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Abstract

Proteins must fold and function in the immensely complex environment of a cell—this is far

from the ideal test-tube setting. This thesis answers an important question at the interface

of physics and biology: how does the crowded cellular environment influence the dynamics

of proteins and their folding phases?

This thesis is presented in two parts. First, we review protein folding and investigate

the effects of hydrostatic pressure using coarse-grained molecular simulations. There are two

common forms of pressure-dependent potentials of mean force (PMFs) for coarse-grained

molecular simulations of protein folding and unfolding under hydrostatic pressure. We in-

vestigated the two different pressure-dependencies on the desolvation potential in a structure-

based protein model using coarse-grained molecular simulations. We showed that the pro-

tein’s folding transition curve on the pressure–temperature phase diagram depends on the

relationship between the potential well minima and pressure.

In the second part, we move toward understanding the effects of crowded environment

of the cell. Certain proteins’ properties are exhibited by systems near a critical point, where

distinct phases merge. This concept goes beyond previous studies that propose proteins have

a well-defined folded and unfolded phase boundary in the pressure-temperature plane. Here,

by modeling the protein phosphoglycerate kinase (PGK) on the temperature (T ), pressure

(P ), and crowding volume-fraction (φ) phase diagram, we demonstrate a critical transition

where phases merge, and PGK exhibits large structural fluctuations. Above the critical
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temperature (Tc), the difference between the intermediate and unfolded phases disappears.

When φ increases, the Tc moves to a lower T . Crowding shifts PGK closer to a critical line

in its parameter space, where conformational changes can occur without costly free-energy

barriers.

To understand the “quniary” interaction between cells, we examine the interplay between

folding and inter-domain interactions of engineered FiP35 WW domain repeat proteins with

n = 1 through 5 repeats using a coarse-grained simulated annealing with the AWSEM

Hamiltonian. We show misfolded structures become increasingly prevalent as one proceeds

from monomer to pentamer.

Finally, we discuss the implications and connection to the organization and dynamics of

the cytoplasm, unifying the single protein scale with the many-protein architectures at the

subcellular scale.
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One can best appreciate, from a study of
living things, how primitive physics still is.

—Albert Einstein

1
Introduction: From Protein Folding in the

Test-tube to Folding in the Cell

The field of protein folding and dynamics is expanding towards cellular biological physics. An

understanding of the physical principles of macromolecules inside the cell is needed to bridge

the scale of single proteins to the scales of subcellular organizations, such as supramolecular

assemblies [1], aggregation [2], or phase separation and cellular compartmentalization [3].

As macromolecules and cytosolic scaffolds crowd the interior of a cell, robust networks of

smart matter form that are capable of making collective decisions for cellular survival. The

structure and dynamics of these crowded spatial networks of macromolecules manifest from

a multitude of weak enthalpic interactions, called ‘quinary’ interactions [4], and collective

entropic forces. Since subcellular systems are held together through heterogenous weak

interactions and entropic effects, the macroscopic degrees of freedom are often interwoven

with the microscopic. One such example is the non-equilibrium dynamics of the cytoskeletal

network [5]. This is strikingly different from conventional condensed matter physics systems

1



Chapter 1| Introduction: From Protein Folding in the Test-tube to Folding in the Cell

Figure 1.1 Moving from single protein to many protein systems and multi-protein assem-
blies in the cytoplasm.

where a key triumph of the past century came from averaging out the weak microscopic

interactions (i.e. renormalization group [6]). Moreover, the cytoplasm allows for signals

(mechanical or chemical) to propagate over many lengths of a single protein. The challenge in

understanding signal transduction lies in the unknown complexity of molecular interactions

in a jammed-packed space. It is our group’s long term research goal to understand how

signals from meaningful external stimuli passes through networks of proteins across the

noisy environment of the cell. In order to reach that goal, both theory and experiment are

needed to link the relationship between the cellular environment and protein structure and

function.

In summary, the combination of crowding, solvent fluctuations, quinary interaction and

chemical changes can greatly change the dynamics and stability of a protein, and in turn, its

function. Our understanding of relationships between the cellular environment and protein
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1.1| Protein Structure and History of the Folding Problem

folding and dynamics will unify the single molecule scale to the subcellular scale. More

theory and experiment will continue to rely on each other to push this goal forward. As we

rebuild the complexity back into the ideal solution (i.e. in vitro) we can begin to develop

in vivo principles. At the other end of the complexity spectrum, in vivo experiments and

all-atom simulations of cellular cytoplasm will give us a phenomenological understanding.

The challenges in understanding protein folding and dynamics in the cell are daunting, but

the drive to discover is greater. Moving forward to mesoscopic assembles and supramolecular

machine dynamics, further bridging the length and time scales, we will elucidate the stunning

complexity of subcellular organization and dynamics.

1.1 Protein Structure and History of the Folding Problem

Proteins are weakly branched heteropolymers with monomers composed of 20 possible amino

acids[7]. The sequence of these amino acids is termed “primary structure” [Fig. 1.2(a)]. This

is the first of five levels of protein structure hierarchy. Since the average protein is approxi-

mately 200 amino acids long, there are 20200 (≈ 1.6× 10260) possible primary structures[8].

However, real proteins occupy a minute fraction of the total sequence space [9, 10].

This tiny slice of sequence space are primary structures that will fold into a 3D compact

form and carry out various biological functions. Within some flexibility, proteins fold into

unique structures. This unlike a collapsed polymer, which may have a large variability in

possible compact structures. Pauling and Corey proposed in the 1950s that the folded amino

acid chain could form a periodic array of hydrogen bonds, leading the the suggestion of helix

and sheet structures [11, 12]. These structures became to be known as the “secondary

structures”, α-helices and β-sheets [Fig. 1.2(b)], and are arguably the building blocks of

folding.
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Chapter 1| Introduction: From Protein Folding in the Test-tube to Folding in the Cell

Next in the hierarchy of protein structures is “tertiary stucture”, which is the folding of

α-helices and β-sheets into a compact globular structure shown in Fig. 1.2(c). Stably folding

into a globule is primarily driven by the hydrophobic amino acids being buried in the core

away from the solvent. Depending on the solvent conditions or external stresses, protein

can lose their 3D folded structure. Throughout this thesis, this process is interchangeably

referred to as denaturation or unfolding. In the 1960s, Anfinsen experimental realized that

denatured proteins may be re-natured (folded again) into a globule by returning the solvent

or other external perturbations to normal physiological conditions [13]. This observations

lead to the hypothesis that the folded protein is the state with the lowest Gibbs free energy.

Shortly after Anfinsen’s famous experiments, Levinthal proposed the argument that there

are too many possible confirmations for proteins to “find the needle in the haystack by ran-

dom searching” (needle meaning folded state and haystack meaning conformational space)

[15, 16]. His argument became known as the Levinthal paradox. This paradox was at the

center of what was termed “the protein folding problem”∗. The main battle was between

thermodynamic or kinetic control for reaching a protein’s free energy minimum. Thermo-

dynamic control meant that reaching a global minimum was path independent and required

an extensive search. Whereas, kinetic control was path dependent allowing quick folding.

For kinetic control, the physical system would need to be non-ergodic. Examples of physical

systems displaying kinetic control are glasses [18] and metastable phase transitions[19, 20].

The solution to this problem will be discussed in the following section (1.2).

The same interactions that fold a protein also give rise to assembly of multiple tertiary

structures. In the hierarchy, this is called “quaternary structure” shown in Fig. 1.2(d) and

is also referred as protein complexes. These assemblies are stable and permanent.

Closely related to quaternary structure is the final level of structure hierarchy: “quinary
∗The “problem” is actually a group of related problems. See ref.[17] for more details.
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1.1| Protein Structure and History of the Folding Problem

Figure 1.2 Hierarchy of protein structures. (A) Primary structure is a 1D sequence of
amino acids held together by amide bonds. (B) Examples of secondary structure are α-helices
and β-sheets. (C) An example of tertiary structure is a fully folded GroEL (PDB ID: 1SS8)
consisting of both α-helices and β-sheets. (D)A complex made of seven GroEL (PDB ID:
1SS8) proteins is an example of quaternary structure. (E) Quinary structure (weak binding)
between Hsp70 substrate binding domain (blue, PDB ID: 2KHO) and a model substrate
phosphoglycerate kinase (orange, PDB ID: 3PGK). From ref.[14]

5



Chapter 1| Introduction: From Protein Folding in the Test-tube to Folding in the Cell

structure”. At this level of orgainization, proteins interact weakly and form transient (low

thermodynamic stability) functional complexes in the cell. Additionally, the interactions

that underlie quinary structure formation are referred to as “quinary interactions”. This

quinary interaction network may span the entire proteome the organism [14].

1.2 Proteins as Heteropolymers and Energy Landscape Theory

The solution to the protein folding problem came from two the unification of two fields,

polymers physics[21, 22] and spin glasses[23, 24, 25]. Since proteins are heteropolymers,

certain control variables that dictated the behavior of polymers should also dictate protein

behavior. One universal property is that protein size depends on its length or number

of amino acids (N). When denatured, proteins act as a random coil, and when folded,

proteins are maximally compact. From Flory theory, the radius of gyration (Rg, defined as

R2
g ≡ 1

2N2
∑
i,j (ri − rj)2 where ri is the position of the ith residue) of proteins should scale

as,

Rg ∼ N ν , (1.1)

where the Flory exponent ν = 0.6 for a random coil and ν = 1/3 for a collapsed polymer.

Indeed, experimentally derived data confirms this size scaling behavior, which is shown in

Fig. 1.3(a & b).

Depending on the solvent conditions or temperature, polymers (including proteins) will

be either in a random coil or collapsed phase. Meaning that at a certain point, a phase

transition occurs from one phase to the other.† However, proteins exhibit remarkable co-

operativity and “all-or-nothing” folding transitions (first-order), unlike homopolymers or
†Strictly speaking, phase transitions are only exhibited by infinite systems; nevertheless, it is usefully

characterize collapse and folding transitions as such.
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1.2| Proteins as Heteropolymers and Energy Landscape Theory

Figure 1.3 Radial distribution function for (a) unfolded, RD
g , and (b) folded proteins,

RN
g , following Flory polymer theory. Maxwell transition curves and corresponding energy

distributions for (c-f) continuous collapse transition and for (g-j) abrupt collapse transition.
(a-b) From ref. [28], and (c-j) from ref. [29].

random heteropoylmers that collapse in a continuous manner [26, 27]. Systems that undergo

a continuous transition have a monotonically decreasing change in entropy (S) with respect

to a change in energy (E). In Fig. 1.3(c), dS
dE monotonically decreases as energy increases.

Additionally, the distribution of E continuous moves at specific values of dS
dE [Fig. 1.3(d-f)].

In contrast, systems that undergo a first-order transition will have an inflection in the dS
dE

as is shown in Fig. 1.3(g). At a transition temperature, a bimodal distribution of E occurs

[Fig. 1.3(i)] indicating that both phase coexist. These polymer physics and phase transition

concepts play an important role in chapter 3 of this thesis.

Through polymer theory, we understand how proteins become a compact structure from

a random coil; however, collapsed polymers are still disordered. Thus, folding into a unique

(approximately) configuration may be described as an order-disorder transition [30]. And If

7



Chapter 1| Introduction: From Protein Folding in the Test-tube to Folding in the Cell

Levinthal’s paradox is ture, then the energy landscape of proteins must be relatively random.

To understand this transition process, we borrow ideas from spin glasses [23, 24, 25]. A

randomly chosen sequences will have random interactions between residues. The prototypical

system of random interactions is the Sherrington-Kirkpatrick spin-glass model[23], which has

a Hamiltonian of the form

H = −
∑
ij

Jijσiσi (1.2)

where Jij is a random energy and Ising spin σi = ±1 at site i.

The simplest example system is a three-spin triangle model as illustrated in Fig. 1.4(a).

If two interactions are positive and one negative as portrayed in the figure, the system will

have frustration. Meaning, the top spin in the current configuration can only optimally

satisfy an interaction with one of its neighbors and not both.

By extending the concept of frustration to a random heteropolymer with random interac-

tion energies between residues, U(rij), we expect many near-ground states that are relatively

for apart on the landscape and often with large energy barriers between them. Such rugged

landscape for our random polymer model is depicted in Fig. 1.4(b). The dynamics on this

surface would be glassy and a configuration may become stuck in a local minimum for spans

of time that exceed experimental capabilities.

In contrast, real proteins must fold on biologically relevant time scales to be useful for

living cells. Therefore, through understanding spin glasses, we arrive at the conclusion that

the energy landscape of proteins must be funnel with a “flow” towards a global minimum

(being the folded state) and must be minimally frustrated [31, 32, 33, 34] as shown in

Fig. 1.5(a). This principle of minimal frustration means that the ratio between the folding

temperature, Tf , and glass transition temperature, Tg, is maximized, allowing for rapid

folding. This is directly related to the energy gap, ∆E, between order (folded) and disorder

8



1.2| Proteins as Heteropolymers and Energy Landscape Theory

Figure 1.4 (a) Spin glass example and (b) energy landscape of frustrated polymer.

(unfolded) phases and its ratio with the energetic roughness, δE, of the landscape. The

solution to Levinthal’s paradox did not need “kinetic control” pathways as was mentioned

in the previous section. The folding of a protein does not follow a single, specific pathway;

a protein explore an ensemble of pathways on a minimally-frustrated, funnel landscape to

reach its folding phase. The solution to Levinthal’s paradox is that Nature selected sequences

produce and energy landscape with maximized ∆E/δE.

At the same time though, not every detail of the sequence is important. Two sequences

with over 80% the sequence alignment my not have the same structure, and on the other

hand, two sequences with less than 20% the sequence alignment my have homologous struc-

tures. Therefore the energy landscape emerges from the total underlying sequence and is

not finely tuned [31, 35].

This energy landscape at Tf gives rise to a simple free energy plot in Fig. 1.5(b) that we

are accustom to in the study of phase transitions of statistical physics. This double-well free

9



Chapter 1| Introduction: From Protein Folding in the Test-tube to Folding in the Cell

energy, G, with respect to an order parameter, is that of a first-order phase transition when

the free energy difference between both phases ∆G = 0. As such, to find the phase diagram

of a protein on the pressure (P ) and temperature (T ) axis, we solve for ∆G(T, P ) = 0. A

small change in Gibbs free energy difference with respect to T and P is defined as,

d∆G = −∆SdT + ∆V dP, (1.3)

where ∆V is the difference in volume and ∆S is the difference in entropy. Upon integration

of this equation from an arbitrarily chosen reference point T0 and P0 to T and P , one obtains

∆G(T, P ) = ∆κ
2 (P − P0)2 + ∆α (T − T0) (P − P0)−∆CP

[
T
(

ln T

T0
− 1

)
+ T0

]
+ ∆V0 (P − P0)−∆S0 (T − T0) + ∆G0. (1.4)

By using a second order Taylor expansion around T0 and P0:

∆CP
[
T
(

ln T

T0
− 1

)
+ T0

]
≈ ∆CP

2T0
(T − T0)2 (1.5)

where κ is the compressiblity, α is the thermal expansion coefficient, CP is the heat capcity,

and ∆G0 = ∆G(T0, P0). This forms an ellipse on the the P -T phase diagram of a protein,

where the inside is the folded phase and the outside is the unfolded phase as shown in

Fig. 1.5(C).

1.3 Cellular Environment: Crowding Effect and Quinary Interaction

The theory of protein folding in a dilute solution (test-tube) is an idealized view of protein

folding in the cell[36]; namely, we expect the general principles to be the same, but new

10



1.3| Cellular Environment: Crowding Effect and Quinary Interaction

Figure 1.5 (a)Funnelled energy landscape and (b) corresponding free energy with respect
to folding phase order parameter. (c)Two-state pressure-temperature phase diagram

behavior will arise with added complexity of the cellular environment [37]. The cellular

environment differs from the test tube by two main forms (see Fig.1.6): (i) entropic effects

from crowding, packing shapes, and solvent dynamics, and (ii) enthalpic effects from elec-

trostatics, quinary van der Waals interactions, and chemical perturbants. Since cells are

highly crowded by macromolecules, non-trivial collective effects arise. Additionally, protein

sequence information can contain quinary interactions [4] that guide proteins towards self-

assembly of transiently stable complexes to perform various functions. In order to bridge

the gap from single protein dynamics to subcellular network dynamics, we first need to

understand the behavior of single (or few) molecule(s) placed in the cellular environment.

