  Spectral decomposition peak amplitude results on a horizon picked on a 
turbidite channel. Plots show (a) amplitude extraction on the original horizon, (b) 
CWT peak amplitude extraction, (c) 20 ms STFT peak amplitude extraction, (d) 20 
ms CLSSA (Ni=1, αF=.001) peak amplitude extraction, (e) 40 ms STFT peak amplitude 
extraction, and (f) 40 ms CLSSA (Ni=1, αF=.001) peak amplitude extraction. The 
turbidite channel is not easily interpretable on the CWT result due to interference 
with neighboring events. For each method, the results are comparable for 20 ms 
and 40 ms windows. The CLSSA results show improved delineation of the channel 
features over the STFT due to significantly increased dynamic range.    
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productivity.  According to Bruner and Smosna (2011), wells that encounter faults 

and/or karst tend to be less productive, while wells that intersect natural fractures tend 

to produce more gas.  The overlying Marble Falls Formation (Pennsylvanian) is primarily 

limestone, and the underlying Ellenburger Formation (Ordovician) comprises porous 

dolomite and limestone.  Water migrates from the Ellenburger into the Barnett by fault 

conduits. 

Figure 38a shows data amplitude on a time slice at 750 ms.  A vertical cross 

section A-B (black line) though the data and possible fault locations (black arrows) are 

also indicated.  In Figure 38b, the interpreted locations of antithetic slump features at 

the top of the Barnett potentially linking to underlying fault systems in the Ellenberger 

are indicated by black arrows.  The black horizontal line shows the location of the time 

slice plotted in Figure 38a. 

Figure 39 shows a comparison of the original data amplitude to the amplitudes 

extracted from the spectral decomposition results on the time slice (t=750 ms), 

including the STFT 40 ms 20 Hz map, CWT 20 Hz map, and CLSSA (Ni=1, αF=.001) 40 ms 

20 Hz map.  White arrows indicate an interpretation of the fault locations using CLSSA.  

The faults can be approximately inferred with difficulty on the original data map.  On the 

STFT result, the linear features are overwhelmed by noise, possibly smeared from other 

portions of the spectrum.  While there is some evidence of a linear disruption on the 

CWT, the results also fail to clearly highlight the fault trends.  By contrast, CLSSA clearly 

indicates fault trends not obvious on the other maps.   
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Figure 38).  Marathon Harris dataset time slice and vertical section map. Plots show: 
(a) amplitude on a time slice through the seismic data at 750 ms and location of 
cross section A-B (black line) though several faults and (b) vertical section A-B 
though faults.  Black arrows indicate locations of interpreted faults.    
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Figure 39).  Marathon Harris dataset original data amplitude and 20 Hz spectral 
decomposition amplitudes on a time slice at 750 ms (see Figure 38). Plots show: (a) 
original data amplitude on the time slice, (b) 40 ms STFT 20 Hz amplitude on the 
time slice, (c) CWT 20 Hz amplitude on the time slice, and (d) 40 ms CLSSA (Ni=1, 
αF=.001) 20 Hz amplitude on the time slice.  Arrows indicate interpreted faults, 
which are most visible for interpretation on the CLSSA result.  
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Figure 40).  Marathon Harris dataset original data instantaneous phase and 20 Hz 
spectral decomposition phase on a time slice at 750 ms (see Figure 38). Plots show: 
(a) original data instantaneous phase on the time slice, (b) 40 ms STFT 20 Hz phase 
on the time slice, (c) CWT 20 Hz phase on the time slice, and (d) 40 ms CLSSA (Ni=1, 
αF=.001) 20 Hz phase on the time slice.  Arrows indicate interpreted faults.  
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Figure 40 shows phase plots on the same time slice.  For comparison, the 

instantaneous phase on the original data is plotted in Figure 40a.  Phase plots for each 

method show slightly different features, although the similarities among them are 

greater than on the amplitude maps.  

5. DISCUSSION 

Our modeling and real data spectral decomposition results show noteworthy 

improvement in resolution that follows from the application of fundamental principles 

of Fourier theory discussed in this paper.  In order to generate valid time-frequency 

signal decompositions representative of the data within the window, rather than the 

windowed data, application of the Fourier Transform requires that the basis sinusoids 

be orthogonal.  Generally, Fourier theory is to this day commonly applied using implicit 

analog assumptions, while the signals themselves have evolved to digital.  Practitioners 

have learned to understand and deal with the consequences of windowing; however, in 

digital applications, it is not necessary to assume that the off-diagonal terms of the 

normal equations are zero, as the Fourier Transform implicitly does.  Windowing effects 

can be mitigated by incorporating a priori information.   For short windows, the STFT 

produces a set of sparse, evenly spaced spectral coefficients, resulting in dilution of 

spectral information content.  Instead of being projected onto the continuous frequency 

domain, energy is restricted to discrete frequencies, resulting in distortion.  

Furthermore, there is no a priori information incorporated into the STFT formulation to 

favor resolution of the seismic band of interest.   



76 

With the development of modern computational science and inverse theory, 

these limitations of the STFT are surmountable.  Instead of independently cross-

correlating the signal with each orthogonal basis, we solve the normal equations with 

non-zero off-diagonal terms, thereby significantly reducing spectral component leakage.  

To do so robustly requires constraints, and our CLSSA formulation readily incorporates 

such constraints.  Thus, the inversion for frequency coefficients can be formulated by 

including a priori knowledge of the signals through mW .   

The complex trace effectively lengthens the window according to frequency.  

The Hilbert transform operator incorporates more information from outside the window 

at low frequencies than at high frequencies.  In this sense, the complex CLSSA can be 

considered as having a frequency-dependent window.  More importantly, the complex 

trace permits the use of infinitesimally short windows.  For example, in the limit we can 

use just one sample window.  In that case, CLSSA will simply produce instantaneous 

phase and frequency of one equivalent sinusoidal function. 

The results of applying CLSSA to waveform models and real data traces validate 

the theoretical improvement in spectral resolution, and the hypothesis that the time-

frequency product limitation can be improved over conventional methods.  An 

additional benefit of the CLSSA method is that it does not require even sampling of the 

data in time or space, and can therefore be readily applied to a variety of seismic and 

non-seismic processing, inversion, and analysis problems.  For example, the method 

could be extended to 2D spatial Fourier transforms, as irregular spatial sampling is 
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common, or to improve aperture resolution.  Furthermore, the method could be applied 

to variable sampled data in the time domain for a variety of signal types.  It is inferred 

that different types of signals will exhibit spectral-statistical characteristics that can be 

exploited by inversion formulations tailored to these characteristics.  However, further 

modeling and case studies on seismic data are required to better understand the 

potential applications in identification and interpretation of geological features of 

interest.  

There are a variety of avenues for future research aimed at furthering the CLSSA 

method: improved inversion algorithms, combination of window types and lengths, 

better use of STFT and CWT results as constraints, handling the DC problem better etc. 

We have attempted to show the promise of the CLSSA approach; however a number of 

complete case study comparisons to STFT, CWT, and other methods etc. will be needed 

before definitive conclusions can be drawn.  

Whether or not one is convinced that CLSSA spectra are superior to those 

obtained using the CWT or STFT, the simple fact that the results are different is 

significant.  Time-frequency analysis is non-unique, and there is no correct answer.  A 

different valid answer may prove to be a useful addition to multi-attribute analysis in a 

given circumstance.   

