
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©Copyright by Cong Gao 2012 

All rights reserved 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



STOCHASTIC METHODS AND THEIR APPLICATIONS IN STATISTICAL 

ELECTROMAGNETIC MODELING 

 

 

A Dissertation 

Presented to 

the Faculty of the Department of Electrical and Computer Engineering  

University of Houston 

 

 

 

 

In Partial Fulfillment  

of the Requirements for the Degree 

Doctor of Philosophy  

in Electrical Engineering 

 

 

 

 

 

by 

Cong Gao 

December 2012 



STOCHASTIC METHODS AND THEIR APPLICATIONS IN STATISTICAL 

ELECTROMAGNETIC MODELING 

 

__________________________ 

Cong Gao 

 

 

Approved: 
 _________________________________ 

                     Chairman of the Committee 

                      Ji Chen, Associate Professor 

                     Electrical and Computer Engineering 

 

Committee Members: 

 
 _________________________________ 

                     David Jackson, Professor 

                     Electrical and Computer Engineering 

 

 

 _________________________________ 

                     Donald Wilton, Professor Emeritus 

                     Electrical and Computer Engineering 

 

 

                     _________________________________ 

George Zouridakis, Professor 

                     Engineering Technology 

 

 

                                                                                          

                                    _________________________________ 

                                    Driss Benhaddou, Associate Professor 

                     Engineering Technology 

 

 

 

____________________________ ___________________________________ 

Suresh K. Khator, Associate Dean Badrinath Roysam, Professor and Chairman 

Cullen College of Engineering         Electrical and Computer Engineering



 v 

Acknowledgements 

First of all, I would like to thank my advisor, Dr. Ji Chen, for his creative ideas and 

academic suggestions on my research topic. During my Ph.D research, he always tried to 

encourage my independent thinking and problem-solving skills. This will remain with me 

as a positive impact on my new career and my whole life. 

I would like to thank the faculty members of my dissertation committee: Dr. David 

Jackson, Dr. Donald Wilton, Dr. George Zouridakis, and Dr. Driss Benhaddou for their 

time and constructive suggestions to my dissertation. 

I would also like to thank Dr. Jianxiang Shen, who provided me with a lot of 

discussions and guidance regarding the area of stochastic computational modeling. I also 

want to thank other members of our EM group, who have been helpful to my research: Dr. 

Yanmin Yu, Dr. Minshen Wang, Mr. Yan Liu, etc. 

I also want to thank all the ECE staff members, especially Mytrang Beccam and 

Zaniffa Jan. They have been of great help during my studies at the University of Houston.  

And last, but not least, I want to express my thanks to my parents. No matter what 

happens, they always have confidence in me. Their continuous courage and support help 

me overcome difficulties and move forward. 

 

 

 

 

 



 vi 

STOCHASTIC METHODS AND THEIR APPLICATIONS IN STATISTICAL 

ELECTROMAGNETIC MODELING 

 

 

An Abstract 

of a 

 Dissertation 

Presented to 

the Faculty of the Department of Electrical and Computer Engineering  

University of Houston 

 

 

 

In Partial Fulfillment  

of the Requirements for the Degree 

Doctor of Philosophy  

in Electrical Engineering 

 

 

 

by 

Cong Gao 

December 2012 



 vii 

Abstract 

The stochastic computation of electromagnetic (EM) problems is a relatively new 

topic, yet very important in understanding the true physics due to uncertainties associated 

with them. To deal with these uncertainties, the traditional Monte Carlo (MC) method can 

be applied. However, it requires a very large number of simulations to reach convergence, 

which makes it very computationally expensive. This dissertation discusses alternative 

stochastic methods which are more efficient than the MC method as well as their 

applications in EM modeling. It consists of three major parts. 

The first part presents the use of the generalized polynomial chaos (gPC) method 

for stochastic computation. In the gPC method, the stochastic solutions we are interested 

in are approximated by polynomial expansion in terms of input random variables, 

truncated at a finite order. Based on the distribution of random inputs, there is an optimal 

choice for a polynomial basis to achieve the fastest convergence. By taking the inner 

product of the testing basis, we seek to solve the Maxwell equations in a weak form.  

The second part focuses on applying the Stochastic Collocation (SC) method for 

stochastic computation. In the SC method, the stochastic solution is constructed via 

polynomial interpolation. One only needs a small number of repeated simulations to get 

accurate statistics, which makes it computationally favorable. The selection of collocation 

points is of greatest importance in the SC method, especially in the multi-dimensional 

problems, since the total simulation cost is proportional to the number of collocation 

points. A sparse grid (SG) technique can be used for generating collocation points much 

easier than the tensor product rule in the multi-dimensional problems. 

The third part emphasizes analyzing uncertainty problems with correlations. Most 



 viii 

of the stochastic methods are based on the assumption that the probability space can be 

characterized by a set of independent random variables (RV). However, this requirement 

may not be met in some cases. For example, the random process is a function of spatial 

coordinates or RVs that are correlated in the probability space. To deal with spatial 

correlation, the Karhunen-Loeve expansion technique can be applied. And for correlated 

Gaussian RVs, a linear mapping technique can transform them into uncorrelated RVs. 
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Chapter 1  Introduction 

 1.1  Background  

Numerical simulations have become an important tool to investigate and 

understand the physics of a complex system, since experimental studies can be very 

expensive, time consuming, and difficult to implement. Despite the continuous progress 

made in the accuracy of computational techniques, most numerical simulations assume 

that the entire physical problem can be described by a deterministic mathematical model. 

However, this is not always the case for representing the complex system. What has been 

less addressed in traditional simulations is the impact of uncertainties in input data such 

as material properties, geometry and boundary conditions, etc. All these uncertainties 

could possibly influence the output quantities we are interested in. To better predict the 

behaviors of the physical system, the uncertainty factors need to be taken into account in 

the numerical modeling. That is why there has been a growing interest in the area of 

uncertainty quantification (UQ). The goal of UQ is to investigate how the uncertainties 

would propagate through the system and their impacts to the output we are interested in. 

This is especially useful for the analysis of complex systems where mathematical models 

can serve only as simplified and reduced representation of the true physics. 

Over the past few decades, the computational electromagnetics (CEM) techniques 

[1] have developed very quickly. Various methods, both in time domain and frequency 

domain, were developed to numerically solve the Maxwell Equations. Among them, the 

finite difference time domain (FDTD) method proves to be a very good way to analyze 
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complex electromagnetic problems [2]. While great efforts have been made to achieve 

more accuracy, less attention is paid to the uncertainties associated within practical 

problems. For example, in a manufacturing process, even with the same requirement, 

there will be variations between different products. Because of these uncertainties, the 

system response would be different. Uncertainty analysis has been conducted extensively 

in the field of computational fluid dynamics [30]-[33]. 

Recently, there has also been some progress [3][6] made in the area of stochastic 

EM modeling. In this dissertation, we will investigate several different UQ methods and 

combine them with the FDTD method for statistical modeling in EM simulations. 

 1.2  Overview of popular UQ method 

The importance of understanding uncertainty has been realized for a long time, in 

the areas such as civil engineering, system control, hydrology [7][8][52], etc. Many 

methods have been proposed to address this issue. Because of the nature of “uncertain” in 

these problems, the most dominant approach is to treat uncertainties as random variables 

or random processes input to the systems and to remodel the original deterministic 

systems as stochastic systems [9][10]. 

1.2.1  Monte Carlo method and sampling based methods 

One of the most commonly used sampling methods is the Monte Carlo (MC) 

method [11]. In the MC method, independent random inputs are generated based on their 

specified probability distribution. Then all the input samples would go through the 

system, and a corresponding output could be expected for each input. For each realization, 

the input data is fixed, and the problem becomes deterministic. After all the realizations 
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have been performed, statistical information can be extracted such as mean and variance, 

etc. Although the MC method is straightforward, its convergence rate is quite slow. For 

example, the mean value typically converges proportionally to 1/ N , where N is the 

number of realizations. The need for a large number of realizations for accurate results 

makes it computationally expensive, especially for systems that are already 

computationally intensive in their deterministic settings as in computational fluid 

dynamics (CDF) and computational electromagnetics (CEM). Though derivative methods 

such as the Latin Hypercube sampling method [12] and Quasi-Monte Carlo method [13] 

have been proposed alternatively, additional requirements for implementing make their 

application limited.        

However, the statistics of the MC method prove to be very accurate once 

convergence has been reached. And the MC method is independent of the dimensionality 

in the random space. So the MC method is often used as the control group to quantify the 

accuracy of other more efficient stochastic methods. 

1.2.2  Perturbation methods 

One popular non-sampling method is the perturbation method, where random fields 

are expanded as the Taylor series around their mean and truncated at a certain order. 

Typically applied perturbation methods are truncated at the first or second order because 

the resulting system of equations becomes very complicated beyond the second order. 

This approach has been used extensively in various engineering fields [14][15].  

An implicit limitation of perturbation methods is that the magnitude of 

uncertainties, both for the inputs and outputs, cannot be too large (typically required 

deviation less than 10% away from the mean value); otherwise the methods do not 
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perform well due to the truncation error of the Taylor series. 

1.2.3  Generalized polynomial chaos method 

The generalized polynomials chaos (gPC) method for stochastic computation was 

first proposed by Xiu and Karniadakis based on Wiener-Askey polynomials, which are a 

class of hypergeometric orthogonal polynomials [16]. In the gPC method, stochastic 

solutions are expressed as orthogonal polynomials with input random parameters, and 

different types of distribution have a corresponding optimal choice of orthogonal 

polynomials in order to achieve better convergence. The basic idea is to form a spectral 

representation of the stochastic solution in the random space. The convergence of the 

stochastic solution depends on the smoothness of the random parameters.  

1.3  Outline of the dissertation 

This dissertation is aimed at introducing stochastic methods into EM simulation 

and developing approaches for efficient stochastic computation. Traditional techniques 

such as Monte Carlo method can be very time consuming and computationally expensive 

when dealing with complex systems. This dissertation introduces polynomial expansion 

based method to solve the Maxwell equations in statistical modeling efficiently. Most of 

the stochastic methods that are being used nowadays haven’t considered the potential 

correlated associated within. This dissertation innovatively presents effective techniques 

to deal with correlation present both in spatial coordinate and probability space. This is 

also the biggest contribution of this dissertation. The dissertation is organized as follows: 

Chapter 1 briefly introduces the background of uncertainty quantification in the 

numerical modeling and its importance in the area of EM simulations. Several popular 
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UQ methods are reviewed.  

Chapter 2 recalls some basic mathematics concepts and definitions, which help to 

understand the techniques used in the following chapters for uncertainty analysis. These 

concepts and definitions include probability theory, orthogonal polynomials, and 

numerical integral technique such as Gaussian quadrature rule. 

Chapter 3 describes how to formulate a stochastic system governed by a partial 

differential equation (PDE), including parameterization of input data and solving the 

stochastic PDE. As a demonstration, a simple first order differential equation is used to 

compare the results computed by the MC method, perturbation method, the 1-D gPC 

method, and the collocation method. 

Chapter 4 presents the generalized polynomial chaos (gPC) method and how to 

implement it into the finite difference time domain (FDTD) method to solve the Maxwell 

equations in a stochastic Galerkin scheme. Wave propagation problems are investigated 

using the gPC-FDTD method. 

Chapter 5 discusses solving Maxwell equations in a stochastic collocation scheme 

via polynomial interpolation. The sparse grid (SG) method is applied to handle 

multi-dimensional problems. Applications in high speed circuits demonstrate the 

computational efficiency of the sparse grid based collocation method. We also introduce 

the idea of stochastic analysis into the antenna array design problem, to provide a design 

margin in order to ensure the original design specification due to uncertainties. 