Several in vivo experiments have begun to scratch the surface of understanding protein

folding and dynamics in vivo. By studying proteins in an actual cellular environment with

all of its complexity, we gain key phenomenology. Motivated by the possibility of living

11
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Figure 1.6 Protein folding and dynamics under the influence of the entropic and enthalpic
contributions of the cellular environment. (a) Macromolecular crowding effect, (b) packing
shape, (c) hydration or solvent fluctuations, (d) electrostatics, (e) quinary van der Waals
interactions, and (f) chemical perturbants.
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1.3| Cellular Environment: Crowding Effect and Quinary Interaction

cells controlling the function and dynamics of their proteome through modulating their

proteins’ landscapes, these studies investigate protein stability inside living cells. Studies

in [38, 39, 40, 41, 42] focus on the effects of the environmental perturbations, on the order

of a kBT , to proteins. These weak interactions produce mixed results, shifting the free

energy, positively, negatively or have little effect compared to in vitro folding. Other in vivo

experiments [43, 44, 45] focus on the quinary interactions encoded in the protein sequence

in order to understand the protein folding stability changes. These in vivo results are also

corroborated by all-atom simulations of the cytoplasm of a bacterium [46].

The development of a theory is needed for the in-living-cells protein folding experiments;

however, it is difficult to develop principles of in vivo folding and dynamics without a firm

grounding of the interactions and entropic effects. Macromolecular crowding is arguably the

most universal effect, since all molecules occupy volume. During the three decades since the

‘macromolecular crowding effect [47]’ was coined in 1981, the native state of proteins has

been modeled as incompressible hard cores in theories that evaluate the impact of volume

exclusion on protein stability and dynamics. This view has been critically challenged by

collaborative work between the experimentalist group of Pernilla Wittung-Stafshede and the

Cheung group. Using computer simulations and theories of statistical physics, we predicted

that a structurally complex protein resembles a ‘pom–pom’ instead of a hard core in solutions.

When the macromolecular crowding effects are considered, the stability of the native state

is enhanced by the mechanistic interactions between surrounding macromolecules and the

native state of a protein. This prediction has been validated experimentally in studies of

a globular apoflavodoxin protein in the presence of the synthetic macromolecule Ficoll 70,

which acts as a crowding agent [48]. Our group further predicted the change in folding routes

of apoflavodoxin caused by different shapes and sizes of crowders [49]. The folding routes

in the bulk solutions experience a higher percentage of unproductive folding intermediates

13
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Figure 1.7 Excluded volume fraction scale. Volume fractions at which transitions arise
are: freezing, φF = 0.494; melting, φM = 0.545; glassy, φG = 0.58. Also random close
packing, φRCP = 0.637 and face-centered cubic array, φFCC = 0.74.

than in the crowded environment [49].

An E. coli cell is about 1 cubic micrometer in volume. This cubic micrometer contains

on the order of 104 ribosomes and mRNA molecules, 106 proteins (thousands of types), and

107 DNA base pairs. The exclude volume fraction from these macromolecules can be up to

40% of the total cell volume. For additional perspective on the amount of crowding, the

scale in Fig. 1.7 gives the volume fraction of various material phases. Thus, the cell is more

like a heterogeneous gel instead of a dilute liquid. Even though the volume fraction at which

crystallization occcurs (φF = 0.494) is a difference of 0.1 from the cell environment, the

effects may still be felt in the cell due to local fluctuation and finite size effects.

The macromolecular crowding effect is a result of volume exclusion by surrounding macro-

molecules. It has been known since the 1950s that density fluctuations of macromolecules

create a void where a compact protein resides and compact conformations are statistically
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favored over extended conformations [50]. However, the determination of the ‘native’ state

becomes non-trivial when the conformation of a compact protein is malleable and can be

easily changed by interactions with other objects. In collaboration with Professor Stafshede-

Wittung’s group, we showed that the shape of aspherical VlsE proteins could be changed

under cell-like conditions, such as those generated by chemical and thermal denaturation

[51]. In crowded milieus, distinct conformational changes from an olive shape to a sphere in

VlsE are accompanied by secondary structure alterations that lead to exposure of a hidden

antigenic region. This work demonstrates the unprecedented malleability of ‘native’ proteins

and implies that crowding-induced shape changes may be important for protein function and

malfunction in vivo.

The idea of a protein’s ‘native’ state in a crowded cell has established an important

milestone towards protein folding inside the cell. In collaboration with Professor Martin

Gruebele, we identified the enzymatic mechanism of a protein, phosphoglycerate kinase

(PGK), with the shape of a ‘pac-man’ in cell-like conditions [52]. Our coarse-grained models

showed that PGK adopts a closed ‘pac-man’ conformation in a crowded cell, bringing the

two lobes together to react. Indeed, experiments have shown that the enzymatic activity of

PGK is a remarkable 15-fold higher in a crowded environment.

Further theoretical developments of the macromolecular crowding effect by scaling rela-

tionships [53] allows us to understand the relationship between the ratio of crowder size to a

generic biopolymer radius of gyration and the collapse of that generic biopolymer. This was

also validated experimentally in a general colloid polymer solution [54] and with intrinsically

disordered proteins (IDPs) in a crowded environment [55]. In addition to the size of crow-

ders, the shape also has a significant entropic effect [56, 57]. Even though much progress

has been made in understanding the macromolecular crowding effect, there is still much we

do not fully understand such as the effects of heterogeneous sizes and shapes as is found in
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the cytoplasm.

The last entropic effect that is necessary for a complete understanding of in vivo folding

deals with the behavior of water in the cell. As shown for protein folding in the test tubes,

the dynamical fluctuations of water at the protein’s surface [58, 59], desolvation [60] between

residues, and hydrodynamic interactions [61, 62] will also play an important role in the cell.

When departing from the dilute solution limit to high volume fraction of macromolecules,

the behavior of water will change entropically [63, 64], kinetically [65, 66], and possibly even

quantum mechanically [67].

A great challenge is to understand how weak, seemingly random, quinary interactions [4]

can lead to non-random arrangements of protein organization. These interactions can alter

the thermodynamic folding barriers leaving the protein marginally stable. Both theoretical

and experimental developments have been made to understand macromolecular crowding

with enthalpic contributions [68, 69, 70, 71, 72]. Being able to separate out the entropic

from enthalpic effects is a vital step towards the development of general principles of in

vivo protein folding. This computational approach advanced the next step of research in

understanding protein folding in cytoplasmic media [73].

Somewhere along this axis (Fig. 1.8) the property which we call living emerges. So by

exploring the various phases across these scales, we may be able to understand what it means

to be alive.
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1.3| Cellular Environment: Crowding Effect and Quinary Interaction

Figure 1.8 Various protein phases across scales of size, time, number, and complexity.
From left to right, at the single protein scale is protein folding transitions; then at the multi-
protein scale is aggregation, dimerization, fiber formation, and supramolecular assembly; at
the cellular scale is liquid-liquid phase separation. Adapted from refs. [3, 74, 75].
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αεὶ o θεòς o µέγας γεωµετ%ει̂ τ ò σύµπαν.
(Always the great God applies geometry to
the universe.)

—Plutarch

2
Understanding the Temperature-Pressure Phase

Diagram of a Protein∗

Proteins unfold not only under high heat but also in the presence of high hydrostatic pres-

sure. This effect has been known since the early 1900s [76, 77], and the equation of state on

the pressure-temperature plane was formalized by Hawley in 1971 [78]. While protein un-

folding by heat is more intuitive, pressure denaturation can be explained from Le Chatelier’s

principle, in which pressure unfolds proteins due to a negative volume change. The molecular

origin of this negative volume change was recently discovered to be the penetration of water

into the hydrophobic core, causing loss of the protein’s cavities [79, 80].

Computational simulations are essential to gain further insight into specific pressure-

perturbed folding mechanisms. Pressure denaturation of proteins has been studied by all-

atom molecular dynamics simulation [81, 82, 83, 84]. However, it is computationally costly
∗Contents of this chapter has been published in J. Phys. Chem. B (2020) 124, 1619-1627. AG Gasic is

first author.

19



Chapter 2| Understanding the Temperature-Pressure Phase Diagram of a Protein

since pressure unfolds proteins on a longer timescale than heat denaturation [85] and often

requires sampling tricks [86]. An alternative to all-atom models are structure-based coarse-

grained models. Structure-based models render an energy landscape with minimal frustration

and contain a funneled landscape with a dominant basin of attraction corresponding to an

experimentally determined configuration [87, 88]. The mechanism that drives protein folding

from unfolded conformations to few unique conformations where the hydrophobic residues

coalesce to a “hydrophobic core” is similar to what drives oil separating from water. As such,

these models are computationally inexpensive, allowing long-timescale simulations even for

large proteins and complex systems. Similar to how the “Ising model” is used to develop

the general theories of phase transitions, or how the “ideal gas” illustrates the basic notions

of fluid behavior, structure-based models of proteins are used to understand fundamental

aspects of protein folding and dynamics [88, 30]. Furthermore, to understand large systems,

such as protein folding in vivo [89, 90], structure-based minimalist models are essential for

developing new theories.

Pressure-dependent hydrophobic interactions in coarse-grained protein models are ap-

proximated by using the potential of mean force (PMF) between two methane molecules at

various hydrostatic pressures [91, 92, 93, 94], since methane molecules are a simple model

for the interaction of hydrophobic residues in a protein. Understanding the behavior of

two contacting methane molecules in aqueous solution provides insight into the mechanism

of hydrophobic collapse during protein folding. In general, this PMF contains a contact

well, a solvent-mediated well, and a desolvation barrier between the two wells, as shown

in Fig. 2.2. The presence of the desolvation barrier is due to the free-energy cost for two

methane molecules to penetrate the first hydration shell between them and move from the

water-mediated contact well to reach the direct contact well. Pressure (P ) and temperature

(T ) can cause changes in the depths of wells and the height of the barrier. However, the exact
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2.1| Overview of Pressure-Denaturation

description of the PMF is still debated between two methane molecules [92, 95, 96, 97, 98] and

in proteins[99, 100, 101, 102, 103]. Hummer et al.[92] find a pressure-dependent PMF with

a contact well energy that weakens favoring the water-mediated well as pressure increases.

Opposing Hummer et al. [92], Dias and Chan show that the contact well deepens as pressure

increases [93]. Because of the different pressure-dependencies of these two potentials, they

produce different folding-phase behaviors of proteins on the P -T plane. Here, we investigate

these two different pressure-dependent desolvation potentials and compare it to the known

behavior of a well-studied protein under high hydrostatic pressure, phosphoglycerate kinase

(PGK), based on experimental evidence [104, 105, 106]. Before presenting the results, we

give an overview of pressure denaturation relevant to the current investigation.

2.1 Overview of Pressure-Denaturation

Hawley’s theory dictates that the contributions of the changes in entropy (∆S ≡ SU − SF)

and volume (∆V ≡ VU − VF) between unfolded (U) and folded (F) protein phases result in

an elliptical-shaped coexistence (∆G = 0) curve in the P -T space (Fig. 2.1) [78]. From the

Clausius-Clapeyron relation, the slope of the coexistence curve between the two phases is

dP
dT

∣∣∣∣∣
∆G=0

= SU − SF

VU − VF
= ∆S

∆V (2.1)

Since the coexistence curve is elliptical, both ∆V and ∆S can be positive, negative, or

zero depending on the P and T . The quadrants of the ellipse are broken up by the dashed

∆V = 0 and dotted ∆S = 0 lines in Fig. 2.1, where ∆V < 0 or ∆V > 0 if above or

below the ∆V = 0 line and ∆S < 0or ∆S > 0 if to the left or right of the ∆S = 0 line,

respectively. Fig. 2.1 contains two different examples of elliptical curves to help breakdown
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Chapter 2| Understanding the Temperature-Pressure Phase Diagram of a Protein

Figure 2.1 Schematic P–T phase diagrams for two proteins with different elliptical coexis-
tence (∆G = 0) curves. The dotted lines represent ∆S = 0 (left of the line, ∆S is negative;
right of the line, ∆S is positive), and the dashed lines represent ∆V = 0 (above the line,
∆V is negative; below the line, ∆V is positive). The two ellipses differ by a shift in the
pressure direction and a shear of the ∆V and ∆S axes. The origin of the plot is at 0.1 MPa
(1 atm) and 273 K. For the orange curve, ∆V is mainly negative for experimentally relevant
P and T; whereas, the blue curve has a large region where ∆V is positive. Examples of
proteins with a similar elliptical coexistence curves are ribonuclease and phosphoglycerate
kinase (PGK) in orange and chymotrypsinogen in blue.
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the contributions of entropy and volume in the discussions to follow in this section and other

parts of this chapter.

From Le Chatelier’s principle, high pressure shifts the equilibrium toward the phase with

the smallest volume to minimize the free energy. Therefore, for hydrostatic pressure to unfold

a protein, the partial molar volume of the unfolded phase (VU) must be smaller than that of

the folded phase (VU); that is, the change in volume must be negative (∆V < 0) [107, 108].

In general, ∆V is negative at room temperature [109]; however, positive ∆V can be

observed specifically at high temperature [78] or for α-helix peptides [110, 111]. For example,

chymotrypsinogen [78] has a coexistence curve similar to the blue curve in Fig. 2.1, and

applying a medium pressure (below 50 MPa) at high T (320 K) will fold the protein due

to the positive change in volume. However, chymotrypsinogen will unfold again at a higher

pressure (above 100 MPa) after crossing the ∆V = 0 line.

One of the key factors in producing the elliptical phase diagram for protein folding sta-

bility in the P -T plane is the temperature dependence of ∆V . Formally, ∆V is given as

∆V =
∫ T

T0
∆αdT ′ +

∫ P

P0
∆κdP ′

= ∆V0 + ∆α (T − T0) + ∆κ (P − P0)
(2.2)

where the change in thermal expansivity is ∆α, the change in compressibility is ∆κ, and

∆V0 ≡ ∆V (T0, P0). Usually, the magnitude of ∆κ is small, giving an almost negligible

pressure dependence to ∆V . At room temperature, generally ∆κ < 0. Additionally, ∆α

tends to be greater than zero, which may be due to the greater degree of hydration of

unfolded proteins [112].

The P and T dependencies of ∆S is the other factor that contributes to the elliptical

phase diagram. Since a folded protein has lower entropy than an unfolded protein, heat shifts
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the population to the phase with the highest entropy. At low temperatures, the low-entropy

state of the solvent is favored, which is reconciled by unfolding the protein [113, 114]. Note

that in this thesis, we will not consider cold denaturation.

The change in partial molar volume stems from changes in void (or solvent inaccessible

cavity), van der Waals, and hydration volumes [115]

∆V = ∆VvdW + ∆Vvoid + ∆Vhyd (2.3)

However, ∆VvdW ≈ 0 for most cases, which means ∆VvdW can be ignored.

For partial molar volume changes in void (∆Vvoid), since folded proteins are not perfectly

packed, dry voids (or cavities) of varying sizes and shapes are distributed heterogeneously

throughout a protein [116, 117]. High pressure induces unfolding by introducing solvent into

the protein structures, eliminating the cavities, and decreasing the overall solvent-accessible

volume [79, 80]. Water penetrates the hydrophobic core of proteins because of the reduced

solvent-solute interfacial free energy when pressure increases [118].

For partial molecular volume changes in hydration (∆Vhyd), hydration of newly solvent-

exposed side chains upon unfolding also contributes to a change in partial molar volume by

changing the density of the hydration layer. This effect depends on the chemical properties

of the side chains and the surface area topography. Usually, ∆Vhyd > 0 and is small in

magnitude, which may be due to polar and apolar hydration influences canceling each other.