6. CONCLUSIONS 

We developed an inversion-based algorithm for computing the spectral 

decomposition of seismic data using CLSSA and tested the algorithm on synthetic 
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waveforms and real data.  The decomposition is performed by the inversion of a basis of 

truncated sinusoidal kernels in a short time window.  The method results in a time-

frequency analysis with frequency resolution and time-frequency product superior to 

the STFT and the CWT.  The classical spectral smoothing inherent to Fourier spectral 

analysis of windowed data is reduced or eliminated, thereby allowing analysis of the 

spectral characteristics of composite reflections within windows significantly shorter 

than those used in previously published spectral decomposition work.  We 

demonstrated the efficacy of the CLSSA transform on 6 synthetic waveforms.  For 

sinusoidal waveforms, spectral content was resolved nearly perfectly using CLSSA, while 

frequency smearing effects dominated the STFT and CWT spectra.  Ricker wavelet 

spectra were also well resolved within the short window.  In all cases, the CLSSA spectra 

had narrower bandwidth than the CWT and STFT spectra due to the absence or 

reduction of window smearing effects.  The real data trace frequency panel results 

showed improvements in the spectral analysis of a bright spot, including narrower 

frequency spectra and more detailed peak frequency trends potentially related to 

geological characteristics.  Application of the method to seismic datasets containing a 

turbidite channel system and the Barnett shale resulted in the tentative interpretation 

of architectural elements not observed using conventional spectral decomposition 

methods. 
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ABSTRACT  
 

Spectral inversion is a seismic method that uses a priori information and spectral 

decomposition to improve images of thin layers whose thickness is below the tuning 

thickness.  We formulate a method to invert frequency spectra for layer thickness and 

apply it to synthetic and real data using complex spectral analysis.  We find that 

absolute layer thicknesses significantly below the seismic tuning thickness can be 

robustly determined in this fashion without amplitude calibration.  We extend our 

method to encompass a generalized reflectivity series represented by a summation of 

impulse pairs.  Application of our spectral inversion to seismic datasets from the Gulf of 

Mexico results in reliable well ties to seismic, accurate prediction of layer thickness to 

less than half the tuning thickness, and improved imaging of subtle stratigraphic 

features.  Comparisons between well ties for spectrally inverted data and those for 

conventional seismic data illustrate the superior resolution of the former.  A number of 

stratigraphic examples illustrate the various destructive effects of the wavelet, including 

creation of illusory geologic information, such as false stratigraphic truncations that are 

actually related to lateral changes in rock properties, and masking of geologic 

information, such as updip limits of thin layers.  We conclude that data which are 

spectrally inverted on a trace-by-trace basis show greater bedding continuity than do 

the original seismic data, suggesting that wavelet sidelobe interference produces false 

bedding discontinuities.  
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INTRODUCTION 

  

According to the Widess (1973) model, seismically thin layers below 1/8th of a 

wavelength in thickness cannot be resolved.  However, such "thin" layers may be 

significant reservoirs or important flow units within reservoirs. Exploration and 

development geophysicists are frequently faced with the task of inferring layer thickness 

for layers such as these where the top and base of the layer cannot be distinctly 

mapped. Determination of layer properties for such seismically thin beds is 

consequently of great interest in both exploration and development applications.  While 

tuning-thickness analysis based on the theory of  Widess (1973) and Kallweit and Wood 

(1982) has been the method of choice for thickness mapping for several decades, 

Partyka et al. (1999), Partyka (2005), and Marfurt and Kirlin (2001) have demonstrated 

the effectiveness of spectral decomposition using the Discrete Fourier Transform as a 

thickness estimation tool.  However, such methods have difficulty with thin layers if the 

seismic bandwidth is not sufficient to unambiguously identify the periodicity of spectral 

peaks and notches.  This difficulty motivates the development of methods that do not 

require the precise identification of peaks and troughs within the seismic bandwidth. 

Partyka (2005), Portniaguine and Castagna (2004 and 2005), Puryear (2006), 

Chopra et al, (2006a and 2006b), and Puryear and Castagna (2006) have shown that 

inversion of spectral decompositions for layer properties can be improved when 

reflection coefficients are simultaneously determined.  The result is a sparse-reflectivity 

inversion that can be parameterized to provide robust layer thickness estimates.  Such a 
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process is called spectral inversion and produces results that differ from conventional 

seismic inversion methods.  In this paper, we discuss the basic theory of spectral 

inversion, develop a new spectral inversion algorithm, and show field examples of 

improved bed thickness determination and enhanced stratigraphic imaging that can be 

achieved with the process.   

Widess model 

The Widess (1973) model for thin-bed reflectivity teaches that the fundamental 

limit of seismic resolution is λ/8, where λ is the wavelength.  Essentially, constructive 

wavelet interference and measured amplitude in the time domain peak at λ/4; the 

waveform shape and peak frequency continue to change somewhat as amplitude 

decreases to λ/8, at which point the waveform approximates the derivative of the 

seismic wavelet.  As the layer thins below λ/8, the waveform does not change 

significantly, while amplitude steadily decreases as demonstrated in Figure A1.  In this 

figure, amplitudes are obtained from the convolution of a 30 Hz Ricker wavelet with a 

wedge model.  From this point of view, there are no means to differentiate between 

amplitude changes associated with reflection coefficient changes and thickness changes 

below λ/8, making this thickness a hard resolution limit for broadband analysis in the 

time domain.  Worse yet, in the presence of noise and wavelet broadening, the 

transition between λ/4 and λ/8 is obscured, sometimes making λ/4 a practical limit of 

resolution.  The key assumptions for the Widess model are that the half spaces above 
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and below the layer of interest have the same acoustic impedance and that the acoustic 

impedance of the thin layer is constant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Generalized reflectivity model 

While the theory of Widess (1973) is valid when the assumptions are satisfied, 

nature rarely accommodates such strict theoretical provisions.  The theory of spectral  

inversion is based on the realization that the Widess model for thin-bed reflectivity 

presupposes a reflectivity configuration that is actually a singularity in the continuum of 

possible reflection coefficient ratios.  Any reflection coefficient pair can be decomposed 

λ/8 
λ/4 

Figure A1.  A plot of amplitude vs. thickness shows the increase in amplitude over 
background as the tuning thickness (λ/4) is approached.  Below tuning, the 
amplitude rolls off nearly linearly, and the waveform approximates the derivative 
of the wavelet at λ/8. 
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into even and odd components, the even components having equal magnitude and sign 

and the odd components having equal magnitude and opposite sign, as described by 

Castagna (2004) and Chopra et al. (2006).  The identity is illustrated in Figure A2.  The 

Widess model assumes that reflection coefficient pairs are perfectly odd, which can be a 

good approximation for certain target classes such as a sand layer encased in a shale 

matrix.  However, the odd-reflectivity-pair assumption implies the worst possible 

resolution for thin beds.  Even a small even component in the reflection coefficient pair 

can significantly increase the resolvability of a layer.  The improvement in resolution 

results from the fact that the even component constructively interferes as thickness 

approaches zero, in contrast to the odd component, which destructively interferes.  

Thus, the even component is more robust against noise as thickness approaches zero 

(see Tirado, 2004).   

 

 

 

 

 

 

 

 Figure A2.  Any arbitrary pair of reflection coefficients r
1
 and r

2
 can be represented as 

the sum of even and odd components.  The even components have the same 
magnitude and sign, and the odd components have the same magnitude and 
opposite sign. 
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We calculated peak frequency and peak amplitude from equations given by 

Chung and Lawton (1995).  Figure A3a shows the effect of thinning on the peak 

frequency of a reflection coefficient pair with even and odd components.  For the 

model, the total peak frequency increases with decreasing thickness and then returns to 

the peak frequency of the wavelet rather than that of the derivative of the wavelet as 

predicted by the Widess model.  Interestingly, the total peak frequency shows 

significant and continuous change down to zero thickness.  Likewise, the total peak 

amplitude (Figure A3b) does not approach zero with thickness as predicted by the 

Widess model.  The example indicates that the reflection amplitude trend can show 

significant variation from the Widess curve (Figure A1) as the layer thickness approaches 

zero when the even component is nonzero.  Thus, there is significant information below 

the Widess resolution limit that is not captured by traditional amplitude mapping 

techniques which assume equal and opposite reflection coefficients.  Such examples of 

unequal reflection coefficients at top and base of a layer, which are the rule rather than 

the exception for most real-world seismic reflections events, reinforce the need for a 

more generalized approach to thin-bed amplitude analysis.    

 Based on the fact that the spacing between spectral peaks and notches is a 

deterministic function of layer thickness, our objective was to develop a new algorithm 

to invert reflectivity using the constant periodicity in the frequency domain.  Our 

development started with the expression for an impulse pair in the time domain, from 

which we formulated a numerical algorithm using complex spectral analysis, and then  
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tested the algorithm on synthetic wedge models.  We extended our development to 

multiple layers, and we tested our method on 3D seismic data from the Gulf of Mexico 

shelf, comparing seismic data, spectrally inverted seismic data, and well log data.    

 

  

λ/8 λ/4 

 

b). 