Chapter 6 provides stochastic analysis of random medium with correlations, both in 

spatial domain and random space domain. Since traditional uncertainty analysis requires 

the random inputs to be independent, this chapter talks about de-correlation techniques to 
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transform the stochastic process or correlated random variables into independent random 

variables. Chapter 7 draws conclusions of this dissertation and suggests potential future 

works. 
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Chapter 2  Mathematic Fundamentals 

This chapter only reviews some basic concepts and definitions about probability 

theory, orthogonal polynomials, and Gaussian quadrature rule. There are many text books 

[16][17] regarding these aspects and one can find more details there. 

2.1  Probability Theory 

2.1.1  Random variables 

The outcome of an experiment, an event, or a realization is random. For example, if 

we flip a coin, the possible outcomes will be either heads or tails. Mathematically, we 

want to assign a value for every possible outcome. We can assign “1” to represent the 

heads and “0” to represent the tails. Thus, a random variable, {0,1}X  , is established.  

Formally, random variables are defined as a function of all the possible outcomes 

on the sample space. Random variables typically can be classified into two categories: 

discrete random variables and continuous random variables. 

Discrete random variables are variables only having discrete values. The sample 

space for a discrete random variable can be discrete or continuous. For example, the 

outcome of rolling a dice can take only integer values from 1 to 6. Continuous random 

variables are variables which can have continuous values within an interval range. For 

example, the lifetime of a light bulb is a continuous random variable, which have any 

positive value. 

2.1.2  Probability and Distribution  

Probability is a term used to measure the likelihood of occurrence of a certain event. 
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The classic definition of probability of an event is defined as the ratio of the number of 

cases favorable to it to the number of all cases possible, when a large number of 

experiments are conducted. For example, when flipping a coin a large number of times, 

we can expect 50% of the time the results would be heads and the other 50% would be 

tails.  

The probability of a certain event should be no less than 0 and no greater than 1. “0” 

means that the event will never happen, and “1” means that the event will always happen.  

For continuous random variables, they are often characterized by their distribution 

functions since we cannot specify a probability that the random variable is exactly equal 

to. 

Consider a continuous random variable X . Its distribution function is defined as 

the probability that a random variable X has a value less than or equal to x,  

( ) ( )XF x P X x  ,                         (2.1) 

and the probability that X lies between 1x  and 2x  is given by 

 1 2 2 1P ( ) ( )X Xx X x F x F x    .                 (2.2) 

The derivative of the distribution function is called the probability density function 

( )
( ) X

X

dF x
f x

dx
 .                            (2.3) 

2.1.3  Statistical characteristics 

The Nth moments of a random variable X  is defined as 

                      ( )N N

X Xx f x dx



  .                         (2.4) 
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The most important moment of a random variable is the first moment, which is also 

called the mean or expectation of the random variable. It represents the average value of 

the random variable over the probability space, 

[ ]  ( )XE X x f x dx



  .                        (2.5) 

The Nth central moment of random variable X  is defined as 

( [ ]) ( )N N

X Xm x E X f x dx



  .                   (2.6) 

The most important central moment of a random variable is the second moment, which is 

also called the variation of the random variable, which denotes how the random variable 

is distributed around its mean value, 

2 2( [ ]) ( ) X Xx E x f x dy



  .                   (2.7) 

And the square root of variance is defined as the standard deviation of the random 

variable. Mean and variance are what we used most to characterize a random variable. 

2.1.4  Jointly random variables 

When the stochastic system has more than one random input, which is often the 

case, these random variables are related by their joint distribution function   

1 2, 1 2 1 1 2 2( , ) ( , , , )
NX X X N N NF x x x P X x X x X x       ,           (2.8) 

and their joint probability density function 

1 2

1 2

, 1 2

, 1 2

1 2

( , , , )
( , , , ) N

N

N

X X X N

X X X N

N

F x x x
f x x x

x x x





 
 

  
,               (2.9) 

where 1 2, , , NX X X  are N random variables. They are independent if and only if 

1 2 1 2, 1 2 1 2( , , , ) ( ) ( ) ( )
N NX X X N X X X Nf x x x f x f x f x    .              (2.10) 
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2.2  Orthogonal Polynomials 

2.2.1  General property 

An nth order polynomial of variable x generally has the form [18] of 

1

1 1 0( )       , 0n n

n n n nP x a x a x a x a a

     .            (2.11) 

A set of polynomials 1{ ( )}n nP x 

 is orthogonal if the below relationship holds true 

2
( ) ( ) ( ) ( )n m n ij

D
P x P x d x P x  ,                     (2.12) 

where ( )x  is a positive measure of the polynomials and D is the support of this 

measure. ij is the Kronecker delta function that 

1          ( )

0          ( ) .
ij

i j

i j



 


                        (2.13) 

2
( )nP x is a constant named the norm of the nth order polynomial, defined as 

2 2( ) ( ) ( )n n
D

P x P x d x  .                    (2.14) 

More specifically, if 
2

( ) 1nP x  , 1{ ( )}n nP x 

  is called orthonormal. 

Usually, there will be a corresponding weight function ( )x  associated with the 

measure ( )x ; then (2.12) becomes 

2
( ) ( ) ( ) ( )n m n ij

D
P x P x x dx P x  ,                (2.15) 

or 

2
( ), ( ) ( )n m n ijP x P x P x  .                   (2.16) 

 is the operator for the inner product.  
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2.2.2  Categories of orthogonal polynomials 

Different types of polynomials have different weighting functions. The family of 

orthogonal polynomials from the Askey-scheme is summarized in [19] and listed in 

Tables 2-1 and 2-2 for discrete and continuous random variables, respectively. According 

to the distribution of the random variables, a corresponding polynomial basis can be 

chosen for optimal convergence, since its weight function is the same as the probability 

density function of the random variable. 

 
Table 2-1 Discrete random variables and corresponding polynomials 

 

Distribution of 

random variables 
Polynomials type Probability space 

Poisson Charlier 0,1,2, ,   

Binomial Krawtchouk 0,1,2, , N  

Negative Binomial Meixner 0,1,2, ,   

Hypergeometric Hahn 0,1,2, , N  

 
 

Table 2-2 Discrete random variables and corresponding polynomials 

 

Distribution of 

random variables 
Polynomials type Probability space 

Gaussian Charlier 0,1,2, ,   

Uniform Krawtchouk 0,1,2, , N  

Beta Meixner 0,1,2, ,   

Gamma Hahn 0,1,2, , N  

 

 

Among them, the two most important polynomial bases are the Hermite 

polynomials and Legendre polynomials, as they correspond to Gaussian distribution and 

uniform distribution, which are most widely used for modeling real world uncertainty’s 

probability distribution. 
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2.3  Gaussian Quadrature 

In numerical computation, evaluation of the integral of a function can be very often, 

as in the form of (2.17), 

( )
b

a
I g x dx  ,                          (2.17) 

where ( )g x  is called the integrand, a  is the lower limit of integration, and b  is the 

upper limit of integration.  

Gaussian quadrature [20] is a numerical integration technique to approximate the 

integral in (2.17) as 

1

( ) ( ) ( ) ( )
Nb b

i
a a

i

I g x dx f x W x dx f x


    ,           (2.18)               

given that the integrand ( )g x  can be expressed as (2.19) in the integration interval 

( ) ( ) ( )g x f x W x ,                      (2.19) 

where ( )f x  is the approximate polynomial and ( )W x  is a non-negative weighting 

function. The formula is exact for polynomials ( )f x  of an order up to 2 1N  . 

For the Nth order polynomial ( )Nf x , consider its general form as 

1

1 1 0( )       , 0N N

N N N Nf x a x a x a x a a

     ;           (2.20) 

then the N points for quadrature rule ( 1,2, )ix i N   are the roots of ( )Nf x . 

To find the roots of the polynomial ( )Nf x , factorization can be used for some 

special polynomials. But in most of the cases, they have to be found numerically. Various 

iterative roots finding algorithms such as the Newton method and the Secant method can 

be applied. 

The formula for computing the weights is given by 
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2

1

'

1 1

( )[ ( )]
, 1,2,

( ) ( )
N

b

N N
a

i

N i N i

a W x f x
i N

a f x f x




 

  



.                (2.21) 

If one can express ( )Nf x  using Lagrange polynomial interpolation 

                     
1 1 ,

( ) ( )
i jN

j

N i

i i j N i j

x x
f x f x

x x



  





  ,                      (2.22) 

then the weights can be further computed by 

1 ,

( )
i j

b j

i
a

i j N i j

x x
W x dx

x x




 





 .                  (2.23) 

Table 2-3 lists the three most commonly used weighting functions and corresponding 

polynomials in the Gauss quadrature rule. 

 
Table 2-3 Polynomials and weight functions for Gauss quadrature rule 

 

Polynomial type Weighting function Intervals 

Chebyshev  21 x  [ 1,1]  

Legendre 1 [ 1,1]  

Hermite 
2xe  ( , )   

 

2.4  Techniques for de-correlation 

     In most stochastic problems, the random inputs can be characterized by a set of 

independent variables. Clearly, this indicates there is no correlation effect considered. 

While in some special cases, we have to include the correlation for better modeling the 

real mechanism. 

     Generally, there are two types of correlation. One is the correlation spatial 

coordinates where the randomness should be modeled by a stochastic process. The other 

one is the correlation in the probability space where different random variables are 
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correlated and not independent with each other. For those two kinds of problems, there 

are corresponding techniques for de-correlation. They are discussed in detail in Chapter 

6. 
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Chapter 3  Formulation of Stochastic System 

A physical system can often be characterized by a governing partial differential 

equation (PDE), which is deterministic. This chapter provides general steps on how to 

reformulate the original deterministic system into a stochastic system. The key step is to 

characterize the probability space associated with the random inputs by a set of mutually 

independent random variables. To illustrate the idea, a simple ordinary differential 

equation is used as an example. Also, the stochastic methods which are reviewed in 

Chapter 1 are compared to help better understand the pros and cons between them. 

3.1  Reformulation from a deterministic system 

Consider a system PDE defined in a spatial domain , 1,2,3dD R d  , and a time 

domain  0 ,t T  

                     

0

0

0 0

( ( , )) ( , )        , ( , ]

( ( , )) 0                 , ( , ]

( , )                      

L u x t f x t x D t t T

B u x t x D t t T

u x t u

  


  
 

,            (3.1) 

where L is a differential operator, B is the boundary condition operator, 
0u is the initial 

condition, and ( , )f x t is the source term. To take into account the randomness associated 

within the system, we can rewrite (3.1) as a stochastic PDE 

                 

0

0

0 0

( ( , ,ξ)) ( , ,ξ)        , ( , ], ξ

( ( , ,ξ)) 0                    , ( , ], ξ

( , ,ξ)                       ξ                     

L u x t f x t x D t t T

B u x t x D t t T

u x t u

   


   
  

,      (3.2) 

where ξdenotes the random inputs of the system in a properly defined probability 

space ( , , )F P . Various numerical methods can be used to solve the PDE. In the 
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computational electromagnetics (CEM) area, where the governing PDE are the Maxwell 

equations, finite difference time domain (FDTD) method [2][21][22], finite element 

method (FEM) [23][24], and method of moment (MOM) [25] are the most commonly 

used methods. 

3.2  Parameterization of random inputs 

To solve (3.2) numerically, we need to reduce the infinite-dimensional probability 

space to a finite-dimensional space. This can be accomplished by characterizing the 

probability space by a finite number of random variables. Such a procedure, termed the 

“finite-dimensional noise assumption” in [26], is often achieved via a certain type of 

decomposition which can approximate the target random process with desired accuracy. 

Assume that they can be parameterized by a set of independent random variables

1 2ξ (ξ ,ξ , ,ξ ) , 1,2,3d

d R d    . Their joint probability density function is given by 

                         i i

=1

ξ = ξ     1,2,
d

i

i d    .                 (3.3) 

By characterizing the probability space with d random variables, we have 

effectively reduced the infinite-dimensional probability space to a d-dimensional space. 