Thus, the decrease in the void volume (∆Vvoid) overcomes the increased hydration volume

(∆Vhyd) in order for pressure denaturation to occur [119]. Regardless of the hydration effect,

the key mechanism that unfolds a protein under high pressure is the elimination of solvent-

excluded cavities because of water penetrating the hydrophobic core; therefore, ∆V < 0 to

unfold a protein under high pressure.
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2.2| Pressure-dependent desolvation potentials

2.2 Pressure-dependent desolvation potentials

In this study, we use two models to investigate pressure-dependencies. The first model,

termed “the CHOGG model” (for Cheung-Hummer-Onuchic-Garcia-Gasic), is based on a

work from Hummer and co-workers [91, 92], which is derived from the information theory,

and later expressed for off-lattice simulations [106, 60] of protein folding under high pressure.

The information theory model accounts for the association, solvation, and conformational

equilibria of hydrophobic solutes, such as residues in the core of a protein. These calculations

are described by the probability of hydrophobic solutes, forming a cavity in an aqueous

solvent. As a result of increasing pressure, the desolation barrier rises because of the increased

free-energy cost of forming a small cavity between two solutes. An information-theoretic

model will not encounter the usual systematic errors due to overfitting of incorrect simulation

data. Based on the Hummer et al.’s information theory calculation[91, 92] and Hillson et al.’s

simulation [120], Cheung and co-workers [106, 60] created a desolvation barrier for structure-

based models.

The second model for the investigation of pressure dependencies, termed “the DC model”

(for Dias-Chan), is motivated by a work from Dias and Chan [93] that calculates the potential

of mean force between to methane molecules directly from simulation data.

The values of ε, ε′, and ε′′ are related to the magnitude of pressure by the following

ε(P ) = ε0 + υP + ξP 2 (2.4a)

ε′(P ) = ε′0 + υ′P (2.4b)

ε′′(P ) = ε′′0 + υ′′P + ξ′′P 2, (2.4c)

where ε′0 and ε′′0 are the water-mediated well energy and the barrier height at ambient P ,
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Figure 2.2 Coarse-grained representation of PGK (PDB ID: 1QPG). Each amino acid
is coarse-grained to a single bead. The N- and C-terminus domains are in red and blue,
respectively. (b) Desolvation potential (solid line) compared to the Lennard-Jones potential
(dashed line). Here r0, r†, and r′ are the positions of the minimum of the first well, maximum
of the desolvation barrier, and the minimum of the second well, respectively. The separation
between r0 and r′ is the size of a single water molecule, 0.8σ, and r† = (r0 + r′) /2. The
piecewise terms of the desolvation potential are shown below pointing to their corresponding
colored sections, where constants C = (ε+ε′′)

(r†−r0)2 , B = 3ε′
(
r′ − r†

)4
, h1 = 2

3
(r′−r†)2

ε′/ε′′+1 , and

h2 = 2(r′−r†)6

ε′′/ε′+1 . The green section (r < r0) is the Lennard-Jones potential for positive or
negative ε. The attractive part of the contact well is highlighted in gray (r0 ≤ r < r†), and
the water-mediated minimum is highlighted in blue (r† ≤ r).
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2.2| Pressure-dependent desolvation potentials

Table 2.1 Values of Constants in Pressure-Dependent Contact Well, Water-Mediated Well,
and Barrier Height Energies

Constants [units] CHOGG model DC model

ε′0 [ε0] 0.33 0.19
ε′′0 [ε0] 1.33 0.3
υ [σ3] -0.127 0.039

ξ [σ3/ε0] 0 0.007
υ′ [σ3] 0 0.042
υ′′ [σ3] 0.211 0.03

ξ′′ [σ3/ε0] 0 0.007

respectively. The constants for both models are given in Table 2.1. The constants for the

CHOGG model are taken from ref. [120], and the constants for the DC model are from

fitting to the PMF’s (from ref. [93]) minima and barrier height versus P . Noting the values

in Table 2.1, the CHOGG model only uses the linear P dependencies unlike the DC model

that has second-order P terms.

Since these P -dependent energies result in two very different P -dependent desolvation

potentials, as shown in Fig. 2.3, the contributions of the barrier height at r† and well depth

at r0 will have different effects on the protein’s behavior. With the CHOGG model, the des-

olvation barrier increases, and the free-energy gap between the two minima tilts to favor the

water-mediated contact as pressure increases, leading to water penetrating the hydrophobic

core and unfolding of a protein; whereas, with the DC model, the free-energy gap between

the two minima tilts to favor the contact well as pressure increases, leading to a stabilization

of the protein. Additionally, the slight softening of the contact well in the CHOGG model as

pressure increases will have little effect on the global thermodynamics of the protein. This

is because the water-mediated contact well (at r′) is thermodynamically favored at high
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Figure 2.3 Pressure-dependent desolvation PMF between two residues while varying P ,
including Lennard-Jones and solvent contributions. Results are shown for σ3P/ε0 = 10−3 to
9.2 for the (a) CHOGG model and (b) DC model. Insets show the values of ε, ε′, and ε′′ as
a function of P (in reduced units, where ε0/σ3 ≈ 76 MPa).

pressure, and the residues are less likely to feel the softening of the contact well (at r < r0)

than they are to feel the repulsive part of the desolvation barrier (at r† ≤ r < r′).

2.3 The phase behavior of the two desolvation models

In order to compare the behavior of PGK modeled by the two pressure-dependent desolvation

potentials, we calculated the average radius of gyration (Rg) of the protein ensembles at a
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wide range of P and T . We first analyze the coexistence curves (∆G = 0) of the two

models on their P -T phase diagrams to show their general thermodynamic properties. We

construct a P -T phase diagram for both models, shown in Fig. 2.4, using the average radius

of gyration, Rg (normalized by the Rg of the crystal structure, R0
g), as the order parameter

to describe the folding phase. The black line is the coexistence curve separating the folded

and unfolded phases, and on the curve, both phases are equally populated due to having a

zero change in free energy (∆G = 0). The stability dependence on P and T is shown by the

slope of the coexistence curve on the P - T phase diagram. The negative slope, in Figure

Fig. 2.4(a), shows that both increasing P and T destabilize the protein with the CHOGG

model; whereas, the positive slope, in Fig. 2.4(b), shows that only increasing T destabilizes

the protein with the DC model. From Eq. 2.1, the slope of the coexistence curve is ∆S
∆V .

Because both models have a positive ∆S (entropy increases upon unfolding), therefore, ∆V

must be negative for the CHOGG model and positive for the DC model. Thus, the CHOGG

model captures the protein denaturation of PGK under pressure.

From Fig. 2.4, the slopes of the black line indicate that ∆V < 0 for the CHOGG model

[Fig. 2.4(a)] and ∆V > 0 for the DC model [Fig. 2.4(b)]. The behavior on the phase diagram

in Fig. 2.4(a) for the CHOGG model may occur in real proteins if the ∆V = 0 line is shifted

to a low or negative pressure and the slope is flattened similar to the orange curve in Fig. 2.1

(to the right of the ∆S = 0 line); whereas, the phase diagram of the DC model in Fig. 2.4(b)

is similar to the blue curve in Fig. 2.1 at a high temperature below the ∆V = 0 line (i.e.,

∆V > 0).
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Figure 2.4 P -T phase diagram for the (a) CHOGG model and (b) DC model. The blue
region corresponds to compact values of Rg/R

0
g, and the gray region corresponds to extended

values of Rg/R
0
g, which signify folded and unfolded phases, respectively. The normalization

(R0
g) is the radius of gyration of the crystal structure. The black line is a linear approximation

of the phase boundary between folded and unfolded protein phases. For reduced units,
ε0/σ

3 ≈ 76 MPa and ε0/kB ≈ 303 K.
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2.4 CHOGG Model Captures Protein Denaturation under Pressure

unlike the DC Model

Both CHOGG and the DC models do not capture the full range of the P -T plane from

Hawley’s theory; however, our simulation results conclusively show that the CHOGG model

is best suited for studying hydrostatic pressure unfolding when in the ∆V < 0 regime, which

the DC model does not accurately reflect the phenomenological behavior.32 Indeed, the

CHOGG model accurately describes the unfolding behavior of PGK under high pressure,

including the nontrivial existence of a stable intermediate at low T and high P . The phase

diagrams created by the CHOGG model were validated by experiments and by an analytical

theory.32 The DC model is by no means incorrect though. The DC model may be more

suited for studying the effects of pressure in the ∆V > 0 regime such as an α-helix peptide,

which has a smaller volume of folded than unfolded.

By combining aspects of both models, an elliptical coexistence curve can be achieved

with the desired center and ∆V , ∆S axes rotation or shearing, as seen in Fig. 2.1. A protein

such as chymotrypsinogen3 (blue curve in Fig. 2.1) is unfolded at high T , but it folds when

a medium pressure is applied (below 50 MPa), and then it unfolds again at a high pressure

(approximately 100 MPa). This is due to the fact that the ∆V = 0 line of the elliptical

coexistence curve is centered higher and has a steeper slope than the orange curve. For the

medium pressure behavior of chymotrypsinogen, the DC model would reproduce the correct

results because ∆V > 0 until the pressure reaches the ∆V = 0 line. Above the ∆V = 0

line, the CHOGG model would be needed to ensure unfolding at higher pressures. Since

PGK (orange curve in Fig. 2.1) has a ∆V = 0 line with a low-pressure center and flat slope,

∆V < 0 for almost all P and T , which is why the CHOGG model captures PGK’s pressure
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denaturation correctly.

2.5 PMFs of Methane Molecules May Not Be Fully Represent the

PMFs for Proteins

These two PMFs (Fig. 2.3) may not conflict with each other because the temperature will

also affect the pressure-dependence. The change in the contact well depth, whether it in-

creases or decreases, depends on the temperature, which is shown by Ashbaugh et al [94].

through calculating the second virial coefficient. They show that at high T , the second virial

coefficient increases (less attraction) as pressure increases; whereas, at low T , the second

virial coefficient decreases (more attraction) as pressure increases. The pressure-dependence

of the contact well of the PMF between the methanes can be interpreted as becoming shal-

lower or deeper as pressure increases at high T or low T , respectively, which is individually

captured by the CHOGG or DC model.

Furthermore, using perfectly detailed PMFs from two methane molecules as the pairwise

hydrophobic interaction of a protein will not be the “true” PMF of the protein for two

reasons: (i) simply, protein residues are not methane molecules and (ii) many-body and

emergent effects of having many hydrophobic molecules together will change the PMF. For

example, the PMF between two hydrophobic plates has a different pressure-dependence

compared to that between two methane molecules [121]. For the PMF between the graphene

plates immersed in TIP4P/2005 water at T = 300 K, as pressure increases, the contact well

initially deepens until 800 MPa and becomes shallower at 1200 MPa.

Another example showing where the PMF of methane molecules contradicts the PMF

of proteins: Dias also finds a different pressure-dependence in the PMF of a simple protein-
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water model [101] compared to that of the two methane molecules that he and Chan propose

in ref [93] (the DC model in this study). The PMF of a simple protein-water model from Dias’

work [101] is comparable to Fig. 2.3(a) (the CHOGG model), which opposes the trend of

Figure Fig. 2.3(b) (the DC model). The protein-water model from Dias27 and the CHOGG

model both have a contact well that weakens as pressure increases; whereas, in the DC model,

the contact well strengthens with increased pressure. Dias and Chan even state that proteins

will have a different pressure-dependent hydrophobic interaction compared to methanes:

Conceptually, however, it is important to recognize that two- and three-methane

PMFs do not, by themselves, necessarily provide an adequate physical picture

of pressure denaturation because the two- and three-body contact minima retain

significant water exposure. Hence, the adequacy of these configurations as models

for the sequestered folded protein core can be limited. [93]

In their conclusion of their paper [93], they also describe the difficulty of correlating the

combined pressure and temperature dependencies of the methane PMF to those of real pro-

teins. Therefore, one should understand the ∆V regimes of the protein under investigation

to know whether to use the CHOGG or DC model as described in the previous subsection.

2.6 Merit of Coarse-Grained Modeling over All-Atom Simulations

Structure-based coarse-grained models have a funneled energy landscape with minimal frustration[87,

88]. As we learned from the energy landscape theory of protein folding,58 structure-based

models provide fruitful insights. Why is that?—because the funneled energy landscape itself

is emergent and microscopic details cease to matter [35]. This is evident with mutation ex-

periments; few perturbations of the residue sequence retain the same topological structure.
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Thus, the exact molecular scale details and chemistry are not as important as the essential

physics provided by structure-based models.

Coming back to the problem at hand, regardless of the exact details, the essential physics

of the CHOGG model is that the desolvation barrier increases and the free-energy gap

between the two minima tilts to favor the water-mediated contact as pressure increases,

leading to water penetrating the hydrophobic core and unfolding of a protein. This physics

is captured by the PMF calculated by Hummer and coworkers [91, 92, 122] and has been used

by others to understand pressure denaturation [114, 120, 123, 124, 125, 126]. In our recent

study in collaboration with experimentalists (which inspired this work)[106], we capture

important thermodynamic trends in the pressure denaturation of PGK. These trends include

the evidence for critical behavior of a protein (note that criticality is another well-known

emergent phenomenon [127]; not discussed here), which is not explicit in our model.

Through our investigation, we have rigorously compared two different pressure-dependent

desolvation potentials and settled the debate between the two models. We have also shown

how the two models may be used in structure-based minimalist models to further understand

the full P -T phase diagrams of real proteins, as intended by Hawley’s original work.
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It is not the strongest of the species that survives,
nor the most intelligent, but rather the one most
responsive to change.

—Charles Darwin

3
Critical Phenomena in the Phase Diagram of a

Protein∗

Complex processes in nature often arise at an order-disorder transition [128, 30, 129, 130]. In

proteins, this complexity arises from an almost perfect compensation of entropy by enthalpy:

molecular interactions that create structural integrity are on the same scale as thermal fluctu-

ations from the environment. The resulting marginal stability of proteins suggests that they

could behave like fluids near a critical point [131]—their structures fluctuate considerably

subject to small perturbations without overcoming a large activation barrier.

The concept of first-order and critical phase transitions does not rigorously apply to

nano-objects such as proteins; nevertheless, it is a useful one to classify folding transitions.

For example, folding of small model proteins has been described as an abrupt, cooperative

transition between the folded and unfolded phase for some proteins (the below-critical point
∗Contents of this chapter has been published in Phys. Rev. X (2019) 9, 041035. AG Gasic is co-first

author.
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scenario), or as a gradual barrier-less ‘downhill’ transition for other proteins (the above-

critical point scenario) [9]. Even though critical behavior of proteins has been previously

hinted [132, 133, 134], there has not been a direct observation of a critical point where

one of these abrupt transitions simply disappears at Tc and Pc. In larger proteins, such

as phosphoglycerate kinase (PGK) ([135] in section S1), the situation can get even more

complex: different parts or ‘domains’ of a large protein are more likely to be able to undergo

separate order-disorder events [136], delicately poised between folded and partially unfolded

structures to carry out their functions [52].

Proteins must fold and function while crowded by surrounding macromolecules [137],

which perturb the structure of the proteins at physiological conditions in the cell. The

volume exclusion from macromolecules [50], which places shape and size (or co-volume)

[47, 138] constraints on the conformational space [Fig. 3.1(a)], complicates protein folding

and dynamics in living cells [36]. How the competing properties of a protein arise—being

both stable yet dynamically sensitive to its environment—is mostly unknown; however, we

show that the crowded environment provides a unique solution by placing PGK near a critical

regime.

