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Abstract

Presented in this manuscript is an observer-based method for consistent parameter

estimation and the utility of these estimates in real-time model based diagnostics.

Parameter estimation is realized through a calculation involving the state estimates

produced from the combination of two infinite time Luenberger observers with a

delay. The significance of this approach is the ability of the coupled observers to have

their state estimates converge in finite time to the true state values. Unique to this

formulation is that consistent parameter estimates can be obtained using data limited

to one sampling event provided the converged estimated states at that sampling

interval meet a full rank condition similar to persistancy of excitation. The observer

based parameter estimation method is then integrated with Information Synthesis

to create a one-step-ahead fault detection, isolation and estimation knowledge base.

The utility of the proposed method is demonstrated on a numerical example and an

experimental application of engine onboard sensor diagnostics.
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Chapter 1

INTRODUCTION AND OVERVIEW

1.1 Real Time Fault Detection, Isolation and

Estimation

This research attempts to focus primarily on developing a robust fault detec-

tion, isolation and estimation (FDIE) methodology that can be applied for On-Board

Diagnostics (OBD) of engineering systems. The FDIE approach presented in this

manuscript is based on observer based method. The parameters of the model of the

system under consideration are estimated on-line using observers and system identi-

fication methods and compared with healthy system parameters to detect, identify

and estimate the size of a fault.

1.1.1 Observer Based Diagnostics

State observers have been widely used in many branches of science and engineering.

According to the system characteristics, observers fall into two categories: Luenberger

observers for deterministic systems [17, 24, 25, 37, 32] and Kalman filters for stochastic

systems [38]. The former is limited to systems with accurate models neglecting both

internal and external uncertainties; the latter considers external uncertainties as white

noises. Unfortunately, modeling errors often lead to a poor performance in Kalman

filtering [38], which makes the Luenberger observer more popular in deterministic

system research.

Although the observer parameter estimation and adaptation theories have become

rich, most of the existing methods are confined to the traditional (static) Luenberger

structure. However, the main concern is the pole positions [30]. Here, the term

static observer is used to denote the classic Luenberger observer, where a constant

gain is used in the feedback path. From the viewpoint of frequency domain, such a
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feedback gain does not have the ability of frequency shaping and puts some limitation

on disturbance attenuation. It is of interest to change the observer structure and see

how this would improve the parameter estimation performance. Thus, it is natural

to introduce additional dynamics into the observers.

1.1.2 Motivation For The Present Study

Successful examples of identifying constant or slowly time-varying parameters have

been reported in Bastin et al. (1988). The main principle is to combine integrators

into a Luenberger observer [37] in order to identify constant parameters while esti-

mating system states. Many real-world applications, however, involve time-varying

parameters acting as disturbances and/or uncertainties. Estimation of constant pa-

rameters may not be sufficient for these applications. It is highly desirable to identify

time-varying parameters for the purpose of feedback control and many other appli-

cations. However, most of the observers designed to do the task guarantee only that

the estimation error tends to zero asymptotically. In principle, it is desirable to have

observers that allow reconstructing (in the nominal case) the system state in finite

time. So far there exist only a couple of observers with a finite time convergence.

Examples are sliding mode based observers and moving horizon based observers. The

sliding mode based observers can be applied to linear and nonlinear systems and

guarantee finite time convergence of the estimation error. However, the differential

equations describing the estimation error can only be rendered semi-globally stable

in the sense that a bounded region of system states must be considered. Moving hori-

zon observers are based on the online solution of a dynamic optimization problem

involving the output measurements and the system model. They can be applied to

linear as well as nonlinear systems. Under the assumption that the global solution

to the dynamic optimization problem can be found and that a certain finite time

observability assumption holds, moving horizon observers can in principle guarantee

2



finite time convergence of the estimation error. The main drawback of moving hori-

zon observers is that a dynamic optimization problem must be solved online. The

method applied for time-invariant systems [74] is simpler to implement as compared

to moving horizon and sliding mode observer designs. Basically two observers with

different speeds of convergence are used and the state estimate is constructed based

on delayed and current state estimates of the identity observers. For this purpose,

conditions for the (time-varying) observer feedback matrices and the delay used will

lead to guaranteed finite time convergence of the observer error. However, the system

is used for the purpose of continuous time parameter estimation.

Therefore, less attention has been focused on the observer problem for discrete-

time systems. It was shown in [16] that certain properties, like observer error lineariz-

ability [17], are not inherited from the underlying continuous-time system. Moreover,

the class of continuous-time systems that admit approximate solutions to the observer

error linearization problem for their exact discretizations with sampling time T in an

open interval is limited to the class of nonlinear systems that are approximately state-

equivalent to a linear system and hence is very restricted. These results motivated the

search for a structurally more robust approach to the observer problem for discrete

systems.

1.1.3 Research Objectives

The objective of the current research work is to develop a robust, systematic online

model-based diagnostics methodology for fault detection, isolation and estimation that

uses observers for model parameter estimation. This requires the following tasks to

be accomplished

• Development of online nominal models of the system.

• Estimation of model parameters using observer based method.

• Development of a robust method for performing fault detection, isolation and
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estimation.

• Development of a method to quantify the sensitivity of the fault detection and

diagnostics towards noise and disturbances.

• Validation of the fault detection and diagnostics method on a numerical example

and experimental data.

1.2 Document Organization

The outline of this thesis is as follows. A part of chapter 2 presents the relevant

literature survey of various methods in use for fault detection and diagnosis. The

other part presents the relevant literature review of various approaches for parameter

estimation using observers. Background on relevant concepts is also discussed at the

end of chapter 2. Chapter 3 explains the various system identification techniques

used for fault estimation. Consequently, it gives the concept of Information Synthesis

(IS) for FDIE. In the end, validation of IS is shown to demonstrate the methodology.

Chapter 4 presents the proposed observer based estimation method and validates it

against an experimental sensor fault diagnostics data.
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Chapter 2

LITERATURE REVIEW AND OBSERVER PRIMER

2.1 Introduction

In this chapter the literature related to fault detection and diagnosis of engine

subsystems and observer based parameter estimation techniques is reviewed. For the

improvement of reliability, safety and efficiency advanced methods of supervision,

fault detection and fault diagnosis become increasingly important for many techni-

cal processes. This holds especially for safety related processes like aircraft, trains,

automobiles, power plants and chemical plants. The classical approaches are limit

or trend checking of some measurable output variables. Because they do not give

a deeper insight and usually do not allow a fault diagnosis, model-based methods

of fault detection were developed by using input and output signals and applying

dynamic process models. These methods are based, e.g., on parameter estimation,

parity equations or state observers.

An observer, which is driven by measurable system outputs and inputs, can achieve

state reconstruction for the purpose of control applications when the entire state vec-

tor is not available for the use of feedback. To perform the twin tasks of state estima-

tion and parameter identification, observers have been extensively studied since the

1970s. Various approaches taken so far for the methodologies adopted for observer

based estimation are discussed in upcoming sections.

2.2 Literature Review

FDIE has received considerable attention in the past three decades and an ex-

tensive literature base exists concerning its various methods. Fruitful results can be

found in several survey papers [3, 39, 40] and books [1]. In general, there are several

kinds of schemes for model-based FDI: observer based, [30, 19, 15], parity space based,
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[41], eigenstructure assignment based and parameter-identification based [3, 39]. In

some cases, fault accommodation strategies are needed, i.e., the control algorithm

must be adapted based on FDI to go on controlling the faulty system. There are

essentially two FDIE categories: model-free and model-based methods. Model-free

FDIE approaches consist of limit checking, special sensors, multiple sensors, frequency

analysis, and expert systems. Model-based FDIE methods [3, 2] consist of parameter

estimation, state estimation and parity equations. For state estimation solutions,

the changes in model states are utilized to generate residuals. For parity equation

solutions, an analytic model can be used to estimate a sensor output based on other

sensor information. The estimated sensor output can be compared to the actual sen-

sor output to generate a residual. These residuals are then processed to diagnose

faults. In [9], detection and diagnosis of faults in automotive engines is done using

a nonlinear statistical process control showing that introducing the statistical local

approach into nonlinear statistical process control produces statistics that follow a

normal distribution, thereby enabling a simple statistical inference for fault detection.

Most model-based FDIE approaches do not utilize the size of the residuals beyond

comparison to a threshold. In other words, most model-based FDIE approaches do

not attempt fault estimation. Furthermore, the residuals generated are a result of

combined faults, noise and modeling errors. Sensitivity and robustness properties

result from these and isolability properties are mainly a result of modeling errors.

A real-time parameter identification approach is presented in [13] for diagnosing

low-flow and high-flow faults in the exhaust gas recirculation system. Real-time di-

agnostics is achieved using a more robust version of the recursive-least-squares (RLS)

method referred to as the recursive total-least-squares method. The method is used to

identify the coefficients in a static orifice model of EGR valve. Literature [12] presents

a method to locate and quantify engine faults due to ageing of modern diesel engines

in order to help to reduce design tolerance. The sensor signals are compared with the

models in order to detect a possible fault, and fault location and size are estimated
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by means of a bank of extended Kalman filters. Overall efforts made in academia and

industry on fault detection and isolation in automotive engine systems for a variety

of component faults, actuator faults and sensor faults using various data-driven and

model-based methods is presented in literature [13]. Current model based techniques

like parameter estimation methods, observer-based methods and parity relations have

been explained in detail.

The commonalities among these works include the generation of a residual and

the processing of this residual for fault detection and isolation. For each study, a de-

tailed dynamic model was identified so that a residual could be generated. However,

the family of faults considered in these works appears during steady state operation.

This simplification will be used while seeking a unifying approach to hardware faults

that occur in subsystems of different applications.

The principle of least squares (LS), which was first invented independently by

a few scientists and mathematicians such as C.F. Gauss, A.M. Legendre and R.

Adrain[55, 54], is a classic approach to obtain the optimal solution of an overde-

termined system to minimize the sum of squared residuals. The most popular and

important interpretation of the LS approach is from the application in data fitting.

That is, the best fitting in the LS sense is to approximate a set of parameters (es-

timands) such that the sum of squared residuals is minimized, where the residuals

are differences between the measured observation values and the corresponding fitted

ones. In addition, the LS problem also has various names in different disciplines [54].

For instance, in some mathematical areas, LS may be treated as a special minimum

L2-norm problem[56]. In statistics, it is also formulated as a probabilistic problem

widely used in regression analysis or correlation analysis [57, 58]. In engineering, it

is a powerful tool adopted in parameter estimation, filtering, system identification,

and so on [59, 60]. In particular, in the area of estimation, the LS formulation can

be derived from the maximum-likelihood (ML) criterion if the observation errors are

normally distributed. The LS estimator can also be treated as a moment estimator.
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Roughly speaking, LS problems can be classified into linear and nonlinear cases,

depending on whether the involved observation quantities are linear functions of the

estimand or not. It is also well known that, with linearization techniques such as

Gauss-Newton methods, a nonlinear LS problem may be converted to linearized it-

erative refinements. More generally, the object of data fitting may be extended to

minimize the sum of the weighted residual squares, which leads to the definition of

least squares with weights. According to the features of their weighting matrices,

linear LS problems with weights can be largely categorized from the simple to the

complex as LS, weighted LS (WLS), and generalized LS (GLS), where linear-equality

(LE) constraints may be imposed [61].

The above methods can be implemented recursively [62]. That is, the current solu-

tion can be obtained by updating the previously-processed one (using old observation

data) with new observations. The RLS is particularly suitable for real-time applica-

tions since sequential algebraic operations at each cycle require low computation as

well as fixed storage [63]. It has been widely applied to such areas as signal processing,

control and communication [64]. In adaptive-fitering applications, “RLS algorithms”

are even referred to RLS-based algorithms for problems with fading-memory weights

[65]. As a normal-equation method, a major disadvantage of RLS methods is that they

have relatively poor numerical stability, compared with direct observation-function

coefficient factorization methods. Fortunately, recursive QR decomposition methods,

such as Givens rotations, can be combined to improve numerical stability [66, 67, 68].

The need to study state estimators dynamical systems from a control (observers)

point of view is well understood by now. For the class of finite-dimensional, time

invariant linear systems, a solution to the observer problem has been known since the

mid 1960s: the observer incorporates a copy of the system and uses output injection

to achieve an exponentially decaying error dynamics. For the class of continuous-time

nonlinear systems, the reader is referred to [15, 18, 21] and the references therein for

a summary of the theory up to 1986. More recent developments include the work of
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Krener et al. [42] on higher-order approximations for achieving a linearizable error

dynamics. Tsinias in [43] has proposed (nonconstructive) existence theorems on non-

linear observers via Lyapunov techniques. Gauthier et al. [44] and Deza et al. [45]

show how to construct high-gain, extended Luenberger- and Kalman-type observers

for a class of nonlinear continuous-time systems. Tomamb [46] and Nicosia et al.

[47] have proposed a continuous-time version of Newtons algorithm as a method for

computing the inverse kinematics of robots; moreover, the latter paper also presents

a symbiotic relationship in general between asymptotic observers and nonlinear map

inversion. Finally, Bastin and Gevers [49] have designed an adaptive observer for

time-varying nonlinear systems that can be converted to certain observer canonical

form.

The study of online observers is traced back to the joint state-parameter esti-

mation in adaptive control systems [23]. On one hand, the unmeasured states are

evaluated for the purpose of state feedback control; on the other hand, the unknown

parameters are estimated online so that the controller can be updated accordingly.

When certain persistent excitation requirements are satisfied, the estimated states

and parameters converge to their real values simultaneously. With the increasing

reliability requirements on control systems, observers have also been applied to fault

diagnosis and evaluation, where faults are modeled and evaluated as the deviation

of parameters from their nominal values. In the framework of stochastic problem

formulation, a joint state-parameter estimation algorithm based on a modified Ex-

tended Kalman filter (EKF), a two-stage Kalman filter, has been developed for fault

diagnosis and fault tolerant control [48] applications.

The approaches of observers normally fall into two categories: (1) The unknown

parameters are taken as extra states of the system; a state observer is then con-

structed to estimate all extended states including the unknown parameters [49, 32].

(2) Parameters estimation techniques are applied first using the input-output data;
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the states of the system are then estimated with the updated information of param-

eters [35, 36]. A general comparison of different methods using observers is shown in

[50] with a unified approach.

One concern regarding observers is the robustness to disturbances such as mea-

surement noises, modeling inaccuracies, and unknown external inputs while providing

the desired accurate estimation for both states and parameters. In [48], the perfor-

mance of observers is discussed for the noise corrupted systems. It is stated in [48]

that the expectation of the estimation errors is bounded if the magnitude of noises

is bounded. Furthermore, the expectation of estimation errors converges to zero

for systems with independent noises of zero means. Therefore, an observer is, as

shown in [51], Bounded-Input Bounded-Output (BIBO) stable to unknown external

signals, which means the estimation of both parameters and states are affected by

disturbance inputs such that persistent estimation errors exist as functions of the dis-

turbance. Since the disturbance is unknown and consequently the size of these errors

is also unknown to the system, the accuracy and the reliability of the estimation are

impaired.