The set of random variables is required to be mutually independent for implementing the 

most available numerical techniques for uncertainty analysis.  

One should notice that the probability distribution of the random variables is also 

prescribed. However, the ability to correctly characterize randomness of the input 

parameters relies heavily on the experimental data of these parameters. There are two 

major difficulties: 1) for some cases, it is impossible to acquire a huge amount of data to 

get a reliable prediction of the probability distribution of the input parameter; and 2) for 
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some parameters, experiments can provide little information regarding the variations. 

According to the central limit theorem [27], for a large number of independent random 

variables, their mean will approximate a Normal distribution. Thus, throughout the 

dissertation, we assume the random variables will have a Gaussian distribution, which is 

also a common assumption in most engineering analysis. 

3.3  Demonstration of an ODE case 

     In Chapter 2, different UQ methods are reviewed. In this section, we use a first 

order differential equation to illustrate their ideas.

 

3.3.1  Analytical Solution 

Now, consider an ordinary differential equation as in (3.4) and (3.5), 

( )
( )

dy t
ky t

dt
  ,                           (3.4) 

0 0|ty y  ,                              (3.5) 

where k is a random variable having Normal distribution with a mean of 0k   and a 

variation of 
2 1k  . It has a probability density function (PDF) 

                           
21

2
1

( )
2

k

f k e




 .                         (3.6) 

The analytic solution of the (3.4) differential equation is given by  

                            0( ) kty t y e .                            (3.7) 

The mean and variance of ( )y t  can be computed by (3.8) and (3.9), respectively, 

                      

2
21

2 2
0 0

1
( )

2

t
k

kty t y e e dk y e



  ,                  (3.8) 
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2
2

2 2
1

2 2 22 2
0 0

1
( ) ( ) ( )

2

t
k

kt t tt y e e e dk y e e



    .    (3.9) 

3.3.2  Monte Carlo Method 

The Monte Carlo method samples the PDF of k purely randomly, and the statistics 

can be obtained after repeating N times solving (3.4)  

1

1
Mean i

N
k t

i

e
N





  ,                          (3.10) 

2

1

1
Variance ( mean)i

N
k t

i

e
N





  .                    (3.11) 

Figures 3-1 to 3-6 plot the mean and variation of ( )y t  computed by 100 times, 1000 

times and 20000 times the Monte Carlo method and compare them with analytical 

solutions. 

 

Figure 3-1 Mean comparison between analytical solution and 100 times Monte Carlo method. 
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Figure 3-2 Variance comparison between analytical solution and 100 times Monte Carlo method. 

 

 

Figure 3-3 Mean comparison between analytical solution and 1000 times Monte Carlo method. 
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Figure 3-4 Variance comparison between analytical solution and 1000 times Monte Carlo method. 
 

 

Figure 3-5 Mean comparison between analytical solution and 20000 times Monte Carlo method. 
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Figure 3-6 Variance comparison between analytical solution and 20000 times Monte Carlo 

method. 
 

 
As mentioned in Chapter 1, the MC method has a relatively slow convergence rate. 

3.3.3  Perturbation Method 

The perturbation method is based on Taylor expansion. From the analytical 

solution, 

( , ) kty k t e ,                        (3.12) 

the first three Taylor expansion coefficients around 0k   can be obtained: 

0( , ) | 1kt

ky k t e   ,                      (3.13) 

'

0( , ) ( ) |kt

ky k t te t

    ,                   (3.14) 

                      
2 2

0"( , ) ( ) |kt

ky k t t e t

  .                     (3.15) 
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Figure 3-7 Mean comparison between analytical solution and second order perturbation method. 

 

 

Figure 3-8 Variance comparison between analytical solution and second order perturbation 

method. 
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The output mean and variance can be approximated by  

                     
2 2

( , ) ( , ) " ( , ) 1
2 2

k t
y k t y k t y k t


    , and             (3.16) 

2
2 ' 2 2

( , ) ( , )y k t ky k t t   .                     (3.17) 

As we can see from Figures 3-7 and 3-8, the statistics using the second order 

perturbation method are pretty unfavorable compared to the analytical solution. This is 

mainly due to the large variation of the k parameter around its mean value. 

3.3.4  General polynomial chaos method  

According to the gPC method, we can expand the solution ( )y t  and the random 

variable k  using the polynomial basis 0{ }i i



 , truncated at order of P. 

0

( ) ( ) ( )
P

i i

i

y t y t k


  , and                    (3.18) 

0

( )
P

i i

i

k k k


  ,                            (3.19) 

where 0,1, ,( ) |i i Py t    are the coefficients for the stochastic solution ( )y t ,and 0,1, ,|i i Pk   are 

the coefficients for the random parameter k. Since k has normal distribution, so the 

corresponding polynomial basis is Hermite polynomials, of which the first five 

polynomials are shown in (3.20). 

0

1

2

2

3

3

4 2

4

( ) 1

( )

( ) 1

( ) 3

( ) 6 3 .

k

k k

k k

k k k

k k k

 

 

  

  
   

                    (3.20) 

Plug (3.18) and (3.19) into (3.4), 
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0 0 0 0 0

( )
( ) ( )

P P P P P
i

i i i j i i j i j

i i j i j

dy t
k y t k y t

dt    

            .     (3.21) 

To solve the Nth coefficient ( )Ny t , multiply the Nth order polynomial N , and take the 

inner product on both sides, 

2

0 0

( )
( )

P P
N

N i j i j N

i j

dy t
k y t

dt  

      .             (3.22) 

Divide 2

N  on both sides, and it yields 

2
0 0

( ) 1
( )

P P
N

i j i j N

i jN

dy t
k y t

dt  

    


 .             (3.23) 

For Hermite polynomials, inner products have an analytical solution as in (3.24) and 

(3.25), 

2 !           0,1N N N P   ， ,                   (3.24) 

! ! !
   

( )!( )!( )!

0 , ,  and 2  is an even number.

i j N

i j N

s i s j s N

i j N s s i j k

   
  

    

        (3.25) 

Let the highest order P=4, and the expansion coefficient of k is given in (3.26), 

1

2
0 2 3 4

1

0

i

i

i

kk
k

k k k k

 
  

    
,                (3.26) 

and the initial value for 0,1,2,3,4( ) |i iy t   is obtained in (3.27) 

4

0 0

0

0 0

1 0 2 0 3 0 4 0

| | ( ) 1

| 1

| | | | 0.

t i t i

i

t

t t t t

y y k

y

y y y y

 





   

  


 

   


               (3.27) 

Thus the original ODE becomes a five-coupled initial value problem with explicit 

updating equations as in (3.28). For each updating equation in (3.28), the Euler method is 
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used to solve the expansion coefficient. 
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,             (3.28) 

After all the coefficients have been solved, the mean value and variance can be 

computed by (3.29) and (3.30). It indicates that the mean value of the gPC method is 

equal to the zero-order expansion coefficient. and the square summation of all the high 

order expansion coefficients yields the variance of the stochastic solution, 

1[ ( )] ( )E y t y t ,                           (3.29) 

4
2 2

1

[ ( )] ( )
iN

i

Var y t y t


  .                    (3.30) 

 

Figure 3-9 Solutions of the first five gPC expansion coefficients. 
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Figure 3-10 Mean comparison between analytical solution and generalized polynomial chaos 

method. 

 

 

Figure 3-11 Variance comparison between analytical solution and generalized polynomial chaos 

method. 
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The results for the expansion coefficients are shown in Figure 3-9. And the mean 

and variance comparison are shown in Figures 3-10 and 3-11. As we can see, the mean 

and variance predicted by the gPC method are pretty close to the analytical solutions. 

Furthermore, the expansion coefficients are solved simultaneously, which reduces the 

total computation time compared to the MC method.  

3.3.5  Stochastic collocation method 

The idea of the stochastic collocation method is to sample the random input in a 

much more efficient way than the brute force of the MC method. In this 1-D problem, the 

well-known Gaussian quadrature rule can be applied. Table 3-1 shows the data of random 

input k and corresponding weights by the 7-point Gaussian quadrature rule. 

 
Table 3-1 7-point Gaussian quadrature rule 

index inputs weights 

1 -2.6519613568352334e+000 9.7178124509951914e-004 

2 -1.6735516287674714e+000 5.4515582819127030e-002 

3 -8.1628788285896470e-001 4.2560725261012777e-001 

4 0.0000000000000000e+000 8.1026461755680734e-001 

5 8.1628788285896470e-001 4.2560725261012777e-001 

6 1.6735516287674714e+000 5.4515582819127030e-002 

7 2.6519613568352334e+000 9.7178124509951914e-004 

 

Mean and variance can be computed by (3.31) and (3.32), 

7

1

1
Mean weight( ) ik t

i

i e






  ,                 (3.31) 

7
2

1

1
Variance weight( ) ( Mean)ik t

i

i e






   .         (3.32) 
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Figure 3-12 Mean comparison between analytical solution and 1-D collocation method. 

 

 

Figure 3-13 Variance comparison between analytical solution and 1-D collocation method. 
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The term “
1


” in the front of (3.31) and (3.32) is a normalized factor for 1-D 

Gaussian random variables. Figures 3-12 and 3-13 show the comparison results. Good 

agreements are achieved with only a small number of simulations. This is a tremendous 

advantage compared to the MC method, which requires thousands of simulations. 

3.3.5  Summary 

From the above comparison results, it is easy to summarize the advantages of gPC 

method and stochastic collocation method. For the gPC method, it only requires one 

single simulation to solve the expansion coefficients; for the stochastic collocation 

method, only a small number of simulations are required to achieve certain accuracy. 

Both of these two methods are more efficient than the MC method. In Chapter 4, the 

stochastic Galerkin scheme based on the gPC method is discussed. In Chapter 5, the 

stochastic collocation scheme based on multi-dimensional sparse grid method is 

investigated. 
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Chapter 4  Stochastic Galerkin Scheme: An intrusive 

approach using the gPC method 

4.1  General procedure 

When applying the generalized polynomial chaos (gPC) method to practical 

problems with random inputs, the quantities to be solved are the expansion coefficients of 

the gPC expansion. A typical approach is to conduct a Galerkin projection to a 

finite-order gPC truncation, and the resulting set of equations for the expansion 

coefficients are deterministic and can be solved via conventional numerical techniques. 

This is the Stochastic Galerkin scheme [26][34][35][37] and has been proved to be 

effective. This section will have a detailed discussion about this with numerical 

examples. 

Consider a system PDE defined in a spatial domain , 1,2,3dD R d  , and a time 

domain  0 ,t T  

              

0

0

0 0

( ( , ,ξ)) ( , ,ξ)        , ( , ], ξ

( ( , ,ξ)) 0                    , ( , ], ξ

( , ,ξ)                       ξ                     

L u x t f x t x D t t T

B u x t x D t t T

u x t u

   


   
  

,       (4.1) 

where L is a differential operator, B is the boundary condition operator, 
0u is the initial 

condition, and 1 2ξ (ξ ,ξ , ,ξ ) , 1,2,3d

d R d     are a set of mutually independent 

random variables characterizing the random inputs to the governing equation with a 

probability density function of (ξ) .  

Let 
0{ (ξ)}k i



  be the gPC basis functions which are orthogonal to each other, so 
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that 

2
[ (ξ) (ξ)] (ξ)i i i ijE     .                     (4.2) 

[ ]E   is the expectation of a quantity of random ξ , which is defined as 

                      [ (ξ)] (ξ) (ξ) ξE f f d  ,                       (4.3)  

and let ( )d

N Z  be the space of all polynomials of 
dZ R of a degree up to N. Then the 

gPC projection of the stochastic solution can be approximated by 

( , ,ξ) ( , ,ξ) ( , ) (ξ)
N

N i i

i o

u x t u x t u x t


   ,               (4.4) 

                    
2

1
( , ) [ ( , ,ξ) (ξ)]

(ξ)
i N i

i

u x t E u x t 


.                (4.5) 

Substitute (4.4) into (4.1),  

                         

0 0

( ( , ) (ξ)) ( , , ξ)

( ( , ) (ξ)) 0    

( , ) (ξ)                  .

