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Abstract—The framework of cognitive wireless radio is ex-

pected to endow the wireless devices with the cognition-

intelligence ability, with which they can efficiently learn and
respond to the dynamic wireless environment. In many practal
scenarios, the complexity of network dynamics makes it diféult

to determine the network evolution model in advance. As a rast,

the wireless decision-making entities may face a black-boret-
work control problem and the model-based network managemen
mechanisms will be no longer applicable. In contrast, modeiree
learning has been considered as an efficient tool for desigmy

control mechanisms when the model of the system environment

or the interaction between the decision-making entities isnot
available as a-priori knowledge. With model-free learning the
decision-making entities adapt their behaviors based on #
reinforcement from their interaction with the environment and
are able to (implicitly) build the understanding of the sysem
through trial-and-error mechanisms. Such characteristic of
model-free learning is highly in accordance with the requiement
of cognition-based intelligence for devices in cognitive ireless
networks. Recently, model-free learning has been consided as
one key implementation approach to adaptive, self-organid
network control in cognitive wireless networks. In this paper, we
provide a comprehensive survey on the applications of the ate-
of-the-art model-free learning mechanisms in cognitive weless
networks. According to the system models that those appli¢®ns
are based on, a systematic overview of the learning algoriths
in the domains of single-agent system, multi-agent systenand
multi-player games is provided. Furthermore, the applicatons
of model-free learning to various problems in cognitive wieless
networks are discussed with the focus on how the learning
mechanisms help to provide the solutions to these problemad
improve the network performance over the existing model-baed,
non-adaptive methods. Finally, a broad spectrum of challeges
and open issues is discussed to offer a guideline for the futi
research directions.

Index Terms—Cognitive radio, heterogeneous networks,
decision-making, reinforcement learning, game theory, madel-
free learning.

. INTRODUCTION
A. Cognitive Radio Networks

a radio-knowledge-representation language for the soéwa
defined radio devices to autonomously learn about the dy-
namics of radio environments and adapt to changes of appli-
cation/protocol requirements. In recent years, Cognitaeio
Networks (CRNs) have been widely recognized from a high-
level perspective asn intelligent wireless communication
system A device in a CRN is expected to be aware of
its surrounding environment and uses the methodology of
understanding-by-building to reconfigure the operatiqre
rameters in real-time, in order to achieve the optimal nekwo
performancel]2],[[3]. In the framework of CRNs, the followin
abilities are typically emphasized:

« radio-environment awareness by sensing (cognition) in a
time-varying radio environment;

« autonomous, adaptive reconfigurability by learning (intel
ligence);

« cost-efficient and scalable network configuration.

Many recent studies on CR technologies focus on radio-
environment awareness in order to enhance spectrum effi-
ciency. This leads to the concept of Dynamic Spectrum Access
(DSA) networks [[4], which are featured by a novel PHY-
MAC architecture (namely, primary users vs. secondarys)ser
for opportunistic spectrum access based on the detection of
spectrum holes[[5]. It is worth noting that by emphasiz-
ing the network architecture of spectrum sharing between
the licensed/primary networks and the unlicensed/seagnda
networks [4], “DSA networks” is frequently considered a
terminology that is interchangeable with “CR networks|'.[3]
The rationale behind such a consideration is that a secgndar
network relies on spectrum cognition modules to make proper
decisions for seamless spectrum access without integferin
the primary transmissions. For this category of works in
the literature, “learning” is mostly about the techniquds o
feature classification for primary signal identificatior. [Bor
an overview of the relevant techniques, the readers may refe
to recent survey works i [7]H9].

The original concept of Cognitive Radio (CR) was first However, in order to achieve autonomous and cost-efficient
proposed a little over one decade agb [1]. In a broad sensetwork configuration, the functionalities of self-orgzenl,
CR is defined as a prototypical radio framework that adopiglaptive reconfigurability also become fundamental for GRN
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since these functionalities shape the mechanisms of nktwor
control and transmission strategy acquisition. By emphasi
ing such an objective, the network management mechanism
is required to dynamically characterize the situation of th
decision-making entities in the network and accordingfeiin

the proper transmission strategies. As the network manage-
ment mechanisms in conventional wireless networks are ac-
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Feedback Network Context Space addressing questions 2) and 3) can the network configuration

process be efficient in both information acquisition andgyol
computation. In summary, the key to answering questions 1),
Mobility Protocols ~ Platform  Environment otherDevices  Network 2) @and 3) lies in the prospect of enabling the devices in CRNs
to distributively achieve their stable operation point enthe

Internal States External States

PHY MAC/Link Application || Geography Regulation Interference Behavior Profile Topology

ﬂ Constraints ﬂ ﬂ ﬂ ﬂ condition of information incompleteness/locality.

: L
§_ Cognition (Information Collection) Module
g ﬂlnformation Flow B. From Model-Based Network Management to Model-Free
g ’ Intelligent Decision Module ‘ Strategy Learnlng
3 When the designer of (distributed) network-controlling
PHY/MAC/Link Network Layer Application/Transport ) . .
Layer Control Control Layer Control mechanisms has complete and global mformaﬂon, the n&twor
Power, Antenna, Rate, Routing, Traffic Source Coding, QoS control problem are frequently addressed in the model-base
Mo g MultrAccess, | enginnering, . Security, Handoff, .. ways such as the optimization-decomposition-based famul

comra—tion/solution [16]. With a model-base design methodoldlg,
signals  network control algorithms are usually designed as a set of

Fig. 1. Relationship between the functionalities of cagnitand intelligence dIStrlbuj[e_d compgtatlons by ,the network _entltles (alsommo
in a cognitive wireless network. as decision-making agents in the domain of control theory)

. o . to solve a global constrained optimization problem through
quiring more and more levels of such a cognition-intelligen decomposition. Under such a framework, since the model of
f"lb'“ty' the border between a pure CRN (name!y, a CRMe network dynamics is known in advance, there is no need
in the sense _Of DSA netw_orl_<s_) qnd a conventional WIrgsy “learning” anything about the network dynamics othearth
less network is gr_adually dlm_mlshlng [10L. _[11]' In recent, o time-varying network parameters. However, in order to
years, the emerging networkmg technologies _(e.g., CRIﬂaopt such a design methodology, it is necessary to assume
and self-organized _network:s !12-" [,1_3]) emphasize more ?Rat the set of the network parameters (e.g., channel irdorm
autonomous, aqf\ptlvg reconfigurability. For thes't,-:‘ networlﬁon and channel availability probabilities) that detemes the
the cc_)ncept of |nteII|ger_1t network ma_nagement 'F’aSe‘?' qarget network utilities is fully available or perfectly &wn
“cognition” can be re-defined as providing the functionedit to all the CR devicdk If an equilibrium [18] of a multi-
of autonomous transmission policy adaptation accordirtgeo entity network is expected instead of the giobal optimatitg
radio-enviror_lment_awareness capability of .the CR devinesdame theoretic approaches (e.g., for multiple access @l
numerous dimensions across the net\_/vorklng protocoll sta 8] and network security problenis [20]) can also be adapted
[11]. In Figure[1, we pr_o_V|de an overview of the perceivabl imilar to the optimization-decomposition-based sohsiche
network states for cognition and the cross-layer netwonkcfu game theoretic approaches may still depend on a pre-known
tionalities for configuration in cognitive wireless netier model of the network dynamics. In this case, the matheratica
Interested readers are referred to recent surveys suchhs [{,,is of optimization theory can also be used for the game

[15] for more details about the CR applications in diﬁere%eoretic approaches to achieve the goal of obtaining an

protoco_l Iay_ers. o _ equilibrium or locally optimal payoff, given that the stegies
Considering the distributed nature of wireless networks, # the other network entities are accessible.

good CR-based framework of autonomous network config-powever, due to the practical limitation of information

uration in time-varying environments needs to address tnfcompletenessllocality, directly applying the modesé so-

following questions: lutions will face difficulties since a model of the network
1) How to properly configure the transmission paramete@iynamics may even not be available in advance, or in most
with limited ability of network modeling or environmentcases its details may be inaccurate or not instantaneously
observation? known to every device. Under the model-based framework, the
2) How to coordinate the distributed transmitting entitiegttempts to conquer the obstacles of information incoraplet
(e.g., end users and base stations) with limited resour¢ss/inaccuracy are limited within a small scope by allgwin
for information exchange? more uncertainty/inaccuracy in the a-priori network model
3) How to guarantee the network convergence under the caxamples of these attempts include the introduction of sbbu
dition of interest conflicts among transmitting entities? control (e.g., variation inequality for spectrum sharii&l])

d fuzzy logic (e.g., fuzzy logic for call admission cottro
22]). Nevertheless, these techniques still lack the gtief
fully addressing the three questions raised in Secfioh I-A.

The difficulty of obtaining an accurate model in advance
dynamic network control in practical scenarios can be

The need to address question 1) lies in the fact that
practical scenarios, the abilities of environment pelicept
may be limited on different levels and/or for different dms.

Therefore, the solution to the problems raised by questjon
requires that a decision making mechanism should be a Té ) ) o
to learn the transmission policies without explicitly kring flustrated by a multimedia transmlsslon task over an one-
the accurate mathematical model of the networks beforehanap OFDM-based ad-hoc network (Figlie 2). In the network

Meanwhile, qUESti0n§ 2) anq 3) are raised by the basic rquir 1ygre details about the common assumptions for the modelebamethods
ment of a self-organized, distributed control system. Cnly can be found in[[17].
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loop. However, the paradigm itself does not provide any
Fig. 2. Scalable video transmission over a one-hop OFDMdazd-hoc detail on how much information about the system model
network. should be learned before a proper transmission strateggean

illustrated by Figurl2, the goal of the transmitter-reeejvairs determined, or in what way the information could be learned.
is to achieve the minimized end-to-end distortion throughtj ~ Under the settings of not knowing a network model in
power allocation, channel code adaptation and source godffivance, the strategy-learning process can be furthededlvi
control over dynamic channels. In the practical situatire, into two categories according to the ways of using the model
obstacle for obtaining an appropriate device behavior mod@owledge obtained from the learning process: the “model-
first lies in the difficulty in constructing an accurate endend dependent” methods and the “model-free” methods [25]. For
rate-distortion model at the source codec level, since tiragle Model-dependent learning, an arbitrary division exists/ben

the rate-distortion relationship for MPEG-4 Scalable \ddethe learning phase and the decision phase, and the goal of
Coding (SVC) mechanism is notoriously difficult [23]. MoreJearning is to construct the network model first and then use
over, one analytical model may only apply to a certain calyegdt to derive the network control strategies. By contrastdele

of video sources [23]. Meanwhile, the stochastic evolupon free learning directly learns the network controller witho
the channel condition makes it difficult to predict the titioa ~ €xplicitly learning the network model in advance. Early re-
of the states for the channel-coding/retransmission mestrg  S€arch has pointed out that the model-dependent learning
which in return will result in uncertain error propagation amethods are generally more computationally intensiveJewhi
the video decoder of the receiver [24]. Furthermore, whdRodel-free learning makes a trade-off of the time to reach
distributed power control and subcarrier allocation megra  controller convergence for reducing computational coxipte

is adopted, it is impractical for a transmitter-receiveirpa  [25]. Although most of the existing research on strategy-
fully observe the transmission behaviors of the other pair £arming methods in wireless networks focus on model-free
nodes, thus rendering the optimal power-channel allogati(tarning due to the limited computational resources in teobi
difficult with merely the local channel observation. As aules devices, recent years have seen a tendency that the border
without knowing the end-to-end distortion model, the crennPetween the two categories of strategy-learning methoejsske
evolution model and the information of peer-node behayiordiminishing [26].

the wireless nodes are facing a black-box optimization prob

lem with a limited level of coordination. In this situation,C. A Brief Review of the Existing Survey Works on Learning
it will be difficult to apply the aforementioned model-baseih CRNs

methods for the solution of video transmission control. As indicated by our discussion in Sectidnsll-A I-B, the
In the scenarios of black-box network optimization/cohtrgroblem domain of learning in cognitive wireless networks
with limited signaling, it is highly desirable that the netsk can be divided into two categories: the problems of wireless
control mechanisms do not depend on the a-priori designvironment cognition (namely, spectrum sensing) [7]-[9]
of the devices’ behavior model. As a result, the methodsd the problems of network management (namely, strategy
of controlling-by-learning without the need for the a-prio learning). The solutions to the former problem sub-domain
network model, namely, the model-free decision-making agenerally provide the information that works as the feed-in
proaches[[25],[[26], are considered more proper, espgciaid the strategy managers of the latter problem sub-domain. |
within the framework of CR technologies. In the context athe literature, the existing surveys on the network managgm
adaptive control, controlling-by-learning in CRNs is ukypa problems are generally organized in accordance with the pro
described by the cognition-decision paradigm (Fidure[3) [ltocol layers of the OSI/ISO model. These problems include th
This paradigm describes the learning-based strategpgakDSA-based MAC protocol design in CRNS [3]] [4].127], 28],
process of a single device from a high-level perspective anauting protocol design in CRNs [14]._[29] and cross-layer



TABLE |

SUMMARY OF EXISTING SURVEY WORKS ONCR NETWORKING PROBLEMS AND MODEL-FREE LEARNING METHODS

Problem Domain of

Sub-domain of CR Network-|

Category of Corresponding

Sub-category of Learning Methods

Cognitive Wireless| ing Problems Machine-learning Methods
Networks

Wireless environmeni Spectrum sensing [719] Supervised learning (patterh N/A
cognition classification) [[6], [[32]

DSA-based MAC protocol

design [3], [2], 271, [28] Unsupervised learning

(model-free learning) learning [25]

Network management

Single-agent-based

reinforcement

Spectrum-aware routing [14]]

29] [25], [28], [33]-{38]

Multi-agent-based
learning [26], [34]

reinforcement

Self-organization[[12]T30] |

Learning automata_[35]

Network security [[20],[[31] |

[36], [37]

Repeated-game-based learning[33],

network control problems in CRNs such as self-organization TABLE I

SUMMARY OF ACRONYMS FOR WIRELESS NETWORKING TERMINOLOGIES

[12], [30] and network security problems [20], [31].
Terminologies

Abbreviations

With respect to different domains of networking problems, :
Base station

BS (Sectior 1Y)

the pool of the potential machine-learning-based solstioncogniive radio

CR (SectiorJI1 [1V,[M)

can also be grouped into two major categories. For theCognitive radio networks

CRNs (Sectioll LIILINTY)

problems of spectrum sensing, the survey on applications gPynamic channel assignment

DCA (Sectior 1)

signal-classification-oriented learning methods can beddn — —2YNamIC spectrum access

DSA (SectiorITTI)

Key performance indicator

KPI (Section[V])

recent studies such &s [6]. [32]. For the network managemerNetwork operator

NO (SectiorY)

problems, the (model-free) strategy-learning-basedtisolsi  Primary user

PU (Sectior 10 [1V,[V)

SINR (Sectior 1VLY)

are generally identified as belonging to the category of un-Signal-to-interference-plus-noise-rafio

SNR (Sectio 1ITY)

. . .o ; Signal-to-noise-ratio
supervised learning [6]. More specifically, the techniqoés Segrvice provider

SP (Section_ V)

controlling-by-learning in CRNs are usually featured by th ~Secondary user

SU (Sectior 11 [1V,[M)

trial-and-error interactions with the dynamic wirelessiemn- Heterogeneous networks

HETNET (Sectior 1Y)

ment and thus also known as “reinforcement learning” (S¢¢ Organization of the Paper
our discussion in Sectidnlll). In the past decade, reseesche _, . . - :
h . S : .~ This paper is devoted to providing a comprehensive sur-
ave paid a significant attention to the confluence of adaptiv T
: vey on the current development of model-free learning in
control, model-free learning and game theory [261! [33]ifle the context of the cognitive wireless networks. In order to
domain of CRNs, it is believed that such a trend will lead to 9 '

promising solution of the various network control/resauat- . ighlight the d|fferen_ce in the existing level Of. inforrma
location problems (e.g/ 28] 31]). In return, the deyeteent incompleteness/locality (from another perspective, thgree

of the recent network technologies, such as self-organiz(<)9fd'mcorma.ltlon coupling) for different I_ear_nlng mechanm :
organize the survey on the applications of learning in

networks and CRNs, is increasingly demanding more efficiefl 4 . . .
| . . . . Ns into three major categories: (a) strategy learningdbas
earning mechanisms to be implemented for an adaptive, se

organized solution. on the single-agent systems, (b) strategy learning based on

I . he loosely coupled multi-agent systems and (c) strategy
Most of the existing model-free learning methods for nef— o
. 4 A . earning in the context of games. In Sectloh II, the necgssar
work control in CRNs find their origin in the domain of control 9 9 ¥

. . blackground and the preliminary concepts of learning in the
theory. In the literature, important surveys on these mod ingle-agent system, the distributed, multi-agent systand
free learning methods from the perspective of control/ga ) . 1
theory includel]25], 1261, [33]5[35]. In the context of neivk r%%mes are provided. In Sectignllll-V, the recent research

control. existing survev works on the apolications of on the applications of the three major categories of model-
» EXISing survey w ppiical gt free learning mechanisms in CRNs is reviewed according to

Iearn!ng usually focusron 6} certain sub-cat_egory of theﬁ?e different system models that the learning mechanisms ar
learning methods. In[[36],[[37], comprehensive surveys

n . ) X
L ) i i ased on. In Sectidn VI, some important open issues for the
distributed learning mechanisms are provided based on(&u P b

framework of repeated games (see our discussion in Sect lication of model-free learning in CRNs are outlined in
=) P 9 Stder to provide the insight into the future research dioest

In [6]. [B8], the surveys on model-free learning ing; ally, we summarize and conclude the paper in Se€fich VII.

CRNs place the focus more directly on the Q-learning bas :
methods (see our discussion in Secfion11-A). Apart from ﬂ}%eT?ebrlri?uasne% 'Ii'ﬁbtlr;églpl)é\éveerprowde an acronym glossary of

aforementioned works, other survey works on strategy legrn
in wireless networks usually focus on a specific sub-domfin o
applications such as wireless ad-hoc netwarks [39] andosens |- BACKGROUND: MODEL-FREELEARNING IN THE
networks [40]. To assist the readers in obtaining an overvid? OMAINS OF DISTRIBUTED CONTROL AND GAME THEORY

of the development of model-free learning methods and theirAlthough the applications of model-free learning in wiksde
relationship with the network management problems in CRNsetworks only became more commonplace in the early 2000s,
we summarize the aforementioned survey works accordingthe fundamental development of the model-free learning the
the domains they belong to in Talfle I. ory can be traced back much earlier, to the 1980$ [41], [42].



TABLE IV

SEQUENTIAL DECISION-MAKING MODELS IN A NUTSHELL

General Model | Specific Tuple-Based Model Description Agent- Objective Utility
Model Strategy Measurement
Coupling
Multi-agent Single-agent (S, A, r,Pr(s'[s, a)) N/A Utility optimization | Accumulated
Markov MDP utility
Decision Multi-agent N,S = xSn, A= xAn, {rn}nen, Pr(s’[s,a)) | Allowed Utility optimization | Accumulated
Process (MDP)| MDP utility
/ Stochastic Stochastic N,S = xSn, A= xAn, {rnlnen, Pr(s’[s,a)) | Always Reaching equilibria| Accumulated
Game (SG) games utility
Repeated N, A= xAn, {rn}nen) Always Reaching equilibria| Accumulated
games utility
Static games N, A= xAn, {rntnen) Always Reaching equilibria| Instantaneous
utility

TABLE Il TABLE V
SUMMARY OF ACRONYMS FOR MODEL-FREE LEARNING TERMINOLOGIES SUMMARY OF THE MAIN NOTATIONS IN SECTION[I

Terminologies Abbreviations Symbol Meaning
Actor-critic learning AC-learning (Section I, t Timing index

a A single action of the decision-making agent in a single-
Actor-critic learning automata ACLA (Section[Tl) agent system
Correlated equilibrium CE (Sectior TILY) a_n The joint action of the adversary agents for agenh
Correlated-Q learning CE-Q learning (Sectiof V) a game
Constrained Markov decision process| CMDP (Sectior 1l An A finite set of actions for agent in a multi-agent
COmbined fully Distributed PAyoff and CODIPAS-RL (Section[]l, system
Strategy-Reinforcement Learning s A single environment state of the agent in a single-agent
Derivative-action gradient play DAGP (SectiorV) system
Dynamic programming DP (Sectior ) Sn A finite set of environment states for agentn a multi-
Distributed reward and value function| DRV function[1V] agent system
Distributed value function DVF (Section V) un(sn,an) | Instantaneous utility function of agent in a multi-
Experience-weighted attraction learniig EWAL (Section[\V]) or un agent system
Fictitious play FP (Section IILY) Pr() State transition probability function

Greedy policy searching in the limit o
infinite exploration

GLIE (Section )

Gradient play

GP (Sectior 1)

The discount factor for a discounted-reward MDP

w(s,a)orm

The policy mapping function of an agent from a given
state to an action

Learning automata LA (Section[Il,[V) " An optimal or equilibrium policy

Linear-reard-inaction algorithm Lr_1 (Section M) m(s,a—n) The joint policy of the adversary agents for agenin
Multi-agent Markov decision process | MAMDP (Section[], ) orm—n a game ] ]

Multi-agent system MAS (Sectio 11 [TM[M]VI) VE(s) The state-value function of a discounted-reward MDP
Markov decision process MDP (Sectior LTI _ from the starting state ' _

Nash equilibrium NE (Sectiod D [Y V) QB(S’ a) The state-action value function of a discounted-reward
Observation-orient-decision-action loop OODA loop (Sectiol) _ MDP from taking actiona at the starting state

Partially observable Markov decision POMDP (Sectio 1IL1Y) h™(s) The state-value function of an average-reward MDP
process from t_he starting state .
Single-agent Markov decision process SAMDP (Sectior ILIN) V7 (s) The bias utility of an average-reward MDP from taking
State-action-reward-state-action SARSA (Sectior T1L1M) policy m at starting state

Single-agent system at, O The learning rates

SAS (Sectior I 1M)

Stochastic games

SGs (SectiolJIY)

Smoothed/Stochastic fictitious play

SFP (Sectioh V)

T

The (normalized) value of environment response used
by learning automata algorithms

Simultaneous perturbation stochastic gp-SPSA (Sectiof V)
proximation
Temporal difference learning

this section are list in TablglV.