We use pressure P , temperature T , and crowder-excluded volume fraction φ, to map

PGK’s folding energy landscape [52, 139] and its critical regime on the T–P–φ phase di-

agram. Temperature can induce heat unfolding by favoring states of high conformational

entropy, or cold denaturing by favoring reduced solvent entropy when hydrating core amino

acids in the protein [113, 114]. Since folded proteins contain heterogeneously distributed

small, dry cavities due to imperfect packing of their quasi-fractal topology [140, 116, 117],

high pressure also induces unfolding by introducing water molecules (as small granular par-

ticles) into the cavities in protein structures, leading to a reduced overall solvent-accessible

volume of the unfolded protein [80]. Finally, in the presence of high crowding (large ex-
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Figure 3.1 PGK surrounded by crowders and the desolvation potential between residues.
(a) A snapshot from the coarse-grained molecular simulation of PGK’s spherical compact
state (Sph) surrounded by crowders (gray) at the volume fraction of 40%. N-, C-domain,
and hinge are in red, blue, and yellow, respectively. (b) The pressure-dependent desolvation
potential at σ3P/ε0 = 4.6, 6.6, and 9.2, contains a desolvation barrier with a width (|r′−r′′|)
the size of a water molecule (blue). This incorporates the entropic cost of expelling a solvent
molecule between two residues (gold). The Lennard-Jones potential is plotted in light grey
for comparison.

cluded volume fraction φ), compact desolvated (crystal) states are favored over less compact

solvated (unfolded) states [52].

To investigate the opposing impact of macromolecular volume exclusion and solvation

water on protein conformation, we utilized a minimalist protein model (see Appendix A and

[135] in section S2.2) that incorporates the free energy cost of expelling a water molecule

between a pair of residues in a contact termed the desolvation potential [Fig. 3.1(b)] [60].

This potential has a barrier that separates two minima that account for a native contact and

a water-mediated contact. As pressure increases, the desolvation barrier increases and the

free energy gap between the two minima tilts to favor the water-mediated contact, leading to

an unfolding of a protein, capturing the main feature of pressure denaturation. Despite the

model’s simplicity without all the detailed chemistry in a residue [93], this desolvation model

predicts a folding mechanism involving water expulsion from the hydrophobic core, which
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has been observed by all-atomistic molecular dynamics [141] and validated by experiments

in which the volume or polarity of amino acids is changed by mutation [142]. We previously

employed a similar model without desolvation potential to investigate compact conformations

of PGK induced by macromolecular crowding [52]. Now, by studying the competition of

temperature, pressure and crowding on the energy landscape, we observe a costly barrier

between two specific phases disappears, along a critical line on top of the isochore surface.

As such, the current investigation demonstrations a richer ensemble of PGK states (Fig. 3.2)

than our previous study [52].

To test our computational model, we observe structural transitions of PGK by fluores-

cence to construct the experimental T–P–φ phase diagram (Fig. 3.3). Experiment verifies

the predicted existence of a critical point where Tc moves to a lower temperature T as the

crowding volume fraction φ increases. Furthermore, we derive a critical line Tc(φ) using

scaling arguments from polymer physics and present a unified phase diagram (Fig. 3.4) to

investigate the underlying physical origin of such transition. As a consequence of being

near the critical regime, PGK exhibits large structural fluctuations at physiologic condi-

tions, which may be advantageous for enzymatic function. The current investigation is

transforming the typical “structure-function” problem in proteins to a novel paradigm of

a “structure-function-environment” relationship and is a step toward developing universal

thermodynamic principles of protein folding in living cells.

3.1 Computational T–P–φ Phase Diagram of PGK

We investigated the conformations of PGK, a large, 415 amino acid, two-domain protein

([135] in section S1 for more information on PGK), in an environment containing Ficoll 70,

which acts as a crowding agent mimicking cell-like excluded volume. Ficoll 70 is computa-
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tionally modeled as a hard sphere, as it is known to be inert to proteins and behaves as a

semirigid sphere [143, 144]. From prior FRET (Förster Resonance Energy Transfer) experi-

ments and molecular simulations, we gained knowledge of several PGK conformations that

denote a phase diagram in the φ–T plane [52]. It includes four states: C (crystal structure),

CC (collapsed crystal), Sph (spherically compact state), and U (unfolded structures). In the

C state, there is a linker that separates the N-terminal and C-terminal domains, resembling

an open “Pacman”. The CC state is a closed “Pacman”. The Sph state involves a twisting

of one of the domains with respect to the other and becomes more spherical than the CC

state. A complete description of the structures of these states is in Supplemental Material

[135] section S3.

By changing hydrostatic pressure P and volume fraction of crowders φ at several temper-

atures T , we have identified two new states on the φ–P isothermal phase plane (Fig. 3.2): I

(folding intermediate), and SU (swollen compact unfolded structure). The criteria to define

the six distinctive conformations are in Table S3.1 [135]. The I state is an ensemble of struc-

tures containing one folded domain (C-terminus) and one unfolded domain (N-terminus),

making a specific prediction as to which domain is least stable on its own (N-terminal). SU

is completely denatured but exhibits many water-mediated contacts [Fig. 3.2(b)]. Thus, the

SU state is structurally more compact than the U state.

The microscopic mechanism of the pressure-induced unfolding of PGK depends on the T

and φ. Fig. 3.2 shows the P–φ phase plane at low T in Fig. 3.2(a) and high T in Fig. 3.2(c).

At sufficiently low T and φ = 0 (no crowders) the unfolding of PGK is a multi-state transition

between crystal state C [Fig. 3.2(a) & 3.2(b)] and unfolded state U via an intermediate state
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Figure 3.2 Solvation and crowding give rise to an intricate phase diagram of PGK. (a & c)
Schematics of PGK’s behavior in the crowding volume fraction-pressure (φ–P ) phase plane
and (b & d) corresponding free energy with respect to the overlap χ and crowding volume
fraction φ at the folding pressure at low (a & b) and high (c & d) temperatures. Solid lines
represent the division between distinct configurational phases that are separated by a free
energy barrier from simulations at φ = 0, 0.2, and 0.4, and pressures from σ3P/ε0 = 103

to 23. The dashed line (a) represents a continuous transition along φ and red dots (a & b)
represent an approximate position of the critical points. The orange arrow (b) marks the peak
of the barrier that diminishes until it disappears after the critical point. Collapsed crystal,
spherical, and swollen unfolded states are indistinguishable in terms of free energy. These
configurations were reconstructed from coarse-grained models to all-atomistic protein models
for illustration purposes. N-, C-domain, and hinge are in red, blue, and yellow, respectively.
A cyan sphere was inserted in between residues to show water-mediated contacts.
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I. We capture the folding process using the overlap parameter χ,

χ ≡ 1− 1
N2 − 5N + 6

N−3∑
i=1

N∑
j=i+3

Θ
(
1.2r0

ij − rij
)
, (3.1)

whereN is the number of residues (= 415), Θ is the Heaviside step-function, rij is the distance

between the residues i and j for a given conformation, and r0
ij is that corresponding distance

in the crystal structure. It characterizes similarity to the crystal structure, C state. χ ranges

from 0 to 1 where 0 represents the C state. In Fig. 3.2(b), the I state has 〈χ〉 = χI ≈ 0.35,

and the U state has 〈χ〉 = χU ≈ 0.9. The state I is a consequence of the heterogeneous

distribution of cavities, causing uneven pressure-denaturation where N-domain unfolds, and

C-domain remains intact. Since the total cavity volume of the N-terminal domain (≈ 171Å3)

is about a third larger than that of the C-terminal domain (≈ 132Å3), the former is more

vulnerable to high pressure. Moreover, two antiparallel β-strands m and n of the N-terminal

domain are totally exposed to the solvent ([135] in section S5 and Fig. S1.1). Under high

pressure, they act as a channel for water to fill the N-terminal domain’s cavities.

At sufficiently high φ and low T [Fig. 3.2(a), above the red critical point], there is only

a single transition due to pressure between a crystal state and several compact states (Sph,

CC, and SU) without the I state. The transition from C to Sph or CC states involves domain

rearrangement when the linker “cracks” [136] and forms a disordered hinge. Whereas, high

pressure competing with crowding gives rise to another compact unfolded conformations

where up to half of the contacts becomes swollen with water that forms a “wet interface”

(swollen unfolded states, SU). As the limited void formed by the density fluctuations of

crowders inhibits extended conformations [145], the U state is unfavorable due to macro-

molecular crowding [51]. The protein only needs to subtly reduce its volume as it expels

water molecules out of this wet core to return to the Sph or CC state from the SU state.

42



3.1| Computational T–P–φ Phase Diagram of PGK

There are effectively no barriers between the Sph, CC, and SU states, which are thus lo-

cated in the same region of the phase diagram (see Fig. 3.2(a) and 3.2(b) at χ = 0.4 to 0.8,

and S5.2 [135]). This data supports the hypothesis that protein dynamics is governed by

the solvent motion [146], and water inside the protein “lubricates” the transitions between

conformations without significant free energy costs [60].

Similarly, at high T [in Fig. 3.2(c) & 3.2(d)] ranging from low to high φ, PGK also

undergoes a single pressure-denaturation transition, but it is between the C and U states.

Due to the increase in T , the U state is entropically more favorable than all other states.

As such, the U state’s entropy considerably compensates the C state’s energy, causing an

increase in the free energy barrier between χ= 0 (C state) and 0.8–0.9 (U state) in Fig. 3.2(d).

Our model predicts from these P–φ slices at various T that crowding makes the folding

of PGK two-state, whereas lack of crowding produces a multi-state transition below a crit-

ical temperature Tc. Therefore, PGK undergoes a critical transition through by either of

two directions on the T–P–φ phase space. One direction is by increasing φ at low T and

sufficiently high P surpassing a critical volume fraction φc as shown in Fig. 3.2(a) at the red

critical point. This transition is clearly seen by the diminishing of the free energy barrier in

Fig. 3.2(b) pointed by an orange arrow, and

lim
φ→φ−c

χU(φ)− χI(φ) = 0, (3.2)

where φc is between 0.2 and 0.4. The second way is by increasing T at low φ and sufficiently

high P surpassing a critical temperature Tc. Take φ = 0 as an example; the free energy

barriers in Fig. 3.2(b) pointed by an orange arrow must diminish, in order for the multi-

state free energy to become two-state resembling the high T free energy shown in Fig. 3.2(d).
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This also means,

lim
T→T−c

χU(T )− χI(T ) = 0. (3.3)

Thus, these two directions that cause a critical transition suggest that Tc is a line on T–P–φ

phase space and the value decreases as φ increases.

3.2 Experimental T–P–φ Phase Diagram of PGK

To validate the computed phase diagram, we measured the P–T phase diagram of PGK at

various Ficoll 70 crowder concentrations to obtain the full P–T–φ information experimen-

tally (Fig. 3.3). While one cannot expect the exact temperatures and pressures to agree,

identical topologies of the experimental phase diagrams validate the general conclusions from

simulations. Changes of the states of PGK were detected by tryptophan fluorescence be-

cause tryptophan mean fluorescence wavelength is sensitive to water exposure as the protein

unfolds. We scanned T from 283 to 318 K at constant P , and P from 0 to 250 MPa at

constant T with 0, 25, 50, 100, 150, and 200 mg/mL of Ficoll 70 concentration (φ = 0 to

≈ 0.56) to cover the complete phase diagram. Each transition produces a sigmoidal step in

the plot of mean tryptophan fluorescence wavelength λm vs. P (Fig. S2.1 [135]).

In the absence of crowder at sufficiently low T [Fig. 3.3(a), blue trace], there are two steps

in λm as a function of P , signaling two separate transitions among three states. These steps

are straightforwardly revealed by plotting ∂λm/∂P and identifying peaks (see Fig. 3.3(a),

and Fig. S2.1 [135]). We assign the first peak to the C to I transition, the second to the I to U

transition. At sufficiently high T , at ≥ 303 K and P ≈ 170 MPa, one of the peaks disappears

[Fig. 3.3(c), blue trace], leaving only one transition between two states. We assign this to a

direct transition from C to U, as shown in Fig. 3.2(c), corresponding to a critical point at
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Figure 3.3 Experimental T–P–φ phase diagram of PGK. (a) The derivative of the mean
tryptophan fluorescence wavelength vs. pressure of PGK at 282 K calculated from fluores-
cence spectra. Two of six Ficoll 70 concentrations are shown. The markers show the data
points and the solid line shows a cubic spline interpolation. The blue curve (0 mg/ml Ficoll
70) has two peaks as pressure increases, signifying two transitions; the magenta curve (200
mg/ml Ficoll 70) has only one peak point, signifying only one transition when pressure is
applied. The dashed lines point from transition midpoints to the corresponding point in the
phase diagram. (b) P–T phase diagrams at several φ obtained by fitting the fluorescence
data to obtain the inflection points of λm(P ) (peaks in the derivative ∂λm/∂P ). Three of six
Ficoll 70 concentrations are shown. Circles represent midpoint pressures measured at 282,
288, 296, 303, 309 and 317K in absence of Ficoll 70 (0 mg/ml), asterisks represent transitions
for the middle Ficoll 70 concentration (100 mg/ml) and triangles represent transitions for
the highest Ficoll 70 concentration (200 mg/ml). At high T , or upon increasing Ficoll 70
concentration, the second (higher P ) transition disappears, mapping out a critical point that
moves to lower Tc at higher Ficoll 70 concentration. Solid elliptical curves going through the
circles are fits to Eq. (3.4) representing the ∆G = 0 curves. (c) Equivalent data as in (a) at
317 K. Note that the second (higher P ) transition is never present at high T .
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Tc = 306 ± 3 K. Finally, when crowder is added, Tc moves to lower temperature, until the

apparent three-state transition is no longer observed at all at 200 mg/ml Ficoll 70 [Fig. 3.3(a)

& 3.3(c), red traces]. We assign this to the transition between C and SU/Sph/CC as shown

in Fig. 3.2(a). Accurate transition midpoints (Tm, Pm, φm) were obtained from each trace

by fitting to sigmoidal two- or three-state models (solid curves in Fig. 3.3(a) & 3.3(c); see

Appendix B; all data traces are shown [135] in section S4). Singular value decomposition

analysis ([135] in section S4) also strongly supports the conclusions obtained from analyzing

λm.

We constructed P–T planes of the phase diagram at all crowder concentrations as fol-

lows: First, the transition midpoints were plotted on P–T slices at constant φ as shown

in Fig. 3.3(b). These points correspond to zero free energy difference, ∆G = 0, for the

first-order transition, where concentrations of C and I, I and U, or C and U (depending on

the location on the phase diagram) are equal. Then the transitions were fitted to Hawley’s

elliptical P–T phase curve for proteins [78],

∆G(T, P ) = 1
2∆κ (P − P0)2 + ∆α (T − T0) (P − P0)−∆CP

[
T
(

ln T

T0
− 1

)
+ T0

]
+ ∆V0 (P − P0)−∆S0 (T − T0) + ∆G0, (3.4)

at each value of φ (fits for all φ and parameter definitions in [135] section S4). Here ∆κ,

∆α, ∆CP , ∆V0, and ∆S0, signify changes in compressibility, thermal expansion coefficient,

heat capacity, volume, and entropy, respectively. The resulting experimental phase diagram

in Fig. 3.3(b) agrees with the computational data as both exhibit two pressure transitions at

low T , one at high T , and a shift from two to three transitions at a value of Tc that decreases

with increased crowding.
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The simulation predicts that in the state I, the N-terminus would be unfolded, and the C-

terminus folded. We truncated the protein to the N-terminal domain and indeed found it to

be unfolded with long tryptophan fluorescence wavelength and no cooperative transition (Fig.

S4.4 [135]). It is known from the literature [105] that the C-terminal domain of PGK is stable

by itself. These two observations combined strongly support the computational assignment

of the I state with the N-terminal domain primarily unfolded, and the C-terminal domain

mostly folded. Thus, experiment and simulations are in agreement both on the disappearance

of the difference between two phases at high T or high φ, as well as the general structural

features of the I state formed at low crowding.

3.3 Unified T–P–φ Phase Diagram of PGK

The three-dimensional (3D) T–P–φ phase diagram in Fig. 3.4(c) presents a unified picture

of the computational and experimental results. This unified phase diagram includes two

surfaces: the blue surface represents C–I (or C–U, depending on T and φ) and the red

surface represents I–U coexistence surfaces, respectively (the calculations of the surfaces can

be found in Appendix 3.4 and [135] section S6). The projection of this 3D coexistence surface

onto a 2D φ–P plane in Fig. 3.4(a) shows a low and high T slice as found computationally

in Fig. 3.2. When projected on P–T plane in Fig. 3.4(b), it shows a low φ and high φ slice

as found experimentally in Fig. 3.3. As temperature increases, the second transition surface

terminates at a critical line [bold red line on the red I–U coexistence surface in Fig. 3.4(c)].

