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Abstract

In the past decade, accelerators, commonly Graphics Processing Units (GPUs), have

played a key role in achieving Petascale performance and driving efforts to reach Ex-

ascale. However, significant advances in programming models for accelerator-based

systems are required in order to close the gap between achievable and theoretical

peak performance. These advances should not come at the cost of programmabil-

ity. Directive-based programming models for accelerators, such as OpenACC and

OpenMP, help non-expert programmers to parallelize applications productively and

enable incremental parallelization of existing codes, but typically will result in lower

performance than CUDA or OpenCL. The goal of this dissertation is to shrink this

performance gap by supporting fine-grained parallelism and locality-awareness within

a chip.

We propose a comprehensive loop scheduling transformation to help users more

effectively exploit the multi-dimensional thread topology within the accelerator. An

innovative redundant execution mode is developed in order to reduce unnecessary

synchronization overhead. Our data locality optimizations utilize the different types

of memory in the accelerator. Where the compiler analysis is insufficient, an ex-

plicit directive-based approach is proposed to guide the compiler to perform specific

optimizations.

We have chosen to implement and evaluate our work using the OpenACC pro-

gramming model, as it is the most mature and well-supported of the directive-

based accelerator programming models, having multiple commercial implementa-

tions. However, the proposed methods can also be applied to OpenMP. For the

hardware platform, we choose GPUs from Advanced Micro Devices (AMD) and
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NVIDIA, as well as Accelerated Processing Units (APUs) from AMD.

We evaluate our proposed compiler framework and optimization algorithms with

SPEC and NAS OpenACC benchmarks; the result suggests that these approaches

will be effective for improving overall performance of code executing on GPUs. With

the data locality optimizations, we observed up to 3.22 speedup running NAS and

2.41 speedup while running SPEC benchmarks. For the overall performance, the

proposed compiler framework generates code with competitive performance to the

state-of-art of commercial compiler from NVIDIA PGI.
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Chapter 1

Introduction

1.1 Motivation

In recent years, there has been a shift from systems relying on multi-core processors

to systems utilizing many-core processors, often in heterogeneous architecture con-

figurations. This shift has been most prominently realized in the increasing use of

Graphics Processing Units (GPUs) as general-purpose computational accelerators,

such as those provided by NVIDIA and AMD. These accelerators provide massively

parallel computing capabilities to users while preserving the flexibility provided by

CPUs for different workloads. However, effectively exploiting the full potential of

accelerators requires dealing with the programming challenges faced when mapping

computational algorithms to hybrid and heterogeneous architectures.

Low-level heterogeneous programming models, such as CUDA [3] and OpenCL [9],
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offer programming interfaces with execution models that closely match general-

purpose GPU (GPGPU) architectures. Effectively utilizing these interfaces to create

highly optimized applications requires programmers to thoroughly understand the

underlying architecture. In addition, they must be able to significantly change and

adapt program structures and algorithms. This affects productivity, portability and

performance.

An alternative approach would be to use high-level, directive-based programming

models, e.g., OpenACC [8] and OpenMP [15], to achieve the same goal. These mod-

els allow the user to insert both directives and runtime calls into existing Fortran or

C/C++ source code, enabling a portion of their code to execute on the accelerator.

Using directives, programmers may give hints to compilers to perform certain trans-

formations and optimizations on the annotated code regions. The user can insert

directives incrementally to parallelize and optimize a program, enabling a productive

migration path for legacy applications.

OpenMP, a parallel programming interface comprising a set of compiler direc-

tives, library routines and environment variables, has established itself as the de

facto standard for writing parallel programs in C/C++ and Fortran on shared mem-

ory multi-core CPU systems. OpenMP added an initial extension to its feature set

for making use of accelerators in version 4.0, and further extended its accelerator

support in version 4.5 (released in November of 2015). The target directive identifies

the offload region running on the accelerator, wherein a massive number of threads

may be organized into teams as prescribed by the programmer. OpenMP also pro-

vides simd constructs for directing compiler vectorization within each thread. As
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of this writing, there is no compiler that fully supports the OpenMP 4.5 specifica-

tion, though it is expected that compliant-implementations will be available soon.

Given its comprehensive support for parallelizing codes for CPU targets as well as

its evolving support for heterogeneous devices, OpenMP has the potential to fully

exploit parallelism on systems containing multi-core host processors and additional

accelerators, making it a strong candidiate for heterogeneous computing.

OpenACC, a directive-based parallel programming interface in many ways in-

spired by OpenMP, was the first standardized specification released to facilitate

programming of accelerators. Unlike OpenMP which offers a primarily prescriptive

interface for expressing parallelism, OpenACC provides both prescriptive and de-

scriptive mechanisms for this purpose. In particular, much of OpenACC is intended

for describing additional program information to compilers, so that it may more

effectively generate code for execution on accelerators. OpenACC’s descriptive in-

terface allows flexibility for the compiler to interpret how to map high-level language

abstractions to the hardware layer. Several vendors have delivered OpenACC com-

pilers since its first specification published in 2011, and in general its support for

accelerator-based computing has evolved in response to user feedback more rapidly

compared to OpenMP.

The OpenMP and OpenACC accelerator models have not evolved independently

from each other. For example, OpenMP adopted unstructured data directives and

asynchronous execution of offload regions from OpenACC 2.0 into its 4.5 accelerator

model specification. Conversely, OpenACC enacted semantic changes to some of its

data clauses in version 2.5, resulting in consistency with the corresponding behavior
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in the OpenMP 4.0 specification. In general, user experience with OpenACC has

informed the direction taken by OpenMP in its accelerator specification [5].

The performance gap [32, 17] between programs accelerated with OpenACC/OpenMP

using its relatively high-level abstractions compared to lower-level CUDA/OpenCL

versions indicates that more optimization research is required. In this dissertation,

we present a compiler framework for interpreting the OpenACC programming model

and propose a comprehensive loop scheduling implementation covering coarse- and

fine-grained parallelism. Based on this compiler framework, a set of compiler opti-

mizations are proposed to reduce synchronization and improve data locality. Pre-

scriptive directive-based solutions for explicitly guiding compiler optimization are

also proposed in order to direct loop scheduling transformations and further enhance

data locality.

1.2 Contributions of this Dissertation

The contributions are summarized as follows:

1. We constructed a prototype open-source OpenACC compiler based on a branch

of the industrial strength Open64 compiler. Our OpenACC compiler accepts

applications written in the C and Fortran base languages and targets NVIDIA

GPUs and AMD GPUs/APUs. This implementation serves as a compiler in-

frastructure for researchers to explore advanced compiler techniques for OpenACC,

to extend OpenACC to other programming languages, or to build performance

4



tools used with OpenACC programs.

2. We designed a rich set of loop-scheduling strategies within the compiler to ef-

ficiently distribute kernels or parallel loops to the threading architectures of

GPU accelerators. Our findings provide guidance for users to adopt suitable

loop schedules depending on the application requirements. Classical depen-

dence analysis was used to guide scheduling of nested loops and exploit an

unconventional redundant execution mode for the purpose of reducing syn-

chronization between each level of parallelism.

3. We present both implicit and explicit compile-time data locality optimization

techniques to more efficiently utilize deep memory hierarchies in GPUs. This

optimization can be separated into several different points: 1) compile-time

read-only array/pointer detection for each offload region in order to utilize the

read-only data cache; 2) extension of the Scalar Replacement (SR) algorithm

to fully exploit the rich set of register file resources; and 3) new clauses to assist

the compiler to reduce register file usage.

1.3 Dissertation Organization

The rest of this dissertation is organized as follows: Chapter 2 provides an overview of

GPU architectures and their respective low-level and high-level programming mod-

els. Chapter 3 discusses the OpenACC programming model. Chapter 4 reviews

the related work for existing directive-based compiler implementations. Chapter 5

highlights the OpenACC compiler framework in OpenUH. Chapter 6 explains two

5



sets of loop scheduling transformations for GPUs and our redundant execution mode

for multiple levels of parallelism. Chapter 7 describes data locality optimizations

on the GPU. Chapter 8 presents an evaluation of our compiler implementation and

optimization algorithms. Concluding remarks are given in Chapter 9 along with

potential avenues for future work.
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Chapter 2

GPU Architectures and Their

Programming Models

GPUs, when functioning as accelerators, are capable of executing a massive number

of threads in parallel. To support this capability, GPUs have significantly different

architectures compared to CPUs. So, in Section 2.1 we first give a brief introduction

on the GPU architecture and its programming models for expressing general-purpose

parallelism, i.e., not specifically graphics-oriented. OpenCL is a portable computing

framework that defines a programming language extension to C and assorted APIs

for programming GPUs from both NVIDIA and AMD. NVIDIA’s CUDA computing

platform provides a variety of tools for programming NVIDIA GPUs apart from

OpenCL, including the CUDA C extension to C/C++. In our work, we utilize

CUDA C and the CUDA runtime interface for supporting low-level programming

of NVIDIA GPUs, and OpenCL for corresponding low-level programming of AMD

7



GPUs. Therefore, both the CUDA and OpenCL programming models are introduced

in Section 2.2.

The trend towards energy efficiency has led to unified architectures in which

CPUs and GPUs are integrated onto the same die. In such an architecture, both

CPUs and GPUs can share the same virtual memory space and eliminate the need for

memory transfers between CPUs and GPUs. AMD’s Accelerated Processing Unit

(APU) is an example of such an architecture, and it supports zero-copy through

pointer passing between the CPU and GPU. This feature can greatly reduce the

data movement between the host and accelerator. Section 2.1.3 highlights the AMD

APU system based on Heterogeneous System Architecture (HSA).

2.1 GPU Architectures

The processor architecture of GPUs and CPUs are fundamentally different. Mod-

ern GPUs are throughput-oriented devices made up of hundreds of processing cores.

They maintain a high throughput and hide memory latency by supporting multi-

thread switching among thousands of threads. Each GPU supports the concur-

rent execution of hundreds to thousands of threads, following the single-instruction

multiple-threads (SIMT) model. Typically, the GPU has a two-level hierarchical ar-

chitecture. It is made of vector processors at the top level, and each vector processor

contains a large number of scalar processors at the lower level. Since NVIDIA and

AMD use their own terms to describe their architectures, we discuss each of them

separately.
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Figure 2.1: NVIDIA GPU Architecture and Threads Model

2.1.1 NVIDIA GPU Architectures

In Figure 2.1(a), the NVIDIA GPU consists of multiple Next Generation Streaming

Multiprocessors (SMXs), and each SMX consists of many scalar processors (SPs, also

referred to as cores). Each thread is executed by an SP. The smallest scheduling and

execution unit is called a warp which has 32 threads. Warps of threads are grouped

together into a thread block, and blocks are grouped into a grid. Figure 2.1(b) shows

how the blocks can be organized into a one-, two- or three-dimensional grid of thread

blocks in the CUDA programming model. Each thread has its own unique thread ID

which can be identified by threadIdx.x, threadIdx.y and threadIdx.z in each block.

Thread blocks cannot synchronize with each other, but the threads within a block

can do so. Each SMX can have at most 64 warps or 16 blocks allocated at a time.

Due to resource limitations (registers per thread and shared memory per block), the

number of warps and blocks may be less.

Each SMX has a number of different types on-chip memory resources. The on-

chip software managed cache, termed shared memory, is shared by SPs within the
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Figure 2.2: AMD GCN GPU architecture and OpenCL Threads Model

same SMX. A fixed number of registers are logically partitioned among the threads

running on the same SMX. The L1 cache and read-only data cache are also shared

by SPs within each SMX. All the SMXs share the L2 cache, global memory and two

kinds of special purpose memory: constant memory and texture memory. Accesses

to constant memory may be jointly issued by threads within the same warp, and

accesses to texture memory are optimized for 2D or 3D spatial locality. Both constant

memory and texture memory are read-only.

2.1.2 AMD GPU Architecture

In Figure 2.2(a), the AMD Graphics-Core-Next (GCN) GPU consists of multiple

Compute Units (CU). Each CU is partitioned into four separate SIMD units. Each

SIMD consists of 16 processing elements (PEs). In the AMD execution model, a

thread is called a work-item, where an individual work-item is executed on a single

PE. A wavefront, consisting of 64 work-items, is analogous to NVIDIA’s concept of
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a warp. Each SIMD unit has the capacity of 1 to 10 wavefronts. Once launched,

wavefronts do not migrate across SIMD units. One or more wavefronts of work-

items are grouped into a work-group, and one or more work-groups execute on a

single CU. In Figure 2.2(b), each work-item has a unique ID and can be organized

into a multi-dimensional work-group. The work-groups are further grouped into a

multi-dimensional grid. Thread synchronization is only supported within a work-

group.

2.1.3 AMD APU Architecture

Traditionally, CPUs and GPUs have been designed as separate processing archi-

tectures and do not work together efficiently. Each has a separate memory space,

requiring an application to explicitly copy data from CPU to GPU and then back

again. A program running on the CPU queues work for the GPU using system

calls through a device driver stack that is managed by a distinct scheduler. This

introduces significant dispatch latency, making the process worthwhile only when

the amount of parallel computation is substantial enough to offset this overhead.

The AMD APU is an architecture consisting of a CPU and GPU integrated onto a

single chip. The Heterogeneous System Architecture (HSA) is a cross-vendor set of

specifications that allow for the integration of CPU and GPU on the same bus with

a shared memory space and share task queues. The goal of HSA is to reduce com-

munication latency between CPUs and GPUs, relieving the burden of moving data

between devices’ disjoint memories. The HSA-based APU can efficiently support a

wide assortment of data-parallel and task-parallel programming models, as shown in
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Figure 2.3(a). In this dissertation, APU refers specifically to an HSA-based APU

that provides a truly unified memory architecture.

Figure 2.3(b) shows how the integrated GPU has access to the entire CPU mem-

ory space, and the CPU can pass a virtual memory pointer to GPU kernels without

moving data. The main benefit is that it reduces the cost of data movement when

CPU and GPU access the same data set.

2.2 GPU Low-Level Programming Models

As the architecture of the GPU is markedly different from most commodity CPUs,

GPUs can achieve high performance computing capability by exploiting data par-

allelism. This requires a programming model that is substantially different from

traditional CPU parallel programming models. In this section, we briefly describe

the CUDA [3] and OpenCL [9] programming interfaces, the two most widely used
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low-level programming models on GPUs.

Achieving inter-thread data locality is particularly important when programming

GPUs, as compared to CPUs, to achieve peak performance. In traditional CPU

multi-threading programming, data locality is often exploited within a thread be-

cause spatial data locality within a thread can increase cache utilization. Locality

across threads, however, may increase false-sharing due to cache coherence on a typ-

ical shared memory, multi-core system. Therefore, each thread usually takes a block

of data rather than one element. However, a GPU issues memory accesses with re-

spect to a group of threads (e.g., a warp or wavefront) rather than a single thread

as on a CPU. Memory operations are issued per warp/wavefront, just as with other

instructions. Threads in a warp/wavefront provide memory addresses, and the hard-

ware determines into which cache lines those addresses fall and requests the needed

lines. Memory is accessed at a 32-byte granularity. Consider a scenario in which

threads in a warp request data from consecutive memory addresses. The data can be

ready in 5 or less transactions since all the data transferred is efficiently used. This

is referred to as a coalesced memory access. In another other scenario, a scattered

access pattern may generate 32 memory transactions to make the data ready for all

the threads within a warp. As a result, the data locality among threads within the

same warp plays a critical role in optimizing global memory access performance.
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1 g l o b a l void va ke rne l ( f l o a t ∗ A, f l o a t ∗ B, f l o a t ∗ C, in t n){
2 in t i = blockDim . x ∗ blockIdx . x + threadIdx . x ;
3 i f ( i<n)
4 ∗(C+i ) = ∗(A+i ) + ∗(B+i ) ;
5 }
6
7 void vectoradd ( f l o a t ∗ A, f l o a t ∗ B, f l o a t ∗ C, in t n){
8 f l o a t ∗d A , ∗d B , ∗d C ;
9 i n t i s i z e = n∗ s i z e o f ( f l o a t ) ;

10 cudaMalloc ( ( void ∗∗)&d A , i s i z e ) ;
11 cudaMalloc ( ( void ∗∗)&d B , i s i z e ) ;
12 cudaMalloc ( ( void ∗∗)&d C , i s i z e ) ;
13 cudaMemcpy(d A , h A , i s i z e , cudaMemcpyHostToDevice ) ;
14 cudaMemcpy(d B , h B , i s i z e , cudaMemcpyHostToDevice ) ;
15 i n t threadsPerBlock = 256 ;
16 i n t blocksPerGrid = (n+255) /256 ;
17 va kerne l<<<blocksPerGrid , threadsPerBlock>>>(d A , d B , d C , n) ;
18 cudaMemcpy(h C , d C , s i z e , cudaMemcpyDeviceToHost ) ;
19 cudaFree (d A) ;
20 cudaFree ( d B ) ;
21 cudaFree (d C) ;
22 }

Figure 2.4: Vector Addition in CUDA

2.2.1 CUDA Programming Model

The CUDA programming language was introduced by NVIDIA to program its mas-

sively parallel GPU architectures and the CUDA kernel function follows to a Single

Program Multiple Data (SPMD) programming model. The GPU is treated as a

co-processor that executes the compute-intensive kernel functions. CUDA provides

an abstraction for describing a hierarchy of threads, different types of memories and

synchronization. The hierarchy of threads abstraction tightly matches the GPU

hardware architecture. In CUDA, threads have a two-level hierarchy. A grid is a

set of thread blocks that execute a kernel function. Each grid consists of blocks

of threads. Each block is composed of hundreds of threads. Threads within one

block can share data using shared memory and can be synchronized at a barrier. All

threads within a block are executed concurrently on a single SMX. The programmer

specifies the number of threads per block and the number of blocks per grid during

the kernel launch.
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Figure 2.4 shows a vector addition written using CUDA C and the CUDA library

API. The keyword “ global ” identifies the GPU kernel function which runs on

the GPU. Other functions are still executed on the CPU. In this kernel function,

each thread operates on its own portion of the data and performs one addition. On

the CPU side, CUDA runtime functions are called to allocate device memory and

transfer the data onto the device (shown between lines 10 and 14). The GPU kernel

launch is called with a specified thread hierarchy (line 17). After the computation

finishes, the data is copied back from the GPU device memory to the CPU host

memory.

2.2.2 OpenCL Programming Model

OpenCL is an open-standard language for programming GPUs and is supported

by all major vendors of GPUs. Like CUDA, OpenCL also provides mechanisms

to describe thread topology, memory hierarchy of the GPU and synchronization.