For a Multiple-Input Multiple-Output (MIMO) system, the robustness to struc-

tured disturbances can be further enhanced for an observer by utilizing the mea-

surement redundancy of the system. With proper measurements, the influence of

disturbances can be decoupled from the estimation errors. One technique is to incor-

porate an Unknown Input Observer (UIO). A UIO [52] is a disturbance-decoupled

observer for the accurate state estimation for a system with unknown disturbance

inputs. In [52], a UIO has been designed to estimate the faulty parameters of an

aircraft actuator. The approach, however, needs full state (n independent) measure-

ments and hence reduces the necessity of states estimation.

Joint estimation of states and parameters in state-space systems is of practical

importance for fault diagnosis and for fault tolerant control. These results are es-

sentially for linear time invariant (LTI) systems, though some of them have been
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presented for nonlinear systems that can be exactly linearized by coordinate change

and output injection. More recently, observers for multi-input-multi-output (MIMO)

linear time-varying (LTV) systems have been developed in [53]. Some results on non-

linear systems have also been reported in [51]. In these cited references, the unknown

parameters are all assumed to be located in state equations. As a matter of fact,

there is an extra difficulty for estimating parameters in output equations, since the

output feedback term used in most observers then depends on unknown parameters in

this case. Recently, observers for unknown parameters in output equations have been

studied, both for linear systems [41, 39, 33] and for nonlinear systems [42, 44, 45].

Nevertheless, all these works consider unknown parameters either in state equations or

in output equations. Until now, no globally convergent algorithm has been developed

for joint estimation of states and parameters in both state and output equations.

A part of [71] focuses on parameter estimation in dynamic systems with bounded

time-varying parameters, so that a fault in the plant can be detected by checking

the parameter variation range. A high gain observer and finite state machine based

identification method is used for the purpose. As a model reference identification

technique, the observer technique is used for parameter estimation. The high-gain

observer shows its ability to identify the model parameter perturbations under the

corruption of bounded process and measurement noises. A very similar approach in

[74] for continuous time systems has been used in [75] for discrete time systems to

design a finite-time functional observer. A finite-time observer in [75] comprises two

rth-order infinite time functional observers and a finite delay, where r is the dimension

of output estimated of linear discrete-time descriptor systems. This ensures estimated

state convergence in finite time exactly.
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2.3 Background

2.3.1 Observer Based Estimation

The theory of observers for discrete systems is similar to the theory of observers

for continuous systems although it differs by certain specific features. In the theory

of discrete observation of the state of stationary linear objects we deal with regressive

models

y(n+ k) + any(n+ k − 1) + ...+ a1y(k) = bm+1u(m+ k) + ...+ b1u(k), (2.1)

or with dynamical models in the space of states

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k), (2.2)

where u(k) is the input of the object at the time samples k = 0, 1, 2, ... and y(k) is

the output of the object, x(k) is the phase vector or the vector of state of the object

from R; (a1, ..., an), (b1, ..., bm+1) in (2.1) and A,B,C in (2.2) are parameters of the

object, scalar and matrix respectively. Here n is the order of the object, re = n−m is

the relative order of the object, for physically realizable models. Satisfying cause and

effect relations we always have re ≥ 1. Generally speaking, models (2.1) and (2.2)

are not equivalent since (2.1) does not always imply (2.2).

Every model for the defined input sequence u(k) ∈ Rm and the arbitrary initial

state

(u(n− 1), u(n− 2), ..., u(0)) and x(0) ∈ Rn, (2.3)

generates a unique solution, namely, a discrete sequence of the output y(k) ∈ Rp or

the state x(k) ∈ Rn where k ∈ I+ respectively.

The discrete sequence %(k) which grows not faster than the degree of a certain

positive number µ, i.e. |%(k)| ≤ µk, k = 0, 1, 2, ..., can be associated with the func-

tion of the complex variable %(z), z ∈ C, by means of the Z-transformation via the
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expression

%(z) = Z[%(k)] =
∞∑
k=0

%(k)z−kfor|z| > µ. (2.4)

After the substitution z = eτs, τ = const > 0, the Z-transformation passes into

the so-called Laplace discrete transformation. It can be immediately seen that from

this formula for obtaining the inverse Z−1 transformation, it suffices to decompose

the function %(z) according to the degrees z−k. The coefficients in these degrees form

the required sequence %(k).

By means of the Z-transformation the recurrence equation which connects the

input and output of the object reduces to an algebraic equation. For equation (2.1)

under zero initial conditions we have a relation

Y (z) = G(z)U(z), (2.5)

where Y (z) = G(z)U(z), U(z) = Z[uk], and G(z) is a transfer function of the object

in the form of a ratio of two polynomials

G(z) =
βm(z)

αn(z)
=

(bm+1z
m + ...+ b1)

(zn + anzn−1 + ...+ a1)
. (2.6)

By analogy, the transfer function is defined for an object given in the space of

states. From (2.2) under the zero initial condition x(0) = 0 we have

G(z) = C(zI − A)−1B. (2.7)

For the so-called scalar object the output y and input u of the object are scalars

and its transfer function is a scalar function of the complex variable z. Otherwise,

G(z) is a matrix transfer function.

From the scalar object formula (2.5) makes it possible to find a simple transition

from (2.1) to (2.2). Indeed, from the relation

G(z) =
β(z)

α(z)
, (2.8)
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and equation (2.5), we can obtain a relation

Y (z)

β(z)
=
U(z)

α(z)
. (2.9)

Employing this relation, we can introduce a scalar variable x1(k) using the formula

X1(z) =
Y (z)

β(z)
=
U(z)

α(z)
, (2.10)

where X1(z) = Z[x1
k]. The latter is equivalent to the two equations

α(z)X1(z) = U(z), (2.11)

Y (z) = β(z)X1(z). (2.12)

Using now the inverse transformation Z−1, we can pass from (2.11) and (2.12)

first to the regressive equations

x1(n+ k) + anx
1(n+ k − 1) + ...+ a1x

1(k) = u(k),

y(k) = bm+1x
1(m+ k) + ...+ b1x

1(k), (2.13)

and then, with the use of the new state variables x1, x2, x3, ..., xn related as

x1(k + 1) = x2(k),

x2(k + 1) = x3(k),

...

x(k + 1)n−1 = xn(k),

(2.14)

to equations in the space of states

xn(k + 1) = −
n∑
i=1

aix
i(k) + u(k),

y(k) =
n∑
i=1

bix
i(k), bi = 0 for i > m+ 1. (2.15)
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The use of vector-matrix notation

A =



0 1 0 . . . 0

0 0 1 . . . 0

...
...

... . . .
...

0 0 0 . . . 1

−a1 −a2 −a3 . . . −an


, B =



0

0

...

0

1


,

C = (b1, b2, ..., bm+1, 0, ..., 0), (2.16)

makes the form of equation (2.9) identical to that of equation (2.2). For this reason, it

makes sense to consider the regressive models and define them in the space of states.

2.3.2 True System

Figure 2.1: True System.

For dynamic systems described by a finite number of ordinary differential equa-

tions, the state of the dynamic system can be represented as a vector x(t) in continuous-

time and x(k) in discrete-time. In either case, x ∈ Rn. The vector representation of

the state allows numerous tools from linear algebra to be applied to the analysis and

design of state estimation and control system. The state space model in continuous
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time representation is the following:

ẋ(t) = Fe(t)x(t) +Gu(t)u(t) +Gω(t)ω(t), (2.17)

y(t) = O(t)x(t) + ν(t). (2.18)

The u ∈ Rm is the deterministic control input, ω ∈ Rq is a stochastic (process

noise) vector, y ∈ Rp is the measured output, and ν ∈ Rp is a stochastic (measurement

noise) vector. The process and measurement noise vectors are each assumed to be

Gaussian white noise processes:

E〈ω(t)〉 = 0,

E〈ω(t1), ω(t2)〉 = Q(t1)δ(t1 − t2),

E〈ν(t)〉 = 0,

E〈ν(t1), ν(t2)〉 = R(t1)δ(t1 − t2).

The δ(t) is the Dirac delta function. The power spectral density matrices Q(t)

and R(t) are symmetric positive definite for all t.

For implementation purposes, it is usually convenient to work with the discrete-

time state-space representation:

x(k + 1) = Ax(k) +Bu(k) + Γωω(k), (2.19)

y(k) = Cx(k) + ν(k). (2.20)

In equation (2.19, 2.20), x(k) = xkT , k is an integer, and T is a fixed sample

period. If Fe, Gu and Gω are time invariant over the interval (kT, (k + 1)T ] then

A,B, Γω, and the statistics of the discrete-time Gaussian white noise process ω(k)

can be determined so that the solutions to equation (2.17, 2.18) at the sample times

t = kT have the same statistics as the solution of equation (2.19, 2.20). Both ν(k)

and ω(k) are discrete-time Gaussian white noise sequences with covariance matrices

defined by:

E〈ν(k)ν(j)T 〉 =

 R(k) k = j,

0 otherwise;
(2.21)
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E〈ω(k)ω(j)T 〉 =

 Q(k) k = j,

0 otherwise.
(2.22)

The fact that linear operations on Gaussian random variables yields Gaussian

random variables and the assumptions that u(k) is deterministic and ω(k) and ν(k)

are Gaussian random variables, the distributions of x(k) and y(k) are completely

characterized by their statistics, which may be time varying.

2.3.3 State Observers

A state observer estimates the state variables based on the measurements of the

output and control variables. It is a subsystem to reconstruct the state vector of the

plant. The mathematical model of the observer is basically the same as that of the

plant, except that an additional term is included that consists the estimation error

to compensate for the system inaccuracies. The estimation error or observation error

is the difference between the measured output and the estimated output. The initial

error is the difference between the initial state and the initial estimated state. The

state of a system is the minimal set of information required to completely summarize

the status of the system at an initial time t0. Because the state is a complete summary

of the status of the system, it is immaterial how the system managed to get to its

state at t0. In addition, knowledge of the state at t0, of the inputs to the system for

t > t0, and of the dynamics of the system allows the state to be determined for all

t > t0. Therefore, the concept of state allows time to be divided into past (t < t0),

present (t− t0), and future (t > t0), with the state at t0 summarizing the information

from the past that is necessary (together with knowledge of the system inputs) to

predict the future evolution of the system.

The goal of the control system designer is to specify the inputs to a dynamic system

to force the system to perform some useful purpose. This task can be interpreted as

forcing the system from its state at t0 to a desired state at a future time t1 > t0.

Obtaining accurate knowledge of the state at t0 and for all states between t0 and t1
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is often critical to the completion of this control objective. This process is referred to

as state estimation.
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Chapter 3

FAULT DETECTION, ISOLATION AND ESTIMATION

3.1 Introduction

Presented in this chapter is a systematic approach to data-driven modeling of a

system and fault detection, isolation and estimation (FDIE). To increase the relia-

bility, safety and economy of engineering systems, growing demands are being placed

on the fault detection, isolation and estimation. In automotive systems FDIE plays a

critical role in evaluating if a vehicle is healthy enough to meet the emission standards.

The requirements of any FDIE approach can be characterized using the following def-

initions proposed by an IFAC technical committee, SAFEPROCESS (Isermann et al.

1997a):

1. Fault: Unpermitted deviation of at-least one characteristic property of the

system from normal/standard behavior.

2. Failure: Permanent interruption of the system’s ability to perform a required

function under specified operating conditions.

3. Fault Detection: Detection of faults present in the system and time of detec-

tion.

4. Fault Isolation: Determination of kind, location and time of fault.

5. Fault Estimation: Determination of the size and time variant behavior of the

fault.

Fault isolation and estimation collectively is also known as fault diagnosis. FDIE

hence can be described as a process which, when applied to a system prone to unper-

mitted deviation of at-least one characteritic property, would detect that deviation,

locate the characteristic property and estimate the size of the deviation.
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3.2 Conventional Model-Free vs Model Based FDIE

The field of fault detection and diagnosis has shifted focus from conventional pro-

cess model-free methods (see Gertler 1998, Isermann 1984, 1987, 1997b, 2005, Simani

et al.2003). As the name suggests the model-free FDIE methods do not use a model of

the system for diagnostics. The most common way of detecting a fault without using

a system model is to perform the limit or threshold checking of available information

from sensors. An alarm is triggered whenever the sensor signal value is found out to

be out of a normal range.

Another traditional way of performing fault detection is to use the concept of

hardware redundancy. Duplication (or even more) of sensors were employed by

using more than one sensor and comparing the values of the two (or more) for de-

tecting the fault of the system or sensor itself. The disadvantage of employing sensor

redundancy is that it requires additional costs, space and hardware. In addition extra

components increase the complexity of the system and may in turn require the need

of additional diagnostic requirements.

Spectrum analysis also comes under the class of model-free methods. Under nor-

mal operating conditions the plant variables have a typical frequency spectrum; and

a deviation from this typical behavior can be used as an indicator of abnormality.

The attraction of model-free methods lies in their simplicity. However, these

methods are not suitable for detecting small magnitude of incipient fault and are not

robust to noise and disturbances. Moreover in-depth fault diagnosis to isolate and

estimate the size of the fault through threshold checking or hardware redundancy is

not possible. To overcome these drawbacks, fault detection and diagnosis methods

using the model of the system are required. Model based diagnostic methods have

the following advantages over the traditional model-free methods (Nyberg 1999)

1. Fault isolation and estimation can be performed in addition to fault detection.
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2. Early detection of small faults can be realized.

3. Faults can be detected during closed loop operation of the system.

4. Diagnosis can be performed over a larger operating range of the system including

during transient condition.

5. The effect of disturbances and noise acting on the system can be negated in a

systematic way.

Model based FDIE methods rely on the concept of analytical redundancy. In

contrast to physical redundancy where additional sensors are used, in analytical re-

dundancy sensory measurements are compared with analytically obtained values of a

particular variable. These analytical values are obtained by employing the model of

the system. The basic principle of model based FDIE method is depicted in Figure

3.1. The figure shows a typical plant being subjected to noise v(t) and faults. The

model based fault detection block uses the actual plant input u(t) and output y(t) in-

formation to generate residuals or features. These features are then compared against

normal behavior of the system to detect the fault. Residual generation is followed

by residual evaluation where the features are analyzed to isolate and estimate the

size of the fault. Model based FDIE methods can be characterized by the way these

residuals are generated and evaluated. A brief description of different model based

FDIE techniques is described in the following.
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Figure 3.1: Schematic Representation of General Model Based FDIE Method (repro-

duced from [3]).