Figure A3.  The (a) peak frequency and (b) peak amplitude as a function of thickness 
for the even component, the odd component, and the total.  There is (a) peak 
frequency information below the tuning thickness.  Also, the (b) total peak amplitude 
approaches the even component amplitude below tuning.  Layer model parameters 
are: r

1
 = -.2, r

2
 = .1, and f

0
 = 30 Hz. 
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METHODS 

Spectral inversion method 

 We apply windowed Fourier Transforms to several reflectivity models in order to 

generate the data for spectral inversion, and use complex spectral analysis to formulate 

the inversion algorithm.  The algorithm described herein defines the inversion for 

reflectivity using the constant periodicity of the amplitude spectrum for a layer of a 

given thickness, taking advantage of the fact that the spacing between spectral peaks 

and notches is precisely the inverse of the layer thickness in the time domain (Partyka et 

al, 1999; Marfurt and Kirlin, 2001).  Essentially, layer thickness can be robustly 

determined from a narrow band of frequencies with a high ratio of signal-to-noise.  To 

prove this concept, note that the entire reflectivity spectrum for a single layer could be 

reconstructed from amplitudes at three frequencies in the absence of noise.   

Beginning with the expression for an impulse pair in the time domain as 

expressed by Marfurt and Kirlin (2001) (Figure A4):  

g(t) = r1δ(t - t1)+r2δ(t - t1 - T),                                              (A1) 

where r1 = top reflection coefficient, r2 = base reflection coefficient, t = time sample, t1 = 

time sample at top reflector, and T = layer thickness.  Locating the analysis point at the 

center of the layer yields 

                                                    g(t) = r1δ(t – T/2) + r2δ(t + T/2).                                            (A2) 

Taking the Fourier transform of the shifted equation 2 gives 

g(t, f) = r1exp(-i2πf [t + T/2]) + r2exp(-i2πf [t - T/2]),                     (A3) 
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where f = frequency and g(f) = the complex spectrum.  Simplifying using trigonometric 

identities and taking the real part yields 

   Re[g(f)] = (2re )cos(πfT),                                                     (A4) 

where re = the even component of the reflection coefficient pair.                                                                                         

Similarly, the imaginary part of the complex spectrum is 

    Im[g(f)] = (2ro )sin(πfT),                                   (A5) 

where ro = the odd part of the reflection coefficient pair.      

Plots for both the even and odd reflectivity spectra corresponding to equations 

A4 and A5 for a layer with thickness T = 10 ms and reflection coefficients r1 = .2 and r2 = 

.1 are shown in Figures A5a and A5b respectively.  Note that while both even and odd 

spectra show the same notch period, the two are shifted by one-half of the frequency 

spacing.   For the individual real and imaginary components, the constant period in the 

Figure A4.  Two-layer reflectivity model (from Marfurt and Kirlin, 2001).     
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spectrum is related to the symmetric location of the analysis point at the center of the 

layer.  This placement effectively divides the reflection coefficient pair into perfectly odd 

and even components, thereby eliminating the phase variation for each.  The effect of 

violating this condition is discussed in Appendix A1.    

 

 

 

 

 

 

 

 

In order to maintain constant periodicity in the spectrum while shifting the 

analysis point away from the layer center, we computed the modulus of the real and 

imaginary components of the spectrum, which is insensitive to phase.  Beginning with 

general expressions for the real and imaginary time shifted spectra,                                                 

               and         (A6)    

                   (A7)     

it can be shown (Appendix A2) that                     

                (A8) 
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e oe g f r fT f t r fT f t        

b). a). 

Figure A5.  Amplitude vs. frequency plots for the (a) even components and the (b) 
odd components for the reflection coefficient pair r

1
 = .2 and r

2
 = .1. In this example, 

the even component is dominant. 
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where G(f) = amplitude magnitude as a function of frequency, 22
orerk  , and O(t, k) 

is the cost function at each frequency.  The solution to equation A8 occurs where the 

sum of cost functions O(t, k), evaluated at each frequency, is minimized over the range 

of frequencies within the analysis band.  One data term exists at every sample 

frequency, so the performance of the method is determined by the signal-to noise ratio 

over a given analysis band (i.e. more frequencies with a high ratio of signal-to-noise 

yields a more stable and accurate inversion). 

We found the global minimum of equation A8 for a given analysis band by 

searching physically reasonable model parameters k and T in two-parameter model 

space and minimizing the objective function as illustrated in Figure A6.  While costly and 

impractical for more complicated cases, the global search method guarantees the 

avoidance of local minima for the single-layer case.  The remaining model parameters 

are then determined by 

)(cos
4

)( 2
2
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ro  ,                        (A9) 
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oe rkr  , and                                     (A10) 
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 ,                                               (A11)  

where 1t is the time sample at the top reflector r1 and g(f) is the complex spectrum for 

the reflection coefficient pair.  Equation A11 can be derived by taking the Fourier 

transform of equation A1 and solving for t1.  The reflection coefficients r1 and r2 can be  
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recovered by recomposing the odd and even components of the pair calculated using 

equations A9 and A10, which is the reverse of the operation illustrated in Figure A2.  

Thus, it is straightforward to compute the remaining components of the layer 

reflectivity model from the initial parameters k and T.  Note that although the derivation 

(Appendix B) of the algorithm assumes that the even reflectivity component is greater 

than the odd reflectivity component, the solution is the same for the antithetical 

assumption.    

Modeling results 

We tested the method by convolving a 30 Hz Ricker wavelet with reflection 

coefficient pairs having various ratios.  We produced wedge models with 4 ms sampling 

Figure A6.  The difference or error function between the data and a range of model 
parameter pairs is calculated.  The blue bullseye is the correct model solution (T = 10 
ms, k = .02).  A local minimum is shown by the black arrow. 
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for a predominately odd reflection coefficient pair r1 = -.2 and r2 = .1, and a 

predominately even reflection coefficient pair r1 = .2 and r2 = .1.  The tuning thickness of 

a thin bed model with a Ricker wavelet is given by Chung and Lawton (1995):  

                                                                   
0

2

6

fRt 
 ,                                                                 (A12)                                                  

where 0f  is the dominant wavelet frequency.  For a 30 Hz Ricker wavelet, Rt  = 13 ms.   

The convolution of the wavelet with the reflection coefficient pair in the time domain is 

equivalent to multiplication with the reflectivity spectrum in the frequency domain.  The 

inversion performs perfectly in the absence of noise for layers of any thickness.  In order 

to achieve a more realistic model, we added noise in the time domain; and we 

measured and controlled the noise level by computing the ratio of the area under the 

spectrum of the signal to that of the noise in the frequency domain.  We tested the 

model with 1 percent and 5 percent noise levels.  The forward modeling procedure is 

illustrated in Figure A7a.   

The addition of noise causes instability in the inversion for very thin layers, partly 

because of the fact that the reflectivity spectrum approaches a flat spectrum as the 

layer thickness, T, approaches zero; we mitigated this problem by applying the arbitrary 

constraint -.03 < k < .03 to insure that the reflection coefficient strength could not 

exceed what is typically observed in seismograms.  After Fourier transforming the time 

domain signal, we removed the wavelet overprint by dividing the magnitude of the 

amplitude of the seismic signal by that of the wavelet at each analysis frequency.   



96 

We tested the inversion at different noise levels while varying the analysis band 

and smoothing filter.  These experiments showed that the optimal analysis band and the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

optimal smoothing filter are determined by the noise level.  We achieved optimal results 

for the 1 percent noise case using a 25 Hz bandwidth sampled at 2 Hz frequency 

increments and centered on the peak signal frequency.  As the signal is corrupted by 

noise, it is necessary to narrow the bandwidth.  For the 5 percent noise case, we 

Figure A7.  The (a) forward model and (b) inverse model schemes used for the 
synthetic.  The plots show magnitude of amplitude vs. frequency.  In the (a) forward 
model, multiplication of the wavelet with the reflectivity spectrum and addition of 
noise in the frequency domain yields the seismic signal.  In the (b) inverse model, 
division of the seismic signal by the wavelet in the frequency domain yields the noisy 
reflectivity band.  Application of a smoothing filter produces the inversion band for 
input to the model. 

a). 

 
b). 
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achieved optimal results with a 20 Hz bandwidth.  Furthermore, more smoothing is 

required to stabilize the derivative operator as noise is added.  The process resulting in 

the smoothed inversion band is illustrated in Figure A7b.  We took derivatives of the 

magnitude of the amplitude with respect to frequency at each observation frequency 

sample using a first order central difference approximation.  Finally, we multiplied the 

magnitude of the amplitude at each observation frequency by the derivative of the 

magnitude of the amplitude at that frequency and minimized the error between the 

model defined by equation A8 and the data for the range of frequencies within the 

analysis band (Figure A6).   