NDRange (or Grid) describes the space of work-items, which can be one-, two- or

three-dimensional, as shown in Figure 2.2(b). Unlike CUDA, OpenCL programmers

can just specify the total number of work-items and let the OpenCL implementation

determine how to compose them into work-groups. OpenCL provides the following

disjoint address spaces: global, local, constant and private. Private Memory can

only be accessed by each work-item. Variables inside a kernel function not declared

with an address space qualifier are in the private address space. Local Memory is a

low-latency, high-bandwidth on-chip software managed cache that is shared by the

work-items within the same work-group. Constant Memory and Texture Memory
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1 const char ∗ kerne lSource =
2 ” k e r n e l void va ke rne l ( g l o b a l f l o a t ∗ A, g l o b a l f l o a t ∗ B,\n”
3 ” g l o b a l f l o a t ∗ C, in t n)\n”
4 ”{\n”
5 ” in t i = g e t g l o b a l i d (0 ) ;\n”
6 ” i f ( i<n)\n”
7 ” ∗(C+i ) = ∗(A+i ) + ∗(B+i ) ;}\n”
8
9 void vectoradd ( f l o a t ∗ A, f l o a t ∗ B, f l o a t ∗ C, in t n){

10 cl mem d a , cl mem d b , cl mem d c ;
11 c l p l a t f o rm i d cpPlatform ;
12 c l d e v i c e i d d ev i c e i d ;
13 c l c on t e x t context ;
14 cl command queue queue ;
15 c l program program ;
16 c l k e r n e l k e rne l ;
17 i n t i s i z e = n∗ s i z e o f ( f l o a t ) ;
18 // I n i t i a l i z e the dev i ce
19 . . .
20 program = clCreateProgramWithSource ( context , 1 ,
21 ( const char ∗∗) & kerne lSource , NULL, &e r r ) ;
22 clBuildProgram ( program , 0 , NULL, NULL, NULL, NULL) ;
23 ke rne l = c lCreateKerne l ( program , ” va ke rne l ” , &e r r ) ;
24
25 d a = c lCrea t eBu f f e r ( context , CL MEM READ ONLY, i s i z e , . . . ) ;
26 d b = c lCrea t eBu f f e r ( context , CL MEM READ ONLY, i s i z e , . . . ) ;
27 d c = c lCrea t eBu f f e r ( context , CL MEM WRITE ONLY, i s i z e , . . . ) ;
28 clEnqueueWriteBuffer ( queue , A, CL TRUE, 0 , i s i z e , A, . . . ) ;
29 clEnqueueWriteBuffer ( queue , B, CL TRUE, 0 , i s i z e , B, . . . ) ;
30
31 c lSetKerne lArg ( kerne l , 0 , s i z e o f ( cl mem ) , &d a ) ;
32 c lSetKerne lArg ( kerne l , 1 , s i z e o f ( cl mem ) , &d b ) ;
33 c lSetKerne lArg ( kerne l , 2 , s i z e o f ( cl mem ) , &d c ) ;
34 c lSetKerne lArg ( kerne l , 3 , s i z e o f ( unsigned in t ) , &n) ;
35
36 clEnqueueNDRangeKernel ( queue , kerne l , 1 , NULL, &n , . . . ) ;
37 c lF i n i s h ( queue ) ;
38 clEnqueueReadBuffer ( queue , d c , CL TRUE, 0 ,
39 i s i z e , C, . . . ) ;
40
41 // r e l e a s e OpenCL re s ou r c e s
42 . . .
43 }

Figure 2.5: Vector Addition in OpenCL

are read-only memory. Texture Memory is allocated using the OpenCL Image APIs.

Global Memory, Constant Memory and Texture Memory can be accessed by all the

work-items in the grid and reside in the off-chip DRAM. OpenCL provides intrinsic

functions to synchronize work-items inside a work-group. However, there is no way

to communicate among work-groups.

Figure 2.5 shows a vector addition in OpenCL. All the functions prefixed with

“cl” are defined by the OpenCL runtime library. Because the names in the OpenCL
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1 void vectoradd ( f l o a t ∗ A, f l o a t ∗ B, f l o a t ∗ C, in t n){
2 SNK INIT LPARM( lparm1 , 512)
3 va ke rne l (A, B, C, n , lparm1 ) ;
4 }

Figure 2.6: Vector Addition in APU

runtime APIs are too lengthy, some of the statements shown in the figure are short-

ened using ellipses. The “ kernel” keyword identifies the OpenCL kernel function

and “ global” indicates the global data. As can be observed from the OpenCL

code, programmers are required to initialize devices, manage the data movement,

and launch the kernel by calling the OpenCL runtime. As when programming using

CUDA, the OpenCL programmer must explicitly manage many low-level details to

map data to the suitable memory space and to manage the synchronization between

host and device. OpenCL exposes quite a lot of low-level details of GPU architec-

tures and consequentially OpenCL programming can entail a steep learning curve.

For the APU architecture, another approach is used to make programming on the

CPU side less burdensome. CLOC (CL Offline Compiler) takes the OpenCL kernel

functions and generates a Platform Interface Function (PIF) for each kernel. The

CPU can directly call the kernel function like any other function, with an additional

parameter to setup the number of threads. Since data management and initialization

is not exposed to the user, programming on the APU using CLOC becomes much

easier. The same vector addition example can be simplified, as shown in Figure 2.6.

Note that the same kernel function is used as in Figure 2.5. In this example, CLOC

helps hide the device initialization and the kernel launch details, and it is therefore
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much easier than what the OpenCL API offers.

2.2.3 Summary of CUDA and OpenCL

In this section, we briefly described the CUDA and OpenCL programming models.

CUDA and OpenCL are seamlessly designed to describe GPU architectures. By

explicitly controlling the resources on the GPU, programmers can achieve greater

performance by manually optimizing the applications written using the low-level

languages and APIs provide by CUDA or OpenCL.

Table 2.1: NVIDIA and AMD Equivalent Terminology

NVIDIA Term AMD Term

Shared Memory Local Memory
SMX Compute Unit
Warp Wavefront
Thread Block Work Group
Thread Work Item
threadIdx.x/y/z get local id(0)/(1)/(2)
blockDim.x/y/z get local size(0)/(1)/(2)
blockIdx.x/y/z get group id(0)/(1)/(2)
gridDim.x/y/z get num groups(0)/(1)/(2)

To aid in our comparisons when discussing programming on GPUs from NVIDIA

and AMD, Table 2.1 presents the respective terminology we will use. For example,

the compute unit (CU) in AMD is equivalent to SMX in NVIDIA. The warp in

NVIDIA is named wavefront in AMD. The warp consists of 32 threads for NVIDIA,

while a wavefront consists of 64 threads on AMD platforms. Local memory in AMD

has the similar function as shared memory in NVIDIA GPUs. In this dissertation,

we use “block” to refer to thread-block or work-group and use “thread” to refer to
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CUDA thread or work-item, for NVIDIA and AMD, respectively.

Both CUDA and OpenCL are considered low-level programming models for GPU-

style accelerators. It exposes many of the architectural features of the GPU, such

as a multi-dimensional grid and thread block configuration, the scratchpad memory,

disjoint memory spaces between CPU and GPU, and so on. A number of chal-

lenges can be observed in using low level programming models. First, programmers

are required to thoroughly understand the underyling architecture of the accelera-

tor. Second, these models require rewriting of significant portions of existing legacy

applications that one may wish to accelerate. This is time consuming and error-

prone. Third, the portability of the application becomes another challenge by writ-

ing code with CUDA/OpenCL. By portability, we mean that the source code and

performance are portable across different types of GPUs. CUDA is a single-vendor

solution. OpenCL can execute across a plethora of different platforms and archi-

tectures, but it is far from trivial to achieve optimum performance by sharing one

piece of low level code. Meanwhile, high-level directive-based parallel programming

interfaces, like OpenACC and OpenMP, address the above challenges by providing a

more viable approach for addressing productivity and portability. The challenge then

becomes developing compiler implementations that can do this while also delivering

competitive performance.
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2.3 Summary

In this chapter, we reviewed GPU architectures and their low-level programming

models that are relevant to our research. GPUs are throughput-oriented devices

that use hundreds of cores to execute a massive number of threads and utilize thread

switching to hide memory latency. CUDA and OpenCL are two widely used, seam-

less programming models for mapping parallelism onto the massively parallel GPU

architecture. The strength of these two programming models allow expert program-

mers to hand-tune their codes to exploit the full capabilities of the GPU. However,

the programmer must have substantial knowledge of the hardware details of the GPU

in order to achieve good performance. In the next chapter, we discuss OpenACC,

an emerging directive-based programming model that aims to provide interfaces for

exploiting the power of GPUs in a more productive and portable manner.
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Chapter 3

OpenACC Programming Model

OpenACC is a high-level directive-based Application Programming Interface (API)

that can be used to port HPC applications to different types of accelerators such

as NVIDIA GPUs, AMD GPUs and other accelerators. It allows programmers to

provide simple hints, known as “directives”, to the compiler, identifying which ar-

eas of code to accelerate, without requiring programmers to modify or adapt the

underlying code itself. By exposing parallelism to the compiler, directives help the

compiler perform the detailed transformation of mapping the computation onto the

accelerator.

The OpenACC specification is driven by the feedback from many application users

and has quickly evolved. The specification was first proposed during Supercomputing

2011 by Cray, PGI, CAPS and NVIDIA. Version 2.0 was officially released in June

2013. The new features in 2.0 include new controls over data movement (such as

unstructured data regions), support for explicit function calls and atomic operation
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in the compute region. Version 2.5 of the specification was released in October 2015,

notably with an added profiling interface.

OpenMP’s accelerator programming model is another directive-based approach.

Since OpenMP 4.0 was released in late 2013, support for accelerator programming

has become part of the specification. When we started working on the OpenACC

compiler in 2012, OpenMP was not ready to support GPUs. Although the work

described in this dissertation focused on OpenACC transformation and optimiza-

tion, the same strategy can also be applied in an implementation of the OpenMP

accelerator model targeting GPUs.

In this chapter, we first briefly describe the major features of the OpenACC

specification. It is categorized into four subjects: memory model, execution model

computing directives and data directives. Then, the future direction of OpenACC

is discussed. The OpenACC specification uses generic terms to describe the hetero-

geneous programming environment. In general, the host is a CPU and the device is

the accelerator (e.g., GPU).

3.1 Overview of OpenACC Programming Model

3.1.1 Memory Model

Typically, the memory of host and accelerator (device) are physically separated in

the heterogeneous system as shown in Figure 3.1. In this case, the host may not be

able to access the memory on the accelerator directly because it is not mapped onto
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Figure 3.1: OpenACC Separate Memory Model

the host thread’s virtually memory space. Explicit data movement between the host

and accelerator usually is necessary. The host thread can call the accelerator driver

APIs to perform the data movement between the two separated memories. Similarly,

it is not valid to assume the accelerator can access the host memory directly.

The concept of separate host and accelerator memories is clear in low-level accel-

erator programming models like CUDA or OpenCL. Data movement between host

and device memories are explicitly managed via low-level APIs by the user. In the

OpenACC model, data movement between the memories is based on the directives

from programmers and low-level APIs are hidden by the compiler and runtime. The

OpenACC runtime maintains a present table which contains the map between host

data and a corresponding copy on the device.

OpenACC uses a set of directives and clauses to manage the separate memo-

ries. In a unified memory system where the host and device share the same virtual
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memory, such data directives and clauses can be ignored by the compiler. For exam-

ple, compiler implementations can bypass all the data directives and clauses for the

AMD HSA-based APUs in which the GPU shares physical and virtual memory with

the CPU. In such scenarios, the compiler implementation does not have to create

data copies for device. In more general cases, the host and device has physically or

virtually separate memories. So in this case, the compiler translates high-level data

clauses into the device memory management APIs and create data copies in device

memory. However, data directives are necessary in order to maintain the portability

of applications on these different architectures.

3.1.2 Execution Model

The execution model assumes that the main program runs on the host while the

compute-intensive regions of the program are offloaded to the attached accelerator.

The accelerator and the host may have separate memories, and the data movement

between them may be controlled explicitly. OpenACC provides a rich set of data

transfer directives, clauses and runtime calls as part of its standard. To minimize

the performance degradation due to data transfer latency, OpenACC also allows

asynchronous data transfer and asynchronous computation to be initiated from the

host, thus enabling overlapped data movement and computation.

The execution model defined by OpenACC is host-directed execution. Compute

intensive regions that are identified using directives by the programmer are offloaded

to the accelerator. The device executes the offload region in parallel. Each offload
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region contains nested loops which are executed in work-sharing mode.

Generally, each offload region becomes a compute kernel running on the device.

Within the offload region, the host thread controls the execution flow by allocating

the memory on the device, initiating the data transfer, transferring the kernel func-

tion code to the accelerator, passing arguments to the kernel function, placing the

device kernel on the launching queue, waiting for completion, transferring the results

back to the host and deallocating the memory on the device. If the device computa-

tion is executed asynchronously, then the host part can continue its execution until

a synchronization point.

Most current accelerators support two or three levels of parallelism. Accelera-

tors consist by multiple execution units, each of which can execute multiple threads.

Each thread adopts SIMD operations. OpenACC provides these three levels of paral-

lelism via gang, worker and vector parallelism. Gang level is coarse-grain parallelism

which is fully parallel execution across execution units. At this level, synchronization

support is very limited. Worker level is fine-grain parallelism which is usually im-

plemented as multiple threads execution within each execution unit. Finally, vector

level is an additional SIMD parallelism within each thread. In a typical parallelism

execution scenario, a number of gangs are created on the accelerator when the kernel

is launched, each gang contains one or more workers and vector parallelism is for

SIMD or vector operations within each worker.
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3.1.3 Compute Offload Directives

OpenACC offers two kind of accelerator compute constructs which are parallel

and kernels directives. The code regions constructed by parallel and kernels

directives are called offload region in this dissertation. The parallel directive pro-

vides prescriptive language feature that allows the user to explicitly control compiler

translation. The entire parallel region becomes a single computational kernel run-

ning on the accelerator. In contrast, the kernels directive provides a descriptive

capability that allows the compiler to take more control over transformation. The

compiler may split the code in the kernels region into a sequence of accelerator

kernels. Typically, each loop nest becomes a distinct kernel. When the program

encounters a kernels construct, it launches the sequence of kernels in order on the

device.

The loop directive in the parallel/kernel region can be used to identify the

potential parallel loops and performs working-sharing parallelism. OpenACC exposes

these three levels of parallelism via gang, worker and vector parallelism that can be

used to partition the loop parallelism. The three levels of parallelism are described

by clauses gang, worker and vector in the loop construct. How parallel execution

of the different loop iterations is mapped onto the different levels of parallelism can

be controlled using the gang, worker and vector clauses. These three clauses are

called loop scheduling clauses in this dissertation.

The offload regions are launched by host with one or more gangs, and each gang

includes one or more workers. Vector parallelism is for SIMD or vector operations
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within a worker. Typically, for NVIDIA and AMD GPUs, gang maps a parallel loop

iterations onto the grid-level. But worker and vector mapping may have different

interpretations depending on the compiler implementation. For further performance

tuning, it is possible to control the number of gangs, workers and the vector size with

the num gangs, num workers and vector length clauses within a parallel construct.

The OpenACC’s model of an accelerator architecture is a collection of compute

units and each of them can execute SIMD operations. This maps fairly well onto

most current accelerator hardware. For NVIDIA GPUs, for example, the compute

unit maps roughly onto the streaming multiprocessors, or the thread blocks, and the

vector dimension maps roughly onto the threads within a thread block. There is no

support for any synchronization between gangs, since current accelerators typically

do not support synchronization across compute units. A program should try to map

parallelism that shares data to workers within the same gang, since those workers

will be executed within the same compute unit, and will share resources (such as

data caches) that would make access to the shared data more efficient.

3.1.4 Data Directives

OpenACC has a structured data construct that allows a program to tell the compiler

when certain data needs to be available on the device. One important clause for this

construct is the copy clause, which says that if a copy of the data is allocated in device

memory, that data must be initialized with the existing values from host memory,

and when the device is done processing the data the final values must be copied back
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to host memory. Execution of a data construct creates a data region, which is the

dynamic range of the construct. The data specified in the data construct’s clauses

will be available on the device over the entire data region, including any procedures

called within that region.

OpenACC also includes dynamic or unstructured data life-times, with the enter

data and exit data directives. The enter data directive acts very much like the

entry to a structured data construct, and the exit data directive acts very much like

the exit from a structured data construct. The unstructured data region is especially

useful within C++ constructors and destructors.

For some targets, the data directives can be completely ignored. For a multi-core

and single physical memory targets, there is only ever one copy of the data and the

same address is used by the host and accelerator cores, such as for AMD APUs. For

an attached accelerator within its own memory, data must be allocated and copied to

and from device memory since the accelerator cores cannot access host memory. For

zero-copy memory (either type) or managed memory, the data needs to be allocated

in the proper way. OpenACC does not control the memory allocation; the data could

be static, global, local to a procedure (on the stack), or dynamically allocated.

3.1.5 Vector Addtion Example with OpenACC directives

Consider the OpenACC code example given in Figure 3.2 to demonstrate a directive-

based approach to programming an acclerator. In Figure 3.2(a), the structured data

directive is used to create the arrays a, b and c. At the beginning of the data region,
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the compiler helps users allocate device memory to map these arrays. By the end of

data region, the compiler helps users do two things: (1) the array c will be copied

out from device memory to host memory and (2) arrays a, b and c will be deallocated

from device memory. The parallel directive is used to tell the compiler that the

entire enclosed region becomes a compute kernel running on the accelerator. The

parallel region can also prescribe how the configuration of threads with the clauses

num gangs, num workers and vector length. The loop construct tells the compiler

the loop can be parallelized and the iterations are distributed across gangs and vector

lanes. There is only one compute kernel generated by compiler.

In Figure 3.2(b), unstructured data directives and a kernels compute construct

are used. This code defines arrays to be allocated in the device memory for the

remaining duration of the program, or until an exit data directive that deallocates

the data is encountered. They also tell whether data should be copied from the host

to the device memory at the enter data directive, and copied from the device to

host memory at the exit data directive. The dynamic range of the program between

the enter data directive and the matching exit data directive is the data lifetime

for that data. The loop nests in the kernels construct are converted by the compiler

into parallel kernels that run efficiently on the accelerator. Each loop nest in the

kernels construct is compiled and launched separately. In CUDA/OpenCL terms,

each loop nest becomes a separate kernel. In particular, this means that the code

for the first loop nest will complete before the second loop nest begins execution.
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1 #pragma acc data c r ea t e (a , b , c ) \
2 copyout ( c )\
3 {
4 #pragma acc p a r a l l e l \
5 num gangs ( ( n+127) /128) \
6 num workers (1 ) \
7 ve c t o r l eng th (128)
8 {
9 #pragma acc loop gang vector

10 f o r ( i =0; i<n ; i++) {
11 a [ i ] = s i n f ( i ) ∗ s i n f ( i ) ;
12 b [ i ] = co s f ( i ) ∗ c o s f ( i ) ;
13 }
14
15 #pragma acc loop gang vector
16 f o r ( i =0; i<n ; i++) {
17 c [ i ] = a [ i ] + b [ i ] ;
18 }
19 }
20 }
21

(a) Structured Data Region and Parallel
Offload Region

1 #pragma acc ente r data \
2 c r ea t e (a , b , c )
3
4 #pragma acc k e rn e l s \
5 present (a , b , c )
6 {
7 #pragma acc loop
8 f o r ( i =0; i<n ; i++) {
9 a [ i ] = s i n f ( i ) ∗ s i n f ( i ) ;

10 b [ i ] = co s f ( i ) ∗ c o s f ( i ) ;
11 }
12
13 #pragma acc loop
14 f o r ( i =0; i<n ; i++) {
15 c [ i ] = a [ i ] + b [ i ] ;
16 }
17 }
18
19 #pragma acc e x i t data \
20 copyout ( c ) d e l e t e (a , b)
21

(b) Unstructured Data Directives and
Kernels Offload Region

Figure 3.2: OpenACC Parallel and Kernels version of Vector Addition: assume that a, b
and c are the scalar arrays in C

3.2 Present Status and Future Directions

The OpenACC programming model has focused on accelerator computing and has

released three version of specifications since 2011. OpenACC 1.0 basically defined

the structured data region, and offload computational regions – the parallel and

kernels directives. Three levels of parallelism (gang, worker, and vector) can be

defined by the loop directive. OpenACC 2.0 introduced directives to handle un-

structured data regions, offloading procedures (called from within compute regions),

nested parallelism and atomic operations inside offload regions. OpenACC 2.5 added

a number of changes. The most significant of these is a profiling interface. There

are several other directives introduced (e.g. init and shutdown directives for device

control). The behavior of some data clauses were also also changed – copy, copyin,
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and copyout or now aliases for pcopy, pcopyin, and pcopyout, respectively. Essen-

tially, this means that there is an implied presence check before these data transfer

opertions. The new features of the specification are based on feedback from appli-

cation users. In this section, we will review the major features that the OpenACC

committee is working on for version 3.0.

3.2.1 Deep Copy

Deep copy is the significant feature that the OpenACC committee is pushing to have

ready for the 3.0 release. The current OpenACC specification performs “shallow

copy”. Shallow copy of an aggregate data object copies all of the member field values.

This works well if the fields are values, but may yield unexpected results when fields

are pointers that point to host memory. The pointer is copied, but the data that it

points to may not be accessible on the device. Consequentially, both original and

duplicated objects point to the same memory location as shown in Figure 3.3(a).