As the crowding volume fraction increases, the critical point on each P–T slice shifts towards

lower temperatures. Thus, from the experiment, above φ = φc ≈ 0.5 or T = T 0
c ≈ 306 K

the pressure-induced folding transition contains only two apparent phases. Whereas at low

φ and T , PGK exhibits apparent three-state folding.
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Figure 3.4 T–P–φ phase diagram of PGK from theory mapped onto the experimental data.
(a) PGK’s φ–P phase plane at high (magenta) and low (black) T . Dotted lines represent
the division between distinct configurational phases. The red dot signifies a critical point.
(b) Slices of P–T phase diagram observed experimentally at no Ficoll 70 (black) and 100
mg/mL Ficoll 70 (cyan). Note that I-U coexistence curve terminates at the critical point (in
red dots) and shifts Tc to a lower temperature in the presence of Ficoll 70. Solid elliptical
curves going through the circles are the fits representing the ∆G = 0 curves. (c) A T–P–φ
phase diagram of PGK. The blue and red surfaces are the C–I (or C–U, depending on T
and φ) and I–U coexistence surfaces, respectively. The dashed magenta and black line are
the φ–P cross-section from Fig. 4(a), and the solid black and cyan are the P–T cross-section
from Fig. 4(b). The bold, red line bordering the red surface is the critical line.
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To quantitate the unified phase diagram, we modified Hawley’s theory by incorporating

the free energy change due to crowding, as is similarly treated in Minton’s theory [138], to

construct the first transition surface [blue surface in Fig. 3.4(c)]. As for the critical line on

the second transition surface [in red in Fig. 3.4(c)], we used scaling arguments to derive the

equation for the critical line,

P − Pc = a1 (T − Tc(φ)) + a2 (T − Tc(φ))2 +O
(
∆T 3

)
, (3.5)

by treating the protein’s U to I transition similar to in the coil-globule transition of theory

[147, 21]. Here,

Tc(φ) = T 0
c

(
1− φ

φc

)γ
, (3.6)

where T 0
c is the critical temperature without crowding, φc is the critical crowding volume

fraction, Pc (≈ 170 MPa) is the critical pressure taken from our experiment at T 0
c , and

a1 = dP
dT

∣∣∣
T=T 0

c

and a2 = d2P
dT 2

∣∣∣
T=T 0

c

. From the fitting to experimental critical points at all slices

of φ, we found γ = 0.40±0.01, which is the predicted scaling exponent of a polymer collapse

due to crowders, γ = 2/5 [148, 53] (see Appendix 3.4 and [135] section S6). From this phase

diagram, we can see the protein moves through a diverse phase space, suggesting different

folding mechanisms that depend on how the phase diagram is traced out [149, 150].

3.4 Construction of the Phase Diagram

We derived the critical line [Eq. (3.5) & (3.6); red line in Fig. 3.4(c)] on the T -P -φ phase

diagram using arguments based on the coil-globule transition [147, 21] of a polymer. Begin-

ning with a Landau-Ginsberg free energy [151], F = −r(T, φ)Ψ2 + uΨ4 +F0, to describe the

critical transition, where Ψ is the order parameter, which is a scaled and shifted Rg (radius
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of gyration) so that Ψ = −Ψ0 for the I state and Ψ = +Ψ0for the U state. Since pressure

is only involved with the first-order transitions, it can be ignored for now. At the critical

temperature, the barrier between the I and U states vanishes, meaning r = 0; therefore, a

reasonable function is r(T, φ) = −r0[T − Tc(φ)], where the critical temperature Tc is a func-

tion of φ, and r0 is positive constant. To find the φ-dependence of Tc, we used the scaling

relationship,
Rg(φ)2

Rg(0)2 ∼ (1− c0φ)γ , (3.7)

which relates Rg at a given φ to Rg without crowders for the collapse of a coil to globule

transition [148]. The scaling exponent γ, is shown to be 2/5 in Refs. [148] and [53]. Since

the collapse of the polymer, or in the current case the protein, is dependent on φ, and since

Ψ2 ∼ Rg(φ)2/Rg(0)2, the critical temperature Tc(φ) causing the free energy barrier between

I and U to disappear must also scale as Eq. (3.7), giving Eq. (3.6) (see [135] section S6

for more details). We fit Eq. (3.6) to the experimental critical point values at all Ficoll 70

concentrations to find γ and φc (or 1/c0). We fit Eq. (3.5) to experimental values of the I to

U transition surface to find the Taylor expansion coefficients.

Lastly, we modified Hawley’s equation [78] to fit the C to I (or U, depending on T and

φ) transition surface (in blue in Fig. 3.4(c)) by adding a φ-dependent ∆Gcrowd(φ) term to

Eq. (3.4),

∆Gcrowd(φ) = g

(
φ

1− φ

)
+O

(
φ2
)
, (3.8)

making the 3D free energy change ∆G(T, P, φ) = ∆G(T, P ) + ∆Gcrowd(φ). This term is

similar to Minton’s theory [138], which treats the folded and unfolded proteins as effective

hard spheres and employs scaled particle theory (SPT) to estimate the change in folding free

energy as the difference between the insertion free energy for the folded and the unfolded

states. Eq. (3.8) adds one more fitting parameter, g, to the total free energy change compared
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to Eq. (3.4).

This appendix will explain the derivation of the critical line (red curve in Fig. 3.4). First,

we will briefly go through the polymer model used in Ref. [148], and then calculate the

crowding-dependent mean-square end-to-end distance 〈R2
ee〉. Lastly, we derive the crowding-

dependent critical temperature Tc(φ) using the calculations from the previous sections.

Following Ref. [148], the Hamiltonian for the isolated polymer in a crowded solution is

formulated to be,

H[r(s)] = 3
2l

∫ L

0

(
dr

ds

)2

ds+ ω
∫ L

0
ds
∫ L

0
ds′δ (r(s)− r (s′))

+
N∑
i=1

∫ L

0
v[r(s)−Ri]ds.

(3.9)

The model uses a continuous curve r(s), parametrized by the variable s, to describe the

conformation of the polymer of length L. The strength of the excluded-volume interaction

is controlled by the parameter ω. The last term is the crowder potential and is given by,

v (r −Ri) = βv0δ (r −Ri) /l (3.10)

and is divided by the Kuhn length l.

For this model without crowders, which is the Edwards polymer model [152], the mean-

squared end-to-end distance 〈R2
ee〉 scales by [147],

〈
R2
ee

〉
∼ L2ν , (3.11)
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where the exponent ν = 3/5 for ω 6= 0. Whereas, 〈R2
ee〉 with crowders is given by,

〈
R2
ee

〉
= 1
Z(ω, φ, L)

∫
Dr(s)|r(L)− r(0)|2e−S[r(s)] (3.12)

Z(ω, φ, L) being the partition function and an effective action S[r(s)] for the polymer Hamil-

tonian in a crowded solution Eq. (1), with volume fraction φ.

In order to evaluate the above path integral in Eq. (4), Ref. [148] employs the self-

consistent variational approach introduced by Edwards and Singh [153]. The key reasoning

behind this approach comes from choosing an effective reference action with an appropriately

renormalized step length l1, such that 〈R2
ee〉 ≡ Ll1. This ensures that all correction terms to

the relation be zero, by definition. The evaluation of the path integral in Eq. (4) results in

a self-consistent equation for l1 as a function of l, ω, φ, and L (Appendix of Ref. [148]):

Ll21

(1
l
− 1
l1

)
= 2c1(1− c0φ)L

3/2

l
1/2
1

, (3.13)

where c1 = 2ω
√

6/π3 and c0 = 1
ω

(
βv0
l

)2
. Therefore,

l
5/2
1

(1
l
− 1
l1

)
= 2c1(1− c0φ)L1/2, (3.14)

resulting in the scaling relation,

l1 ∼ (1− c0φ)2/5L1/5. (3.15)

When substituting Eq. (7) into 〈R2
ee〉 = Ll1, it becomes a φ-dependent version of the
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well-known Flory scaling relation,

〈R2
ee〉 ∼ (1− c0φ)2/5L6/5 (3.16)

In the case without crowders, 〈R2
ee〉 ∼ L6/5; therefore, the ratio between with and without

crowders becomes,
〈R2

ee〉(φ)
〈R2

ee〉(0) ∼ (1− c0φ)2/5. (3.17)

The critical volume fraction is then [148],

φc = ω

(
l

βv0

)2

= 1
c0
. (3.18)

Since 〈R2
ee〉 ∼ 〈R2

g〉, the same relation in Eq. (9) also holds for the ratio 〈R2
g〉.

We derived the φ-dependent critical temperature, Tc(φ) on the T -P -φ phase diagram

using a simple statistical mechanical model. To begin, the Landau-Ginsberg free energy,

F (Ψ, T, φ) = −r(T, φ)Ψ2 + uΨ4 + F0 (3.19)

is used to describe the critical transition, where Ψ is the order parameter, which is scaled

and shifted Rg so that Ψ = −Ψ0 for the I phase and Ψ = +Ψ0 for the U phase. Since we are

only interested in the critical transition, we can ignore the odd powered terms. To find the

free energy minima, we take the derivative with respect to Ψ, and solve for the zeros of the

equation:

∂F

∂Ψ = −2rΨ + 4uΨ3 = 0 (3.20)
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Ψ =


±
√

r
2u

0
(3.21)

At the critical temperature Tc or at critical crowding volume fraction φc, the two phases

merge together (I and U) at the free energy minimum Ψ = 0, meaning r = 0. Furthermore,

since Ψ2 ∼ 〈R2
g〉, then

Ψ2 = r

2u ∼
(

1− φ

φc

)γ
(3.22)

To find a reasonable function for r(T, φ), it must satisfy Eq. (14) and the following limits:

lim
T→T−c

Ψ = 0 (3.23)

lim
φ→φ−c

Ψ = 0 (3.24)

lim
φ→0

Ψ =
√
r

2u (3.25)

Therefore, a reasonable function is

r(T, φ) = −r0

[
T − T 0

c

(
1− φ

φc

)γ]
, (3.26)

where T 0
c is the critical temperature at φ = 0, and r0 is a positive constant. Examples of

the F , from Eq. (11), using Eq. (19) are plotted in Fig. 2. When, r = 0, T = T 0
c

(
1− φ

φc

)γ
;

thus, we can define a φ-dependent Tc as,

Tc(φ) = T 0
c

(
1− φ

φc

)γ
, (3.27)

recovering a critical temperature that decreases in value as φ increases.

To find γ, we linearly fit Eq. (20) on a log-log scale of the experimental Tc(φ) values. The
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(a) (b)

Figure 3.5 Example Landau-Ginsberg free energies with respect to order parameter Ψ,
and (a)T with constant φ < φc or (b) φ with constant T < T 0

c . The form of r(T, φ) from
Eq. (11) is given by Eq. (19) with γ = 2/5. Critical transitions occur when surpassing their
respected critical points, signifying the disappearance of the barrier between the two phases
(I and U), and two phases become thermodynamically indistinguishable.

linear fit is best when φc = 0.5, resulting in γ = 0.40± 0.01, which is a perfect match with

the exponent from Eq. (9).

To find the critical line on the T -P -φ phase diagram, we expand P (T ) around Tc to attain

the second-order line (red curve in Fig. 1),

P − Pc = a1 (T − Tc(φ)) + a2 (T − Tc(φ))2 +O
(
∆T 3

)
, (3.28)

where Pc is the critical pressure taken from experiments at T 0
c , and a1 = dP

dT

∣∣∣
T=T 0

c

and

a2 = d2P
dT 2

∣∣∣
T=T 0

c

. Both a1 and a2 are found by fitting experimental values.
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Figure 3.6 Cavity volume and structural fluctuations near the critical regime. (a) Cavity
volume fluctuations, δV 2 = 〈V 2〉 − 〈V 〉2, (or proportionally compressibility) of PGK at
kBT/ε0 = 0.97 and σ3P/ε0 = 4.6, 6.6, and 9.2 with (orange) and without (blue) crowding.
(b) Overlap fluctuations, δχ2 = 〈χ2〉−〈χ〉2, as a function of co-volume at pressure σ3P/ε0 =
6.6. (c) Conformations from the ensemble in presence of crowding at kBT/ε0 = 0.97 and
σ3P/ε0 = 6.6 with co-volumes ≈ 1.1× 105Å3 and cavities ≈ 200Å3. Most left conformation
is a crystal state. The following structures from left to right have a χ = 0.31, 0.38 and 0.48.
N-, C-domain, and hinge are in red, blue, and yellow, respectively. Co-volumes are shown
as translucent surfaces surrounding the protein and cavity surfaces are shown in green.
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3.5 Consequences of Criticality

In Fig. 3.6, we explore the impact of P and φ on the folding of PGK. The consequences of

the critical regime are revealed by the ensemble distributions of the cavity volume (conjugate

variable of P ) and co-volume (conjugate variable of φ) [47, 138] from our simulations (also

see Fig. S5.1 [135]). In the critical regime, small perturbations in crowding φ, P , or T will

significantly affect the system.

We investigate the response of the conformational distribution of structures close to

the critical region by comparing the cavity volume fluctuations (δV 2 = 〈V 2〉 − 〈V 〉2) (or

proportionally, the compressibility) and structural fluctuations (δχ2 = 〈χ2〉 − 〈χ〉2) in the

presence and absence of crowding agent. PGK has larger δV [Fig. 3.6(a)] at φ = 0.4 with

a peak at 6.6 ε0/σ3 than that of φ = 0. We suspected that the critical regime is between

φ = 0.2 and 0.4 and between pressures 4.6 ε0/σ3 and 6.6 ε0/σ3 at a temperature of 0.97

ε0/kBT in the computational model, which qualitatively agrees with the experiment. Even

though δχ is large in the presence of crowders, structures lie in a narrow range of co-volumes,

making them indistinguishable to macromolecular crowding effects if shape can be neglected

to the 0th order [Fig. 3.6(b)]. A sample of the diverse structures with similar cavity volumes

and co-volumes are shown in Fig. 3.6(c).

Not only does crowding shift the population of structures to more compact states such

as CC or Sph (Fig. 3.2 and [52]), where the two ligand binding sites (for ADP and 1,3-DPG)

come into close proximity of each other, but it also increases the structural fluctuations of

the compact states by bringing PGK closer to the critical regime, as shown in Fig. 3.6. Both

of these properties would most likely facilitate enzymatic activity. This is corroborated by

previous FRET experiments that show an increase in PGK’s enzymatic activity as Ficoll
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70 concentration increases [52]. These results suggest that criticality assists the enzymatic

function of a protein.

3.6 Conclusion

In summary, we have shown direct evidence of equilibrium critical-like behavior on the T–

P–φ phase diagram of a protein by computational simulations, by fluorescence spectroscopy,

and by a theoretical argument based on polymer physics. Despite the simplicity of the

computational and theoretical model, all three different approaches agree with one another,

validating the trends on the T–P–φ phase diagram and presence of the critical regime. Above

the critical line in Fig. 3.4(c) (by increasing T , φ, or both at Pc ≈ 170 MPa), the difference

between the I and U phases disappears. This is due to the loss of the free energy barrier

between the two phases [orange arrow in Fig. 3.2(b)] and is reaffirmed by the high-pressure

fluorescence measurements (Fig. 3.3).

What is the origin of the critical behavior in proteins? To answer this question, two

concepts need to be rationalized together. Firstly, proteins are biopolymers that often un-

dergo an abrupt or first-order-like transition to a compacted folded state from an expanded

unfolded state or coil at a folding temperature, TF . Secondly, the coil-globule transition seen

in other polymers is a continuous transition at a specific temperature called θ-temperature,

Tθ [147, 21]. Therefore, the first order transition in protein folding must be occurring near

the collapse transition (TF ≈ Tθ), meaning it normally is tricritical [132]. In the current sys-

tem, the pressure perturbation may cause TF 6= Tθ, separating the continuous and first-order

transitions. When going from a continuous to a first-order transition, there are signatures

of passing through a critical point [154, 29]. Finally, when φ is high (φ > φc), the pro-

tein is already collapsed even when it is unfolded. Our theoretical model in Eq. (3.6) and
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Appendix 3.4 (also [135] section S6) captures this postulation of the basis of criticality in

proteins.

