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ABSTRACT In ultra-dense small cell networks, interference mitigation is very important due to severe
interference. Interference dynamics caused by time-varying environment should be aware and characterized
when an interference-aware power control policy is designed to mitigate interference. Meanwhile, interfer-
ence perception should not be naturally assumed to have complete information with certainty. Generally,
it is known that a generic player will react to all the players actions and states in a power control game,
which involves huge interference-related information exchange with dynamics and uncertainties. Therefore,
to reduce requirements of complete information, we formulate a robust power control mean field game
taking the uncertainties of both state dynamics and cost functions into consideration. To achieve the robust
power control, we regard the power control problem as a game with players whose individual states are
combined by a disturbance term and a Brownian motion. We derive the robust Fokker—Planck—Kolmogorov
and Hamilton—Jacobi-Bellman equations, and based on which we propose the robust interference-aware
power control algorithm. Simulation results demonstrate the improved performance and the robustness of
the proposed algorithm.

INDEX TERMS Interference mitigation, mean field game, power control, ultra-dense small cell networks,

robust optimization and control.

I. INTRODUCTION

Network densification is regarded as the foremost feature
of overcoming energy and capacity crunches, where het-
erogeneous small cells densely underlay macrocells with
full frequency reuse and distributed coordination. Current
Heterogeneous Networks (HetNets) can be naturally seen
as the origination of these very dense networks [1]-[4].
In HetNets, extreme deployment of small cells introduces
opportunities and challenges. The structure of HetNets
can efficiently improve the spectrum efficiency of system.
Besides, by introducing small cells, UEs can achieve higher

data rates because the transmission distance between small
cells and UEs becomes shorter [5]. In addition to these bene-
fits, there also emerge technical challenges, where interfer-
ence mitigation already exists but deserves more research
attention.

A. INTERFERENCE DYNAMICS, UNCERTAINTIES,

AND OVERHEAD

Due to full frequency reuse, there exist both intra-tier and
inter-tier interference. The interference level in UDN is
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especially severe, therefore an efficient interference
management is urgently needed. Power control is an impor-
tant method in interference management, it can help mit-
igate interference as well as reduce energy consumption.
However, huge interference-related information is required
to design the distributed power control policy which is
always time-space dynamic in realistic network environments
because of the time-varying environment and the mobility
of UEs. Hence, interference dynamics should be aware and
characterized when designing an interference-aware power
control policy. Besides, mainly based on perfect system
parameters(e.g., interference power and channel gain) have
the traditional power control policies been proposed. How-
ever, due to estimation errors, quantization errors, or mea-
surement errors in practice, those parameters are difficult
to be perfectly obtained [6]. Hence, uncertainties should be
taken into consideration in interference perception. Mean-
while, with the amount of small cells tending to infinity, cen-
tralized interference management meets with severe signaling
overhead, flexibility, and scalability, coupling with limited
backhauling capacity and random deployments. In conse-
quence, self-organizing characteristics should be paid atten-
tion in distributed interference management.

Game theory is considered as a promising mathematical
tool modeling resource competition and interference coor-
dination between different tiers of cells in ultra-dense Het-
Nets. Game theory has more and more been applied to
mitigate interference [8]—[14]. In [8], the problem of selecting
channel to mitigate interference in a canonical communica-
tion network is modeled as an exact potential game. In [9],
interference management as well as resource allocation is
formulated as a Stackelberg game, where information about
channel state is incomplete, and [10], [11] also improved the
system performance by exploring the hierarchical benefits.
[12] proposed a distributed resource allocation policy for
the network where a macro cellular is underlaid by small
cells based on the evolutionary game theory. However, these
conventional games for HetNets encounter several technical
challenges, e.g., huge signaling overhead involved by the
interaction between ultra-dense small cells [15]-[28].

B. DISTRIBUTED POWER CONTROL WITH

INTERFERENCE PERCEPTION

In ultra-dense small cell networks, a power control policy
in a distributed manner is required. First, mutual intra-tier
interference between ultra-dense small cells should be well
characterized, instead of being omitted or simply treated
as background noise when designing an interference-aware
control policy. Second, interference perception should not be
naturally assumed with fully complete information with cer-
tainty. To characterize the interference interactions and design
distributed interference mitigation schemes, we formulate the
interference-aware power control problem as an mean field
game. The mean field game is represented by coupled HIB
equation and FPK equation, where HJB equation governs the
optimal path of the player while the FPK equation controls
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the evolution of the mean field. By formulating the system
as two coupled equations the mean field framework reduces
the complexity to achieve the system equilibrium. Generally,
there are four assumptions that the mean field games are
complied with: (1) Players are rational; (2) Players are of
contimuum (i.e., the mean field is continuous); (3) Players’
states are interchangeable (i.e., the game’s outcome will not
be affected by the players’ states); (4) Players’ interaction
of the mean field. Generally in a game, in order to make
sure that the players are able to take their own logical deci-
sions, the first assumption should be set. Because that the
amount of SBSs of the system model is huge, so the second
assumption is rational. To guarantee the interchangeability of
the players’ actions, the cost function (which will be given
later) is derived. The fourth idea means that every player
could interact with the mean field, rather than interact with
all others [17], which significantly reduces signaling.