For a shallow copy, the offloaded kernel running on the accelerator tries to access the

duplicated object and the pointer field inside this object points to the host memory

space. In this case, a runtime error will most likely occur. Note that for unified

memory architectures like AMD APU, deep copy support may not be necessary for

correctness, though it may still in some cases be beneficial for performance.

The concept of deep copy is to copy all fields in the aggregate data object which

may include dynamically allocated memory pointed to by the fields as shown in

Figure 3.3(b). The operation also makes copies of dynamically allocated memory
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Figure 3.3: Difference between Shallow Copy and Deep Copy

that are pointed by the fields. The aggregate data type can be nested. The deep

copy is to handle nested dynamic data structures. For example, there could be a

large array that is used on a device and the entire array is moved to the device.

But suppose the the array is actually an array of structures, each element of that

array is a structure that has a field that is another allocatable array, and each one of

these allocatable arrays could have differing sizes. It is extremely challenging for the

compiler to decide how to transfer the data in this case. In Fortran, all of pointer and

pointee information is stored in the dope vector structure which is initialized at the

pointer initialization. This information includes the pointee’s memory location and

length. For Fortran applications, the compiler has the information needed to perform

a full deep copy. But for C/C++ codes, the language does not provide a means to

capture the memory size of pointees at compile-time. Therefore, it is necessary to

define directives that give the compiler hints on how to generate the transfers and

avoid runtime errors. Moreover, if the data is only used partially, it is not necessary to

fully move the entire nested dynamic structure, which will increase the data traffic
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Figure 3.4: Modern HPC Node Memory Hierarchy

between host and device. As a consequence, a directive-based approach can help

users shape the aggregate data structures and move the data efficiently.

3.2.2 Memory Hierarchy Management

OpenACC is getting ready for the exposed memory hierarchies associated with up-

coming systems. We consider a modern HPC heterogeneous node in Figure 3.4. Fig-

ure 3.4(a) depicts the memory hierarchy model for next generation supercomputer

at Oak Ridge National Lab, known as Summit [13]. Each Summit node consists

of multiple IBM POWER9 CPUs and NVIDIA Volta GPUs all connected together

with NVIDIAs high-speed NVLink and a vast amount of memory. Each node will

have coherent memory, high bandwidth memory (HBM) and DDR4, addressable by

all CPUs and GPUs. Apparently, HBM is much closer to the GPU and has a higher

bandwidth to feed the massively parallel units in GPUs. The frequently used data

is likely to be placed in the HBM in order to achieve peak performance. In contrast,
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another system is shown in Figure 3.4(b), a self-hosted accelerator node with the

Intel “Knight Landing” architecture [6]. HBM is packaged on board memory with

five times the bandwidth compared to DDR4 global memory. In both systems, the

DDR4 and HBM are true unified address spaces, though they have separate physical

memories. Users have to explicitly manage the memory resources via the lower-level

interfaces, which exposes a large amount of hardware detail and can therefore hinder

application portability. In particular, the GPU has its own deep memory hierarchy

on board which increase the complexity of the entire memory system inside each

compute node. In summary, it is necessary to propose high-level abstractions to

describe and manage the data movement across the memory hierarchy. It respects

performance but is also as natural and portable as possible across all the different

various systems.

3.2.3 Other Features

Another feature under discussion is improving support for multiple devices. While

OpenACC already supports multiple devices, it is not as convenient as users may

expect. We have had success with utilizing multiple MPI ranks and multiple OpenMP

threads, and having each process, or each thread attach to a different devices [66, 67].

But there may be better ways to make it work with the new directives and routines

under discussion which allow a single thread to make use of multiple devices.

However, the challenge there is more about managing the data than the compu-

tation. It is relatively easy to spread the computation across resources; the challenge
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is to make sure the data is in the right place in order to obtain the desired perfor-

mance. So the upcoming releases will more likely focus on descriptive interfaces for

improving data locality.

3.3 Summary

In this chapter, we presented an overview of the OpenACC programming model

which is used in our research. OpenACC provides a rich set of directives and APIs

that allow users to annotate data regions, explicitly control data transfers and expose

loop parallelism. These features can enable non-expert programmers to portably and

productively achieve performance for their applications. OpenACC directives hide

many details of the underlying implementation, freeing a programmer’s attention for

other tasks. Beyond these core features defined in OpenACC specification, the lan-

guage continues to evolve, with features for describing complex memory hierarchies,

optimizing data locality, and improved multiple devices support all under considera-

tion. In the next chapter, we discuss the existing implementations of OpenACC and

other directive-based approaches.
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Chapter 4

Related Work

Languages such as OpenCL and CUDA offer a standard interface for general-purpose

programming of GPUs. However, with these languages programmers must explicitly

manage numerous low-level details involving communication and synchronization.

This burden makes programming GPUs difficult and error-prone, rendering these

devices inaccessible to most programmers. Therefore, there are both commercial and

academic efforts to support high-level programming models that can also effectively

exploit GPUs full potential.

There are some approaches [51, 52] that use high level languages for GPU pro-

gramming. Microsoft C++ AMP [1] (Accelerated Massive Parallelism) is sophisti-

cated C++ specified solution using C++ templates and lambda functions for data

and compute. Lime [26], a Java-compatible language, was proposed for heteroge-

neous systems. The backend of the Lime compiler generates OpenCL code for ac-

celerator devices. Other high level languages, like Python, have similar solutions for
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GPU computing. However, these new languages requires programmers to rewrite

their applications, which is not a practical approach for accelerating large amounts

of existing legacy code. Since our work focuses on the directive-based approach, we

concentrate the related work on the directive-based approaches.

As the existing infrastructure of OpenUH was the basis for our experimental

platform, we also include an introduction of the OpenUH compiler framework in

Section 4.3. OpenUH is a modern compiler infrastructure which the HPCTools group

has used to support programming models research for over ten years. The author

has added and maintained support for the OpenACC programming model targeting

NVIDIA and AMD GPUs since version 3.1.0 of the compiler. The source code can

be downloaded from [12].

4.1 OpenACC Implementations

The accULL [54] is a prototype OpenACC 1.0 implementation based on the Python

library. accULL was the first released implementation of OpenACC. However, their

syntax does not follow the OpenACC standard in some key respects. For exam-

ple, the data region representation only includes length, and it does not support

imperfect nested loop transformations. We could therefore say that accULL is an

implementation of a simplified OpenACC dialect.

The Omni OpenACC compiler [58] behaves as a source-to-source translator and

generates CUDA C which is then compiled by NVIDIA’s CUDA compiler. Their

loop scheduling implementation follows the OpenACC specification. A limitation
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in their solution is that the application cannot make use of multi-dimensional grid

topologies for NVIDIA GPUs. The generated CUDA C exhibits significant overhead

due to inefficient loop scheduling transformations.

Rose-OpenACC [62] implements an OpenACC dialect based on the ROSE com-

piler framework and is primarily used within the research community. The imple-

mentation uses OpenCL as its target language. Only the gang and worker clauses

are interpreted and mapped to work-group and work-item in OpenCL, respectively.

Each work-item (or “thread” in CUDA) takes a chunk of consecutive iterations,

where the size of each chunk is the tiling size determined by an OpenCL runtime.

However, while this strategy may work efficiently for traditional CPU-based accel-

erators such as Xeon Phi, it is definitely not a GPU-friendly solution since it does

not take into account coalescing of memory accesses. Moreover, the OpenCL kernel

function includes frequent OpenCL device function calls which contribute significant

overhead. If thread divergence occurs within the device function, as observed for

Omni OpenACC, the performance will degrade considerably when executing on the

GPU.

OpenARC [45, 46, 44] is based on the Cetus source-to-source framework. Ope-

nARC is a framework for compiling, debugging, and profiling OpenACC applications.

They proposed self-defined directives to allow users to address data locality issues.

For example, arrays can be mapped to different CUDA memory spaces, including

the shared memory and texture memory. Exposing the lower-level device features

makes the application non-compatible on other non-GPUs platforms.

IPMACC [42] is an open source framework for source-to-source translation of
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OpenACC for C applications and supports execution over the CUDA and OpenCL

runtime. New directives [41] are proposed to exploit the scratched memory in order

to close the gap between the OpenACC and OpenCL/CUDA applications.

XcalableACC [50] (XACC) is a hybrid programming model that combines a

directive-based PGAS model called XMP [49] and OpenACC for targeting accelerator-

based clusters. The framework is based on the Omni compiler mentioned earlier. An

innovative method employed by this compiler allows data to be directly transferred

among accelerators. Stencil applications are used to evaluate this method.

GCC, as of version 5.1, provides an experimental implementation of OpenACC

2.0 [4]. However, the released GCC 5 only includes a limited preliminary implemen-

tation. For example, with the parallel construct, the execution model only allows

for one gang, one worker and a number of vectors. All the vectors execute the redun-

dant mode. The kernels construct is supported only in a naive way. Reductions are

not supported inside kernels constructs. GCC 6 is expected to include an improved

implementation for OpenACC.

The NVIDIA PGI compiler has pioneered directive-based accelerator computing.

OpenACC was initially developed by PGI, Cray and NVIDIA, and it is largely based

on the PGI Accelerator programming model [64]. The Cray and PathScale compilers

also support OpenACC. Unlike most non-commercial efforts from academia and the

open-source community, commercial compilers generally adopt a source-to-binary

compilation path. However, since these commercial implementations are closed-

source and their inner-workings are mostly inaccessible to researchers, they cannot

be used to gain an understanding of OpenACC compiler technology or to explore
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possible improvements to it.

4.2 Other Directive-based Compiler Implementa-

tions

hiCUDA [31] is one of the earliest programming models using a directive-based ap-

proach to ease the programmability for CUDA devices. In hiCUDA, users can explic-

itly control the hardware resources, such as shared memory, grid and thread-block

topology. From the user’s perspective, hiCUDA is still a low-level programming

model and helps programmers translate an annotated region into CUDA. Therefore,

in an optimized hiCUDA application the inserted directives may exceed the original

code size due to their explicit CUDA mapping strategies. Unlike the OpenMP and

OpenACC model, the directives are not structured, and the programmer is responsi-

ble for managing everything, including all the data movement, loop scheduling, and

even on-chip resources.

The PGI Accelerator Programming Model [64] is a directive-based accelerator

programming model for CPU+Accelerator systems and served as an early prototype

model for OpenACC. The directives include data directives, compute directives and

loop directives. The compute directive specifies a portion of the program to be

offloaded to the accelerator. There is an implicit data region surrounding the compute

region, which means data will be transferred from the host to the accelerator before

the compute region, and transferred back from the accelerator to the host at the exit
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of compute region. Data directives allow the programmer to manually control data

movement, i.e. where to transfer the data other than at the boundaries of compute

regions. Loop directives allow the programmer to control how to map loop parallelism

in a fine-grained manner. The user can add these directives incrementally so that

the original code structure is preserved. The compiler maps loop parallelism onto

the hardware parallelism through a component called the Planner. PGI’s compiler

optimizes the data transfer by “data region” directive and its clauses in order to

remove unnecessary data copies. Using the loop scheduling directive, the user can

add the data in the highest level of the data cache with the “cache” clause and

thereby reduce data access latencies.

OpenMPC [43] is a compiler framework for translating an OpenMP program to

a CUDA program. The main contributions of this work include an interpretation of

OpenMP semantics under the CUDA model and a set of transformations that opti-

mize global memory accesses. However, there are several drawbacks in OpenMPC.

First, there is only one level of parallelism and a lack of fine-grained parallelism. The

OpenMP parallel loop region is mapped to threads in the grid. For nested loops, if

the outer loop is marked with an OpenMP loop directive, the inner loop is executed

sequentially by each thread even if the loops are parallelizable. The OpenMPC

framework can only generate one dimensional thread-blocks and one dimensional

grids. This limitation prevents the implementation from exploiting massively par-

allel thread topologies on the GPU. Second, the data locality optimization requires

users to explicitly control with OpenMPC customized data clauses, and the compiler

lacks implicit analysis and optimization to relieve developers of this programming
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burden. Third, the kernels splitting in the OpenMPC generates many small kernels

and potentially increases kernel launch overhead.

Hybrid Multicore Parallel Programming (HMPP) [14], proposed by CAPS Enter-

prise, also provides a set of directives to improve the performance by enhancing code

generation. In HMPP, the two most important concepts are codelet and callsite. The

codelet represents the function that is offloaded to the accelerator, and the callsite

is the place at which the codelet is invoked. It is the programmers responsibility to

annotate the code by identifying codelets and inform the compiler about the codelets

and where to call them. Within the codelet, the user can put read-only data into

constant memory, preload frequently used data into shared memory, or explicitly

specify the grid size for NVIDIA architectures. If the loop is so complex that the

compiler is not able to analyze it, the user can give some hints to the compiler that

all iterations in the loop are independent. The HMPP compiler does not perform

much implicit analysis and optimization to improve loop transformation and data

locality. As a result, HMPP is an explicit and prescriptive directive-based solution

that emphasizes the need for expert programmers to generate optimized code.

The OmpSs [28] programming model proposed by the Barcelona Supercomputing

Center is another directive-based approach for aiding application porting to hetero-

geneous architectures. However, OmpSs does generate accelerator code for the user.

Instead, it requires programmers to write the accelerator kernel functions manually.

This solution exposes too many low-level hardware details and limits the portability

of applications. Additionally, the performance of computational kernels running on

the accelerators relies on the user’s programming skill. Analysis and optimization
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in the OmpSs compiler is also limited. Expert accelerator knowledge is required to

fully exploit the compute capabilities of heterogeneous architectures. Applications

written with OmpSs are practically “baked” to specific machines, execution models

and architectures. For the compiler, it is not possible to safely remap or optimize

such applications to new machines or architectures.

[48] presents a prototype of OpenMP using the ROSE compiler called Heteroge-

neous OpenMP (HOMP) and shares experiences with the ROSE OpenMP accelerator

model. Three cases which includes Jacobi, AXPY and Matrix Multiplication were

given to evaluate their initial implementation. Three choices were given to schedule

the loop iterations among GPU threads using loop distribute construct: 1) use

only the master threads of multiple thread blocks when distribute is used right

before the loop; 2) use threads from a single thread block; 3) use a combination of

multiple blocks and multiple threads per block when applicable. However, the ex-

planation of loop scheduling in the paper is still vague. Data locality optimizations

were not mentioned since HOMP is only an initial implementation. Since HOMP

only concentrates on CUDA, their implementation is limited to users of NVIDIA

GPUs.

The OpenMP 4.5 implementation on GCC and LLVM is another important im-

plementaiton of directive-based accelerator support [10, 7, 11]. GCC 5 supports two

offloading configurations which include OpenMP to Intel Xeon Phi coprocessors and

NVIDIA GPU targets. The LLVM community is also working on their OpenMP 4.5

implementation. The project contributors include IBM, Intel, TI, AMD, DOE labs,

among other members.
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4.3 Existing OpenUH Infrastructure

The OpenUH compiler [47] is a branch of the open source Open64 compiler suite

for C, C++, Fortran 95/2003. It is an industrial-strength optimizing compiler that

integrates all components needed of a modern compiler. OpenUH serves as parallel

programming infrastructure in the compiler research community and serves as the

basis for a broad range of research endeavors, such as language research [29, 33, 27],

static analysis of parallel programs [24, 34], performance analysis [53], task scheduling

and dynamic optimization [18].

The major functional parts of the compiler are the front ends (the Fortran 95

front end was originally developed by Cray Research and the C/C++ front end

comes from GNU GCC 4.2.0), the inter-procedural analyzer/optimizer (IPA/IPO)

and the middle-end/backend, which is further subdivided into the loop nest opti-

mizer (LNO), including an auto-parallelizer (with an OpenMP optimization module),

global optimizer (WOPT), and code generator (CG). OpenUH may also be used as a

source-to-source compiler for other machines using the IR-to-source tools. OpenUH

uses a tree-based IR called WHIRL which comprises 5 levels, from Very High (VH)

to Very Low (VL), to enable a broad range of optimizations. This design allows the

compiler to perform various optimizations on different levels.

OpenUH did not provide any support on directive-based accelerator programming

prior to our implementation of OpenACC, though OpenMP 2.5 directive support was

already present. The support for OpenMP provided existing procedures for parsing
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compiler directives and representing them within the compiler’s intermediate repre-

sentation (IR). To develop a baseline OpenACC implementation, we enhanced the

front-ends to recognize OpenACC syntax, extended the IR to represent OpenACC

operations within the compiler’s abstract syntax tree, and implemented code gener-

ation for accelerators. We will discuss the design and implementation details in the

next chapter.

4.4 Summary

In this chapter, we described the related compiler efforts regarding directive-based

approaches for GPU computing. The common problem faced by existing open-source

compiler implementations for directive-based programming of accelerators is a lack

of focus on compiler optimization. For instance, OpenARC, accULL and OmniACC

focus on compiler framework construction and IR extension to represent the language

features. Rose OpenACC does entail some loop transformations, however, data lo-

cality analysis and optimization are not mentioned in their framework. None of them

explicitly explained the details of loop scheduling transformation and data locality

optimization for their respective implementations. Commercial compilers are well

designed, but their source codes are mostly inaccessible to researchers and hence

they cannot be used as further research platform. Some compiler implementations,

such as OpenMPC and hiCUDA, are specific to CUDA devices and consequentially
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have lost their generality. hiCUDA and HMPP requires low-level directives to de-

scribe the hardware feature and resources, so portability is sacrificed across differ-

ent vendors’ architectures. The existing open source research compilers are purely

source-to-source translators that have little analysis and optimization capability in

their underlying compiler framework. Further, none of them has Fortran support.

Therefore, there remains a need for robust, open source and optimizing OpenACC

compiler for academia research and teaching.

We also introduced our existing OpenUH compiler infrastructure which is the

basis for the OpenACC compiler implementation presented in this dissertation. Our

goal is to create general loop scheduling transformations for GPGPUs and APUs, and

further to propose sophisticated compiler analysis and transformations to improve

the data locality across different architectures. In the next chapter, we present our

OpenACC design within the OpenUH.
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Chapter 5

OpenACC Support in OpenUH

Compiler

In this chapter, we present a high-level overview of compiler design and runtime

implementation of OpenACC within the OpenUH compiler, a branch of the Open64

compiler framework. The chapter has been organized as follows. First, the en-

hanced components in OpenUH are described in Section 5.1. These components

correspond to parts of the compiler infrastructure that haven been modified to sup-

port the OpenACC model. This is followed by a discussion of a proposed algorithm

using liveness analysis to assist the generation of function kernels that target GPU

platforms. This is presented in Section 5.2.
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5.1 OpenACC Components

The creation of an OpenACC compiler requires innovative research solutions to meet

the challenges of mapping high-level loop iterations to low-level threading architec-

tures of the hardware. It also leverage runtime support for handling data movement

and scheduling of computation on the accelerators.

The components of the OpenACC implementation framework is shown in Fig-

ure 5.1. The compiler is comprised of several modules, each module operating at one

of the multiple Intermediate Representations (IR) of the Open64 framework (called

WHIRL). From the figure, each compiler module performs a set of analyses using

its corresponding IR. Before transitioning to a module at a lower-level, the IR is

simplified to the WHIRL at a lower-level.

The compiler framework is used to faciliate source-to-source translation of a pro-

gram with high-level OpenACC offload regions into high-level CUDA/OpenCL kernel

functions. The CUDA version of the program is lowered using the NVIDIA CUDA

compiler (NVCC) and target NVIDIA GPUs. The OpenCL version, on the other

hand, can be targetted to either the AMD APUs or the AMD discrete GPUs. For the

former, the OpenCL version is passed through CLOC [2], AMD’s Offline CL Com-

piler, which in turn translates the OpenCL kernel functions into HSA object files. To

target AMD’s discrete GPU, the OpenCL kernel functions are directed to OpenCL

driver APIs. The parts of the OpenACC program that are intended to target the host

CPU are translated to x86 binaries by directing them to the code-lowering modules

(backend, code generation, etc.) of the OpenUH compiler.
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Figure 5.1: OpenUH compiler framework for OpenACC: for NVIDIA GPUs, NVCC is the
NVIDIA CUDA Compiler; for AMD APUs, CLOC which is the AMD CL Offline Compiler
compiles the OpenCL-like kernel functions to GPU object file; for AMD discrete GPUs,
AMD OpenCL SDK is used to compile the OpenCL kernel functions dynamically during
the runtime.
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We have identified the following challenges that must be addressed to create an

effective implementation of OpenACC directives. As part of the design, it was cru-

cial to create an extensible parser and IR system that facilitate inclusion of new and

modified features of the OpenACC standard. This would enable future development

of features that can take advantage of the aggressive compiler optimizations. The ex-

tension of the IR was necessary to distinguish the code regions that target CPU from

those that target the GPU. This was aided by the flexibility of the OpenUH and the

WHIRL IR framework that allowed for the inclusion of the said extensions without

too much difficulty. Second, an algorithm based on liveness analysis was designed to

reduce unwanted device memory movement and assist the data locality optimization

within the offload regions. The details for these are discussed in section 5.2. Third,

we need to design and implement an effective strategy to distribute the loop nest

across the GPU threads hierarchy. This is referred to as loop scheduling. Dependence

analyses was necessary to reduce synchronization among loops. The performances of

generated GPU kernel function largely depends on the loop mapping mechanisms.