N

i i

i o

N

i i

i o

N

i i

i o

L u x t f x t

B u x t

u x t u








 




 



 








               (4.6) 

Then apply the orthogonality of the polynomial basis, and we seek to solve the weak 

form of Equation (4.7), which becomes 

0 0,

[ ( ( , )) (ξ)] [ ( , , ξ), (ξ)]

[ ( ( , ))] 0

( , )

k k k

k

k k

E L u x t E f x t

E B u x t

u x t u

   



 

,            (4.7)   

where 0,ku  are the gPC projection coefficients for the initial conditions, given in                   

(4.8) 
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                           0
0, 2

[ (ξ)]

(ξ)

k
k

k

E u
u





.                         (4.8) 

We can see from (4.7) that the expectations on both sides make the dependence in 

ξ disappear. The result is then a system of deterministic equations (usually coupled). The 

size of the system is  

( )!
dim

! !

d

N

N d

N d


  .                         (4.9)  

After solving (4.7), we can get N+1 expansion coefficients. Following the 

mathematical definition, the statistics can be obtained by 

0

0

[ ( , ,ξ)] ( , ) (ξ) (ξ) ξ ( , )
N

i i

i

E u x t u x t d u x t


   , and         (4.10) 

2 2

0 1

[ ( , ,ξ] [( ( , ) (ξ) [ ( , ,ξ)]) ] [ ( , )]
N N

i i i

i i

Var u x t E u x t E u x t u x t
 

     .    (4.11) 

4.2  Implementation gPC into FDTD 

This section demonstrates how the gPC method can be implemented into the 

FDTD formulation of Maxwell equations. Two curl operators as in (4.12) will become 

six scalar functions in (4.13) 

                         

E
E

t

E
H E

t



 









  




  



 ,                      (4.12)  
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 .              (4.13) 

In FDTD modeling, we usually include electric flux density (D) and magnetic flux 

density (B) in the updating equations, since it is easier to formulate by introducing them. 

Their relationship to the electric intensity (E) and the magnetic intensity (H) is shown in 

(4.14) 

          
D E

B H





 

 

 .                        (4.14) 

 
For the discretization in the FDTD method, Figure 4-1 shows how the electric and 

magnetic fields are placed alternatively in a Yee’s FDTD grid [29]. As we can see, the 

electric fields are sampled at the center of every edge on each cell, and the magnetic field 

values are sampled at the center of each cell’s faces. Following the notation as in [2], any 

function of both space and time is denoted as 

( , , ) ( , , , )nf i j k i x j y k z n t     ,              (4.15) 

where x, y and z are the spatial steps in the x, y, z directions, respectively, and t is 

the time step. In order to achieve second-order accuracy, the central difference 
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approximation is applied  

 
2

( ) ( )
( ) 2 2 ( )

x x
f x f x

f x
O x

x x

 
  


  

 
.         (4.16) 

 

 
Figure 4-1 Yee's FDTD grid. 

     In the FDTD method, electric and magnetic fields are sampled alternatively both in 

space and time, and the central difference approximation in space and time are shown in 

(4.17) and (4.18), respectively 

1 1
( , , ) ( , , )

( , , ) 2 2

n n
n f i j k f i j k

f i j k

x x

  



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,             (4.17) 

1 1

2 2( , , ) ( , , ) ( , , )
n n

nf i j k f i j k f i j k

t t

 

 


 
.                 (4.18) 

Then (4.13) can be written in the discrete forms as from (4.19) to (4.36). 
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                          5 2x xC t    , 6 2x xC t     

and  
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                        5 2z zD t    , 6 2z zD t     

In the following derivation, only the x components of E, H, D, B are listed; y and z 

components can be formulated in the same manner. In this chapter, we consider the 

relative permittivity of the medium as a random variable. We can expand the permittivity, 

electric and magnetic intensity, and electric and magnetic flux density using the same 

polynomial basis i , truncated at the order of P, as shown in (4.37). 
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Substituting (4.31) into (4.13) - (4.16) yields 
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After the gPC projection, the new updating equations are (4.42) - (3.45), where 

0,1, ,m P   
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All  terms denote the inner product which can be done by numerical 

integration as preprocess. As we can see, different expansion coefficients are coupled 

with each other in the FDTD updating equations. A similar but more general 

formulation for 1-D FDTD updating with the gPC method is described in [38]. 

4.3  Numerical Example 

4.3.1  Example I: 1D wave propagation in homogeneous medium 

 

Figure 4-2 1-D wave propagation problem. 
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The first example is the follow up from the previous derivation as shown in Figure 

4-2. A sinusoid wave is travelling along the z axis in a homogeneous medium and the 

permittivity of the media is set to be a Gaussian variable with a mean of 6.5 and standard 

deviation of 0.5. The amplitude of the sin wave is unit, and the frequency is 10 MHz. The 

highest expansion order of the gPC method is 4. 

 

Figure 4-3 Mean value of sampled electric field. 

 

 

Figure 4-4 Variance of sampled electric field. 
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Figures 4-3 and 4-4 show the comparison of mean and variance of the sampled 

electric field predicted by the  gPC method and the 1000 times MC method. The 

percentage errors are calculated based on the peak-to-peak value of the electric field, 

using the results of the MC method as references. 

Table 4-1 shows the percentage error of the gPC method with respect to the 

number of realizations of the MC method. The percentage errors for both mean and 

variance become smaller with a larger number of MC simulations. After the MC method 

reaches its convergence (over 1000 times), the gPC method gives good estimation of the 

mean and variance of the electric field.    

 

Table 4-1 gPC error estimation with respect to number of MC simulations 

 

Number of 

realization of MC 

Mean percentage 

error 

Variance percentage 

error 

100 2.0% 20.6% 

500 1.14% 11.0% 

1000 0.23% 3.8% 

2000 0.14% 2.5% 

 

4.3.2  Example II: 3D wave propagation in inhomogeneous medium 

The second example is a 3-D wave propagation problem as shown in Figure 4-5, 

and the top view in Figure 4-6. A z-direction polarized sinusoid wave is placed in the 

middle of an inhomogeneous media. The inhomogeneous media consists of four parts. 

Each of them has a random permittivity which is set to be a Gaussian variable with 

mean of   and standard deviation of  . The amplitude of the sin wave is unit and 

the frequency is 1 GHz. The highest expansion order of the gPC method is 3. Outside is 
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the PML region [39]-[41]. 

 

Figure 4-5 3-D wave propagation problem. 
 

 

Figure 4-6 Top view for computational domain. 

 

If we set 
1 2 3 4         and

1 2 3 4 0       , then all the higher 

order coefficients will vanish, only the zero order term exists. As shown in Figure 4-7, the 

value of the zero order coefficient for the Ez component creates exactly the same results 

as when we set the media to be homogeneous with a permittivity of  , symmetric to the 

middle point. If the permittivity values are taken as in (4.46), 
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then the mean value plot is like Figure 4-8. Different permittivity makes the wave front 

not symmetric to the center. 

 

Figure 4-7 z component of the electric field for homogeneous case. 

 

 

Figure 4-8 z component of the electric field for inhomogeneous case. 

 

While it is not easy to visualize the shape of the variations, we can always pick up 

any point we are interested in inside the media, record the value of the higher order 

coefficients during the time marching loop of FDTD. Then post processing can be done 

after the simulation to get the time domain statistics. 
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Figure 4-9 Mean value of electric field at point (is+4, js+4, ks+4). 
 
 

 

Figure 4-10 Variance of electric field at point (is+4, js+4, ks+4). 
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Figure 4-11 Mean value comparison of Ez component at point (is+4, js+4, ks+4) between gPC 

method and Monte Carlo method. 

 

 

Figure 4-12 Variance comparison of Ez component at point (is+4, js+4, ks+4) between gPC 

method and Monte Carlo method. 
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If we denote the coordinates of the middle point in the media to be (is, js, ks), 

Figures 4-9 and 4-10 show the mean value and variation of E field recorded at the point 

of (is+4,js+4, ks+4). To validate the results, 500 times MC simulations are performed. To 

see the figures more clearly, only the Ez component is shown. As shown in Figures 4-11 

and 4-12, both the mean value and variations have good agreement. And mean value 

tends to be more accurate than variation.  

 

4.4  Summary 

This chapter discussed the generalized polynomial chaos (gPC) method and how to 

implement it into the FDTD method for analysis wave propagation problems in a random 

medium. As we can see from the derivation, the gPC-FDTD formulation requires a 

modification from the original Maxwell equations. Compared to the Monte Carlo (MC) 

method, it only needs one simulation instead of a large number of repeated simulations. 

This is the biggest advantage over the MC method.  

     However, the gPC method also has its disadvantages. From the derivation in 

Section 4.2, we know that all the field components should be stored during the FDTD 

updating loop. This requires P times more memory than an ordinary simulation, if the 

highest order of expansion is P. In the previous work in [36], it is noted that sometimes 

the gPC method cannot converge if the expansion order is greater than 3. This could 

result in a larger truncation error than desired. Also, for multi-dimensional problems, the 

polynomials can be very complicated, thus it is very difficult to modify the ordinary 

FDTD code. So when dealing with a large complex system which requires a lot of 

memory or multi-variant problems, the gPC method will have its limitations. 
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Chapter 5  Stochastic Collocation Scheme: A non-intrusive 

approach 

5.1  Introduction 

As mentioned above, one major difficulty with the stochastic Galerkin approach is 

modification of the Maxwell equations. Can we find an alternative way that is efficient 

but at the same time, not change the deterministic system formulation? Very recently, 

there has been a surge of interest in the stochastic collocation approach that was proposed 

in the work of [6] [42]-[48]. By taking advantage of the existing theory on multivariate 

polynomial interpolations, the stochastic collocation method achieves fast convergence 

when the solutions possess sufficient smoothness in random space, similar to the 

stochastic Galerkin scheme. Traditional work of the stochastic collocation method uses 

tensor products of one-dimensional quadrature points as “sampling points” for 

multidimensional problems, which restricts its applicability to a smaller number of 

random variables as the number of sampling points grows exponentially otherwise. A 

sparse grid (SG) method is then proposed that can significantly reduce the number of 

sampling points required in higher random dimensions. In this way the stochastic 

collocation method combines the advantages of both the MC method and the stochastic 

Galerkin method. The implementation of the stochastic collocation method is similar to 

that of the MC method, i.e., only repetitive realizations of a deterministic solver is 

required; and by choosing a proper set of sampling points such as the sparse grid, it can 

achieve high accuracy and fast convergence as in the stochastic Galerkin method. In this 
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chapter, we are using the sparse grid based stochastic collocation method to analyze 

different channel structures in high speed circuits. 

5.2  General procedure 

Again, we use a stochastic PDE to explain the main idea, 
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where L is a differential operator, B is the boundary condition operator, and 
0u is the 

initial condition.  

Let 
( )

1{ }i N

N i I    be a set of prescribed nodes in the random space, where 

1N   is the number of the nodes, ( ) ( )( , , ), 1,i iu u x t i N    is the solution of the 

governing equation (5.1), and I  is the support of random variable  . The basic idea of 

the stochastic collocation method is to find an approximate solution ( , ,ξ)v x t  so that the 

difference between it and the real solution ( , ,ξ) ( , ,ξ)v x t u x t  is sufficiently small in a 

strong norm defined on I , 

( , ,ξ) ( , ,ξ) 0   when v x t u x t N   .             (5.2) 

These nodes 
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are called collocation points, 
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It is observed that for each realization, (5.3) is a deterministic problem since the 

random input parameter ( )i is a fixed value. Therefore, there is no need to change the 
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existing numerical method to solve (5.3). The results of (5.3) are denoted as ( )

1{ }i N

iu 
. The 

remaining question becomes how to construct the approximate solution and how to 

extract the statistical information in the post processing. 