1. Observer Based FDIE:

Observer based FDIE employs an observer for the system and compares the

actual output of the system with the predicted output to generate the residual.

The ‘unknown input’ design technique as explained in [2] can be used to decou-

ple the residuals from the disturbances. In noisy environments a Kalman Filter

can be used to generate residuals. Fault isolation is generally accomplished

by using the freedom in the design of the observer or by running a number of

observers for each different suspected fault.

2. Parity Equations Based FDIE:

Parity equations are residual generators that generate residuals by using and
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re-arranging the direct input-output model equations. Linear dynamic trans-

formation is used on these model equations to provide disturbance decoupling

and fault isolation enhancement [41].

3. Parameter Estimation Based FDIE:

Parameter estimation method uses system model adaptation and generates the

residual by comparing the parameters of the online adapted model with that of

the healthy model. The healthy model is obtained by identifying or modeling

the plant in a fault free situation ([3], [2]).

One of the major issues with the model based FDIE is the requirement of a

reliable model of the system. The accuracy of this model plays a critical role in

accurate fault detection and diagnosis. In actual identification of the model based

diagnostic method, the critical step is the identification of the model for a complex

process. Presented in subsection 3.3 is the proposed fault detection, isolation and

estimation methodology. Robustness of the FDIE method will be explained through

sensitivity analysis.

3.3 Information Synthesis

In the following a systematic approach to fault detection, isolation and estima-

tion is proposed using Information Synthesis (IS) as presented in ([?]). Information

Synthesis employs an on-line adaptive model-based parameter estimation technique

where the model structure and the parameter of the model are determined using

system identification techniques. The motivation to use the on-line adaptive model

based technique is that it can be efficiently used to determine the health of the sys-

tem under normal operation. In the presence of fault the input-output model of the

system differs from that of the healthy system. Adapting the model parameters of the

healthy system to the faulty system can capture this difference. A coefficient error

vector or residual can be generated by comparing the healthy model parameters with
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the adapted model parameters. The magnitude of this error vector when compared

to a predefined threshold serves to detect the presence of fault and to estimate the

size, provided a fault is present. The isolation of faults is performed by evaluating the

angles of the error vector made with the coefficient axis in the fault space where the

origin represents the healthy system. IS hence can be decomposed into the following

steps

1. Estimating the nominal fault free model of the system in an off-line process,

2. Estimating the parameters of the model through an on-line parameter estima-

tion technique, and

3. Residual generation and evaluation.

3.3.1 Recursive Least Squares Parameter Estimation

Least squares (LS) methods can be used to estimate the coefficients of the model

structure. LS methods are based on minimizing the squared error as shown in Soder-

strom [6] and can give consistent estimates in the presence of zero mean white noise.

Let us suppose a system subjected to noise as shown in the Figure 3.2.
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Figure 3.2: A General System.

where I is a linear-in-the-parameters discrete time system, u(k) is the input signal,

x(k) is the noise free output of the system, ϑ(k) is a zero mean white noise and y(k)

is the actual output with noise.

Now suppose the input and output relationship of the above system is given by

y(k) =
m∑
i=0

biu(k − i)−
n∑
i=1

aiy(k − i) + v(k), (3.1)

v(k) = ϑ(k) +
n∑
i=1

aiϑ(k − i). (3.2)

where n > m. It can be seen that the noise after entering the system is affected by

the system dynamics and becomes colored. In the matrix form the above model can

be written as

y(i) = ϕT (i)θ + ε(i), (3.3)

where y(i) is a measurable quantity whose elements are called regressed variables.

ϕ(i) is an vector of known quantities called regression vector. The elements of

vector ϕ(i) are often called regression variables, regressors or explanatory variables.

θ is an vector of unknown parameters. It is mainly called a parameter vector or

coefficient vector.
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The variable i takes integer values. Sometimes i denotes a time variable but this

is not necessarily the case. The linear regression model may or may not be linear in

ϕ, but it is always linear in θ. v may represent effects of measurement errors in y or

ϕ (un-modeled dynamics).

To understand the terminologies in (3.1) better, a model called ARX model is

chosen,

y(i) + a1y(i− 1) + ...+ any(i− n) = b1u(i− 1) + ...+ bmu(i−m) + v(i). (3.4)

If S represents the vector
[

1 a1 ... an

]
and T represents the vector[

b1 ... bm

]
, then AR part of ARX refers to the autoregressive part Sy(i) and X

to the exogenous input Tu(i). If the system is represented by ARX model,

ϕ(i) =
[
−y(i− 1) −y(i− 2) ... −y(i− n) u(i− 1) ... u(i−m)

]T
. (3.5)

Also,

θ =
[
a1 ... an b1 ... bm

]T
. (3.6)

Least Squares Criterion

The prediction error is

ε(i, θ) = y(i)− ϕT (i)θ. (3.7)

For N data points, the regressed variable vector, regression vector and prediction

error vector can be written as

Y =


y(1)

...

y(N)

 , Φ =


ϕT (1)

...

ϕT (N)

 , ε =


ε(1)

...

ε(N)

 . (3.8)

Regression matrix is now represented as

Ω = Φθ, (3.9)

and error vector as

ε = Y − Φθ. (3.10)
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The least square estimate of θ is the vector θ̂ that minimizes the cost or loss

function,

V (θ) =
1

2

N∑
i=1

ε2(i) =
1

2
εT ε =

1

2
‖ε‖2, (3.11)

where ‖ • ‖ denotes the Euclidean vector norm. Please note that whereas ε is a linear

function of θ, V (θ) is a quadratic function of θ. Our aim is to minimize V (θ). In other

words, we desire to minimize the squared errors between the actual system response,

y(i) and one-step ahead model prediction ϕT (i)θ.

Lemma 3.1

Assuming ΦTΦ to be positive definite and invertible, the minimum value of V (θ)

is obtained at

θ̂ = (ΦTΦ)−1ΦTY. (3.12)

The corresponding minimum value of V (θ) is

min
θ
V (θ) = V (θ̂) =

1

2
[Y TY − Y TΦ(ΦTΦ)−1ΦTY ]. (3.13)

Proof of Lemma:

We know that

ε = Y − Φθ, (3.14)

and

V (θ) =
1

2
[Y − Φθ]T [Y − Φθ], (3.15)

=
1

2
[θTΦTΦθ − θTΦTY − Y TΦθ + Y TY ], (3.16)

V (θ) =
1

2
[θ − (ΦTΦ)−1ΦTY ]T (ΦTΦ)[θ − (ΦTΦ)−1ΦTY ]

+
1

2
[Y TY − Y TΦ(ΦTΦ)−1ΦTY ]. (3.17)

By assumption, ΦTΦ is positive definite, so the first term can only be greater

than or equal to zero. Also, the second term does not depend on θ, so V (θ) can be
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minimized by keeping the first term as zero. Hence, we get the above result.

Note that Φ contains more rows than columns. The number of columns in Φ is

determined by the number of coefficients to be estimated and its number of rows is

based on the number of data points selected for parameter estimation.

When ΦTΦ is singular, Φ does not have full rank (i.e., rank Φ < n). In that case,

(3.12) will have infinite solutions. They span a subspace which describes a valley of

minimum points of V (θ). Longer time record length corresponds to ΦTΦ. The reason

for ΦTΦ to be as large as possible or to use longer data sets is that we can have a

more accurate estimate of the model.

Analysis Of Least Squares Estimate

Let us again consider the linear regression model structure y(i) = ϕ(i)T θ + v(i)

where θo is called the true parameter vector. Assume further that v(i) is white noise.

v(i) has zero mean and variance σ2.

Then, the following properties hold:

1. θ̂ is an unbiased estimate of θo.

2. The covariance matrix of θ̂ is given by

cov(θ̂) = σ2(ΦTΦ)−1. (3.18)

3. An unbiased estimate of σ2 is given by

χ2 = 2V (θ̂)/(N − n). (3.19)

Recursive Least Squares Estimate

The recursive least squares estimation (RLSE) calculation reduces the computa-

tional requirements and improves the accuracy of the LSE. In particular, using a

recursive solution to the LSE problem avoids the need of taking the inverse of the
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matrix ΦTΦ when solving for parameter estimates θ. Apart from reducing the com-

putational requirements, the recursive solution prevents the matrix inversion that

occurs in LSE and helps improve the accuracy of the estimate. Elaborating it, let

us suppose the number of parameters is x and data record length is 1000 × x. The

construction of ΦTΦ takes the original size of Φ ∈ R1000x×x and crushes it to a much

smaller matrix of size ΦTΦ ∈ Rx×x. This reduction of a much larger matrix to such a

small one has chances that the estimates will not be as accurate as can be found by

the recursive approach. The output matrix updates itself from (k − 1)th to kth time

sample in the following way,

Y (k) =

 Y (k − 1)

y(k)

 . (3.20)

Similarly, for (k + 1)th time sample,

Y (k + 1) =

 Y (k)

y(k + 1)

 , Φ(k + 1) =

 Φ(k)

ϕ(k + 1)

 , (3.21)

P (k) = [ΦT (k)Φ(k)]−1. (3.22)

Here,

P (k + 1)−1 = P (k)−1 + ϕ(k + 1)ϕ(k + 1)T . (3.23)

The parameter estimate,

θ̂(k + 1) = P (k + 1)Φ(k + 1)TY (k + 1)

= [P (k)−1 + ϕ(k + 1)ϕ(k + 1)T ]−1[Φ(k)TY (k) + ϕ(k + 1)y(k + 1)]

= [P (k + 1)][P (k)−1 ˆθ(k) + ϕ(k + 1)y(k + 1)], (3.24)

θ̂(k + 1) = [P (k + 1)][P (k + 1)−1 − ϕ(k + 1)ϕ(k + 1)T ]

θ̂(k) + P (k + 1)ϕ(k + 1)y(k + 1)
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= θ̂(k) + P (k + 1)ϕ(k + 1)[y(k + 1)− ϕ(k + 1)T ˆθ(k)]. (3.25)

Since,

[A+BC]−1 = A−1 − A−1B(I + CA−1B)−1CA−1,

P (k + 1) = [P (k)−1 + ϕ(k + 1)ϕ(k + 1)T ]−1

= P (k)− P (k)ϕ(k + 1)(I + ϕ(k + 1)TP (k)ϕ(k + 1))−1ϕ(k + 1)TP (k). (3.26)

Properties of Recursive Least Square Estimate

Let the data be generated by

y(k) = ϕ(k)T θ + v(k), (3.27)

θ̂(N) = [
N∑
k=1

ϕ(k)ϕ(k)T ]−1[
N∑
k=1

ϕ(k)y(k)]

= P (N)[P (N)−1θo +
N∑
k=1

ϕ(k)v(k)]

= θo + [
N∑
k=1

ϕ(k)ϕ(k)T ]−1

︸ ︷︷ ︸
ρ

[
N∑
k=1

ϕ(k)ε(k)]︸ ︷︷ ︸
ς

, (3.28)

limN→∞ θ̂(N) = θ only if ρ grows larger with N or ς grows smaller with N. To make

it possible, two typical cases are considered

1. ε(k) is a zero mean white sequence uncorrelated with ϕ(k).

2. P (N)−1 remains non-singular and grows.

Monotonic Property

Let the performance index is defined by

Q(θ̂(k)) =
1

2
[(θ̂(k)− θ)P (k)−1(θ̂(k)− θ)]

=
1

2
θ̃(k)P (k)−1θ̃(k). (3.29)
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Here, P (k)−1 keeps on increasing. The proof that P (k)−1 will be more than

P (k − 1)−1 is as follows:

P (k)−1 = P (k − 1)−1 + ϕϕT

⇒ zTP (k)−1z = zTP (k − 1)−1z + zTϕϕT z

⇒ zTP (k)−1z = zTP (k − 1)−1z + wTw︸︷︷︸
ψ

. (3.30)

ψ is always positive definite which directly implies the result.

Having said that, to make Q(θ̂(k)) bounded and reduce, θ̃(k) must keep on de-

creasing.

This can also be concluded by finding the difference between the previous perfor-

mance index and next performance index,

Q(θ̂(k))−Q(θ̂(k − 1)) =
1

2
ε2(k)︸ ︷︷ ︸
E1

− 1

2

ϕ(k)TP (k − 1)ϕ(k)

1 + ϕ(k)TP (k − 1)ϕ(k)
θ̃(k)T θ̃(k)︸ ︷︷ ︸

E2

. (3.31)

If ε = 0(E1 = 0), then Q(θ̂(k)) is a non increasing sequence as E2 is always

positive. So, since P (k)−1 is an increasing sequence of matrices, θ̃(k) is expected

to converge monotonically. In recursive calculation, P and forgetting factor λ (de-

scribed in next section) enable the estimation of time-varying parameters-coefficients

for models that vary with time. One advantage of the recursive equations is that

matrix inversion calculations are reduced to a series of additions and multiplications.

Additionally, these simple operations can be performed as each data pair is recorded,

reducing the memory that would be required to record long data sets prior to per-

forming the matrix inversion. There are also some disadvantages with performing

these calculations continually. Since data is recorded and passed through the estima-

tion algorithm one sample at a time; there is no means to check for persistency of

excitation. With new data pairs recorded and processed through the algorithm, the

recursive calculation must be completed before the next data point is recorded. Since

the calculations have been simplified, completing the computation would likely be a
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problem for very high data sample rates.

A solution to this problem is batch mode operation. Batch mode RLSE processes

a preselected segment of data that has been sampled and stored. Thus, data is not

processed through the algorithm as it is recorded.

Thus far, it was assumed that the model parameters were constants when com-

pared to the changing input and output data. The model parameters for real world

systems are in fact not constant and these changing coefficients require advanced con-

trol solutions such as adaptive control. The non-recursive LSE previously outlined

will calculate model coefficients based on the data to which it is applied, and new data

sets generate a new set of parameters. In contrast, the recursive equations allow data

to be continually passed through the estimation algorithm. As a result, a limitless

amount of data can be used for the estimation. Without specific adjustments to ac-

commodate time-varying parameters, however, the estimates will eventually converge

to fixed values and future changes in system dynamics may never appear as changes

in the model coefficients.

Convergence of the parameter estimates from the recursive equations occurs be-

cause the magnitudes of the terms in the matrix P (k) become progressively smaller.

This reduction in magnitude causes a corresponding reduction in the estimation gain.

Even if model dynamics result in an error between the current model and the actual

system output, the parameters will not be updated if the P (k) matrix and estimation

gain have already decreased to an insignificant magnitude.