Solutions to these are discussed in more detail in Chapter 6.

The OpenACC support that has been implemented in OpenUH comprises four

components:

• an extended front-end that accepts the OpenACC directive syntax in C and

Fortrans

• a back-end analysis, optimization and translation that target OpenACC offload

regions
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• enhanced IR-to-source tools that support the translation of CUDA/OpenCL

kernel functions

• a portable runtime system for support AMD/NVIDIA GPU architectures.

The following sections discuss each of topic in detail.

5.1.1 Front-end

OpenUH front-end inherits from the original Open64 compiler. Open64 uses GNU

GCC 4.2.0 to parse C/C++ and Cray Fortran 95 to compile the Fortran applica-

tions. These two front-ends generate high level GNU and CRAY IR which are then

translated to very high level WHIRL. We modified the GNU C and Cray Fortran

95 front-end to accept the OpenACC directives and generate respective WHIRL IR

nodes that represent OpenACC related constructs. The programming languages be-

ing targeted was C and Fortran1. In order to take advantage of the analysis and

optimizing capabilities in the OpenUH back-end, the entire OpenACC IR represen-

tation is preserved through the backend. The intrinsic functions that appear in the

OpenACC offload region need to be identified and mapped to the corresponding CU-

DA/OpenCL intrinsic functions. For this, the front-end of OpenUH was extended

to support the entire set of intrinsics defined in the CUDA/OpenCL specification.

1The OpenACC support for C++ front-end remains unimplemented
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5.1.2 Back-end

The main research contribution of this work relates to the back-end of the compiler.

We introduced a new phase called ‘OpenACC lower’ which translates the OpenACC

IR into runtime function calls and CUDA/OpenCL IR modules. On addition of this

work, the back-end of the compiler can be divided into the three parts - the ‘Pre-

Optimizer’ (Pre-OPT), the ‘Loop Nest Optimizer’ (LNO) and the ‘OpenACC IR

lower’. Both Pre-OPT and LNO perform a set of analyses, the results of which are

reflected in IR that targets the offload region. The ‘OpenACC IR lower’ phase takes

advantage of these analyses results and perform additional set of optimizations and

transformations, as needed. The proposed new algorithm that extends the liveness

analysis is built into this Pre-OPT phase (Section 5.2).

The LNO phase can potentially do many analyses and optimizations including de-

pendence analysis, auto-parallelization, cost-model-based loop scheduling optimiza-

tion, and scalar replacement. In OpenACC kernels directive region, compiler relies

on the dependence analysis results to determine whether a given loop can be paral-

lelized or not. The scalar-replacement is based on the dependence analysis to extract

the data reuse information across the loop iterations in the offload region. The de-

tail of the improved scalar replacement algorithm and implementation is discussed

in Chapter 7.

OpenACC IR lower phase is the most important module in the entire OpenACC

compiler. It does the complex transformation work. First, offload regions are ex-

tracted as outline CUDA/OpenCL functions. Symbol table extensions are made to
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identify CUDA/OpenCL languages’ features, such as Shared Memory in CUDA and

Local Memory in OpenCL. CPU and GPU IR are separated at this time. Compiler

continues compiling the CPU IR and generates binary object for CPU. GPU IR

be forwarded to another phase called WHIRL2CUDA/WHIRL2OpenCL to generate

GPU kernel functions. Second, the original offload region IR is replaced by IR which

represent runtime function calls. The runtime functions are used to move the data

between CPU and GPU, and launch the GPU kernels. Third, loop scheduling trans-

formation is applied to OpenACC loops inside the offload region. So the original

sequential loops identified as OpenACC loop directives are executed in parallel on

the GPU. Fourth, scalar replacement transformation is finalized based on the infor-

mation generated at LNO phase. Fifth, all the array references are transformed into

pointer and offset dereference operations.

5.1.3 CUDA/OpenCL Generation

Our implementation compiles the CPU code-region to x86 binary and uses the source-

to-source translation approach for generating the binary that targets the accelerator.

After the OpenACC IR lower transformation, the IR module for GPU code is trans-

lated into OpenCL or CUDA kernel function which depends on the compilation tar-

get. As the primary goal of OpenUH is for compiler research, it also supports purely

source-to-source compilation path for OpenACC applications. The source-to-source

approach can clearly show how the OpenACC compiler translation performs for both

CPU and GPU. This makes OpenUH a portable compiler that targets multiple target

platforms.
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Compared to binary code generation, the source-to-source approach for the GPU

provides greater flexibility to users. It allows the programmer to leverage advanced

optimization features in provided by the NVIDIA CUDA compiler and AMD OpenCL

compiler. It also provides the user with an ability to manually optimize the generated

CUDA code region before it is forwarded to the NVIDIA compiler.

The WHIRL2CUDA and WHIRL2OpenCL components are based on the origi-

nal WHIRL2C which translates the WHIRL IR into the C languages. If the host side

source-to-source translation is not invoked, the WHIRL2CUDA and WHIRL2OpenCL

checks the IR module flag and see if they are accelerator kernel functions. Then such

accelerator module IR will be translated into CUDA/OpenCL kernel functions.

Consider the OpenACC code targeting NVIDIA GPU in Figure 5.2 (a) as an

example. Figure 5.2 (b) and (c) show the translated CUDA kernel and the equiva-

lent host CPU pseudo code. We have created a WHIRL2CUDA/OpenCL tool that

can produce NVIDIA CUDA/AMD OpenCL kernels after the transformation of of-

floading code regions. Compared to binary code generation, the source-to-source

approach provides much more flexibility to users. It allows users to leverage the

advanced optimization features in the back-end compilation step performed by the

CUDA/OpenCL compiler nvcc. It also gives users some options to manually optimize

the generated CUDA/OpenCL code for further performance improvement.
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//data transfer from host to device
__accr_malloc_device_mem(&_d_c, 0,

n*8);
__accr_malloc_device_mem(&_d_b, 0,

n*8);
__accr_malloc_device_mem(&_d_a, 0,           

n*8);
__accr_mem_d2h(&_d_b, b, 0,  n*8);
__accr_mem_d2h(&_d_a, a, 0,  n*8); 
//kernel launch
__accr_set_default_gang_vector();
__accr_push_kernel_param(&__d_c); 
__accr_push_kernel_param(&__d_b);
__accr_push_kernel_param(&__d_a);
__accr_push_kernel_param(&n);
__accr_launchkernel(

"__accrg_vectoradd",  
"vectoradd.ptx");

//data transfer from device to host
__accr_mem_d2h(&_d_c, c, 0,  n*8);
__accr_free_dmem(_d_c);
__accr_free_dmem(_d_b);
__accr_free_dmem(_d_a;                       

(b) Translated CUDA Kernel

(a) OpenACC code

(c) Translated CPU code

#pragma acc data copyin(a[0:n], b[0:n]), 
copyout(c[0:n])
{
#pragma acc kernels loop independent        
for(i=0; i<n; i++){

c[i]=a[i] + b[i];
}

}

__global__ void __accrg_vectoradd(
double * c,  double *  b,   double *  a, int  n)

{
int i;
int istep;

i =  threadIdx.x + (blockIdx.x * blockdim_x);
istep = blockDim_x * gridDim_x;
for(i = i; i <= n; i = i + istep) {

* (c+i) = *(a + i) + *(b + i);
}

}

Figure 5.2: OpenACC vector addition example: OpenUH compiler outlines the offload
region as a GPU kernel function in (b); the CPU code is basically replace with OpenACC
runtime function calls after the OpenACC IR transformation.
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Figure 5.3: OpenACC runtime library frameowork

5.1.4 Runtime Support

A portable runtime is created to support multiple devices, data movement manage-

ment, and GPU kernel launching. The runtime library in Figure 5.3 consists of three

modules: context module, memory manager, and kernel loader. The context module

is in charge of initializing, creating and managing the virtual execution environment.

The runtime implementation is based on top of vendor’s Software Development Kit

(SDK) (CUDA Driver, AMD OpenCL SDK and AMD HSA SDK) for different ven-

dor’s GPU architecture support.

Data manager module handles the data allocation and traffic between host and

device. The major overhead in this module is to do data mapping lookup operations

as application developers can only use the host address. Every kernel launch and

data update requires device data addresses. Inefficient data mapping mechanism

will increase the application runtime overhead. In our implementation, we choose

the hash table to map the host data and device data. Such table is called Data

Present Table (DPT). Each hash table lookup usually cost O(1). If the data is

already in the DPT, runtime uses the host data address as hash key to find the
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file2.cl kmap2

file3.cl kmap3

vectoradd
vectoradd 

handler

... ...

(b) Hashmap based Kernel Present Table
Figure 5.4: Optimized Runtime Data and Kernel Management to Reduce Runtime Over-
head

respective data entry on device memory. If such entry does not exist, runtime calls

the device malloc function to create a copy for the host data and put it in the DPT.

In the large application, the data is frequently queried at the runtime and hashtable

can minimize the lookup cost. Figure 5.4(a) shows an example of the DPT. The

DPT uses the host data as hash-key. The value in the DPT entry is the device data

address. For unified memory architecture, like AMD APUs, this module ignores all

the data allocation and movement between host and device.

The kernel model controls the kernel functions’ online compilation, GPU thread

configuration and kernel functions launch. CUDA kernel functions for NVIDIA GPUs

and OpenCL kernel functions for AMD APUs are compiled into virtual ISA code

offline according to the Figure 5.1. Runtime library still needs to finalize the virtual

ISA code into the real hardware ISA code. OpenCL kernel functions for AMD

discrete GPUs are compiled into binary during the runtime. In this module, the
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online compilation may cause huge overhead if it cannot be handled properly. We

adopt two level of hashmap to map the kernel functions and real executable kernel

handler which is claimed by low-level vendor’s API. Figure 5.4(b) demonstrates how

to use the hashmap to store the two levels of kernel mapping method. It first uses

kernel source code file names as hashkey to map another hashmap which takes kernel

function names as hashkey and maps to the executable kernel handler. This method

makes sure that every kernel file is loaded and compiled at most once when the

first kernel in this file is invoked. The threads configuration and kernel launch are

implemented using the vendor’s APIs.

5.2 Liveness Analysis for Offload Regions

5.2.1 Classic Liveness Analysis

Live variable analysis is a widely used iterative data flow analysis to compute live

variables for each basic block [40]. A Basic Block (BB) is a straight-line code sequence

with no branches ‘in’ except to the entry and no branches ‘out’ except at the exit.

The variables are live at the exit from each BB because they may be potentially

used before their next write. In other words, a variable is live if it holds a value

that may be needed in the future. So to compute liveness at a given point, we need

to look into the future. Liveness flows backwards through the Control Flow Graph

(CFG), because the behavior at future nodes determines liveness at a given node.

The liveness analysis analyzes a CFG to determine which places variables are live or
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not.

Liveness analysis is used to help in register allocation at the compiler’s code

generation phase. Before the register allocation, IR contains an unbounded number

of variables. But the actual machine has a limited number of registers. Variables

with disjoint live ranges can map to same register. In other words, a variable is not

live at the exit of BB, then the register assigned to this variable can be reassigned

to another variable. Liveness Analysis can determine when variables/registers hold

values that may still be needed in the future.

Before performing liveness analysis, we need to understand the control flow by

building a Control Flow Graph (CFG). In a CFG, each node is BB and the edge

between two nodes is the potential flow of control (execution flow). Out-edges from

node n lead to successor nodes which are defined as set SUCC[n]. In-edges to

node n come from predecessor nodes which are defined as set PRED[n]. Gathering

liveness information is a form of data flow analysis operating over the CFG. Liveness

of variables “flows around the edges of the graph. The GEN [n] is defined as the

variables set in which each variable is read operation in BB n and the KILL[n] is

defined as the variables set in which each variable is modified in BB n. GEN [n]

contains the variables whose liveness is generated with BB n. These variables have

upwards exposed uses in BB n. While KILL[n] contains the variables whose liveness

is killed in BB n. Typically, they are the variables appearing on the left hand side

of an assignment statement in BB n. The IN [n] and OUT [n] are the alive variable

set at the entry and exit of BB n. Based on the GEN [n] and KILL[n] information,

IN [n] and OUT [n] can be calculated by Equation 5.1 and 5.2 [40].
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IN [n] = (OUT [n]−KILL[n]) ∩GEN [n] (5.1)

OUT [n] =


φ if n is End Block⋃
s∈SUCC[n]

IN [s] Otherwise

(5.2)

5.2.2 Extended Liveness Analysis for Offload Regions

It is necessary to use liveness analysis to determine the variables properties for each

offload region. If the compiler implementation directly follows the OpenACC spec-

ification, the scalar variables in the kernels directive are copied by default. If the

variables is copied, compiler generates a series of device memory allocation func-

tions to map the host scalar variables into the device memory space. This leads to

memory fragmentation within the GPU memory and interconnect traffic between

the host CPU and the GPU. However, if it is not necessary for the scalar variables

to be created, the scalar variable are ‘read-only’ and ‘private’ to the offload region.

In either case, they do not need to be allocated into the device memory. Instead

the references to the ‘Read-only’ scalar variables can be passed as parameters to the

kernel functions. ‘Private variables’ can be privatized and placed into register file

within each thread.

The classical liveness analysis [40] is extended to fit into the OpenACC program-

ming mode. Two extensions are made in order to apply in the OpenACC offload

60



region analysis. First, the entire offload region is treated as Basic Block (BB). The

traditional BB is a straight-line code sequence without branches in except to the

entry and no branches except the exit. Since the offload region is translated into

an outlined accelerator kernel function with only one entry and one exit. Therefore,

each kernel function can be considered as BB during the analysis. Next, the variables

in the IN and OUT set must be used in the offload region. In the classical liveness

analysis, if the offload region dominates other BBs, the variables used in these BBs

- even if not used in the offload regions, will be included in the IN/OUT set. As

a solution, we propose using an additional USED set to distinguish variables that

have been ‘used’ in the offload region from those that are not. A logical ‘AND’ op-

eration is applied between IN/OUT and USED sets to filter the unused variables

from IN/OUT set (Equation 5.3 and 5.4).

IN ′ = IN ∩ USED (5.3)

OUT ′ = OUT ∩ USED (5.4)

PARAMETERS = IN ′ ∪OUT ′ (5.5)

PRIV ATE = USED ∩ (IN ′ ∪OUT ′) (5.6)

INOUT = (IN ′ ∩OUT ′) ∩ (¬POINTER) (5.7)

FIRST PRIV ATE = (IN ′ ∩ ¬POINTER) ∩ ¬INOUT (5.8)
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LAST PRIV ATE = (OUT ′ ∩ ¬POINTER) ∩ ¬INOUT (5.9)

The PARAMETERS set which can be computed with 5.5 are the variables

appearing as arguments in the kernel functions. Since all the array and pointer

variables have to be passed as pointer, the liveness analysis only checks the scalar

variables and determine if it is necessary to create pointers to represent the scalar

variables. PRIVATE set 5.6 is the thread-private scalar variables. INOUT set 5.7

are the scalar variables requiring data transferring back to host. FIRST PRIVATE

set 5.8 are the copyin scalar variables. LAST PRIVATE set 5.9 includes the scalar

variables copying back to host. When kernel function outline is created, every scalar

belonging either INOUT or LAST PRIVATE set is mapped to a pointer. Before the

kernel launching, runtime performs device memory allocation and copies the data

from host to device memory. After the offload computing finished, runtime moves

the data from device back to host. Each variable in FIRST PRIVATE, PRIVATE,

LAST PRIVATE and INOUT is privatized in each thread and placed into the register

files.

Two more variable sets referred to as READONLY PTR and READONLY SCALAR

have been introduced to each offload region. READONLY PTR set contains the

read-only buffer pointers and arrays. READONLY SCALAR set contains read-only

scalar variables in the offload region. This extended liveness analysis targets the high-

level IR and is built within the PRE-OPT phase(Figure 5.1). While the array IR

operations are lowered into pointer operations during the OpenACC IR transforma-

tion. Read-only arrays together with pointers are included the READONLY PTR
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set. Both READONLY PTR and READONLY SCALAR can be generated from

POINTER and FIRST PRIVATE set by removing the modified variables. The read

only array and pointer can be cached in the GPU special Texture Cache Unit and

read-only scalar variables can be assigned to Constant Memory and read-only scalar

register files. These two data sets can help compiler generated data locality optimized

GPU kernels.

Let us consider a simple vector addition example illustrated in the Figure 5.5.

There are three offload regions in this function. If we use the traditional Basic

Block definition to build the CFG, it becomes complex. The Figure 5.6(a) shows

the respective CFG. Considering each offload region as a Basic Block, the CFG can

be simplified as Figure 5.6(b). The simplified version of the CFG is much easier for

analysis and debug. Figure 5.7(a) shows the result using the classic liveness analysis.

The parallel region1 does not use the variable sum at all but it appears in the IN and

OUT set. Because parallel region1 dominates path from entry to the beyond basic

blocks. We propose the USED set for each offload region. It can be easily generated

by scanning IR of the each offload region. By applying the extended liveness analysis,

results can be computed (Figure 5.7(b)).

5.3 Summary

This chapter described the compiler infrastructure that we used to build our imple-

mentation of OpenACC as well as the extended liveness analysis for high-level IR
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1 f l o a t ∗ ve r i f y v e c t o r add ( f l o a t ∗ a , f l o a t ∗ b , f l o a t ∗ c , i n t n)
2 {
3 in t i ;
4 f l o a t sum ;
5 sum = 0 ;
6 #pragma acc data c r ea t e ( a [ 0 : n ] , b [ 0 : n ] , c [ 0 : n ] )
7 {
8 #pragma acc p a r a l l e l loop
9 f o r ( i =0; i<n ; i++) {

10 a [ i ] = s i n f ( i ) ∗ s i n f ( i ) ;
11 b [ i ] = co s f ( i ) ∗ c o s f ( i ) ;
12 }
13 #pragma acc p a r a l l e l loop
14 f o r ( i =0; i<n ; i++) {
15 c [ i ] = a [ i ] + b [ i ] ;
16 }
17 #pragma acc p a r a l l e l loop reduct ion (+:sum)
18 f o r ( i =0; i<n ; i++) {
19 sum += c [ i ] ;
20 }
21 }
22 return sum ;
23 }

Figure 5.5: Liveness Analysis Example
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(a) Original Liveness Analysis Results

#pragma acc kernels
{

for(i=0; i<n; i++)
{

a[i] = sinf(i)*sinf(i)
b[i]=cosf(i) * cosf(i)

}
}

#pragma acc kernels
{

for(i=0; i<n; i++)
c[i] = a[i] + b[i]

}

#pragma acc kernels
{

for(i=0; i<n; i++)
sum +=c[i]

}

USED = {a, b, i, n}
POINTER={a, b}
IN’ = {a, b, n}
OUT’ = {a, b, n}
PARAMETER={a,b,n}
PRIVATE={i}
FIRST_PRIVATE={n}
LAST_PRIVATE=empty
INOUT=empty
ReadOnlyPtr=empty
ReadOnlyScalar={n}

USED = {a, b, c, i, n}
POINTER={a, b, c}
IN’={a, b, c, n}
OUT’={c}
PARAMETER={a, b, c, n}
PRIVATE={i}
FIRST_PRIVATE={n}
LAST_PRIVATE=empty
INOUT=empty
ReadOnlyPtr={a, b}
ReadOnlyScalar={n}

USED={c, sum, i, n}
POINTER={c}
IN’={ c, sum, n}
OUT’={sum}
PARAMETER={c, sum, n}
PRIVATE={i}
FIRST_PRIVATE={n}
LAST_PRIVATE=empty
INOUT={sum}
ReadOnlyPtr={c}
ReadOnlyScalar={n}

(b) Extended Liveness Analysis Results
Figure 5.7: Results using Classic and Extended Liveness Analysis for Offload Region : the
improved analysis generates more information for the compiler backend optimization

offload region analysis. We selected OpenUH as the baseline OpenACC compiler im-

plementation because of its support for multiple languages (C/C++/Fortran) within

the front-end, a modular back-end support for high-level intermediate representations

and its well-designed and extensible optimization phases. In the next chapter, we

describe the loop scheduling transformations which is one of the core contributions

of OpenACC compiler.
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Chapter 6

Loop-Scheduling Transformation

Programmers prefer to make use of directives via pragmas to offload computation-

intensive nested loops onto the massively parallel accelerator devices. Directives are

easy to use but are high level and need a smart translation to map iterations of

loops to the underlying hardware. This is the role of the compiler which helps users

translate annotated loops into kernels to be run on massively parallel architectures.