 We applied the inversion defined by equation A8 using a 256 ms window FFT for 

spectral decomposition to wedge models having predominately odd and even reflection 

coefficient pairs (Figures A8a and A8b).  Figures A9a and A9b show the result of the 

inversion (black) compared with the true reflectivity model (green and red) for 1 percent 

and 5 percent levels of noise respectively for the predominately odd reflection 

coefficient pair, while Figures A10a and A10b show these results for the predominately 

even pair.  The tuning thickness is represented by the vertical black line.  We compared 

the 5 percent noise results with the corresponding amplitude mapping results (brown) 

using tuning analysis (see Widess, 1973 and Kallweit and Wood, 1982).  The algorithm 

performs nearly perfectly for both configurations at 1 percent noise levels as expected, 

illustrating the principle that noiseless data would yield extremely high resolution.  

While the noise level is unrealistically low for most seismic data, the results highlight the 
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importance of meticulous noise suppression in acquisition and during processing.  For 

thin layers, the results are useful far below tuning.  For the 5 percent noise cases, the 

absolute error  
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r2 = .1 
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Tuning  
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r2 = .1 

 predicted bottom of wedge from spectral inversion 

 predicted bottom of wedge from amplitude mapping 

 true bottom of wedge 

 top of wedge 

a). 

b). 

Figure A8.  Original reflectivity models for a (a) predominately odd 
reflection coefficient pair and a (b) predominately even reflection 
coefficient pair.  The tuning thickness for the 30 Hz Ricker wavelet 
convolved with the RC pair (blue) is defined by the vertical black line. 
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Figure A9.  Result of the thickness inversion of a predominately odd reflection 
coefficient pair with (a) 1 percent noise and (b) 5 percent noise.  The plot shows 
the original model (green and red) together with the inversion (black) and the 
amplitude mapping technique (brown), which uses the incorrect assumption of 
equal reflectivity.  The tuning thickness for the 30 Hz Ricker wavelet convolved with 
the RC pair (blue) is defined by the vertical black line. 
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 true bottom of wedge 

Figure A10.  Result of the thickness inversion of a predominately even reflection 
coefficient pair with (a) 1 percent noise and (b) 5 percent noise.  The plot shows 
the original model (green and red) together with the inversion (black) and the 
amplitude mapping technique (brown), which uses the incorrect assumption of 
equal reflectivity.  The tuning thickness for the 30 Hz Ricker wavelet convolved with 
the RC pair (blue) is defined by the vertical black line. 
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does not increase significantly for very thin layers due to the reflectivity constraint, 

although the percent error increases as layer thickness decreases.  Reflection coefficient 

estimates were comparably accurate.  As expected, accuracy deteriorates as the noise 

increases beyond 5 percent.  Thus, for a given wavelet peak frequency and analysis 

band, the noise level rather than the tuning thickness determines the limit of resolution.   

The tuning analysis predictions are shifted toward thicker layers for the even and 

odd components due to the assumption of equal magnitude reflection coefficients at 

top and base.  The assumption causes a bias in the relationship between amplitude and 

thickness that depends on the particular mapping scheme.  We plotted the results of 

the amplitude mapping techniques that generated the least error in thickness 

prediction.  For the predominately odd pair, the optimal amplitude mapping method 

was a simple linear regression from peak tuning to zero thickness.   However, this 

technique generated large errors and negative thickness predictions for the 

predominately even pair.  Instead, for the predominately even pair, we assumed that 

both the reflection coefficients were equal to the peak background amplitude for the 

thick layer and mapped thickness from the tuning amplitude to zero thickness.   

We tested the inversion on a reflector model that violates the basic assumptions 

of the method.  The model includes two layers defined by 3 reflectors, all with reflection 

coefficients equal to .1.  The top layer has twice the thickness of the lower layer.  We 

decomposed the spectrum using an 80 ms DFT with a Gaussian taper centered on the 

thicker layer.  Figure A11 shows the model (green and red) and the resulting inversion  
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(black).  The predicted layer thickness is measured from the top reflector to the black 

line, yielding a thickness value greater than that of the thicker layer but less than that of 

the two layers combined.  The observed predicted thickness results from the 

interference of the two layers in the frequency domain, creating a period corresponding 

to a single layer that is slightly thicker than the thickest layer.  The reflection coefficient 

predictions for the lower reflector were closer to the sum of the two base reflection 

coefficients r2 + r3 = .2 for thin layers, and to the single base reflection coefficient value 

Figure A11.  Result of the inversion for a two-layer model, violating the assumptions 
of the method.  For thicker layers, the predicted layer thickness from the inversion 
(black), measured from the top reflector, falls between the thickness of the thicker 
layer and that of the total package.  As the reflectors converge, the inversion 
becomes unstable.  
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r2 = r3 = .1 for thicker layers.  In practice, additional spikes widely spaced from the 

reflectors of the layer should be considered noise for the single layer model.  While we 

value the single layer model for its ease of invertibility, it is necessary to extend the 

inversion scheme so that it can simultaneously invert seismograms containing multiple 

interfering layers for most real cases. 

Extension of the method to multiple layers 

Recognizing that the seismogram can be represented as a superposition of 

impulse pairs, the inversion for the properties of a single layer is easily extended to 

encompass a general reflectivity series inversion by considering the spectrum versus 

time acquired using a moving window as a superposition of interference patterns 

originating at different times.  The inversion process for reflection coefficients and layer 

thickness is performed simultaneously for all impulse pairs affecting the local seismic 

response.  

Let us represent the reflectivity series, r(t), as a summation of even and odd 

impulse pairs. 

                                ,                     (A13) 

where re(t) and ro(t) are the magnitudes of the impulse pairs as a function of time, and 

T(t) is the time series of layer time-thicknesses.  Assuming a convolutional seismogram 

and known wavelet w(t, f), a spectral decomposition of a seismic trace s(t, f) is then 

                                ,  (A14) 
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where tw = window half length.  As the multi-layer case involves more than two 

reflectors, it is necessary to use an objective function for inversion that properly 

accounts for interference between multiple layers.  If the wavelet spectrum is known, 

we can now solve for r(t) and T(t) by optimizing the objective function, ( , , , )e oO t r r T , by 

 

                                                                                                                                                  ,  (A15) 

 

where fl = low frequency cutoff, fh = high frequency cutoff, and αe and αo are weighting 

functions, the ratio of which can be adjusted to find an acceptable trade-off between 

noise and resolution.  For high αo/ αe, the reflectivity approaches the Widess model and 

the resolution limit becomes λ/8.  We summarize the multi-layer inversion method 

using a flowchart in Figure A12.      

Multilayer synthetic example 

 In order to validate the multilayer inversion technique in a controlled situation, 

we generated a model containing several arbitrary layers (Figure A12a), from which we 

generated a synthetic trace (Figure A12b).  The reflectivity spikes were convolved with a 

30 Hz Ricker wavelet.  The identical trace with variable random noise is repeated in the 

figure for visual clarity.  We tested the inversion using windows of different lengths and 
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inverted the data from a 200 ms Gaussian-tapered Fourier transform, thereby 

recovering the original model (Figure A12c).  Shortening the total window length to 100 

ms and maintaining the Gaussian taper, we computed the Fourier transform for time 

samples between 50 ms and 150 ms, respectively.  The window is shifted one time 

sample at a time, with the results of each previous window acting as a constraint for the 

next inversion.  If no new reflectors appear in the window or exit the window as it is 

shifted downward, the result is the same as in the previous window.  If there are no 

reflectors in the window, the algorithm simply inverts the noise, a result which is not 

particularly problematic because the noise is not amplified.  The results for the windows 

centered at 50 ms and 150 ms are shown in Figures A12d and A12e.  As expected, the 

shorter windows divide the overall longer series of reflectors into two isolated sets.  By 

superposition, we can add up the two sets of reflectors to obtain the longer series.  

Although the window length can be varied according to the desired result, there are 

practical limits to the length of an optimal inversion window, which are often defined by 

trial-and error.  If the window is too short, frequency resolution suffers; if the window is 

too long, time resolution is lost (see Castagna et al., 2003).         