TD-learning (Sectiob ],
)

Transfer learning TL (Section[V])

A. Single-Agent Strategy Learning

In this section, we provide a necessary introduction of theln the context of distributed control and robotics, single-
general-purpose learning methods that are developed in #gent learning has been considered as the most fundamental
domains of distributed control and game theory. To assidass of the strategy-learning methods. Single-agenhilegr

our discussion about learning techniques applied to civgnitgenerally assumes that the learning agent has full access to
wireless networks, we categorize the learning methods by tihe state information that can be obtained about the system.
degree of coupling among the decision-making agents witnequently, the terminologies “reinforcement learningida
respect to different system models. In what follows, we willmodel-free learning” are (partially) used interchanggab
briefly introduce the general-purpose learning algoritlinzg refer to the decision-making process of a single agent. The
are built upon the decision-making models of single-ageagent learns to improve its performance by merely observing
systems, loosely coupled multi-agent systems and ganedbathe state changes in its operational environment and the
multi-agent systems. Before proceeding to more detailb®f tutility feedback that it received after taking an action. In
learning mechanisms, we first provide an overview of thetlee recent surveys on reinforcement-learning theory asd it
decision-making models in TablelV. The notations used mpplications [[6], [[38], such a decision-learning process i



Both types of MDPs can be represented in the form of the
Bellman optimality equation. For the discounted-reward®iD
the Bellman equation can be represented either by the state-
value function starting from state under policyr:

Vi (s) = Ex(u(s,a)) + Y Pr(s'ls, HVF(s),  (3)
s’eS

Observe

or by the state-action value function (Q-function) thatrtsta
from taking actioru at states and follows policyr thereafter:

Q5(s,a) = u(s,a) + Y Pr(s'|s,a)VF(s). (4
Fig. 4. The OODA loop, often known as the cognition cy¢le [1]. s'eS

described by an abstract model, namely, the Observe-Qrientln order to express the average-reward MDP in the form of
Decision-Action (OODA) loop![4]. The OODA loop (Figure the Bellman equation, the average adjusted sum of utiliéy, (i
@) can be considered as a generalized model of the cognitlas) following policyr is introduced as follows:

Decide

cycle in the context of cognitive wireless networks (Figure T—1
[3), and it provides a generic description of the information V7(s) = lim Ey Z (ue(se,a) —h™(s)) |, (B)
flow in the intelligent decision-making process. Howeveér, i T—oo =0

is the task of the specific reinforcement-learning methads With which the average-reward MDP can be expressed by the
define the rules of agent behaviors that guide the ime"aCtigtate-value functih

with the to-be-explored environment. Since in most of the

practical scenarios, a learning agent needs to deal with ef™(s) + h™(s) = Er(u(s,a)) + Z Pr(s'|s,m)V™(s"). (6)
vironment uncertainty, in the literature, a Markov Deaisio s'€S

Process (MDP).[43] becomes a prevalent tool for abstractingyyjith a variety of on-line learning methods that estimate the

the model of the agent-environment interaction. Based en ,imal Q-value or the bias value, a broad spectrum of value-
MDP frameyvork, various model_—free learning mthods such fSration-based learning algorithms have been propdsél [2
Temporal Difference (TD) learning [44] and learning autéma ) Among them, the most widely used model-free learning
[35] can be adoptgd to define the behaworlrules of an ager_?ﬁgorithm is Q-learning[44], which estimates the stattieac
The standard (single-agent) MDP model is used to descripg e in [3) of a discounted MDP based on the time difference

a stochastic Single-Agent System (SAS). Mathematically, # the estimated values for the state-action value function
single-agent MDP is defined as follows:

Definition 1 (Single-agent MDP[[26]) A single-agent MDP Qer1(se, ar) ¢ Qe(se, ae) +au (ut(st’at) @)
is defined as a 4-tupleiS, A, u, Pr(s’|s, a)), in which , )
. .. . + ) - ) ’
o S={s1,...,55/} Is afinite set of environment states, ﬁn}f}x Qelserr, @) = Qulsr, ar)
o A={ai1,...,a4} is afinite set of agent's actions,

J ) o _ wherea; € (0,1] is the learning rate specifying the step that
o u:SxAxS—Rs the instantaneous utility function, o ¢ rent state-action value is adjusted toward the TOpgam
e Pr: S x A X S — [O,.l] is the state t_ran5|t|0n probability u(se, ar) + fmaxe Qu(ser1,a’). Q-leamning in [[¥) has been
function, which retains the Markovian property. proved to be able to converge to the true optimal value of
In the MDPs, the underlying environment is a stationafjie state-action value function with a stationary deterstim
stochastic process, and the consequences of the decisionsplicy, given thatd "o, = oo, 3 2ja; < oo and all
be probabilistic. The goal of a decision-learning agemifirtid ~ actions in all states are visited with a non-zero probapbilit
the proper stationary policy;=Pr(a|s) that probabilistically [44]. The model-free property of Q-learning is reflected in
maps states to actiona so that the accumulated long-ternthe iterative approximation procedure for the Q-valuesictvh
utility of the agent is optimized. With respect to differenfloes not require knowing the transition mag(s'[s, a) of the
applications, the objectives of the MDPs may appear MDP in advance.
different forms. In this survey, we will mainly consider two The counterpart to Q-learning in the average-reward MDP

types of the infinite-horizon objectives [25] as follows: is known as R-learning [45]. In addition to learning the stat
. the discounted-reward MDP with the discount factog action value of t_he bias expressed[ih (5), R-learning alsnse
[0, 1]: to learn the estimate of the average rewafd Therefore, R-
’ 0o learning is performed by a two-time scale learning process:
T _ t
Vi(s) = Ex <;ﬂ Ut(St7Q)> ; 1) Rt+1(3t7at)<_Rt(3t,at)+at(u(8t,Gt)—f'H}l?}XRt(St.H,a/)
B —h;—R(st,a¢)),
« the average-reward MDP: e~ Rls1, 1)) (8)
T-1
B — L 1 E 2 2Due to the space limit, the conditions for the existence odlaesfunction
(S) - Tl_r)réo T ut(st? a) ( ) in the form of [@) is not presented here. The readers arereefeo [45] for
t=0 the details.



ht+1 (—ht —+ 9t (U(St, at) —+ mz}x Rt(8t+1, a’) — ht
—max Ry (s, a’)). ©) Actor

Policy

In contrast to the value-iteration-based learning alpaori
given in [1), [8) and[(9), the decision-learning methodsebas
on the Learning Automata (LA) allow an agent to directly Critic
learn the stationary randomized policy. Instead of updsgttire Value
action according to the myopic optimal Q-value in discodnte State Fuction
reward MDP and bias-value in average-reward MDP, the LA Environment
directly updates the probabilities of actions based on the Response
utility feedback [35]. Let the action probability vector tihe Environment
instancet be (t) = (m1(t),...,m.4(t)), where|A] is the
size of the action set. Then an LA-based algorithm should Bg 5. schematic view of the generalized AC algorithm.
able to achieve the following goal [35]:

Erron

learning agent’s policy is updated following the LA-based
7 = max E[F(t)|m(t), s(t)], (10) methods, the AC-learning mechanism is also known as Actor-
() Critic LA (ACLA) [50]. A typical rule for jointly updating
where7 is the value of environment response, and is usualife estimate of the state-value and policy in ACLA can be
generated based on the instantaneous rewas a normal- found in [50]. Here it is worth noting that for both critic and
ized value (i.e.7 € {0,1}). The general updating rule for LA actor updating, the learning mechanisms are not limiteti¢o t

can be expressed as follows [46]: aforementioned two categories of algorithms. For exangsie,
~ R on-policy learning algorithm, i.e., State-Action-RewBthte-
mi(t+1) =mi(t) = (L=7(8)) fi(mi(8)) +7(t)gi (mi (1)), Action (SARSAH, can be used to replace the Q-learning-based
_ Va(t) # ai, critic-updating mechanism, and instead of the LA-like acto
mi(t+1)=mi(t)+(1=7(t) X2,z filmi(t))— updating mechanism, policy gradient is widely used for acto

F(t) 2252 9i(mi(1)), a(t) = ai, updating [49]. A schematic overview of the generalized AC

) (11) algorithm is given in Figur€]5.
where f and g are the penalty and reward functions, respec-

tively. Specifically, different forms of andg lead to different o _
learning schemes. Among them, it has been proved that the Strategy Learning in the Loosely Coupled Multi-Agent
linear-reward-inaction (i.e..z_;) algorithm is guaranteed to System

achieve thee-optimal policies [[47]. In[[45], the automaton- A stochastic Multi-Agent System (MAS) can be defined
updating procedure based dig_; is adopted to learn the py extending the 4-tuple Single-Agent MDP (SAMDP) (Def-
optimal policy in the ergodic MDPs with average-rewar¢hition @) into a 5-tuple Multi-Agent MDP (MAMDP):
objectives. In other works such as [48], the optimal policy of<N’5’ A, {tn }nen, Pr(s'|s, a)), in which \V is the set of the
the discounted-reward MDP is learned by adoptinghe.;  gecision-making agents§ = xS, is the Cartesian product of
algorithm for policy updating and the standard Q-learninge |ocal state spaces of all the agents ahet x A, is the
algorithm in [7) for Q-value estimation at the same time.  cartesian product of the local action spaces of all the agent
Although the two groups of learning mechanisms, namelyhen considering the learning mechanism in an MAS, it is
value-iteration-based learning (e.g., TD-based learsiach natural to simply adopt the standard SAS-learning algorith
as Q-learning and R-learning) and LA-based learning appegf assuming that each agent is an independent learner with th
distinct from each other, both of them can be considered @gg] utility function u,, (s, a,). In doing so, the activities of
special cases in the framework of Actor-Critic (AC) lea@inthe other agents are treated as part of a stationary enveonm
[49]. In the context of AC learning, the concepts of valugnd the learning agents update their policy without conside
function and policy are also known as “critic” and “actor”thejr interactions with the other agents. This approachbyen;
respectively. Since Q-learning and R-learning only learn gypularity especially within the studies in the coopemtiv
state-action value function and there is no explicit fumrcti decision-making domain [52]/ [53]. Its typical applicat®
for the policy, the two learning algorithms are also knowgan be found in modeling the hunter-prey systems [54] and
as the critic-only algorithms. On the contrary, withoutngsi team coordination[85], just to mention a few. However, it
any form of a stored value function, LA can be considerqd jmportant to note that multi-agent learning based on SAS
an actor-only algorithm. Extending from these two specigdarning requires the joint learning process to be decoetpos
cases, a generalized AC-based mechanism keeps track of kQi§ local ones. Thus, individual-agent behaviors aretireity
the state-value function and the policy evolution at the sangjsjoint, and the agents are able to ignore the information
time. In this sense, a generalized AC-based mechanismydssed by the interactions with each other. This is also the
also known as combined payoff and strategy learning [3%kason for us to call it a “loosely coupled multi-agent syste

Specifically, if the state-action value of the MDP is learne@therwise, with concurrent learning, all the individuakats
following the TD-based methods and in the meanwhile the

4About the difference between Q-learning and SARSA, the eeadire
3For the details ofL_ 7, please refer to Sectidn V-A3. referred to[[51] for more details.



need to adapt their policies in the dynamic context of th@amely, the state transition is deterministic in the MDBing
other learners, in which case the basic assumption of staijo centralized Q-learning with joint action = (a1,...,a,),
environment for the single-agent scenarios will no longeddh Q(s,a), to the local Q-table of agent with only local
Although convergence of SAS-based learning is not guaraaction informationa;, Q(s,a;). Following the standard Q-
teed in most of the practical MAS scenarios, attempts of gen&earning rule, the projection-based independent learadtapts
alizing the convergence condition for the SAS-based legrnian optimistic assumption that all the other agents will act
mechanism can still be found in the literature. By limitingoptimally. However, the learning result of such a distréait
the application scenarios to fully-cooperative MAMDP® (. algorithm is greedy with respect to the centralized Q-tabth
common-payoff MAMDPs), the convergence property of SAShe joint action. Additionally, its convergence when exted
based learning with Greedy policy searching in the Limit db the scenarios of stochastic MAMDPs is not guaranteed
Infinite Exploration (GLIE) for MAMDPs is discussed in [56]: since it cannot discern the influence of the behaviors of the

. . . other agents from that of the state dynamics. It is important
Proposition 1. For the multi-agent Q-learning schemes obeys -1 \ithout explicit coordination, which is at the tos

ing the individual updating rule inl{7) in a cooperative MA osing the distributiveness of the decision-making preced

system, assume that the following conditions are satisfied: the independent-learning-based algorithms will suffer tfe
- the leaming rate athecreases over time such thakame reason as in the tightly coupled, MAS-based scenarios.
2 =ooand}  aj <oo, . Despite all the limitations of independent learning, one
- each agent samples each of its actions infinitely often,j,,qrtant benefit of adopting the disjoint learning proesss
« the probability of agent choosing actiona € A; iS i the MAS is that it creates the opportunities of experience
nonzero, _ , _ sharing among individual agents. In [54]. [61], the “imic
« the probability of taking a non-optimal action decreasegyitation” mechanism by the observer agents is proposed to
to 0 whent — oo during the exploration stage, incorporate the experience of the expert agents in the MAS.
let 7 (t) be a random variable denoting the probability ofunder the framework of distributed, independent MDPs, it is
action-taking in a (deterministic) equilibrium strategyofile  frequently assumed that the learning agents are analogous t
being played at time. Then for SAS-based learning, for anyeach other in terms of state space, state transition anohacti
€, € > 0, there existsI'(¢, €) such that set [61]. Then experience transferring can be implemented
Pr(lni(t) — 1| <€) > 1 — £, > T(€, ¢). (12) by modifying the estimated_ state-actiqn value of the obeserv
agent based on the expertise evaluation of the mentor agents
Although lacking a formal mathematical proof, Propositioand the weighted combination of their respective Q-values
[0 has been widely accepted in related studies [34], [57]. [B4]. When experience transferring is considered beyoed th
more general convergence condition for SAS-based learniingmework of model-free learning and the model-based polic
in MAS scenarios is given by [58]: learning mechanism is adopted, the observer agent can also

implement the experience learning by maintaining the es-

Proposition 2. In an MAS environment, an agent foIIowinq. . ) . .
. . . . imation of the mentor’'s transition map from observation,
the updating rule in[{]7) will converge to the optimal respens

Q-function with probability 1 as long as all the other agentgmd incorporating the estimation into its own value-iterat
converge in behaviors with probability 1. If the agent folk process{[el].

a GLIE policy and its best response policy is unique, it will

also converge in behavior with probability 1. C. Multi-Agent Strategy Learning in the Context of Games

Propositiond I an@l2 provide theoretical support for the In most of the practical scenarios, the dynamics of the multi
convergence property of a number of SAS-based learningent MDP (e.g., the transition probabilities and the local
algorithms that can be considered a variation [df (7) (e.gayoff) is determined by the joint policy of all the agents. T
distributed Q-learning in cooperative MAMDFs [59] and polfacilitate distributed policy learning, the multi-agentO® is
icy hill-climbing in two-agent MAMDPs [[60]). Again, it is usually viewed as a Stochastic Game (SG). Mathematicailly, a
worth pointing out that for most MAS scenarios (e.g., gehere&SG shares exactly the same 5-tuple structure as an MAMDP,
sum stochastic games) convergence of SAS-based learning S, A, {un }nen, Pr(s’|s,a)). However, the goal of each
is not guaranteed. Furthermore, even when convergence agent in the SG is to maximize its individual payaff [18].
be reached, it usually takes a significant amount of time f@ased on the definition of SGs, a repeated game can be
merely determining switching between one pair of actiors. fAbtained as a 3-tupléN, A= xA,, {un }nen), by fixing the
a results, most of the practical SAS-based learning meclnvironment state as invariant while maintaining the adibjec
nisms are limited in the special scenarios such as the fullyfeach player as maximizing its individual discountedfage
cooperative MAS or two-agent MAS. In the framework opayoff over the infinite time horizon. In the repeated garhe, t
the independent learning algorithm using standard Q-legrn system dynamics is reduced to only the mapping between the
[56], other SAS-based learning algorithms for MAS usually t action and the payoffi,, : A — R. Further, when the repeated
to eliminate the uncertainty caused by the actions of therottyame is played only once, it is reduced to a static game. In
agents while still retaining the distributivity of the dsidn- return, any single shot of an SG or a repeated game is a static
making process. One typical example can be found_in [53ame and is known as a single stage or one-shot game of the
which projects the global Q-table of a deterministic MAMDPoriginal game|[[62].



One important reason for adopting the game theoretm ¢-CE if Vs € S, Vn € N andVa,, a, € A,
models lies in the requirements that decisions are to be

made in a distributed manner with the limited ability of both > (s an,a)QF (s, an,an) >
information acquisition and action coordination. This nizey a-—n€A_n X
either due to the overwhelming dimension of the state-actio Z (S, Gn, a—pn)Qf (S, Ay, a—n) — €.

space as the number of agents grows, or due to the overhead (an,a-»)eA
for information exchange among agents. In the game-base
decision-making model, the individual-rationality projyeof

the agents leads to the concept of the best response. In

Based on Definitiong]R}4, the conditions of equilibria for
rl%eated/static games can be obtained in a similar way. From
. X . the perspective of strategy derivation, a CE can be coreider
SG, the best response of agentis defined as the policy a generalized form of an NE since it does not require the

{”Té :I Pr(ls’aT_) © s € S}t such t?r?t tr;ﬁ Itong(—jterm paytcr)]ﬁindividual player's strategy to be independent with eadtent
under focal policym, 1S hot worse than hat under any o e,rA\Ithough the adoption of a CE is recognized as being able to
local policies: V,,(mp, 7—n) > V,(nl,,7—,), given the joint

X . S provide a better performance of an NE, such a performance
adversary policyr_,. Here, 7_,, is the joint strategy of

the ad " ¢ and 1 be eith improvement is usually at the cost of introducing an arbitra
€ adversary agents except agenand v, can be eiher , "o, ginator into the game_[18]. From the perspective of

the c#scl?uvnted ch)\?g—:r(]arm F’l?‘y"f_f or lt)hetaverage lo?g'ttﬁrg&nvergence reaching, arequilibrium can be considered a
pqyto .t ‘ K ef th, ?h policy 'St a bes reiﬁo?sti 0 l_‘?orm of both NE and CE with relaxed condition. For learning
joint stralegy ot the other agents, we say that the po I%fgorithm design in repeated games, the introductiore-of

profile (w1, ..., 7)) is & Nash Equilibrium (NEYI18]. In the equilibrium helps develop the learning mechanisms that-gua

context of games, the goal of policy learning now becomeﬁ\tee the convergence to near-equilibrium with a limieridr

finding the policy updating rules for reaching a Spec.iﬁﬁound. However, it is worth noting that for a general SG,

he existence of a stationaeyequilibrium is not guaranteed
B%yond the case of two-player SGsI[63].

According to the Folk theorem [36], for every infinite-
horizon, n-player, discounted repeated/stochastic game with
o o S I a finite number of actions, the existence of a stationary
forinajl\?ef|n|t|on of several egulhbrlam ?lflcou@ted—rewse policy 7* as a subgame-perfect NE [18] is guaranteed. By
G =N, 8, A {untnen, Pr(s's, a)) as follows: proving the existence of a subgame-perfect NE, the Folk

Definition 2 (Nash Equilibrium (NE)) In a gameG, an NE theorem implies that when compared with the static one-

concept of NEs, a policy learning mechanism may resort
other types of equilibria for the convenience such as enguri
convergence or improving performance. In order to fatdita
our discussion on different learning algorithms, we prewige

point is a tuple of strategiegr;, ..., 77,) such thatvs € S, shot game, policy learing may be able to obtain a better
Yn € N andVr,, € I1,,, payoff with the new NE in the repeated games. Such a benefit
is also considered a major motivation for the engineers to
V(8,05 oM M) 2 Vo (8, 75+ e ), adopt the game-based learning algorithms in the domain of
distributed decision-making. However, the implementaiof
in which Vs (s, 7, ..., my) is given by [(B) with a slight the learning algorithms heavily rely on the game structures
abuse of notation. and the forms of the equilibria, and may differ significantly

o o Within the past two decades, numerous methods have been
Definition 3 (Correlated Equilibrium (CE))In a gameG, @  proposed for strategy learning in games. In order to fatit
CE pointis a joint strategy* = (7, 7*,,) suchthatyn € N, qur survey on their applications in cognitive wireless ree,

Vs € § andVan, a; € An, we categorize the model-free learning algorithms along the
. - following dimensiorls
Z (8, an, a—n)Q5,i(, an, a—n) 2 1) Value iteration vs. policy iteration: in SGs, most of
@A . . , the learning algorithms based on the state-action value
Z (8, an, a—n )@ i(8, s a—n), estimation fall into the category of value-iteration based
(an,a—n)EA algorithms. These algorithms include minimax Q-learning

, ) o . , , [64], NSCP-learning[[65] Nash Q-learning _[66], Nash
in which QF (s, an, a—,) is given by [(#) with a slight abuse g jearning [67] and CE-Q learning [68]. In contrary to

of notation andr* (s, an, a—n) = 7" (s, a—n|an)7" (8, an)- value-iteration-based learning, the policy-iteraticased
Definition 4 (e-Equilibrium). Let e > 0, the profile 7* = learning algorithms directly update the action-prob#pili
(7,7, ) is an e-equilibrium of gameG if by following 7* vectors of each agent, using either the observation of the
no player can improve its payoff by more thaat any stage. adversary agents’ action pattern or the payoff received
Specifically, given the condition of the NE (Definition 2), from interaction with the environment. These algorithms

7 = (7, ) is ane-NE if Vs € S, Vn € A and¥r,, € 11 include standard Fictitious Play (FR) [33], asynchronous
e ' e best responsé [69], LA-based learning algorithms (e.g.,
Van(s,mr, 1) >V n(s,m, ) — €

) n?

5All the game-based learning methods to be discussed in timwvfog
. . . . sections originate from these algorithms, and in Sedfiimbre details will
Given the condition of CE (Definitidd 3)* = (w7, 7*,,) IS  be provided for each of them.