C. ADVANCED MEAN FIELD GAME

In a game, a generic player will react to all the players’ actions
and states, the process of which involves huge interference-
related information exchange with dynamics and uncertain-
ties. Here we use the stochastic game to formulate the power
control problem as a game involving the dynamics and uncer-
tainties incomplete interference information. Moreover, we
apply the interference-aware stochastic game to the MFG
when the amount of small cells is huge, even goes to infinite.
Only a few works are available for mean field games in
large-scale networks [15]-[24]. Mean field approximation of
interference is applied in [15] and [16]. In [16], the mean
field game theory is utilized to aid decouple a inter-cell
interference management optimization problem complicated
and large-scaled into a few localized optimization problems.
Reference [17] is the first work to use the mean field game as a
theoretic approach to solve the problem of managing interfer-
ence in ultra-dense HetNets. Semasinghe and Hossain [17]
formulate the mean field game with different two cost func-
tions and analyze the performance of each cost function.
More importantly, based on the Lagrange relaxation and Lax-
Friedrichs scheme, [17] proposes a finite difference algorithm
to settle the corresponding MFG.

The technique of mean field approximation is used by the
Al-Zahrani et al. [20] to convert traditional game into a mean
field game to make resource allocation simpler and easier.
Other famous works include [18]—[24], where [18] and [19]
help model different dynamics of mobility, channel, and so
on, and [20] facilities the computation of the mean field.
Aziz and Caines [21] consider the coverage optimization
problem, and [22]-[24] are with energy efficiency as the
optimization for different networking scenarios. Meanwhile,
robust mean field games have found applications [25], and
the computation algorithm for a specific formulated mean
field game can well be solved with different finite difference
methods [26]. Previously, we extend the mean field game
with two-dimensional state dynamics for ultra-dense D2D
communications in [27]. In [28], we find that there exist
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interference dominators during the computation of interfer-
ence mean field, whose effects are much larger than other
interferers and even close to the mean field, and thus cannot
be merged into the mean field. The mean field game with
dominators [28] is different from the most of the conventional
games [ 15]-[27]. Different from the conventional MFGs [27],
we propose a framework in which there exists at least one
dominating player for specific generic player in ultra-dense
macro-small cell networks [28]. We concentrate on the robust
mean field game design in our work, to the knowledge of our
best, which is the first work to solve the robust power control
in the robust MFG framework.

D. CONTRIBUTIONS

Here we concentrate on the characteristics and awareness of
intra-tier interference and typical contributions in our work
are summarized as follows:

(1) A robust MFG framework: we formulate a robust power
control mean field game taking the uncertainties of both
state dynamics and payoff function into consideration.
The framework can not only help to formulate the prob-
lem as an MFG but also reduce the requirements of
complete information.

(2) Interference-aware design: we formulate the power con-
trol problem as a cost minimization problem, where a
generic player will determine it’s own power control
policy. Here we formulate the cost function as the com-
bination of both the achieved performance and perceived
interference.

(3) Upwind method solving the FPK equation: the players’
mean field evolves under the government of the FPK
equation. To solve the equation above, we adopt the
Upwind method which has a faster convergence speed
than that of the Lax-Friedrichs scheme used in previous
works [17], [27].

(4) Designing a distributed iterative algorithm to gain the
equilibrium of the MFG: first the corresponding FPK
and HJB equations of the presented MFG framework
are derived, where the optimal trajectory of the player
is governed by HJB equation. Then based on finite
difference algorithm, we propose a distributed iterative
algorithm to obtain the equilibrium of the MFG.

The remainder is organized as below. In Section II, we give
the system model and the method of interference mean field
approximation. In Section III, the power control problem
with interference-aware is formulated as a stochastic differ-
ential game. Following that, we formulate the robust MFG in
Section I'V. We propose the interference-aware power control
algorithm in Section V, and we provide simulation results
in Section VI. At last, in Section VII, we conclude our
work.

Il. SYSTEM MODEL AND INTERFERENCE MEAN

FIELD APPROXIMATION

We give an introduction to the system model and the interfer-
ence interaction model in this section. Moreover, we present
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FIGURE 1. lllustration of heterogeneous ultra-dense small cell networks
with densely-deployed intra-tier interference.

the interference mean field to approximate the aggregate
interference of a generic player.

A. SYSTEM MODEL

We give the illustration of the ultra-dense small cell networks
in Fig. 1, where N SeNBs fully share spectrum, e.g., one
channel. Due to intra-tier interference, SeNBs may encounter
heavy performance degradation. To be well aware and char-
acterize the strategic behaviors among ultra-dense small cells,
we concentrate on the mutual intra-tier interference.

We choose SeNB; as a generic player in a huge number of
SeNBs, and we consider the downlink transmit case. SUE;
serviced by SeNB; will receive intra-tier interference caused
by the other SeNBs. The Signal to Interference plus Noise
Ratio (SINR) of SUE; is

p1(H)g1,1 (1)

6
Zzpj (1)gj,1 (1) + 02 (1)
]:

1= ) (D

where gj 1 (t) is the channel gain from SeNB; to SUE,
pj (t) represents the transmit power of SeNB;, o2 (1) is
6
background noise. Here, )" p; (t)gj 1 (1) + o2 (1) represents
=2
the total interference pov{/er plus noise perceived by SUE;,
the first term represents the interference power perceived by
SeNB; brought by all the other SeNBs. We can see from (1)
that the SINR mainly depends on transmit power and channel
gain which are variational with respect to time, so that SINR
is dynamic. In a game, players, here are the SeNBs, make
decisions by not only their own state but also the other
players’. Hence, a player will exchange information with the
other players, and the amount of information exchanged will
be huge when the number of players is large.