Therefore, the loop-scheduling transformation serves as a basic and mandatory pass

in our OpenACC compiler infrastructure. An earlier version of the work presented

in this chapter was published in [60, 69, 61].

Loop scheduling is the problem of distributing the loop iterations across multi-

processors [65, 38]. However, the loop scheduling becomes challenging when there are

multiple levels of parallelism which is the case in GPU architectures. The compiler

has to figure out a way to distribute iterations of multi-level loop nests across these

multi-dimensional blocks and threads in the GPUs. One of the major challenges of
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this compiler transformation is to create a uniform loop distribution mechanism that

can effectively map loop nest iterations across the GPU parallel system. As an exam-

ple, both NVIDIA and AMD GPGPUs have two levels of parallelisms: block-level

(Work-Group) and thread-level (Work-Item). Blocks can be organized as multi-

dimensional within a grid, and threads in a block can also be multi-dimensional.

OpenACC provides three levels of parallelism for mapping loop iterations onto

the accelerators’ thread structures: “gang” for coarse-grain parallelism, “worker” for

fine grain parallelism, and “vector” for vector/SIMD parallelism. A number of gangs

will be launched on the accelerator. Worker parallelism is fine-grain. Each gang

will have one or more workers. Vector parallelism is for SIMD or vector operations

within a worker. When executing an offload region on the device, one or more

gangs are launched, each with one or more workers, where each worker may have

vector execution capability with one or more vector lanes. The gangs start executing

in gang-redundant mode (GR mode), meaning one vector lane of one worker in

each gang executes the same code, redundantly. When the program reaches a loop

or loop nest marked for gang-level work-sharing, the program starts to execute in

Gang-Partitioned mode (GP mode), where the iterations of the loop or loops are

partitioned across gangs for truly parallel execution, but still with only one vector

lane per worker and one worker per gang active.

The OpenACC standard allows the compiler some flexibility of interpretation

and code generation for three levels’ parallelism. However, all workers have to com-

plete execution of their assigned iterations before any worker proceeds beyond the
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1 #pragma acc loop gang
2 f o r (k=0; k<NK; k++) {
3 in t j sum = 0 ;
4 #pragma acc loop worker reduct ion (+: j sum )
5 f o r ( j =0; j<NJ ; j++) {
6 #pragma acc loop vector reduct ion (+: i sum )
7 f o r ( i =0; i<NI ; i++) {
8 i sum += input [ k∗NJ∗NI + j ∗NI + i ] ;
9 }

10 j sum += i sum ;
11 }
12 temp [ k ] = j sum ;
13 }

Figure 6.1: Worker Synchronization for Reduction

end of the loop and all vector lanes will complete execution of their assigned iter-

ations before any vector lane proceeds beyond the end of the loop. In Figure 6.1,

reduction at worker-level and vector-level both requires synchronization by the end

of their loop [69]. Meanwhile, synchronization is only supported inside each thread-

block/work-group. In our implementation, the gang is mapped to thread-block level

parallelism. While worker and vector are mapped to the thread topology inside the

thread block.

#pragma acc loop
for(i=istart; i<iend; i++){

...
}

#pragma acc loop
for(i=istart; i<iend; i++){

#pragma acc loop
for(j=jstart; j<jend; j++){

…
}

}

#pragma acc loop
for(i=istart; i<iend; i++){

#pragma acc loop
for(j=jstart; j<jend; j++){

#pragma acc loop
for(k=kstart; k<kend; k++){

…
}

}
}

(a)Single Loop (b)Double Nested Loop (c)Triple Nested Loop

Figure 6.2: OpenACC Loop without scheduling clauses specified

In our design, we propose two different loop scheduling strategies for an OpenACC

offload region: kernels and parallel loop scheduling. The difference between parallel

and kernels loop scheduling is that we provide more options for the compiler to fine
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tune loop scheduling on GPGPUs in kernels region. Both types of loop scheduling

can be used for a single loop, double-nested loop and triple-nested loop as shown in

Figure 6.2. If the depth of a nested loop is more than 3, the OpenACC collapse

clause can be used to increase the amount of parallelism. In Figure 6.2, OpenACC

loops do not need to specify loop scheduling clauses such as gang, worker and vector

and the compiler figures out how to choose loop scheduling for the OpenACC loops.

We discuss these cases in detail in the following two subsections. In this latter, we use

CUDA language to present the translated kernel code. However, the loop scheduling

transformation works both for CUDA and OpenCL since they share similar concepts

and can be easily mapped to each other.

6.1 Parallel Loop Scheduling

In the OpenACC specification, parallel region is language prescription section which

means compiler does exactly what programmers tell. In the loop scheduling, nested

gang, nested worker, and nested vector cannot be used, i.e, a gang can only contain

worker and vector, and a worker can only include vector. The programmer can create

several gangs, and a single gang may contain several workers, and each worker may

contain several vector lanes. The iterations of a loop can be executed in parallel by

distributing the iterations among one or more levels of parallelism.
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1 #pragma acc loop [ gang ] [ worker ] [ vec tor ]
2 f o r ( i =0; i<end ; i++) {
3 statements
4 }

Figure 6.3: General Loop Scheduling in Parallel Region

Table 6.1: OpenACC and CUDA/OpenCL Terminology Mapping in Parallel Loop Schedul-
ing

OpenACC clause CUDA/OpenCL

gang blocks in x-dimension of grid.
worker threads in y-dimension theads in a block.
vector threads in x-dimension theads in a block.

init : iinit =



blockIdx.x+ c only ”gang”

threadIdx.y + c only ”worker”

threadIdx.x+ c only ”vector”

blockIdx.x ∗ blockDim.y+

threadIdx.y + c

”gang worker”

blockIdx.x ∗ blockDim.x+

threadIdx.x+ c

”worker vector”

blockIdx.x ∗ blockDim.x ∗ blockDim.y+

threadIdx.y ∗ blockDim.x+

threadIdx.x+ c

”gang vector worker”

(6.1)
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incre : istep =



gridDim.x only ”gang”

blockDim.y only ”worker”

blockDim.x only ”vector”

gridDim.x ∗ blockDim.y ”gang worker”

gridDim.x ∗ blockDim.x

”worker vector”

gridDim.x ∗ blockDim.x ∗ blockDim.y

”gang vector worker”

(6.2)

#pragma acc loop gang worker vector
for(i=c; i<iend; i++){

...
}

init=blockIdx.x*blockDim.x*blockDim.y + 
threadIdx.y*blockDim.x + threadIdx.x+c;

istep = gridDim.x * blockDim.x*blockDim.y;
for(i=init; i<iend; i+=istep){

...
}

(a) Scheduling-gwv (b) Scheduling-gwv in CUDA

Figure 6.4: Single Loop Transformation in Parallel Region: all the loop scheduling clauses
are used in a single loop parallelism.

Table 6.1 shows the CUDA/OpenCL terminology that we use in our parallel

region implementation. In parallel region, gang maps to a thread block, worker

maps to the Y-dimension of a thread block, and vector maps to the X-dimension

of a thread block. Equation 6.1 and 6.2 give general transformation rules in terms

of loop index initialization and increment for the loop in Figure 6.3. Figure 6.4

demonstrates an example of the loop scheduling transformation. In this example,

all the iterations are distributed across gangs, workers and vector lanes. Another
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#pragma acc loop gang worker
for(i=c1; i<iend; i++){
#pragma acc loop vector
for(j=c2; j<jend; j++){

...
}

}

iinit = blockIdx.x*blockDim.y+
threadIdx.y + c1;

istep = gridDim.x*blockDim.y
jinit = threadIdx.x+c2;
jstep = blockDim.x;
for (i=iinit; i < iend; i+=istep) {
for (j=jinit; j < jend; j+=jstep ) {

...
}

}

(a) Scheduling-gw-v (b) Scheduling-gw-v in CUDA

Figure 6.5: Two-level Nested Loop in Parallel Region. The scheduling name indicates which
loop scheduling clauses are used. In this instance, it means the outer loop is distributed
across gang and worker, and inner loop is carried by vector. All of the loop scheduling
names follow the same format.

example in Figure 6.5 presents one of the scheduling for two level nested loop.

Table 6.2: OpenACC Loop Schedulings in Parallel Region

Level of Nested Loop Parallel Loop Scheduling

1 Scheduling-gwv

2
Scheduling-gw-v
Scheduling-g-wv
Scheduling-g-v

3 Scheduling-g-w-v

There are several advantages by implementing the parallel loop scheduling strageties

following Table 6.1. First, this mapping strictly follows the OpenACC standard. Ta-

ble 6.2 lists all of the available loop schedulings that follow the OpenACC specifica-

tion. Unlike other OpenACC implementation, our compiler can be fairly compared

with commercial compilers by sharing the same application source code. We do eval-

uate our implementation with commercial compilers. Second, OpenMP 4.0 compiler

backend can also share this backend for GPU architecture. In the OpenMP Acceler-

ator Model, three level of parallelisms are available. They are “distribute”, “parallel
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for” and “simd”. “distribute” means loop iterations are carried by each thread-team,

and “parallel for” executes all the iterations by threads in the same team. “simd”

then uses SIMD instructions to vectorize the iterations in each thread. The concept

are similar to OpenACC three level parallelism.

#pragma acc parallel num_gang(20)\
num_worker(8) vector_length(128)

#pragma acc loop gang 
for(i=0; i<20; i++){
#pragma acc loop worker vector
for(j=0; j<1000000; j++){

...
}

}

#pragma acc kernels
#pragma acc loop gang(20)
for(i=0; i<20; i++){
#pragma acc loop gang(100) vector(1024)
for(j=0; j<1000000; j++){

...
}

}

(a) Scheduling-g-wv in Parallel Region (b) Scheduling-g-gv in Kernels Region

Figure 6.6: Parallel Loop Scheduling Limitation and its solution

However, the parallel loop scheduling cannot exploit the full potential of massively

parallel GPU architecture. Both AMD and NVIDIA GPU support multidimensional

thread-block and grid. With the OpenACC standard, thread-block can only be max-

imumly two dimension and thread-block can be only organized into one dimensional

grid. This strategy limits the full power of GPU accelerator. First, multi-dimensional

grid and thread-block are used to identify the 2D/3D spatial data locality for Tex-

ture Memory. Texture Memory is read-only memory that can improve performance

and reduce memory traffic when reads have certain access patterns. Stencil-like ap-

plications are typical example that requires multi-dimensional thread-block and grid

to achieve better performance. Its memory access pattern consumes spatial neigh-

bour points, so the texture memory can be improve the data locality. The Texture

Memory optimization will be included in the proposed work. Second, the threads’
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scalability becomes a critical issue. The total threads (the number of workers multi-

plied by the number of vectors) must be less than or equal to a fixed number in one

gang (block). For example, each thread-block can have maximumly 1024 threads

in an Nvidia GPU. In Figure 6.6(a), the maximum number threads we can create

in OpenACC is 20*1024. We could overcome this limitation by utilizing the multi-

dimensional topology of the thread block and grid. The solution is to create some

extension in kernels loop scheduling to create more threads, in order to increase the

Thread-Level Parallelism (TLP). Figure 6.6(b) is one of the kernels loop schedules

that can solve the scalability issue since it can create 20*100*1024 threads. Third,

the innest most loop is always mapped to x-dimension of thread-block. If the inner

most loop index does not repesent consecutively memory access index and the outer

loop index does, the performance of parallel loop scheduling will be really bad. Usu-

ally, the users can do the loop interchange manually to achieve better performance.

However, if the loop interchange is not legal, users may have to reconstruct the data

layout in order to coalesce the memory access. Both manually loop interchanging

and reconstruct data layout are time-consuming. In next section, we propose kernels

loop schediling which is not allowed in the OpenACC specification but does help

improve the performance by solving the three disadvantages addressed earlily.
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Table 6.3: OpenACC and CUDA/OpenCL Terminology Mapping in Kernels: the int-expr
repesents the integer expression that defines the number of the Block/Thread in each
dimension.

OpenACC clause CUDA/OpenCL Description

gangx(int-expr) Block in X Dimension of Grid
gangy(int-expr) Block in Y Dimension of Grid
gangz(int-expr) Block in Z Dimension of Grid

vectorx(int-expr) Threads in X dimension of Block
vectory(int-expr) Threads in Y dimension of Block
vectorz(int-expr) Threads in Z dimension of Block

1 #pragma acc loop [ gangx | gangy | gangz | ] [ vectorx | vectory | vec to rz ]
2 f o r ( i =0; i<end ; i++) {
3 statements
4 }

Figure 6.7: General Loop Scheduling in Kernels Region

6.2 Kernels Loop Scheduling

In order to take advantage of multi-dimensional grid and thread-block in NVIDI-

A/AMD GPGPUs, we propose kernels loop scheduling strategies to efficiently dis-

tribute loop iterations in an OpenACC kernels region. Figure 6.7 repesents the

general form of kernel loop scheduling syntax. In our rules, both gang and vector

can only appear at most one time in the same level of loop. Or users can leave loop

scheduling clauses empty and let the compiler generate suitable loop scheduling for

the nested loops. Table 6.3 shows the mapping terminology we used from OpenACC

to CUDA for kernels directives. The kernels loop scheduling transformation follows

Equation 6.3 and 6.4.
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init : iinit =



blockIdx.x|y|z + c “gangx|gangy|gangz”

threadIdx.x|y|z + c “vectorx|vectory|vectorz”

blockIdx.x|y|z ∗ blockDim.x|y|z

+ threadIdx.x|y|z + c

“gangx|gangy|gangz

vectorx|vectory|vectorz”

(6.3)

incre : istep =



gridDim.x|y|z “gangx|gangy|gangz”

blockDim.x|y|z “vectorx|vectory|vectorz”

gridDim.x|y|z ∗ blockDim.x|y|z

“gangx|gangy|gangz

vectorx|vectory|vectorz”

(6.4)

#pragma acc loop gangy vectory
for(i=c1; i<iend; i++){
#pragma acc loop gangx vectorx
for(j=c2; j<jend; j++){
…
}

}

iinit = blockIdx.y * blockDim.y+threadIdx.y+c1;
istep = gridDim.y * blockDim.y;
jinit = blockIdx.x * blockDim.x+threadIdx.x+c2;
jstep =  gridDim.x * blockDim.x ;
for (i=iinit; i<iend; i+=istep) { 

for (j=jinit; j<jend; j+=jstep ) {
……

}
}

(a) Scheduling-gv-gv (b) Scheduling-gv-gv in CUDA

Figure 6.8: Two Level of Nested Loop Scheduling Transformation in Kernels Region

The example in Figure 6.8(a) shows the loop scheduling “gangy vectory” for

the outer loop and “gangx vectorx” for the inside the loop. The translated CUDA
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version(Figure 6.8(a)) follows the Equation 6.3 and 6.4. In this loop scheduling,

both gang and vector are two dimensions which the parallel loop scheduling cannot

do. After the mapping, the outer loop thread stride is gridDim.y ∗ blockDim.y and

the inner loop thread stride is gridDim.x ∗ blockDim.x.

The goal of the kernels loop scheduling is to solve the limitations addressed in

parallel loop scheduling section and create as many loop schedulings as possible.

From Equation 6.3 and 6.4, we can tell that parallel loop scheduling is a subset

of kernels loop scheduling. Due to the rich set of loop scheduling options, either

compiler middle-end can have enough search space to tuning the performance or

expert users can explicitly specify appropriate loop scheduling for the nested loop.

The loop scheduling strategies proposed for kernels regions are not valid in

OpenACC. However, the intention of the kernels construct is to let the compiler

analyze and automatically parallelize loops, as well as select the best loop scheduling

strategy. So far OpenUH requires the user to explicitly specify these loop schedules,

but we are planning to automate this work in the compiler so that the chosen loop

scheduling is transparent to the user and the source code also follows the OpenACC

standard. Another issue lies with the barrier operation in kernels computation re-

gions. For example, if the reduction is used in the inner loop of scheduling-gv-gv it

would require synchronization across thread-blocks, and such synchronization is not

supported in both AMD/NVIDIA GPUs. At this situation, the workaround is to use

parallel loop scheduling.
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#pragma acc loop gang(2)

for (…) {

… //statements

#pragma acc loop worker(3)

for (…)

{

…//statements

#pragma acc loop vector(4)

for (…)

{

…//statements

}

}

}

broadcasting 
barriers

Active Threads
OpenACC Compute Region

Figure 6.9: Traditional Execution Mode with Synchronization and Broadcasting

6.3 Redundant Execution Mode

Redundant execution is conceptually straightforward. Every thread involved in the

redundant execution mode performs redundant computation instead of waiting for

master threads computation result with synchronization statement. However, the

compute region execution on the device is not fully redundant execution until reach-

ing the vector-level parallelism. The Figure 6.9 shows the traditional execution mode.

When the execution has not reached the vector-level parallelism, gang and worker

loop parallelism have limited threads actively working on the computation. Re-

sults computed at the gang and work parallelism are requiring synchronization and

broadcasting to the newly activated threads. The synchronization and broadcasting

creates communication overhead.

The traditional execution mode may fit well in the CPU side parallelism. For
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example, master thread do the computation and others threads can work on some

other computations, like picking up tasks from task queue. The inactive threads

do not have to occupy computing resources, such as CPU cores. While on the

GPU, this situation does not make any performance benefits. There are several

reasons behind it. First, GPU scheduling unit is warp which is a group of threads

(typically 32 threads for NVIDIA and 64 for AMD). The cost of scheduling single

thread and a warp of threads is the same because both of them consume the same

compute resources. Second, threads communication within thread-block relies on

Shared Memory and synchronization statements. If each thread perform computation

itself, the data is in the register files. Clearly, access latency of Shared Memory is

much slower than the register files. Plus the synchronization statements, it is not a

decent overhead.

The fully redundant execution mode is proposed to remove such unnecessary

overhead. The idea is to privaterize every statement in the gang and worker level

parallelism. These statements used to be executed by one thread in each thread

block and one thread in each worker. In the gang-level parallelism, each gang only

have one active vector lane All thread can perform the computation themselves

without synchronization and communication. Basically, the statements in the gang

and worker parallelism have to be privaterized for each thread.

However, not all the statements can be privatized and executed redundantly.