Interpolation is a natural approach to the stochastic collocation problem. The most 

commonly used interpolation technique is Lagrange interpolation [51]. That is, let 
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where 
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are the Lagrange interpolating polynomials. 

Then the mean and variance can be obtained by 
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( )( ) ( )i

i i
D

L f d   ξ ξ .                         (5.8) 

where  
1i i N


 

 are the integration weights based on the Gaussian quadrature rule as in 

(5.8), D is the domain where the random variables are defined, and ( )f ξ is the joint 

probability density function (PDF) of the random variables 1 2[ , , ]N   ξ . 
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5.3  Collocation points 

In the collocation method, the overall simulation time is N, with N being the total 

number of collocation points. Thus, it is essential to choose proper nodes (minimum 

number to achieve a certain degree of accuracy), especially for multi-dimensional 

problems.  

In one-dimensional problems, how to choose the collocation points are well studied, 

such as the Gaussian quadrature rule as discussed in Chapter 2. The choice of collocation 

points in the multi-dimensional problems remains challenging work. 

5.3.1  Tensor product rule 

One direct way to construct collocation points in multi-dimension space is to use 

the tensor product rule [49][50] as in (5.9) 

                    1 2

1 1 1
dnn n

d    ,                        (5.9) 

where in  is the number of nodes in the ith dimension, d is the total problem dimension, 

and d  is the collocation node set. Then the total number of nodes is 

                            
d

i
i

N n .                              (5.10) 

By using the tensor product construction, all the properties of underlying a 

one-dimensional interpolating scheme can be well controlled. However, with a large 

dimension when 1d , the total number of points grows extremely fast. This is well 

known as the curse of dimensionality, which makes the overall numerical simulation very 

time consuming. 
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5.3.2  Sparse grid method 

One alternative approach is the sparse grid method, which can be used to 

significantly reduce the number of points in multi-dimensional problems. The sparse grid 

method was first proposed by Smolyak [49]. It has been proved useful in solving 

stochastic partial differential equations using the stochastic collocation scheme [6]. 

Following the notation in [50], the construction of the sparse grid interpolation 

takes the form of 
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where d is the dimension of the problem, N is an integer larger than d, denoting the 

construction level of interpolation. The total number of spare grid nodes can be expressed 

as 
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    .                    (5.12) 

Clearly, the spare grid nodes are a subset of the full tensor product nodes set. 

One popular choice of constructing a sparse grid is the Clenshaw-Curtis nodes 

[53] , which is defined as 
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cos , 1,2, ,

1

j k

i ik

i

j
Z j m

m

 
   


.                 (5.13) 

Figure 5-1 shows the point choice of the sparse grid method versus the tensor 

product rule in 20D. In an example of a 2-D case, the total number of points is 145 based 

on the sparse grid compared to 1089 based on the tensor product rule. A significant 

reduction of collocation nodes is obtained using sparse grid method. For more details on 

a sparse grid method, one can find them in [54]-[56]. 
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Figure 5-1 Comparison of choice of collocation points by sparse grid method and tensor product 

rule in two-dimensional space. 

 

5.4  Application in high speed circuits modeling 

5.4.1  Example I: Microstrip line 

The structure we studied is a microstrip line as shown in Figure 5-2. Microstrip 

lines [57] are commonly used in high speed circuits as interconnecting channels to 

transfer data between different circuit elements. It has a dielectric substrate, usually made 

of FR4. There are printed metal traces with a thickness of t, width of W, and length of L. 

On the bottom is the ground plane, proving a return pass for the current. 

 

Figure 5-2 Microstrip line. 
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The quantity we are interested in is the eye diagram at the output end of the 

transmission line. Figure 5-3 shows a typical eye diagram. The eye diagram is often used 

in communication systems because it can provide us with visual information for 

evaluating the channel performance, such as signal-to-noise ratio and jitter [58]. 

Analyzing the eye diagram is a major work in the area of signal integrity. 

 

Figure 5-3 Typical eye diagram. 
 

      There are two types of uncertainties within this problem. The first one is the 

geometry uncertainty. We assume that the permittivity of the substrate r , the substrate 

height h and the trace width W are three Gaussian random variables with mean values of 

4.3, 0.8 mm, and 1.6 mm, respectively; and each of them has a 10% standard deviation 

from its mean value. All these parameters can affect the impedance of the microstrip line. 

Signals propagating on the transmission line can get reflections once the impedance of 

the transmission line changes. This is used to model errors existing during the 

manufacturing process.  
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The second type of uncertainty is the clock variation since CPU clocks tend to have 

different arrival times. This is also called jitter in signal integrity terms [59], as shown in 

Figure 5-4. The jitter of the signal is set to be a Gaussian variable with a 10 ps mean and 

a 1 ps standard deviation. 

 

Figure 5-4 Eye diagram of the input signal with a jitter of 10 ps. 
 

Since we have four parameters varying at the same time, we apply the 4-D sparse 

grid method to generate 57 input samples, each one with a corresponding weight in the 

sample space. The statistics for the output signal is shown in figure 5-5. 

 

Figure 5-5 Mean and +/- standard deviation for the output time domain signal. 
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Figure 5-6 Eye diagram at the output end of the microstrip line plotted by mean value. 
 

 

 

Figure 5-7 Eye diagram at the output end of the microstrip line by mean value +/- one standard 

deviation. 
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Figure 5-8 Eye diagram at the output end of the microstrip line by mean value +/- two standard 

deviation. 

 

 

 

Figure 5-9 Eye diagram at the output end of the microstrip line by mean value +/- three standard 

deviation. 
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Figure 5-5 shows the statistics of the time domain output signal. Both mean value 

and standard deviation are calculated. Then we plot four different eye diagrams using the 

mean value, mean value +/- one standard deviation, mean value +/- twice the standard 

deviation, and mean value +/- three times the standard deviation, as shown from Figure 

5-6 to Figure 5-9. If we denote the mean value as  and standard deviation as , then 

 represents the expectation value; and   , 2  , 3   stand for three 

confidence intervals. A good estimation must give an accurate prediction for both mean 

values and variations. 

Then 1000 times Monte Carlo simulations are performed to validate the accuracy 

of the sparse grid method. As show in Figures 5-10 and 5-11, both mean and standard 

deviation show good agreement with each other. That is to say, we are able to obtain the 

same accuracy with a speed-up factor of almost 20. 

 

 

Figure 5-10 Comparison of mean value predicted by sparse grid method and Monte Carlo 

method. 
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Figure 5-11 Comparison of standard deviation predicted by Sparse grid method and Monte Carlo 

method. 

 

 

 
Figure 5-12 Eye diagram plotted by the results of 1000 times Monte Carlo simulations. 

 

0 0.5 1 1.5 2 2.5 3 3.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

t/ns

V
ol

ts

Standard derivation prrediced

 

 

57 times SG

1000 times MC



 60 

 

Figure 5-13 Statistical eye diagram. 

 

Figure 5-12 shows the eye diagram plotted by the results of the 1000 MC 

simulations. Because the number of random MC simulations is relatively large, we can 

assume that, when given the parameters changing the channel, this eye diagram can 

represent all the possible outcomes of the output signals. Our idea is to use the statistics 

we computed by the sparse grid method to bound this eye diagram, to give a prediction of 

the eye lid, open eye region, etc., as shown in Figure 5-13.If we count the lines of random 

simulation results that fall into these three different confidence intervals, we can get 

corresponding probabilities. As shown in Table 5-1, they are 69.9%, 96.7%, and 99.9%, 

respectively. 

 
Table 5-1 Probability comparison between sparse grid statistics and Normal distribution 

 

Confidence Interval     2   3  

Count lines within 699 967 999 
Percentage 69.9% 96.7% 99.9% 

Normal Distribution 68.2% 96.8% 99.8% 
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Figure 5-14 Probability density function of a Guassian distribution. 

 

     Figure 5-14 shows a probability density function of a normal Gaussian distribution. 

If we compare the probability within these confidence intervals, we can see that they 

have a good agreement. 

5.4.2  Example II: Two Layer structure with via through 

 

 

Figure 5-15 Two layer structure with through via. 

 

Next we consider a two-layer structure with via, as shown in Figure 5-15. The 

signal is transmitted from the top layer to the bottom layer through a via. What are 
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considered random variables are the dielectric permittivity, via height, via radius, and 

input signal jitter. Their mean values are 4.3, 0.4 mm, 1.7 mm, and 10 ps, respectively. 

and 10% standard deviation from their mean values. The sparse grid method is applied to 

select collocation points (57 points for 4D). The results are plotted from Figure 5-16 to 

Figure 5-19. 

 

Figure 5-16 Eye diagram at sample point 5 by mean value. 

 

 
Figure 5-17 Eye diagram at sample point 5 by mean value +/- one standard deviation. 
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Figure 5-18 Eye diagram at sample point 5 by mean value +/- two standard deviation. 

 

 

Figure 5-19 Eye diagram at sample point 5 by mean value +/- three standard deviation. 

 

Validation is also performed using the 1000 Monte Carlo method. The comparison 

results are shown in Figures 5-20 and 5-21. Both the mean value and standard deviation 

of the output signal have good agreement. Again, we can achieve satisfactory accuracy 

and give good a estimation of the output signals. 
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Figure 5-20 Mean comparison between sparse grid method and Monte Carlo method. 

 

 

Figure 5-21 Standard deviation comparison between sparse grid method and Monte Carlo 

method. 
     

 Similarly, Figure 5-22 shows the statistical eye diagram. As shown in Table 5-2, a good 

agreement with the Normal distribution is observed. 
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Table 5-2 Probability comparison between sparse grid statistics and normal distribution. 

 

Confidence Interval     2   3  

Count lines within 694 967 997 
Percentage 69.4% 96.7% 99.7% 

Normal Distribution 68.2% 96.8% 99.8% 
 

 

Figure 5-22 Statistical eye diagram. 
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gives a good estimation of the signal propagating through high-speed circuit components. 

However, practical products can be much more complex than just a single transmission 

line. Luckily, commercial software can be used to analyze these complex structures. A 

10-pin connector is shown in Figure 5-23. It has two differential pairs for transmitting 

differential signals and six ground pins. The mesh view is shown in Figure 5-24 in 

XFDTD.  

 

Figure 5-23 10-pin connector CAD model. 
 

 

Figure 5-24 Mesh view of the differential pair in XFDTD. 
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     As we can see in Figure 5-24, the two differential microstrip lines are fed with 

two voltage sources with the same amplitude but opposite polarization. Both of them 

have a source resistance as well.  Differential signaling is widely used in the PCB design, 

since it can take advantage of the robustness of differential pairs to crosstalk and 

discontinuities in the return path. By changing the size of the FDTD grid, we can 

equivalently change the line width, substrate height, etc. Also, it is easier to reassign the 

material properties such as permittivity and conductivity if they are considered as random 

variables. 

 

Figure 5-25 Statistical eye diagram after signal propagating through the connector. 

 

Figure 5-25 shows the eye diagram at the output end of the connector. The blue 

lines, red lines, green lines, and yellow lines are mean values, +/- one standard deviation, 

+/- two standard deviation, and +/- three standard deviation, respectively. We can see that 

compared to the previous two cases, the variation of the output signal is obviously less. 

This is due to the differential pair structure [62] for signal transmitting. Table 5-3 lists the 

eye diagram statistics such as jitter and open eye region. 
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Table 5-3 Statistical data of eye diagrams for the connector model 

 

Case Mean +/- 1 σ +/- 2 σ +/- 3 σ 

Jitter (ps) 3.76 9.04 13.59 17.82 

Eye width (ps) 56.40 50.58 45.39 40.78 

Eye lid (V) 0.086 0.133 0.183 0.239 

Eye height (V) 0.963 0.943 0.919 0.885 

 

     Figure 5-26s and 5-27 compare the mean and standard deviation for single variable 

cases and the 3-D sparse grid case. The mean values are more or less the same, because 

both in multi-variable and single-variable cases, the mean values are taken as the same. 