There are several methods for dealing with time-varying parameters within the

recursive least squares algorithm. One option is to formulate the model structure to

include time varying parameters. The other two methods are less complicated and

have already been included in the recursive equations stated earlier. Time-varying

parameters can be addressed through the use of the forgetting factor or by the P (k)

matrix (called the covariance matrix) resetting. Both methods essentially accomplish

the same thing; they prevent the P (k) matrix and the corresponding estimation gain
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from going to zero. Because the two methods differ in the way they affect the P (k)

matrix and the estimation gain, they have different practical applications.

Resetting the P (k) matrix to a diagonal matrix with large numbers on the diago-

nal will cause the parameter estimates to re-converge based on new data. For larger

value diagonal elements in P (k), the estimation gain will be higher and the parameter

estimates will respond faster to any differences between the new data and the current

model.

Naturally then, the method of resetting the P (k) matrix is useful for systems with

parameters that experience infrequent but significant changes. When a change in the

system being controlled has occurred, the P (k) matrix can be reset so that the model

parameters will converge to new values and the controller will be able to adapt to the

new system dynamics.

Resetting the P (k) matrix is not the ideal method to cope with systems that have

slowly varying parameters. The matrix would need to be reset too frequently and

convergence of the parameters between resets would be degraded. The forgetting

factor method can be applied to systems with gradually shifting parameters. The

forgetting factor accounts for time-varying parameters by preventing the values in

the P (k) matrix from ever getting too small. By preventing the terms in the P (k)

matrix from becoming insignificant in magnitude, the model parameters will always

adapt to new data. Setting the forgetting factor to unity essentially turns off this

method of dealing with the time-varying parameters. Decreasing the forgetting factor

from unity applies the method. The further the forgetting factor is from unity, the

faster the system responds to incoming data. An alternative explanation is that as

the forgetting factor is decreased from unity, a smaller number of past data points

are represented in the current parameter value.

If the model parameters are based on an infinite number of previous data points,

additional data with different system dynamics will not be able to impact the model

parameters that have already converged. For a forgetting factor less than unity, the
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model parameters can adapt to changes in system dynamics because the window of

data that is used to model the parameters will always be shifting ahead in time and

will eventually contain only new system dynamics. For both the forgetting factor and

the P (k) resetting method, there must be a balance between responding to parame-

ter variation and converging to good parameter estimates. Resetting the P (k) matrix

often, or having a forgetting factor much less than unity, will create a fast response

to changes in the system dynamics. But, this increases the impact of current data on

the estimated parameters and will cause more variability in the parameter estimates.

Combining the forgetting factor and P (k) resetting methods provides particular

advantages. A forgetting factor close to unity will provide good parameter conver-

gence while still allowing the model estimate to drift over time and respond to a

slowly changing system. Including the option to reset the P (k) matrix adds rapid

adaptation capability to the algorithm. The P (k) matrix reset can be scheduled to

occur periodically to let the model parameters re-converge after an extended period

of time. The P (k) matrix reset can also be manually triggered so that adaptation

can occur when a known change in the system dynamics has taken place.

Persistency of excitation is a paramount topic associated with system identifi-

cation. Input signals which do not sufficiently excite the system dynamics will not

produce accurate models. The lack of a persistently exciting signal manifests itself in

the matrix ϕTϕ. Specifically, the matrix ϕTϕ will be either singular (noninvertible)

or will be ill condition (near singular) producing numerical errors. When such a con-

dition exists, the parameter estimates are inaccurate. Although there are methods

that deal with near singular ϕTϕ matrices, such situations serve as evidence to an in-

adequate design of experiments. Resorting to the recursive least squares solution does

not compensate for a lack of a persistently exciting input. Instead, the application

of recursive least squares estimation will result in some of the parameter estimates

diverging. Input signal design, as it pertains to the system identification algorithms

presented here, must receive a detailed development. The design of these signals will
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satisfy the persistency of excitation conditions thereby eliminating one problem area

during parameter identification. It is tempting to develop a simple check of the sys-

tem input sequence to evaluate if the data record satisfies persistency of excitation.

For example, comparing the maximum and minimum value of the measured system

input sequence is one simple check and may indeed work for specific applications.

This simple check could be implemented for online parameter estimates and could be

used to identify datasets to reject. However, such a simple method does not in any

way guarantee persistency of excitation.

Weighted Recursive Least Square Estimate

We now put weights W−1 in error at previous instances of time in the least square

estimate equation. If the parameter is constant, a constant weight given at all the

instances of time is justifiable. But, if the parameters are slowly changing, then there

is a need to define weight in such a way that weight to the error at recent past data

is more than that of relatively older data. In this way, the recent variation in recent

parameters will be given more weight as compared to the past parameters. This

enables the estimator to track the adapted parameters with time. The cost function

will become,

V (θ) =
1

2
[Y − Φθ]TW−1[Y − Φθ]. (3.32)

The solution of the above cost function in order to minimize it is given by

ΦTW−1Φθ̂ = ΦTW−1Y ⇒ θ̂ = (ΦTW−1Φ)−1ΦTW−1Y, (3.33)

where W is the covariance matrix which is defined by expectation of error squared,

W = E[εεT ]. (3.34)

For white noise, W = σ2Iwhere σ2 is the variance of error. Old measurements

are represented by Φ0θ = Y0 and new measurements are represented by Φ1θ = Y1. In
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block form,  Φ0

Φ1

 θ =

 Y0

Y1

 . (3.35)

It should be noted here that the error may or may not be correlated for the present

state, but it is assumed that the error of the present state is uncorrelated as compared

to the error of previous state, which can be represented by W as,

W =

 W0 0

0 W1

 . (3.36)

The dimensions of W0 and W1 may or may not be the same and they may or may

not be diagonal matrices. But, as explained earlier, the past and present errors are

uncorrelated.

Our aim is to generate a matrix with as small a variance as possible, so that a

heavier weight can be provided to the present measurements.

From (3.33),

θ̂ = [(ΦTW−1Φ)−1ΦTW−1]︸ ︷︷ ︸
Le

Y, (3.37)

where L is a linear transformation of Y to Φ.

Let Wθ and P denotes the covariance matrix of parameters.

P = Wθ = E[(θ − θ̂)(θ − θ̂)T ] = E[(Lε)(Lε)T ] = LE[εεT ]LT = LWLT

= [(ΦTW−1Φ)−1ΦTW−1]W [(ΦTW−1Φ)−1ΦTW−1]T

= (ΦTW−1Φ)−1. (3.38)

As P is updated, it keeps on decreasing. Let us find out what the update of P

will be

P−1 =
[
ΦT0 ΦT1

] W−1
0 0

0 W−1
1

 Φ0

Φ1

 = ΦT0W
−1
0 Φ0 + ΦT1W

−1
1 Φ1. (3.39)

So, the update formula for P becomes,

P−1
1 = P−1

0 + ΦT1W
−1
1 Φ1, (3.40)
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and the update formula for θ becomes,

θ1 = P1(ΦT0W
−1
0 Y0 + ΦT1W

−1
1 Y1). (3.41)

This can be simplified to,

θ̂1 = θ̂0 +K(Y1 − Φθ̂0), (3.42)

where K is the gain matrix, defined by,

K = P1Φ
T
1W

−1
1 . (3.43)

Exponential Weighting

If W−1 is a diagonal w(i),

V (θ) =
1

2

N∑
i=1

w(i)[yi − ϕ(i)T θ]2, (3.44)

V (θ̂(k)) =
k∑
i=1

λk−i(y(i)− ϕ(i)T θ̂(k))2. (3.45)

In this equation, θ̂(k) has been generated and y(i) is being estimated in such a

way that the estimate of y(i) will rely more on the recent information of estimated

parameters. In order to do so, λk−i has been introduced which takes values less

than or equal to one and is always positive. This means that with increasing time

the measurement obtained previously are discounted. The smaller the value of λ,

the quicker the information in previous data will be forgotten. The explanation is

directly evident from the above expression.

So, the estimate is modified as,

θ̂(k) = θ̂(k − 1) + P (k)ϕ(k)Ξ(k), (3.46)

where,

Ξ(k) = y(k)− ϕ(k)T θ̂(k − 1), (3.47)

P (k) =
1

λ

(
P (k − 1)− P (k − 1)ϕ(k)ϕ(k)TP (k)

λ+ ϕ(k)TP (k)ϕ(k)

)
. (3.48)
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3.3.2 Instrumental Variable Method

Instrumental variable is one of the variants of least squares estimation. LSE results

in unbiased estimate only when ϕ and noise v are uncorrelated. But it suffers from

bias if they are correlated.

IV method takes this problem into account by selecting a vector ξ which is

1. uncorrelated with v, and

2. very strongly correlated with v.

Let the estimate for the nominal system Y = θoΦ + ν using IV method is

θ̂IV = [
N∑
k=1

ξ(k)ϕT (k)]−1

N∑
k=1

ξ(k)y(k),

= [ZTΦ]−1ZTY,

= θo + [ZTΦ]−1ZTν. (3.49)

The aim while selecting the vector ξ is to minimize the second term of calculated

IV estimate (3.49). It is realized when ZTν → 0 while keeping the [ZTΦ]−1 as

invertible.

Nonparametric modeling methods will be used in the selection of model structure

and the validation of the identified model, but parametric methods are better suited

to online identification and control. Parametric models condense a large amount of

system information into a comparatively small array of parameters. A well known,

simple, and still very useful linear parameter identification technique is the least

squares algorithm. Instrumental variable methods improve the least squares estimates

by reducing bias generated by noise or un-modeled disturbances.

The four-step instrumental variable approach is an algorithm for estimating the

parameters of a linear model, and it is closely related to the least squares estimation

method. Parameters estimated through the least squares technique are improved

upon using both instrumental variables and a noise-specific estimated filter. Prior
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to implementing the four-step instrumental variable method, the order of the model

must be determined. As a discrete system, the model can be written in the form of

a linear difference equation

y(t) + a1y(t− 1) + a2y(t− 2) + ...+ any(t− n) =

b0u(t) + b1u(t− 1) + b2u(t− 2) + ...+ bmu(t−m). (3.50)

The parameters a1...an and b0...bm are constants, not functions of time. Although

the parameters may change with time, it is assumed that the change is sufficiently

slow so that the parameters can be treated as constants compared to the variables y(t)

and u(t). By taking the z-transform of the linear difference equation, the expression

can be rewritten in terms of a discrete transfer function

G(z) =
Y (z)

U(z)
=
b0 + b1z

−1 + b2z
−2 + ...+ bmz

−m

1 + a1z−1 + a2z−2 + ...+ anz−n
=
β(z)

α(z)
, (3.51)

with the orders n and m known. The four-step instrumental variable approach can be

implemented to estimate the values of the parameters b0...bm and a1...an. A shorthand

notation that will be used to indicate the passing of vectors of time dependent data

through a discrete filter or model is

α(z)y(t) = β(z)u(t) (3.52)

The basis of the instrumental variable algorithm is to use instrumental variables,

which are correlated to the system input and uncorrelated to the system noise, to

produce consistent parameter estimates. One method to generate these instruments

is to use a previous estimate of the system model.

Step 1: Least Squares Parameter Estimation

The first step of the four-step instrumental variable approach uses the least squares

algorithm to determine a first estimate of the parameters. These parameter estimates

will be biased because of noise content in the measured output signal. The solution
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to LS is taken from equation 3.12) where the initial parameter estimates are denoted

as

θ̂1 = [ â1 â2 ... ân b̂0 b̂1 b̂2 ... b̂m ]T . (3.53)

Replacing the actual parameters in equation (3.51) with the estimated parame-

ters from equation (3.53), the transfer function of the same form as G(z) using the

estimated parameters is referred to as G1(z)

G1(z) =
b̂0 + b̂1z

−1 + b̂2z
−2 + ...+ b̂mz

−m

1 + â1z−1 + â2z−2 + ...+ ânz−n
=
β1(z)

α1(z)
. (3.54)

The modeled system output results from passing the known input vector u(t) through

the model transfer function to produce

x1(t) = G1(z)u(t). (3.55)

Step 2: Instrumental Variable Parameter Estimation

Errors result in the least squares parameter estimate when the measured system

output y(t) contains noise. With a noise term v(t) included, the equations for y(t)

become the following:

y(t) = −a1y(t− 1)− a2y(t− 2)− ...− any(t− n)+

b0u(t) + b1u(t− 1) + b2u(t− 2) + ...+ bmu(t−m) + v(t), (3.56)

or equivalently

α(z)y(t) = β(z)u(t) + v(t) (3.57)

or

y(t) = ϕT (t)θ + v(t). (3.58)

Because there is a correlation between the noise v(t) and the system output y(t) in

the vector of variables ϕ(t), the parameter vector that is the solution of equation (3.12)

no longer approaches the real system parameters. To correct for this noise problem,

the instrumental variable vector ξ(t) is introduced. Because the instrumental variables
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are paramount to reducing the effects of the noise, the selection of the instrumental

variables is important. The instrumental variable vector is a vector that must be

correlated to the input vector u(t) and uncorrelated to the noise in the system. Two

criteria for the instrumental variable vector (where E[] indicates the expected value)

are

(c1) limN→∞
1
N

N∑
t=1

E[ξ(t)ϕT (t)] be nonsingular

and

(c2) limN→∞
1
N

N∑
t=1

E[ξ(t)v(t)] = 0.