Consider the OpenACC loop parallelism in Figure 6.10. The loop in both OpenACC

loop gang and worker has already assumed that the repsective loop iterations are

independent from each other. The only dependence allowed in the loop is reduction
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1 #pragma acc loop gang
2 f o r ( i =s0 ; i<n0 ; i++) {
3 S1 ;
4 #pragma acc loop vector
5 f o r ( j=s1 ; j<n1 ; j++)
6 {
7 . . .
8 }
9 }

10

Figure 6.10: OpenACC Loop Parallelism

1 #pragma acc loop gang (2)
2 f o r ( i =s0 ; i<n0 ; i++) {
3 a [ i ] += x ;
4 #pragma acc loop vector (3 )
5 f o r ( j=s1 ; j<n1 ; j++)
6 {
7 . . .
8 }
9 }

10

(a) Array Reduction

1 #pragma acc loop gang (2)
2 f o r ( i =s0 ; i<n0 ; i++) {
3 sum += a [ i ] ;
4 #pragma acc loop vector (3 )
5 f o r ( j=s1 ; j<n1 ; j++)
6 {
7 . . .
8 }
9 }

10

(b) Scalar Reduction
Figure 6.11: Statement cannot be privatized directly within each thread

operations which requires all the threads synchronization. So the only operation

that may prevent the statement privatization is this reduction operation. Both array

reduction (Figure 6.11(a)) and scalar reduction operations (Figure 6.11)(b) cannot

be privatized and executed redundantly due to the data dependence amongs the

threads. Compiler can use the classic dependence analysis to detect such statement

and prevent redundant execution mode.

The Figure 6.12 demonstrates the threads computation context in the fully re-

dundant execution mode. All the thread are active from the beginning of the offload

kernel. Each thread does the computation itself and store the results in the register

files. Synchronization and broadcasting are removed.

Let’s consider the an offload loop from sparse matrix-vector loop (Figure 6.13)
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#pragma acc loop gang(2)

for (…) {

…//statements

#pragma acc loop worker(3)

for (…)

{

…//statements

#pragma acc loop vector(4)

for (…)

{

…//statements

}

}

}

Fully Redundant Execution
OpenACC Compute Region

Figure 6.12: Innovative Synchronization Free and Fully Redundant Execution Mode

1 #pragma acc k e rn e l s loop gang
2 f o r ( i = 0 ; i < nrows ; ++i ){
3 va l = 0 . 0 ;
4 n s t a r t = rowindex [ i ] ;
5 nend = rowindex [ i +1] ;
6 #pragma acc loop vector
7 f o r ( n = ns ta r t ; n < nend ; ++n ){
8 . . .
9 }

10 r [ i ] = va l ;
11 }
12

Figure 6.13: sparse Matrix-Vector Loop
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1 shared f l o a t sh va l ;
2 shared in t sh ns ta r t , sh nend ;
3 f l o a t va l ;
4 i n t nstart , nend ;
5 f o r ( i=blockIdx . x ; i<nrows ; i+=blockDim . x ){
6 i f ( threadIdx . x==0) {
7 sh va l = 0 . 0 ;
8 s h n s t a r t = rowindex [ i ] ;
9 sh nend = rowindex [ i +1] ;

10 }
11 sync th r eads ( ) ;
12 va l = sh va l ;
13 n s ta r t = sh n s t a r t ;
14 nend = sh nend ;
15 . . . / / inner loop stmts
16 i f ( threadIdx . x==0)
17 r [ i ] = va l ;
18 }
19

1 f l o a t va l ;
2 i n t nstart , nend ;
3
4
5 f o r ( i=blockIdx . x ; i<nrows ; i+=blockDim . x ){
6 //removed the thread d ive rge
7 //and shared memory ope ra t i ons
8
9

10 //no synchron i za t i on
11 //no broadcast ing from shared memory
12 va l = 0 . 0 ;
13 n s ta r t = rowindex [ i ] ;
14 nend = rowindex [ i +1] ;
15 . . . / / inner loop stmts
16 //removed the thread d ive rge
17 r [ i ] = va l ;
18 }
19

Figure 6.14: (a)Traditional Execution Mode and (b)Redundant Execution Mode with
CUDA syntax

6.4 Related Work

Loop Scheduling transformation serves as a basic component in a parallel compiler

for high-level directive-based approach. Every compiler has to implement efficient

and various strategies to distribute loops iterations across massive threads in accel-

erators. In this section, both commercial and academic compiler efforts are briefly

summarized in terms of loop scheduling transformation.

hiCUDA [31] uses “loop partition” directive to distribute loop iterations. It has

the following syntax:

#pragma hicuda loop partition [over tblock [(distr-type)]] [over thread]

for-loop statement

At least one of the over tblock and over thread clauses must be present. In the

over tblock clause, distr-type specifies one of the two strategies of distributing
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1 #pragma omp p a r a l l e l f o r
2 f o r ( i =1; i<=SIZE ; i ++){
3 f o r ( j =1; j<=SIZE ; j ++)
4 a [ i ] [ j ] = (b [ i 1 ] [ j ] + b [ i +1] [ j ]
5 + b [ i ] [ j 1 ] + b [ i ] [ j +1]) /4 ;
6 }
7

Figure 6.15: OpenMP original parallel for nested loop

1 i f ( t id<=SIZE){
2 f o r ( i =1; i<=SIZE ; i++) {
3 a [ i ] [ t i d ] = (b [ i 1 ] [ t i d ] + b [ i +1] [ t i d ]
4 + b [ i ] [ t i d 1 ] + b [ i ] [ t i d +1]) / 4 ;
5 }
6 }
7

Figure 6.16: CUDA generation from OpenMP parallel region using OpenMPC

loop iterations: blocking (BLOCK) and cyclic (CYCLIC). If it is omitted, the de-

fault distribution strategy is BLOCK. The over thread clause does not have such

a sub-clause, and the distribution strategy is always CYCLIC. hiCUDA restricts

the distribution strategy for the over thread clause to be cyclic. This ensures that

contiguous loop iterations are executed concurrently. Since contiguous iterations

tend to access contiguous data, this strategy allows for coalescing accesses to the

global memory. The inner-most over thread is always mapped to the X-dimension

of thread-block. This strategy is similar to the parallel loop scheduling.

OpenMPC [43] interprets the OpenMP 3.0 into CUDA programming model.

However, OpenMP 3.0 supports only 1 level of parallelism (nested parallelism are

not recommended in OpenMP 3.0). Only one dimension of grid and one dimension

of thread-block are supported. This methodology limits the advantage of GPU mas-

sively threads architectures which can create multi-dimensional threads topology.

OpenMPC cannot handle multiple levels of parallelism. Figure 6.15 and Figure 6.16
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1 #pragma hmppcg(CUDA) g r i d i f y b l o c k s i z e ”64x1”
2 #pragma hmppcg(CUDA) permute j , i
3 f o r ( i = 0 ; i < n ; i++ ) {
4 f o r ( j = 0 ; j < n ; j++ ) {
5 prod = 0.0 f ;
6 f o r ( k = 0 ; k < n ; k++ )
7 prod += A[ i ] [ k ] ∗ B[ k ] [ j ] ;
8 C[ i ] [ j ]= prod ;
9 }

10 }

Figure 6.17: HMPP Loop Scheduling

present a Jacobi-like loop nest example with OpenMPC framework transformation.

OpenMPC compiler uses loop exchange which they called parallel loop-swap to im-

prove the performance of data accesses in the nest loop. The outer and inner nested

loops are exchanged, then the loop j iterations are distributed across block and

threads which is similar to “gang vector” scheduling. The loop i iterations are carried

sequentially by each thread. While Both loops i and j can be parallelized by OpenUH

OpenACC without performing loop permutation, if the example in Figure 6.15 can-

not perform loop permutation, OpenMPC generates inefficient loop distribution.

HMPP [14] provides fine-control of loop transformation. The loop nest gridifica-

tion process converts parallel loop nests into a grid of GPU threads. The gridify

directive can be used to guide the gridification of the loop nest. HMPP implements

a 2-dimensional gridification process which is in most of the cases applied automat-

ically. However, in some situations, users may want to specify how to gridify the

loops. Figure 6.17 is an example of HMPP offload region. The blocksize specifies

the number of threads in a block of the gridification. In this case, there are 64 threads

in x-dimension and 1 thread in y-dimension. HMPP cannot gridify more than two
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1 #pragma acc loop gang (n)
2 f o r ( i = 0 ; i < n ; i++) {
3 #pragma acc loop worker (4) vec tor (128)
4 f o r ( j = 0 ; j < n ; j++) {
5 c = 0 .0 f ;
6 f o r ( k = 0 ; k < n ; k++)
7 c += A[ i ] [ k ] ∗ B[ k ] [ j ] ;
8 C[ i ] [ j ] = c ;
9 }

10 }

Figure 6.18: Naive Matrix Multiplication with OpenACC Loop Directives

loops unless the collapse is valid. The loop i and j will be parallelized. The inner-

most parallel loop is always mapped to the x-dimensional of thread-block. However,

the outer loop i represent two out of three array references in coalescing access. The

permute clause is used to exchange the loop i and j. By comparing to HMPP, our

OpenUH implementation covers at most 3 levels of nest loops instead of 2 in HMPP.

OpenUH creates more loop scheduling methods so that the loop exchange operation

can be avoided in case of unallowed permutation.

PGI delivers two types of mapping in their OpenACC compiler. In the parallel

region, PGI interprets each gang to a thread-block in the x-dimension of grid, worker

to thread in y-dimension of thread-block and vector to thread in x-dimension of

thread-block. While in kernels region, PGI maps each gang to a thread block, vector

to threads in a block, and ignore worker [30]. Cray compiler maps each gang to

a thread block, worker to warp, and vector to SIMT group of threads [16] in both

parallel and kernels region.

The accULL [54] does not cover the loop scheduling transformation in the refer-

ened paper. We use a naive matrix multiplication (Figure 6.18) to test this OpenACC

85



1 in t i = blockIdx . x ∗ blockDim . x + threadIdx . x ;
2 i n t j = blockIdx . y ∗ blockDim . y + threadIdx . y ;
3 i f ( ( i < n) && j < n )
4 {
5 c = 0 .0 f ;
6 f o r ( k = 0 ; k < n ; (k++))
7 c += A[ ( i ∗ n) + k ] ∗ B[ ( k ∗ n) + j ] ;
8 C[ ( i ∗ n) + j ] = c ;
9 }

Figure 6.19: Matrix Multiplication CUDA kernel generated by accULL

compiler. Their compiler ignores the memory coalescing analysis and generates inef-

ficient loop distribution (Figure 6.18). The loop scheduling clauses are also ignored

by the compiler. The inner loop is always distributed across y-dimensional of thread

blocks and grid.

The Omni OpenACC compiler [58] does not explain the loop scheduling trans-

formation in their paper either. We use the same naive matrix multiplication as ac-

cULL to test the Omni compiler. Omni loop scheduling mapping follows OpenACC

standard and is similar to the parallel scheduling in OpenUH. However, their loop

scheduling is limited compared to our rich set of kernels loop scheduling. Moreover,

their transformation introduces too many unnecessary function calls, barriers and

thread diverging which hurt performance.

Both Rose-OpenACC [62] and OpenARC [45] map gang to a thread-block in the

x-dimension of grid, worker to a thread in x-dimension of thread-block and ignore

the vector clause. In this situation, the loop scheduling is very limited and only two

levels of parallelism are available.
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6.5 Summary

In this chapter, we define the loop scheduling and describe how this transformation

is performed to loops in our OpenACC implementation. Basically, it is about how

to distribute loop iterations over the GPGPUs threading architectures. The loop

scheduling is one of the most important performance factors that have huge impact

on the performance of kernel computing. The goal of the loop scheduling targeting

GPUs is to maximize the memory coalescing. An innovative redundant execution

mode is proposed and implemented in OpenUH to accelerate the kernel execution

without synchronization and broadcasting at certain condition. At this point, the

baseline of OpenACC compiler implementation is presented. In the next chapter,

we cover the data locality optimization in terms of read-only data and register file

optimizations.
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Chapter 7

Data Locality Optimization

Poor locality of memory access leads to inefficient use of processing capabilities.

This direct relation is exacerbated when faced with deep memory hierarchies in

GPUs. In order to rectify memory access latencies and improve the Instruction

Per Cycle (IPC), appropriate management of memory resources becomes crucial to

ensure performance. The aforementioned memory resources include the set of register

files, L1 cache, L2 cache, Read-Only data cache, shared memory, constant memory,

texture and global memory. Throughout this work, exploitation of deep memory

hierarchy within GPUs is explored as a means to reduce memory access latencies.

Optimizing offload regions written in OpenACC has the following advantages

over those written using CUDA or OpenCL:

• Optimizing loop kernels using OpenACC does not require the structure of the

loop to be modified. This allows the compiler to normalize loop regions and

88



use classical optimization techniques (like Loop Nest Optimizations) without

affecting the parallelism semantics. This opportunity vanishes once the loop

kernels are transformed to lower level representations using OpenCL/CUDA.

• Using high level constructs like array accesses and directives enable the com-

piler to retain aliasing information, which in turn aids further optimizations.

This information is lost in case of lower-level programming constructs within

OpenCL/CUDA.

• OpenACC provides for atomic constructs to highlight memory regions partici-

pating in atomic operations. Since CUDA/OpenCL provide library interfaces

to achieve the same effect, the compiler remains oblivious to its semantics. This

further reduces optimization opportunities. Since OpenACC atomic constructs

are coupled with specific array accesses, the compiler is aware of the extent of

the impact due to the atomic operation.

• Opportunities for locality-based optimizations can further be improved by us-

ing OpenACC clauses such as “cache”, “tile”, and other data clauses. While

this can be achieved using OpenCL/CUDA, the programmer is expected to

explicitly handle the low-level memory management.

In the following sections, we discuss compiler optimization to solve the data

locality problem at some extent. Section 7.1 describes Data Flow Analysis (DFA)

to utilize the read-only data cache. The compiler may not find optimal solutions; in

these case, the user can use a proposed data clause to identify the read-only data, and

the compiler determines from this where the data should be placed. In Section 7.2, we
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extend the scalar replacement algorithm to OpenACC offload. The new algorithm

combines a latency cost model and register information feedback from lower-level

vendor’s tools to guide the scalar replacement. We name such register optimization as

StAtic Feedback-bAsed Register allocation Assistant (SAFARA) which was discussed

in the publication [59].

7.1 Read-Only Data Optimization for Offload Re-

gion

The GPU architecture contains multiple read-only memory space, each serving a

different purpose. The NVIDIA GPU contains three types of read-only memory

units: constant memory, texture memory, and Read-Only Data Cache (RODC).

RODC actually is texture cache that is used to cache the texture memory. But

NVIDIA provides unconventional but convenient way to take advantage of it. In the

Figure 7.1, data usually is fetched into L2 cache and then feed into L1 cache. NVIDIA

CUDA provides new key words to identify the read-only data which can be fetched

from L2 and then reach the register files via read-only data cache. This data path

offers additional memory bandwidth which can improve the performance. The AMD

GPU also includes constant memory and texture memory. But OpenCL interface

that AMD adopts does not have an easy access interface to apply the texture cache

for read-only data. If the compiler translates the OpenACC application directly to

GPU binary, compiler can use texture fetch instructions to take advantage of such

special cache. In this section, we propose a compiler analysis to extract the read-only
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data segment and transformations to take advantage of the read-only data segment.

The RODC optimization handles data sections referenced using arrays and pointers.

Threads

Shared 
Memory

L1 Cache
Read‐Only
Data Cache

Register Files

GPU Global Memory
Texture 
Memory

Constant 
Memory

L2 Cache

Figure 7.1: Data Path in GPU Memory Hierarchy: the green line the general data path
from L2 to register files and the red line the new path for read-only data

Data loaded through the read-only data cache can be much larger and can be

accessed in a non-uniform pattern. In the NVIDIA CUDA compiler, the user can

give hints by using the “const” modifier to designate certain read-only data and the

“ restrict ” keyword to indicate no aliasing. The CUDA compiler generates code to

help the hardware to cache the corresponding data into the RODC. We propose and

implemented in OpenUH two ways to effectively take advantage of read-only data

cache in high-level programming models.
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1 #pragma acc data copyin (a , b) \
2 copyout ( c )\
3 {
4 #pragma acc k e rn e l s rodc (a , b)
5 {
6 #pragma acc loop independent
7 f o r ( i =0; i<n ; i++)
8 {
9 c [ i ] = a [ i ] + b [ i ] ;

10 }
11 }
12 }
13

(a) OpenACC Code

1 g l o b a l void a c c r g ve c t o r add (
2 double∗ r e s t r i c t c ,
3 const double∗ r e s t r i c t b ,
4 const double∗ r e s t r i c t a ,
5 i n t n) {
6 in t i , i s t e p ;
7 i = threadIdx . x +
8 blockIdx . x ∗ blockDim . x ;
9 i s t e p = blockDim . x ∗ gridDim . x ;

10 f o r ( ; i<n ; i+=i s t e p )
11 ∗( c+i ) = ∗( a+i ) + ∗(b+i ) ;
12 }
13

(b) Translated CUDA Kernel
Figure 7.2: Read-Only Data Cache Optimization Demo

Figures 7.2(a) and (b) give an example of how the proposed clause is used and the

translated CUDA code. First, a new data clause is introduced to explicitly identify

the read-only data by users. We named it as “rodc,” which is only valid in the kernels

or parallel construct. Users can determine which offload region needs the “rodc”

clause. Second, the OpenACC compiler can do data flow analysis for the offloaded

region, check if an array/pointer buffer will be written, and then generate a read-only

array/pointer variables list. In this scenario, aliasing may prevent the compiler from

making the optimal decision. However, such aliasing issues can be solved by using

the OpenACC loop clause “independent,” which tells the compiler that iterations are

independent from each other. This is a better solution compared to the new “rodc”

clause solution as the code still follows the OpenACC standard and the RODC

optimization is applied by the compiler implicitly. Since this optimization is specific

to the NVIDIA Kepler architecture, the compiler will bypass when targeting other

architectures.
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7.2 Register File Optimization

Using compiler directives to program accelerator-based systems through APIs such

as OpenACC or OpenMP has increasingly gained popularity due to the portability

and productivity advantages it offers. However, when comparing the performance

typically achieved to what lower-level programming interfaces such as CUDA or

OpenCL provides, directive-based approaches may entail a significant performance

penalty. To support massively parallel computations, accelerators such as GPGPUs

offer an expansive set of registers, larger than even the L1 cache, to hold the tem-

porary state of each thread. Scalar variables are the mostly likely candidates to be

assigned to these registers by the compiler.

Hence, scalar replacement is a key enabling optimization for effectively improving

the utilization of register files on accelerator devices and thereby substantially re-

ducing the cost of memory operations. However, the aggressive application of scalar

replacement may require a large number of registers, limiting the application of this

technique unless mitigating approaches such as those described in this paper are

taken.

In this section, we propose solutions to optimize the register usage within of-

floaded computations using OpenACC directives. We first present a compiler opti-

mization called SAFARA that extends the classical scalar replacement algorithm to

improve register file utilization on GPUs. Moreover, we extend the OpenACC inter-

face by providing new clauses, namely dim and small, that will reduce the number

of scalars to replace. SAFARA prioritizes the most beneficial data for allocation in
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registers based on frequency of use and also memory access latency. It also uses a

static feedback strategy to retrieve low-level register information in order to guide

the compiler in carrying out the scalar replacement transformation. Then, the new

clauses we propose will extremely reduce the number of scalars, eliminating the need

for more registers.

7.2.1 SAFARA: StAtic Feedback-bAsed Register allocation

Assistant for GPUs

Scalar replacement (SR) is a classical optimization that can be applied to improve

utilization of register files. In this section we present what we view as limitations of

the state-of-the-art algorithm, by Carr and Kennedy [39, 22], and we introduce our

new algorithm called SAFARA.

7.2.1.1 The Carr-Kennedy Algorithm

The scalar replacement algorithm[22, 23] includes three phases: (1) a dependence

distance-based data reuse analysis, (2) a moderation model of register pressure, and

(3) the scalar replacement transformation. The Carr-Kennedy algorithm [23] uses

input and flow dependence analysis to find the array references. If all of the reused

memory references found in the first phase are replaced with scalar, the performance

of the application may slow down because of register spilling. The moderation of

register pressure is used to find out the most beneficial memory references that

can be replaced with scalars. Once the memory references that are chosen to be
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replaced with scalars are determined, the compiler performs the scalar replacement

transformation to replace the memory references with scalars. However, the Carr-

Kennedy algorithm cannot be directly applied to OpenACC offload regions. In this

section, we present its limitations when applied to GPUs.