The multi-variable case has the largest variation because it has three parameters varying 

at the same time. For the single-variable case, we can see that the substrate height has the 

largest impact on the variance, then permittivity, and finally trace width. 

 

Figure 5-26 Mean value comparison of different uncertainties. 
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Figure 5-27 Standard deviation comparison of different uncertainties. 

 

 

5.5  Application in antenna array design problem 
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is a need to acquire a higher gain for longer distance communication, antenna array is 
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5.5.1  Array element: microstrip antenna 

 

 

Figure 5-28 Top view of microstrip antenna 

 

 

Figure 5-29 Side view of microstrip antenna 
      

     The element antenna we used is a microstrip antenna. Its top view and side view 

are shown in Figure 5-28 and Figure 5-29, respectively. The microstrip antenna has a 

length of 16 mm and width of 12.45 mm. The antenna is fed by a microstrip line from the 

right side. The substrate is made of Teflon which has a relative permittivity of 2.2 and has 

a height of 0.794 mm. The resonant frequency of the antenna is controlled by the patch 

width. 12.45 mm with the Teflon substrate material corresponds to a resonant frequency 
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of around 7.5 GHz.  

 

Figure 5-30 S11 plot of the microstrip antenna 

 

 

 

 

Figure 5-31 Normalized radiation pattern of the microstrip antenna 
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Figure 5-32 3-D polar plot of the radiation pattern 

 

Figure 5-30 shows the S11 of the antenna from 7 GHz to 8 GHz. As we can see, the 

null of the S11 happens at the frequency of 7.52 GHz. The normalized radiation pattern is 

shown in Figure 5-31. The red curve shows the radiation pattern in the 0=0 plane (E 

plane), and the blue curve shows the radiation pattern in the 0=90 plane (H plane). The 

3-D polar plot of the radiation pattern is shown in Figure 5-32 with a color bar for the 

antenna gain. As we can see, the maximum gain is at 0=0 , and the value is 6.7 dB, 

which is a typical moderate gain for microstrip antenna. 

 

5.5.2  Antenna array synthesis 

 

 

 

Figure 5-33 12-element linear array 
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The structure we simulate is a 12-element linear array, as shown in Figure 5-33. The 

spacing between the antenna patches is 20 mm, approximately half the wavelength at the 

operating frequency 7.52 GHz. Each patch is excited individually. The amplitude for each 

excitation is shown below. They are denoted as 1a  through 6a  and symmetric to the 

center. 

 

For the uniform spacing linear array, there are different types of excitation for 

different radiation properties. If each patch is excited with equal amplitude, the side lobe 

ratio is around -13.2 dB. Our goal is to achieve a lower side lobe ratio that is below -20 

dB. A commonly used excitation technique to suppress the side lobe ratio is the 

Chebyshev array excitation [83]. The good thing about the Chebyshev design is that the 

side lobe ratio can be controlled. Denote the side lobe ratio as 0R , and the formulas to 

compute the excitation coefficients are given in (5.14) and (5.15), 
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 
  

   
 .          (5.15) 

Also, we apply a triangle shape of amplitude distribution for the excitation coefficients. 

The values for the excitation coefficients for the Chebyshev design with a -25 dB, -30 

dB, -35 dB side lobe ratios and the triangle distribution are listed in Table 5-4. The 

coefficients for the Chebyshev design is normalized to the value of 1a . The 

normalized radiation patterns are shown in Figure 5-34. 
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Figure 5-34 Normalized radiation pattern with Chebyshev and triangle excitations 

 

Table 5-4 Excitation coefficients for Chebyshev and triangle distribution 

 

Excitation 1a  2a  3a  4a  5a  6a  

Triangle 1 2 3 4 5 6 

Chebyshev 25dB 1.00 1.08 1.51 1.90 2.20 2.37 

Chebyshev 30dB 1.00 1.43 2.17 2.89 3.47 3.79 

Chebyshev 35dB 1.00 1.80 2.98 4.21 5.22 5.80 

 

5.5.3  Stochastic analysis 

     The parameters that are considered as random variables are the substrate 

permittivity, substrate height, and patch width. We want to see how these uncertainties 

would affect the side lobe ratio and the maximum gain of the antenna array. The designed 

properties of the original antenna array are shown below in Table 5-5. Both the 3-D 

sparse grid collocation case and individual cases are studied. In each case, the 
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percentages of the standard deviations of the random inputs are 5%, 10%, and 20%. 

 
Table 5-5 Maximum gain and side lobe ratio for antenna array with different excitations 

 

Excitation Maximum Gain Side lobe ratio 

Triangle 18.01 dB -28.0 dB 

Chebyshev 25dB 18.52 dB -24.9 dB 

Chebyshev 30dB 18.23 dB -29.6 dB 

Chebyshev 35dB 17.96 dB -34.1 dB 

 

     In Figure 5-35 to Figure 5-46, normalized radiation patterns are shown with one, 

two, and standard deviation margins for the 10% permittivity variation case. In every 

figure, the side lobe ratio can be read due to the substrate permittivity’s uncertainty. 

Similarly, these can be done for substrate height, patch width, and 3-D cases with 5%, 

10%, and 20% variations.  

 

Figure 5-35 Statistical normalized radiation pattern with one standard deviation margin for 

triangle excitation with 10% permittivity variation. 
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Figure 5-36 Statistical normalized radiation pattern with two standard deviation margin for 

triangle excitation with 10% permittivity variation. 

 

 

Figure 5-37 Statistical normalized radiation pattern with three standard deviation margin for 

triangle excitation with 10% permittivity variation. 
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Figure 5-38 Statistical normalized radiation pattern with one standard deviation margin for 

Chebyshev 25 dB excitation with 10% permittivity variation. 

 

 

Figure 5-39 Statistical normalized radiation pattern with two standard deviation margin for 

Chebyshev 25 dB excitation with 10% permittivity variation. 
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Figure 5-40 Statistical normalized radiation pattern with three standard deviation margin for 

Chebyshev 25 dB excitation with 10% permittivity variation. 

 

 

Figure 5-41 Statistical normalized radiation pattern with one standard deviation margin for 

Chebyshev 30 dB excitation with 10% permittivity variation. 
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Figure 5-42 Statistical normalized radiation pattern with two standard deviation margin for 

Chebyshev 30 dB excitation with 10% permittivity variation. 

 

 

Figure 5-43 Statistical normalized radiation pattern with three standard deviation margin for 

Chebyshev 30 dB excitation with 10% permittivity variation. 
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Figure 5-44 Statistical normalized radiation pattern with one standard deviation margin for 

Chebyshev 35 dB excitation with 10% permittivity variation. 

 

 

Figure 5-45 Statistical normalized radiation pattern with two standard deviation margin for 

Chebyshev 35 dB excitation with 10% permittivity variation. 
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Figure 5-46 Statistical normalized radiation pattern with three standard deviation margin for 

Chebyshev 35 dB excitation with 10% permittivity variation. 
 

 

     Table 5-6 to Table 5-17 list the data for the side lobe ratio for the all the 12 cases. 

 denotes the mean value, and  is the standard deviation. From the tables, we can 

determine that the mean values are slightly better than the designed side lobe ratios. The 

variation for the 3-D sparse grid case is larger than each individual case.  

 

Table 5-6 Permittivity impact on side lobe ratio with 5% variation (Unit: dB) 
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Table 5-7 Permittivity impact on side lobe ratio with 10% variation (Unit: dB) 

 

 

Table 5-8 Permittivity impact on side lobe ratio with 20% variation (Unit: dB) 

 

 

Table 5-9 Substrate height impact on side lobe ratio with 5% variation (Unit: dB) 

 

 

Table 5-10 Substrate height impact on side lobe ratio with 10% variation (Unit: dB) 

 

 

Table 5-11 Substrate height impact on side lobe ratio with 20% variation (Unit: dB) 
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Table 5-12 Patch width impact on side lobe ratio with 5% variation (Unit: dB) 

 

 

Table 5-13 Patch width impact on side lobe ratio with 10% variation (Unit: dB) 

 

 

Table 5-14 Patch width impact on side lobe ratio with 20% variation (Unit: dB) 

 

 
Table 5-15 3-D sparse grid impact on side lobe ratio with 5% variation (Unit: dB) 

 

 

 
Table 5-16 3-D sparse grid impact on side lobe ratio with 10% variation (Unit: dB) 
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Table 5-17 3-D sparse grid impact on side lobe ratio with 10% variation (Unit: dB) 

 

 

     What we are more interested in is the worst case scenarios for the side lobe ratio. 

For example, when considering the variation of the side lobe ratio due to uncertainties, 

the + , +2 , +3  cases would have a worse side lobe ratio than we desired. That 

means if we want to maintain the side lobe ratio we want, there should be some 

compensation for suppressing the side lobe ratio due to uncertainties. As mentioned 

before, according to the 3 rule, “three standard deviation” for a Gaussian random 

variable will cover 99.9% of all possible cases. While the techniques for doing this is 

beyond the scope of this dissertation, we plotted the compensation values in dB for these 

four different excitation cases, as shown in Figure 5-47 to Figure 5-50. 

 

  

Figure 5-47 Compensation needed for desired side lobe ratio due to the uncertainty of substrate 

permittivity 
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Figure 5-48 Compensation needed for desired side lobe ratio due to the uncertainty of substrate 

height 
 

  

Figure 5-49 Compensation needed for desired side lobe ratio due to the uncertainty of patch width 
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Figure 5-50 Compensation needed for desired side lobe ratio due to the uncertainty of all three 

parameters 
      

From the figures, we can see that: 

1) The lower value the side lobe ratio is for the original design; the bigger compensation 

value is needed to maintain the same side lobe ratio level. This is true for all four 

cases.  The Chebyshev 35 dB design has the largest design margin. 

2) Although we expect a larger variation for the output statistics with a larger variation 

of the random inputs, the side lobe ratio is not proportional to this assumption. For 

example, sometimes the design margin for a 5% variation from the inputs is larger 

than that of the 10% or 20% case. 

3) The worst case for side lobe ratio happens when the 3 parameters are varying at the 

same time. That’s because when the design parameters are varying at the same time, 

there is a good chance the antenna will be detuned from its original designed value at 

7.52 GHz. For the single variable cases, we can see that the side lobe ratio is affected 
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by the patch width most, then the substrate permittivity and at last, the substrate 

height. If we look at the resonant frequency of the antenna as shown in (5.14), we can 

see that the variation in the resonant frequency will vary inversely proportional to the 

path width but square root of permittivity. This explains why patch width has a 

greater impact over permittivity. Also, the substrate height can cause the variation in 

the feed line’s impedance, which could further affect the feeding and radiating 

efficiency of the antenna. However, its impact is the smallest, 

             
1

( )
2 r

c
f

W
 ,                         (5.14) 

where c is the speed of light in the free space.  

 
     Table 5-18 Permittivity impact on maximum gain (Unit: dB) 

 

 
Table 5-19 Substrate height impact on maximum gain (Unit: dB) 
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Table 5-20 Patch length impact on maximum gain (Unit: dB) 

 

 
Table 5-21 3-D sparse gird impact on maximum gain (Units: dB) 

 

 

    Another output we want to look at is the maximum gain for the antenna array. Again 

the data are listed from Table 5-18 to Table 5-19. It’s observed that: 

1) The mean values are slightly smaller than the designed values.  

2) When the parameters vary at the same time, the variation for the maximum gain will 

be greater. But the actual values are quite small. 