»—n
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LR,{ learning [47] and Bush-Mosteller learning_[70]), /\Zalue Itergﬁaﬁ‘\\ /p/aﬁgy lteration
gradient-play-based better reply [71] and no-regret learn Q/R-Learnin Fictitious Pla
ing [72]. In the cases when both the strategy and the g Actor- y
local expected payoff are to be learned, the AC-like, / SARSA / Critic  \

- \
. . . . ‘ . Gradient Play
- E /
multiple-timescale learning algorithm5_[73] provide an / \i1g Q/R-Learning/

\ \
efficient strategy-learning approach (e.g., stochastic FP | Stochastic EP

S . - . \ Asynchronous \
[33]) for the agents. Further, when the joint action or the Minimax Q-Learning “ Best Response |

payoff of the adversary agents is not directly observable,\\ Nash Q/R-Learning | Conjecture- | /

/

conjecture-variation-based learnirig [74] works as an al-\ CE-Q Learning \ Variation / Learning Automata/
ternative way of the aforementioned learning algorithms. o\ / /
In the literature, these joint policy-value-iteration rhec \'fcp'l‘eammg \/\Io-Regret Learni}g/
anisms for games are also known as the COmbined fully < P
Distributed PAyoff and Strategy-Reinforcement Learning — T
(CODIPAS-RL) mechanisms [37]. Fig. 6. A quick summary of the model-free learning algorithm

2) NE vs. other equilibria: most of the learning algorithms
in 1) such as proposed in_[47],_[64]-[67],_169]=[71] TABLE VI
aim at fmdmg the NE of the repeated gameS/SGs. By BRIEF CHARACTERISTICS OF MODEEFREE LEARNING MECHANISMS
contrast, the goal of CE-Q learning [68] and some no-kﬂeeég;‘;”ngism System Model Stability Property
regret learning algorithms_[72] is to learn the CE in—5RTearning Single-agent MDP Optimality learning
the SG and the repeated game, respectively. By relaxinGARSA Single-agent MDP Optimality learning
the condition of an NE from the profile of real actions MAS Q/R-learning | Multi-agent MDP Optimality learning
to the profile of agent beliefs, conjecture-variation-lase :\ggm’g Q- | Noncooperative SGs NE learning
learning [74] converges to the conjecture equilibriunTNash Q/R-learning | Noncooperative SGs NE learning
[75]. In most practical scenarios based on the frameworkCE Q-learning Noncooperative SGs CE learning
of general repeated games, FP and stochastic FP onlySCP-learning HO”COOperaﬁ"e SGs = '\.'I'i'.eam:"g :
guarantee that the-equilibrium can be reached [33]. In Sg”;r"e‘;‘;‘i;;tgvzames cEquiibridm fearning
the literature,e-equilibrium is sometimes known as the™ Gradient play Noncooperative NE learning
Logit equilibrium when the Logit functidhis used for e — ;\?Peatec' ga?ﬁeiT e
Strategy updating. preonous B Norcooperaterear) N o

3) Noncooperative games, cooperative games and teama Noncooperative/Tean] e-equilibrium learning
games: technically, these three major categories cover _ repeated Games _
most of the game-based models in the applicationd'o"edret leaming Féogg?ggergm’eegggrg NE/CE learning
of distributed control. Provided that the noncooperativeaciorcritc giﬁgb/Muﬂi_agem Optimality Tearing
games satisfy certain properties (e.g., being supermodearning MDP
ular/submodular[[76] or having a unique NE), all of Stochastic FP :\éogg‘:ggerzm’gs NE learning
the aforementioned learning algorithms in 1) and 2) Conijecture- Nc?ncoope%ative e-equilibrium learning
may ensure to reach one of the equilibria in the gamevariation-based SGslrepeated games
For cooperative games, which are usually featured hyaming

the process of bargaining or coalition formation amongre categorized according to the experience updating appro
agents, the Nash bargaining solution can be learngg., value iteration or policy iteration) that they appin
through FP[[37]. A team game is defined as the gam@ple[V], we further summarize the characteristics of these
in which the agents share the common payoff functioparning mechanisms in terms of stability property and the
thus considered as a fully cooperative case of the geneggbtem models (SAS, MAS and games) that they are built
SG-based games. Since every team game can be modelgsh. Figurd s and Tab[e VI together provide a quick sketch
as a potential game [18], it is possible to apply besgf the algorithms that are to be surveyed with respect ta thei
response-based learnirig [77], stochastic [FP [76] or ngpplications in cognitive wireless networks. More deteflthe

regret learning[[78] to learn the NE of a repeated teagharacteristics of each learning mechanism will be pravide
game. In the case of team SGs, each agent can alsojbene following sections.

associated with one single learning automaton at one
game state. Then by applyinfr_; learning a pure-

strategy NE is guaranteed to be reached [79]. IIl. APPLICATIONS OFSINGLE-AGENT-BASED LEARNING

IN COGNITIVE WIRELESSNETWORKS

D. A Summary of Model-Free Learning Algorithms Thanks to the property of self-organization, a model-free

Before proceeding to the next section, we provide a Sur#;?_arner is able to reduce the level of required a-priori kihow
mary of the learning mechanisms that have been introduceoeﬁlnge about the network model as well as the level of overhead

this section in FigurEl6. In Figuf@ 6, the learning mechaeisrﬂue to explicit information exchange. It is also possible fo
the learner to adapt quickly to the changes of the network

8About the definition of a Logit function, please refer to Sme{V-A3l environment. As a result, model-free learning is partidula
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TABLE VII simplifications, the convergence to an optimal strategyhef t

SUMMARY OF THE MAIN NOTATIONS IN SECTIONIL-A] learning schemes in these studies is also not guaranteed.
Symbol Meaning : : : Among different approaches for simplifying the MDP-based
@] A finite set of observation states in a partially observ- -~

able Markov decision process model of the network-control process, state a_bstrgcum] [8
0 A single observation state in a partially observable becomes a necessary way of trading off optimality for the
©) "A"akaVhSeC'?'O”tPfOCteSS . efficiency of the single-agent-based learning mechanigims.
w(s weignting tuncuon 1o map a set ot statedo a new . . . . .
state for state abstraction necessity of state-action-space redu_ctlon lies in the feed
ci(s,a) Orc | Instantaneous cost function of a constrained MDP computational tractability of the learning schemes in thsec
A Lagrange multiplier of state-action-space explosion. This is especially rszogs

suitable for resource management and scheduling probleYffi€n @ single agent is learning the strategy from a large set
that demand self-exploration and self-organization ofrtbe of candidate actions in a §ystem with a huge numberlof states.
work devices. Starting from this section, we will providd" the context of networking problems, state abstractiopsna

a comprehensive survey on the applications of model-fr88 Original network-control model based on one MDP into
learning across different protocol layers in cognitiveelgss & New MDP with a smaller state-action set. Mathematically,
networks following the broad-sense definition of CRNs. In gfate abstraction in MDPs can be defined as follows:

nutshell, the survey on the applications of model-freen®®y pefinition 5 (State abstractior] [84])For two MDPs M =
is organized based on the categorization of the learninqimegs 4 v, Pr(s'|s,a)) and M = (3, A, 1, Pr(s,a)), ¢ :
anisms that is provided in Secti@n Il. According to the threg _, S is such a mapping thaf¢—1(5)[s € S} partitions
types of mathematical models for decision-making, Sestiofhe state space. Define a weighting functiow : S — [0, 1],
[ [V]and V] are devoted to the applications of learningyherevs ¢ S, Y. g w(s) = 1. M is an abstracted MDP

algorithms based on single-agent systems, loosely couplgdys, if the following conditions are satisfied:
multi-agent systems and game-based multi-agent systems,

respectively. The notations used in this section are sutaethr u(s,a) = Z w(s)u(s,a), (13)
in Table[VI. s€471(s)

and
A. Applications of Learning in Single-Agent Systems

The early attempts in applying learning algorithms to wire-
less networking problems appeared even before the concept
of cognitive radios was proposed. Generally, the a-priori However, the state-abstraction method generally requires
knowledge of the environment evolution dynamics (e.g., thbat the state transition in the new MDP with reduced com-
transition probabilities of the MDPs) is not required bylexity to be well-defined. Namely, the linear-combination
the MDP-based, value-iteration learning schemes. Thues, thased mapping if{13) anf{14) needs to be established and
schemes are widely applied to the problems in the timéie condition) ., Pr(5'[s,a) = 1 needs to be satisfied. Since
varying dynamics of the wireless environment that cannot méth model-free learning, the transition models are gehera
perfectly sensed. These problems include dynamic pacldet ranot known, it will be practically impossible to obtain an
ing [80], Dynamic Channel Assignment (DCA) [81], [82] andaccurate model of the reduced MDP. In order to address such
joint radio resource management for multi-rate transmrssian issue, approximate abstraction is proposed_in [85],.[86]
control in WCDMA networks[[88], just to mention a few. Theln [85], [86], an on-policy reinforcement learning method,
strategy-learning schemes in these studies are featured BSARSA, is applied to the DCA problem in a multi-cell, multi-
single/centralized agent, and are usually based on thdasthn channel network with the consideration of handoffs. In the
Q-learning algorithm given ifi{7). In early studies, therféag considered cellular networky cells provideM channels to
schemes are built upon the simplified system models. Thusobile stations, thus forming aN x (M +1) x M state-action
the issues such as the convergence conditions of the Igarrset. The arbitrary state-aggregation method proposeldsh [8
schemes are still not the focus of the discussion. As a res#6] aggregates the rarely encountered states by reduleing t
the existence of Markovian property is simply assumed Bize of the channel state space to a fraction of the total eamb
most of these works [81]-[83]. Also, in order to reduce thef the channels. The state variable representing the number
complexity of the system model, the original MDPs modelingf currently allocated channels is also excluded, whichidea
the network dynamics are usually transformed into new MDRs a 98% reduction from the original state-action space. A
with reduced state-action space using state abstract#jrof8 more complicated state-action-space abstraction methad c
Q-table projection methods. However, the equivalence éetw be found in [83]. It adopts the feature extraction method
the original MDPs and the re-transformed MDPs is generaland maps the original state vector based on four dimensions,
not guaranteed (see the example [of| [83]). In most of thesamely, the mean and variance of the interference from the
works (e.qg., [80],[[81]), the learning rules are designediin existing connections, the transmission type and the reduir
heuristic manner. Sometimes the standard Q-learning sehiermansmission rate, into a vector of the resultant interfeee
are modified by introducing the neural networks in order torofile. The feature extraction method is further adopted in
represent the table of the state-action values and appabginstochastic-game-based modeling for strategy learnindRNE
the Q-value-updating functiori_[80][_[82][_[B3]. With thesd87], [88]. In [87], [88], the central spectrum moderator

Pr(3'[3,a) = Z Z w(s) Pr(s’|s,a).  (14)
)

s'€p—1(3") s€p—1(5
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Post Encoding AP State Transition | resource management problems.|[In [89], the problem of real-
time video transmission over a single-hop, slow-varying fla

packet fading channel is formulated as a systematic layered MDP
Scheduling (see Figure[]J7 and Figurel 8 for a schematic view of the
system and the corresponding layered MDP model). With the

proposed problem formulation, the discrete system state is

composed of three components, i.e., the SNR as the channel

APPlayer f0 | state in the PHY layer, the transmission opportunity as the
state of the MAC layer and the amount of both the incoming

N Packet
Scheduling

Traffic
QoS

I
|
|
!
Incoming| : !
|
I
|
I

MAC Layer Retransmission Retransmission ; .
__________________ ./ affic and the buffered packets as the state of the applica-
PHY Layer Power Allocation .1 Power Allocation tion layer (see Figur€l8). The evolution of the joint state
MOdUISHORIEN 1, ¢ v itter Modulation|& (sapp,spry) is modeled as a Markov chain controlled by
Coding Scheme Coding Scheme L. ! . . .
: ! the joint action(aapp,anac,apmy), I Which ayac is
Wireless PHY State Transition composed of two internal actios gy andby; 4¢. The joint
Channel SNR SNR . . . .
action is determined by the power allocation, the channel
¢ 41 resource payment made to the spectrum moderator and the

packet scheduling algorithm. The cross-layer management o
packet transmission is formulated as a layered MDP. This
———————————————————————————————————————————— : is because for the Bellman optimality equation of the state

Fig. 7. Real-time video streaming process (adapted fior}).[89

|
@ || Lovered Optimizer i value, the Dynamic Programming (DP) based expression can
B T VA":‘SP"Y%"SP"Y) N be decomposed into a two-loop DP-based optimization. In the
“’Pi ----d }\\ two-loop optimization, it is assumed that both layers have
| e Y access to the global state in each time slot. The inner loop
Qos Set i ! (i.e.,_ t.he applicatio.n-la}yer op_timization) only needs toow
LT {2 I o ‘.Uv ) the joint MAC—apphcatlon.actlon ar_1d the rgported stateueal
R O A pe i of the PHY layer for policy updating, while the outer loop
| bane MAC Qos Lo (i.e., the PHY-layer optimization) only needs to know the
MAC| Computation | 11 PHY-layer action information and the reported state value
””” (77T T Qosset. from the application layer for policy updating. The layered
******************* e Q-learning [98] can be applied to learn the optimal strategy
PHY Qo3 / for transmission, with the standard Q-value updating nuigl)

External Policy »

) Computation
T oy (Sppay > S apps Qpny )

/ from the other layer into the estimation of the local Q-value
Apart from lacking the a-priori knowledge about the statis-

) , _ tics of the underlying Markov process, the decision-making
fFr:?th['BQBhe operation and message exchange in the layered (@ted o4ty in the network may frequently face the constraintghen

' available resources. To tackle these constrained radiures
allocates the transmission opportunities to the CRs tr@ug allocation/scheduling problems, the unconstrained MDR-mo
iterative, second-price auction (seel[18] for the definitaf els are extended to the Constrained MDPs (CMDPs), based
auctions), whose dynamics is jointly determined by the &ign on which, modified reinforcement learning algorithms are
to-Noise-Ratio (SNR) of the channels and the buffer statgfo proposed[[94]=[99]. Mathematically, a CMDP is de-
of all the CRs. In|[87],[[88], multi-stage bidding is adoptediined by expanding the 4-tuple MDP model (Definitibh 1)
Since for each CR, the value of tax to be paid for using be a 5-tuple,(S, A, u,c, Pr(s'|s,a)), with the additional
the channels are based on the inconvenience it causes todh&t/constraint element [100]. Taking the average-reward
other CRs, the individual CRs use their local tax announc&MDP as an example, a generic CMDP optimization problem
by the central spectrum moderator to classify the channehn be stated as follows:
buffer states that the other (adversary) CRs are in. Thexgfo T

-1
individual CRs only need to exchange the pricing infornmatio max h”(s):Tlim sup %Eﬂ {Z e at)} ’
— 00
t=0
T-1

Layered Optimizer

i ! modified in each layer by incorporating the estimated Q-ealu

VAIW(‘YI’HY' ‘yApp)

with the central spectrum moderator, and no extra inforomati =

exchange between the CRs is required. In these works, the 1

feature extraction method does not only achieve the goal ob.t. C7(s)= lim sup TE” {Z ct(st,at)} <Chax-
state abstraction, but also help avoid the explicit infdiora Troe =0 (15)

exchange between individual CRs. _ .
. T .7 of |1
With the development of MDP-based modeling in d|fferer@%co()rr:%ngotroﬂ;;hg\%er%ézr ecvg:(j[lghel]bg'e have the following

protocol layers of the wireless networks (see examples n

MAC layer [90], link layer [91] and application layer [92]), Theorem 1. If the underlying Markov chain of the CMDP,
the SAS-based learning mechanisms in the cognitive wielesS, A, u, ¢, Pr(s’|s, a)), is unichain and the sequence of the
networks also gain more capabilities in addressing theoradinmediate cost; is bounded below and satisfies the following
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growth condition: method. In [1077], to solve the DSA problem in a CRN, the
for ¢ : K — R there exists a sequence of increasin§hannel access process of the Secondary Users (SUs) is first
compact subsetsC; of K such thatu,K; = K and Mmodeled as a constrained POMDP. In the constrained POMDP,
lim; o0 inf{c(k); k ¢ K;} = oo, areward function is used to collect the instantaneous ikwér

the SUs, while a cost function reflects the instantaneous cos

that the optimal solution of the CMDP is equivalent to th f the Primary Users (PUs) due to the channel interference

optimal solution of the unconstrained MDES, A, g — u — rom the _SUs. The partial observz_mon in the problem comes
Nec, Pr(s's, a)). from the imperfect spectrum sensing of the SUs over the pri-

mary channel state. After converting the original conaedi

According to Theorem[]1, the non-structured learninBOMDP into an unconstrained POMDP with the help of the
schemes for the unconstrained MDP based on the Lagrandimgrange multiplier, the learning algorithm based on polic
dual function can be developed for solving the resouregadient[[111] is applied for finding a local optimal policy.
management/scheduling problems in the form of both R-To summarize this section, we categorize in Table VI
learning [95], [97], [99] and Q-learning _[94][ [98][ _[101], the aforementioned works (and some more) on SAS learning
depending on the form of the reward/cost of the CMDRccording to the networking applications that they focusAmn
Apart from the primal-dual equivalence based solutionsit shown by Tablé VT, the SAS-based learning algorithms are
also possible to develop constrained learning algorithsns powerful in addressing a number of radio resource allonatio
exploiting the structure of the specific problems. The sgeciproblems, as long as they can be formulated as a single-link-
structure is featured by the convexity of the objective argkntric one. However, it is worth noting that although the
constraint functions in the original CMDP, or the modubarittheoretical support for the convergence of the SAS-legrnin
of the objective or the constraint functions [98], [102]. ¥h schemes has been well studied, such an issue still needs to be
certain structural property of the network control probéemaddressed under practical circumstances.
is satisfied (specifically, when both the instantaneous fhayo
and the constraint cost are multi-modular), the constrhine |\, A pPPLICATIONS OFEL EARNING BASED ONLOOSELY
structured-learning algorithm can be applied in the form of COUPLED MULTI-AGENT SYSTEMS
primal projection or submodular parameterization [102].

then there exists an optimal Lagrange multipligt such

o . . . The multi-agent learning scheme naturally leads to the
In_add|t|on to not _kn_owmg the environment evoluu_on dy ramework of distributed decision making, thus the podigybi
lnamu_:s and btem_g I|m|te_d Iby thetreS(I)(urce cor;stralmti, tt ?self—organization without a dedicated central coortbna
e;lr_rt'nngfagensl Itn at vtv|r_e ?SS nte_ wor m_a)_/t_ asoThgc hI&herefore, it is considered especially appropriate forrbe
abriity ot complete state-information acquisition. 1hIanc -, q management problems in the CRNs, device-to-device

be_a common ISSU€ In Scenarios such as ,D_SA network;,(ﬁlzD) networks, heterogeneous networks (HETNETS) and ad-
which the secondary devices lack the capability of perfagni hoc networks, as long as the networks consist of multiple

full-spectrum sensing due to the limited humber of amennﬁ’ﬁiependent decision-making entities. However, althotigh
[mg]‘lme codmmon approach to handlte Su%rll a probIeIIDn 'ts_gl%mework of distributed decision making naturally leads t
Model the radio resource management problem as a Farighy -qnsjigeration of adopting the multi-agent decisiomnea

Observaplg_Markov Decision P_rocess (POMDP). Exten@ggQ scheme for network control, it is worth noting that for
from Definition[, an uncotlstralned POMDR can.be dgfm ost cases it may be difficult to directly adopt the learning
as a 6-tuple(S, 0, A, u, Pr(s'|s, a), Pr(ols, a)), nwhichO'is 0 anisms based on the loosely coupled MAS by simply
the set of observations andPr(o|s, a) denotes the mapping; noring the interactions between the network entitiestaeat

Frotbalalht); (th_etwtelen ghe systetrrr: St‘:‘t?S _a?d thet_ obs?trr\]/atlo ach of them as an independent learner. Due to the existence
nstead ot directly observing the state Informationsoine - ¢ yayjice interaction, it is necessary to carefully invgste

learning agent can only obtain the network qbservatpn jnto both the advantage and the limitation of formulating
In the POMDPs, the random process associated with the,.

observation is no longer a Markov process. A standard mOdE/{AS, Furthermore, when adopting the model of learning in

based solution to the POMDP is to convert the recorded St?lll% loosely coupled MAS, it is still necessary to check to
observations into belief states, and obtain a new uncansta what level the information exchange between the learning

MDP with a continuous state space of the belief state

" : z§gents is needed, and in what ways it can help improving
However, when the state-transition and the state-observat, performance of the network

mapping IS unknown, the TD—based Ie_arnlng SChe'_“eS CaNNOfpe hew notations used in this section are summarized by
be directly used for learning the optimal strategies of th}eable[]X.