A simple method to generate instruments which are correlated to the system input

and uncorrelated (weakly correlated) with the noise is to pass the known input u(t)

through the estimated system modelG1(z), see equation (3.54). The estimated system

output is then used in place of the actual system output producing the instrumental

variable vector below

ξ(t) = [−x1(t− 1) −x1(t− 2) ... −x1(t− n)

u(t) u(t− 1) u(t− 2) ... u(t−m)]T .
. (3.59)

This instrumental variable vector has the same form as the variable vector ϕ(t),

with the estimated system output substituted for the measured system output. Mul-

tiplying equation (3.58) by the instrumental variable vector gives

ξ(t)y(t) = ξ(t)ϕT (t)θ + ξ(t)v(t). (3.60)

Equation (3.60) clearly shows the reason for the two conditions given in (c1)

and (c2). Solving for the parameter vector θ requires inverting the product ξ(t)ϕT (t),

hence the condition in (c1). The noise in equation (3.60) is eliminated if the condition

(c2) holds. Using the instrumental variable vector ξ(t)) instead of the variable vector

ϕ(t), the least square error equation differentiated and putting to zero can be rewritten

as follows

2

N
[
N∑
t=1

ξ(t)(y(t)− ϕT (t)θ̂)]. (3.61)
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Solving the above equation for the parameter vector produces equation (3.63) be-

low, which will be referred to as the instrumental variable parameter estimation

formula. These estimates of the parameters and discrete transfer function have been

designated as the second estimates of the four-step algorithm

θ̂2 = [
N∑
t=1

ξ(t)ϕT (t)]−1[
N∑
t=1

ξ(t)y(t)], (3.62)

θ̂2 = [ â1 â2 ... ân b̂0 b̂1 b̂2 ... b̂m ]T , (3.63)

and

G2(z) =
b̂0 + b̂1z

−1 + b̂2z
−2 + ...+ b̂mz

−m

1 + â1z−1 + â2z−2 + ...+ ânz−n
=
β2(z)

α2(z)
. (3.64)

Once the instruments have been generated using G1(z) and the parameters of the

transfer function G2(z) have been calculated using the instrumental variable param-

eter estimation formula, an improved vector of the simulated system output can be

generated

x2(t) = G2(z)u(t). (3.65)

Step 3: Filter Determination

The use of the instrumental variables in step two of the four-step algorithm im-

proves the initial least squares parameter estimate from step one, but does not com-

pletely eliminate the effects of the noise. Because the system model G1(z) used to

generate the instruments includes the effects of noise, there is still some correlation

between the instruments and the noise in the output signal. The effects of this noise

can be further attenuated through the addition of a filter, denoted Fi(z) . The mea-

sured output of the system can be passed through a filter prior to the calculation

of the parameters using the instrumental variable algorithm. To keep the filter from

influencing the input-output relationship of the data, the known system input vector

must also be passed through the same filter. Even if the same filter is applied to

both the input and output data, it can still affect the estimated model if the filter
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bandwidth is low enough to attenuate system dynamics as well as the noise. To re-

duce the likelihood that the noise filter would attenuate system dynamics, the filter

is estimated based on the model error passed through the model transfer function

denominator rather than just the model error. Passing the model error through the

model transfer function denominator attenuates the model dynamics relative to the

high frequency noise prior to the estimation of the filter. In this manner, the filter can

be designed to attenuate noise in the measured output signal y(t), but will not change

the input-output relationship. The discrete filter Fi(z) appears in the equations for

the filtered input and output signals below

uFi(t) = Fi(z)u(t), (3.66)

and

yFi(t) = Fi(z)y(t). (3.67)

To aid in the discussion of noise modeling, the noise term v(t) in equation (3.56)-

(3.58) will be rewritten in terms of a discrete transfer function and white noise.

Letting e(t) represent zero-mean white noise, the noise signal is written as the result

of passing white noise through a discrete filter Υ(z)

y(t) = G(z)u(t) + Υ(z)e(t). (3.68)

An alternative expression for equation (3.68) is as follows

α(z)y(t) = β(z)u(t) + α(z)Υ(z)e(t). (3.69)

A comparison of equations (3.57) and (3.69) determines an expression for the noise

signal v(t)

v(t) = α(z)Υ(z)e(t). (3.70)

Substituting this expression for v(t) into equation (3.58) gives the following equa-

tion

y(t) = ΦT (t)θ + α(z)Υ(z)e(t). (3.71)

43



With the addition of the filter, the following equation describes the filtered system

output signal

yFi(t) = Fi(z)y(t) = Fi(z)ΦT (t)θ + Fi(z)α(z)Υ(z)e(t). (3.72)

Because the final parameter estimate will be generated using the instrumental

variable algorithm, it is useful to examine the instrumental variable criteria when

selecting the desired filter. Modifying equation (c2) to account for the filtered signal

yFi(t) results in the following expression

limN→∞
1

N

N∑
t=1

E[ξ(t)Fi(z)α(z)Υ(z)e(t)] = 0. (3.73)

Since e(t) is a zero-mean white noise signal, it has an expected value of zero. To

cancel the effects of the discrete filters α(z) and Υ(z), which color the white noise

signal; the filter Fi(z) is designed as their inverse, resulting in the following equations

Fi(z) =
1

α(z)Υ(z)
(3.74)

and

limN→∞
1

N

N∑
t=1

E[ξ(t)Fi(z)α(z)Υ(z)e(t)] = limN→∞
1

N

N∑
t=1

E[ξ(t)e(t)] = 0. (3.75)

Using the best estimate of the system transfer function determined to this point,

along with equations (3.64) and (3.68), the noise signal can be estimated as the error

between the measured output signal and the modeled output

Υ̂(z)e(t) = y(t)− x2(t). (3.76)

The noise signal used for the filter estimate is not just the model error from

equation (3.76), but it is the product of the model denominator and that error. For

the purposes of implementing the filter, it is useful to model the system noise as a

discrete filter or linear difference equation. Combining equations (3.69) and (3.70),

the noise signal can be written as

v(t) = α(z)Υ(z)e(t) = α(z)y(t)− β(z)u(t). (3.77)
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An auto-regressive model structure will be used for v(t), and the order of the

model is selected based on the sum of the order of the numerator and denominator

of the plant model (n+m+ 1)

v(t) = α(z)Υ(z)e(t) =
1

1 + c1z−1 + c2z−2 + ...+ cn+m+1z−1−n−m e(t), (3.78)

v(t) = −c1v(t− 1)− c2v(t− 2)...− cn+m+1v(t− n−m− 1) + e(t). (3.79)

This selection of model order ensures that the order of the filter will increase and

decrease as the complexity of the plant model changes, but also does not lead to

excessive calculation demands. In the same way that the linear difference equation

for the plant was rewritten in terms of vectors, v(t) can be rewritten

v(t) = ΦTv (t)θv, (3.80)

θv = [ c1 c2 ... cn+m+1 1 ]T , (3.81)

and

Φv(t) = [ −v(t− 1) −v(t− 2) ... −v(t− n−m− 1) e(t) ]T . (3.82)

The noise v(t) can be calculated using equation (3.76), equation (3.77), and the

most accurate plant transfer function estimate to this point

v(t) = α2(z)y(t)− β2(z)u(t) = α2(z)[y(t)− x2(t)]. (3.83)

The parameter vector for the noise model v(t) can be estimated using the least

squares parameter estimation formula. Soderstrom proves that the addition of a zero

mean white noise signal does not affect a least squares estimate, so e(t) is neglected

in the application of least squares and equations (3.81) and (3.82) become

θv = [ c1 c2 ... cn+m+1 ]T , (3.84)

and

ϕv(t) = [ −v(t− 1) −v(t− 2) ... −v(t− n−m− 1) ]T . (3.85)
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By examining equations (3.74) and (3.78), the parameters calculated least squares

estimation can be used to specify the estimated discrete filter

F̂ i(z) =
1 + c1z

−1 + c2z
−2 + ...+ cn+m+1z

−1−n−m

1
, (3.86)

Step 4: Filtered Instrumental Variable Parameter Estimation

The final step of the four step process is to recalculate the parameters using

the instrumental variable parameter estimation formula while implementing the filter

calculated from equation (3.86). The filter must be applied to the input and output

signals wherever they occur in the instrumental variable formula to ensure that the

input-output relationship is maintained

θ̂4 = [
N∑
t=1

ξFi(t)Φ
T
Fi(t)]

−1[
N∑
t=1

ξFi(t)yFi(t)] (3.87)

ξFi(t) = [−xFi(t− 1) −xFi(t− 2) ... −xFi(t− n) uFi(t)

uFi(t− 1) uFi(t− 2) ... uFi(t−m)]T .

(3.88)

and

ΦFi(t) = [−yFi(t− 1) −yFi(t− 2) ... −yFi(t− n) uFi(t)

uFi(t− 1) uFi(t− 2) ... uFi(t−m)]T .

(3.89)

Filtered input and output signals can be calculated according to equations (3.66)

and (3.67) with the estimated noise filter from equation (3.86) used in place of the

ideal filter Fi(z)

uFi(t) = F̂ i(z)u(t), (3.90)

and

yFi(t) = F̂ i(z)y(t). (3.91)
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The filtered instruments xFi(t) can be calculated by filtering the best estimate

of the model output x2(t) or by passing the filtered input uFi(t) through the best

estimate of the plant transfer function

xFi(t) = F̂ i(z)x2(t) = G2(z)uFi(t). (3.92)

3.3.3 Residual Generation and Evaluation

Residual generation and evaluation aims to detect and isolate the location and

estimate the size of the fault. This can be done by comparing the RLS adapted

model parameters with healthy parameters and analyzing the difference.

Fault Detection

A coefficient error vector can be formed by comparing the healthy model parameters

(H) with the adapted model parameters (Ha) which may or may not contain a fault.

Let the healthy model coefficient vector be defined as

H = [ h1 h2 ... hn ] ∈ Rn×1, (3.93)

where, n is the number of model parameters and let the adapted model coefficient

vector be defined as

Ha = [ ha1 ha2 ... han ] ∈ Rn×1. (3.94)

The coefficient error vector, or the residual, is then obtained as

Re = D(H −Ha), (3.95)

where,

D = diag

[
1

h1

,
1

h2

, ...,
1

hn

]
. (3.96)

The matrix D is used to normalize each coefficient. This addresses the cases where

there is a large difference in the magnitude of coefficients. Detecting the presence of

a failure can be accomplished by evaluating the magnitude of Re and ensuring that
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this error is not due to the standard variability of the system. Hence, a failure would

be detected if

‖Re‖2 > η, (3.97)

where,

‖Re‖2 =

√√√√ n∑
i=1

|Re(i, 1)|2, i ∈ I+. (3.98)

Here η is the threshold value that represents the degree of variability of the system.

This threshold can be calculated by statistical analysis of the estimated coefficients

of the model.

In the present study a number of estimates of the coefficients are calculated from

the simulated data. The mean of the values obtained from these datasets represents

the true value of the coefficients and the standard deviation of each of the coefficient

is used to determine η given by

η = ‖ 3σha1 ... 3σhan ‖2. (3.99)

The value of σhai corresponds to a 99.73% confidence interval assuming a normal

distribution of obtained values of coefficients from the data.

Fault Isolation

The fault isolation method employed utilizes the direction of the coefficient error

vector by evaluating the angles which the error vector forms with different axes of the

n-dimensional fault space, where n axes correspond to n parameters of the model. A

generalized representation of 3-dimensional fault space is shown in Figure 3.3 which

shows three distinct fault spaces which could correspond to three different possible

faults of the system. The origin of the fault space represents the healthy system and

the radius of each fault space is a result of system variability possibly due to, among

other things, sensor noise and accuracy of parameter estimation.
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The fault vector can be written as

F =
n∑
j=1

rjej, (3.100)

where, rj is the jth component of Re and ej is the unit vector along the jth axis of

the fault space. The angles that this fault vector makes with different axes can be

computed from the following equation

γj = cos−1

(
F.ej
|F |

)
, (3.101)

where, γj is the angle that the fault vector makes with the jth axis of the orthogonal

system.

Then a fault signature code for a particular fault (say fault-1) becomes

γf1 , γ
f
2 , ..., γ

f
n

Figure 3.3: Fault Space.

This fault signature code is then compared with a set of predefined fault signature

codes to isolate the fault.
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Uniqueness of Fault Signature Code: The presence of a fault in the system changes

the input output relationship by affecting the parameters of the system which in turn

affects the fault error vector and the angles this vector makes with different axes of

the fault space. The uniqueness of the fault signature code can be explained in terms

of fault isolability which signifies that in order for a fault to be isolable its effect

on the model parameter set should be different from other faults. This implies that

isolable faults have unique fault signature codes.

Fault Signature Code Table: The fault signature code table consists of the faults

and their fault signature codes and serves to identify the location of the fault. To

create this table we need to have heuristic knowledge of the effect of the fault on

different regressors of the model.

If a fault does not affect a particular regressor the error vector would be in a plane

perpendicular to the coefficient axis corresponding to that fault and hence the angle

would be 90 degrees otherwise the angle would be different from 90. In the presence

of these faults we need to evaluate the exact magnitude of the angles of the fault

signature code. To perform this we need to have knowledge of the physical equations

governing the system and/or results of simulations and experiments. This information

can be used to determine the exact direction of the coefficient error vector and hence

angles produced by these faults.

Fault Estimation

Fault estimation is realized using the length of the coefficient error vector. The

greater the length of the error vector, the greater or more severe is the size of the

fault.

The length of the fault vector can be computed by

Lmag =

√√√√ n∑
j=1

r2
j , (3.102)
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where rj are the components of the coefficient error vector. Here each component of

the fault vector has been normalized.

3.3.4 Sensitivity Analysis

A sensitivity analysis can be performed to quantify the effect of the uncertainities

in the parameter estimates due to noise and the disturbances acting on the system.

The variance of the parameters will have an effect on the angles that the fault vector

forms with different axes and the length of the vector itself. Sensitivity analysis

gives a measure of the robustness of the FDIE methodology. The smaller the effect

of parameter variance on the fault angles and the fault length, the greater is the

robustness with respect to noise and disturbances. These effects can be computed

by calculating the partial differentiation of the angles and the length vectors with

respect to each of the parameter vectors.

Obtaining the relation from equation (3.101) for the angles,

γj = cos−1

(
F.ej
|F |

)
. (3.103)

Here,

F.ej = rj, (3.104)

and

|F | =

√√√√ n∑
j=1

r2
j . (3.105)

Hence, by differentiating the angle equation with respect to the parameter hai we

obtain,

∂γj
∂hai

= − 1√
1−

(
rj
|F |

)2

∂
(
rj
|F |

)
∂hai

. (3.106)

Using equation (3.106) and the above definition of |F |, we get,

∂γj
∂hai

= − 1√
1−

(
rj
|F |

)2

−hjδij
|F |
− rj × ri

1.5

√∑n
j=1 (rj)

2

 , (3.107)
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where, δij is kronecker delta that is, δij = 1 for i = j and δij = 0 for i 6= j.

Hence, we can calculate the influence of all parameters hai for i = (1, ..., n) on

each γj.

Then the effect of the variance of parameters on angle γj is given by

∆ (γj) =
n∑
i=1

[
∂γj
∂hai

∆hai

]
, (3.108)

for j = (1, ..., n), where ∆hai = 3σhai.

This provides the sensitivity of angles of the fault vector with the variation in the

estimated parameters. Similarly the sensitivity of the length of fault vector can be

calculated in the following manner

∂Lmag
∂hai

= − ri√∑n
j=1 r

2
j

, (3.109)

and

∆ (Lmag) =
n∑
i=1

[
∂L

∂hai
∆hai

]
, (3.110)

where again, ∆hai = 3σhai.

This provides the sensitivity of the fault vector length with the variation in the

estimated parameters.