REAL DATA RESULTS 

Comparison to well log data 

We studied the results of the application of the multi-layer spectral inversion 

method shown in Figure 13 to two seismic data sets from the Gulf of Mexico shelf.  Well 

information for lithologic interpretation including P-wave, resistivity, and deep induction  
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Figure A12. The (a) original model is convolved with a 30 Hz Ricker wavelet to create a 
(b) synthetic seismogram.  The (c) spectral inversion result using a 200 ms window 
centered at 100 ms recovers the original reflectivity series.  The (d) spectral inversion 
result using a 100 ms window centered at 50 ms and (e) spectral inversion result 
using a 100 ms window centered at 150 ms recover the portions of the reflectivity 
series contained within the window.  By superposition, c = d +e. 

a). 

b). 

c). 

d). 

e). 

f). 
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was available (Figure 14).  We created a synthetic tie between the input seismic data 

and the well log data, stretching the well log data to time without reference to the 

inverted data for an unbiased, quantitative layer thickness comparison between the well 

log data and the inverted data.  The wavelet extracted from the well for the synthetic is 

shown in Figure A15.  We also visually compared the well log data, the inverted data, 

and the original data in order to assess the difference in vertical resolution between the 

inverted data and the original data (Figures A16 and A17).   

 

 

Figure A13.  Flowchart for the method of the inversion, where d
out

 is the output trace, 

t
c
 is the time sample at the center of the window, and ∆t is the sampling invterval.   
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The original seismic tie to the well is shown in Figure A14.  We achieved a 

relatively good fit (r = .64) between the reflectivity convolved with the extracted 

wavelet and the seismic trace.  However, because the seismic data are much lower 

frequency than the log data, the fit is useful only as an approximation for aligning gross 

lithologic packages.  A great deal of useful information is lost to the seismic wavelet 

(Figure A15).   

 

 

 

 

 

 

 

 

 

 

 

The thickness inversion provides a significantly better representation of the layering 

observed in the log data than does the original seismic data.  Figure A16 shows the 

spectral inversion for reflectivity displayed with a -90 degree phase shift to emphasize 

relative impedance changes and a slight time shift from the original synthetic to provide  

Figure A14.  Well log data including deep induction, resistivity, and computed 
impedance, together with the synthetic tie (blue), the trace at the well (red), and the 
seismic traces surrounding the well (black).  The correlation coefficient is r = .64. 
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a tie to the well with higher fidelity.  The need for this time shift only becomes apparent 

after reflectivity inversion.  The lithologic column shows sand and shale packages 

interpreted primarily from the three logs (see Figure A17).  We initially distinguished 

sands and shales using a gamma ray log; but we used resistivity, deep induction, and 

impedance for the bulk of the interpretation because the gamma ray was absent in the 

available well with a P-wave velocity log.  Generally, sands correspond to higher 

resistivity and lower deep induction than shallow resistivity values as a result of mud 

filtrate invasion.  In the interval shown in Figure A16, the sands have higher impedance 

than the shales.  Comparing the lithologic column to the inverted data, the thickness 

inversion clearly shows layering below the tuning thickness (the peak frequency of the 

Figure A15.  The phase and amplitude spectra of the wavelet extracted from the well.  
The peak frequency is 16 Hz. 
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data is 16 Hz, yielding a one-quarter wavelength resolution of about 31 ms).  A well 

resolved sand-shale sequence having a total thickness very close to the tuning thickness 

is also indicated in Figure A16.  While the thickness inversion effectively delineates the 

layering sequence below tuning, it fails to capture gradational impedance changes 

within thin layers, as in the case of the shale grading to sand shown in the lithologic 

column.  The following example demonstrates the vast improvement in vertical 

resolution for discrete layers achieved by the thickness inversion over the original data.      
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Time (ms) 

Figure A16.  Impedance log (left) compared with the spectrally inverted data (right).  
Sands are higher impedance in this interval.  The lithologic section interpreted from 
the impedance log shows a close correspondence to the inverted data.  Note the two-
layer sequence resolved at the tuning thickness. 
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Comparison to conventional seismic data 

Viewing the comparison of the thickness inversion to the original seismic data in 

Figure A17, both with a -90 degree phase rotation, it is clear that boundaries between 

layers are indistinct on the original seismic.  Layers below the 31 ms tuning thickness are 

not resolved on the original seismic data.  Geologic detail is obscured by the wavelet 

interference patterns, which become more apparent when compared to the inversion.  

While a skilled interpreter can decipher meaningful information embedded in the 

wavelet interference patterns, it is desirable to remove these artifacts altogether in 

order to allow direct access to the underlying geology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A17.  Comparison of the original seismic data (left) with the lithologic column 
(center) and the thickness inverted data (right).  Both data sets are phase rotated by -
90 degrees.  Note the failure of the original seismic data to delineate thin layering as 
compared to the inverted data.  Also note that the inverted data does not resolve 
gradational changes within an individual layer. 

 Time (ms) 
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Thickness comparison 

 We quantitatively compared thicknesses from the well log data to those from 

the spectral reflectivity inversion, interpreting the layering from the well log data that 

was stretched from depth to time on the original synthetic and comparing the results to 

the inverted thicknesses as defined by zero crossings on the -90 degree phase rotated 

spectral reflectivity inversion.  We performed the interpretation between 1700 ms and 

2900 ms.  The comparison is plotted in Figure 18, with an excellent correlation between 

the well log data thicknesses and the predicted thicknesses (pink) below the tuning line 

(red).  The mean error for the two data sets is μ  = -.5 ms, indicating that on the average 

the method is accurate and unbiased.  The square of the correlation coefficient is R2 = 

.94 with a standard deviation of σ = 3.10 ms, corresponding to precision in thickness 

estimation on the order of 15 feet for this example. 

Stratigraphic interpretation 

Figures A19-A21 show stratigraphic examples in which both the original seismic 

data and the spectrally inverted data have a -90 degree phase to highlight layer 

boundaries.  An example of the wavelet overprint effect is observed on the large-scale 

seismic line comparison of Figure A19.  On the original seismic line, an apparent 

discontinuity is inferred at about 1315 ms (Figure A19a).  The discontinuity might be 

interpreted as a localized fault with minimal offset or as a stratigraphic discontinuity in 

layering.  However, comparison with the inverted data (Figure A19b) reveals another 

picture.  While the inverted data shows more detail in general, it is interesting to note  
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that the apparent discontinuity in layering does not exist on the inverted section in spite 

of the fact that the inverted data is generated using a trace-by-trace operation that 

makes no assumption about lateral continuity.  On the inverted section, it can be seen 

that the apparent disruption in layering actually represents a lateral change of rock 

properties within a given layer.  The discrepancy points to the fact that the apparent 

discontinuity in reflection arrival times seen on the original data is actually not a 

geological feature but a geophysical effect, specifically a shift in the wavelet 

interference pattern caused by an impedance change that resembles a small geological 

layering discontinuity in the seismic image.   
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Figure A18.  Plot of predicted thicknesses from the inversion (pink dots) vs. well log 
interpreted thickness (1:1 diagonal is shown by the blue line), showing a strong 
correlation between the two.  The thicknesses were interpreted between 1700 ms 
and 2900 ms.  The tuning thickness is marked by the red line, and accuracy is 
maintained below one-eighth of a wavelength. 
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b). 

 

 

 

1 Km 

1 Km 

a). 

Figure A19.  The (a) original seismic data shows a small discontinuity.  The (b) 
thickness inverted data reveals a strikingly continuous layer, a strong indication that 
the geological discontinuity seen in (a) is actually a wavelet effect rather than a real 
subsurface feature.  The phase for both images is -90, and red is higher impedance.           
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The smaller-scale image in Figure A20 shows significant lateral breaks in layering 

that might be interpreted as discreet sand bodies with possible erosion of previously 

continuous layers.  These features can be caused by different types of downslope 

transport mechanisms such as channel incision.  The horizons on the original data 

(Figure A20a) are difficult to continue in places (black arrows).  However, the spectrally 

inverted data (Figure A20b), which assumes no relationship between neighboring traces, 

shows striking continuity along the same horizons.  Once again, the complex wavelet 
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Figure A15.  The phase and amplitude spectra of the wavelet extracted from the well.  
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Figure A20.  The (a) original seismic line has significant stratigraphic discontinuities 
(black arrows) that might be interpreted as the termini of discreet depositional lobes. 
The (b) spectrally inverted data reveals laterally continuous layering characteristic of 
undisturbed layer cake geology.  The phase for both datasets is -90 degrees.  Timing 
lines are 20 ms, and red is higher impedance. 
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interference pattern has created an illusory geological scenario that accompanies 

limited resolution. 