POMDPs. Instead, other learning algorithms such as actor-

critic learning [110] and policy-gradient-based learn[i@1] o o )

are applied. In[[105], a delay-constrained least-costimgut A. Applications of D|str|puted Learning Based on the Model
problem in MANETs is modeled as a POMDP, the beligff Loosely Coupled Multi-Agent Systems

state of which captures the link-delay uncertainty due ® th For distributed learning in wireless networks, it is usyall
imprecise link state information. The belief-policy mapgpi difficult to definitely classify between a non-game-based,
is considered as a parametric function, the policy parametaulti-agent decision learning scheme and an SG-based-learn
of which is learned through a standard actor-critic leagniring scheme. The reason for this lies in the inherited natéire o
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TABLE VIl
APPLICATIONS OFSAS-BASED LEARNING SCHEMES IN COGNITIVE WIRELESS NETWORKSA SUMMARY
Network Type | Application Problem Reference | Learning Scheme Learning Scheme Varia] Convergence
Formulation tion
Dynamic channel| MDP [81], [81], [82], | Q-learningl[81],1182], | Neural Network [[82],| N/A
Cellular allocation [82], [85], | [85], [86], | [103], SARSA [8%], | State abstraction [ [85]
[86], semi- | [103] [86] [86], N/A [103]
MDP [103]
Multirate transmis-| MDP 83] Q-learning Neural network with fea-| N/A
sion control ture extraction|[8B]
Call admission con-| CMDP [94], 1 Q-learning [94], | State abstraction [ [94]] N/A
trol [101] [101] [101]
Joint  admission-| CMDP [99], | Q-learning [104], | N/A N/A
bandwidth control [104] Neural network|[[9B]
Cross-layer Layered- [89], [93] | Layered Q-learning| Virtual experience tuple§ N/A
Single link resource allocation | MDP [89] [93]
Scheduling- CMDP [96] Stochastic sub-| N/A Deterministic optimal
admission control gradient policy [96]
V-BLAST power- | CMDP [102] Q-learning Constrained structured QFf Randomized optimal
rate control learning policy
MANETs QoS routing POMDP [105] Actor-critic learning | N/A N/A
Dynamic spectrum| MDP [106], [95], | Actor-critic learning | N/A [B5], [106], [107], | Deterministic optimal
CRNs access CMDP [e7], [108], R-learning | Arbitrary state reduction| policy [95], N/A [97],
[95], [97], | [106], [95], [97], policy | [O7] [106], Local optimum
POMDP [107] gradient [[107] policy [107]
[107]
HETNETS Vertical handoff CMDP 98] Q-learning N/A S(EJ”t(i:n;al randomized
Admission control MDP [108] Q-learning Q-learning based orf N/A
neural-fuzzy-inference
network
TABLE IX
SUMMARY OF THE NEW NOTATIONS IN SECTION[V]
Symbol Meaning
«/i’F The received SINR for femto/pico link over resource
block r
P The transmit power of femto/pico BS
ghr The link gain between the femto/pico BS and its user
g r The link gain between the macro BS and the femto/pico
user
o2 noise power
I[x] or | The indicator function
I(z,y)
w;(j) or | The weight assigned by agentfor its neighbor j’s
wi(j) instantaneous reward or estimated state value
Y The social reward of a group of agents
y The private reward that an individual agent chooses

strategy coupling in most of the practical networking pesbl
setups. One typical example is illustrated in [113], [114],
which consider thaf, macrocells andV femtocells/picocells Fig. 9. Structure of a HETNET with both inter-cell and crdager inter-

; idergnce. A HETNET is featured by the hierarchy in the netwsttcture,
operate over the same frequency band (See Flﬁhl’e 9) Ir\ﬁ/vhgch is comprised by the high-power, high-capacity, widege macrocells

HETNET. In order to develop a self-organized power allogyg the low-power, low-capacity, small-range femtoceitsicells [112)].

cation scheme for the downlink transmission in the HETNET,
the Shannon capacity of a link is considered as the indivithe femto/pico BS and its usey}ff is the link gain between
ual Utlllty of a CeII, which is a function of the Signal'tO'macro BS] and the femto/pico useg{c’;i“ is the link gain from

Interference-plus-Noise-Ratio (SINR) of the transmgtimk  another femto/pico B% to the user of femto/pico B$ and
in that cell. Take the femtocells/picocells as an exampleW 42 s the noise power.

both the_|dntra-dcefll |r}terfetrenc|t|a/ a_md tr:le l_qrciﬁS-tétT'r\lee Apparently, the capacity of femto/pico linkis determined
are considered, for femotocell/picocell linkthe atth€ 1ot only by the transmit power of femto/pico BSP*, but

receiver is determined as follows: : : ;
also by the inter-cell interference ., ke P2 giih and the
i, F' FF . . : ) ? ’ .
P Giir cross-tier mten‘erencgjfz1 P}M g Therefore, the private
L J,M MF N i,F PR 2’ '
21 P gg 2 ke P G T O

i, F

= (16) utility of femto/pico link: is also a function of the strategy of
' the other femto/pico B (k = 1,...,n,k # i) and all the

where P>F is the transmit power of femto/pico Base Statiomacro BSsj (j = 1,..., L). The goal of the local cells for

(BS) i over the resource block g% % is the link gain between maximizing the individual utilities conflicts with each @th

i,T
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and it is difficult to decompose the strategy coupling betwee
the cells. As a result, many works formulate the same problem
as a noncooperative repeated game [[115], [[116]. However,
it is still possible to tackle such a power control problem
by treating the strategies of the other BSs as part of the
environment dynamics. For example, in [113] the systenestat
from the perspective of a femto/pico link is designed as a
binary one:

O A Wﬁf < YTh,
L _{ 0, otherwise (17)

Fig. 10. [lllustration of the interference map for the two-8ub-PU DSA

which is based on hard thresholding (compared with tgtwork [124].
permitted SINR given as,) of the macrocell user with the success. Based on the assumption that the presence of the
interference from the femto/pico links. The similar netiwor Other SU can be ignored, a model-based single-user approach
state formulation can be found in the other works such & strategy updating is proposed. When compared with the
[114]. By adopting a standard Q-learning scheme based @ppperative approach, which allows the SUs to exchange
the assumption of independent state-value evolution, it tfeir belief state vectors of the POMDP, the performance of
assumed in[[113]/[114] that the dynamics of the aggregatit® single-user-based approach is shown to be significantly
interference to the macrocell user is a stationary Markdhferior. Moreover, the simulation results In [124] showatthe
process. Consequently all the strategies of the other fpinto  Performance of the single-agent-based approach is evesewor
users are treated as stationary ones hence part of the sgirefBan that of the deterministic channel-assignment scheme,
environment. In most of the cases, such a formulation/siut Which indicates that in the situation of strategy coupling,
with the distributed MDPs and independent Q-learning alg@llowing some degree of cooperation will be essential.
rithm may not guarantee the convergence to any equilibrium.In order to balance between the simplicity of the learning
However, empirical studies show that when using the digechanism (namely, the distributiveness of strategy Irgjn
tributed Q-learning scheme, convergence can still be aetie and the optimality of the learning algorithm, careful model
given a sufficiently large number of iteratioris [113]. [;L17]is needed with respect to different network scenarios. 34,1
[118], and the distributed Q-learning algorithm is alsoeafsl @ Set of decision-learning mechanisms based on distributed
achieve a better performance compared with the non-adapf®-learning is adopted for a scalable DSA mechanism in an
algorithms [114], [[117], [118]. Although not mathematigal overlay CRN. The goal of the learning mechanism design
proved, one possible explanation for such a result may ff to obtain the near-optimal strategies without the explic
in Proposition 2, since one independent Q-learning agentc@ordination among the SUs. It is shown [n_[125] that by
always able to converge as long as the other agents happeRréperly designing the private/local objective functimishe
converge in behavior. individual SUs, the needs of both agent coordination and

Generally, for the network management problems witiStributed decision-learning can be fulfilled. In_[125het
strategy coupling, directly adopting the distributed teag SUS are assumed to share the temporari_ly f_re_'e band roughly
schemes in the loosely coupled MAS (e.g., multi-agent leargdually. It means that the reward of an individual SU with
ing in the form of distributed, independent Q-learning) caRSA, u:(t), is approximately equal to the average of the social
be considered as an approach that trades off the certainty@vard of all the SUs that attempt to use the same primary
algorithm convergence for the simplicity of system analysPand (denoted by’ (z)):
and learning-rule design. Except for heterogeneous n&syor 1 1 NG (8)
applications that follow such a design pattern can be found v, ()= Y ()= w; (N (8)),
in the problem formulation such as distributed DSA with the “ Ni(B)]+1 “ Ni(®)[+1 ; )
SU collisions [119]-[121], power allocation in the overlay _ _ _ (18)
cognitive wireless mesh network [122] and dynamic spectruffiere V() is the set of SUs that interfere with SUover
management in 4G cellular networks [123]. Although withh€ Same band at time The PU activity is also modeled as a
many studies that adopt such a design pattern for the learnf0-state Markov chain. In[125], two guidelines are pragbs
schemes, it is important to reiterate that overlookingtsgy for designing the private/individual objective functioheach
coupling may result in poor performance of each Iearnir@U:
agent. In[[124], a problem of DSA management with 2 SUsl) alignednesswhich reflects agent coordination, and the
over 2 primary channels (see Figlréd 10) is used to exemplify full alignedness requires the SUs not working against
how the lack of coordination between individual agents may €ach other when maximizing their own private objectives;
impact the agent performance. In_[124], the availabilityaof 2) sensitivity which reflects the efficiency of the individual
primary channel is modeled as a two-state discrete Markov learning processes and requires the SUs to be able to
chain. The SUs try to access the idle primary channel while discern the impact of their own action changes so as to
avoiding the collision with the other SU. The adaptationhf t learn about the better local strategies fast enough.
channel-access strategies is formulated as a POMDP, imwhicIn [125], the measurable indices of “factoredness” and
the observation of an SU includes 3 states: busy, collisiah a‘learnability” are introduced to measure alignedness ard s
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sitivity of the private objective function, respectivelyenoting

the selected private objective functioniagy; may not be the
same as%;) and the joint deterministic strategy by the SUs over SUA &\:han”e' 1
the same band as= (m;, 7_;), the degree of factoredness and & )
learnability can be expressed as[inl(19) dnd (20), resdgtiv &/v el
SUB anne
e Ayi(m)—yi(n’)) (Y(m) =Y (x'
Fyi:ZmZ,m [(yi(m) —yi(n")) (Y () =Y ( ))]7 (19) |
Zm Zﬂ,ﬂ, 1 Channel 3 Access Point
R
Li,yi (ﬂ_) — Eﬂ' [|y1 (ﬂ-) Yi (ﬂ——l’ ﬂ—zl)l] (20) SUC

B lyi(m) — yi(m—s, 7))
) o . . Channel 4
where I[z] is the.md'cator function/[z] = 1 if = > 0 and Fig. 11. Channel access competition and conflict in an Aliteamulti-user-
Ilz] = 0 otherwise, andF,, (0 < F,, < 1) measures the muli-channel CR systeni [126].
consistence between the local objective and the soualfpay%e standard state-value evolution model given[ih (4) and

The higher the degree of factoredness (i.e., the valug,df the TD-based strategy-learning mechanism giverlin (7), the

is, the more likely a change of the local action by SU expected one-time reward is adopted[as (22):
will have the same impact on both its private reward and the

global reward.L, ,, measures the sensitivity of local reward 5 = Eluilai(t) = j,s(t) = s], (22)

to the local action changes. According [0](20), the higher th

sensitivity (i.e., the learnability), the more the depemmieof and a learning mechanism without considering the future

y;(m) on the local actions of Sk By employing the property reward is designed as (23):

described by[{118), namely, the private rewaidt) = u;(¢) s s .

being proportional to the global reward(t), it is shown (1) = (1= (1)) Q3 (1) + i (Hui (D (ai(t), 7). (23)

in [125] that a good objective function can be obtained by, @2) and [2ZB),a;(t) = j represents the action of SUto

removing fromY(t) the effects of all SUs other than SUgglect channef for transmissions is the vector of the channel

i. A general form of such a local objective function can b§tates,ozij (t) is the learning stepy;(t) is the instantaneous

expressed as follows: reward of SU: and I(z,y) is the indicator function (i.e.,

(23) appears in a similar form to distributed Q-learning, it

Sinceu;(t) is a function of bottY(¢) and the cardinality of the is derived based on the analysis of the channel contention

interfering-SU seiV; (¢), all that SU; needs to obtain the valueas an SG. It is shown in_[126] that with the Boltzmann

of D; is to estimatel\;(¢)| given the information that SU distribution-based strategy exploration, the learnirtgesae in

observes locally. It is shown that with the proposed obyecti (23) is equivalent to the Robbins-Monro iteration [127] and

function [21), the distributed learning scheme achievetebe converges asymptotically to a stationary point (i.e., an) NE

spectrum efficiency than those learning with both private revith probability one.

ward and global reward. From the game theoretic perspectiveGenerally, the aforementioned multi-agent learning sasem

spectrum access with the individual reward as[id (18) can ban be divided into two categories, namely, distributedniieg

interpreted as a cardinal potential garhe![18], in which (2based on the assumption of purely independent state-value

is in the exact form of a potential function. In this sense, thevolution (e.g., [[113], [[114], [[117]=[123]) and distrileat

design of the objective function in [125] can be considered &earning based on the structural property of the specific re-

a special case of global-reward-based learning, and may gotirce management problems (e.g., [125], [126]). Although

be easily extended to a general radio resource managenigith of them do not require explicit information exchange

problem such as [113]/ [114]. Although the two indices immong network devices, sometimes introducing a certaisl lev

(19) and[(2D) provide important guidelines on individudlityt ~ of information exchange (at the cost of more overhead) can

function design for distributed learning, it is still need® help improve the network performance. In the literature, th

find appropriate approaches other than that giver[ by (18) flearning schemes with explicit information exchange isaligu

the networking applications which cannot be modeled asreferred to as learning based on Distributed Value Function

potential game. (DVF). With DVF, local devices are required to share their
Instead of designing a different objective function, thetate-value/reward functions with the neighbors. Inste&d

learning scheme itself can also be tailored to meet the requilearning the Q-value based on the individual reward or local

ment of radio resource management. One example of learngtgte values, individual decision making aims at the maxi-

scheme design in the strategy-coupling scenario is provigle mization of both the local and the neighbors’ weighted sum

[126], which studies an Aloha-like spectrum access schemfrewards/state-values. By modifyingl (7), a typical leéagn

without any negotiation in a multi-user, multi-channel CRNnechanism with DVF can be expressed as

(Figure[11). In [126],N primary channels are modeled as 1 .

N independent, two-state Markov chains, while the SUs are Q" (505 ai) = (1 = a4)Qj (84, as) +

assumed to have no mutual communication and need to learn ¢ ) (24)

the collision-avoidance strategies online. Instead ofpéidg o | uisi i) + je%:(i) wi(j)Vl(Sj)) ’
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TABLE X
APPLICATIONS OF INDEPENDENTLEARNER LEARNING SCHEMES IN COGNITIVE WIRELESS NETWORKSA SUMMARY
Network Type | Application Reference | Strategy Coupling As-| Learning Scheme Convergence
sumptions
Aggregated interference [117] None Independent Q-learning for MDR N/A
CRN control and neural network for POMDH
s [A17]
Joint spectrum and powe} [119], | None [119], coupling as| Independent Q-learning [_[119], N/A
management [122] a noncooperative game [122]
[122]
Dynamic spectrum access [120], | None [120], [123], cou-| Independent Q-learning [ [120], N/A [L20],
[123], pling with fully con- | Win-or-Learn-Fast (WoLF)| [123], near
[125], nected topology [[125],) [123], Independent learning optimal strategy
[1286] Coupling as a noncoopt (unspecified) [[125], Modified| [125] or NE
erative game! [126] independent Q-learning without [126]
considering the future states
[126]
Joint  sensing-time and [121] None Independent Q-learning N/A
power allocation
HETNETs Egrr]nto-user power alloca; [113] None Independent Q-learning N/A
Inter-cell interference coor{ [114] None Independent Q-learning N/A
dination
Sensor Coverage and energy con- [128] Coordinated decision{ DVF-based learning N/A
networks sumption management making
Cooperative Power and relaying probat [129] Coordinated decision{ Q-learning based on distributefl Local optimal
networks bility management making reward and value function, point
Cellular Power allocation and expef [130] Coordinated decision{ DVF-based learning N/A
networks rience sharing making

in which N (i) is the set of device’'s neighbors (including based on sharing both the instantaneous rewards and tHe loca
1) andw;(7) is the weight that determines the contribution o$tate values can achieve a better power efficiency than that
devicej’s state-value to devicés estimation ofV;. using only the local reward or the local state value infoforat

The applications of the DVF-based learning mechanisi [130], the DVF-based learning scheme is adopted in a real-
in wireless networks can be found in_[128]=[130]. [n_[128]time multimedia cellular network to adapt the power allomat
DVF-based learning is used in an ad-hoc sensor networkabinterfering links. In addition to coordinating the indtual
coordinate the sensing and hibernation operation as tteeafta links, the Q-value updating mechanism](24) is also used to
the grid-point coverage changes. To encourage the sender nimprove the convergence of the newly adopted links in the
with a larger coverage area to perform the sensing operatiogrtwork.
the individual reward is designed as a function of the numberin Table [X, we categorize the works discussed in this
of the covered grid points. It is shown that DVF-based laagni subsection according to their respective applications: Fo
outperforms the independent learner-based learningitiignr applications of multi-agent independent-learning scheine
especially under the condition of high sensor node dessitigvireless networks, convergence of learning remains an open
In [129], a learning algorithm based on the exchange of bottsue in most of the existing studies. Compared with the
the instantaneous reward and the estimated local state-va#bAS-based learning algorithms, adopting independemntitegur
is proposed for the joint power control and relay selectiosthemes requires more attention for any specific networking
in a distributed cooperative network. The proposed learnioptimization problem.
scheme is featured by weighting over both the instantaneous
reward and the estimated local state-value that are shaéed
by the neighbor nodes, and thus is called learning with the i )
Distributed Reward and Value (DRV) function. By extending APart from improving the expected network performance
@4), the rule of learning with DRV can be expressed Ayith shared information in the form of structured rewaratist

Experience Sharing Based on Distributed Learning

follows: value functions (e.g., using the social reward and the
i . DVF/DRV functions), another consideration in MAS-based
Qi (siyai) (1 — ar) Qi (si, ai)+ learning is whether information sharing can also help the

NVt (ss . s (Vs (s
ac| > wiluj(sya) +8 >0 wi(j)Vils)) To answer this question, it is necessary to investigate into
JEN(3) JEN(4) . L .

the homogeneity of the distributed learning processes @b th
in which w;(j) and w;(j) are the weight of node given we can check whether one learning process may be able
to its neighborj’s instantaneous reward and estimated state benefit from the “shared experience” offered by another
value, respectively. With the learning scheme given[in ,(29parning process, and furthermore, in what form such a thar
each node in the network maintains a vector of both thexperience” would be.

channel/buffer state of its direct link and the channeféauf We call a group of distributed learning processes homo-

state of its cooperative link. It is shown in_[129] that leam geneous when the distributed learning agents apply the same

) (25) individual learning agents to speed up their learning psses.
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own power selection strategy. The docition process is based
on exchanging the Q-tables among the neighbor secondary
BSs. In this case, the learning nodes perform either theugtar
docition or the adaptive docition periodically by adopting
the Q-tables of the expert nodes with the best performance.
The simulations in[[132] show that the docitive paradigm
significantly speeds up the learning process with respebigto
case of independent learners. A similar approach is adopted
in [134], [135], which study the power allocation problem
in self-organized heterogeneous networks with femotecell

In these studies, a cross-tier interference model is adopte

learning methqd with an evolution determined by exactly thg o manner similar to[(16), while strategy coupling among
lsame_ stochastic Process. In_ktJPIIeffra_mg_w_c()jrk IOf homogene% femto links is also ignored by individual learners. Agai

re}a_rnmg processes, it Is possible for individual ager;alsll &€ here docition is performed through exchanging the Q-tables
their private experience (e.g., strategies, estimatediQes) among the neighbor nodes. In_[134], the similarity metric to

W'tg t.he other aﬁqent mforder to ac;eleratle thf\ Iearnlngbe!flx;@c easure of the correlation between the femto BS strategy and
and Improve the performance. Recently, the possibility gl aggregated interference to the macrocell is introdased

applying th_e teacher-pupil_ paradigm in human cognition (f user-defined gradient. The proposed metric measures the
solve_the v:cnreleds_s :‘et\gi.rkm%frolblews has_been _d|scussde i'rnilarity of the policies between two neighbor nodes. With
a series of studies [IB1[=[1B4]. In these pioneering stjdigy, . similarity metric, the learning nodes can not only adbpt

tue paradigm offd“_dogki)tive dnetwo_r k was prokpongd basl%d ctﬁ—tables from the neighbor nodes with the best performance,
the extension of distributed cognitive networks (Figlr. but also take into account the degree of the similarity betwe

theffram%wtc))rk of docitive n_etwor;s, docizlon (teachmgs)l their own action-state correlation and their neighbors’.
performed by a more experienced network agent to acceleratgy ;o jt jg relatively easy to implement docition in the

the learning process of the other agents. Depending on Y‘meework of independent Q-learning based on the model of

degree of docition among the wireless devices, the teaeh"ﬂ)%rallel, homogeneous MDPs, it generally remains an open

learning process can be distinguished into 3 Categc'”eﬂ:[l‘f%ssue to estimate the similarity of the policies between two

» Startup docitioneach wireless node learns independentliieighbor learners when the learning processes are heteroge
When a new node joins the network, instead of learningsous. Especially, in the scenario of strategy coupling and
from zero experience, it learns the policies from docitivgterest conflict, imitating the strategies or the Q-tabids
nodes which have already acquired a certain level g@fe adversary neighbor node with the best performance may
expertise on strategy selection. result in strategy oscillation. Such a situation can besitiated

« Adaptive docitionthe nodes exchange information abousy revisiting the power allocation problem defined byl(16).
the performance of their learning processes. The docitiy¢ the simplified situation of mutual interference with only
nodes share policies and the learning nodes learn frefiy femto BSs, increasing the transmit power of one BS
the expert neighbors which have the best performanceyiill result in the performance deterioration for the othe$,B

» Perfect docitioneach node in the network is able to obpecause the interference to the other BS is also increased.
serve the joint action and all individual rewards. Based afionsider the case that the BS with the smaller transmit power
the observation, every docitive node models its interacti¢jecides to adopt the strategy of its rival BS by increasing
with the rest of the network as a complete centralizggs transmit power. If independent Q-learning is used byhbot
MDP separately and selects its individual actions.  BSs to learn their power selection strategies, the other BS w

The basic prerequisite for implementing docition in any-nesoon discover that it will benefit from increasing its cutren

working problems is that the individual learning process@s transmit power too. This creates an “arm race” situation in
be modeled as parallel, homogeneous MDPs, through whighich each BS begins to increase its transmit power in turn
imitating the strategies of the docitive nodes by the leagni until both the BSs reach their maximum power level, which is
nodes will not influence the policies of the docitive nodes typical situation of the prisoner’s dilemma in noncoopieea
However, empirical studies have shown that relaxing suchgames. Such an unwanted situation can be avoided if both BSs
constraint in the situation of a noncooperative game-lge s treat the power allocation process as a noncooperative game
nario may also help improve the performance of the learnirgnd adopt the learning methods in games such as Fictitious
nodes [[132], [[134],[[135]. In[[132], the distributed dowiki Play (FP) and best response without any docition procBdure
power allocation problemin an IEEE 802.22 WRAN (underlags a result, in works such as [137] the docitive paradigm
to the TV-Broadcasting bandwidth) is studied. An aggredjatand the game-based learning paradigm are considered two
interference model from the SUs to the PU is considered. Thentroversial frameworks for strategy learning. Howeteis
channel state experienced by the individual SUs is defined Wwgrth noting that with emerging techniques such as transfer
a binary state according to hard thresholding on the agtgdga

interference, which is similar tdz_‘ﬂj)_ Each Secondary BS7Studies adopting the same mutual interference model as@h within
the, framework of repeated games can be found_in![136]._In][1B& best

ignores the impact _Of the other BSs on .the channel state qg&)onse without docition ensures the convergence to thetoPdominant
adopts a standard independent Q-learning scheme to |Isarredtilibria.