B. STOCHASTIC INTERFERENCE INTERACTION MODEL

We concentrate on the intra-tier interference mitigation
among different small cells. Each small cell can be a player
in the game-theoretic framework, e.g., i € N, where N =
{1,..., N}, and total number N of SeNBs is huge, and even
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goes to infinity. We assume that SeNB;, i € N/, is generic
player i, which is randomly chosen from N players. Here,
the perceived aggregate interference of the generic player i is

N
wit) =Y pi(t)gj.i(t) — pit)gii(t). ©)

j=1
which refers to the intra-tier interference from other players
j € N,j # i. Here p;(t) is the transmit power of any player
i € N at time ¢, while g;,i(t) and g; ;(¢) are the channel gains
and stochastic processes respectively. To well characterize the

channel dynamics, it is uniformly formulated as Ornstain-
Uhlenbeck dynamics [18]:

1
dg(r) = 3 (g — g()dr + of dA(®), 3)

where «; and U; are non-negative real values. Then the
stationary distribution of g(¢) is Gaussian with mean «,
and variance ng. d () is Brownian motion’s infinitesimal.
Adjusting kg and 05? respectively, the amounts of (slow/fast)
fading variance and temporal correlation are determined
accordingly. In the remaining sections, assuming that all the
channel gain dynamics are described as the above stochastic
dynamics function, but with different values of mean «, and
variance ogz.

C. INTERFERENCE MEAN FIELD APPROXIMATION

To maximize their interference-aware preferences, we fully
consider the space-time dynamics of the perceived aggrega-
tion interference. Using the perceived aggregate interference
of the generic player i (2) as an example, we can see that
to estimate w;(t) we should obtain the information of p;(z),
while at the same time, the channel gains g;;(¢) and g; ;(¢)
should be known as well. Therefore, this estimation process
involves too much signaling exchange. It will be even worse
due to a huge number of players; meanwhile, the optimal
control policy should be made with respect to these timely
previously-estimated information.

To reduce the information exchange and signaling over-
head, we present the following the mean field approximation
method to approach the perceived aggregate interference of
the generic player i (2). The interference mean field for the
generic player i is given by

— pi®)giit) , 4
\—/—/

local information

i) = pj(t)@; i(t)
—_——
context information

where @j; (¢) is derived by the mean field approximation

method which will be explained by a simple practical exam-

ple. Assuming a scene with N SeNBs, each SeNB transmits

a test power py.s; and the received power at the user equip-

ment i (UE;) served by SeNB; would be p; = prestgii +
N

Y Diest8j,i ~ Drest@ji- pi is measured and Py is previ-
J=Lj#i .
ously known, then we can obtain w;; = ’% We can see that
pj (t) wj; (t) is the summation of effective received power
and interference power received by player i, it represents
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the context information. p; () g;; (¢) is the effective received
power of player i, where p; (¢) and g; ; () can be obtained by
local information, so it represents the local information. The
above equation (4) will be used to derive the state dynamics
function.

Ill. ROBUST INTERFERENCE MITIGATION STOCHASTIC
DIFFERENTIAL GAME

To achieve the robust control, we consider the players with
individual states combining a disturbance term and a Brown-
ian motion. Firstly, we give a stochastic differential game as
follows:

Definition 1: Define a 5-tuple to represent the robust inter-
ference mitigation mean field game G of ultra-dense deployed
SeNBs: G = (N, {pilien {Sitien, {Qitien, {citien},
in which

e Player set N: N' = {1,...,N}, where N represents
the number of player in the game, the players here are
the densely deployed SeNBs. The players make rational
policy in the game, where N is huge, and even goes to
infinity N — oo.

o Power control {p;};cnr: to jointly mitigate interference
and save energy, we define the strategy set as the
power control policies p; at time ¢, where t € [0, T].
To minimize a cost function with interference mean
field dynamics as the state space, The generic player i
determines powers p;(t) at any time ¢ € [0, T].

o State space {S;}ic N the state space is defined as inter-
ference mean field dynamics, where we introduce the
disturbance at time 7.

o Control policy {Q;}ien: Qi(t) denotes a full power con-
trol policy with ¢ € [0, T'], it aims at minimizing the
average of the cost function over the time interval [0, T].

o Cost function {c;};cn: our work consider a novel cost
function combining the achieved SINR property and
consumed energy.

With the above system description and definition, we have
clarified the player set N and power control {p;};ear. The
state space {S;};cn as well as the cost function {c;};ear will
be defined later to introduce the control policy {Q;}ien of
generic player. The state space and cost function are the most
important and featured ingredients of the above SeNB game
model and each of them will be explained in details in the
next two subsections.

A. STATE SPACE

For the interference mean field dynamics defined in (3) for
generic player i, we know the term @ ;(¢) is the aggregate
interference’s mean field approximation, which is in the simi-
lar form of Ornstain-Uhlenbeck dynamics as (3). The rational
is the independent properties of different channel dynamics.
Due to the independent properties of different channel links
dynamics, the aggregated interference mean field will be in
line with the Ornstein-Uhlenbeck dynamics [18]. Different
channel models can be assumed to the Ornstein-Uhlenbeck
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dynamics with different means and variance values. The
dynamic function of mean field approximation wj ;(¢) is
given by

dw(t) = %(Kw —w))dt + o2 dA®), 5)
where mean k, and variance o2, are non-negative real values.
In addition, the Ornstein-Uhlenbeck dynamics will finally
help derive the linear-quadratic system which will facilitate
the derivations of the HIB and FPK equations. As d #A(t) is
the infinitesimal Brownian motion, it is known that % =0
and d?>%(t) = dt, which are the properties of Brownian
motion in the ITO’s formula [18]. Meanwhile, we assume that
at time ¢ the transmit power p;(¢) is constant , thus dp;(t) = 0.