  

 

 

 

 

 

 

 

 

 

 

 

 

While the previous examples demonstrated artifacts that resemble geology, 

Figure A21 shows an example of the same wavelet effect erasing geological information.  

In the original seismic data (Figure A21a), the apparent pinchout of a low impedance 

layer is observed, with the upper and lower events merging below the resolution of the 

layer (white arrow).  However, the spectrally inverted data (Figure A21b) shows the 

same low impedance layer imaged much further updip, together with the resolved 

Figure A21.  The (a) original seismic data shows a pinchout (white arrow) where the 
thin layer becomes unresolved.  The (b) inverted data images the pinchout much 
further updip.  An apparent erosional feature (black circle) is resolved on the 
inversion.  The phase for both datasets is -90 degrees.  Timing lines are 20 ms, and 
red is higher impedance.  

 

 

4 km 
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bounding layers.  Also, an apparent localized broadening or bulge in the wavelet in the 

original data just below the first two timing lines is resolved as a possible erosional 

incision on the inverted data.  Such improved detection of stratigraphic variation has 

significant implications for better reservoir characterization and delineation.    

 We tested the method on a line of data from a shallow Gulf of Mexico dataset 

with known large incision features previously mapped using the coherence attribute.  

Figures A22 and A23 show zero-phase original seismic images and -90 degree phase 

rotated spectral inversion images.  Typically, seismic images of channels show significant 

relief from the overbank deposit to the thalwag, which appeals to the intuitive concept 

of a curved channel geometry.  Figure A22a shows an example of a pair of adjacent 

channels showing a strongly curved geometry on the original seismic data.  The -90 

degree phase rotated spectrally inverted section of the data (Figure A22b) shows an 

alternate image of the channels in which the curvature seen in the channel profile is not 

as prominent, hinting at the possibility that some component of the curvature can be 

attributed to the rapid rock property changes known to occur across the strike of a 

channel.  We believe further investigation of this phenomenon using well control is 

warranted.    

 Figures A23a and A23b show another large channel imaged on the original 

seismic data and on the -90 degree phase rotated spectral inversion respectively.  The 

tuning effect in the original data confounds channel thickness interpretation as the 

channel  
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Figure A22.  Comparison of the (a) original zero phase seismic data to the (b) 
spectrally inverted data, which is phase rotated -90 degrees from (a).  Channels 
(white arrows show the base of channels) have more relief and more curvature on 
the original seismic data.  Timing lines are 10 ms, and red is higher impedance. 
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2 km 

 

Figure A23.  A large channel (white arrows show the edges of the channel) 
imaged on the (a) original zero phase seismic data and the (b) spectrally 
inverted data, which is phase rotated -90 degrees from (a).  The thin bed 
layering of the channel edges and overall vertical channel extent are more 
precisely imaged on the inverted data. Timing lines are 10 ms, and red is higher 
impedance. 

b). 
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thins toward the levees.  There is also an ambiguity in the placement of the top and 

base bounding surfaces of the channel related to the wavelet phase.  The inverted data 

shows a clearer picture of the channel geometry, with constant thinning of the channel 

fill wedges toward the edges of the channel.  Also, the top and base bounding surfaces 

of the channel can be picked more precisely on the inverted data at the sharply defined 

zero crossings with less guesswork in the placement of horizons.  Thus, in the workflow 

of seismic interpretation, spectral inversion adds visual information that can contribute 

to the delineation of geologic features of interest such as channels.   

CONCLUSIONS 

Beginning with a generalized theory of reflectivity, spectral decomposition is 

used as a tool to unravel the complex interference patterns created by thin-bed 

reflectivity.  These patterns can be inverted to obtain the original reflectivity.  We 

developed and studied new analytical methods for spectral inversion based on complex 

spectral analysis.  We find that spectral inversion yields accurate thickness 

determinations below tuning utilizing the inverse relationship between thickness and 

the constant periodicity of spectral interference patterns.  Representing the seismogram 

as a superposition of simple layer responses constitutes a means of imposing on the 

inversion the a priori assumption that sedimentary rocks occur as layers with discrete 

interfaces at the top and base and can be represented as such in a reflectivity series.  

When this assumption is valid, the consequence is that, on the inverted reflectivity 

trace, there is geologically meaningful information at frequencies outside the band of 
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the original seismic data.  When this assumption is false, the "recovered" frequency 

information outside the band of the original seismic will also be false.  For example, 

smooth impedance transitions will be inverted as blocky steps in impedance.   

Spectral shape information obtained from spectral decomposition can be used to 

drive an inversion with significantly greater vertical resolution than that of the original 

seismic data, thereby allowing improved thickness estimation, better correlation to well 

logs, and improved stratigraphic interpretation.  These results are achieved without 

utilization of well log information in the inversion as a starting model or as a constraint.  

The resulting inversion is, therefore, unbiased by pre-conceived ideas.  As evidenced by 

the results of the application of the method to real data, spectral inversion has great 

potential for practical value as a tool for seismic exploration.   

 While the spectral inversion methods described in this work demonstrate 

improvement in vertical resolution, we did not utilize well log information after the 

wavelet removal step.  It is desirable to investigate the effectiveness of using well log 

data to further improve vertical resolution of inter-bedded layers or gradational changes 

within layers that are not revealed by seismic spectral inversion alone.  Also, thickness 

constraints from spectral inversion could be used as input for more accurate model-

based impedance inversion.   

  

 

 



122 

ACKNOWLEDGEMENTS 

The authors would like to thank Gene Sparkman, Carlos Moreno, Xianhui Zhu, 

and Oleg Portniaguine of Fusion Petroleum Technologies for their help and support.  

Thanks also to Kurt Marfurt and Scott Morton for assistance, suggestions, and 

contributions.  Financial support was provided by ExxonMobil and Shell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



123 

APPENDIX A1 

DISCUSSION OF THE SHIFT EFFECT 

When examining the real and imaginary components separately, a phase shift 

occurs if the analysis window is not centered on the layer.  In order to study this effect 

in more detail, we revisited the original equations.  The shift theorem says that a time 

sample shift Δt away from the layer center tc in the time domain is equivalent to a phase 

ramp in the frequency domain: 

                                              g(tc + Δt) ↔ e2iπfΔtg(f).                                     (A1-1) 

Apply this equivalency  

 

             (A1-2) 

 

Take the real component of equation A1-2 

 

             (A1-3) 

 

Rearranging yields 

 

 

           or 

                           

             (A1-4) 

 

which has the form of a modulation and represents the spectral plots of time-shifted 

models.  A similar expression can be derived for the odd component.  The phase shift 

corresponds to a sinusoidal modulation of the signal, which can be viewed as an 

interference pattern superimposed upon another interference pattern.  Furthermore, 

the period of the interference pattern is determined by the magnitude of the shift.   
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APPENDIX A2 

INVERSION MODEL DERIVATION 

Applying the shift theorem (equation A1-1) and taking general expressions for 

the real and imaginary spectra         

            and      (A2-1)    

                (A2-2)                          

Express the amplitude spectrum and setting Δt = 0 as a constant reference    

         or    
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Rearrange terms  

                      or 
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Multiplying and simplifying using trigonometric identities yields 
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Table 1.  Nomenclature. 