3.3.5 Method Summary

The fault detection, isolation and estimation method proposed in the present

work is realized using the on-line model and analyzing the effect of faults on the

parameters of the model of the system. A flow chart of the FDIE methodology and

its implementation is shown in Figure 3.4. A number of healthy data sets are used to

form a family of healthy model parameters and to calculate the standard deviation and

hence the threshold (equation 3.97). Once the healthy model parameters are obtained

it is used as baseline model against which all the future models are compared. If a

fault is present in the system a warning signal will be flagged by the algorithm, which
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for the case of OBD in automobiles, is known as malfunction indicator light (MIL)

and is situated at the vehicle dashboard. On the other hand if IS does not diagnose

a fault, new on-line data will be used to perform the algorithm once again. This

process can be applied in a continuous fashion where the algorithm will continuously

estimate the parameters of the system model.

Figure 3.4: Flow Chart of IS Based Model Development and FDIE.
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3.4 Adaptive Model Based FDIE Illustration

A double mass-spring-damper system is represented in Figure 3.5. The force

Fex(t) is the input u(t) of the system. The left and right mass equal ma1 and ma2,

respectively. The output of the system consists of both the displacement x1(t) of

mass ma1 and the displacement x2(t) of mass ma2. The spring constants are k1 and

k2. The damper constants are b1 and b2.

Figure 3.5: Mass-Spring-Damper System.

The equations of motion resulting from force balance are:

Fex − k1(x1 − x2)− b1(ẋ1 − ẋ2) = ma1ẍ1, (3.111)

k1(x1 − x2) + b1(ẋ1 − ẋ2)− k2x2 − b2ẋ2 = ma2ẍ2. (3.112)

Written in matrix notation, ma1 0

0 ma2

 ẍ1

ẍ2

+

 b1 −b1

−b1 b1 + b2

 ẋ1

ẋ2

+

 k1 −k1

−k1 k1 + k2

 x1

x2

 =

 Fex

0

 ,
(3.113)

with

ma1 = 5 k1 = 25 b1 = 5,

ma2 = 3 k2 = 100 b2 = 5.

Here, the system’s uncertain parameters are usually k1 and k2. The goal of pro-

posed FDIE methodology in this context is to detect the change in the system due
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to uncertainities and find the direction and magnitude of change. In this case, the

spring constants k1 and k2 take the values as shown in Table 3.1.

Table 3.1: Fault Codes and Corresponding Spring Constants.

Fault type Fault code Spring constant(k1) Spring constant(k2)

Healthy system k0 25 100

Fault 1 - k1 k1
1 50 100

Fault 2 - k1 k2
1 60 100

Fault 3 - k2 k1
2 25 125

Fault 4 - k2 k2
2 25 150

Taking laplace transform, ma1s
2 + b1s+ k1 −b1s− k1

−b1s− k1 ma2s
2 + (b1 + b2)s+ (k1 + k2)

 X1(s)

X2(s)

 =

 Fex(s)

0

 ,
 X1(s)

X2(s)

 =

 ma1s
2 + b1s+ k1 −b1s− k1

−b1s− k1 ma2s
2 + (b1 + b2)s+ (k1 + k2)

−1  Fex(s)

0

 .
With external input, the mass oscillates. As the system is stable, it converges

to steady state value. To satisfy the persistence of excitation lemma, the input is

randomly changing. On the other hand, output noise is also present in the system.

Let the displacement of mass m1 which is x(t) be the output signal. In this example,

two second order systems are coupled, the effect of which is that there are four poles.

So, the individual transfer function of X1(s) and X2(s) is fourth order. From the

derivation to solve for X1(s) and X2(s), it is noted that four coefficients for each

transfer function are dependent on k1 and k2 as

X1(s) =
a′1s

2 + a′2s+ a′3
a′4s

4 + a′5s
3 + a′6s

2 + a′7s+ a′8
Fex(s), (3.114)

X2(s) =
a′′1s

2 + a′′2s+ a′′3
a′′4s

4 + a′′5s
3 + a′′6s

2 + a′′7s+ a′′8
Fex(s), (3.115)
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where a′3, a′6, a′7 and a′8 in (3.114) and a′′3, a′′6, a′′7 and a′′8 in (3.115) depend on k1 and

k2. The healthy model coefficients for x1 are calculated using recursive least squares

algorithm and are shown in Figure 3.6. The estimated output is shown to precisely

track the actual output (Figure 3.7).

Figure 3.6: Plot of Actual Output vs Model Output - Healthy System.

Figure 3.7: Error Histogram for Healthy System.
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3.4.1 Information Synthesis

The diagnostic model derived above can now be used to detect, isolate and esti-

mate the fault by adapting the parameters of the model and analyzing the changes.

The results of IS on a double mass-spring-damper system is presented.

While considering two faults by changing k1 and two faults by changing k2, it

produces four sets of model coefficients for each case apart from the healthy system

coefficient set. The mean value in each set was considered to be the true value and

standard deviation was calculated for the coefficients of the heathy system. Using

the least squares estimation technique described earlier, the healthy and adapted

coefficients are calculated for (3.114) as shown in Table 3.2.

Table 3.2: Coefficients for x1.

Fault code a′1 a′2 a′3 a′4 a′5 a′6 a′7 a′8

k0 0.2 0.6 8.5 1 4.5 48.1 41.6 166.5

k1
1 0.2 0.5 8.4 1 2.8 51.4 39.2 312.1

k2
1 0.2 0.6 8.6 1 2.6 54.4 40.2 367.8

k1
2 0.2 0.7 10.1 1 4.8 55.7 52.4 207.4

k2
2 0.2 0.8 11.9 1 5.4 65.2 64.8 254.3

The threshold for the dataset is given by equation (3.99) for normalized adapted

coefficients a′3, a′6, a′7 and a′8 and is calculated as 0.05878. Now the error vec-

tor defined in equation (3.95). For k1
1 fault, the error vector is given by R =

[0.01070.05110.04040.6428]T and ‖R‖2 = 0.6462. Since ‖R‖2 > ε, a fault is present.

For a k2
1 fault, the error vector is given by R = [0.01340.09710.02380.8887]T and

‖R‖2 = 0.8945. Since ‖R‖2 > ε, a fault is present. Similarly, ‖R‖2 = 0.3144 and

0.6821 for k1
2 and k1

2 faults respectively and hence, the fault is present.

Shown in Figure 3.8 is the error vector plot of the faulty systems in the fault

space. Failure estimation can be performed by analyzing the magnitude of the error
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vector as can be seen in the dataset. The magnitude of fault k2
1 is larger than the

fault k1
1 and the magnitude of fault k2

2 is larger than the fault k1
2. Shown in Figure

3.9 is the 4-D (3-D with color bar) plot of the coefficients of all the system models

for the dataset.

Figure 3.8: Error Vector in Fault Space.
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Figure 3.9: Plot of Adapted Model Coefficients.

3.4.2 Sensitivity Analysis

Sensitivity is used to evaluate the robustness of the proposed FDIE methodology.

Sensitivity analysis gives a quantitative picture of the effect of unwanted variables

such as sensor noise and external disturbances on the detection and diagnostic process.

The variance of the estimated parameters caused by these unwanted variables in turn

affects the fault signature code angles and the error vector magnitude. Shown in Table

3.3 the fault signature code of the spring constant faults calculated using equation

(3.101).

Table 3.3: Fault Signature Code - Spring Constant Faults.

Fault code γa′3(
o) γa′6(

o) γa′7(
o) γa′8(

o)

k1
1 89.1 85.4 86.4 5.8

k2
1 89.2 83.7 88.5 6.4

k1
2 63.8 67.9 54.6 54.9

k2
2 63.4 70.6 55.1 55.3
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The sensitivities of the angles and error vector length to variation in model pa-

rameters are shown in Table 3.4 and Table 3.5 and are calculated using equations

(3.108) and (3.110) respectively. These sensitivity values show the uncertainty in the

angles and the error vector length due to uncertainty in the parameter estimation.

Table 3.4: Fault Signature Code Sensitivity - Spring Constant Faults.

Fault code ∆γa′3(
o) ∆γa′6(

o) ∆γa′7(
o) ∆γa′8(

o)

k1
1 1.0 0.7 2.1 2.8

k2
1 1.4 1.1 3.1 1.6

k1
2 0.5 0.3 1.3 0.5

k2
2 6.1 4.1 7.1 6.2

Table 3.5: Error Vector Length Sensitivity - Spring Constant Faults.

Fault code ‖∆R‖2 × 100

k1
1 9.2

k2
1 11.1

k1
2 5.6

k2
2 37.2

It can be seen from Table 3.4 that the sensitivity of angles towards adapted coef-

ficients is more with increase in the magnitude of fault. Similar observation is made

from Table 3.5. The small values of angle and magnitude sensitivity proves the robust-

ness of FDIE method towards parametric uncertainty and variations. Consequently,

it is also shown that the error vector contains the information of the size of fault.
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Chapter 4

OBSERVER BASED ESTIMATION AND APPLICATIONS

In this chapter, an observer-based method for consistent parameter estimates and

the utility of these estimations in real-time model based diagnostics is presented. The

chapter is divided into two main parts: finite time state estimation in discrete systems

and observer based parameter estimation. The class of discrete systems considered

includes linear piecewise-continuous systems that are observable. Parameter estima-

tion is realized through a calculation involving the states from the combination of

Luenberger observers. After the estimation, Information Synthesis will be shown to

be an accurate diagnostic method to perform fault detection, isolation and estima-

tion tasks and that meets the requirement of On Board Diagnostics. The utility of

the proposed method is demonstrated on an experimental application of an engine

onboard sensor diagnostics.

4.1 Finite Time State Estimation in Discrete

Systems

4.1.1 System Description

The class of discrete systems considered include linear observable piecewise-continuous

systems. In the case when the system is not Hurwitz, the system must also be control-

lable. The piecewise continuous condition arises from the diagnostics application of

this work. In particular, the sudden failure of a subsystem produces a discontinuous

change in the system dynamics thereby requiring the piecewise condition. The slowly

time varying changes in the system dynamics is due to evolutionary-type of system

aging and is thus continuous.

Let the true system model whose parameters are to be identified be defined as the
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linear discrete system expressed in controllable canonical form

x(i+ 1) = Ax(i) +Bu(i),

y(i) = Cx(i), (4.1)

where

A = [Ao + ∆A], (4.2)

C = [Co + ∆C], (4.3)

A,Ao ∈ Rn×n are Hurwitz, [A,C] and [Ao, Co] are observable and C,Co ∈ R1×n. Ao

and Co denote the nominal healthy system dynamics, and the perturbations ∆A and

∆C are due to system uncertainties, failures and/or aging. The description in (4.1)

relies on the usual discrete system notation of

x(i) = x(t)|t=iT , (4.4)

where T is the sampling interval in units of time and i ∈ I+. The remaining variables

in (4.1) have dimensions that are consistent with those defined above.

The full state observer for (4.1) is defined as

x̂(i+ 1) = Aox̂(i) +Bu(i) +Ke(y(i)− Cox̂(i)),

ŷ(i) = Cox̂(i), (4.5)

where x̂(i) is the estimated state and Cox̂(i) is the estimated output. It looks like a

copy of the state equation driven by an error term y(i)− ŷ(i) that enters the dynamics

through an n × m observer gain matrix Ke (n=Number of states; p=Number of

outputs). This error term is intended to drive the state estimate x̂(i) to the actual

state x(i) over time. To further explore this key convergence issue, we define the

estimation error x̃(t) = x(t) − x̂(t) in terms of which we derive the error dynamics.

Regardless of the system given in (4.1), the observer will be chosen as stable, namely

Ao −KeCo is Hurwitz. The only unknowns appearing in (4.2) and (4.3) are namely
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∆A and ∆C.

Convergence of the observer defined in (4.5) is shown by developing the state

estimation error vector

ê(i+ 1) = x(i+ 1)− x̂(i+ 1),

= (Ao −KeCo)e(i) + (∆A−Ke∆C)x(i), (4.6)

where (Ao−KeCo) is Hurwitz by the design of Ke [74],[75]. Thus provided |x(i)| <∞

then |ê(i)| < ∞. Moreover, if the eigenvalues of the observer are faster than the

system dynamics, state convergence can be achieved.

4.1.2 Primer: Finite Time Observers

Reference [75] considers the problem of finite-time functional observer design for

linear discrete-time descriptor systems, which converges in finite time exactly. Con-

sider the following linear discrete-time singular system:

Ex(i+ 1) = Ax(i) +Bu(i) +Df(i),

y(i) = Cx(i), (4.7)

z(i) = Lx(i), x(0) = x0,

with state x ∈ Rn, control input u ∈ Rm, control input f ∈ Rq, measurable output

y ∈ Rp, and estimated output z ∈ Rr. All matrices are real and of appropriate

dimensions. Reader is refered to [75] for explaination of all the associated notations.

In order to design an observer which converges in finite time, the following functional

observer for system (4.7) in infinite time interval:

ζ(i+ 1) = Âζ(i) + B̂y(i) + Ĵu(i),

ẑ(i) = ζ(i) + D̂y(i), (4.8)

is defined where ζ ∈ Rr is the state vector and ẑ ∈ Rr is the estimate of z. Â, B̂, Ĵ

and D̂ are unknown matrices of appropriate dimensions, which are to be determined
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such that ẑ asymptotically converges to z.

In order to prove that the infinite time functional observer states error will asymp-

totically converge to zero, a matrix M should exist such that the following conditions

hold.

(c1) ÂME + B̂C = MA

(c2) Ĵ = MA

(c3) MD = 0

(c4) ME = L− D̂C

(c5) ζ(i+ 1) = Âζ(i)

Under these conditions, there exists a matrix parameter Z such that Â = Λ−ZΓ

is Hurwitz, where,

Λ = LAH1 −ΘΣ+


CAH1

CH1

EAH1

 , (4.9)

Γ = (I − ΣΣ+)


CAH1

CH1

EAH1

 . (4.10)

Here, the terminology is explained below,

E = E − I, (4.11)[
H1 E1

]
=

 L

G

−1

, (4.12)

Σ =


CAE1C 0

CE1 0 0

ĒAE1 E D

 , (4.13)

Θ =
[
LAE1 L 0

]
, (4.14)
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and Σ+ is the generalized inverse matrix of Σ as,

ΘΣ+Σ = Θ. (4.15)

By selecting the Z1 and Z2 such that observer state matrices Âk = Λ − ZkΓ are

stable, where k = 1, 2, they have designed two infinite time functional observers:

ζk(i+ 1) = Âkζk(i) + B̂ky(i) + Ĵku(i),

ẑk(i) = ζk(i) + D̂ky(i), (4.16)

where k = 1, 2 and

Â :=

 Â1 0

0 Â2

 , B̂ :=

 B̂1

B̂2

 , Ĵ :=

 Ĵ1

Ĵ2

 ,
D̂ :=

 D̂1

D̂2

 , N :=

 Îr

Îr

 , ẑ :=

 ẑ1

ẑ2

 , ζ :=

 ζ1

ζ2

 .
Key result: The two infinite observers are combined, and with use of delay d, a

new estimate ž is generated.