The state dynamics s; of generic player i is defined as

si = dui(t) = pj()dw®; (t) — pi(t)dg;i(t) + &(t)dt, (6)

where the term &;(#)dt is the introduced disturbance in state
dynamics with the unit variance of the stochastic process
&;(t). It functions as an unknown parameter and denotes the
unknown disturbance entering into the dynamics at time ¢.

Substituting (3) and (5) into (6), we have the final state
dynamics:

si = dui(r)
= (i.iOpj(t) — BiiOpi(t) + &) dt + o> fi(H)d B(1),
(N

where @ ; (1) = % (kj,i — @j,i (1)), the term o ;(1)p;(t) rep-
resents the other players with «;;(r) as the coefficient of
the drift term and specific player’s power p;(t), B (t) =
% (K,;i —gii (t)), the term B; ;(¢)pi(¢) is related to the power
control p;(¢) of the generic player with §; ;(¢) as the growth
parameter function. The term ozfi(t)d%’(t) represents the
new stochastic process with time-varying variance o2 f(t),
where f;(t) can be pre-determined with local information and
interference mean field approximation.

B. COST FUNCTION WITH DISTURBANCE ATTENUATION
With the defined system state dynamics s(¢) = [s;(¢)], the cost
function c(¢, s, p) is minimized by optimal power control of
p(t) = [pi(t)] for generic player i. With the state space s;(¢),
the optimal power control policy Q7(¢) will be determined
by generic player i to minimize the cost function. Generally,
communication performance is usually related to the SINR
definition, which is given as

pi(1)gi,i(t)
wi(t) +o2(@)’

where the aggregate interference w;(¢) perceived by generic
player i is defined in (2), and o2(r) represents the power
of background noise at time 7. In the robust MFG we also
introduce the identical SINR threshold y™ for any generic
player. Here, ¥ is the minimum SINR requirement and is
predefined to meet the basic communication requirements.

yit) = ®)
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Therefore, the individual cost function at time ¢ for generic
player i is

ci (¢, i (1), pi (1))
2
= [p0gi0—y" (0 +a* )] ©

which is derived from the inequality y; (f) > y"". On one
hand, the defined cost function is with physical meanings,
which means that generic player i will determine the optimal
power p;(¢) to minimize the cost function, thus as far as
possible to approach the SINR threshold y™. On the other
hand, the defined cost function c¢;(¢, (), pi(¢)) is concave
with constant interference ;(f) at any time ¢t with respect to
the power p;(t). The proof process is omitted here.

Implementation of the optimal power control over a period
of [0, T'] should fully consider the dynamics of the perceived
interference p;(¢) at any time t. The dynamics of the per-
ceived interference w;() is given by (7), where we introduce
the disturbance &;(¢). Therefore, the cost function of generic
player i over [0, T] is given by

T
Li(PivMi):/O ci(t, pi (), pi () dt +¢;(T), (10)

where ¢;(T) is the cost at the final time 7. Furthermore,
to make sure that the cost is finite when the disturbance is
under the worst case, the integral of El-z should be constrained.
In this paper, we take the way of the ratio between L; and
the summation of sf and the initial cost ¢; (0) [25]. Thus,
the introduced disturbance &; is constrained as follows:
L; (pi, i) < 2
£+ ¢ (0)
where ¢;(0) is the cost at the initial time ¢t = 0, and p measures
the robustness level. Finally, the robust cost function is

(1)

T
JE iy i &) = Li (pi, 1) — p* /O g2 (tydr,  (12)

where we assume that ¢;(0) = 0. By now, all the elements
in the defined MFG have been clarified, which can be refor-
mulated as the optimal control problem in the following
subsection.

C. ROBUST OPTIMAL CONTROL PROBLEM

Each player i minimizing the cost function J ip i, i, &)
which is given in (12), during the time interval [0, T], is con-
sidered will choose the optimal power control policy Q*(z).
Also, here substituting into the system dynamics of the state
space defined in (7), the problem can be transformed into the
general robust optimal control problem of

Q*(t) = arg El(lf)l max B [JE pir 1in &) (13)

Definition 2: Introducing Z(t) as a one-dimensional
Brownian motion process, along with the defined robust cost
function Ji'o(p,-, Wi, &) in (12) and state dynamics du;(t) in
(7), the robust stochastic game problem is given by

arg min max E [J° (p;, i, &)].
o0 &) Ui i i 89
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At this time, the solution to above problem is a value
function u(¢, s(z)) which is given by:
t, s(r)) = min max E [J° (p;, i, &)1,
u(t, s(1)) o) B [ ; (pi> Wi El)]
The value function above is supposed to meet a partial dif-
ferential equation, i.e. the HIB equation, according to the
Bellman’s optimality principle following the optimal control
theory. Namely the value function gives a solution to the HIB
equation and also gives a minimum value of cost for a already
given dynamic system.

tel0,T]. (14)

1IV. ROBUST INTERFERENCE MITIGATION MFG

MEFG is a special differential game with mean field term. Here
the system state dynamics is s(#) = [s;(¢)]. The following sub-
sections show the definition of mean field and the derivative
process of the FPK and HJB equations of the MFG.