________________________________________________________________________ 
t  = seismic record time 

g(t)  = time domain impulse pair 

r1  = top reflector in a two-reflector model 

r2  = base reflector in a two-reflector model 

t1  = time at top reflector in a two-reflector model  

t2  = time at base reflector in a two-reflector model  

T  = layer two-way travel time thickness 

tc  = time at layer center in a two-reflector model 

Δt  = time shift 

f  = frequency 

g(f)  = frequency domain impulse response 

Re  = real component of a function 

Im  = imaginary component of a function  

re  = even component of the reflection coefficient 

ro  = odd component of the reflection coefficient 

G(f)  = magnitude of amplitude as a function of frequency 

  = derivative of magnitude of amplitude with respect to frequency 

k  = even component of reflectivity squared minus odd component squared 

tR  = tuning thickness 

fo  = wavelet peak frequency  

r(t)  = reflection coefficient series as a function of time 

( )dG f

df
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τ  = convolutional place holder 

II  = even impulse pair 

II  = odd impulse pair 

s(t, f)  = time and frequency varying seismic trace 

w(t, f)   = time and frequency varying seismic wavelet 

tw  = window half length 

  = frequency varying objective function 

  = time and frequency varying objective function 

αe  = even component weighting function 

αo  = odd component weighting function 

fL  = low frequency cutoff  

fH  = high frequency cutoff 

________________________________________________________________________ 
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APPENDIX B 
 

Comparison of frequency attributes from CWT and MPD spectral decompositions of a 
complex turbidite channel model  
 
Charles I. Puryear*, Shenghong Tai, and John P. Castagna 
Department of Geosciences , University of Houston  
Ron Masters and Fa Dwan 
Shell International Exploration and Production Company  
 
Summary 

Various studies have demonstrated the usefulness of spectral decomposition 

and its associated frequency attributes in seismic interpretation and hydrocarbon 

exploration.  However, many different techniques for spectral decomposition exist in 

the petroleum industry, creating a need for comparative studies of these techniques to 

evaluate their utility.  In this work, we compare the results of the application of the CWT 

and MPD algorithms and associated frequency attributes to a complex turbidite model.  

Our results indicate that better resolution of stratigraphic features is achieved by the 

MPD algorithm.  These improvements include sharper definition of lateral stratigraphic 

changes and detection of subtle channel features associated with off-peak frequencies.  

We also show the effective extraction of stratigraphic features associated with off-peak 

frequencies achieved by principal component analysis.  We believe a quantitative 

assessment of the relationship between the rock properties volume and frequency 

attributes will provide useful insight during future work.     
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Introduction 

Spectral decomposition is a seismic analysis technique that decomposes seismic 

data into the time-frequency domain, which often contains useful information for layer 

thickness estimation (Partyka et al.,1999; Puryear and Castagna, 2008), stratigraphic 

interpretation (Marfurt and Kirlin, 2001; Puryear and Castagna, 2008), and hydrocarbon 

indication (Castagna et al., 2003; Sinha et al., 2005).  There are many spectral 

decomposition algorithms and frequency attributes that can be generated from spectral 

decomposition volumes.  In this paper, we compare results obtained from two common 

spectral decomposition algorithms – the Continuous Wavelet Transform (CWT) and 

Matching Pursuit Decomposition (MPD).  Because of the large volume of data produced 

by the spectral decomposition process, the general objective of frequency attributes 

applied to spectral decomposition is to reduce the quantity of cumbersome frequency 

volumes to a manageable number while retaining the most geologically pertinent 

information contained within the redundant frequency volumes.  Common frequency 

attributes include peak frequency/peak amplitude mapping (Marfurt and Kirlin, 2001) 

and principal component analysis of spectral components (Guo et al., 2006).  Our 

objective is to compare both the spectral decomposition results generated by the CWT 

and MPD and the frequency attributes derived from those results.  We apply the 

algorithms to synthetic data generated by the application of the 3D “Huygens” method 

to a complex turbidite rock properties model (van Hoek and Salomon, 2006).   
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Theory and Method 

The CWT is a commonly used wavelet transform that utilizes orthogonal basis 

wavelets in order to decompose the seismic trace into individual frequency 

components.  The CWT is essentially equivalent to a narrow-band filtering of the data in 

the temporal domain.  We apply CWT to seismic traces using a Morlet wavelet basis 

function, which utilizes a window that varies as a function of frequency.  MPD is a 

technique for time-frequency analysis that utilizes non-orthogonal basis functions, 

thereby allowing for atoms with more time compactness and more flexibility in the 

selection of atoms that match the shape of the trace.  We compare the results from the 

spectral decompositions directly and then use these results as input into peak 

frequency/peak amplitude mapping and principal components mapping for comparison.  

Peak frequency/peak amplitude mapping tracks the frequency with the highest 

amplitude and the amplitude at that frequency along a particular horizon.  Peak 

frequency is strongly related to layer thickness below tuning.  Peak amplitude is highly 

correlated to broadband amplitude, and is therefore a less useful frequency attribute 

(Blumentritt, 2008).  Hence, we focus on peak frequency for comparison between the 

CWT and MPD.  We also perform a principal component analysis of the spectral 

components in order to isolate frequency bands representative of the data for 

comparison between the CWT and MPD.  We compare the data using identical plotting 

ranges relative to the standard deviation of the data.  We note that the single frequency 
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components, the peak frequency, and the principal components all highlight subtle 

channel features that respond preferentially to narrow frequency ranges.   

Examples 

Van Hoek and Salomons (2006) generated the synthetic seismic data using 

Kirchoff demigration, or ray tracing, followed by standard processing and migration.  

Figure B1 shows the spectrum of the seismic wavelet, with a peak frequency of 

approximately 16 Hz.  Figure B2a shows a vertical slice through the impedance model 

volume with prominent channel belts at the depth range of interest circled, Figure B2b 

shows the synthetic seismic data and analysis horizon used in subsequent figures, and 

Figure B2c shows the line of section through a broadband amplitude extraction map.   

We illustrate the results of the spectral decomposition algorithms and frequency 

attributes using several examples.  In order to better understand the information 

content of the principal components, we plot the spectral energy distribution of the first 

5 principal components of the spectral components.  The peak energy of each increasing 

component number gravitates toward lower frequencies.  We speculate that this 

tendency is related to the fact that there is more variation in wavelength scale relative 

to a given feature in the low end of the spectrum than in the high end (i.e. a given 

quantity of frequency change is more significant in the low end of the spectrum than in 

the high end of the spectrum).  Figure B4 shows a comparison of the 2nd principal 

components, which are correlated to spectral components of approximately 9 Hz, 

computed from the CWT and MPD spectral components; the plots are scaled to ± 4 



133 

standard deviations.  The images show similar channel geometries, both highlighting a 

channel that is not prominent in the broadband amplitude extraction (Figure B2c) or the 

1st principal component extractions.  However, the 2nd principal component extracted 

from the MPD result shows sharper delineation of lateral stratigraphic changes, as 

indicated by block arrows.  Figure B5 illustrates the difference between 5 Hz spectral 

component maps, also scaled to ± 4 standard deviations, obtained from the CWT and 

MPD.  The low frequency MPD result isolates a channel meander loop that is not 

highlighted by any of the CWT frequency components, while the 5 Hz CWT component 

highlights the same channels that are highlighted by both methods at higher frequencies 

(see Figures B2c and B3).  We believe this discrepancy can be attributed to the long 

cross-correlation window used by the CWT at low frequencies, which fails to isolate 

temporally-restricted low-frequency energy.  Figure B6 compares peak frequency 

extractions from the CWT and MPD spectral components.  The result obtained from the 

MPD spectral components displays greater continuity and delineation of the low 

frequency channel highlighted in Figure B5 than that obtained from the CWT spectral 

components. 

Conclusions 

We have compared spectral components and frequency attributes from the CWT 

and MPD spectral decomposition algorithms applied to a synthetic seismic model of a 

complex turbidite rock properties model volume.  Our results indicate that MPD yields 

higher resolution of stratigraphic detail than does the CWT in two ways.  First, lateral 
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stratigraphic changes appear sharper on the MPD sections, indicative of less energy 

smoothing in the time domain.  Second, low frequency features with limited temporal 

extent are effectively isolated on MPD, yet averaged out by the CWT due to the variable 

window smoothing effect.  We note that principal component sections beyond the 1st 

principal component effectively isolate stratigraphic features that are difficult to 

distinguish on broadband amplitude extractions.  It is our expectation that in more 

complex geological scenarios, principal component analysis will separate intermingled 

stratigraphic features into “classes” based on optimal spectral response.  In future work, 

we intend to quantitatively link the rock properties model to the responses of frequency 

attributes and investigate the implications of those attributes for understanding 

depositional systems. 
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Figure B1. The spectrum of the synthetic seismic wavelet.  The peak frequency 
is about 16 Hz.  
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Figure B3. Principal component spectra.  
Peak spectral energy gravitates toward 
lower frequencies with increasing 
component number. 