ζ(i+ 1) = Âζ(i) + B̂y(i) + Ĵu(i), (4.17)

ẑ(i) = ζ(i) + D̂y(i), (4.18)

ž(i) = K[ẑ(i)− Âdẑ(i− d)]. (4.19)

Theorem 4.1 Assume Â and d can be chosen such that

(a1) Â is stable

(a2) det[NÂdN ] 6= 0.

Then, (4.19) with K = [ Ir 0 ][ N eÂdN ]−1 , is an observer for system (4.7),

whose output ž(i) converges to z(i) in finite time d.

Theorem 4.2 If Z1, Z2 are chosen such that Â1 is nonsingular and

Reλj(Â2) < κ < Reλj(Â1), j = 1, 2, ..., r. (4.20)
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for some κ ∈ (0, 1), then, there exists a positive integer do such that for d > do,

det[NÂdN ] 6= 0.

Since ẑk(i+ 1)− z(i+ 1) = Âk(ẑk(i)− z(i)) for k = 1, 2, we have

ẑ(i+ 1)−Nz(i+ 1) = Â(ẑ(i)−Nz(i)), i ≥ 0, (4.21)

Therefore

ẑ(i)−Nz(i) = Âd[ẑ(i− d)−Nz(i− d)], k ≥ d. (4.22)

Using the fact KN = I and KÂdN = 0, we get

ž(i) = K[ẑ(i)− Âdẑ(i− d)], (4.23)

= z(i) +K[ẑ(i)−Nz(i)]−KÂd[ẑ(i− d)−Nz(i− d)]. (4.24)

This implies ž(i) = ẑ(i) for i ≥ d.

The proofs for the theorems are presented in Appendix B.

4.1.3 Proposed Finite Time Observer

The problem with using the method of two infinite functional observers is that the

matrices A and C are unknown. In order to determine them, the calculated estimate

is expressed in the form of Luenberger observer with stable observer state matrices

Âk = Ao−KekCo. It should be noted that the proposed method is analoguous to that

presented in [75](presented in section 4.1.2). The analogy exists because of the fact

that the key result and the two theorems described above are valid for the proposed

approach as well. For defining the observer state matrix, the matrices are replaced as

Λ→ Ao, (4.25)

Γ→ Co, (4.26)

Zk → Kek. (4.27)

The infinite observers can be redefined in Luenberger observer form as:

x̂(i+ 1) = Âx̂(i) +Key(i) +Bu(i),

ẑ(i) = x̂(i)− D̂y(i), (4.28)
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where x̂ ∈ Rr is the state vector and ŷ(k) ∈ Rr is the estimate of y. Â, B and D̂ are

unknown matrices of appropriate dimensions, which are to be determined such that

ž asymptotically converges to z.

By selecting the Ke1 and Ke2 such that observer state matrices Âk = Ao −KekCo

are stable, where k = 1, 2, two infinite time Luenberger observers are designed:

x̂k(i+ 1) = Âkx̂k(i) +Keky(i) +Bku(i),

ẑk(i) = x̂k(i)− D̂ky(i), (4.29)

where k = 1, 2 and

Â :=

 Â1 0

0 Â2

 , B̂ :=

 B̂1

B̂2

 , D̂ :=

 D̂1

D̂2

 ,

N :=

 Ir

Ir

 , ẑ :=

 ẑ1

ẑ2

 , x̂ :=

 x̂1

x̂2

 .
The two infinite observers are combined and with use of delay d, a new estimate

Ž is generated.

x̂(i+ 1) = Âx̂(i) +Key(i) +Bu(i),

ẑ(i) = x̂(i) + D̂y(i), (4.30)

Ž(i) = K

 ẑ1(i)

ẑ2(i)

−
 (Ao −Ke1Co)

d 0

0 (Ao −Ke2Co)
d

 ẑ1(i− d)

ẑ2(i− d)

 .
Again, Â and d can be chosen such that Â is stable and det[NÂdN ] 6= 0. Then,

with K = [ Ir 0 ][ N eÂdN ]−1 , it is an observer for system (4.7), whose output

Ž(i) converges to z(i) in finite time d. The choice for Ke1, Ke2 is done such that

Reλj(Â2) < κ < Reλj(Â1), j = 1, 2, ..., r. (4.31)

For some κ ∈ (0, 1), then, there exists a positive integer do such that for d > do,

det[NÂdN ] 6= 0.

In order to show the observed states’ convergence, the above method is simulated.
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The estimate thus converges in finite time equivalent to delay d as shown in Figure

4.1.

Figure 4.1: The Observer States Convergence.

The convergence is same as that of using the method of [75] which implies that

by using the two infinite-time Luenberger observers, an exact convergence in finite

time can be achieved. With the finite-time convergence of known estimated states,

parametric uncertainty quantification can now be discussed.

4.1.4 Computation of Parametric Uncertainty

This parametric uncertainty is based on simplify the expressions for ∆Ā and ∆C

done in the following development. To identified the parametric uncertainties in

(4.1), the estimated states defined in (4.5) are used to develop the following observed

equation,

x̂(i+ 1) = Ax̂(i) +Bu(i),

y(i) = Cx̂(i), (4.32)
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where the state estimates have converged in finite time (Section 4.1.2) and are known.

Using definition of A and C from (4.2) and (4.3),

x̂(i+ 1) = (Ao + ∆A)x̂(i) +Bu(i),

y(i) = (Co + ∆C)x̂(i). (4.33)

From (4.33), the parametric uncertainty in the state matrices, ∆A and ∆C, can

be calculated as

∆A = (x̂(i+ 1)− Aox̂(i)−Bu(i))x̂T (i)(x̂(i)x̂T (i))−1, (4.34)

∆C = (y(i)− Cox̂(i))x̂T (i)(x̂(i)x̂T (i))−1, (4.35)

provided the condition that |x̂(i)x̂T (i)| 6= 0, that is [x̂(i)x̂T (i)]−1 is invertible, persists

for ∆A and ∆C calculation.

Remark: Note that the estimated state perturbation matrix ∆A can be cal-

culated from the observer states using the data at one time sample. The impact of

this means that the online computational needs for the parametric uncertainty cal-

culation are reduced to that associated with the observer and the matrix calculation

at one time sample in (4.34). Furthermore the persistency of excitation condition

required for consistent parameter estimates has been reduced to the data at one time

sample. In contrast, standard least squares estimation solutions require persistency

of excitation over the data segment when estimating model parameters. Finally, note

that the computations in (4.34) can be performed recursively.

4.1.5 Sensitivity Analysis

Sensitivity towards noise and input can be calculated for systems consisting of

observers by first deriving the transfer function between control effort and observer

error. The system is shown in Figure 4.2.
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Figure 4.2: The Luenberger Observer in the Presence of Sensor Noise.

Simplification of the above block diagram gives the transfer function as

Eo(z) =
C(z)P (z)− Ce(z)Pe(z)

1 +GCO(z)Ce(z)Pe(z)
U(z) +

1

1 +GCO(z)Ce(z)Pe(z)
N(z). (4.36)

Derivation: The equations directly obtained from the block diagram are:

(a1) Eo(z) = Y (z)− Yo(z)

(a2) U(z) +GCO(z)Eo(z) = Ce(z)Pe(z)Yo(z)

(a3) N(z) + C(z)P (z)U(z) = Y (z)

By using (a2) and (a3), the equations for Yo(z) and Y (z) are put in (a1),

Eo(z) = N(z) + C(z)P (z)U(z) +
U(z) +GCO(z)Eo(z)

Ce(z)Pe(z)
(4.37)

After simplifying the above equation, we get the same result as (4.33).

Note: Both GCO(z) and Ke are equivalent. The transformation from observer

transfer function to state space form will change the GCO(z) and Ke and vice versa.

From this schematic diagram, the transfer function for observer is derived as,

Yo(z) =
P (z)C(z)

1 +GCO(z)P (z)C(z)
U(z) (4.38)

This transfer function can be obtained from state space as,

Co(zI − (Ao −KeCo))
−1B (4.39)
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Thus, these two are related as,

P (z)C(z)

1 +GCO(z)P (z)C(z)
⇔ Co(zI − (Ao −KeCo))

−1B (4.40)

So, GCO(z) and Ke can be found if any one of it is known.

So, the transfer functions related to low and high frequency respectively are

TU(z) =
C(z)P (z)− Ce(z)Pe(z)

1 +GCO(z)Ce(z)Pe(z)
, (4.41)

TN(z) =
1

1 +GCO(z)Ce(z)Pe(z)
. (4.42)

It is important to note that at lower frequencies, the difference in the numerator

of TU(z) is non-zero due to slow tracking whereas at higher frequencies, the difference

essentially becomes zero due to rapid tracking. Due to this fact, the estimated process

Pe(z) and the actual process P (z) is the same at higher frequencies.

The derivative dT (z)/dP (z) is examined[70],

dTU
dP

=
C(z)

1 +GCO(z)Ce(z)Pe(z)
, (4.43)

dTN
dP

=
GCO(z)C(z)

(1 +GCO(z)Ce(z)Pe(z))2
. (4.44)

Again, because the relative deviation from nominal is of interest, the logarithmic

derivative is considered,

d log TU
d logP

= SU(z) =
C(z)P (z)

1 +GCO(z)Ce(z)Pe(z)
(4.45)

d log TN
d logP

= SN(z) =
GCO(z)Ce(z)Pe(z)

1 +GCO(z)Ce(z)Pe(z)
(4.46)

As is noticed in (4.45) it depends on the compensator and hence, the lower bound

of the compensator is essentially designed only on the basis of fast observer transient

response (ten times the bandwidth of plant) for faster tracking. On the other hand

in (4.46), increasing observer gain amplifies the observer noise and an upper bound

is hence desired.
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4.2 Validation on Double Mass-Spring-Damper Sys-

tem

Before proceeding toward the experimental data analysis, the attention is drawn

back to the numerical example, the double mass-spring-damper system explained in

the previous chapter. The calculation of Ke is validated on this example. Since the

observer is attempting to estimate the values of state variables which are themselves

changing, it is desired that the dynamics of the observer be significantly faster than

the dynamics of the closed-loop system without the observer. A common guideline

is to make the estimator poles (eigenvalues of Ao − KeCo) 4-10 times faster than

the slowest plant pole (eigenvalues of Ao). The Ke is calculated on the basis of

pole placement by using Ackermann formula presented in Appendix C. Making the

estimator poles too fast can be problematic if the measurement is corrupted by noise

or there are errors in the sensor measurement in general. The plant poles are at

location [−1.9298± 6.1572i,−0.3142± 1.9749i]. Based on the poles found above, the

observer poles are placed at [−5.7893 ± 18.4717i,−0.9427 ± 5.9247i] such that the

observer bandwidth is approximately ten times more than plant bandwidth. These

poles can be modified later, if necessary. The observer gain matrix is obtained as

Kek =


5628.1

−416.75

−59.71

15.51


. (4.47)

Observer and plant bandwidth in bode plot (Figure 4.3) is shown to demonstrate

the noise attenuation while making the observer fast enough to achieve fast error

tracking performance. The observer bandwidth is 26.4585 rad/sec which is almost

ten times more than plant bandwidth, 3.0397 rad/sec. Error tracking shows that in

the presence of noise, the estimates track the actual system fast enough while the
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observer bandwidth attenuates the noise.

Figure 4.3: Bode Plot of the Observer and the Plant.

4.3 Validation on Sensor Fault Diagnostics Exper-

imental Data

Coming back to the experimental data study, the data used was obtained from

tests performed on a Ford gasoline engine. The test bench is comprised of a dy-

namometer capable of running steady state and transient speed load maps.

Previously, the data has been recorded for diagnostics of delay faults in engines

which is also termed as six fault diagnostics.

4.3.1 UEGO Sensor And Control Strategy

In order to measure the air/fuel ratio (AFR) in the exhaust system and control

it, UEGO sensors have been introduced in the automotive industry as an alternative

to the heated exhaust oxygen sensors (HEGO) which may only indicate if the AFR is
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above or below stoichiometry. In addition to giving the information on the operation

of the system, these devices are used to measure the mass air flow in the exhaust

line and determine the control action accordingly. An inventory of the common sen-

sors used for the AFR control has been drawn in [77] along with their characteristics.

UEGO sensors are fairly characterized by a nonlinear response but may usually be ap-

proximated by a first order transfer function with a delay. In [78] the sensor dynamics

were described by a second order model changing from under-damped to over-damped

with increasing load. An important factor which impacts the bandwidth of the AFR

control system is the delay. This factor is behind the degenerate performance of the

AFR control system especially at low speed where the bandwidth becomes very low

for a tight transient control.

4.3.2 Diagnostics Of The UEGO Sensor

Apart from the control related issues, the diagnostics of the UEGO operation is

nowadays a very challenging problem and is among the priorities of research as it

is closely related to the overall performance of the AFR control system. In fact,

Many types of faults may affect the operation of this UEGO sensor and potentially

engender an increase in the emissions and a decrease in the fuel economy. These

faults are typically characterized by a change in the sensor parameters or in its op-

erational characteristics. Several methods and approaches have been proposed that

diagnose the operation of the UEGO sensors namely the data-driven, model-based

and statistics-based approaches. Reports issued by California air regulation board

state that this sensor is subject to six possible faults that may affect its normal op-

eration. These faults can be either an additional lag or delay in the transition of the

response from lean to rich, rich to lean or both direction (see details in section 4.1.6).

In [79] it has been reported that “asymmetrical faults may result in emission failures

at much lower thresholds than symmetrical faults. Therefore, the logic to determine

fault versus no fault conditions should determine the type of fault present.”
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4.3.3 Illustration Of The Six Possible Faults

CARB regulations incite automakers to monitor the operation of the UEGO sensor

against any possible malfunction possibly affecting the transition from lean to rich,

from rich to lean or both. These faults may cause instability of the closed-loop system

and lead to degradation of the performance of the AFR regulation loop. It has been

interpreted that the monitor should be able to detect six discreet faults [79] as shown

in Figure 4.4.

Figure 4.4: Faulted/Unfaulted λ Measurements Due to Faults in UEGO Sen-

sor(Courtesy: Ford Motor Company).

The second and third plots show both lean to rich and rich to lean filter faults.

These faults are due to asymmetry in the time constant Tc between lean and rich

modes; time delays Td in both burn modes are the same. The last two plots show

both lean to rich and rich to lean delay faults. These faults are only due to asymmetry

in the time delay; the time constants are the same in both burn modes. The first

and fourth plots show both symmetric filter faults and symmetric delay faults. These

faults have been induced using a dedicated software in the loop (SIL) that receives
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the UEGO sensor measurement, induces the specific fault with a desired magnitude

and direction, then feeds the signal back to the closed-loop system.