A. INTERFERENCE MEAN FIELD AND EQUILIBRIUM
Here, we give the definitions of MFG.

Definition 3: Interference Mean Field: We define the
mean field m(¢, s) as

N
. 1
m(t, s) = Nh_r)noo N 21: Lisit)=s) (15)
1=
where 1 denotes an indicator function, when s; (f) = s it

returns 1 and it returns O otherwise. s; (¢) is the state at time ¢
of player i and s is the given state. For a given time instant,
the mean field is the statistics of the ratio of players in each
state to the total number of player, namely the probability
distribution of the states over the player set. Assuming that
in a system there are 100 players and 5 different states
{s1, $2, 53, $4, 55}, each player must belong to a specific state
of the given states at a given moment. Assuming by counting,
we found the number of players in each state is 10, 20, 35,
15 and 20 respectively. Then we know the ratio of players
in each state to the total number of player is 0.1, 0.2, 0.35,
0.15 and 0.2, also the mean field is the same as 0.1, 0.2, 0.35,
0.15 and 0.2.

Next, we formulate the MFG and whose equilibrium is
introduced:

Definition 4: The derived FPK and HIB equations is com-
bined to represent the MFG.

The player’s optimal trajectory is governed by the HIB
equation, while the players’ mean field function evolute under
the government of the FPK equation. Here, the FPK equation
is forward function while the HIB equation is backward func-
tion. The meaning of forward is that we know the function’s
starting value, and we derive the value of the function at
time ¢t € [0, T]. Hence, the FPK equation is solved from
starting + = O to the end at + = 7. The HIB equation
evolves backward with time and is a condition necessary and
sufficient when solved over the state space for the optimum.
The interactively evolution will at last lead to the mean field
equilibrium that can be obtained by utilizing the finite differ-
ence method.
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Definition 5: The stable combination constructing by both
the mean field m*(z,s) and the control policy u*(¢,s) at
arbitrary time ¢ and state s is represented by Mean field
equilibrium (MFE).

At arbitrary time ¢ and state s, control policy u (¢, s)
(i.e. value function) and mean field m (¢, s) interact with each
other, where the control policy u (z, s) is the solution of HIB
equation. For a given time instant, the mean field in our
work is the probability distribution of the interference state
of players. The evolution of mean field m (¢, s) is affected
by the control policy because the control policy has an effect
on the interference state of player. As the mean field m (¢, s)
determines the control policy so the control policy is deter-
mined according to the mean field. The value function and
the mean field interact with each other leading to the mean
field equilibrium.

B. HIB EQUATION
The value function in (14) is supposed to satisfy a HJB partial
differential equation on the basis of the optimal control theory
and the Bellman’s optimality principle.
Theorem 1: The HIB Equation is given as
2
dout, 5) + %Asiu(t, $)=H(c, Vou(t,s),  (16)

where u (¢, s) is the value function, d;u and Agyu is respec-
tively the differential equation and Laplacians of u with
respect to 7. The variance o' is a non-negative real value and
H(c, Viu(t, s)) is the Hamiltonian of the robust MFG, which
is given by
H = min max

pi(1) &)

x (¢ = pPEL(1) + qleyi(Dpi(t) — Bi.iDpi1) + ED)),

17

where ¢ is cost function, p is the robustness level, &; (¢) is
disturbance, u (¢, s) is value function, and ¢ = Agu(t,s)
is the Laplacians of u with respect to s;. Where a;; (t) =
3 (ki — @, (), Bii (1) = 5 (kii — gii (1)), where k;; and
k; ; are respectively means of the Ornstein-Uhlenbeck dynam-
ics channel model from SeNB; to UE; and from SeNB; to UE;.
@;; is interference mean field approximation and g; ; is the
channel gain from SeNB; to UE;.

Proof: We know that u (¢, s) represents the defined value
function of the state s; and power p; (). Following the Richard
Bellman’s principle of optimality, we increase time from ¢ to
t + dt, then have

u(t,s)= ;n(itl)l [c(t,s,p) +u(t+dt,s(t+dt))], (18)

where c (z, s, p) is cost function, s is the player’s state , p is
the transmit power of player and u (¢, s) is value function.
We calculate the Taylor expansion of u (¢ + dt, s (t + dt)),
then obtain

a .
W (t+dt, s (14+dt)) = u (t, s)+0u (¢, s) di + 8_?Vsiu . s)

o2
+7'As,.u (t,5)dt, (19)
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where 0;u is the differential function of u with respect to
time ¢, Vy,u is the gradient of u with respect to s and Agu
is the Laplacians of u with respect to s. "s’ is the partial
differential function of s; with respect to ¢, O’l is the variance
of the Ornstein-Uhlenbeck dynamics channel model from
SeNB; to UE;. Meanwhile, we use the Ito’s formula heuristic
% (1) =0 (dr?).

Moreover, we know the expectation of Brownian motion
d % (t) over time dt is zero. Substituting above Taylor expan-
sion u (t + dt, s (t + dt)) into u (¢, s) and taking the limit of
the above equation as df approaches zero, then we can get the
HIJB equation defined in (16). Detailed derivation of the HIB
equation can be found in [26]. [ |

Next, we give the method to calculate generic player’s the
optimal control.