Fig. 12. Docitive cycle which extends the cognitive cycle dgoperative
teaching (adapted frond [133]).
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TABLE XI more on the situation of information locality. This is besau

SUMMARY OF THE MAIN NOTATIONS IN SecTioNV] in many practical scenarios, the information of the local
Sg’(mbo') #"ﬁa”'t”?tl_ S E P o utilities, actions or strategies of one network device may n
Kila—; € statistic or playee Tor Its opponents actions . . .
ata ) The estimated probability of playéfor its opponent be a\_/allable to the other devices due to either .the concern

to play actiona_; of privacy or the lack of enough resources for information
BR() The set of best-response actions exchange. In this subsection, we will organize our survey
v The learning parameter for perturbation in SFP on the applications of learning in repeated games according
at The learning factor in SFP . .
@ The estimated frequency of local actions to the prototyp!cal Iearn_lng schemes.that they are _based on.
et The time-varying step size in GP These prototypical learning schemes include (i) fictitiplesy,
B ot The I?zlarnlng parameters in GP, LA and no-external- (i) gradient play, (iii) learning automata and (iv) no-reg
regret learning .
i The probability of accessing a channel in a random leamm_g'_ . . . .
medium access game 1) Fictitious Play and Stochastic Fictitious Play:he basic
Rm The transmit rate over channel _ prerequisite of the standard FP is that the agents are willin
Ri(mi, aila—) Tfhelregret of playes for playing strategyr instead 1 raveal their (discrete) action information to the othater
of playing a; .
Ri(al,al) The regret for agent not playinga’ at time each round of play, so they can track_the frequency of action
ci(s,a_y) The conjecture of opponent poliey_; (s) by agent selection by the other agents [33]. With FP, agenassesses
iattimet : _ _ the distribution of its opponent’s actions at rounds follows:
7 (s, ai) The reference point for conjecture learning
. . . . . ta ) = ket~ . t—1
learning [138] and experience-weighted attraction leagni ri(a—i) = r; " (a—i) + 1(aZ7, ai). (26)

[13€], incorporating the teaching process in the gameasggent ; estimates the probability for the opponent agents to
framework of learning is no longer impossible. For this Parbjay the joint actiona_; at roundt as:

we will leave the discussion of more details to Secfioh VI. .
Blay) = a0zt (27)
V. APPLICATIONS OFGAME-BASED LEARNING IN ZaLiGA,i rialy)
COGNITIVE WIRELESSNETWORKS In this sense, FP is sometimes considered as a model-based
Generally, there are the limitations of the distributeditea learning mechanism since with {27) it tries to build the mode
ing mechanisms (e.g., the algorithms reviewed_in V) thaff the opponents’ joint policy from accumulated experience
post the necessity of introducing the game-based learniRgwever, compared with other model-based, non-learning
mechanisms in CRNs. By modeling distributed network comnechanisms such as dynamic programming for MDPs, FP
trol problems as games, it is possible to better address es not need any a-priori knowledge of the system or other
problems raised by device interactions in the networksoAlsplayers. Based o (27), FP is defined as any rule that assigns
it is possible to design learning schemes that theoreficathe best response to agengiven its current estimation of
guarantee the convergence of the individual strategies tah@ opponent policy!(a_;). Usually, such an operation is
fixed point or equilibrium, while such convergence is uspallrepresented byit(a_;) € BR;(0%(a_;)), where the operator
not guaranteed by the distributed learning mechanisméisn tBR(-) derives the best-response action set. Typically; B&h
section, we consider the repeated games as the special cagegerived by maximizing the estimated expected payoff of
of SGs and introduce the applications of learning algorghnagenti: BR; (6! (a_;)) = arg maxac 4, E[u;(a, 0% (a_;))]. The
based on repeated games and SGs separately. We will orgagi#@vergence property of FP in a general repeated game is give
the learning algorithms based on the three game propeisty TheoreniR[[33].

dimensions discussed in Sectlon II-C. Our major focus véll b .
(a) the rules in each learning scheme; (b) the conditions ahgeorem 2 (Convergence of FP)1) Strict NEi are the

properties of the games with which a specific learning scherfBSCrRing state for the process of fictitious play. 2) Anyepur
may converge; and (c) the degree of information exchangiategy steady state of fictitious play must be an NE.

required by each learning scheme to achieve convergenee. ThTheoreni® gives the sufficient condition for FP to converge
new notations used by this section can be found in Table Xb an NE. Thereby, the convergence of FP-based learning is
guaranteed in any repeated games that possess at least one

A. Applications of Learning in the Context of Repeated GamBydre-strategy NE. According to Theorém 2, a typical way of

. . checking the convergence condition for FP in a game is to
Repeated games play an important role in problem forheck if the game possesses certain properties (such ag bein
mulation for distributed network control. When the networK 9 P prop e

evolution is not subject to a stochastic environment, mo%?tem'al or S-modulai [18]) that guarantee the existerice o
ure-strategy NE.

of the network control problems that requires considerinog . :
. X L : As long as the learning agents are able to observe the actions
the interactions among distributed devices can be forradlat

as a repeated game instead of an MAMDP. In contrast %the rival agents or afford the overhead for action infotiora

the MDP-based learning mechanisms that heavily depend %xnchange, FP can be employed as the basic solution for many

. : o ) . resource management games in wireless networks. In [140],
value iteration, policy iteration now plays an importantero

in deriving the learning rules for repeated games. In t_hegThis is equivalent to the condition when the best-respormseffs in the
context of repeated games, model-free learning emphasirEsare strictly greater than the other possible payoffs fothe agents.
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an FP-based multi-agent learning algorithm is employed by Base
the secondary nodes in an ad-hoc DSA network to learn 7. Station
the strategies for forwarding delay-sensitive packet§1#Q] A
the condition of channel availability is characterized e t ISSz-—-o_o

~

matrix of spectrum opportunity, and the condition of chdnne Eavesdropp\er( \*'\\\: ~~~~~~ \ N
contention is characterized by the interference matrixnfro Jammer Relay
both the PUs and the rival SUs. With the learning scheme fu 2 . ™ /Nodes

proposed in[[140], each SU needs to collect the information /

about the spectrum opportunity matrix locally, and essdbli < ¢

its local interference matrix according to the action infor § ‘ﬁ? %’

mation collected from its neighbors. Then, every SU tracks N

the frequency of action selection by its neighbors accardin M "2 3

to a modified version of[{26) with a discount faCtE’il. Fig. 13. A network consisting af/ one-hop relays and/ wireless users that

Each SU also needs to determine a subset of feasible actiénis bject to eavesdropping/jamming from one active maliinode![141).

that do not interfere with higher priority traffic. This ising the best response with a modified local objective fumctio

done through estimating the expected interference basedtidat is perturbed by a differentiable, strictly concavedtion.

the policy estimation model if(27). The local determimistiAssume that the best response is obtained through maxinizin

best response is calculated based on minimizing the expecedayoff functionu;(r;, 7—;). Then the operation for obtaining

effective transmission time over the candidate links. the smoothed best response (BRcan be used to replace the
Another example of FP can be foundfin [141], which applie@/iginal best responserg max u;(m;, 7—;):

FP to obtain a defense mechanism against eavesdropping and BR

jamming attacks in the uplink of a cellular network consigti

of multiple relays (Figuré_13). In the defense-attack gamg, \yhich the perturbation function; is typically given as the

the normal/mahcmus nodes are assumed to be able to Obseéﬁ?ropy function ofr;:

the actions of other nodes, so they can use the models in

(28) and [[2F) to estimate the other nodes’ policies. Instdad ni(m;) = Z —m;(a;) logm;(a;). (30)

directly obtaining a deterministic strategy based on thallo ai€A;

best response, each normal node updates its mixed strategpg 3l ith b licit! lved as:
time slott¢ as follows [71]: roblem [2B) with[(30) can be explicitly solved as:
exp((1/v)ui(ai, 7))

_ 1 _ )

m(m) = m " (m) + ?(I(alévm) —m H(m)), (28) > aen, (exp(l/v)ui(a, m—;))
in which m is the index of the candidate relays. The malicioy® Which v is the weight of the perturbation term that controls
node adopts a similar policy-updating rule based on its oie strategy exploration rate. It has been proved_ that fgr an
action set for attacking. The actions of each node at rouftferage-reward repeated game, we can always find that
¢ are selected from the best response based on the expeBiales the payoff of agentunder BR7_,) to be sufficiently

private utility with the locally estimated policy vectér?, gt). near the real best-response payoff (Proposition 4.5 0f)[33]
Zéhe SFP-based learning scheme is also known as the stachasti

The same learning rule as in [141] can be foundlin [14 ' _ >
which uses the local policy updating rule [L128) to learn th P. Unlike standard FP, in SFP it is not necessary to observe

strategy in a continuous strategy space for power aIIonatiJh,e_ oppongnts’ actions or even know the structure of th.el loca
In [142], such a learning scheme is referred to as et Utility functions. Instead, the expected payaff(a;, 7—;) in
response dynamia the power allocation game, and is prove(qﬂ) is estimated based on local information as follows:

to be able to converge to theequilibria. Such a learning  _ 1 e o

rule is also adopted in_[143], which formulates a hierarahic j(ai) = Fj(ag’ ai) (uj(a) = (@) +@; " (a:),  (32)
network formation game for nodes in a multi-hop wireless _ ' o
network to select relays. I [143] the relay selection game i Which &7, and I(ay,,an) follow the same definitions as
decomposed into multi-layers and solved using a backwdfy @8), andi, (a,) is the estimate of the expected utility
induction method from the sink to the source. The learnirg (> 7—:). The local mixed policy is usually updated in the
scheme defined b (RE)=(28) is applied to each layer-game dR#owing form:

the mixed strategies are obtained from the local best regson t(m) = 7t (m) + o (BR(iit(a)) — !~ 1) (33)

|
4y Mobile
%' Nodes

Nn

(r_;) = arg max {wi(ms, m—s) + vni(mi)}, (29)

BR(F_i) =

(31)

With the standard FP, local actions are updated based ionwhich BR(a!(a;)) is calculated based o (31) with the
the best responses, which are generally of pure strategigayoff estimated by[(32) and; is a learning factor.
As pointed out by[[33], one drawback of such an FP-basedIt is worth noting that with both value iteration i (32) and
learning scheme lies in the discontinuity of agent behayiompolicy iteration in [38), SFP is usually considered as adgpi
for a small change in the opponent-policy estimation mdprm of CODIPAS-RL methods (see the example [in_[144]).
result in an abrupt local-behavior change. Due to this, Generally, the convergence conditions of SFP are basedeon th
Smoothed-FP (SFP) procedure was proposed through seassfalysis of Lyapunov stability of the corresponding pdrad
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best response dynamic |76]. A summary of these conditiondere ¢, is the time-varying step size);]™: defines the
for different types of games is given as folldvs projection onto the strategy spad& of agenti, 6!(a_;)

Theorem 3 (Convergence of FF [76])Consider SFP defined is the estimated opponent-action frequency, which can be

: . X derived following [2¥), and! (a;) is the estimated local-action
by (29)-{3B) starting from an arbitrary strategy in gani frequency, which can be derived in the same mannel_ds (28):

(i) If G is a two-player symmetric game with an interior 1
Evolutionary Stable Strategy (ESS) or a two-player zero- ¢! (a;) = ¢! (a;) + —— (I(al, a;) — i (a:)), (35)
sum game, then SFP converges with probability one to t+1
an NE. where actiona! is generated as random outcomes of the

(i) If G is an N-player potential game, then SFP convergegvolving strategies;. Following (33) and[(35), the strategy of
in a subset of the rest points of the perturbed beggch agent is a (projected) combination of its own empirical
response dynamic. If all the rest points of the perturbeaction frequency and a gradient step based on the estimated
best response dynamic are hyperbolic and two-ordé@pponents’ action frequency. According o [71]. [146], GP i
continuous, SFP converges to an NE with probability oneontinuous games is guaranteed to converge within a distanc

(i) If G is an N-player supermodular game, then SFPof order ofe; of the NE of the game, if the NE is a strict one.
converges almost surely to a rest point of the perturbddowever, GP cannot converge to a completely-mixed NE of
best response dynamic. In particular, if the rest point ithe game (see Lemma 4.1 6f [71]). Due to such a limitation
unique, then SFP converges to the NE with probabili§n convergence condition, the basic form GPLnl (34) is rarely
one. used directly in the solution to networking problems.

As an improvement to the basic form GP, Derivative-Action

With the property of requiring no information exchangégp (paGP) is developed i [71]. By introducing parameter
SFP is considered an important tool in self-organized legrn v!(a;) to approximate the first-order derivative af, the

for resource allocation games. In_[145], SFP is applied {gqating mechanism of DAGP is defined as follois [146]:
the power control game in wireless ad-hoc networks. Ac- i

cording to Theoreni]3, SFP is guaranteed to converge to a oIt (a;) = vl(a) + tﬁfl(qf(ai) —vi(a;)),  (36)
stationary point (with a non-zero probability to an NE) for

a supermodular/potential game. In order to take advantage o 7' (a;) = [¢}(a;) + €(Vr,ui(mi, 0% (a—;)))+
such a property_, a supermodular utility function is destgne_ pe(qt(ai) — vf(ai))} Hi,

for each node in[[145], and the convergence with SFP is . ) - . )
thus guaranteed. However, since the utility function[ingjL4 Whereq; is updated following[(35);]", ¢, and¢; are obtained

is monotonically decreasing, the learning scheme will nalN the same way as ifL(B4), and is a large factor satisfying

converge to the unique NE of that game, which correspondsto > 0- According to|[71], [145], for large:, > 0, if ¢ satisfies
all users transmitting with zero power. This problem ofitytil C€"@in conditions (see Theorem 4.2 (0f|[71] and Theorem 3.1

function design is addressed in [116] by studying the pow8Pd Theorem 3.3 iri [146] for more details), the strategys
allocation problem in a small-cell network through a nor@Symptotically locally stable and converges to the NE with a
trivial Stackelberg gamé&T18]. This game design is intened NON-2€ro probability. _

balance the femtocell power efficiency and interferencerobn P and DAGP not only require the agents to be able to
in the macrocell. The supermodularity property is retaifeed Fack the frequency of both the local actions and the oppbnen
the femto link utility, and the SFP-based scheme givéin (32€tOns, but also require that the structure of local ytilit
33) is applied to the follower game among the femtoce”g_mctlons_ls known to each agent. Compared Wlth FP and_SFP,
The same learning mechanism is adopted[in [115], whidR€ mostimportant feature of the GP-based learning atyust
considers the power allocation in the femtocells as a commdf that the updating mechanism can be easily extended to the
payoff game (thus a potential game). With the assumption G#Ses of continuous games. In [147], standard GP is applied
the common-payoff game, it is proved in [115] that the t© the continuous, random medium access game, in which

equilibrium is guaranteed to be reached in the potentialega S€t Of wireless nodes learn to play the random access
by the SFP-based learning algorithm. strategiesp; (0 < p; < 1) after observing the vector of

2) Gradient Play: Compared with FP, Gradient Play (Gp)channel colntentllon signal;. In.stead of dlre_ctly adapting tp
adjusts the strategy of one agent based on the gradienttas %CF)”te”“O” S|gna@i, e"."Ch wireless node mt_roduces aprice
dynamics instead of directly jumping to the best respon ._ct|onCi_(qi) to adjust its local net payoff with the original
based on the empirical frequencies of the opponent agedftlity function Us(p:) asu;(p) = Ui(pi) —piCi(qy). In [147],
action selection. Therefore, GP can be viewed as a “heth random access game is proved to have a unique nontrivial

response” algorithm. Mathematically, following the leimgn NE (amely, Vp, u(p},pZ;) = 0 at the NE(p7,p”;)), and

scheme of the standard GP, each agent in the repeated g%}é&tfhe standgrd GPdppnvgrges Qiog‘e”_i‘;]a”%’ to the ni«;ﬁitriv
updates its strategy on selectingaccording to[[71]: NE 1T a certain con _|t|on Is satisfied with the step size
in (34). The application of standard GP can also be found

I1; i i-
7 as) = [¢f (i) + e(Vryus(mi, 0(a_i))] T, (34) N the power control game of a multi-cell CDMA netwo_rk
with dynamic handoffs between cells [148]. After introdugi
9About the definitions of ESS, rest point and supermodularegastease & PriCINg meChan_'Sm with the cost functloln based on the local
refer to [18] for more details. power consumption, the game formulation [n_[148] adopts

(37)
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a payoff function that is twice continuously differentiabl where«!, is the instantaneous reward of SW after con-
non-decreasing and strictly convex. It is provedlin |14&tth sidering the PU activities and the channel contention with
standard GP is able to exponentially converge to the smallés rival nodes. The opportunistic spectrum access game is
convex set which contains all the possible NE of the powéurther modeled as an exact potential game. Thereforeast le
control game, if the spreading factor of the CDMA systerane pure-strategy NE exists for the garnel[18]. According to
satisfies certain conditidtbs Theorem%,Lr_; learning ensures the convergence to the
One typical example of applying the DAGP-based learniruure-strategy NE in the opportunistic spectrum access game
to networking problems can be found in_[149], which forApart from [153], the standard z_; learning scheme can be
mulates the interference coordination problem in a mik-I found as a frequent solution to the problems whenever the
MIMO system as a noncooperative game. In the game, tbenvergence property of Theorémh 4 is satisfied and the exis-
covariance matrix of the signal of each link is considered #&nce of a pure-strategy NE can be proved. The applicatibns o
the local strategy and is drawn from a common, continuotie standard z_ learning scheme range from relay-selection
strategy space. The matrix form of {37) is adopted and the cooperative network [154] to the CSMA-based DSA
guaranteed to converge to a unique NE of the game, if theanagement [155] and the MIMO-based DSA management
covariance matrix of the total interference and noise at tffE56] in the CRNs.
receiver of each link satisfies a certain condition. In contrast to the aforementioned works, the variation ef th
3) Learning Automata:As introduced in Sectio [I7A, standardLy_; learning mechanism using a different strategy-
LA is featured by the process of action selection based opdating rule can also be found in the studies such_as [157].
policy iteration using only local information. For non-gam In [157], a discrete power control problem in a CDMA-like
based wireless networking problems, (distributed) LA ha=llular network with mutual interference is modeled as a
been shown to be efficient in the scenarios which can bepeated noncooperative game. In the power control game,
formulated to be of single state and controlled by a singkach node only knows its local payoff measured as the power
active decision-making entity at one time instance. Swgfoés efficiency. The modified linear-reward-inaction updatinger
applications of LA in these scenarios can be found in the [157] is defined as follows:
works such as multipath on-demand multicast routing in CRNs t(at) — pitnt(at) if a! + a;
[150] and multicast routing in mobile ad-hoc networks [151]77§+1(ai) _ Wé(a?) " w:% ZZ 17T’¢(a) if a,’g z a?’ (40)
When it comes to the more complicated framework of network e Lo ¢ "
control games, most of the LA-based learning schemes are . . ) . )
employed to obtain NE policies. As a special case of tHe&t Ui genote the utility of nodéby choosing a discrete power
general LA updating ruld {11, »_; learning has been widely level a! fo~rttr.ansm|§3|on at time. Then, the normalized utility
applied to network control problems due to its simplicitydanf€€dbackr; is obtained as follows:

convergence property. By abusing the notations[id (11), the ., ul — min; {u;}
rules of Ly_; learning can be expressed bs|(38): T u} — ming {ug) (41)

T,

(g, = { m(ai) + pri (L = mi(af)),  if af = ai, 3g) The major difference between (40) andl(38) lies in the way of
co i (a;) — prim (aq), it af # a;, updating the probability of choosing an action when theoacti

wherey (0 < 1 < 1) is a learning parameter. The convergen(:rgsu'ts in a new reward. Under this learning algorithm, the

property to the NE for the learning mechanism [in](38) in gvc:lluti_on (t)r: the power selec;]tiop bec_omtehs a Markov process.
general noncooperative game has been proved_in [152]: ofiowing th€ same approach ot proving the convergence-prop
erty based on Ordinary Differential Equation (ODE) analysi

Theorem 4. In a repeated game&s = (M, A = xA,,{0 < and Lyapunov’s stability theorem as in [152], it is proved in
™ < 1}nenr), with each agent employingr_; learning, the [157] that the LA-based learning scheme [nl(40) will only
following statements are true jf in (38) is sufficiently small: converge to the mixed-strategy NE of the considered power

. all stationary points that are not NE are unstable, and control game if the learning stepis sufficiently small.

« all strict NE in pure strategies are asymptotically stable. In addition toLz; learning, other learning schemes based
on the general LA updating rule ib_{l11) are also employed for

However, no uniform expression is provided in the Ilteraturresource allocation in the CRNs. In [158], an LA mechanism

o obtain the normglize:q environment response _funofbnn based on the softmax (Logit) function is applied to learn
(38). For example, irl [153], standafd:_ learning is adopted ¢ _optimal solution to the traffic allocation problem in a
to manage the opportqnlsth spectrum qccesﬁngUs over multi-hop cognitive wireless mesh network. With the progabs
M primary channels with a fixed transmit raf%, on channel LA mechanism, node’s local action to select linkk for

m. In this case, the normalized random rewafds obtained ansmitting at then-th possible rate is determined by the

as follows: . . softmax function:
Tm = um/(mr?x Ry), (39) exp(w?,)
L (42)
i,k N m’
10«Exponential convergence” is used to describe the propeftiearning Zm:O exp(wi,k)
when asymptotically converging to the convex set||4ff — m¥|| = O(u')

for somep < 1, we say that the learning process achieves exponenti‘é‘he_reN den.OteS the number .Of pOSSIble transrr_llt rates and
convergence. the intermediate parameter?, is updated according to the
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Fig. 14. A toy example of power allocation in the multi-useRIC with
limited ability of acquiring the strategy information froother CRs[[159].

following LA rules:

cxp(wgfk )
Eiv:o exp(w;'fk )

wi (t) + a:2()(1

wi(t+1)= vl (1), for n = j; (43)
wity (t) + Vil (1), forn # j.