7.2.1.1.1 Creation of Inter-iteration Dependences in Parallelized Loops

The first limitation of the Carr-Kennedy algorithm is that it may translate an in-

dependent loop into a dependent loop that cannot be parallelized. An example of a

parallel loop is provided in Figure 7.3, where the array references b[i] and b[i+1]

introduce an input data dependence edge which has a dependence distance of 1.

Therefore, the data loaded in b[i+1] at iteration i will be used in array reference

b[i] at iteration i+1. The Carr-Kennedy algorithm will detect the data reuse op-

portunities and perform the scalar replacement optimization. The loop will be thus

transformed into the code shown in Figure 7.4, which has only 1 array reference

in the loop body. The loop in Figure 7.4 introduces loop-carried flow dependences

across iterations between b1 and b[i+1]. Consequently, the loop cannot be paral-

lelized. This conflicts with the goal of OpenACC which is to expose parallelism to

be exploited by the massively parallel accelerator. In fact, executing the loop se-

quentially by each thread of the GPU will lead to a significant performance penalty.

Therefore, in our solution, we will prevent scalar replacement from being performed

across iterations, if the loop can be parallelized.

7.2.1.1.2 Cost Model not Adapted to GPUs The memory access latency in

GPUs is different from the one of traditional CPU systems. In the Carr-Kennedy
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1 for(i=1; i<=SIZE ; i ++)

2 a[i] = (b[i] + b[i+1]) /2;

Figure 7.3: Before SR: iterations are independent

1 b1=b[1]

2 for(i=1; i<=SIZE ; i ++){

3 b2=b[i+1];

4 a[i] = (b1 + b2)/2;

5 b1 = b2;

6 }

Figure 7.4: After SR: iterations are dependent

algorithm, the metric used is how many memory accesses can be removed. For

this, a model of register pressure moderation is designed to select the most beneficial

references to be transformed into scalar variables if limited register files are available.

For instance, in Figure 7.5, references to each array a and b require 3 temporary

variables. In the Carr-Kennedy algorithm, when the number of available registers

is limited, the array references of a have higher priority to be replaced with scalar

variables because it is used one more time than b. However, in GPUs, another metric

should be taken into account due to the memory hierarchy of GPUs; this is the second

limitation of this algorithm for our purpose. In fact, since iterations in Loop j are

distributed across the x-dimension of each thread in each thread block, the memory

access in a are coalesced within a warp. Meanwhile, the memory accesses in b are

uncoalesced within a warp. Thus, the memory access latency of b is much higher

than that of a. In this case, replacing array references of b will have a better benefit

than replacing the references of a.
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1 #pragma acc loop gang vector

2 for(j=1; j<= JSIZE ; j ++){

3 c[j] = b[j][0] + b[j][1];

4 d[j] = c[j] *b [j][0];

5 #pragma acc loop seq

6 for(i=1; i<= ISIZE ; i ++){

7 a[i][j] += a[i-1][j] + b[j][i-1] +

8 a[i+1][j] + b[j][i+1];

9 }

10 }

Figure 7.5: Sample OpenACC program before SR

7.2.1.2 SAFARA: StAtic Feedback-bAsed Register allocation Assistant

for GPUs

SAFARA addresses the two limitations presented in the previous section. For the 1st

limitation, the scalar replacement approach can be divided into intra-iteration and

inter-iteration transformations. If the loop is identified as parallelized in OpenACC,

only the intra-iteration SR is performed to avoid to sequentialize it. Otherwise, if

the loop is sequential, then inter-iteration SR can be safely applied. As for the 2nd

limitation, three new components are integrated.

1. First, during the dependence analysis to retrieve data reuse, we count how

many times every array reference is used (read/write). Then, array references

are classified into four categories according to the memory hierarchy in the

GPU: shared, constant, read-only (available in NVIDIA Kepler GPUs only)

and global memory access 1. Read-only and global memory data accesses can

1Note that in our implementation, we only consider read-only and global memory accesses.
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be further divided into coalesced and uncoalesced accesses. Each of them has

different memory access latency [25].

2. Second, we use GPU tools to pinpoint the register usage information and then

feed it back to the OpenACC compiler to perform the SR. The NVIDIA GPU

tool we used is called PTXAS Info.

3. Third, using the information from the first step, we estimate the cost of each

array reference R belonging to a memory space M , using the formula

reference count(R) × memory access latency(M).

Then, all array references can be sorted from higher to lower cost. After that,

we select the most beneficial memory references to be replaced by scalar vari-

ables.

4. Go to Step 2 until all the registers are used or all the reused references are

replaced.

In the following subsections, we explain in details the methodology followed by these

steps.

7.2.1.2.1 Array Reference Analysis in SAFARA Memory access pattern

analysis is introduced into SAFARA to classify different memory access modes. Ba-

sically, the memory access latency depends on where the data is located and how the

data is accessed. There are several different memory spaces in modern GPU archi-

tectures. For the NVIDIA Kepler GPUs, there are shared memory, read-only global

data, read/write global data, constant memory and texture memory. Read-only data
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can be placed in the global memory and cached by the read-only data cache in each

SM. While building the dependence graph, the compiler performs array index anal-

ysis to determine if the memory access is coalesced or not. The index analysis that

is used in our algorithm is inspired from [36] which proposes a mathematical model

that captures and characterizes memory access patterns inside nested loops. This is

used to recognize if the memory access is coalesced or not.

7.2.1.2.2 Iterative Register Information Feedback to SAFARA We use

register utilization information from GPU tools to improve the scalar replacement

transformation done in SAFARA. In traditional CPU compilers that perform regis-

ter allocation and directly generate actual assembly code, this register information

is available during compile time. However, since GPU architectures change dramat-

ically between generations, compilers for GPUs generate a stable, virtual ISA that

spans multiple GPU generations and use pseudo registers. For example, NVIDIA

uses “PTX”. There are unlimited pseudo register numbers available in the virtual

ISA. The compiler cannot determine how many hardware registers have been used.

Vendors, including NVIDIA, provide closed-source low-level assembler tools to trans-

late the virtual ISA into actual GPU assembly code and allocate hardware registers.

In our work, we propose to assist the compiler by using feedback information

from these tools to calculate how many hardware registers are available. Moreover,

backend compilation is performed multiple times. The first time does not perform

any scalar replacement; it is only dedicated to invoking the GPU assembler tool to

output the hardware register usage information. The following compilation combines
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the register usage information and register upper limit specified by the hardware limit

(for instance the maximum number that can be used in NVIDIA Kepler GPU is 255

registers per thread) to determine the availability of registers. If there are available

registers, the scalar replacement optimization is invoked. The compiler analysis lists

all the memory references that can satisfy the scalar replacement requirements. If

the number of candidates is less than the available register count, all of them are

replaced by scalars. Otherwise, the cost model based on array references selection is

invoked.

7.2.1.2.3 Sophisticated Cost Model for Array References Selection In

contrast to traditional CPU architectures, overuse of GPU register files causes se-

vere performance degradation due to register spilling as well as lowering of thread

concurrency. This raises the issue of how to select good memory references if their

number is larger than the number of available registers. We use a more sophisticated

cost model to prioritize memory accesses for replacement. It is based on the mem-

ory access latency, which is used to estimate the potential cost of different memory

accesses. The model consists of two factors: memory access latency L and references

count C. The potential access cost is computed as L× C.

7.2.1.2.4 Running Example with SAFARA In the following, we demonstrate

the application of SAFARA on the example shown in Figure 7.5. After the first time

we apply the first iteration of SAFARA, we suppose that the GPU tool outputs 26

as the number of registers that are used. We suppose that the hardware limit is only

30 registers. So, the number of available registers found by our algorithm is 4. In
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the second iteration of SAFARA, the scalar replacement is applied on Array b using

3 registers (recall that Array a is coalesced and should not be put in registers) and

the code will be transformed into the code shown in Figure 7.6. We show here only

two iterations for lack of space.

1 #pragma acc loop gang vector

2 for(j=1; j<= JSIZE ; j ++){

3 c[i] = b[j][0] + b[j][1];

4 d[j] = c[j] *b [j][0];

5 b0=b[j][0];

6 b1=b[j][1];

7 for(i=1; i<= ISIZE ; i ++){

8 b2 = b[j][i+1];

9 a[i][j] = a[i-1][j] + b0

10 + a[i+1][j] + b2;

11 b0 = b1;

12 b1 = b2;

13 }

14 }

Figure 7.6: Sample OpenACC program after SAFARA

7.2.2 Proposed Extensions to openACC: dim and small New

Clauses

Scalar replacement is a classical memory optimization algorithm to reduce redundant

memory access. In the previous subsection 7.2.1, we presented an extension to SR

by providing different techniques and we called this extension SAFARA. However,

the aggressive application of scalar replacement increases register pressure, which
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may lead to low threads occupancy or cause register spilling, and thus hurt perfor-

mance. To confirm this result, we perform a study on the SPEC benchmark suite

and we show experimental results in Figure 7.7. The experimental setup is provided

in Section8.1. In this study, we found that SAFARA provides either very small per-

formance improvement or sometimes slows down the application when registers are

exhaustively used by threads, because this leads to low threads occupancy; we also

found that no register spilling happened based on SAFARA feedback information.

Finding the best combination between what is the optimal number of registers to use

by each thread and how much scalar replacement we allow the compiler to perform

is a complex problem [63]. In this section, we propose a solution at the API level

of OpenACC to reduce the number of scalars that will be held potentially in regis-

ters. This will save some registers to use by each thread and thus increase threads

occupancy.
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Figure 7.7: Speedup results of SPEC benchmark suite with SAFARA

Array references are frequently used in high-level programming models like OpenMP

and OpenACC that are API extensions to C/C++ and Fortran languages. SPEC

benchmarks for example contain a lot of array references. When the offload region
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is translated into the GPU lower level kernel routines (using CUDA for example),

the array reference is represented using a pointer and offset calculation operations.

The idea behind the two clauses we want to introduce is to save some register files

for scalar replacement by removing unnecessary array offset computations. The pro-

grammer can directly use these two clauses to pass array information to the compiler.

We provide a motivation example in Figure 7.8 which shows a snippet of one of the

offload regions in SPEC Accelerator 355.seismic benchmark. In this code, Loop j

iterations are distributed across the y-dimensional threads and Loop i iterations are

carried by x-dimensional threads in the GPU. The iterations in Loop i and Loop j

are evenly distributed across all the threads and each thread only executes one iter-

ation. The innermost Loop k is executed sequentially and SAFARA can be applied

over array references across the k iteration.

1 !$acc kernels loop gang(NY/2) vector (2)

2 do j = 2,ny

3 !$acc loop gang((NX -1+63) /64) vector (64)

4 do i = 1,nx -1

5 !$acc loop seq

6 do k=2,nz

7 ...

8 value_dz = (vz_1(i,j,k)-vz_1(i,j,k-1))/h &

9 + (vz_2(i,j,k)-vz_2(i,j,k-1))/h &

10 + (vz_3(i,j,k)-vz_3(i,j,k-1))/h

11 ...

12 enddo

13 enddo

14 enddo

Figure 7.8: Snippet code from SPEC 355.seismic benchmark

103



7.2.2.1 dim Clause

In multiple scientific kernels including SPEC, the arrays are allocatable arrays (case

of Fortran) or Variable-Length Arrays (VLA) (case of C/C++). These arrays are

dynamically allocated; the dimensional information of the array is held in a dope

vector data object generated by the compiler. In the example provided in Figure 7.8,

the offset calculation requires five additional compiler-generated temporary variables

to hold the lower bound and length for each dimension in Fortran, while in VLAs in

C/C++, we need temporary variables to hold the length for each dimension, since

the lower bound is always zero. The listing below details the computation of the

offsets and reference addresses for the three array references in Figure 7.8. The

variables t0,...,t14 hold dimensional information for each array. Note that 15 scalar

variables are used to keep the boundary information and calculate the offsets of the

three arrays.

1 o f f s e t 0 = ( i−t0 ) + t3 ∗ ( ( j−t1 ) + t4 ∗ (k−t2 ) )

2 vz 1 ( i , j , k ) −−> ∗( vz 1 + o f f s e t 0 )

3

4 o f f s e t 1 = ( i−t5 ) + t8 ∗ ( ( j−t6 ) + t9 ∗ (k−t7 ) )

5 vz 2 ( i , j , k ) −−> ∗( vz 2 + o f f s e t 1 )

6

7 o f f s e t 2 = ( i−t10 ) + t13 ∗ ( ( j−t11 )+t14 ∗(k−t12 ) )

8 vz 3 ( i , j , k ) −−> ∗( vz 3 + o f f s e t 2 )
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However, these three arrays have exactly the same dimensions. If the compiler

has this equality of dimensions information, the array references address computation

can be optimized into a simplified version which is shown in the listing below:

1 o f f s e t 0 = ( i−t0 ) + t3 ∗ ( ( j−t1 ) + t4 ∗ (k−t2 ) )

2 vz 1 ( i , j , k ) −−> ∗( vz 1 + o f f s e t 0 )

3 vz 2 ( i , j , k ) −−> ∗( vz 2 + o f f s e t 0 )

4 vz 3 ( i , j , k ) −−> ∗( vz 3 + o f f s e t 0 )

At the compilation time, the compiler has no idea whether these arrays have the

same dimension. Therefore, we propose a new clause dim to be added to kernels

and parallel directives to specify which arrays share the same dimension(s). At

the GPU code generation phase, the compiler can take advantage of this clause

information and optimize the offset computation. Note that, in this specific example,

the number of registers needed can be reduced to 5, which corresponds to (number

of scalars)/(number of arrays). The dim clause syntax is shown below:

1 Fortran:

2 !$acc kernels/parallel &

3 dim([(lb1:len1 ,...,lbN:lenN)](A1 ,... ,) ,...)

4

5 C/C++:

6 #pragma acc kernels/parallel \

7 dim([len1 ]...[ lenN](A1 ,... ,) ,...)
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Note that dimension data in the clause syntax is optional. If the user does not

specify the dimension data, as follows, the compiler can automatically load lower

bounds and length data from one of the array’s dope structure:

!$acc kernels dim( (vz 1, vz 2, vz 3))

However, we recommend providing complete information (dimensions and arrays)

because the compiler can simplify further the offset computation, in particular when

the lower bound is zero, as below:

1 !$acc kernels &

2 dim ((0:NX , 0:NY , 0:NZ)(vz_1 , vz_2 , vz_3))

7.2.2.2 small Clause

On 64-bit machines, the compiler uses a pointer type of 64-bits size while an offset

is also a 64-bit integer. However, if the array size is less than 4GB, array references

address computation can be represented with 64-bit addresses and 32-bit integer

offsets. The size of register files used for offset computations can thus be reduced

by up to half. In fact, small array sizes are common in current applications due to

the limited device memory. Note that when the array is a static array in both C or

Fortran, the compiler can detect the array size and decide whether 32-bit integers

are enough to handle the offset value computation. However, when an allocatable

array or VLA is used, the compiler cannot figure out the array size. By default, the

compiler will use 64-bit integer to be safe. Therefore, we propose the new clause
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small to tell the compiler that the offset of an array can be represented within a

32-bit integer. Here, a small array means the array size is smaller than 4GB and

array references of such arrays can be represented with an array address plus a 32-bit

integer offset. The small clause syntax is shown below:

1 Fortran:

2 !$acc kernels/parallel &

3 small(A1 ,...,An)

4

5 C/C++:

6 #pragma acc kernels/parallel \

7 small(A1 ,...,An)

If we apply this clause to the previous example, as follows, the register number

can be reduced up to half:

1 !$acc kernels &

2 dim ((0:NX , 0:NY , 0:NZ)(vz_1 , vz_2 , vz_3)) &

3 small(vz_1 , vz_2 , vz_3)
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7.3 Related Work

While the original scalar replacement algorithm was proposed more than 20 years ago,

computer architectures have evolved considerably since then. Numerous past works

exist for improving this algorithm in many aspects. Sastry [55] and Sarkar [57] both

proposed new algorithms based on the SSA form. Budiu [21] presented a simplified

Carr-Kennedy [23] inter-iteration register promotion algorithm to handle a number

of dynamically executed memory acceses. Hall [56] demonstrated an algorithm to

increase the data reuse across multiple loops. Baradaran [20] described a register

allocation algorithm that assigns registers to array references replaced with scalars

along the critical paths of a computation. However, none of these algorithms can

effectively work for GPU architectures. While the register moderation model in the

Carr-Kennedy algorithm works well for a traditional CPU memory hierarchy, the

cost model-based strategy in SAFARA selects the most profitable array reference

candidates for mapping to register files through scalar replacement.

Budiu [21] proposed a simplified Carr-Kennedy iter-iteration register promotion

algorithm to handle dynamically executed memory accesses. In their approach, the

compiler generates a flag represented by a single bit that is associated with each

value to be scalarized, as well as code that dynamically updates the flag. The flag

can be inspected at run time to avoid redundant load operations, and their algorithm

ensures that only the first load and last store take place. Since this algorithm inserts a

large number of additional control flow statements throughout the code, the resulting

behavior when executed on a GPU is thread divergence. This will produce additional
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overhead and significantly degrade performance. In short, this algorithm is not GPU-

friendly.

Andión [19] presented a new scalar replacement algorithm for offload computation

regions specified using the HMPP directive interface [14]. This work is most similar

to our paper. Both works target a GPU offload region expressed using high-level

directives. Nevertheless, their algorithm over-utilizes the register files for each thread,

which may cause severe performance penalties due to register spilling and GPU low

threads occupancy. There are three additional limitations. First, array references

with index expressions only consisting of the parallelized loop indices are potential

reuse candidates. However, their approach does not handle loop-invariant variables

used in array subscripts, which can also be used to estimate the reuse of array

references. Second, the array reference access mode is not considered, and the cost

of different types of memory access varies. For example, if a read-only array is present

in the Read-Only Data Cache, then it will be accessed in a coalesced manner and

it is not beneficial to replace them with scalars. Third, all the reused references are

replaced with scalars. This does not take into account how many hits each reference

induces. Therefore a replacement may not be beneficial in some instances when a

low amount of hits occurs.

Regarding improving register usage using extensions to the API and RODC,

to the best of our knowledge, our work is the first dissertation to propose such

optimizations.
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7.4 Summary

In this chapter, we present two aspects optimization targeting on different on-chip

memory resources. First, we provided compiler support for Read-Only Data Cache

optimization which can potentially improve cases when there was a large number

of read-only data/buffer in the offloaded compute regions. Second, we present an

extension to the classical scalar replacement algorithm called SAFARA that is based

on feedback information regarding register utilization and a memory latency-based

cost model to select which array references should be replaced by scalar references. In

the register optimization, we propose two new clauses to add to OpenACC, namely

dim and small, to reduce the register usage. In the next chapter, we evaluate the

SPEC and NAS OpenACC benchmarks which we have used to study the effectiveness

of our OpenACC implementation and optimization algorithms.
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Chapter 8

Performance Evaluation with

OpenUH

This chapter presents empirical results for our implementation with two sets of bench-

marks: SPEC ACCEL suite [37] and NPB OpenACC suite [68]. The evaluation is

organized into three parts. The first section demonstrates the data locality optimiza-

tions on both NVIDIA and AMD GPUs. It indicates the effectiveness of optimization

strategies proposed on these platforms. This is followed by the verification of perfor-

mance portability across these platforms; performance results of the OpenACC im-

plementation within the OpenUH compiler is presented. Finally, the implementation

within OpenUH is compared with state-of-the-art commercial compiler - NVIDIA’s

PGI OpenACC compiler.
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8.1 Experimental Setup

This section describes the characteristics of the test platform.

8.1.1 NVIDIA Test bed

The NVIDIA infrastructure comprises of a K20Xm GPU with 5GB global memory.

The host CPU is an 8-core Intel Xeon x86 64 CPU coupled with 32GB of main

memory. CUDA 6.5 is used for the OpenUH backend GPU code compilation with

”-O3” optimization. The target and optimization flags for OpenUH are listed in

Table 8.1.

For the comparative analysis, we used one of the major commercial OpenACC

compiler vendors, namely PGI V15.9. We use ”-O3,-acc -ta=nvidia,cc35” for the

PGI compiler options. To obtain reliable results, all experiments were performed

five times and then the average performance was computed.