Theorem 2: Since the computation of the player’s optimal
control trajectory is governed by the HIB equation, then the
optimal control of the generic player is given as:

1) = ——{oji(Op; (1) — a—H + : 5 (20)
P ﬁ,,() 40P 221"
where g = Agu(t, s), Ay u is the Lapla01ans of u with s. H is
Hamiltonian, dH /dq is the partial differential function of H
with respect to g and p is the robustness level.
Proof: To prove above equation, we first compute the
most worst case of the disturbance, which is

§1(t) = arg Ig(él{?)({—/o2$,-2(t) + q&i(t) + T}, (2D
where

@ = ¢+ q[aiOp(t) = Bii(Opi(1)] - (22)

Due to the strictly concave properties of the above function
as for the disturbance variable &;(¢), it is easy to achieve the
global maximizer £7(¢), which is given by

HOES (23)

22’

where u(t, s) satisfies the HIB equation of (16). At this time,
the robust Hamiltonian (17) of the robust MFG is given by

1
H = min{o + —¢°}, (24)
pilt) 4027

where @ is (22). We know that the cost function is concave

with respect to p;(¢). We compute the derivative of the robust

Hamiltonian H with respect to g, resulting by
0H  dw n 1 25)
dg  dq  2p? 7

where

w
— = a;,i(Op; () — Bii(p; ().

dq

Therefore, by calculating 0H /dg = 0, we can obtain the
optimal p7(¢) in (20). [ |
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C. FPK EQUATION
According to the mean field theory, the mean field m(z, s)
satisfies a partial differential equation, called FPK equation.
Next, we will introduce the FPK equation.

Theorem 3: The evolution of the mean field is governed
by the FPK equation, which is given by
2
> —Agm(t, s) —

a .
dm(t, s)+ 2 Sy mt,s)=0, (26)

at

where 9;m is the differential function of the mean field m with
respect to time t. Ag;m and V,m is respectively the Laplacian
and gradient of the mean field m with respect to s.

Proof: There are different ways to achieve the mean
field of the interference state dynamics. We introduce a
general method, and therefore one can easily achieve the
specific interference mean field by introducing the detailed
definitions of the state s; (#). Here, we derive the mean field
m (t, s) via any specific test function g (s) which is smooth,
compactly supported function of space.

The integral of m (¢, s) g (s) ds can be considered as the
continuum limit of the sum g (s (¢)), where s (#) represents
the player’s location at time ¢. It is known that,

N
1
/m(t,s)g(s)ds% I E g (s ().
i=1

At time ¢, the first-order differential function with respect
to time 7 is derived to check how this integral vary in time,

/ om(t,s)g(s)ds

1 N
~N > [ats (1) Vg (s (1) + 375 (1) Ag (s (;))]
i=1

by using the chain rule, and therefore we can achieve the
heuristic formula.

The right-hand side, in the continuum limit N — oo and
after an integration by parts, for every test function g we then
have

o2
/|:8,m (t,s) + 7A sm(t,s) — —Van(t, s)]g (s()ds =0,

which leads to the advection equation

2

o as
am(t,s) + TAsm (t,s) — rm sm(t,s) =0.

With the defined states s; (¢) in this work, we obtain the
corresponding FPK equation defined in (26). [ ]

V. DISTRIBUTED POLICY BASED ON THE FINITE
DIFFERENCE METHOD

In the defined MFG, to find a solution to the coupled HIB
and FPK equations, we utilize the finite difference method.
There are three schemes that can be used to discretize the
advection equation, which are respectively Lax-Friedrichs,
Lax-Wendrof, and Upwind. Each scheme has its own rate
of convergence. Different from Lax-Friedrichs used in [17],
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we use the Upwind finite difference method that converges
faster.

We discretize the investigated time interval [0, 7'] and the
interference state space [0, I,,4,] into X x Y spaces in the
framework of the finite difference method. First, we respec-
tively give the definition of the iteration step of time and
interference state space as below
LI
X Y

We consider to solve the FPK equation first. By the use
of finite difference method, we introduce the operators of the
Upwind method as follows:

(SIZ

t+1 t
gl — u  —u
tU; = —8 s
t
t t
u u
t -1
Vs,»”[ = T,
t t t
Ayt = — 2up -y,
sillp = 52
I

A. UPWIND SCHEME TO SOLVE FPK EQUATION
By using the Upwind method, we deal with the FPK equation
in (26). Then, with above operators we have

m;“ my U_izm§+1 —2my +mj_
8 2 82
mh —m!
s =1, (27)
Ly
Meanwhile, we have s; = ds;/9t. Therefore, we have
5+1 _ 1 .\ 0_2 LS 5i
81‘ 81‘ 82 81
2
o S
mt iy
= (25,2 81
- o (28)
I1+1 2812 ’

where m) is the mean field at time ¢ and interference state /
in the discretized grid. We can see from the above equation

that m) can update by iteratively using the forward function
given in (28).

B. DISCRETIZED LAGRANGE RELAXATION TO HJB

Due to the Hamiltonian, we are not able to directly utilize
the finite difference method to deal with the HIB equation.
Therefore, the HIB equation is reformulated as a correspond-

ing optimal control problem, which is
T
2 fo 57 (1) dr],

(292)

T
min E|:/ c(t,s,p)dt+c(T)—p
pPi 0
2

o as;
s.t.: oym(t, s) + TAs,.m(t, s) — Ev&.m(z‘, s)=0.