3) For different types of excitation, the variations seem to be almost the same as long as 

the input parameters of the antenna array are the same. This suggests that the 

maximum gain the array can achieve may be determined by the configuration of the 

array and be less vulnerable to the excitation method. 
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5.6  Summary 

In this Chapter, the stochastic collocation scheme for solving Maxwell equations is 

investigated. Basic ideas and concepts such as interpolation, collocation points’ selection, 

and post processing for output statistics are presented. The stochastic collocation method 

is highly preferred because the implementation is straightforward and non-intrusive, just 

like the Monte Carlo method. Thus, there is no need to change existing EM solvers such 

as the FDTD method and the Finite Element Method. On the other hand, it can achieve 

much faster convergence by properly choosing interpolation polynomial basis and 

numerical quadrature rules, which are similar to the stochastic Galerkin scheme as 

discussed in Chapter 4.  

We used the sparse grid method based on the collocation scheme for stochastic 

analysis of interconnecting channels in high-speed circuit applications. To ensure the 

proper transmission of the channel, it is important to keep the impedance as continuous as 

possible. However, geometry and material uncertainties could affect the impedance of the 

interconnecting channels in certain degrees. Thus, it is crucial to understand the impact of  

these uncertainties. Numerical examples including the single-layer microstrip line, a 

two-layer structure with a through via, and commercial connector model are considered 

by analyzing the eye diagrams. It is demonstrated that we can give an accurate prediction 

of signal behaviors after propagating through a channel with existing uncertainties. Using 

the concept of the statistical eye diagram, we can provide a statistical margin with 

different confidence intervals. This can serve as a guide for both design and measurement 

when given the manufacturing error of products. 

Also, we perform the uncertainty analysis in the antenna array design problems. It’s 
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noticed that for a linear antenna array, the maximum gain is insensitive to the 

uncertainties of random inputs. Although the variation for the gain will be larger with a 

larger variation of the input parameters, the actual values are quite small. When designing 

an antenna array with an ultra-low side lobe, the lower the side lobe is, the greater the 

impact it will suffer due to the input uncertainties. Since the antenna elements are aligned 

close to each other, mutual coupling may also play a role in making the side lobe ratio 

worse than we desire. This might explain why the worst case side lobe ratio will always 

become worse with a larger input variation. Performing those uncertainty analyses can 

provide us with a set of design margin which should be considered back into the original 

design in order to maintain the original desired side lobe ratio. 
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Chapter 6  Stochastic analysis of random medium with 

correlations 

6.1  Introduction 

Due to fabrication error, there are uncertainties inevitably existing in the material 

properties of a product. Material properties such as permittivity and conductivity could 

result in variations in the system output. In Chapter 3, we assume the dielectric substrate 

of the microstrip line is made of a homogeneous medium. In some cases, the material 

parameters might show some spatial correlation with themselves. For example, the 

permittivity of the random medium is a function of space, with the correlation 

characterized by the covariance matrix. In this case, the Karhunen-Loeve Expansion 

(KLE) can be used to decompose the covariance matrix into a series of eigenvalues and 

eigenvectors. Another scenario is that the material parameters might have a correlation 

between each other. For example, the permittivity and conductivity are joint Gaussian 

variables, with the correlation described by the correlation coefficient. In this case, we 

can do a linear mapping of the original correlated variables to obtain a pair of 

independent variables. Based on the “finite nose assumption” described in [26], the 

stochastic collocation method can be applied to analyze multi-dimensional independent 

random variables cases. 

In this chapter, numerical examples are calculated using the finite difference time 

domain (FDTD) method. All stochastic methods we mentioned above are illustrated in 

Section 6.2. In Section 6.3, two examples are studied using KLE. We assume the 
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permittivity is a spatially correlated Gaussian random process. In Section 6.4, permittivity 

and conductivity of a lossy medium are treated as two joint Gaussian variables. Finally, 

the conclusion is summarized in Section 6.5. 

6.2  Theory 

6.2.1  Karhunen-Loeve Expansion (KLE) 

A random process can be represented by a series of deterministic functions with 

corresponding coefficients. This spectral representation is similar to the Fourier 

Transform. Consider a random process denoted as ( , ) X , which is defined on a 

bounded domain , 1,2,3dD d   and probability space ( , , )A P . The process has a mean 

value of ( , ) X and finite variance of 
2 . According to [66], the random process can 

be expressed as 

1

( , ) ( , ) ( ) ( )i i i

i

f      




 X X X ,             (6.1) 

where i and ( ) if X are the eigenvalues and eigenvectors of the covariance matrix 

( , )C
1 2

X X . By definition, ( , )C
1 2

X X is bounded, positive definite, and symmetric. 

Following Mercer’s Theorem [63], the covariance matrix can be decomposed as 

1

( , ) ( ) ( )i i i

i

C f f




1 2 1 2
X X X X .                 (6.2) 

The deterministic eigenvalues i  and eigenvectors ( ) if X are solutions of the integral 

equation 

( , ) ( ) ( ) 
d i i i

D
C f d f 1 2 1 1 2X X X X X .             (6.3) 

Due to the positive definite and symmetric property of the covariance matrix, its 
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eigenvectors form a complete orthogonal set which satisfies 

( ) ( )
d i j ij

D
f f d  X X X ,                       (6.4) 

where 
ij is the Kronecker delta function. 

The parameter  
1

( )i i
 




is a set of uncorrelated random variables which can be 

expressed by 

1
( ) [ ( , ) ( , )] ( )

di i
D

i

f d     


  X X X X .              (6.5) 

Their mean value and covariance are given by 

[ ( )] 0 iE    ,                              (6.6) 

[ ( ) ( )]  i j ijE      .                          (6.6) 

Equation (6.6) indicates the variables are at zero mean and (6.7) indicates they are 

uncorrelated with a unit variance. 

The spectral expansion in (6.1) is known as the Karhuen-Loeve expansion (KLE) 

[65][68][71]. It provides a characterization of a second-order random process in terms of 

uncorrelated random variables and deterministic orthogonal function. In practical 

implementation, the expansion is approximate by a finite number of terms, say N, 

1

( , ) ( , ) ( ) ( )
N

N i i i

i

f      


 X X X .              (6.8) 

The corresponding covariance matrix is approximated as 

1

( , ) ( , ) ( ) ( )
N

N i i i

i

C C f f


 1 2 1 2 1 2
X X X X X X .           (6.9) 

It has been proved in [37] [67] that this truncation is optimal to minimize the mean 

square error. In this dissertation, we use another way to quantify the truncation error of 
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the KL expansion, from an energy spectrum point of view. 

Before truncation, the expected energy of the process is 

2

1

[ [ ( , ) ( , )] ]
d i

D
i

E d    




  X X X .                (6.10) 

After truncation at an order of N, the expected energy in the approximated process 

becomes 

2

1

[ [ ( , ) ( , )] ]
d

N

N i
D

i

E d    


  X X X .                 (6.11) 

Define the accumulated energy ratio (ANR) as 

1

1

ANR  

N

i

i

i

i















                           (6.12) 

and it provides us an intuitive way to quantify the truncation error in terms of how much 

energy the N terms account for the total energy. 

     In the KL expansion, the key step is to find the eigenvalues i  and eigenfunctions 

( )if X  of the covariance function ( , )C
1 2

X X . This involves the solution of the 

homogeneous Fredholm integral equation [69], which can be obtained analytically or 

numerically. 

     For some cases, the covariance function is twice differentiable with respect to X , 

then it can solved analytically with the given boundary values. For example, (6.13) shows 

the covariance function of a first-order stationary Markov process [70], defined within 

[ , ]a a  

1 2 /2
1 2( , )

x x b
C x x e

 
 ,                    (6.13) 
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where 2 is the variance associated with the random process and b is the correlation 

length. The analytical solution of the eigenvalues are given in (6.13) and (6.14). 

2

2 2

2
, 1,3,5,

1
i

i

b
i

b





  


,                      (6.14) 

2

2 *2

2
, 2,4,6,

1
i

i

b
i

b





  


,                     (6.15) 

where i  and *

i  are defined as  

                       
2

2

2

2 b

b

 




 
 ,                            (6.16) 

and are solutions for the transcendental equations in (6.17) and (6.18) 

1 tan( ) 0b a   ,                          (6.17) 

* *tan( ) 0b a   .                          (6.18) 

Eigenfunctions are given in (6.19) and (6.20). 

cos( )
( ) , 1,3,5,

sin(2 )

2

i
i

i

i

x
f x i

a
a







  



,              (6.19) 

*

*

*

sin( )
( ) , 2,4,6,

sin(2 )

2

i
i

i

i

x
f x i

a
a







  



.             (6.20) 

    More generally, when the eigenvalues and eigenfunctions cannot be found 

analytically, numerical methods can be applied. Consider a Galerkin procedure, assuming 

the eigenfunctions of the convariance function can be expanded as 

1

( ) ( )
N

i

i j j

j

f a


 X X ,                        (6.21) 

where 1{ ( )}j j



 X  is a complete set of basis functions defined in the Hilbert space. 
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Substrate (6.21) into (6.3), yields the error of the Galerkin projection as 

1 2

1 1

1 2

1

( , ) ( ) ( )

      = { ( , ) ( ) ( )}

d

d

N N
i i

N j j i j j
D

j j

N
i

j j i j
D

j

C a d a

a C d

 



 



   

  

 

 

1 2 1

1 2 1

X X X X X

X X X X X

.          (6.22) 

The requirement for the error is its orthognality to the Hilbert space, which means 

the inner product of the error term with the basis function vanishes, 

, ( ) 0, 1,2, ,N k k N    X ,                   (6.23) 

or explicitly, 

1 2 2

1

1 2 2 2

{ [ ( , ) ( ) ] ( )

( ) ( ) ( )} 0

d d

d

N
i

j j k
D D

j

i j k k
D

a C d d

d



 

    

  



1 2 1X X X X X X

X X X X

.          (6.24) 

Denote 

1 2 2

1 2 2

[ ( , ) ( ) ] ( )

     ( , ) ( ) ( )

d d

d d

jk j k
D D

j k
D D

A C d d

C d d

  

  

 

 

1 2 1

1 2 1

X X X X X X

X X X X X X
,           (6.25) 

2 2 2( ) ( )
djk j k

D
B d   X X X ,                        (6.26) 

then (6.24) can be written as a matrix form as 

                          
i i

jk j jk i jk jA a B a    .                       (6.27) 

Then eigenvalues 
i
  and expansion coefficients 

i

ja can be obtained by solving (6.27). 

And eigenfunctions can be constructed accordingly using (6.21). 

If ( , ) X is a Gaussian process, which is a widely accepted assumption for most 

random processes in engineering problems, then the appropriated choice of  
1

( )
N

i i
 


is a 

vector zero-mean and unit-variance uncorrelated (independent) Gaussian random variable. 
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The Gaussian process has been well studied, and for the non-Gaussian process, there are 

also some papers [72]-[74] discussing how to deal with it. 

6.2.2  Bivariate Gaussian variables with joint PDF 

Two correlated Gaussian random variables X and Y have a joint probability density 

function (PDF) described as  

2 2

, 2 2 22

1 1 ( ) 2 ( )( ) ( )
exp

2(1 )2 1
X Y

X X Y YX Y

x X x X y Y y Y
f



      

    
   



  
  

  

,  (6.28) 

in which X and 2

X are mean and variance of X ,Y and 2

Y are mean and variance of 

Y , and  is the correlation coefficient. The covariance between X  and Y is defined 

as 

,        ( 1,1) X Y X YC      .                    (6.29) 

 

Figure 6-1 Joint probability density function of two correlated Gaussian random variables. 