Furthermore, our computational and experimental results are in accord with the capil-

larity picture of folding [155], which posits a wetting interface between folded and unfolded

parts of a protein, giving rise to a diverse phase space. Strong macromolecular crowding,

which drives conformational changes to favor compact states, roughens that wetting in-

terface, allowing cavities to spread throughout the conformation of the protein, with two

major consequences. A roughened interface reduces activation barriers for folding, driving

multi-state transitions towards apparent two-state transitions. It also creates a critical state

where heterogeneous conformations coexist, as the front of wetting interface moves across

the protein.

We conclude that large structural fluctuations (Fig. 3.6) and merging of protein phases

are consequences of being close to a critical point [Fig. 3.3(c)]. At such a point, the barrier

separating states vanishes (here: between I and U). Critical behavior has been proposed for

protein folding at the onset of downhill folding [133], but its manifestation has been chal-

lenging to demonstrate computationally and experimentally [156]. Macromolecular crowding

shifts the critical point to a lower temperature [Eq. (3.6)], indicating that such criticality

could be physiologically important [129, 130]: a protein near a critical regime could access a

wide range of conformations without significant activation barriers for functional purposes

inside the cell.

Further work will be needed to provide stronger evidence for the universality of criti-

cal behavior in proteins. Due to their complexity, proteins are not like other conventional

condensed matter systems, and conventional tools, such as finite size scaling [157] or renor-

malization group theory [158], are not clearly applicable. The current investigation is a

starting point toward developing universal principles of protein folding relevant to the en-
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vironmental perturbations inside living cells and is an inspiration to create new tools to

understand critical phenomena in these complex systems.
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It turns out that an eerie type of chaos can lurk just behind a
facade of order—and yet, deep inside the chaos lurks an even
eerier type of order.

—Douglas R. Hofstadter

4
Competition of individual Protein folding with

Inter-protein Interactions∗

An important question in protein dynamics is how proteins manage to fold in the presence

of many other biomolecules with which they could interact instead inside the cell [159]. For

example, it has been discussed extensively how proteins can transiently aggregate during

their folding process, thus mimicking the existence of monomeric folding intermediates [160].

Repeat proteins are particularly interesting subjects for studying the interplay between

folding and aggregation [161]. The proximity of tethered domains with identical or near-

identical folds enhances protein–protein interactions [162, 163]. It was shown by Borgia et

al. for immunoglobulin-like oligomeric repeats that identical neighbors transiently misfold

more readily than neighbors of lower sequence identity [164, 165]. Thus evolutionary pres-

sure reduces sequence similarity between adjacent repeat domains, and many natural repeat
∗Contents of this chapter has been published in Phys. Chem. Chem. Phys. (2019) 21, 24393-24405. AG

Gasic is co-first author.
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proteins contain folds that do not interact too strongly. Such sequences can also be engi-

neered: the energy landscape of some ankyrin repeat proteins, especially of consensus [166]

sequences, enables parallel folding of the domains [167, 168].

Here we study the competition between folding and transient (or permanent) aggregation

of engineered WW domain oligomers, with n = 1 to 5 domains tethered by short glycine-

serine sequences. We chose “GS linkers” because they have been well characterized, are

highly soluble, and allow monomers to interact [169]. We use coarse-grained simulated

annealing simulations to obtain structural information about the misfolded oligomers. A

variety of interesting structures emerges, from individual misfolded domains, to chimeric

misfolds (where two proteins intermingle), to entirely new beta-sheet structures, and finally

even to alpha-helical structures that bear no resemblance to the original domains making up

the oligomer.

4.1 Decrease of thermal stability from monomer to tetramer

we used AWSEM to perform simulated annealing starting with unfolded structures at 650 K

and gradually reduced the temperature to 300 K to sample increasingly folded structures. We

first looked at the WW monomer. Fig.4.1 compares the simulated annealing trajectories for

the three Models with λFM = 0.4 kJmol−1(Model I), 0.8 kJmol−1 (Model II) and 1.2 kJmol−1

(Model III). As discussed in Methods, λFM defines the strength of the fragment memory

Hamiltonian, with large values favoring folding over domain interactions. As λFM increases,

the WW-domain collapses and folds earlier and at higher temperature. At Q ≈ 0.35, only

a single β-hairpin is formed. At Q ≈ 0.65, all three β-strands form, but sidechains are

not quite natively packed yet. At Q ≈ 0.95, the protein is folded. Model I does not fold

sufficiently well to be consistent with experiment, whereas Model II and III completely fold,
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consistent with fully native structure of the monomer. We favor Model II because it has less

weighting on the fragment memory interactions (smaller value of λFM) than Model III, thus

achieving complete folding of the monomer without overweighting native interactions.

Simulations were next performed on tethered repeat proteins to get a higher resolution

picture of the type of misfolded structures that may form. In agreement with experiment,

simulation revealed that as the number of domains increases, the probability of misfolding

increases. A gallery of monomers and oligomers with varying degrees of folding/misfolding

from simulated annealing is shown in Fig. 4.2, and annealing results are shown in ESI Section

S8. As the number of domains increases (MFiP35 to QFiP35), the folding of the individual

domains competed less effectively with inter-domain interactions. A common feature of the

misfolded structures is that one β-strand unfolds, and the remaining two β-strands from sep-

arate domains come together to make a larger β-sheet [e.g. structures Fig. 4.2(E & H)]. This

misfolding mechanism is clearly seen in the annealing trajectory of a trimer (Fig. S11–S13,

ESI). The tetramer exhibited an additional type of misfolding [structure Fig. 4.2(K)] by

forming chimeric β-sheets with domain-swapped structures. Thermodynamically, the non-

fragment memory terms of the Hamiltonian in eqn (4), primarily the Ramachandran term,

HRAMA (see eqn (S5), ESI), the β-strand hydrogen bonding term, Hβ (see eqn (S6), ESI),

and parallel-antiparallel cooperative hydrogen bonding term, HP−AP (see eqn (S7), ESI), are

responsible the formation of the β-sheets across multiple domains.

4.2 Misfolding propensity increases with oligomer size

The experimental expression yield trends are supported by coarse-grained simulations of the

tethered systems. Fig. 4.3 shows the probabilities for m or more domains in the n-mer to

misfold, or Pmisfold(m ≥ µ|n), for models I, II, and III. The scaling factor λFM controls the
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Figure 4.1 (A) Simulated annealing trajectories with respect to fraction of native contacts
Q for WW-domain monomer for model I, II, and III. Trajectories start at 650 K and are
gradually cooled to 300 K. Time is represented in units of 103 timesteps. Below the trajectory
are the annealed monomer structures, from left to right: Q = 0.72 for model I (B), Q =
0.95 for model II (C), and Q = 1.0 for model III (D). The black and white beads are the Cβ

atoms of Trp 8 and Tyr 20, respectively.
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Figure 4.2 Gallery of oligomers. Examples of predicted WW-domain monomer,dimer,
trimer, and tetramer structures (from top to bottom) with varying amounts of fold-
ing/misfolding of domains. The domains are colored red-cyan-yellow-green from the N-
terminus, and linkers are gray. The black and white beads are the Cβ atoms of Trp 8 (or 51,
94, 137) and Tyr 20 (or 63, 109,152), respectively. Oligomers states corresponding roughly
to the discrete global fitting model for the experimental data: (A) N, (B) no long-lived mis-
folded state observed, (C) U, (D) NN, (E) MM, (F) UU, (G) NNN,(H) NMM, (I) UUU, (J)
NNNN, (K) NNMM and MMMM, (L) UUUU.
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bias towards the monomer native structure, with smaller values leading to more interaction

among domains. For smaller λFM (model I), Pmisfold(m ≥ µ|n) is driven towards 1 for smaller

repeat proteins. The probability of misfolding of at least one domain is > 0.5 for the tetramer

in model II, which fits well with the observed intracellular environmental sensitivity of the

tetramer as seen by decrease in yield and sensitivity to the type of purification tag being

attached. Model II shows no significant effect on monomer and dimer, consistent with the

onset of lower melting temperature for the trimer in the thermal melts performed on the

tethered proteins (Table 1). Even in model III, which has the strongest domain folding

propensity, the tetramer has at least one domain misfolded with a probability of 0.3.

With increasing number of domains, the probability of misfolding increases due to in-

creased competition of interdomain interactions with folding, shifting equilibrium towards

misfolded states. Another possible reason is that because not all the β-strands form at the

same time, misfolding can occur when β-sheets of neighboring domains interact and be-

come kinetically trapped beyond the time scale of the experiments. The gallery of n-mers

in Fig. 4.2 is consistent with both scenarios, although we favor the equilibrium scenario for

two reasons: in the model, extensive simulated annealing was applied; and in the global fit-

ting model (Fig. 6), equilibrium is achieved while accurately fitting the experimental data.

Furthermore, the strong coupling between domains reflected by Pmisfold increasing with n

(Fig. 4.3) and the mis/partly folded structures in Fig. 4.2 validate the global fitting model

assumptions (Section 2.5) and fitting results (Section 3.5). It is reasonable for state M to rep-

resent non-native structure of a domain due to domain interactions, rather than an isolated

misfolded state of WW domain.

Fig. 4.4 presents the averages of three order parameters with respect to number of do-

mains for models I, II, III. The number of contacts made by tryptophan [Fig. 4.4(C)] can be

correlated with the fluorescence spectroscopy, since fewer contacts imply more solvent expo-
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Figure 4.3 Probability Pmisfold(m ≥ µ|n) of misfoldingm or more domains,given the size of
the n-mer from n = 1 to 5. Models I, II, and III are shown from top to bottom. Probabilities
are calculated from structure predictions of simulated annealing runs.

sure and red-shifted fluorescence. The number of Trp contacts is highest for the monomer

signifying a stable native structure. This is also verified with the change in energy per domain

[Fig. 4.4(A)], which shows the monomer as the most stable compared to the other oligomers.

Fig. 4.4(B) shows that more Cβ contacts form as the number of domains increases, signifying

an increase in hydrogen bonding between b stands of different domains. This increase in Cb

contacts can be visualized as an increase in chimeric β-sheets seen in Fig. 4.2(E, H & K).

This analysis is consistent with the experimental results obtained by CD and fluorescence

spectroscopy.

The CD spectra in Fig. 2 vary in intensity, but generally have the same shape, indicating

similar local backbone configurations. Fig. 4.5 plots Φ and Ψ Ramachandran angle probabil-

ities for the different n-mers. Even though there is a clear change in the structures globally

as more domains are added (Fig. 4.2), the local secondary structure landscape is preserved

in Fig. 4.5. As expected from the high amount of β-sheet formation (either within a single

domain or across multiple), the most probably angles are those that are prone to form β-
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Figure 4.4 (A) Energy change (from monomer) per residue vs. number of tethered do-
mains. (B) Total number of Cβ to Cβ contacts per domain vs. number of domains. (C)
Number of Trp contacts per domain vs. number of domains, for model I in orange, model II
in blue, and model III in yellow.
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Figure 4.5 Probability density of (A) Φ and (B) Ψ angles for monomer, dimer,trimer,
tetramer, and pentamer for model II.

sheets. The Ramachandran histogram also populates angles that have a high propensity of

forming α-helices (−70° > Ψ > 20°) even though none of the proposed structures (n = 1 to

4), in Fig. 4.1 or Fig. 4.2, contain an α-helix.

However, the angles with helical tendencies lead to an actual α-helix only in the coarse-

grained simulated annealing of the pentamer (n = 5) in Fig. 4.6, which could not be expressed

in experiments. The pentamer forms a new type of misfolded structure compared to the ones

seen in Fig. 4.2 for n = 2 to 4: an α-helix containing a Trp residue in the second domain,

which is surrounded by β-sheets, emerges in ≈ 20% of predicted pentamer structures. This

69



Chapter 4| Competition of individual Protein folding with Inter-protein Interactions

Figure 4.6 Example of a predicted WW-domain pentamer structure with all domains
misfolded. Domains are colored, and linkers are gray. The order of the colors starting
from N-terminus is red, cyan, yellow, green, orange. The black and white beads are the Cβ

atoms of Trp (8, 51, 94, 137, 180) and Tyr (20, 63, 109, 152, 195), respectively. An α-helix
containing a Trp residue appears in the cyan domain.

suggests that the extra domains stabilize an α-helix formed by residues with Ψ angles that

are in the range (−70° > Ψ > 20°). The extra domains provide more tertiary contacts

allowing for side-chains to align correctly into an α-helix from an already twisted β-strand.

Additionally, the pentamer has a probability very close to 1 of at least one domain being

misfolded, and 0.6 even for the conservative model III (Fig. 4.3). The lack of pentamer

expression again suggests that Model II represents a fairly accurate balance between fragment

memory and inter-domain interactions.

4.3 Conclusion

Natural and engineered repeat proteins have provided many insights to relate folding, mis-

folding and function. Evolution for folding, which does not favor repeats with similar se-

quences adjacent in a multi-domain protein [164, 165, 170], goes hand-in-hand with evolution

for function, which sometimes favors multiple domains of similar structure.21,41 Ankyrin
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Figure 4.7 Melting temperature and free energy change vs. number of tethered domains
from experiments

domains42,43 and TPR motifs44 in particular have shown how nearly identical folds can co-

exist with the right balance of sequence similarity. These results have been complemented

by studies on consensus repeat sequences,8,45 which have shown evidence of a highly par-

allel, but not completely homogeneous, folding process capable of generating stable native

states.3,9,46

Our results for repeats of sequence-identical WW domains show that above n = 3, a

critical number of repeats is reached: individual domains are destabilized and likely to form

non-native states. While the stability of dimer and trimer is at most slightly smaller than that

of the monomer, the tetramer is noticeably less stable thermodynamically and sensitive to the

purification tag used, whereas the pentamer cannot be expressed in significant quantities,

presumably due to domain interactions that lead to misfolding. Thus, 2 to 3 identical

repeat domains lead to a stable native WW repeat protein, but more identical domains

in series foster misfolding. The observation that consensus ankyrin sequences (α-helical

secondary structure) can form longer repeat folds than WW domain (β-sheet secondary
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structure) indicates that certain folds and sequences have substantially lower propensity for

misfolding than others when tethered together. This may be the reason why WW-domains

are mainly observed as tandem repeats in nature,21 whereas natural ankyrins can contain

many additional repeats.47

Transient aggregates have been proposed as a step during the folding of many non-repeat

proteins, masquerading as folding intermediates. For example, the RNA-binding protein

U1A forms such transient aggregates.2 We have shown that when U1A is tethered into a

repeat protein, transient aggregation is enhanced and leads to irreversible (on the time scale

of the experiments) aggregation when too many repeats are tethered together.47 U1A is a

very aggregation-prone protein, and we found that the size of its irreversible aggregation

nucleus is only n = 2.10 WW domain is not prone to aggregation (as evidenced by facile

NMR structures obtained at mM concentration).33 Here we find that the size of the FiP35

irreversible aggregation nucleus lies at n = 4. Thus, if a range of n ≈ 2 to 4 is likely for

the aggregation nuclei of most proteins; oligomeric aggregates may be formed rather easily.

The ‘intramolecular amyloids’ we observe when repeats interact [e.g. Fig. 4.2(H)] may be

examples of what oligomeric aggregates in non-tethered proteins look like. Indeed, it has

been shown for protein U1A that addition of an Alzheimer sequence increases transient

aggregation and allows stable dimers to form.48

The WW tetramer highlights how protein folding can be sensitive to the environment,

in tandem with current in-cell folding experiments.49,50 The type of purification tag used

for WW tetramer (histidine vs. GST) determines whether a nativelike or a non-native sec-

ondary structure is recovered. Thus, the local environment is critical for the folding of the

tetramer. In-cell experiments have shown that proteins can be stabilized or destabilized in

the cellular environment, depending on protein surface electrostatics,51 or the organelle en-

vironment.52,53 While these effects are small, they can be critical in regulating signaling and
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other protein–protein interactions, which are often weak (on the order of a few kJ mol−1).1

Such sticking or ‘quinary structure’ of proteins,54–56 of which only the tip of the iceberg has

been characterized,57,58 may well account for the large majority of in-cell protein–protein

or protein–nucleic acid interactions.