In @3), a; (0 < a; < 1) is the learning rate and;, (t)

is obtained from a set of i.i.d. random variables with zer
mean.Z(t) is the normalized utility feedback that is provide%
by the gateway node. In order to ensure the convergence o
the learning algorithm i (43), the traffic engineering game

modeled as a team game with the identical payoff (hence a
potential game). Thus the SUs need to share the information

on the global, normalized utility feedbac¢k(t) for updating
the value ofw],(t). In [15€], the value of=(t) is obtained
from arbitrarily scaling the sum of the local payoff funat®

down to the range df, 1]. By allowing information exchange
and constructing av-person potential game, it is proved in

[158] that for sufficiently small values af; and the variance
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PU I, \; is the vector of\; and W; is the maximum level

of the interference to PUW. It is shown in [159] that finding
the equilibrium point of the original constrained power toh
game is asymptotically equivalent to determining the élouil
rium point of the unconstrained game with the regularized
function given in[(44). The following learning scheme, khse
on linear reward-penalty LA, is adopted to update the local
policies:

7t (€N — Nyen, (Pf))
=+ affen, (P) - rfo4 TR

where P/ is the power level that SW chooses at iteration
en, (P}) ande™* are defined as follows:

1
T,

|, (45)

en, (P =1(0,...,0,1,0,...,0)", (46)

ik

e =(1,...,)". (47)

The normalized utility feedback, is obtained based on the
Lagrangian with the expected utility and interference gein
replaced by the instantaneous payoff and interferendedh (4
With a user-defined normalization procedure, the value of
7 is scaled within the interval0,1]Y. The time-varying
orrection (adaptation) factors! also belong to the unit
eigment. Meanwhile, the Lagrange multiplier is updated as:
A+
AT =1 = adwile

7/); = 626)\; - 77; + Clv

(48)
(49)

where 7, is the instantaneous sum of interference at PU

"
and 6¢ is the regularization factor in_(#4), an[dgl+1 is a
projection operator. The learning scheme defined by (49)-(4
ensures the convergence to the NE, provided that the seggienc
{nf} and {4§'} satisfy certain properties (see Assumptions
A1-A3 in [159]), and the power control game is diagonal

of §ﬁk(t), the LA mechanism in(43) is guaranteed to aChieV(f‘:'oncave [70]. Compared withy_; learning, Bush-Mosteller

the e-optimal solution to the traffic engineering problem.

In [159], Bush-Mosteller LA [[70] is adopted for learning
the NE of the repeated power control game in a CRN wi
the set of power constraints on the aggregated interfere

experienced by each PU (Figlre 14). Bush-Mosteller legeni

also known as the linear reward-penalty LA, can be view

as a general form ofLi_; learning [160]. In [[158], the
CRN is assumed to be composed &f SUs andM PUs.
The wireless channels are assumed to be stationary,

LA requires stricter condition for converging to the NE.
his is a major reason for impeding Bush-Mosteller learning
om being widely applied to the wireless resource allaoati
Bblems. Due to the requirement for the game to be diagonal
oncave, and because the original SINR-based utility does

t naturally possess the property of diagonal concavity, t
authors of [[159] use an arbitrarily designed utility fuocti

to replace the real expected mutual-interference-baseal lo

and Lmﬁ'ty in order to derive the proper payoff function for the

SUs are able to monitor each PU’s feedback indicating H&Snstructed power control game

sum of interference to each PU receiver. It is also assume
that no SU can observe the strategies of the other S

(see Figurd_14). Let/y(m, m_x) be the expected utility of

SU link & and W (m, 7—) be the corresponding expecte
interference at PU, the constrained game is transforme
into an unconstrained game with the help of the Lagrangﬁ;/

multipliers. The Lagrange function of SkJis defined with a
regularization term/2 (||m4||> — | Ax||) as follows:

LS (T, T— gy Ak :Uk(ﬁkaﬁ—k)_zgl N(Wi(mg, m—g)

— 1) 44
A P T

Ol4) No-Regret Learning: Usually, the terminology “no-
%ret learning” is used to refer to any learning algorittmat t

et of some designated strategles [72], [161]. Formallyafo
finitely repeated gamé&' = (N, A= x A, {u, }nen), and

ngxhibits the property of no-regret when compared with the

en the adversary (deterministic) strategy;, the regret of
agent; for playing strategyr; instead of choosing strategy

can be defined as the difference in its payoff obtained from
playing these strategies:

Ri(ms, aila—;) = ui(ai, a—;) — ui(mi, a_;). (50)

where )\; is the Lagrange multiplier for the constraint from *iFor the detailed derivation o, please refer to (31) and (32) in[70].
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Let ¢(-) denote a modification mapping, = ¢(m;), where m, instead of the pure-strategy best response (internaltjegre
mi(a) = X pg(ny=a Ti(b) (a,b € A;). Then, for a sequence ofwe have

adversary strategieg:’ ,;}, we can define a general no-regret T .
learning algorithm (also known ag-no-regret learning) for min Z (ZJ (n],s") =1 (j’,st)) Vi e N, (55)
agenti as follows [161]: {mY 1o

Definition 6 (¢-no-regret learning)For a finite subsetb of Wherel’(j’, s") is th?j instantaneous loss due to adopting the
memoryless mapping, a learning algorithm that generatesreport by SUj’, and! (ﬁf,_st) is the average loss with policy
m is said to exhibitp-no-regret if the regret of that learning 7/ at channel statet:.lj_(wf st) = Z_j'ENjU{jI} 7w (55 sh).
algorithm, In [164], such a decision process is modeled as a two-player
o N i ot constant-sum game. In the game, $plays against natuté
Rig(mi, ¢(mi)la”i) = wi(p(m),azi) — wi(mi aZy), (B1)  \which plays as an adversary player and chooses stitaing
satisfies the following condition: at causing the worst cost to Syl The strategy-updating
. mechanism is designed upon the softmax function (42) with
o 1 : ey the accumulated instantaneous I8s5_, 1(j'7, s™) being the
Dy = Jim, sup 7 ;Ri"i’(wi’(b(wi)'a—i) =0 (52) argument of the logarithmic functioexp(-). It is shown in
o . [164] that no-regret learning based on the softmax function
There are two well-studied categories of theno-regret converges to the NE, which is equivalent to the minimax value
properties: no-external-regretand no-internal-red®1]. The of the game.
no-external-regret property is to minimize the regret with Another category of no-regret learning algorithms that are
respect to any comparison class of algorithms that lead igdely applied in the context of network control aims at
deterministic strategies. In other words, for no-extemearet minimizing the internal regret and learning the CE in repdat
learning, the mapping(-) satisfies¢(m;) = a (a € A;). The games [[72]. For a general repeated gafie= (N, A =
no-internal-regret property is also known as no-swapeegrk A, {u,}ncn), the estimated average loss for agenp

since the property of internal regret swaps the currentnenlip|ay actiona! instead of playing:; at timet is given by:
strategies as follows:

1
mi(c), if ¢ a,b, DE((LE, a/i) = 7 ; (ug(a’/iv aii) - U’E(af, aii)) . (56)
Gap(mi(c)) = 0, if ¢ =a, (53) Tt
mi(a) + m;(b), if ¢ =0. Based on[(56), the regret of agentor not playinga; is
One well-known example for applying no-external-regret R;(a},a}) = max {D}(a},a;),0} . (57)

learning to the wireless networking problemslis [162], vbhic
uses the random weighted majority (i.e., Hedge) algorith
[163] for learning the NE strategies in a channel allocation lRt(at a), Va # al,
game in a CRN. With a careful utility design, the channel- t+1(g) = K ’ (58)
allocation game is proved to be an exact potential game. Let * 1- Z T (), a = aj,

ut(a;) denote the cumulated instantaneous payoff received by a'#at

SU i given the sequence of the adversary stratggdy, }, the
mixed policy of SUi is updated as follows:

XqVith (512), the mixed policy of agentis updated by

wherey is a sufficiently large constant to ensure that(i €
N) is a well-defined probability.
1+ M)uf(ai,) Like the random weighted majority algorithm, the learning
> L+ o)’ (54) scheme defined by (56)-(58) to learn the CE does not need
aj€A; H the agents to exchange the action/utility information. Tibe
where . > 0. It is well-known that the learning scheme ininternal-regret learning scheme ensures the asymptaticeco
(54) has a regret bound d38] < p/2 [78]. Compared with gence to the set of the CE, according to Theorém 5 [72]:

the widely applied best-response-based learning schemes-lfheorem 5. If every agent plays according to the learning

potential games, which also ensure the convergence to the NEheme defined by (56)(58), the empirical distributionhef t
the random weighted majority algorithrn {54) does not ne(?gim action selection:

any information sharing between SUs.

The construction of a no-external-regret learning medmani zp(a) = l|t <T:a'=al (59)
can be further illustrated by the example bf [164], where the T
problem of collaborative sensing with malicious nodes in g®nverges almost surely to the set of CE of the gdias
N-channel CRN is studied. In the considered CRN, gi$ 1 — oc.

supposed to collaborate with a set of its neighbor :Bysand The applications of the learning scheme given[by (56)-(58)
to choose whether to aggregate one Of, their sensing repqfiSyetwork control problems can be found in_[165]-[168].
into its local channel-state prediction. At timea mixed policy aq one of the earliest works that employ no-regret learning

N J ;
T = [”lﬂtj -+ My 4] 1S adopted to_c_ho_oge the reports fromy, e network control problem, it is aimed at obtaining the
the SUs inN;. With the goal of minimizing the long-term

expected loss due to false decision by choosing the sequenéérhe definition of nature in an extensive form game can be fonrjdg].

i (ai) =
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CE in a dynamic spectrum access game with an overlay &R Applications of Learning in the Context of Stochastic
network in [165]. No-regret learning is used for the SU&ames (SGs)

to address the problem of channel contention. It is shownggg generalizes both the repeated games and the MDPs
that the performance at the CE opFai_ned _through Iearningu§ allowing the payoff of the players at each round of the
almost as good as the optimal equilibrium in the set of CE. b 110 15 he dependent on the state variable, whose evolution
[166€], a joint power-channel selection problem is studied ig influenced by the joint actions of the players. Compared
an underlay CRN with a free band and a set of price-chargifg the models based on repeated games, SGs are considered
PU channels.. The no-regret Iearnmg.algont ($6)-(58) 15 more practical tool for modeling the agent interaction in a
aggregated with an auction game, which considers the SINR5ic wireless environment, especially when the et

to the PU or the allocation power as an item for auction. Thg o wireless environment (e.g., channel states, buféges

joint power-channel selection game is played in two levelg,g qoyjision states) evolve stochastically and are ineein

In the lower-level subgame, the SUs perform the SINR/POWEY, 1he transmission strategies of the wireless agents. én th
bidding game with a fixed set of PU-channel selection. In t%ntext of SGs, the model-free learning schemes are refferre

higher-level subgame, the SUs adopt the no-regret leamig@ihe value/policy-iteration algorithms (e.g., the aiguns
algorithm [56){(5B) to obtain the CE in the channel-se®Tti g, marized in[[172]) that do not require any a-priori knowl-

game. In[[16V7], the learning scheme bfl(S6)i(58) is adopted {jye anout the state transition of the wireless system. We
obtain the CE strategies in a spectrum sensing game amoQds that such a property makes model-free learning edfyecia
heterogeneous SUs in an overlay CRN. In the game, eagh,qpriate for finding the solution to the equilibria of the
SU chooses either to cooperatively sense the PU channel @l iy the context of wireless networks. This is because in
it is assigned to with some power consumption (i.e., Withost of the practical scenarios it is difficult to obtain all
some cost), or to directly access the channel as a free ML yetails of the system dynamics due to the complexity
(i-e., without any cost) based on the sensing reports by € ihe network. In what follows, we organize our survey
neighbor SUs. With the proposed no-regret learning scheme, jeaming in SGs according to the approaches used for
the strategies are obtained based on minimizing the tagaéte experience updating (i.e., value-iteration-based leaynis.

of the neighborhood set of an SU rather than the individugl), \ o ue-iteration-based learning).

regret. It is shown in [167],th"’,1t_ the learning scheme With the 1) Value-lteration-Based Learningin contrast to those
neighborhood regret can significantly outperform the leggn model-based solutions which use linear programming toilmbta
algorithm based on the local regret. This is also consider NE (see the example of a constrained power control
as the main reason that motivates local SUs to share thglg r1731) yalye-iteration-based learning algorithmsegatly
local action and payoff information for neighborhood l88gY  heeq 1o construct a series of intermediate “matrix games”
In [16d], the spheme |r‘[_:(56E(}58) IS apphed to_ learn the Cﬁom the original SGs. Consider a general discounted-réwar
of the subcarrier allocation strategies in a multi-cell QWD SG, G = (N, S, A, {untnen, Pr(s'ls, a)), a matrix game is

network. Again, each link in the subcarner allocatloq 98M&efined based on the current estimation of the state value of
does not need to know the private strategies and utilities ol

: fe SG, which is derived in a similar way a3 (4):
the other links.
Definition 7 (Matrix game [67]) An n-player matrix game
(also known as stage game) in an SG is defined as a tuple
G(s) = <N7~A1,---,A\N|7Q%71,---7Q%,‘N|>, in which QF ;
The no-internal-regret learning scheniel (36)-(58) only rét < i < |N]) is given by:
quires that the structure of the local payoff function iswno ., , -
to each agent. Compared with the NE-driven learning metffss.i(S; @) =u(s,a)+/3 Z Pr(s'ls, M)V ;(s'ls, mi, m—i). (60)
ods such as FP and best-response learning, no-internmakreg $'eS
learning could achieve a better social performance (ire., i e note that in[(BO)V 7, (s'[s, 7, 7_;) = E-{O% .(s,a)}
terms of sum of the players’ rewards). Since the set of G, : B e o i
_ play -2 ) der policyr, transition probabilityPr(s’|s, ) can be ex-
is a convex polytope with all the NE lying on one of 'tspressed as follows:
sections[[169], it is possible for the no-internal-regestrhing
algorithm to reach a CE that is not in the polygon of the NE, Pr(s'|s, 7) = Z Z
thus resulting in a better performance than any NE. Although ’
the learning rule of[(36)=(38) does not guarantee conva@en
to the social optimal CE, a number of empirical studies (e.g. xTy(s,a1) -+ A (S, a|N)>.
no-regret learning in the cognitive congestion control gam (61)

[170], [171]) show that the no-regret learing scheme Caqycqrding to Definitiori 7, a general form of strategy seanghi
significantly outperform best-response learning andFRJI17 hased on value iteration can be implemented as in Algorithm
Moreover, its convergent strategy can be considered as @ 98P[172). In (62) of Algorithm[l, operator Eval-) computes
approximation of the global optimal solutidn [171]. As auks (ggtimates) the expected payoff in the NE of the matrix game.

many studies consider the no-internal-regret learnin@®eh 1,0 equivalence between the NE of the matrix game and the
as an approach to implicitly enforce cooperation within thQe of the discounted SG is given by TheorEn 6.
framework of general-sum noncooperative games.

I
(PI‘(S |Saa17 o 7a|/\[\)
a1 €A1 G\N\EA‘N‘
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Algorithm 1 Value-iteration-based learning algorithm. D control - —
ontrol ata amme
Require: Initialize vg,i,w <1 < |N| arbitrarily.

while convergence criterion is not meo Frequency D Primary D Idle

(a) For states at roundt, update the estimated value of -

Ql(s,a) of the matrix game. - o X SDTDRD
= & TRERDSD
& X
k)

X

(b) For states, update the expected state value of
TOIRDX

Vﬂt,i(s) after computing the (mixed) equilibrium strategy
(mi(s), m—i(s)): T rEexREERRELS

Vi (s¢) + Eval(Qp.i(s, a)). (62) i . :
= TN X rT=RRD
Theorem 6 ([67]). The following are equivalent:

D=
\ 510p)(510)
o 7* is an equilibrium point in the discounted SG, with @@ @ @ ®@
equilibrium payoffs(Vs 1 (%), ..., Vs ja(7*)). @IZ 818
« For eachs € S, strategyr*(s) constitutes an equilibrium
point in static matrix game’J(s) with equilibrium pay- Fig. 15. A snapshot ofvthe anti-jamming defense process inuléi-ohannel
offs (Evaly- (Qp.1(5.a)), . ., EVal- (Qp (5, a))). The CRN (Bdapted fontLLi).
value ofQ)g (s, a) is given by Definitior]7. CRN (Figured 1b). Due to the random activities of the PUs, the
%hannel—availability states viewed by the SUs are modeted a

According to Theorerill6, Algorithfil1 can be conS|derea group of independent, two-state Markov chains. In additio

a combination of a matrix-game solver and a value-iteratio .
based state value learner. It works as the general form OE)r eaph channel, the ch_annel quality measureql by the local
' R is modeled as a finite state Markov chain. [In_[174],

?ritmogargﬁ%?:{gfgnftﬁitfﬁg'\lvefrrg?gezﬁﬁmgm:{ag?Eg;:mf the devices in the CRN are divided into two groups: the
y y gop - ,normal SUs and jamming nodes. Both the normal SUs and

In [64]’. qperator Eva,l() in value iteration is implemented the attackers access the PU channels in a slotted manner. At
by a minimax optimization process, and the Q-value of each . :
: X . each time slot, the normal SUs will select a subset of channel
learning agent is updated through a standard single-aggn . . :
) . . or transmission while the attackers will select a subset of
Q-learning process. Such a learning scheme is known

o . o : . &annels for jamming. The group of channels that are s&lecte
minimax-Q learning. Specifically, the learning mechanism c o - .
be expressed by for transmission are further subdivided into control ch‘ai_en
and data channels. For a normal SU, the non-zero gain of a
Q‘;’Ql(st,aﬁ,aii) — (1= a)Qf (se, af,al )+ channel can only be achieved when the channel is used for
ay (ui(se, at,at ) + BV (s )) (63) data transmission and at least one control channel selected
t i\St, Q;, A_; B,i\St+1) |, . .
by the normal SU is not jammed by the attackers. The goal
t _ : t o , of the normal SUs is to maximize the local channel utility.
Va.i(st) ﬁgfz)zi)%li?;Qﬁﬂ(sh%aﬂ)w(st’az)’ (64) Based on the formulation of the two-player zero-sum SG,
the standard minimax-Q-learning algorithm is applied foe t
'(s, ;) = arg max Iglinz Qp,i(s;ai,a_i)m(s,a;). (65) normal SUs to find the equilibrium strategies in the stodbast
m(se) ot attack-defense game. Convergence of the learning algorith
The solution to [(65) is usually obtained through linedhas been shown by empirical studies. Also, the numerical
programming, which requires that the matrix game of trgimulations show that minimax-Q learning outperforms both
SG is of complete information. It is worth noting thai {64fhe myopic strategy, which does not consider the future ffayo
is an approximation of the exact state valu%i(st) — and the fixed strategy, which uniformly selects the channels
MAX 7 (s,,q,) Millr(s,a_,) Yoaca @5.i(St,a)7(s;,a),  which regardless of the attacker's strategy.
cannot be obtained directly since the local strategies areThe application of minimax-Q learning in a similar scenario
usually private information. Due to the approximation, thean be found in[[175], which formulates the competition
updating mechanism in[(63)-(65), although proved to Her open access spectrum in a tactical wireless network as
effective by empirical studies [64], does not provide acstria competitive mobile network game. The study in _[175]
condition for convergence to the NE. extends the attack-defense model in_[174] by dividing the
Minimax-Q learning is usually adopted to solve the probzompetitive mobile network into two sub-networks: the ally
lems which can be described as a constant-sum (also knawatwork and the enemy network. Each network is composed
as strictly competitive) game. One typical category of itef both communicating nodes and jamming nodes. The goal
applications in wireless networks is strategy-learningttack- of the two networks is to achieve the maximum spectrum
defense problems, since such problems can usually be ntbdel8lity while jamming the opponent transmission as much as
as a two-player, zero-sum game with the group of normpbssible. The channel-availability state is jointly detared
nodes and the group of malicious nodes treated as two supgrthe transmission-jamming actions of the two networks as a
players. In [174], a two-player zero-sum SG is adopted tmntrolled Markov chain. Channel access in the competitive
model the anti-jamming process of a group of SUs in theetwork is modeled as a two-player, zero-sum game, and
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standard minimax-Q learning is adopted for both the ally awehich defines the CE of the matrix gamesi@as 7 (s).

the enemy network to learn their equilibrium strategiesaip )
from [1785], other applications of minimax-Q learning can be For both the NE based Q-learning (Nash-Q and Nash-R) and
found in [176], [177], which basically adopt the same framdbe CE-based Q-learning (CE-Q), it is not specified how the
work of the two-player, zero-sum SG as in [174]. [175] t&quilibrium strategies; (s) for each matrix game is obtained
obtain the anti-jamming scheme. [n [176], minimax-Q leagni during the Iearning. process. Si_nce it is necessary for tlmaegg
in the SG is employed in a typical DSA network withouf© be of complete mformatlon in qrder to immediately obte_un
considering the impact of jamming the control channels. the NE/CE of the matrix game, it is re_quwed that the learning
[177], the two-player SG model is extended to the scenafios@gents should keep track of the entire Q-table from all the
stochastic routing in a MANET, and the attack-proof strated’ther agents at statein order to compute the exact stage-
is obtained through minimax-Q learning. game equilibrium. In practice, exchanging such infornratio
For networking problems that need to be described as-anWill result in a Iarge. transmission overhead, which is ulsual
player general-sum SG, a more general learning scheme caiBgffordable in a wireless network. As a result, most of the
implemented by replacing the minimax operator for Eygl €Xisting studies apply heuristic methods to approximaee th
with the operator that leads to the payoff of the NE in thBatrix game equilibrium. One example of payoff approxima-
general game. For the discounted-reward general-sum SE¥) at the NE of the matrix game can be found lin_[178],
such a learning scheme is known as Nash Q-learriing [651h|c_h decouples the W|r_eless netyvork into a group of Service
Nash Q-learning adopts the same Q-value updating scheRf@viders (SPs) and a single entity called Network Opesator
(63) as in the minimax-Q learning algorithm, and requirext th(NOs) fo_r network v!rtuahzatlon. Each SP is responsible fo
the value ofi’! (s, ) is obtained based on the matrix game nieallocating the_ available spectrum resources to a group of
of the SG. According to Theorefm 6, as long as the NE of ea@_ﬁd users, while the NO is responsible for allocating the
matrix game obtained from the SG in stagés used in[(6B) to time-varying spectrum resources to the SPs. Here, resource
compute the value OVt.i(St)v the |earning process Converge§lllocat|0n through the interface between the NO and the SPs

to the NE of the SG. For Nash Q-learning, operator Egal &t €ach time slot is treated as an auction game with the NO
can be expressed by: acting as the auctioneer and the SPs acting as the bidders.