(29b)

Then, we attain the Lagrangian L (¢, s, p, m, A, &) in (30),
shown at the bottom of the page, by the means of introducing
a Lagrange multiplier A, in which assuming ¢(T) = 0.
Then, to solve the optimal control problem newly-defined,
we discretize the Lagrangian and the result is given as (31),
shown at the bottom of the page.

Besides, in the discretized grid for arbitrary point (¢, 1),
we update the Lagrange multiplier )\;71 by calculating
oLg/ 8m§ = 0, and then we have (32), shown at the bottom
of the page.

Here, we can see that the Lagrangian parameter A;_l is
determined by A/ T , e )»571 , also it is related to the achieved
cost ¢; and & at time ¢. Here, the involved Lagrangian
parameter A} is updated by using the above backward
function.

The optimal power control is derived by using 9Ly /dp} any
arbitrary point (¢, /) in the discretized grid, where we further
set

0Ly _
ap,
Then, we have (34), shown at the bottom of the page, where
P} is the power of the generic at time ¢ and interference state

I in the discretized grid. We can see that p} is determined by
1 13 13 1
my_y, my, my and A;.

(33)

L(t,s,p,m A, &) —/ / . {c(t s,p)m(t,s) — ,05 Hm(t, s)+k|:8tm(t s) + — > “Agm(t,s) —

2

Vxl m(t, s)j| } dtds

(30)
+1Y+ r+1 t 2 (il t t t t
2 m;  —m o (ml, . —2m) +m)_ mh, —m,_
ZZZ{I’"I )m§+kj|: 1 i P (mipy 2521 11)—&‘ 13111:” 31)
=1 I=1 1
PR 1 o2 5 o2 . o2
1 i L i t
=ulst ot ) Malsets ) Mana - 32
2 <8 M7 A U Ty Dt ) 32
)\.[
t ﬁ [26:B:i (m)_y —m}) — o? (ml, —2m) +mi_ )]yt (P]t-,le,i (t) + 02 (t)) o
pr = -
2mig?, (1) (14 ™)’ (1+ ™) gii (1)
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Algorithm 1 Distributed Robust Interference-Aware

TABLE 1. Simulation parameters

Power Control Parameter Value

1 Ilt)ltlal.lz.atl (.)n: . - De!}l)ii{ngzil (;;/eirtlgrlo Dense SBSs in SOOZIG:IZSOOm square model

2 my:= joint interference mean field distribution; Subcarrier Bandwidth 10MHz

3 A}:=initial Lagrangian parameters; Number of SBSs 0316

4 p}:= initial power levels. Pq e

5 Power Control: Y 10
6fort=1:XandI =1:Y do robustneZs level p 0'35S

7 Update interference mean field:

8 Update m}“ using the update of (28) V1. SIMULATION RESULTS

9 if mﬁ“ < 0 then We provide simulation results to illustrate the convergence
10 ‘ m;'H =0 property and effectiveness of the proposed algorithm com-
11 else pared to the others in this section. We generate a 500m x 500m
12 ‘ m;‘H - m;‘H rectangular area, where multiple SeNBs are deployed with
13 end Pmax = 20dBm. Here, the pass loss models we use are
14 if !, = piax then reffered to Table A.2.1.1.2-3 for the Femtocell in 5 x 5 grid
15 ‘ mty+1 = m, model of 3GPP-TR 36.814 [17]. In our simulation, we use
16 else Femtocell as an example of SeNB. Specifically, the path loss
7 ‘ mty—i—l -0 model we use from Femtocell to UEs is L = 1274-30logoD,
18 end where D in km. To show the proposed algorithm’s perfor-
19 Update Lagrangian parameter: mance, we compare itto pther two algf)rithms. They are non-
20 )\;—1 using (32) 1ntelhg§nt ada.ptlon algorithm and ful.l 1nformat.10n algorithm.
a1 Update power levels: Other simulation parameters we use is shown in Table L.
22 | pj for generic player i using (34) A. PERFORMANCE METRICS
3 if p > piar then In this paper, we mainly consider SE and EE as performance
1 | P} = Pmax matrics. Before giving them, we show the SINR of generic
25 else player in
26 | dp; =7 Y= Pigiii (35)
27 en = 2
28 if pj < 0 then Pipi ~ Pisii 0
29 ‘ pi=0 where p; and p; represent the transmit power of player i and
30 else player j, respectively. o> represents the background noise.
31 ‘ ph=p) Here we assume p; = p; ;. We use the spectrum and energy
32 end efficiency as the performance metrics.
33 end

C. DISTRIBUTED ROBUST INTERFERENCE-AWARE
POWER CONTROL

To the purpose of solving the corresponding HJB and
FPK equations, a joint finite difference algorithm is pro-
posed on the basis of the Upwind scheme and Lagrange
relaxation. The algorithm is named as the distributed
robust interference-aware power control policy, and is given
in Algorithm 1.

Here, there exist three key steps, including the updat-
ing process of the interference mean field (from line 7-18),
the Lagrangian parameter (from line 19-20), and the power
levels (from line 21-32). It is noted that the interference
mead field is highly dependent on the power control, while
the Lagrangian parameter merges the power and the mean
field in (32), and finally, both the interference mean field
and Lagrangian parameter jointly determine the next power
levels.
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B. BEHAVIOR OF MEAN FIELD EQUILIBRIUM (MFE)

We show the behavior at the equilibrium of the mean field
in this subsection. The initial interference distribution is
assumed to be Gaussian. In Fig. 2, we give the illustration
of the distribution of the mean field with respect to time
and interference state of generic player. We can see that
the tendency with respect to time is rising or decreasing
between different constant interference state values, which
can be proved by using the iterative function of mean field.
We can also see that distribution of the mean field is rising
continuously and is about 1.7 at end of time when fixing
interference state at about middle of the interference space.
When fixing different values of time, the distribution of the
mean field is approximate Gaussian with different variances.