In this work, the experimental data is obtained from UEGO sensor and system

identification is done in order to obtain the nominal plant. The main objective of this

section is to demonstrate the workability of the proposed methodology and compare

the results with parameter estimation done using the recursive least squares approach.

4.3.4 No Faults (Fault code - 0)

The nominal system for which the data is fitted with first order approximation is

obtained as,

Y (s) =
0.02943

z − 0.9708
. (4.48)

With a single input as air/fuel ratio to the plant and single output as air/fuel ratio

measured by sensor, the estimated and actual output using the proposed methodology

is shown in Figure 4.5. It can be easily seen from the figure that the estimated output

traces the actual output quite well. The error histogram in Figure 4.6 shows estimated

output having minimal percentage deviation from the actual output.

Figure 4.5: Comparison of the Actual and Estimated Air/Fuel Ratio Using Observers.
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Figure 4.6: Error Histogram Using Observers.

Figure 4.7: Time Constant (sec) for No Fault Case (Fault Code - 0) Using Observers.
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Figure 4.7 shows the variations of the time constant. The trajectory is uniquely

calculated within the system so that an exact value of estimated output can be ob-

tained at each iteration. The estimation of the time constant is fairly accurate because

the perturbations have been within very small bounds of ±0.003. In order to compare

the performance of methodology, the same data has been adapted using the recur-

sive least square approach (Figure 4.8 and 4.9) and then compared. The comparison

of the two methodologies on the basis of error histogram shows that the proposed

methodology adapts more efficiently. Furthermore the variations (Figure 4.7) in the

observer based method calculated time constant is less than that obtained from the

RLS calculated time constant (Figure 4.10).

Figure 4.8: Comparison of the Actual and Estimated Air/Fuel Ratio Using Least

Squares Technique.
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Figure 4.9: Error Histogram Using Least Squares Technique.

Figure 4.10: Time Constant (sec) for No Fault Case (Fault Code - 0) Using Least

Squares Technique.
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4.3.5 Symmetric Delayed Faults (Fault code - 1)

The data that consists of symmetric faults is analyzed in this section using the

proposed methodology. The nominal system, when the data is fitted with first order

approximation, is obtained as

Y (s) =
0.006668

z − 0.9932
. (4.49)

Given the nominal system and the output signal, the estimated output using

observers is obtained as shown in Figure 4.11. It can be noted here that the coefficients

are well adapted with each data point such that the estimated output approximates

the actual output. The deviation from actual trajectory can be noted as shown in

Figure 4.12. The error is well within the range of± 0.05 %. which positively concludes

the discussed approach.

An important point to understand is the variation of the time constant. The

methodology provides a series of values of the time constant that gives a correct

output estimate at each iteration. They are shown in Figure 4.13.

Figure 4.11: Comparison of the Actual and Estimated Air/Fuel Ratio Using Ob-

servers.

80



Figure 4.12: Error Histogram Using Observers.

Figure 4.13: Time Constant (sec) for Symmetric Fault Case (Fault Code - 1) Using

Observers.

With a step to further investigate the performance of the approach, a comparison
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has been made between the error histogram obtained from the proposed approach

and the other obtained from the RLS technique (Figure 4.12 and 4.15). The plot of

estimated and actual output obtained from the RLS technique for the same data is

shown in Figure 4.14. The comparison shows that the observer based method works

well for symmetric fault diagnostics data that is not very well adapted by the RLS

technique and shows a better approach for parameter estimation.

Figure 4.14: Comparison of the Actual and Estimated Air/Fuel Ratio Using Least

Squares Technique.
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Figure 4.15: Error Histogram Using Least Squares Technique.

Figure 4.16: Time Constant (sec) for Symmetric Fault Case (Fault Code - 1) Using

Least Squares Technique.
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4.3.6 Asymmetric Rich to Lean Delayed Faults (Fault

code - 6)

Similar analysis has been done for asymmetric faults (six faults) as done for sym-

metric faults. The nominal system, when the data is fitted with first order approxi-

mation, is obtained as

Y (s) =
0.007779

z − 0.992
. (4.50)

Given the nominal system and the output signal, the estimated output using ob-

servers is obtained as shown in Figure 4.17. The coefficients are rapidly adapted with

each data point such that the estimated output approximates the actual output. The

deviation from actual trajectory can be noted as shown in Figure 4.18. The error is

well within the range of ± 0.05 % in this case also.

The variation of the time constant is shown to be small enough to accurately es-

timate the parameter within the bounds of ±0.003. They are shown in Figure 4.19.

Figure 4.17: Comparison of the Actual and Estimated Air/Fuel Ratio Using Ob-

servers.
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Figure 4.18: Error Histogram Using Observers.

Figure 4.19: Time Constant (sec) for Asymmetric Fault Case (Fault Code - 6) Using

Observers.

The comparison between the error histogram obtained from the proposed approach
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and the other obtained from the RLS technique is shown (Figure 4.18 and 4.21). The

plot of estimated and actual output obtained from the RLS technique for the same

data is shown in Figure 4.20. The comparison shows that the observer based method

works well for six fault diagnostics data that is not very well adapted by the RLS

technique and shows a better approach for parameter estimation in this case also.

Figure 4.20: Comparison of the Actual and Estimated Air/Fuel Ratio Using Least

Squares Technique.
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Figure 4.21: Error Histogram Using Least Squares Technique.

Figure 4.22: Time Constant (sec) for Asymmetric Fault Case (Fault Code - 6) Using

Least Squares Technique.
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4.3.7 Summary

With the above validation and diagnostics of different fault codes of UEGO sensor,

it has been observed that observer based method results in a fast and accurate adap-

tation of air/fuel ratio (output of sensor) to track the perturbations as compared to

least squares technique. Apart from that, the parameter estimation of time constant

is faster and within smaller bounds than least squares technique. Table (4.1) and

(4.2) compares the average and standard deviation of the parameter (Time constant)

estimate. The average value proves the accurate estimation by both the methods

and standard deviation observers the accuracy of quantification of parametric uncer-

tainty. In the case of observer based method, the lower deviation concludes its better

quantification ability that least squares method.

Table 4.1: Average And Standard Deviation Of Time Constant Using Observer.

Fault Actual τ τ̄ στ

No Fault (Code 0) 0.9708 0.9711 0.0053

Symmetric Fault (Code 1) 0.9932 0.9919 0.00451

Asymmetric Fault (Code 6) 0.992 0.9923 0.00327

Table 4.2: Average And Standard Deviation Of Time Constant Using Least Squares.

Fault Actual τ τ̄ στ

No Fault (Code 0) 0.9708 0.9620 0.0205

Symmetric Fault (Code 1) 0.9932 0.9946 0.0174

Asymmetric Fault (Code 6) 0.992 0.9915 0.0146

Overall, this gives a better and robust estimation method. This process can be

applied in a continuous fashion where the algorithm will continuously estimate the

parameters of the system model and will perform fault diagnosis efficiently.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

Presented in Chapter 1 was the introduction and overview of the motivation for

on-board diagnostics using parameter based and observer based methods and the

diagnostic requirements. In chapter 2 various diagnostic methods proposed in the

literature and those being currently used were reviewed and the concept of observers

was described. Chapter 3 described the fault detection, isolation and estimation

method proposed in the present study based on analyzing the coefficient change of a

diagnostic model. The model parameter estimation through recursive least squares

was also presented. Chapter 4 proposed the observer based estimation method and

also validated the method on sensor fault diagnostics data.

5.1 Fault Detection, Isolation and Estimation

Using Observers

5.1.1 Summary

A proposed scheme involves the online parameter estimation for applications such

as system fault detection and diagnosis. A combination of two Luenberger observers

with different decay rates and a delay in between is applied in the system for real

time estimation of the system coefficients in finite time. Discussion about approaches

adopted for defining bounds on the observer gain matrix, and hence designing the ob-

server, is done for achieving noise attenuation and one-step estimation. The observer

based method has been validated on simulated data of a double-mass-spring-damper

system and on experimental data for sensor fault diagnostics.

In this work the application of a parametric adaptive model based technique (In-

formation synthesis) for fault detection, isolation and estimation(FDIE) is presented.

This methodology can be used onboard to alert the vehicle operator in case of failure
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of a system that results in emission exceeding the legal limits. The diagnostic model

parameters are updated by using the observer based method. The model identified is

further validated by correlating it with the physics based model of the system. To per-

form FDIE the changes in the parameters of the model of the system are analyzed. A

coefficient error vector is produced by comparing the healthy model parameters with

the adapted model parameters. The magnitude of the coefficient error vector may

be compared to a threshold, to be used for fault detection. Fault isolation is shown

to be possible using fault signature codes which are unique to faults that affect the

system dynamics differently. These fault signatures are the angles made by the error

vector in the fault space. The effect of variability of the system parameters on the

fault signature codes and the magnitude of the fault vector are shown through the

sensitivity analysis. The most important feature of the FDIE method presented in

this work is the robustness to modeling errors and the handling of noise acting on

the system. This robustness is required to prevent false detection of failure or to miss

the failure detections. The proposed approach has been successfully implemented

and validated to diagnose faults in engine subsystems using experimentally obtained

data.

5.1.2 Contributions and Publications

This outcome of research is a novel way of performing the parameter estimation

for various practical systems. Utilizing state estimation techniques and performing

algebraic manipulations, coefficient estimation and real time diagnosis and monitoring

of practical situations can be achieved. Consequently, a novel way of performing the

diagnostics of systems is proposed. Synthesizing the information contained in the

coefficient changes of the diagnostic model, accurate fault detection, isolation and

estimation can be achieved.

A summary of major contributions:

1. Observer design: Following a deterministic approach of coupling the two infinite
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time Luenberger observers, an observer design is proposed that enables finite

time exact convergence.

2. Quantification of parametric uncertainty: With known estimated states, the

parametric uncertainty is quantified while satisfying the conditions of state per-

sistency of excitation and observer convergence.

3. Design of observer gain matrix: The window of selecting the observer gain

matrix is shown to ensure noise attenuation while mandating faster tracking.

4. Real time validation: The task of online estimation of model parameters has

been performed using engine sensor data, which conclusively validates the pro-

posed methodology.

5. Fault detection, isolation and estimation: The magnitude of the coefficient error

vector against a threshold is compared and the fault signature code for fault

isolation is analyzed.

Publication

1. Kukreja. A., Franchek. M.A., Grigoriadis. K., Gupta A., Real Time Adaptive

Model Based FDIE of Diesel Engine Air Handling System. DSCC 2012, FL.

5.1.3 Scope for Future Work

A promising way of performing observer based estimation and fault diagnostics is

presented in this work. Some directions in which this work can be further extended

are listed below:

1. Further validation of the proposed approach can be accomplished by develop-

ing a real time parameter estimation algorithm and testing on other real time

experimental data for different applications.

2. A routine to calculate the bias and the delay are to be included in the algorithm.
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3. After validation, the approach may be utilized for highly demanded areas in

today’s world such as fault detection and diagnosis, condition and health mon-

itoring and so forth.
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Appendix A

FINITE TIME OBSERVER CONVERGENCE

Theorem 1 Assume ˆ̄A and d can be chosen such that

(a1) ˆ̄A is stable

(a2) det[N̄ ˆ̄AdN̄ ] 6= 0.

Then, (4.19) with K̄ = [ Īr 0 ][ N̄ e
ˆ̄Ad
N̄ ]−1 , is an observer for system (4.7), whose

output ˇ̄z(i) converges to z̄(i) in finite time d.

Proof Since ˆ̄zk(i+ 1)− z̄(i+ 1) = ˆ̄Ak(ˆ̄zk(i)− z̄(i)) for k = 1, 2, we have

ˆ̄z(i+ 1)− N̄ z̄(i+ 1) = ˆ̄A(ˆ̄z(i)− N̄ z̄(i)), i ≥ 0, (A.1)

Therefore

ˆ̄z(i)− N̄ z̄(i) = ˆ̄Ad[ˆ̄z(i− d)− N̄ z̄(i− d)], k ≥ d. (A.2)

Using the fact K̄N̄ = Ī and K̄ ˆ̄AdN̄ = 0, we get

ˇ̄z(i) = K̄[ˆ̄z(i)− ˆ̄Ad ˆ̄z(i− d)]

= z̄(i) + K̄[ˆ̄z(i)− N̄ z̄(i)]− K̄ ˆ̄Ad[ˆ̄z(i− d)− N̄ z̄(i− d)] (A.3)

This implies ˇ̄z(i) = z̄(i) for i ≥ d.

Theorem 2 If Z̄1, Z̄2 are chosen such that ˆ̄A1 is nonsingular and

Reλj(
ˆ̄A2) < σ < Reλj(

ˆ̄A1), j = 1, 2, ..., r. (A.4)

for some σ ∈ (0, 1), then, there exists a positive integer do such that for d > do,

det[N̄ ˆ̄AdN̄ ] 6= 0.

Proof Since we have[
N̄ ˆ̄AdN̄

]
=

 Ī ˆ̄Ad1

Ī ˆ̄Ad2


=

 Ī 0

Ī −Ī

 Ī ˆ̄Ad1

0 ˆ̄Ad1 − ˆ̄Ad2

 (A.5)
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and using the nonsingularity of matrix ˆ̄A1 obtain

det
[
N̄ ˆ̄AdN̄

]
= (−1)ndet( ˆ̄Ad1 − ˆ̄Ad2)

= (−1)ndet( ˆ̄Ad1)det[I − (( ˆ̄A−1
1 )d ˆ̄Ad2)]

= (−1)ndet( ˆ̄Ad1)det[I − (( ˆ̄A−1
1 )d(σĪ)d(σ−1Ī)d ˆ̄Ad2)]

= (−1)ndet( ˆ̄Ad1)det[Ī − (σ ˆ̄A−1
1 )d(σ−1 ˆ̄A2)d]. (A.6)

The first determinant on the right-hand side is nonzero for any positive integer.

The second one tends to +1 as d → +∞, due to the assumption of the lemma,

(σ ˆ̄A−1
1 )d(σ−1 ˆ̄A2)d → 0 as d → +∞. Consequently there exists a positive integer do

such that det
[
N̄ ˆ̄AdN̄

]
6= 0 for all integer d > do. The proof ends.
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Appendix B

ACKERMANN FORMULA

The observer gain matrix is defined using ackermann formula as,

K̄e = φ(Ā0)S̄−1
0

[
0 0 . . . 1

]T
, (B.1)

where

S̄0 = [ C̄0 C̄0Ā0 . . . C̄0Ā
n−1
0

]T , (B.2)

and

φ(Ā0) = (Ā0 − aĪ)n, (B.3)

where n is the dimension of Ā0 matrix and a is the desired repeated observer pole.
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