The auction is performed following the Vickrey-Clarke-Ges
; al . . (VCG) mechanism[[18]. The entire auction process in the
Va,ilst) = Z Z H”i (s,4:)@p,i(st,a). (66)  gtochastic environment is modeled as a discounted general-
meAr aNiea ) =1 sum SG, in which the channel state and the traffic state are
In (B8), 7 (s) is the NE strategy of the matrix game at Stag@ssumed to be Markovian and _the SP action i_s the selection of
¢ when the payoff matrix of ageritis Qfg (s, ). value fur!ct|ons through choqs!ng the tr_ansmlt rate. In [178
Theorem B also holds when the SG is based on averdf]§ matrix games of the original SG is referred to as the
reward. The counterpart to Nash Q-learning in an averag&Urrent games”. Also, to avoid directly computing the \alu
reward SG is known as Nash R-learniAgl[67]. Nash R-learnif®j V5.i(s) in (68), a conjecture price which approximates the
adopts the R-learning-based scheme for state-action ingdatNit-rate price (strategy) of the NO in the future is introdd.

as in [8) and[9), which can be summarized by the foIIowir@ Q-value updating scheme which is analogous to the SAS-
equations: based Q-learning scheme is proposed, and the value of the

conjecture price is updated using the subgradient method.
R?_l (St, at) <—Rf (St, at)+

67 For networking problems which do not possess the single-
as (i (s, ar)+ Vi (sea) = Ri(se, ar) = hi(se, ar)), 7 server-distributed-agents property as stochastic augames,
Wit (sy, ;) = hi(si, ar) + 0.V (si11), (68) the equilibrium strategies can be learned by implementmg a
appropriate amount of local information exchange.[In [179]
whereV'(s) is the equilibrium payoff of the stage game anghe problem of traffic offloading in a stochastic heterogeseo
is computed following[(66). cellular network is first formulated as a centralized disere
When the goal of the learning process is to find the Cime MDP and then as an SG. In the SG, a group of macrocell
of the discounted-reward SG instead of the NE, Correlatedéés try to offload their downlink traffic to their Correspongi
(CE-Q) Learning can be implemented based on the updatiggup of small-cell BSs, which operate in the open access
mechanism in[{83)=(85) with the state valig, (s;) estimated mode and share the same band with the macro BSs. Before
at the CE strategies [68]. The equivalence between the CEtgé learning mechanism is implemented, the author5 inl [179]
the original SG and the CE of the matrix game in each statenploy a standard state abstraction procedure based @m line
still holds. Based on Definitiof] 3 and Theoréin 6, we have state-value combination (see our discussion in SeEfigA)lI
Theorem 7 (CE in the SG[[68]) For a discounted-reward "€ Q-values (i.e., the payoff of matrix games) are updated
SG @, a stationary policyr is a correlated equilibrium if with the gradient-ascending method l:_)ased on the gradlent _of
Vie N, Vs €S, Va e A with m;(a;) > 0, for all ] € Aj(s) the_new Q—val_ues after state abs_tractlon. The matrlx game in
a given states is modeled as a “virtual game” with common
> m(s,a-4]ai)Qpi(s, (a—i,ai)) > payoff by allowing the macro BSs to share their instantaseou
e , (69) spectrum utility with each other. Also, the action of each BS

LEA%W(S’a_ilai)Qﬂ’i(s’ (a—i, a3)), is updated using-exploration instead of directly computing



the mixed strategy of the matrix game. It is prove: B 2
that convergence (which may not be the NE) is ¢
with probability one.
A different approach to approximate the matrix g

librium with only local information in the SG can t \ o _Cluster 3
in [180], [181], which employ the learning method Primar N Q\\ s
repeated games to learn the matrix game equilibriur
and then use these intermediate strategies to ¢
the state vaIueVﬁ’f:(s) of the original SG. In [[18
interference mitigation problem with a finite actic
discrete powers for both the PUs and the SUs in \
modeled as a discounted-reward SG.[In [181], the .
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resource allocation problem for layered video tra CFW'Sih \\\ e
in a CRN is modeled as a discounted-reward S¢ Network ~--_ —Ze"
works, the goal of strategy learning is to find the C Fig. 16. Structure of underlay CR mesh network (adapted ft83]).
respective SG. Both works treat the matrix game at conjecture is used by local agento maximize its individual
as a repeated game and adopt the no-internal-rec payoff in the condition of not knowing what the strategies of
method defined bl(%6)-(58) to approximate the C the other players are, or what their payoff functions drdl) (7
77 (s) at states. Let 7;(s) define the intermediate is obtained based upon the assumption that the other players
that is obtained with[{88). Since with the no-inter will be able to observe playeis deviation from the reference
learning scheme, no action/payoff information ex point 7! (s, a;), and in response to such a deviation, they will
needed, the strategy estimation in the SG is solel deviate from their own reference point by a quantity that is
local information. The same method as[in](63) is a proportional to this deviation [37]. With conjectueg(s, a_;),
Q-value updating, for which state valli@; (s) under- the conjecture equilibrium can be defined as follows (extend
strategy can be estimated as the expected payoff o from the definition in [[18P2]):
game- . I , Definition 8 (Conjecture equilibrium)In the stochastic game

Va,i(st) = Z T (st,2)Qp,i(s0,2). G, a configuration of conjectures and a joint policy 7*

@i €A constitute a conjecture equilibrium ¥ €¢

To further reduce the information-exchange overhead, the N o N 72
values of 7'(s;,a) and Q} ,(st,a) can be replaced by the ci(s,m) = cils, ), (72)
conditional local strategy (inen the adversary actioms) the T; = arg max Qi(s, mi, ¢i (s, 7). (73)
Q-table based on the local state-action pairs[[181], remdgt

Such a two-fold, approximate learning scheme does notmequi

the information exchange between wireless devices. Howeve ! blem i derlay C h K (Fi o) i
compared with the original learning scheme in Algorithin 1°,a“9” problem in an underiay R mesf networ (F'@e 16) is
tudied. The multi-node power allocation process is matiele

such a learning algorithm may suffer from using the nor: : X . .
CE policies in the matrix game and from the inaccuraf®® & SGZ in which the local binary state of a secondary link
estimation Ong_,i(St)- Although empirical studies show that'S determined by the SINR level of its receiver. The local

convergence can be achieved by the two-fold learning scherﬂ?yOff Is dmzasure.d by thebpowgr efficiemiy. Cqmpagjhwith
no theoretical support is available to guarantee the cgevere t e standar matnx-gam(_e- ased strategy-learning m an
to the CE. in (62)-(63), the authors il [183] constructs the Q-tabléhwi

2) Conjecture-Based LearningConsider the problem of pnly local states and actions. Here, the policy conjectare i

unguaranteed convergence due to the inaccurate estimfttioH?[tr(iduced t(;);pproxmlwatelch It?]arr;tch;eénatng garrtlﬁ eq““!‘“rt
the equilibrium strategies in the matrix games with twaifolSratedy and the Q-value of the - based on he conjecture-

learning, the concept of “conjecture” [37] about one pIéEyerupdatlng scheme in_(¥1), the Q-value updating mechanism is

opponent policies is introduced in several recent studig&]f- defined as follows:

[184]. In an SG, the conjecture of agentan be defined as Qgﬁl(si,ai) = (1 —a")Qf ;(si,a:)+

any belief functione; : S x A; — C, in which C is the space . . .

of agenti’s conjectures (e.g., about the opponents’ policies* > cilsi;azi)ui(si, ai,a—)+5 Jnax Qp,i(si, bi)

: . i€A;
and states). In the case of policy conjecture, we can define oA (74)

¢i(s;a—;) as the conjecture of opponent poliey i(s) by The |ocal policyr; is updated using the Logit functioR{42).
agent; at tlme_t. With only chal mforma’Flon,.the most widely It is proved in [188] that the second term on the right-hand
accepted conjecture updating mechanism is side of [74) is a contraction mapping operator and the legrni
C§+1(S’ ai) = c(s,a ;) + Wi (@ (s, a;) — wl(s, @), (71) scheme converges with sufficient_ly large number_ of itereio
3) Other Learning Algorithms in SGd=or algorithms that
where7!(s, a;) is the so-called reference point and is assumetb not work in the framework of hierarchical learning that is
to be of common knowledge to all the players. W[thl(71), theeparated into learning in the matrix games and the original

We take [183] as an example to explain the details of
ploying conjecture to learn in SGs. In[183], the power-all
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Algorithm 2 Two-layer learning mechanism in the SG.  transition in order to estimate the state transition pratis.
Require: Initialize Vﬂt,i andr!, V1 <i < |N|. Examples of learning the state transition can be foundij [87
while convergence criterion is not mdo [88]. In [87], secondary wireless stations compete withheac
Outer loop:V;*! «+ UpdateStateValua!, V; ;, «f,x* ;) other for network resources to transmit delay-sensitivea in
stochastic CRN. In[88], a similar problem is specified in an
Inner Ioop:wf+1 — UpdateStrateqy/g_i, mhomt). overlay CRN with SUs competing for the vacant primary chan-
end while nels and determining transmitting parameters in a crogs-la
~manner. In both works, with the resource allocation problem
SG, we simply refer them to the category of the “other leaniny the CRN being modeled as SGs, it is required that the state
algorithms”. In these algorithms, the Q-learning-basedera {ransition frequencies of the opponents’ local statesracked
iteration scheme for the payoff of the matrix game may @}, each SU. In order to reduce the information exchange
necessarily be applied, or the computation of the stateevafiu gyerhead about local state transitions, an SU abstractsate
the SG may not be needed. Due to the complt_axity_ofagenegabce by classifying the opponent SUs’ state space purely
SG, most of the existing learning methods in this categopased on its local observation. Instead of learning the real
cannot be represented by a single prototypical algorithm.  state-transition frequencies, the transitions of the rabted
We note that for an SG, the property of the MDP generalBtate are recorded. The state value of the SG is updated based
requires that the state value of the game be computed foitpwion the reduced states using the standard Bellman optimality
the Bellman optimality equation (in the general form [@s,(3)kquation[(B).
whenever a stationary policy is to be obtained. Extendiojfr  The special structure of some SGs can also be exploited
the value-iteration-based algorithm, we can constructeg® to simplify the learning process for the FP-based learning
learning scheme, which is composed of two learning loops: gfechanism. One example of such exploitation can be found in
inner loop that uses an appropriate scheme to approximete [{87], which models the distributed dynamic routing in riult
SG equilibrium strategies™ and an outer loop that employshop CRNs as an SG (Figurel17). Since the states of the routing
an appropriate method to estimate the state valug(s) of SG in [187] are defined as the state of channel availability in
each player. Within this general framework, the constarctf the CRN, the SG is featured by the state transitions whicj onl
matrix games is not necessary. We can generalize the tveo-lajepend on the PU activities. The SUs in the network attempt
learning process in S& = (N, S, A, {un}nen, Pr(s’[s,;a)) to find the route for minimizing the packet-forwarding delay
as Algorithm[2. due to queueing and channel collision while keeping their
One widely-used two-layer approach for strategy learningterference to the PUs as small as possible. Since the delay
in wireless SGs is to adopt FP-based policy updating aser a path is equal to the accumulated delay caused by each
the inner-loop learning scheme. Such an approach of poligyk in the path, and the state transition is independenhef t
evolution can be found rooted in the model-based learni®y’s actions, the original SG in [187] can be decomposed into
algorithms (namely, with known state-transition maps)5J18 a group of layered, stochastic subgames. Each subgame cor-
Since the standard FP-based algorithm withl (26) (2®sponds to a hierarchy lel2in the routing path (see Figure
requires that each wireless node to track the opponentasctigf7). The structure (i.e., the payoff matrix) of each subgame
extending FP-based learning from repeated games to the & only be determined when the cost (measured in delay)
is considered a challenge due to the explosion of stateractof the next-layer game is determined. A backward induction
dimensionality. In [[186], such a challenge is resolved byethod is adopted in [187] to compute the equilibrium payoff
regulating the SG into a sequential game, in which only ome the layered routing game. The computation starts from the
wireless node is allowed to update its action in each rourglibgame of the layer which ends at the sink SU to the subgame
In [186], the problem of joint channel selection and powaesf the layer which begins from the source SU. Since the state
allocation for the SUs in an overlay DSA network is studiedransition is independent of the SU’s actions, the stoahast
With the assumption of a sequential game, each SU adoptsubgame in each layer can be reduced to a group of repeated
standard SAS-based Q-learning scheme alslin (7) for updatifignes with fixed states. Therefore, the learning of staigeval
the Q-table based on the local state-action pairs. To furthsecomes unnecessary and FP-based learning guarantees the
reduce the state-action space, Q-learning is only appli¢det convergence to the global NE, as long as the routing costs at
strategy-learning for channel selection. The power adi@pta the equilibrium point of each subgame are properly progatyat
is performed only after the channels are selected by the Skistheir lower layers.
The FP-based mixed-strategy-updating scheme in [186] ean b In addition to learning algorithms that follow Algorithim &,
considered as a variation of the best-response-basedgstrahumber of miscellaneous learning mechanisms are applied to
learning schemes described [n](28). SG-based problems in wireless networks. In order to reduce
It is also necessary to consider a different approach tize requirement of information exchange or to achieve con-
update the state value for FP-based learning when the glayergence, most of these learning mechanisms exploit dpecia
in the SGs update their strategies simultaneously, bedheseproperties from the SG. As we have discussed in SeCfion| IV-A,
state value of the MDP cannot be easily estimated by only

tracking the opponents’ actions. For those works that dyec Baccording to [187], the hierarchy levels of the CRN are chited along
the “media axis”, which is composed of a set of points. At ¢hpsints, the

estimate the_ state value without using the TD-learning8asgest detection probability density of the PU’s actigties (approximately)
methods, it is also necessary to track the frequency of statgieved.
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@ Pufootprint A PU (D) sU Tucker (KT) pair of the original constrained MDP (Theorem
3in [188)).

Boundary of In [79], another distributed learning algorithm is constad
based on the framework dfz_; learning in the team SGs.

A team SG can be considered as a variation of potential
games when all the players in a SG share the same pay-
Higrarchy L1 off function (i.e., fully-cooperative SG). With the propems
learning scheme, an LA is maintained for every state of the
underlying Markov chain by each player in the SG. At any
time instance, only one LA is activated by each player torlear
its optimal action probabilities in the correspondingetathe

Fig. 17. A snapshot of a hierarchical muli-hop CRN under e introduction of LA reformulates the stochastic game betwee
interference footprint (adapted from [187]). the |V| players into a repeated game between |th@ x |S]|

for the Aloha-like spectrum access problem in CRNS [126], tutomata. Extending from the special case of team SGs, the
near-NE policies of the stochastic access game can be etitaifonvergence condition of the LA-based Iear.nmg scheme for
if all the SUs update their local policies with the Logit fuiom  SCS 1S generalized by the following theorem:

- i i 213).
(42), and the Q-value at stateis updated following[(23) S'meorem 9 ([79]). For SGG — (N, S, A, {u;}, Pr(s'|s. a)),

In this specific scenario, the two-layer learning mechani that th i t Mark hai ding t
based on Q-value updating ensures the convergence to feardNou e that the mulli-agent Markov C* ain corresponding 1o
ach joint policy,w(s), is ergodic. If 7*(s) is a pure NE

strategies of the SG without the need of any information exacn I . . A
change. In[188]/T189], the structural property of a comisied PClCY In the view of | players inG, 7*(s) is also a pure
SG is explored. Specifically, consider a utility-minimigi®G eq“"'b”“m for the reformulated game between {ié x |S|
G = (NS, x Ay, {ciyiens {d: Yienr, Pr(s']s,a)) with ¢; as A @nd vice versa.

Fhe instantaneous local CQSt in the obpctwe ahoas the_ According to TheoremE]4 arfd 9, whenever an NE point
instantaneous local cost in the constraint. If the follayvin,

. g . in pure strategies exists in an SG (which is always the case
assumptions are satisfied wigt for team SGs), the LA-based learning algorithm proposed
Al) the set of policies that satisfy the constraint of the SG j, [79] is guaranteed to find the NE. However, it is worth

non-empty, _ ) noting that only maintaining an independent, repeatedegam
A2) the two cost functions; andd; are multi-modular func- pased learning process (e.g., LA or SFP) for each state by the
tions with respect to the actions and the state eIemerFy@yerS may not necessarily produce the NE strategies for a
whose transition is a function of the joint local aCtiO”Svgeneral-case SG. Take the SFP learning scheme for example.
A3) the transition probability’r(s’|s, a) is submodular with |n 3 general-case SG, the action-dependent state tramsitio
respect to the actions and the state elements wWhQgfders the Logit function i (81) no longer the solution to
transition is a function of the joint local actions, the perturbed best response. As a result, a Lyapunov fumctio
thenG has the following property in the structure of the NEcan not be found in the same way as for repeated games and

Theorem 8. Assume A1-A3 hold, then the NE policy of eadij€ cOnvergence property of the corresponding best-regpon
dynamic in Robbins-Monro form is undermined. Therefore,

player i, 7}, is a randomized mixture of two pure policies: ) . : .
! and 2. Each pure policy is nondecreasing on the statgpemal structure is required for the SGs if the repeated-
elements whose transition is determined by the joint astiongame_-based "?"?“”'f‘g processes are to _be adopted. In [191], a
sufficient condition is given for the adoption of the CODIRAS
Based on Theoref 8, the search for NE policigscan be RL learning schemes (more specifically, LA and SFP-based
reduced to finding a randomized mixture of discrete actianslearning) in the general-case two-player nonzero-sum SGs:
the finite action set. A policy-iteration-based strateggrhing
algorithm can be developed based on the Simultaneous Per@) the state transitions are independent of the playesresti
bation Stochastic Approximation (SPSA) algorithm [196]. |
[188], the rate adaptation problem in a TDMA-based CRN is Itis easy to prove that given condition C1, by fixing the state
modeled as an SG with a latency constraint[ In [189], the probariable and solving for all the state-dependent NE with the
lem of joint source-channel rate adaptation in order tosngih repeated game-based learning algorithms discussed iio®ect
layered video in a multi-user wireless local-area netwark [-A] we are able to obtain the state-independent NE of the
also formulated as an SG with the latency constraint. In botiwvo-player nonzero-sum SGs. The conclusion can be further
works, by showing that the assumptions A1-A3 hold in thegxtended toN-player games. When the state transitions are
respective SG-based model, the SPSA algorithm is applied &so independent of the current state, each player onlysiteed
policy-learning. With the SPSA algorithm, no explicit &at maintain a single learning process (see the examples ir],[191
value learning is needed, and the local policies are upda{dd2]). However, due to the constraint on the state traovsiti
with a gradient-based method with random policy pertudmati conditions, only a few applications of the SFP/GP/LA-based
Given that the assumptions A1-A3 holds in the SG, the SPS#gorithms for the SGs-based network control problems can
algorithm is proved to converge in distribution to the Kuhibe found in the literature [192], [193].




31

VI. CHALLENGES AND OPENISSUES INMODEL-FREE significantly limits the applications for the potentialrge-
LEARNING FORCOGNITIVE RADIO NETWORKS based learning algorithms.

. . . . For other model-free distributed learning mechanisms in
In this section, we expand our discussion to the challenges

. . a rril,ulti-device wireless network, how to coordinate the goal
and open issues that are yet to be addressed in the are%foo timality and self-organization when adopting a leagni
learning for distributed control and/or wireless netwarki b y 9 bung ok

In SectionlVIA, different aspects of the learning meCthiSscheme gen_erally remains an open question. As a result, most
X . . current studies focus on ensuring convergence to the stable
goals are reviewed, and the potential conflict between these ™~ . o . L
aspects is discussed. In SectiGn I-B, we propose a problé)l%eratlon point in self-play by allowing a limited level of
) ' Icgntrol signal exchange. Although there are a few already-

to cope with the outlier agents who do not (necessari " :
follow a given learning rule in a learner set. In SecI—C}é own conditions that ensure the convergence of a learning
y algorithm, most of which are applicable to repeated games

the possibility of transferring experience from one leagi .
pO: y Tring exp ) : N (e.g., Theoreni]2 and] 3), for most current studies, whether

scenario/process to a difference learning scenario/psote - o .
a_stability condition can be found for a learning scheme

discussed. In Sectidn VIID, we discuss a problem on the codt- . . :
S : : : also remains an open issue. In the literature, the appreache
dination among simultaneous learning modules over differe_ " o . )
. to find the convergence condition of the learning algorithms
protocol layers for the same network entity. . . ) .
generally fall into two major categories. For learning eses
that can be approximated with a linear system described
A. The Goal of Learning: Self-Play, Stability and Optimalit as a set of ODEs in continuous time, the typical way of
. gbtaining the convergence condition is to construct a Lyapu

Generally, the goal of a perfect self-organized learni . .
mechanism for multi-agent decision making processes isr\‘%onCtlon for the ODE-based dynamic and then prove that the

X . . strategy/utility updating mechanisms produce an asyrptot
achleve_ self-play (autonomy), stability and opur_nahtythe seudo-trajectory of the flow defined by the ODE through the
same time. However, it has been well-recognized that f ) o . :

. . . o stochastic-approximation-based analysis (see the exampl
multi-agent learning (more frequently in a stochastic sciex),

: ; : . . [73], [152]). The analysis of learning using the ODE-based
improving system performance typically incurs more sigmal

H 9 L C 9
and coordination, thus undermining the self-play Smmturapproach can be found i [126]. [142], [145. [159]. [197].