Repeat proteins may assist in the evolution of new folds.59–62 Our structural simulations

of identical repeats highlight one possible path towards the evolution of more complex protein

folds. For example the tetramer [Fig. 4.2(K)] forms larger-stranded beta sheets by combining

strands from different domains. Since the WW-domain monomer contains three beta-strands

with strong curvature (seen in Fig. 4.1), the beta-strands that form the disordered loops in

the oligomers are prone to form helices. Such loops could evolve to form helical structure

(Fig. 4.5), yielding a protein whose beta sheets have large contact order63 because they are

separated by other secondary structure elements (loops, helices). The latter is a very common

structural motif. Indeed, longer repeats can form entirely novel structures, such as the one

shown in Fig. 4.6. Although the pentamer has many disordered regions, the combination of

beta sheets and an alpha helix showed up in ≈ 20% of simulated structures. If the loops

were optimized by shortening, or mutated to favor additional alpha helices, Fig. 4.6 would

represent a compact alpha/beta fold. Although not the subject of this paper, it would be

interesting to take a sequence that forms simulated compact misfolded structure such as in

Fig. 4.6, truncate the loops or increase their helix propensity, and see if improved expression

and a well-defined tertiary structure could be obtained.
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Eccentric, intervolved, yet regular
Then most, when most irregular they seem;
And in their motion harmony divine.

—John Milton

5
Other Cytoplasmic Effects: Crowding Shape∗

and Hydrodynamics†

5.1 Shape Packing Entropy

We investigated the geometry of voids, in terms of shape and size, formed by crowders of

the various models modulated by the protein-crowder interactions. The voids are the de-

pletion zones due to nonoverlapping volume exclusion between a protein and crowders. The

distribution of the asphericity of the void ∆void is virtually unchanged between spherical and

rodlike crowders without attractive interactions [Fig. 5.2(a)]. Additionally, as φc increases,

the peaks of the distributions are unperturbed. These results indicate that, without attrac-

tive interactions, the variation in the shape effect from rodlike crowders has been averaged
∗The rod-like crowder part of this chapter has been published in J. Phys. Chem. B (2019) 123, 3607-3617.

AG Gasic is third author.
†The hydrodynamic interactions part of this chapter has been published in Phys. Rev. E (2018) 97,

032402. AG Gasic is fourth author.
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in the ensemble. However, when attractive interactions are added to the crowders, there is

a clear shift rightward (toward higher asphericity) of the peak. The spread of the distribu-

tions increases with AR when the shape of a crowder becomes elongated [Fig. 5.2(b)]. These

effects are greatest for φc = 5%.

We show that the distribution of the size of a void ((Rvoid
g ) depends on the volume fraction

of crowders, the shape of a crowder, and interaction between the protein and crowder. To

make a fair comparison between spherical and rodlike crowders, we plotted the distribution

of (Rvoid
g − R)/σ in Fig. 5.2(c & d) where R is the radius of a sphere in a crowder model.

The overall size of (Rvoid
g −R)/σ is smaller for rodlike crowders (DX20-AR8) than spherical

crowders (DX20-S) by roughly a third at each φc when a protein and crowders interact

through hard-core interactions [Fig. 5.2(c)]. However, with a weak attraction between a

protein and crowders (λ = 0.83), (Rvoid
g − R)/σ is reduced by half across all crowder types

[Fig. 5.2(d)] compared to those in [Fig. 5.2(d)]. The peaks in the distribution of (Rvoid
g −R)/σ

for rodlike crowders (DX20A-AR8) at all φc nearly overlap at the same position around 10.

These two properties, both crowder shapes and solvent-mediated interactions in manip-

ulating the geometry of a protein, are pivotal to understand the full complexity of proteins

in the cytoplasm.

5.2 Hydrodynamic Interactions

We investigated the impact of hydrodynamic interactions (HI) on protein folding using a

coarse-grained model. The extent of the impact of hydrodynamic interactions, whether it

accelerates, retards, or has no effect on protein folding, has been controversial. Together

with a theoretical framework of the energy landscape theory (ELT) for protein folding that

describes the dynamics of the collective motion with a single reaction coordinate across a fold-
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Figure 5.1 (a) Representations of the folded structure of apoazurin (PDB ID: 1E65). The
folded structure is illustrated in a cartoon representation and a side-chain Cα representation.
These protein illustrations were produced using VMD. The algorithm DSSP was used to
assign the secondary structures. The residues that form the disulfide bond are shown in
yellow. (b) Illustrations of two models for dextran 20 with the same volume: a spherical
model (DX20-S) and a spherocylinder model with an aspect ratio (AR) of 4 (DX20-AR4).
As reference, the folded structure of apoazurin is shown. The reduced unit of length is
σ.(Created by Fabio Zagarra))

ing barrier, we compared the kinetic effects of HI on the folding rates of two protein models

that use a chain of single beads with distinctive topologies: a 64-residue α/β chymotrypsin

inhibitor 2 (CI2) protein, and a 57-residue β-barrel α-spectrin Src-homology 3 domain (SH3)

protein. When comparing the protein folding kinetics simulated with Brownian dynamics

in the presence of HI to that in the absence of HI, we find that the effect of HI on protein

folding appears to have a “crossover” behavior about the folding temperature. This means

that at a temperature greater than the folding temperature, the enhanced friction from the

hydrodynamic solvents between the beads in an unfolded configuration results in lowered

folding rate; conversely, at a temperature lower than the folding temperature, HI accelerates

folding by the backflow of solvent toward the folded configuration of a protein. Additionally,

the extent of acceleration depends on the topology of a protein: for a protein like CI2, where

its folding nucleus is rather diffuse in a transition state, HI channels the formation of contacts

by favoring a major folding pathway in a complex free energy landscape, thus accelerating
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5.2| Hydrodynamic Interactions

Figure 5.2 Distribution of the asphericity of the void, ∆void, between the protein and
crowders with (a) steric repulsive interactions and (b) nonspecific attractive interactions
between the protein and crowders. The distribution of the radius of gyration of the void,
(Rvoid

g − R)/σ, between the protein and crowders with (c) steric repulsive interactions and
(d) nonspecific attractive interactions between the protein and crowders.
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folding. For a protein like SH3, where its folding nucleus is already specific and less diffuse,

HI matters less at a temperature lower than the folding temperature. Our findings provide

further theoretical insight to protein folding kinetic experiments and simulations.

Our motivation is to reconcile the differences in reported influences of HI on protein

folding over a wide range of temperature from the viewpoint of the folding energy landscape

theory[17,18], particularly with a funnel-shaped energy landscape[19]. We used a computer

protein model that is guaranteed to fold into the native state from any unfolded conformation

[20]. We tracked its collective motion on a single reaction coordinate, the fraction of the

native contact formation Q either on a thermodynamic free energy barrier or by kinetic

trajectories. We studied the effects of HI on folding of two well-studied model proteins

with distinctive topologies: one is the 64-residue α/β protein chymotrypsin inhibitor 2 (CI2)

[21], and the other is the 57-residue β-barrel α-spectrin Src-homology 3 (SH3) domain [22].

The two proteins fold and unfold in a two-state manner and have been used for studying

folding mechanisms from other computational studies [23–27]. We simulated the Brownian

dynamics of particles including HI by implementing the algorithm developed by Ermak and

McCammon [28]. The effects of HI are approximated through a configuration-dependent

diffusion tensor D used in the Brownian equation of motion.

Our study shows that the effect of HI on folding rates can both accelerate protein fold-

ing at a temperature lower than the folding temperature and retard protein folding speed

at a temperature higher than the folding temperature, in comparison with the folding dy-

namics without HI. Since HI affects the kinetic ordering of contact formation, for a protein

with multiple viable folding pathways like CI2, HI will favor a particular folding route in a

complex folding energy landscape. In that sense, energy landscape theory (ELT) is short

of fully predicting folding rates. From Secs. IIIB to III E, we investigate the cause of this

temperature dependence of the effect of HI on folding rates and the implications for energy
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landscape theory.

We explored the folding kinetics of CI2 and SH3 by comparing tfold with BD over a

broad range of temperatures. Both proteins exhibit non-Arrhenius [46] behavior against

temperature as shown in Figs. 2(a) and 2(b). At high temperatures, tfold increases because

the thermal fluctuations are higher than the stability of the protein, and at low temperatures,

tfold increases due to the fact that the protein is trapped in a local energy minimum [18,46,47].

The temperature that renders the fastest tfold is at 0.95 TCI2
f and 0.91 T SH3

f for CI2 and

SH3, respectively. We computed tfold for the proteins with BDHI over a narrow range of

temperatures around Tf of the proteins in Figs. 2(c) and 2(d) in dashed lines. Our study

shows that the impact of HI on tfold is small within an order of magnitude, but statistically

significant. What is most interesting is that HI either increases or decreases the folding time

depending whether the temperature is higher or lower than Tf . This distinctive “crossover”

behavior occurs in the proximity of the folding temperature of CI2 (≈ 1.03 TCI2
f ) and SH3

(≈ 0.98 T SH3
f ). Thus, the impact of HI on protein folding kinetics is temperature dependent.

However, the acceleration of the folding is more prominent for CI2 than for SH3 at T < Tf .

Therefore, HI effects also depend on the topology of a protein.

We will further investigate the role of topology in the extent of impact from HI on protein

folding in the following subsection at two temperatures for each protein: below Tf (0.95 TCI2
f

for CI2 and 0.91 T SH3
f for SH3) and above Tf (1.06 TCI2

f for CI2 and 1.03 T SH3
f for SH3).

Can we capture this folding behavior using a global order parameter? A theoretical

estimation of the folding kinetic rate k (the rate is the inverse of folding time tfold) depends

on the shape of free energy surface and the effective diffusion coefficient Deff of an order
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parameter on the free energy surface [46–48] as such,

k = 1
tfold

=
(
β

2π

)1/2

Deffωω† exp
(
−β∆F †

)
(5.1)

where ω and ω† are the curvatures of the unfolded state free energy well and barrier, respec-

tively, β is the inverse temperature, and ∆F † is the free energy barrier height with respect to

the unfolded state free energy. However, since the Hamiltonian for BD and BDHI are identi-

cal rendering the same free energy profiles, the change in the folding kinetic rates should be

explained by the change in the diffusion of the order parameter.Here, the order parameter is

the fraction of native contact formation Q. The mean-squared displacement (MSD) of Q is

obtained as a function of time. Deff of Q is estimated from the linear region of the MSD of

Q as a function of lag time

If Q is a perfectly good reaction coordinate that captures the collective dynamics of a

complex system, the folding rates computed directly from the folding kinetic simulations

should be the same as the rates predicted by the energy landscape theory. When the simu-

lated rate deviates from the prediction, it infers that the dynamics of a complex system of

many degrees of freedom might not be adequately described by using only a single reaction

coordinate. We obtained kBDHI/kBD (or tBD
fold/t

BDHI
fold ) from the kinetic simulations for CI2 and

SH3 in Table 5.1. Additionally, because HI only influences the pre-exponential factor but

not the barrier height in Eq. (14), the ratio of the predicted rates from the energy landscape

theory is equivalent to Deff
BDHI/D

eff
BD. To test this, we compare the ratio of Deff

BDHI/D
eff
BD from

MSD calculation to the ratio of tBD
fold/t

BDHI
fold from kinetic simulations. We found that indeed

the ratio of Deff
BDHI/D

eff
BD is not equal to the ratio of tBD

fold/t
BDHI
fold in Table 5.1, although it shows

the right trend of the crossover behavior. We speculate that a mean-field description of

overall folding with the collective order parameter of Q along an energy landscape may not

80



5.2| Hydrodynamic Interactions

fully grasp the kinetic principle of HI on folding.
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The most exciting phrase to hear in science, the one that
heralds the most discoveries, is not ‘Eureka!’ (I found it!)
but ‘That’s funny...’

—Isaac Asimov

6
Perspectives and Outlook

Life is complex. We all know a living thing when we see it, but do we really understand it?

Currently, no scientist or engineer can come close to creating a chemical reaction or machine

that is as complex as one of the simplest living cells.

The collective interactions of these nano-machines, i.e. proteins, give this living matter

the ability to repair itself, digest food, and sense its surroundings in order to make deci-

sions. Proteins are not alive, but somewhere between one protein and many, “life” emerges.

Therefore, through studying the cytoplasm and how a single protein operates in this com-

plex environment, we can connect the physics of one protein to many, with the ultimate

aspiration to understand the emergent properties that makes living matter “alive”.

This thesis has investigated how these machines work in such a crowded and chaotic

environment of the cytoplasm.
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6.1 Main Conclusions

The main overarching conclusion from the previous chapters are that the environment of

the cell gives rise to new non-trivial phase behavior of proteins that would not be possible

as an isolated system. In short: More proteins are different.∗ The collective effects of the

protein and surrounding many-body system (i.e., the cytoplasm) are emergent and essential

for biological function. In summary:

• Crowding effects the stability of the individual folding phases and the bar-

riers between them. In chapter 3, a critical transition is observed in PGK’s folding

phase diagram. This is due to the loss of a barrier between to phases, which is con-

trolled by the amount of crowding volume fraction.

• Neighboring proteins can destabilize folding phases and new ordered struc-

tures can emerge. In chapter 4, as the number of tethered WW-domains increased,

the probability of misfolding increased as well. This was mainly due to the competition

of inter- and intra-domain interactions. Additionally, a totally new structure emerges

that was not expected based on the underlying Hamiltonian.

• Crowder shape can break depletion force symmetry. From chapter 5, the rod-

like crowders produced an elongated conformation of apoazurin, which is due to the

directional entropic forces of the crowders.

• Protein kinetics are affected by hydrodynmaic interactions. Also in chapter 5,

a proteins folding kinetics increases at low temperatures and decreases at high temper-

atures. This can also be extrapolated to protein binding, protein-complex assembly,
∗A play on Anderson’s famous essay “More is different” (cite).
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and beyond.

6.2 Outcome and Future Directions

Universality of critical phenomena in proteins. The main goal is to capture the P -

T -φ phase diagram of PGK using the same methodology used in Thirumalai’s paper [171],

and extend this to other proteins in hopes of finding the origin of criticality in proteins and

possibly universality.

Protein abundance dictates protein-complex assembly and state. We can think of

the cytoplasm as a collection of proteins which have interactions Jij and chemical potentials

µi and the change in the state of a cell (from A to B) depends on these two properties:

StateA({{JAij}, {µAi }})→ StateB({{JBij }, {µBi }}) (6.1)

The change in {JAij} → {JBij } may be due to change in protein conformation or mutations,

and {µAi } → {µBi } may be due to change in gene expression level. Protein interactions may

also affect gene expression and vise versa.

Living cells can contain on the order of 104 distinct types of proteins and other macro-

molecules at a given time. In this many-component mixture of the subcellular environment,

macromolecules assemble into complexes and organize hierarchically into spatial networks.

In fact, these unfathomably complex networks give rise to the emergence of all biological

functions and ultimately the properties of life [172, 173, 174, 175].

The specific arrangements of macromolecules are thought to emerge from the vast amount

of weak “quinar” and entropic interactions[159, 176, 3, 89]. The most intuitive conception

of protein biophysics in this crowded environment is that of volume exclusion[177] exerted
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on a given protein by surrounding macromolecules. Volume exclusion creates entropic forces

that depend on the shapes and sizes in the crowd of macromolecules. Additionally, the

presence of “quinary structures”[4, 44] undercuts the assumption that volume exclusion

from surrounding crowders is the dominant physics principle in predicting protein dynamics

in a cell. Proteins interact weakly and form unconventional quinary complexes through

counteracting forces between favorable electrostatic interactions and unfavorable solvation

energies provided by their metabolites[46].