Figure B2.  (a) Impedance model with channel 

belts circled, (b) synthetic seismic model and 

horizon (green), and (c) horizon amplitude 

extraction. 
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Figure B6. Comparison of peak frequency horizons extracted from (a) CWT and 

(b) MPD components.  Arrows indicate a meander seen more distinctly on MPD.  

Figure B4. Comparison of the 2nd principal component derived from (a) CWT and 

(b) MPD spectral components.  Arrows indicate improved resolution by MPD. 
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Figure B5. Comparison of 5 Hz spectral components from (a) CWT and (b) MPD.  

Block arrows indicate a meander loop that is highlighted by MPD but not CWT. 
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APPENDIX C 
MODEL NOISE TESTS 

 
 In order to assess the robustness of CLSSA to noise, we compile a series of tests 

involving different types of noise added to the signal shown in Figures 19c and 20c.  In 

Figures C1 and C2, we add Gaussian noise with an L2 norm equal to .1 times the L2 norm 

of the signal.  The CLSSA (Ni=1, αF=.001) results are shown for the signal, the noise, and 

the summation of the signal and noise.  The algorithm is stable in the presence of 

Gaussian noise.  We further test the algorithm by adding a series of simulated noise 

bursts in the time domain (Figures C3 and C4).  Streaking noise associated with the time 

domain expression of the noise (Figures C3b and C4b) is observed in the CLSSA 

transformation (Figures C3f and C4f) of the time-domain superposition of the data and 

noise bursts (Figures C3c and C4c).  However, the frequency characteristics of the signal 

are captured, again demonstrating stability.  Finally, in Figures C5 and C6, we add 

preshot gather noise with an L2 norm scaled to .1 times the signal L2 norm.  Again, the 

noise manifests in the results but does not destabilize the algorithm.  
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Figure C1).  Even dipole pair synthetic reflectivity model with increasing thickness 
as a function of time (see Figure 19).  In order to demonstrate robustness in the 
presence of noise, we added Gaussian noise having an L2-norm equal to .1 times 
the L2-norm of the signal.  Plots show: (a) the signal, (b) Gaussian noise, (c) 
summation of signal and Gaussian noise, (d) the spectral decomposition of (a), (e) 
the spectral decomposition of (b), and (f) the spectral decomposition of (c).   
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Figure C2).  Odd dipole pair synthetic reflectivity model with increasing thickness as a 
function of time (see Figure 19).  In order to demonstrate robustness in the presence 
of noise, we added Gaussian noise having an L2-norm equal to .1 times the L2-norm 
of the signal.  Plots show: (a) the signal, (b) Gaussian noise, (c) summation of signal 
and Gaussian noise, (d) the spectral decomposition of (a), (e) the spectral 
decomposition of (b), and (f) the spectral decomposition of (c).   
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Figure C3).  Even dipole pair synthetic reflectivity model with increasing thickness as 
a function of time (see Figure 19).  In order to demonstrate robustness in the 
presence of noise, we added a series of noise bursts to the signal.  Plots show: (a) the 
signal, (b) noise burst series, (c) summation of signal and Gaussian noise, (d) the 
spectral decomposition of (a), (e) the spectral decomposition of (b), and (f) the 
spectral decomposition of (c).   
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Figure C4).  Odd dipole pair synthetic reflectivity model with increasing thickness as a 
function of time (see Figure 20).  In order to demonstrate robustness in the presence 
of noise, we added a series of noise bursts to the signal.  Plots show: (a) the signal, 
(b) noise burst series, (c) summation of signal and Gaussian noise, (d) the spectral 
decomposition of (a), (e) the spectral decomposition of (b), and (f) the spectral 
decomposition of (c).   
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Figure C5).  Even dipole pair synthetic reflectivity model with increasing thickness as 
a function of time (see Figure 19).  In order to demonstrate robustness in the 
presence of noise, we added preshot gather noise from real data to the signal.  Plots 
show: (a) the signal, (b) preshot gather noise, (c) summation of signal and Gaussian 
noise, (d) the spectral decomposition of (a), (e) the spectral decomposition of (b), 
and (f) the spectral decomposition of (c).   
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Figure C6).  Odd dipole pair synthetic reflectivity model with increasing thickness as 
a function of time (see Figure 20).  In order to demonstrate robustness in the 
presence of noise, we added preshot gather noise from real data to the signal.  Plots 
show: (a) the signal, (b) preshot gather noise, (c) summation of signal and Gaussian 
noise, (d) the spectral decomposition of (a), (e) the spectral decomposition of (b), 
and (f) the spectral decomposition of (c).   
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APPENDIX D 
MATLAB CODE TO PRODUCE FIGURE 19 c and f and 20 c and f 

 
%APPENDIX D 
%CODE TO PRODUCE FIGURES 19c and 19f 

 
clear all 

close all 

 
[Nt,f,dt]=deal(1001,30,1);                    
ref=zeros(Nt,1);                              
c=(1:9)*100;                                  
T=(0:8)*2;                                    
ref([c+T c-T])=1;                             
ref(100)=2;                                   
t=dt*((1:Nt)-ceil(Nt/2))';                    
x=-(pi*f*t*1e-3).^2;                          
dr=conv2(ref,(1+2*x).*exp(x),'same');          
fhz=1:120;                                    
Nwms=100; 
nw2=ceil(Nwms/(2*dt));     

  
s=fft(dr,[],1); 
N=size(s,1); 
N2=floor(N/2); 
s(1:N2,:)=-1i*s(1:N2,:); 
s(N2+1:end,:)=1i*s(N2+1:end,:); 
d=dr-1i*real(ifft(s,[],1)); 

  
tt=dt*(-nw2:nw2)'*1e-3;   
Wd=diag((1+cos(pi*(-nw2:nw2)/nw2))/2); 
Fw=Wd*(cos(2*pi*tt*fhz)+1i*sin(2*pi*tt*fhz)); 
G=Fw*Fw';               
G=G+eye(size(G))*max(diag(G))*0.001;    
d0=flipud(conv2(eye(nw2*2+1),d)'); 
d0=Wd*d0(:,nw2+1:end-nw2)*diag(abs(d)); 
m1=(Fw'*(G\d0)).';     

  
subplot(1,2,1); 
plot(dr,t); title('Trace');                    
set(gca,'Ydir','reverse');                    
subplot(1,2,2);                               
imagesc(fhz,t,abs(m1));                       
title('CLSSA panel');                         
xlabel('Frequency, Hz');                      
ylabel('Time, ms');     
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APPENDIX D 
%CODE TO PRODUCE FIGURES 20c and 20f 

  
clear all 
close all 

  
[Nt,f,dt]=deal(1001,30,1);                    
ref=zeros(Nt,1);                              
c=(1:9)*100;                                  
T=(0:8)*2;                                    
ref([c-T])=1;      
ref([c+T])=-1;  
ref(100)=0;                                   
t=dt*((1:Nt)-ceil(Nt/2))';                    
x=-(pi*f*t*1e-3).^2;                          
dr=conv2(ref,(1+2*x).*exp(x),'same');          
fhz=1:100;                                    
Nwms=100; 
nw2=ceil(Nwms/(2*dt));     

  
s=fft(dr,[],1); 
N=size(s,1); 
N2=floor(N/2); 
s(1:N2,:)=-1i*s(1:N2,:); 
s(N2+1:end,:)=1i*s(N2+1:end,:); 
d=dr-1i*real(ifft(s,[],1)); 

  
tt=dt*(-nw2:nw2)'*1e-3;   
Wd=diag((1+cos(pi*(-nw2:nw2)/nw2))/2); 
Fw=Wd*(cos(2*pi*tt*fhz)+1i*sin(2*pi*tt*fhz)); 
G=Fw*Fw';               
G=G+eye(size(G))*max(diag(G))*0.001;    
d0=flipud(conv2(eye(nw2*2+1),d)'); 
d0=Wd*d0(:,nw2+1:end-nw2)*diag(abs(d)); 
m1=(Fw'*(G\d0)).';     

  
subplot(1,2,1); 
plot(dr,t); title('Trace');  
xlim([-1.5 1.5]); 
set(gca,'Ydir','reverse');                    
subplot(1,2,2);                               
imagesc(fhz,t,abs(m1));    
title('CLSSA panel');                         
xlabel('Frequency, Hz');                      
ylabel('Time, ms');     

 