) oo For the situations which cannot be easily modeled as anrlinea
Especially, when learning is implemented under the franmkwo . .

o . ODE-based system, the contraction-map-based analyss (se
of games, achieving any two goals of self-play, stabilityl an

T - the example in[[66]) can be considered as an alternative.
network optimality is usually at the cost of undermining th%suall the contraction man is considered appropriatehier
third goal. In recent years, the relationship between theeth Y. P bprop

: . . : . analysis of SG-based learning when modeling the problem
parties of the goals in multi-agent learning has been dmhs.s of high complexity [183], [184]. Tabl& Xl summarizes

in many works, but mostly from a high-level theorEtiCallconver ence conditions for the multi-agent learning athors
perspective [26], [172]/[194]. 9 9 9

L L . iscussed in Sections]3V.
In regard to the applications of learning in wireless neg1 " .“—H . .
I : In addition to the issues associated to finding the con-
works, the situations that have been discovered to keep con- o :
. __ : o vergence condition for a learning scheme, another concern
sistence between a distributed solution and an optimatisalu . N .
- I . when applying model-free learning in wireless network$es t
are limited within a small scope. One important case of these . . .
L . ! convergence rate of learning algorithms. Although anedyti
situations is the network control problems that is modele . :
. Tesults for the convergence rate of learning algorithms are

as a p(_)tential game |-7.7]' For_ potential games, the fOIIOW”}%;th desired, most of the existing studies are only able
properties [[13] make it possible to achieve convergence tE) show empirical results for the learning convergence rate

the qptimal operatiqn point t.hrough adopting the Ieamiri%rough numerical simulations (see the examples[in [88]
algorithms that we discussed in Section J-A: [183]). The reason for this is partly due to the asymptotic

« Every potential game has at least one pure strategy N&gnvergence condition (if there is any), which requires for

« Any global or local maxima of the potential functionmgst of existing learning algorithms that the states anibast

defined in the game constitutes a pure strategy NE.  are visited infinitely to ensure the convergence. Given saich

Based on the above properties, it is only necessary to prdieitation, one known approach to analyze the convergence
the uniqueness of the NE in a repeated game for learniggeed of a learning scheme is to view the learning process
processes to achieve optimal operation point with seqaleniiself as a discrete time Markov chain. In this approach, the
best-response play [B6] or no-regret learning. Apart frbm t standard Markov chain analysis can be applied to obtain the
works discussed in Sectibn WA, the applications of distiglll expected time (number of iterations) to learn before raaghi
learning in potential games in order to achieve global optihe chain’s absorbing state (e.g., the equilibrium point of
mization can usually be found in a set of congestion-gam&-repeated game). Such a technique can be found in the
like problems such as [185], [196]. However, the potentiabcent studies [198], [199]. In_[198], the Markov-chairsbd
game requires that local users are able to (implicitly) e analysis is used to measure the lower bound of the iterations
the utilities of the entire network in order to establish theeeded for the Logit-function-based learning scheme teelea
correspondence between the local utility function and tteesub-optimal NE in a potential game for gateway selection
constructed potential functiori _[[77]. Since this requirame[198]. In [199], the same method is employed to track the
is at the cost of trading off the conditions for self-play, iaverage iterations that a trial-and-error-based learmathod



TABLE Xl

A SUMMARY OF THEORETICAL CONVERGENCE CONDITIONS FOR THIMAS-BASED LEARNING ALGORITHMS

Problem Learning Scheme Convergence Condition Stable  Operation| Required Signaling
Formulation Point
Category
Loosely Coupled| Distributed (indepen-| Generally not known Sub-optimal None
MAS dent) Q-learning

Standard FP Not guaranteed except in (a) two-playére-NE Exchange of local-

games and (b) multi-player game with com- action information

Repeated Games mon payoff [71]

Stochastic FP Not guaranteed except in (a) potentiale-NE None

games, (b) supermodular games (c) two-
player zero-sum games and (d) two-player

symmetric games [76]

Gradient play Conditional convergence for strict NEs ih NE Exchange of Tocal-
multi-player games [71] action information
Lr_1 Conditional convergence for strict NEs ih e-NE None
multi-player games (see Theoréi 4)
No-external-regret Potential games NE None
learning (Hedge)
No-internal-regret CE in multi-player games Non-social-optimal | None

learning CE [72]

Minimax Q-learning | Not known NE Knowing the structure
Stochastic Games g;nlocal payoff func-

Nash Q-learning/R-| Each matrix game has a unique NE[66],NE Exchange of Tocal ac-

learning

(671

tion/payoff information

Conjecture Tearning

Conditional convergence

Conjecture equilib-
rium

Knowing the reference
point

FP-based policy up

dating

Generally not known

NE

Exchange of Tocal-
action information
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needs for reaching the NE of a joint channel-power selectisosheme that it is assigned to. By contrast, the sophisticate
game for the first time. However, such an approach could plyers are able to adopt a non-myopically optimal strategy
computationally intractable when the system/learningestd  and afford a certain short-term loss. Since the adaptiveéza
is too complicated, and it is yet to be found applicable to theill finally learn the best response to a pre-committed st
more complex learning algorithms such as those in the SGy the sophisticated player under the given learning scheme
the sophisticated players will be able to induce the adaptiv

B. Heterogeneous Learning and Strategic Teaching in tféayers to expect some specific patterns of strategies from
them in the future [[200]. Then, the sophisticated players

Context of Games

For the existing studies of strategy learning in wireless n )
works, one most important assumption is that each indi\HdJQey teac
agent abides by the same learning rule (or just uses variaB
parameters for the same learning scheme). Only with such®h
assumption, the convergence properties of the learningnseh
can be mathematically tracked. However, in many practi

éNi” be able to take advantage of the behavior patterns that
h” the adaptive players. It has been found that a
Héfficiently patient strategic teacher can achieve as mtility u
from first-play in a Stackelberg ga{%e{ZOO]. Thus, the
sophisticated play may become a favorable way of strategy
Cggoption for a noncooperative or a malicious node in the

scenarios, especially in the scenarios when malicious moeﬁgreless network compared with the way of strictly follogin

exist in the network, such an assumption may not be appéca
and the malicious nodes may intentionally deviate from the
given learning rule. One possible scenario of such a case
be found in a selective-forwarding-based attack-defeaseey

in which a sophisticated attacker with the ability of seley

forwarding the received packets may wait and abide by t
normal packet forwarding rule until some critical packets a
sent to it before dropping. To the best of our knowledgg,

Hile same learning rule.
In [20Q], a heuristic, model-free learning method known
Experience-Weighted Attraction Learning (EWAL) [139]
is applied to a repeated trust game (i.e., lender-borrower
game) as the basis of both adaptive learning and sopheticat
}Ll%arning. In that game) borrowers try to borrow money
from each of a series ofV lenders. A lender only makes

a one-time binary decision on eitheoan or No Loanin a

currently there are few (if not any) works discussing thi§mg|e round_out of aZ\_f-_round game. A borrower mak_es a
series of N binary decisions orRepayor Default regarding

situation.

To further demonstrate the situation in which a learn
may benefit by deviating from a common learning rule, w
introduce the concept of “strategic teaching”, which istfir
discussed in the studies of economic games [[200]. Wi
strategic teaching, it is assumed that the game is compo§88uence'

ch lender that it borrows money from after observing the
nder’s decision. The sequences of fiieound stage-games
also known as supergames) are repeated for many times
\Mth a random order of lenders to make decisions with each
In one sequence, one borrower is picked as the

of a number of adaptive F_Jlayers and Sophi.Sticated playerS“About the difference of a Stackelberg equilibrium and an Mg, readers
An adaptive player learns its strategy following the leagni are referred to[[18] for more details.
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common borrower in the game. All the lenders and some of theodel of the network with new dimension of states/actiohs, i
borrowers play as adaptive players and learn their stiegegMDP-based learning is adopted, or the transition from an old
with EWAL. The rest of borrowers are assumed to be dishonesttwork-control game to a new one since the set of players
and adopt sophisticated play. It is assumed that the actiosdifferent, if game-based learning is adopted. As a result
and instantaneous payoffs of one player are observable blgen it is required that the decision-making agents swiftly
the other players. For the adaptive players, EWAL uses theitch from an old scenario to a new one, the existing learnin
Logit-function-based rule as if_(#2) for strategy updatingnethods will face great challenges if they can only resteat t
Instead of directly using the instantaneous/accumulaagdfb learning process in the new scenario.
as the argument of operatexp(-) in the Logit function, In order to address such a challenge, a natural consideratio
EWAL introduces the concept of experience accumulatiosto utilize the acquired experience of strategy takingolhis
through reinforcement and employs two new measurementstained from the old scenario. We note that such a process is
to build local experience: the observation-equivalentshaf fundamentally different from the experience sharing pssce
past experience and the attraction to a specific stratedd].[13discussed in Section IViB, since for the experience-skarin
The former is similar to the action-frequency estimatiodrih framework such as docitive networks, the parallel and homo-
and the latter is used as the argument of the Logit functiogeneous learning processes are assumed so the expert agent
In the game, the adaptive players apply EWAL twice to buils able to share its better experience of the same stochastic
their attraction first within a lending-borrowing sequeifice., process with the newcomers. In the scenarios of dramatical
supergame) and then across the consequent sequencesefdaronmental changes, the experience transferring jgarad
the sophisticated borrowers, the learning process doedifaot Transfer Learning (TL)[138], is considered more appradgria
ferentiate between attraction building within a supergamé for the tasks of sharing experiences of strategy taking be-
across different supergames. A sophisticated borrowessgse tween heterogeneous learning processes. Compared with the
how the lender learns according to the attraction value ef texperience transferring between homogeneous learnegs, th
adaptive lender that it observes. Then, the policies ofudefamotivation of TL is to transfer knowledge (i.e., experience
and repay are sought by incorporating estimated policitiseof from the well-established learning processes (known as the
lenders into the computation of its own sophisticated etima source tasks) to the newly established learning processes
function (see Section 4.1 of [200] for the details). It haénown as the target tasks) in a different situation. It igtivo
been demonstrated in [200] that by adopting sophisticated pnoting that under the framework of MDP-based learning, TL
with the attraction updating mechanism based on lendecyoliallows the difference in state spaces, state variablesitian,
estimation, the dishonest borrowers are able to outperfben reward functions and/or sets of actions [138].
adaptive borrowers which follow the same EWAL learning rule TL has been considered difficult to implement for learning
as the lenders. For simplicity, the mechanism of sophisita in wireless networks. This is mainly due to the fact that
play can be interpreted as playing additional tricks to the is difficult to find a proper mapping (either in value-
adaptive lenders by repaying frequently enough so if thHenction representation or directly in policy transfegii38])
dishonest borrowers do default, it won't lower the beliefo transfer between learning tasks with different actitates
probability of the lenders about the trustworthiness ofséherepresentations. For the applications in wireless netsyarke
borrowers below a critical level. Such an example provides axample of policy-transferring TL can be found [n_[201]. In
important insight into the possible strength of sophistéda [201], a highly dynamic opportunistic network which is bdse
play in repeated noncooperative games. However, few studa LTE-A is studied. The network topology is assumed to
discuss such an issue in the context of wireless networktiange with time, and the eNodeBs (eNBs) are supposed to
Also, it is generally not clear how strategic teaching withe responsible for learning channel allocation under tmelico
sophisticated play in other forms can be enforced or avoidédns of mutual interference among the user equipments. The
in the current framework of learning and in what ways it wilmechanism of policy transferring is adopted on the basis of
affect the equilibria that can be reached. two model-free learning algorithms: the linear reinforesr
learning and the single-state Q-learning. The former eygplo
) ) a simple, linear updating function for state-value updgtin
C. Experience Transferring between Heterogeneous LeamWhile the latter applies Q-learning to update a state-less Q
As we note from SectionE_1[l-V, one of the significantable. For TL, one shot of the changing network topology is
benefits of model-free learning is to allow the decision-mgk considered as a learning phase, then the objective of TL is
entities to learn the strategies from scratch without the & apply the experience learned in previous phases (squrces
priori knowledge of the wireless network. However, sinct the similar phases (targets) in the future. The eNBs which
model-free learning is based on trial-and-error, when ttetempt to assign channels to the user devices for interdere
network environment has dramatically changed, the learneoordination work as the learning agents and obtain the
generally need to start the same learning process from #pectrum priority through sorting the Q-table obtainedha t
very beginning. One example of such scenarios can be founctinrent phase in a descent order. A policy function is design
interference mitigation problem for cellular networkswhich to transfer the Q-table learned in a previous phase to the
mobile stations may enter or leave the network frequentlyew phase through assigning weights to the source priority
For most of the existing model-free learning algorithmgtsu table to the target priority table in the new phase. Such a
changes in the network topology mean the changes in the MpRcedure of associating the channel priority in the target
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task with the channel priority in the source target can be o cost

considered as initializing the learning process in the new Environment Environment
phase with the trans_fernng knowledge frqm the oI_d phase. Classic Actor-Critic Transfer Actor-Critic
Thereby, the information from transfer learning and disttéd Algorithm Algorithm
|e"_"m.|.ng is combined th_rOUgh weighting th? values of Chhnnﬁg. 19. Architecture of the transfer-actor-critic algbrn [202].
priorities. The Q-table in the new phase is learned with the

. . . 5
given reinforcement learning methods. The policy tranifgr prqcesses using dn‘fe.rent. Iear.nlng schemes?
process in[[201] is demonstrated in Fig{re 18. In the literature, few studies in wireless networks are fbun

discussing the aforementioned topics. However, discossio

working problems can be found ih [202], where the authof¢05s-game learning or cross-mechanism learning havadyire

apply TL to a series of actor-critic learning processes torco begunl i,n tzhe alrﬁa th erclzor:jomi_(lz g%mes [2.03] ancri] aqtomatic
dinate BS switching/sleeping in a cellular network. [[n [po2 cONtrol [204]. Aithough the detailed discussion on theggc®

the possibility of improper guidelines provided by tramséel is beyond the scope of this survey, it is believed that adiings

knowledge of the old task to the new task is considered. Tféese_ issues W".l brin_g great improvement to the existing
actor-critic learning scheme is performed by a BS-openatic®2M"N9 mechanisms in the CRNSs.

controller, and is based on a multi-state MDP model for the

traffic load of the serving BSs. Compared with_[201], th®. Coordination of Learning Modules: Integration vs. Decom
difference of the TL mechanism in_[202] lies in the way oposition

adopting the transferred policies. Instead of using thécsta |n addition to the problems in heterogeneous learning
transferred knoWIedge for the initialization of the neVVrmag processes, hand”ng experience Sharing or transferringﬂkn
phase, the experience in the new learning phase is dividggye among different network devices, the coordination of
into two sources: the “native policies” obtained througloac  simultaneously learning modules may still be a challenging
critic learning and the “exotic policies” obtained as tri@need jssue even within a single network device. As shown in our
policies from old tasks. The weight of the exotic policieprevious discussion, learning processes targeting abwsri
contributing to the overall strategy selection decreaseth@ fyunctionalities (which may or may not involve the interacts
native learning process progresses. The learning-kn@eledyith other users) can happen in any layer of the protocol
transferring process is demonstrated in Figure 19. It ishmakigck (see FigureB] 7,116 amd]17 for example). Although
ematically proved that regardless of the initial value o thmany existing works have succeeded in applying the learning
overall policies and the transferred policies, the actdfee based solution to their dedicated functionalities, a systé&
learning-based algorithm is guaranteed to converge. Algfiscussion on coordinating these learning processes ffer-di
numerical simulations show that TL does improve the le@nirent functionalities generally remain untouched in the entrr
speed when compared with the reinforcement learning metasearch progress. In the seminal wark [205], it is pointetd o
ods without TL. that different functionalities across the protocol layenay

In the literature, most of the applications of TL in wirelesgxhibit a range of conflicts and/or dependence when working

networks are set in the scenarios which can be modeledg@®icurrently in the same network. Thereby, it becomes a
MDP-based MAS. With all the existing effort for establishin natural idea to consider the solutions to the learning medul
a general framework of applying TL to learning in wirelesgoordination by first identifying the conflicts or dependenc
networks, the following questions are to be answered: in practical scenarios.

1) Whether and how can TL be applied between relatedBased on the work in_[205]/ [206], we consider the fol-
games (e.g., symmetric games with the same structured®¥ing major conflicts and/or dependence among different
payoffs and actions, but with different sets of players) fdtetwork functionalities:
accelerating the convergence speed to the equilibrium?1) Logical dependence: this kind of dependence may arise

2) How can we measure the efficiency of knowledge trans- when there is a logical dependence between the objectives
ferring? of different network functions.

3) Apart from policy transferring and value-function trans 2) Parameter conflict/dependence: this kind of conflicts or
ferring, can TL also be applied to heterogeneous learning dependence is triggered either when different networking

A different approach of applying TL to the wireless net
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functions try to modify the same configuration parametet®n modules may want to increase the transmit power to
or when the parameters of one function depends on soimgrove the local link quality at the same time. For those
other network parameters. two kind of conflicts, one traditional solution is to build a
3) Measurement conflict: measurement conflicts exist if decision tree to activate different decision modules atiogr
learning module depends on the state of the other learnitagthe pre-determined conditions, which is also calledgeig
modules. condition-action points [205]. However, the trigger-cdiuh-

Logical dependence happens when different learning maftion based solution is a typical model-based method, and
ules exhibit a hierarchical dependence on the output of edEfS cannot be directly incorporated into the coordination
other. In this sense, the relationship between differamiag Process of learning modules.
modules in a CR device shares a lot of similarity with therela Although no prototypical solution has been proposed to
tionship between the subtasks of a hierarchical reinfoerem "€Solve conflicts 2) and 3), it is still possible to address
learning mechanisn [207]. [208]. The major difference itth these conflicts by |_m|tat|ng the existing model-_based mﬁh(_)
in (MDP-based) hierarchical reinforcement learning, aylin When some certain property can be found in the learning
learning process is decomposed into a number of subta§pedules. Consider a general case where a number of learning
with their own sub-states, actions, transition functioms! a modules share a subset of network states, and try to learn the
rewards in a top-down manner with the help of recursive valgdategy on the same action parameters to achieve different
function decompositidli [208]. Since hierarchical learning30@s- To resolve the conflicts, we can adopt the idea of
requires to finish each child learning task before starttsg 12Y€ring by decomposition in_[16] to coordinate the leagin
parent task, it extends the MDP-based system model intdn@dules. One typical way of doing so is to pick the objective
semi-MDP-based system model, in which the amount of tinfff ©né network functionality as the major goal and treat
for the transition from one action to the next is a randofi€® goals of all the other functionalities as constraintss |
variable due to the existence of the subtask sequences. B3/th noting that such an operation can be also considered
adopting the general idea of hierarchical learning, leggni @S @ way of integration. However, the ultimate goal of it is
coordination with logical dependence can be considered sCréate a structure of optimization which suits the furthe
a reverse process of hierarchical learning by integrativey toperalltlon of decomposmg it into interrelated but I.ayered
existing learning modules according to their dependence dfaning processes. A revisit to the work on layered Q-legrn
forming a macro learing task. Practically, such an openati{O" Video compressiori [93] helps to exemplify such an idea
of module concatenation may be extended to the non-mMpD-details. In[93], a multimedia processing system corside
based learning mechanisms. For example, in [180]. [181]tréree d|_fferer_1t concurrent objective functions, WhICh tre
hybrid structure of both MDP-based Q-learning and repeatéi§l€0 distortion at the codec level, the queueing delay for
game-based no-regret learning is formed to approximate €€ frame processing in the pre-encoding buffer, and the
equilibrium strategy of an SG. In those two cases, the erpecENergy cost in the OS/hardware layer. The distortion and
utility based on the learned equilibrium of the repeated garfU€U€ing delay can be treated as two objective functions in
can be considered as the instantaneous utility of the parefi€ a@pplication layer of the system sharing the same system
level Q-learning process. However, the major difficulty igtate, while the configuration that defines the energy cost
applying a hierarchical learning-based coordination raect{{h€ operating frequency in this case) also determines the
nism lies in the uncertainty of convergence, as we hagistortion of the compressed video. In [93], minimizing the
highlighted in(VB. Unlike the well-established examplds cdueuing delay is considered as the main objective, and te re
hierarchical learning in the domain of robot contfol [20Fdy two objectl_ve functlons_ are_t_reated as cons_tralnts. C_c_lsﬂlc
the applications in CRNs there usually exists no termiretest Petween different functionalities can be easily found irs th
for a subtask to determine when to stop its execution. AsC4Se, Since increasing the operating frequency will lead to
result, when to start and terminate a task in the framework Bftter video quality but result in more energy consumptiyn.
hierarchical learning are usually determined empiricailyd Créating such a constrained optimization problem, a layere
the convergence conditions of such a learning process swil€arning mechanism is designed in a way that is similar to
remains an open issue. the procedure of dual decomposition. As briefly discussed in

Unlike logical dependence, parameter conflict/depende %ictiqnml, a t:No-fI]ayer Iﬁaminglframevr\]/ork ils cre_ated ilnlth
and measurement conflict are caused by the conflicts of fpgowing way. In the application layer, the Q-learning

actions and states in different learning modules, resygti receives the signaling from the OS/hardware layer about its

For example, parameter conflict may happen between the inftion (frequency selection) information, and learns el .
cell interference control and the coverage/capacity aptm state value. _In the OS_/ hardware layer, the IOC‘?‘I I_earnmg
tion modules of a cellular network. With respect to downlinR'0CESS rECEVes the estimated Q-value of the apphcaﬂyml
transmit power control, the interference control moduIQ/ma{jls part of its instantaneous utility, and then learns its own

want to decrease the transmit power in order to reduce fpgte value. Unlike the.hlerarchlcal learning basgd It
inter-cell interference, while the coverage/capacityiroja- method, layered learning based on decomposition does not
’ require that one learning process to be finished first before

15 - , _ , L another learning process starts.
A general principle for a hierarchical value function degmsition is that Like i : b d | . h h ical H
the reward function of a parent task is the state-value fomaof the child Ike Integration-based learning, the mathematical proo

task [208]. of convergence for decomposition-based learning is still



rarely discussed in the existing literature. In the mean-[g]
while, although considered more autonomous than the
model-based coordination methods such as trigger-conditi 7]
action, decomposition-based learning needs a pre-detedmi
constrained-optimization structure for layering of tharte

ing processes. Such a requirement may limit the ability of @l
decomposition-based learning in quickly responding to theyg
requests of a certain network functionality that cannot be
reached in the given constrained-optimization structirem [10]
this point of view, finding a satisfying tradeoff between
different functionalities still remains an open questiar f
decomposition-based learning coordination. [11]
VIl. CONCLUSION

Owing to the distributive nature of cognitive wireless
networks, model-free learning is especially appropriae f
the wireless nodes to adaptively choose their transmissidig]
strategies in a self-organized manner without much require
ment for knowing the network conditions. In this paper, wezi4
have provided a comprehensive survey on the applications of
the state-of-the-art learning mechanisms in a wide range ?1f5]
scenarios of network modeling. With a broad-scope analysis
and comparisons of the literature, we have focused on legrni
algorithms that can be categorized with a set of prototypical®!
schemes. Briefly, these prototypical schemes includes MDP-
based learning and experience sharing, conjecture-beasad |
ing, FP/GP-based learning, LA-based learning and no-tegr&7]
learning. We have classified the various scenarios for the
applications of learning into three major categories, ngme
the SAS-based network control, the loosely-coupled MASHS]
based network control and the game-based network control.
We have mainly focused on the following characteristics ofi9]
the selected learning algorithms: (i) the ability of therieag
schemes to achieve optimality/equilibria without knowismg
a-priori model for the environment, (ii) the ability of the [20]
learning schemes to achieve optimality/equilibria withob-
taining the information that is not locally available anid) the
ability of the learning schemes to quickly adapt by exchaggi
experience. In addition to detailed reviews of the existing
applications of learning in wireless networks, we have a|5%2]
discussed a variety of open issues that need to be addressed |
future research. We hope this survey will serve as an impbrta

(12]

21]

guideline for future research directions to further ungerd 123l
model-free learning mechanisms and expand their applitsiti
in cognitive wireless networks. [24]
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