C. PERFORMANCE RESULTS OF MEAN FIELD
EQUILIBRIUM

Here, we show the performances at the MFE. We mainly
focus on average spectrum efficiency and average energy
efficiency.
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Interference distribution

Distribution of the Mean Field

&

Time/(s) Interference space of |

FIGURE 2. Distribution of the mean field at equilibrium.

1) ROBUST PERFORMANCE OF ALGORITHM

Here we show the robust performance of the algorithm pro-
posed. We plot the figures in which the x-axis is the variance
of disturbance we introduced into the dynamics state function
of player and y-axis is the spectrum efficiency or energy
efficiency, respectively. The distribution of disturbance we set
follows Gaussian whose variance varies from 1.5 to 2.8 with
0.1 step. The results are given in Fig. 3.

(a)System average SE
0.38522360 T T

0.38522340 b

0.38522320 b

average SE

0.38522300 b

T

0.38522280
14 1.6 1.8 2 22 24 26 28

variance of disturbance
x 10 (b)System average EE
4.465 . . I I I I g

44641 1

4463 b

average EE

4462 1

44611 H

14 1.6 1.8 2 22 24 2.6 2.8
variance of disturbance

FIGURE 3. System average performance.

The system average spectrum efficiency and the average
energy efficiency under different variances of disturbance
are shown in Fig. 3. The system average SE and the system
average EE are almost unchanged before the variance of
disturbance reach to nearly 2.7, and then the system average
SE increase and the system average EE decrease till the end
in a small range. Though the system average performance is
influenced by the variance of disturbance, the variation range
is narrow due to the robustness of the proposed algorithm.

VOLUME 6, 2018

2) PROPOSED ALGORITHM’'s PERFORMANCE

We consider a scenario in which 6 x 6 = 36 SBSs are
homogeneously deployed in a 500m x 500m rectangular area
and the density of SBSs is 144 /km>. We give the illustration
of the system average SE and the system average EE over
time when fixing the interference state and the interchange,
respectively, in Fig. 4.

distribution of SE x 10° distribution of EE
4

0.3996
® 0.3996 35
(o] (o]
o j=2]
© o
$ 0.3095 $ 3

0.3995 25

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
value of t value of t
distribution of SE x 10° distribution of EE
0.3998 6
5

® 0.3996 i
(o) [}
g g4
[ [
3 0.3994 3 3

0.3992 2

0 1 2 3 4 0 1 2 3 4
value of | x1071° value of | x1071°

FIGURE 4. System performance with respect to time and interference
state dimensions.

Among the four subfigures in Fig. 4, the two upper subfig-
ures are the system performance with respect to time and two
lower subfigures are with respect to interference state. In the
two upper subfigures, we can see that the system average
SE roughly slowly decreases while the system average EE
increases in a ladder-like manner with respect to time. In the
two lower subfigures, it can be seen from the figure that
the system average SE increases while the system average
EE decreases in initial phase and are relatively stable in the
subsequent phase with respect to the interference state.

3) CUMULATIVE DENSITY FUNCTIONS OF SPECTRUM

AND ENERGY EFFICIENCY

The CDF of spectrum and energy efficiency are given in Fig. 5
and Fig. 6. Here we consider two comparing algorithms,
the non-intelligent adaption algorithm and the full infor-
mation algorithm. In the non-intelligent adaption algorithm,
we assume that the mean field is constant so the algorithm
cannot adjust its parameters according to the environment.
Besides, we assume that we have the full knowledge of the
information of the environment, e.g. the channel state and the
aggregate interference, so we can achieve the full information
algorithm.

In Fig. 5, we can see that the proposed algorithm’s perfor-
mance is a bit worse than that of full information algorithm
when the probability is lower than 0.7 and obviously a better
performance when the probability is higher than 0.7. The
proposed algorithm’s performance is obviously better than
the performance of non-intelligent adaption algorithm during
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FIGURE 5. CDF over system average SE.
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FIGURE 6. CDF over system average EE.

all the probability interval. In Fig. 6, the performance of
proposed algorithm exceeds that of full information algorithm
quickly at the probability about 0.2 and is always better than
that of non-intelligent adaption algorithm during almost all
the probability interval.

VIi. CONCLUSION

To characterize the interference interactions and design dis-
tributed interference mitigation schemes, the interference-
aware power control problem is formulated as a mean field
game. A generic player in the proposed game will react
to all the players’ actions and states, which involves huge
interference-related information exchange with dynamics and
uncertainties. Therefore, to reduce requirements of complete
information, we formulate the interference mitigation mean
field game. More precisely, an interference mean field is
presented in the MFG to characterize the mass interfer-
ence impacts. The interference mean field can be updated
autonomously by the generic player, thus leading to dis-
tributed control. To achieve the robust control, we introduce
uncertainties into the state dynamics and cost function. We
consider players whose individual states are combined by
a disturbance term and a Brownian motion. We derive the
robust FPK and HJB equations, based on which we propose
the robust interference-aware power control algorithm.
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