Table 8.1: OpenUH Compilation Flag

Flag Summary

-accarch:amd Targeting AMD discrete GPUs
-accarch:apu Targeting AMD APUs

-accarch:nvidia Targeting NVIDIA GPUs
-rodc Read-Only Data Cache Optimization

-safara GPU Register Optimization
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8.1.2 AMD Test bed

The AMD platform comprises of an APU and a discrete GPU card are used. The

AMD APU that we used is R7 GCN-based and integrated with CPU on the same

die. APU we used is Kaveri 7850K. The machine has 16GB DDR3 memory which

is shared by both CPU and GPU. The CPU and GPU in this APU architecture can

access the same unified virtual memory space. The AMD discrete GPU that we used

is Firepro W8100 with 8GB global memory. The machine with AMD W8100 includes

Intel Xeon CPU E5520 with 16 cores as host CPU and 32GB memory. AMD APP

SDK 3.0 is used for OpenUH backend for compiling the OpenCL kernel functions to

GPU binary with ”-O3” optimization.

Table 8.2: Evaluation Platform

Config NVIDIA K20mc AMD W8100 AMD 7850K

Compute Units 14 40 8
Cores 2644 2560 512

GPU Memory 6GB 8GB 16GB
Bandwidth(GB/s) 249.6 320 33

FP32 TFLOPS 4.0 4.2 0.737
FP64 TFLOPS 1.3 2.1 0.046

8.1.3 Benchmarks - SPEC ACCEL and NAS OpenACC

The SPEC ACCEL and NAS OpenACC benchmarks were chosen because the code-

size and the complexity are comparable to real world applications. The SPEC

OpenACC suite includes both C and Fortran applications and is used to evaluate

our compiler implementation and optimization algorithms this dissertation. It com-

prises of 15 OpenACC benchmarks in SPEC ACCEL OpenACC Suite, ten of which

113



were used as part of the experimental study1. These are listed in Table 8.3. The

benchmarks cover the different application domain and range from single GPU kernel

upto 116 GPU kernels. The SPEC ACCEL benchmark applications all provide three

different input data set sizes: test, train, and ref. The test data is the smallest size

and is used to verify the compiler implementation that generates correct results. The

reference date set is the largest size and was used to generate benchmark results.

NPB OpenACC benchmarks are written in C. These open-source benchmarks,

written using multiple programming models are a good target to evaluate current

and upcoming multi/many core hardware architectures. In this benchmark suite,

there are eight benchmarks, out of which the following seven were used: EP (Embar-

rassingly Parallel), CG (Conjugate Gradient), MG (MultiGrid), SP (Scalar Penta-

diagonal), LU (Lower-Upper symmetric Gauss-Seidel), BT (Block Tridiagonal) and

FT (Fast Fourier Transform)2. The suite supports multiple classes which correspond

to different sizes of the input data set - S, W, A, B, C, etc. FT was evaluated using

“B” and “C” for the rest3.

1Four of these fifteen come from NPB OpenACC Benchmarks (352.ep, 354.cg, 357.csp and
370.bt) and therefore is not include as part of the SPEC suite. One other benchmark - the
”351.palm” has been left out of the study due to the inability of the OpenUH compiler to compile
programs characterized with intrinsic function in offload region

2The benchmarks ”IS” has been left out of the study. It requires scan parallel implementation
which is not supported by the OpenUH compiler

3Four of these benchmarks - EP, CG, BT and SP benchmarks were adopted within the SPEC
ACCEL V1.0 [37] suite
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Table 8.3: SPEC ACCEL Benchmarks : kernels mean the GPU kernel functions that the
compiler generates.

Benchmarks Langauge GPU Kernels Data Size Application Domain

303.ostencil C 1 REF Thermodynamics
304.olbm C 1 REF Computational Fluid

Dynmaics, Lattice
Boltzmann Method

314.omriq C 1 REF Medicine
350.md Fortran 3 REF Molecular Dynamics
353.clvrleaf C, Fortran 116 REF Explicit Hydrody-

namics
355.seismic Fortran 16 REF Seismic Wave Model-

ing
356.sp Fortran 71 REF Scalar Penta-diagonal

solver
359.miniGhost C, Fortran 51 REF Finite difference
360.ilbdc Fortran 1 REF Fluid Mechanics
363.swim Fortran 22 REF Weather

8.1.4 Normalization of results

The execution time depicted in some of the plots in the following sections are nor-

malized so that the results can be accomodated in a single frame. The execution

time of benchmarks have a wide range varying from as low as a few seconds to several

hundreds of seconds. The formula used was:

Norm(Compiler) = ExeT ime(Compiler)
max(ExeT ime(OpenUH),ExeT ime(PGI))

8.2 Experimental Results

In this section, we demonstrate our data locality optimizations on both NVIDIA

and AMD platform. Two kind of optimizations have been proposed in Chapter 7:
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Table 8.4: NAS OpenACC Benchmarks

Benchmarks GPU kernels Data Size Application Domain

BT 46 C Block Tridiagonal Solver
CG 17 C Conjuage Gradient
FT 13 B Fast Fourier Transform
EP 5 C Embarrassingly Parallel
LU 56 C Lower-Upper symmetric Gauss-Seidel
MG 18 C MultiGrid
SP 65 C Scalar Penta-diagonal solver

Read-Only Data Cache and register optimizations.

8.2.1 Data Locality Optimization

8.2.1.1 Read-Only Data Cache

Read-Only Data Cache (RODC) is applied to the NVIDIA GPU which supports

global read only data path. NVIDIA CUDA supports read-only global memory

through the same cache used by the texture pipeline since Kepler architecture. Tex-

ture Cache is also available in AMD GPUs. However, AMD OpenCL interface of-

fers an Image Buffer that enables caching of global read-only data into the Texture

Cache. Typically OpenACC applications are characterized with use of array data

structures that are read-only in some offload regions, but written to in other re-

gions. If such data is placed with the Image Buffer during the read-only session,

it nees to be copied over to the global memory during the write operations. This

excessive data movement between the Image Buffer and the global memory has the

potential of severely degrading the performance. Therefore, we only verify RODC
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on the NVIDIA platform. This issue can be resolved by generation of fetch instruc-

tions from the texture-cache during the conversion to GPU-ISA instructions by the

compiler(during code-generation).
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Figure 8.1: SPEC ACCEL SUITE Performance Improvement by RODC and Register
Optimization on NVIDIA K20mc

In Figures 8.1 and 8.2, the usage of RODC and Register optimizations shows

the speedup in performance for SPEC ACCEL and NAS OpenACC benchmarks on

NVIDIA Kepler K20mc. Typically, applications that use a large number of read-

only buffers/arrays benefit from the RODC optimization. EP from NAS is the only

benchmark does not speedup by the RODC optimization. The execution time of EP

is dominiated by one offload region which performs reduction operations. It does not

have much read-only array in this offload region.

Figures 8.1 and 8.2 also show the speedup results after applying first the ‘dim’

and ‘small’ clauses to reduce the number of required registers and then ‘SAFARA’ to

make the scalar replacement. Note that Benchmarks 303, 304, 314 are C benchmarks
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and pointer operations are used in the offload regions; thus the dim and small clause

are used here. The dim clause is used in 355 and 356, which are Fortran applications

and include allocatable arrays. By comparing with Figure 7.7, the speedup is boosted

up to 1.46x and performance did not slow down anymore after introducing small and

dim clauses (note how 355.seismic overused the register files in Figure 7.7 and the

application did slow down). Meanwhile many registers and operations are dedicated

for array offset computations. The two clauses helped in reducing the number of

variables used in these computations and thus improving the performance.

The seven NAS OpenACC benchmarks are written in C language and use static

arrays; so a dim clause is not useful in this case. BT, LU and SP have several kernels

that contain uncoalesced memory accesses. Thus, SAFARA can help in reducing such

costly accesses by prioritizing their placement in register files. However, regarding

the small clause, among LU, SP, and BT, only BT showed benefit from using this
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clause. The reason is not known to us because the actual register allocation is done

at a much lower level of the CUDA compiler, which we do not control.
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Figure 8.3: SPEC ACCEL SUITE Performance Improvement by Register Optimization on
AMD W8100

8.2.1.2 Register Optimization

Register optimization which includes SAFARA and assisting clauses dim and small

is evaluated on both AMD and NVIDIA GPUs.

Since the AMD platform does not provide convenient interfaces to promote read-

only data, we only evaluate the Register File optimization (Figure 8.3 and Figure 8.4).

Like the SPEC benchmarks’ results for NVIDIA, 303.ostencil, 355.seismic, 356.sp and

359.miniGhost which include the data reuse inside the offload region benefit from SA-

FARA by placing the reused data into register files. 355.seismic is the benchmark

that motivates the new clause small and dim. It receives 63% of performance im-

provement by providing dim clauses to each offload region. The dim clause can
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largely reduce the register usage and improve the kernel efficient if many allocatable

arrays are involved in an offload region. For the NAS benchmarks, BT, LU and

SP also have the performance improvement by applying the SAFARA. However, the

feedback mechanism is not used in AMD platform since the OpenCL API does not

provide the register file information. So once the data reuse is found, scalar replace-

ment is performed. It is possible to cause the register spill and the performance may

not be improved as we expected in NVIDIA.

From NVIDIA results in Figures 8.1 and 8.2 and AMD results in Figures 8.3

and 8.4, the AMD platform does not generate as much performance improvement

as what we have in NVIDIA platform. However, it does not mean AMD GPU

runs slower than NVIDIA GPU. Next section, we discuss the performance different

between NVIDIA and AMD GPUs in Section 8.2.2.
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We also verified the register optimization on the AMD APU in Figure 8.5. How-

ever, we haven’t fully supported the APU platform our OpenUH and it has some

compilation error when building the SPEC benchmarks. Here, we only show BT,

LU and SP from NAS benchmarks and leave the SPEC for the future work. Clearly,

Computing capability from APU is much less powerful than discrete GPUs from Ta-

ble 8.2. Another direction that we can try in the future is to combine the distributed

programming models and OpenACC to increase the computing power.

In order to assess whether the small and dim clauses can effectively reduce the

register usage when multiple allocatable arrays or VLAs are used in Fortran or C

codes, we introduce another metric: the number of registers used in a kernel with

and without the small and dim clauses. There are 15 kernels in 355.seismic and

more than 40 kernels in 356.sp. We chose the 7 hottest kernels in seismic and the 10

hottest kernels in sp to perform this experiment. Note that 355.seismic and 356.sp
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are two Fortran applications where allocatable arrays are used. In a compiler, there

are multiple optimizations eager to use register files, such as kernel merging, loop

unrolling, scalar replacement and memory vectorization [35]. The registers saved by

the small and dim clauses can be used by these optimizations.

For 355.seismic, we take the 7 hottest kernels that constitute together 80% of the

total execution time. Table 8.5 shows the register usage optimization results. The

register files can be largely reduced by small and dim clauses if multiple allocatable

arrays are used in the same kernel.

Table 8.5: 355.seismic register files usage improvement via small and dim clause

Kernels Base +small w dim Saved

HOT1 128 104 48 80
HOT2 134 105 41 93
HOT3 101 90 47 54
HOT4 90 78 44 46
HOT5 86 79 44 42
HOT6 88 77 40 48
HOT7 76 73 40 36

356.sp has 10 frequently used allocatable arrays with two different dimensional

information. However, most of the kernels only use one of them (the ones with NA:

dim was not used). We chose the 10 hottest kernels (based on the execution time)

and investigated the register usage information. From Table 8.6, the register files

are largely reduced in the three kernels that access multiple of these arrays. NA

corresponds to kernels that use only zero, one allocatable array, or allocatable arrays

that do not have equal dimensions; in this case, dim should not be used.
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Table 8.6: 356.sp register files improvement by small and dim clause

Kernels Base +small w dim Saved

HOT1 72 67 NA 5
HOT2 70 54 51 19
HOT3 82 66 NA 16
HOT4 82 66 59 23
HOT5 74 37 32 42
HOT6 57 57 NA 0
HOT7 95 78 60 35
HOT8 211 152 112 99
HOT9 184 146 114 70
HOT10 60 58 NA 2

8.2.2 Performance Evaluation Using NVIDIA and AMD dis-

crete GPUs

From the Table 8.2, W8100 and K20mc have similar computation ability. In this

section, we compare the performance of SPEC (Figure 8.6) and NAS (Figure 8.7)

benchmarks on AMD and NVIDIA GPUs with our OpenUH compiler.
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MG from NAS benchmarks uses many subarrays in the offload regions and cre-

ating subarray in OpenCL is limited by memory alignment. The start of subarray

has to be aligned to 2048bit boundary. CUDA however can create arbitrary size of

subarray. As a result, this benchmark can run very efficiently on NVIDIA GPUs

and fail on the AMD GPUs due to this OpenCL limitation. The result of MG is not

included in the Figure 8.9.

In Figure 8.6 and Figure 8.7, the execution time is split into several parts:

1. Time invested during computation corresponds to execution of the kernel by

the device

2. The time spent during data movement between the global and GPU memory

3. Time spent during device memory allocation and free management

4. Other overhead within the device driver
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Since source-to-source translation is used within OpenUH for compiling GPU

kernel functions and OpenACC runtime (over NVIDIA CUDA and AMD OpenCL

driver), our approach may introduce additional overhead at the runtime. This over-

head is almost the same for the NVIDIA and AMD since we use the same compiler

framework for two platforms. The difference in performance can be attributed to the

actual implementation of the CUDA and AMD OpenCL drivers.

From the above figures, we observe the following:

1. All the benchmarks except 363.swim from SPEC are kernel are not data move-

ment intensive applications. It simply means most of the execution time should

be spent on the kernel computing.

2. By comparing ratio of computation time against the entire execution time

between AMD OpenCL and NVIDIA CUDA, the latter is more efficent. This

is because the time invested in computation dominates the other factors on

the NVIDIA platform. OpenCL runtime generates a huge overhead on many

benchmarks on the AMD GPU. Espcially when the device memory malloc and

free are frequently called. Such OpenCL runtime overhead can be removed if

the compiler adopts source-to-end compilation path using the GPU low-level

driver.

3. Computing time indicates the efficiency of GPU kernel functions. In most of

cases, AMD GPU runs close to or even faster than NVIDIA if we only consider

the computation time.
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8.2.3 Performance Comparison between OpenUH and PGI
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Figure 8.8: SPEC performance comparison between the OpenUH and PGI compilers. The
execution time is normalized and the lower, the better

We also compare our implementation in OpenUH with the PGI compiler for both

SPEC in Figure 8.8 and NAS in Figure 8.9. We present performance results for the

OpenUH compiler with the following configurations:

1. Base version with data locality optimizations disabled

2. RODC enabled

3. Both the data locality optimizations enabled - RODC and register optimization

(SAFARA and the two clauses - ‘dim’+‘small’)

From Figure8.8 and Figure8.9, we observe that the OpenUH compiler generates

efficient GPU kernels that outperform the PGI compiler while using the data locality

optimizations.
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Possible reasons for the PGI performance differing from OpenUH: One

of the possible reasons is the execution mode in the offload region. OpenUH adopts

our Redundant Execution as discussed in Chapter 6. While PGI uses the classical

synchronization and broadcasting implementation which causes unnecessary over-

head [68]. For EP from NAS benchmarks, the execution time is dominated by one

redunction kernel in which the synchronization cannot be eliminated using the re-

dundant execution mode.

8.3 Summary

In this chapter, we evaluated the proposed optimizations within the OpenACC im-

plementation in OpenUH. For this, two sets of widely used benchmarks were used.

The evaluation was presented in three parts. First, the impact on speedup due to
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data locality optimizations was discussed. It was observed that the proposed opti-

mizations enabled significant reduction in execution time. This was followed by a

comparison of performance between the AMD and NVIDIA GPUs. It was empiri-

cally shown that the performance portability across two different vendors’ platform

is achievable using OpenACC. The final part described empirical results between

our OpenUH and the state-of-the-art NVIDIA PGI compiler4. The results of the

evaluation show that the implementation of OpenACC coupled with the proposed

optimizations within OpenUH present a competitive edge in performance over that

achievable by the PGI compiler.

4The PGI compiler has supported OpenACC since 2012
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Chapter 9

Conclusion

9.1 Contributions

In this dissertation, we have described the entire framework for designing and opti-

mizing an open source OpenACC compiler serving as research platform in the com-

munity. A number of innovative methods are adopt to efficiently generating GPU

kernels. The contributions of this dissertation are summarized as follows:

1. We developed a robust and optimized open-source OpenACC compiler based

on OpenUH, a branch of the Open64 compiler. The compiler takes C/Fortran

applications and targets NVIDIA GPUs and AMD GPUs/APUs. This imple-

mentation serves as compiler infrastructure for researchers to explore advanced

compiler techniques, to extend OpenACC to other programming languages, or

to build performance tools used with OpenACC programs.
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2. We designed a rich set of loop-scheduling strategies within the compiler to

efficiently distribute kernels or parallel loops to the threading architectures of

GPU accelerators. Within the loop scheduling transformation, an innovative

redundant execution mode is proposed and implemented in order to reduce

unnecessary synchronization and broadcasting overhead.

3. We presented compile-time data locality optimizations to exploit the deep mem-

ory hierarchies in GPUs. These optimizations include : 1) the compile-time

read-only array/pointer detection for each offload region in order to utilize the

read-only data cache; 2) an extension to the classical scalar replacement algo-

rithm called SAFARA that is based on feedback information regarding register

utilization and a memory latency-based cost model to select which array ref-

erences should be replaced by scalar references. Moreover, since the aggressive

application of scalar replacement increases register pressure, we proposed two

new clauses to add to OpenACC, namely dim and small, to reduce the register

usage.

4. SPEC and NAS OpenACC benchmarks are used to evaluate our compiler

and optimizations. With the data locality optimizations, we got up to 3.22

speedup running NAS and 2.41 speedup while running SPEC benchmarks on

NVIDIA Kepler GPU; We also achieved up to 1.29 speedup running NAS and

1.8 speedup while running SPEC benchmarks on AMD W8100. The results

suggest that these approaches are effective for improving the overall perfor-

mance of code executing on the GPU. We also compare the design of our

compiler framework against NVIDIA PGI compiler. The results indicate that
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our compiler generates more efficient code than PGI’s compiler.

9.2 Future Work

During the course of this work, we developed a robust and performant implementa-

tion for OpenACC programming model within the OpenUH compiler. There are at

least three research directions we intend to explore, based on the framework that we

developed.

1. A cost model-based loop-scheduling autotuning at compile-time is required.In

this dissertation, users have to specify the loop scheduling for each nested

loop in order to reach peak performance. However, cost-model can be used to

analyze the nested loop and choose a proper loop scheduling in order to achieve

decent performance automatically.

2. Data locality optimization is key factor to take full advantage of the GPU

memory hierarchy. For example, memory vectorization can be used to take

advantage of high bandwidth memory on device. Scratchpad memory on GPU

is high-bandwidth and low-latency onchip resource. It is as fast as L1 cache.

Both of these two optimization can help reduce the memory access latency and

thus improve the performance.

3. Multiple accelerators within the same node may become a trend, hence how

to control the data affinity among the accelerators and host is challenging.

A high-level abstraction of the data partition among accelerators and host is
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necessary to ease the programmer’s burden and leverage the communication

overhead. Partitioned Global Address Space (PGAS) may be an ideal direction

to try. PGAS assumes a global shared memory address space that is logically

partitioned and portions of it are local to each processor (accelerator or host).

The virtue of PGAS is that portions of the shared memory space may have an

affinity for a particular processor. A high-level directive-based approach of the

PGAS concept on multiple accelerators system can be an efficient solution to

reduce the programming complexity and improve the performance in terms of

the data affinity.

4. The component of our framework that targets on AMD GPUs still is not well

optimized. There is still a room to work on several aspects : 1) since 8K Scalar

register file is divided into 512 entries and is shared for each SIMD unit, the

register files optimization to utilize the scalar register files is necessary; 2)the

reduction algorithm in our compiler is designed for NVIDIA GPUs; it may not

be good fit for AMD architecture.
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