However, the physical mechanism of these complex assemblies is still unclear. In addition

to protein-protein interactions and macromolecular crowding, another entropic effect must

be considered: fluctuations in the number of particles. Changing the chemical potentials, µ,

of the different types of proteins in the multi-component mixture can fundamentally alter its

properties and display complex transitions such as liquid-liquid demixing or granular body

formation[178, 179]. Without this understanding of effects of particle number fluctuations,

the physics of the assembly and hierarchical organization of macromolecules will remain

elusive.

Here we propose a cellular cytoplasm model to understand hierarchical protein-complex

assembly using a Grand canonical Monte Carlo simulation (GCMC) and the principle of

maximum entropy to solve the inverse statistical mechanics problem [180] of finding the

correct chemical potentials for each protein type. Our approach is built upon the coarse-

grained modeling of macromolecules that exert volume exclusion in a crowded environment

[47], and infer pair-wise interactions between macromolecules using proteomic experimental

data gathered by chemical cross-linking mass spectroscopy (XL-MS)[181]. Since the number

of macromolecules in the cell is not static, the Grand Canonical (GC) ensemble is uniquely

suited to allow for fluctuation in particle number by keeping the set of chemical potentials

{µα} fixed.
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Furthermore, the cytoplasm inside a cell is comprised of thousands of different types of

biomolecular components causing complicated behaviors of the system. Previous work by

Sear and Cuesta[182] developed a new statistical approach to estimate the condition whereby

the mixtures of a large number of components unintentionally phase separate (or demix)

through randomly interacting biomolecules. In conjunction with GCMC simulations, Jacobs

and Frenkel[183] further showed that the changes in the mixing entropy of distinguishable

multi-components direct the transition between a condensation phase and a demixing phase.

This phenomena is one of the driving forces in liquid-liquid phase separation[184] in cell

biology. Another investigation from the Leibler group[185, 179] also used GCMC to show

that by tuning the chemical potential, µ, diverse structures of proteins self-organize into

distinct groups of assemblies. One urgent challenge from these GCMC studies is to justify

that {µα} determines the distribution of particle numbers for each type of biomolecule in

an open system. We infer the chemical potentials of specific proteins using the principle

of maximum entropy to match experimentally derived mean particle number or protein

abundance from the protein abundance database (PaxDB) [186]. Similar approaches have

been used various areas of biological physics to infer the interaction energies of a Canonical

ensemble (constant particle number) such as in understanding chromosome architecture [187],

protein-protein interactions [188], or correlations in neural networks [189]. In contrast, here

we are estimating the particle distribution of a GC ensemble where {µα} is inferred.

The ultimate goal of this investigation will lead to understanding the of role of protein-

protein interactions at a proteomic level that establishes the hierarchical assembly of macro-

molecular complexes, and its role in controlling cellular function.
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Coarse-grained Computational Models

A.1 Structure-based Models

Our simulations use a structure-based model, which is minimalist protein model (“beads

on a chain”) that incorporates experimentally derived structural information [190], to in-

vestigate the mechanism of protein folding dynamics optimally. The emergence of structure

and function from a protein sequence makes the modeling of proteins from first principle

(ab initio models) computationally and theoretically prohibitive. Therefore, experimentally

derived structural information is needed (even in models termed “all-atom”, which refine

ab initio force field parameters to fit experimentally known structures) to capture key fea-

tures in protein folding and dynamics [86]. A structure-based model is often utilized as

the “ideal gas” of protein folding for the investigation of a wide range of folding mecha-

nisms [30, 191].∗ This model renders an energy landscape [87] with minimal frustration and
∗The importance of ideal models is best stated by Alexander Y. Grosberg at the 2019 APS March meeting,

“perfectly detailed simulations can only reproduce Nature, but not explain it.”
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contains a dominant basin of attraction, corresponding to an experimentally determined con-

figuration [88]. As such, the model carries the bonus of being computationally inexpensive,

enabling long-timescale simulations to be obtained for a large protein and macromolecular

crowding system. Long-timescale simulations are also crucial for high-pressure unfolding

since pressure unfolds proteins at an order of magnitude (or more) slower than heat unfold-

ing; therefore, structure-based, minimalist-model simulations provide statistically significant

results. Lastly, structure-based models tend to capture unfolded protein scaling laws better

than all-atom models [192], which is necessary to characterize the various non-crystal states

of PGK correctly.

A.2 Desolvation Potential and Crowder Hamiltonian

Similar to adding specific complexity to the ideal gas model to study specific phenomena,

we add the desolvation barrier [60] to the native interactions that accounts for the free

energy cost to expel a water molecule in the first hydration shell between two hydrophobic

residues [120] to study pressure unfolding, leading to the appearance of a partially folded

intermediate. The use of this model has been validated in other systems [142]. The total

system is described by the Hamiltonian Htot ≡ Hp + Hpc + Hcc, which accounts for the

interaction within the protein (Hp), between the protein and crowders (Hpc), and between
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crowders (Hcc). The Hamiltonian of this structure-based protein model, Hp, is as follows:

Hp

(
Γ,Γ0

)
=
∑
i<j

Kr

(
rij − r0

ij

)2
δj,i+1 +

∑
i∈ angles

Kθ

(
θi − θ0

i

)2

+
∑

i∈ dihedrals
Kφ

({
1− cos

[
φi − φ0

i

]}
+ 1

2
{

1− cos
[
3
(
φi − φ0

i

)]})

+
∑

i,j∈ native
U
(
rij, r

0
ij, ε, ε

′′
)

+
∑

i,j /∈ native
ε0

(
σ

rij

)12

, (A.1)

where Γ is a configuration of the set r, θ, φ. The rij term is the distance between ith and jth

residues, θ is the angle between three consecutive beads, and φ is the dihedral angle defined

over four sequential residues. δ is the Kronecker delta function. Γ0 = {{r0}, {θ0}, {φ0}} is

obtained from the crystal structure configuration. Lastly, U(rij, r0
ij, ε, ε

′′) is the desolvation

potential in Fig. 3.1(b) (or Fig. S2.2 [135]), which contains a P -dependent contact well

energy (ε) and barrier height energy (ε′′) as,

ε(P ) = ε0 − υ1P, (A.2a)

ε′′(P ) = ε′′0 + υ2P, (A.2b)

where ε0 is the solvent averaged energy and ε′′0 is the barrier height at ambient P . The

constants υ1 and υ2 are taken from Ref. [120]. The potential is described as piecewise

function,

U
(
r, r0, ε, ε′′

)
=



ε
[(

r0

r

)12
− 2

(
r0

r

)6
]

if r < r0 and ε > 0

−ε
[(

r0

r

)12
− 2

(
r0

r

)6
]
− 2ε if r < r0 and ε < 0

C
(
r − r†

)4
− 2 (ε+ ε′′)

(
r − r†

)2
+ ε′′ if r0 ≤ r < r†

−B (r−r†)2
−h1

(r−r†)6
+h2

if r† ≤ r,

(A.3)
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where constants C, B h1 and h2 are,

C = (ε+ ε′′)
(r† − r0)2 , (A.4)

B = 3ε′
(
r′′ − r†

)4
, (A.5)

h1 = 2
3

(
r′′ − r†

)2

ε′/ε′′ + 1 , (A.6)

h2 = 2

(
r′′ − r†

)6

ε′′/ε′ + 1 . (A.7)

Here, r′′ = r0 + 0.8σ is the position of the water-mediated potential well minimum, and

r† = 0.5(r0 + r′′) is the position of the desolvation barrier maximum. Crowders are modeled

as hard spheres with Hamiltonians Hpc and Hcc with the following form:

Hpc(rij) =
N∑
i

n∑
j

ε0

(
σij
rij

)
, (A.8a)

Hcc(rij) =
n∑
i<j

ε0

(
σij
rij

)
, (A.8b)

where N and n are the number of residues (= 415) and crowders, respectively; σij = 0.5(σi+

σj), is distance between any two particles in direct contact.

The complete descriptions of a structure-based protein model, desolvation potential, and

simulations of PGK in a periodic cubic box of Ficoll 70 are provided in the Supplemental

Material [135]. All simulations were performed using GROMACS 2016.3 molecular dynamics

software [193].
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A.3 Associative Memory, Water Mediated, Structure and Energy

Model

The tethered WW-domains were computationally simulated using the Associative memory,

Water mediated, Structure and Energy Model (AWSEM).29 The model predicts structures

and helps understand the competition between folding and interdomain interactions by pro-

viding polymeric insights into the formation of contacts according to physico-chemical fea-

tures of protein residues (sample structures in Fig. 1).

AWSEM is a coarse-grained protein model with transferable energy functions that have

been optimized to predict tertiary structures of globular proteins. AWSEM has been used

in globular protein structure prediction, binding predictions of protein dimers, and amy-

loid fibril formation, through simulated annealing.13,30–32 The AWSEM potential is a

combination of both knowledge-based and physics-based terms. It uses a three-bead per

amino-acid coarse-graining (Cα, Cβ, and O atoms) that generates the coordinates of other

heavy atoms along a backbone. It includes independent and cooperative hydrogen bonding,

water-mediated tertiary interactions, and biasing local structural preferences based on short

fragment memories. Although AWSEM lacks atomistic resolution, this model is sufficient

in sampling a wide conformational space involving folding and binding contributing to the

folded, the unfolded, or the misfolded states. Our model uses the native state of an indi-

vidual WW domain as a reference state, and thus conservatively assesses the population of

misfolded states.

The total Hamiltonian consists of a backbone term HBB, a potential of mean force HPMF,
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and a fragment memory term HFM:

HAWSEM = HBB +HPMF +HFM (A.9)

HBB constrains the backbone chain to physically realistic heteropolymer conformations (see

ESI Section S3 for details). The potential of mean force HPMF depends on the identities of

the interacting residues and contains direct contacts, water mediated contacts, burial, and

hydrogen bonding terms (see ESI Section S3 for details). The HBB and HPMF terms do

not depend on the knowledge of the native structure and only depend on the sequence of

residues; thus, the two terms allow for non-native and long-sequence distance interactions

and are responsible for the formation of non-native structure across multiple domains. Model

parameters are chosen to minimize misfolding of the WW-domain by itself, in accord with

experimental observation (see Section 3.6).

The fragment memory termHFM is particularly important in the context of single domain

folding, as it contains local sequence interactions using the knowledge of the native structure.

Memories are sequences with known structures (typically obtained from the protein data

bank). The fragment memory potential sums over all memories m from short sequences,

and all pairs of atoms (not residues) i and j such that the atoms have a sequence separation

3 ≤ |I − J | ≤ 9, having the form

HFM = −λFM
∑
m

∑
i,j33≤|I−J |≤9

exp

−
(
rij − rmij

)2

2σ2
IJ

 (A.10)

where rij and rmij are the distances between atoms i and j of the simulated structure and

of the memory structure, respectively. In this study, we use a single memory, which is the

folded experimental structure of the isolated FiP35 WW domain (PDB ID: 2F21).33 The
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well width σIJ = λσ|I − J |0.15, and we fixed λσ = 0.2 Å in all simulations. Unlike Gō or

structure-based models,34 HFM only acts less than 10 residues apart within the monomer,

affecting mainly secondary structure. The other non-backbone terms act both locally and in

long-sequence distances, affecting tertiary and interdomain structure also. A more detailed

description of the AWSEM Hamiltonian terms can be found in ref. 29, 35 and 36.

The fragment memory terms contain a scaling parameter λFM in eqn (5) adjusting the

interaction strength. λFM allows us to tune the aggregation propensity relative to the fold-

ing propensity. In this study, we use three different values of λFM to compare folding vs.

aggregation of the tethered domains as bias towards the folded crystal structure is decreased

(λFM = 0.4 kJmol−1, Model I), or increased (λFM = 1.2 kJmol−1, Model III) compared to

the standard value (λFM = 0.8 kJmol−1, Model II). All other parameters were kept at default

settings.29 The full set of AWSEM parameters used is shown in ESI (Section S4).
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B.1 Langevin Dynamics

Langevin dynamics (LD) adds a friction and a noise term to Newton’s equations of motion,

as

mv̇(t) = −∇H(r)− ηv(t) + ξ(t), (B.1)

where

〈ξ(t) · ξ(t′)〉 = 2ηkBTδ(t− t′), (B.2a)

〈ξ(t)〉 = 0. (B.2b)

In GROMACS there is one simple and efficient implementation. Its accuracy is equivalent

to the normal MD leap-frog and Velocity Verlet integrator. It is nearly identical to the

common way of discretizing the Langevin equation, but the friction and velocity term are
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applied in an impulse fashion [194]. It is described in Algo. B.1, where α = 1− e−γ∆t.

Algorithm B.1 Langevin Dynamics Integrator Algorithm
1: procedure LD({ri(t),vi(t− 1

2∆t),F i(t)},∆t, α) . run LD to update configuration
2: for all i do . repeat for all particles
3: v?i ← vi

(
t− 1

2∆t
)

+ 1
m
F i(t)∆t . compute 1/2-step velocity

4: ξi ← N (0,1) . attain from 3D Gaussian distribution
5: ∆vi ← αv?i +

√
kBT
m

(1− α2)ξi . compute impulse term
6: ri(t+ ∆t)← ri(t) +

(
v?i + 1

2∆vi
)

∆t . update positions
7: vi

(
t+ 1

2∆t
)
← v?i + ∆vi . update velocities

8: end for
9: return {ri(t+ ∆t),vi(t+ 1

2∆t)}
10: end procedure

The global scheme for MD is given in Algo. B.2

Algorithm B.2 Global Molecular Dynamics Algorithm
1: procedure MD(H, {ri(0),vi(0)}, τ,∆t) . run MD given H and the initial conditions
2: while t ≤ τ do . repeat for τ/∆t steps
3: for all i do
4: F i(t)← −

∑
j
∂H
∂rij

. compute forces
5: end for
6: {ri(t+ ∆t),vi(t+ 1

2∆t)} ← LD from Algo. B.1 . update configuration
7: write outputs
8: t← t+ ∆t
9: end while
10: end procedure

Initial velocities are randomly generated from the Maxwell-Boltzmann velocity distribu-

tion:

℘ (vi) =
√
βm

2π exp
(
−βmv

2
i

2

)
(B.3)
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B.2 Replica Exchange Method

Replica exchange method (REM) can be used to speed up the sampling of any type of simula-

tion, especially if conformations are separated by relatively high energy barriers. It involves

simulating multiple replicas of the same system at different temperatures and randomly

exchanging the complete state of two replicas at regular intervals with the probability:

P(1↔ 2) = min
(
1, e(β1−β2)(E1−E2)

)
(B.4)

where β1 and β2 are the reference inverse temperatures and E1 and E2 are the instantaneous

potential energies of replicas 1 and 2 respectively. After exchange the velocities are scaled

by (T1/T2)±0.5 and a neighbor search is performed the next step. This combines the fast

sampling and frequent barrier-crossing of the highest temperature with correct Boltzmann

sampling at all the different temperatures [195, 196].

B.3 Simulated Annealing

We built the single memory configuration using atomic coordinates provided in the WW-

domain of the human FiP mutant crystal structure with PDB ID: 2F21. We matched the

sequences of the WW-domain oligomers used in the experiments (Table S1 in ESI). Each

individual domain in the oligomers used the single memory of the monomer, and linkers

joining domains were not influenced by the fragment memory term.

We performed all simulations in the canonical ensemble (NVT) using the Nosé-Hoover

thermostat implemented using the LAMMPS molecular dynamics software.39 To predict

the structures, we performed annealing simulations starting from a linear extended peptide
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structure at a temperature of 650 K, and slow cooled over 10 million time-steps to 300

K (where a time-step is approximately 5 fs). Initial velocities were chosen randomly from

a Boltzmann distribution with the average squared velocity equal to 3kBT/m, where kB

is the Boltzmann constant, m is the mass, and the temperature T is set equal to 650 K.

The simulated annealing was repeated 40 times for each oligomer and the three λFM values

(Models I, II, and III). The temperature range was chosen to be approximately 150 K above

and below the folding temperature of the monomer.
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