 

The projection of the joint PDF is shown in Figure 6-1. As we can see, there is an 
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angle between the principle axis and the X axis . Do a linear mapping on X  and Y  

to get a pair of new random variables, 

1

1

cos sin

sin cos

X X Y

Y X Y

 

 

 


  
.                      (6.30) 

Since 1X  and 1Y  are a linear combination of two Gaussian variables, they are still 

Gaussian variables. Their mean values are given by 

1

1

cos sin

sin cos

X X Y

Y X Y

 

 

  


  

,                   (6.31) 

and variance is given by 

1

1

2 2 2 2 2

2 2 2 2 2

cos sin sin(2 )

sin cos sin(2 )

X X Y X Y

Y X Y X Y

       

       

      


     

.       (6.32) 

The covariance between 1X  and 1Y  becomes 

1 1

2 2

,

1
sin(2 ) ( ) cos(2 )

2
X Y Y X X YC           .         (6.33) 

Let
1 1, 0X YC  , then we have 

1

2 2

21
tan ( )

2

X Y

X Y

 


 




.                      (6.34) 

It means, if we rotate an angle of  whose value is given above to get a new pair of 

Gaussian variables, then the two variables are uncorrelated (independent).  A more 

detailed discussion can be found in [16]. 
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Figure 6-2 Joint probability density function of two uncorrelated Gaussian random variables. 

The PDF for 1X  and 1Y  is 

1 1

1 11 1

2 2

1 1

, 2 2

1 1
( ) ( )

exp exp
2

1 1

2 2
X Y

X YX Y

x X y Y
f

  

 
   

      
   
      

.        (6.35)       

The projection of the PDF is shown in Figure 6-2. As we can see, the two variables are 

orthogonal to each other.  

6.3  Random Medium with Spatial Correlation 

6.3.1  Example I: Differential Microstrip Lines 

 

Figure 6-3 Differential microstrip line pair. 
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Figure 6-4 Side view of the differential transmission line. 

 

 

Figure 6-3 shows a differential microstrip line structure. The substrate is made of 

an inhomogeneous medium with random permittivity, which is considered to be a 

Gaussian random process with a mean value of 4.1 and a standard deviation of 0.41. The 

height of the substrate is 0.8 mm. The two traces are both 1.6 mm wide and have a 

spacing of 1 mm. When the permittivity is set to be 4.1, the differential impedance of the 

microstrip pair is 100  . The two traces are fed with zero-phase, unit-amplitude but 

opposite polarized voltage sources along with a 50   source resistance. The differential 

signal is propagating in the +z direction. In this problem, we assume the permittivity of 

the substrate material has a correlation along the z direction.   

The covariance matrix (correlation function) is defined as 

1 2 /2

1 2( , )
z z L

C z z e
 

  ,                     (6.36) 

where  is the standard deviation of permittivity, L is the correlation length, which we 

assume is 1 m in this problem. There are 100 cells between the voltage source and the 

point we sampled. The covariance matrix is shown in Figure 6-5. After decomposition, 

the first six eigenvalues and eigenvectors are plotted in Figure 5 and Figure 6, 

respectively. 
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Figure 6-5 1-D covariance matrix. 

 

 

 

Figure 6-6 First six eigenvalues of the covariance matrix. 
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Figure 6-7 First six eigenvectors of the covariance matrix. 

 

As defined in (6.12), the first six order of expansion accounts for about 98.15% of 

the total energy. The six-order KLE for the permittivity is given by 

6

1

6

1

( ) ( ) ( ) ( )

       4.1 ( ) ( )

r r i i i

i

i i i

i

z z f z

f z

    

  





 

 





 .                  (6.37) 

Here,  
6

1
( )i i

 


 are six independent, zero-mean, unit-variance Gaussian random 

variables. They don’t have any physical meaning. However, they contribute to the 

variation of the stochastic process. Using the sparse grid, there will be 119 sets of random 

inputs. We randomly select six permittivity profiles as plotted in Figure 6-8. 

The voltage wave form we are using is the same as in Chapter 5--a random 

trapezoid wave. After 109 times simulation and post processing, the mean value and 

standard deviation of the differential output voltage are shown in Figure 6-8 and Figure 

6-10.  
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Figure 6-8 Possible permittivity distribution along the z direction using sparse grid method. 

 

 

Figure 6-9 Mean value of the differential output voltage computed by sparse grid method. 
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Figure 6-10 Standard deviation of the differential output voltage by sparse grid method. 
 

 

Figure 6-11 Possible permittivity distribution along the z direction using Monte Carlo method. 
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Figure 6-12 Mean value comparison of the differential output voltage by sparse grid method and 

Monte Carlo method. 

 

 

Figure 6-13 Standard deviation comparison of the differential output voltage by sparse grid 

method and Monte Carlo method. 
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To validate the statistics calculated by the SG method, we also perform 1000 times 

Monte Carlo (MC) simulations. The permittivity generated by the MC method is shown 

in Figure 6-11. And the mean and standard deviation comparison are shown in Figures 

6-12 and 6-13. As we can see, they have good agreement with each other. 

Next, we compare the results with the homogenous case. That is, we assume the 

substrate permittivity is a Gaussian random variable with same mean value 4.1 and 

standard deviation of 0.41. The comparison is shown in Figures 6-14 and 6-15. 

It is observed that the mean values are almost the same for both correlated and 

uncorrelated cases. However, the standard deviation of the correlated case is much 

smaller than that of the uncorrelated case. If we take a look at Figure 6-5, the covariance 

achieves its maximum on its main diagonal, which is equal to the finite variance of the 

stochastic process. It means the overall variance of the output would be lower due to the 

correlation. 

 

Figure 6-14 Mean value comparison of the differential output voltage between correlated and 

uncorrelated case. 
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Figure 6-15 Standard deviation comparison of the differential output voltage between correlated 

and uncorrelated case. 

6.3.2  Example II: 2D Rectangular Cavity 

 

 

Figure 6-16 Top view of 2D Rectangular cavity filled with random medium. 

 

Figure 6-16 shows the top view of a 2D rectangular cavity. The cavity is 10 cm 

long in the x direction and 8 cm wide in the y direction. It is uniformly meshed in both 
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the x and y direction with a size of 1 mm. So there are 100 cells in the x direction and 80 

cells in the y direction, with a total of 8000 discrete points inside the cavity. PEC 

boundaries are applied for the four walls. The cavity is filled with random medium with 

spatial correlation. The medium is considered as a Gaussian random process with a mean 

of 2.2 and a standard deviation of 0.22. The covariance matrix is given by 

2 2 2

1 1 2 2 1 2 1 2( , ; , ) , ( ) ( )dC x y x y e d x x y y      ,        (6.38) 

and is plotted in Figure 6-17. 

Figure 6-18 shows the first six eigenvalues of the covariance matrix in a semi-log 

scale. The ANR for the first six expansion orders is around 98.71%. And the first six 

eigenvectors of the covariance matrix are shown in Figure 6-19 to Figure 6-24. 

 

Figure 6-17 2-D covariance matrix. 
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Figure 6-18 First six eigenvalues of the covariance matrix. 
 

 

Figure 6-19 First order eigenvector of the covariance matrix. 
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Figure 6-20 Second order eigenvector of the covariance matrix. 

 

Figure 6-21 Third order eigenvector of the covariance matrix. 
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Figure 6-22 Fourth order eigenvector of the covariance matrix. 

 

Figure 6-23 Fifth order eigenvector of the covariance matrix. 
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Figure 6-24 Sixth order eigenvector of the covariance matrix. 
 

The permittivity of the material filled inside the cavity can be expressed as 

6

1

6

1

( , ) ( , ) ( ) ( , )

           2.2 ( ) ( , )

r r i i i

i

i i i

i

x y x y f x y

f x y

    

  





 
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



 .              (6.39) 

We used both the SG method (109 times) and the MC method (1000 times) to generate 

the permittivity profiles, as shown in Figure 6-24 and Figure 6-25, respectively. Since the 

PEC boundary conditions are applied, there will only be TE modes. A Gaussian pulse is 

placed inside the cavity. After certain time steps of FDTD simulation, a response can be 

captured. Using the Fourier transform, the frequency components of the resonant modes 

can be obtained. As a demonstration, only the resonant frequencies of the first three 

lowest modes are computed. 

 



 113 

 

 

 

 

Figure 6-25 Permittivity profiles generated by sparse grid method. 
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Figure 6-26 Permittivity profiles generated by Monte Carlo method. 
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Table 6-1 Statistics of resonant frequencies for first three modes 

 

Table 6-2 Comparison between SG and MC method 

 

 Modes Mean Standard deviation 

TE10 mode 0.0396% 2.59% 

TE01 mode 0.0238% 1.22% 

TE11 mode 0.0804% 1.75% 
 

Table 6-3 Mean comparison 

 

Case TE10 mode TE01 mode TE11 mode 

Correlated 0.145% 0.111% 0.111% 

Uncorrelated 0.109% 0.0871% 0.2782% 

 

Also, the comparison is made between the correlated case and the uncorrelated 

case. The analytical values are calculated for these two resonant frequencies when the 

permittivity is set at 2.2.  Comparison data are listed in Tables 6-1, 6-2, and 6-3. From 

the tables listed above, we can see that:  

1) The mean value and standard deviation of the resonant frequencies predicted by the 

SG method and the MC method are very close to each other. As shown in Table 6-2, 

Case TE10
 
mode TE01

 
mode TE11

 
mode 

SG mean 1.0091 GHz 1.2619 GHz 1.6159 GHz 

SG standard 

deviation 
12.1519 MHz 16.6839 MHz 19.9657 MHz 

MC mean 1.0095 GHz 1.2622 GHz 1.6172 GHz 

MC standard 

deviation 
11.8447 MHz 16.4816 MHz 19.6226 MHz 

Homogeneous 

mean 
1.0131 GHz 1.2667 GHz 1.6222 GHz 

Homogeneous 

standard deviation 
51.6834 MHz 64.3741 MHz 83.1035 MHz 

Analytical with 

mean input 
1.0106 GHz 1.2633 GHz 1.6177 GHz 

MC mean 1.0095 GHz 1.2622 GHz 1.6172 GHz 
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if we use the value of the MC method as a reference, the percentage error of the SG 

method is relatively low. This proves the efficiency of the SG method compared to 

the MC method.  

2) The mean values for the correlated case and uncorrelated case are almost the same. If 

we set the analytical solution as a reference, both cases show very little percentage 

error with respect to the reference value. That is because Maxwell equations are linear 

equations, and one should expect a linear relationship between the input mean and the 

output mean.  

3) The standard deviation of resonant frequencies is sensitive to the variance of the 

material’s permittivity. When there is no correlation, more variations are observed 

near the mean value, since the correlation lowers the variance of the permittivity.  

6.4  Random Medium with Correlation in Probability Space 

In this section, we revisited the differential microstrip line example as shown in 

Figure 6-3. While we keep the geometry the same, we assume the material of the 

substrate is homogeneous and lossy with random permittivity and conductivity. The 

permittivity and conductivity are considered as joint Gaussian random variables. The 

term to describe the loss of the transmission line is called loss tangent  , which is 

defined in (6.40) 

0 0 (2 )r r f

 


     
  ,                      (6.40) 

where   is the conductivity of the substrate material, and f is the measured frequency. 

The mean and standard deviation are 4.1 and 0.41 for the permittivity and 0.03 S/m and 

0.003 S/m for the conductivity. 0.03 S/m will give a loss tangent of 0.015 at 9.4 GHz. 
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Following the mapping procedure as defined in (6.30), we can obtain two independent 

“permittivities” and “conductivities.”  Figure 6-27 to Figure 6-30 show how the mean 

and standard deviation are affected by the mapping with the different correlation 

coefficient  .  

 

Figure 6-27 Permittivity mean varying with different correlation coefficient. 

  

Figure 6-28 Permittivity deviation varying with different correlation coefficient. 
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Figure 6-29 Conductivity mean varying with differernt correlation coefficient. 

 

 

Figure 6-30 Conductivity deviation varying with different correlation coefficient. 

 

For the new mapped mean value, permittivity will increase with a positive 

correlation coefficient and decrease with a negative correlation coefficient, while 

conductivity will increase with a negative correlation coefficient and decrease with a 
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positive correlation coefficient. For the new mapped standard deviation, permittivity will 

always increase more than the previous value and achieve its minimum when there is no 

correlation present; the smaller random variable will always decrease and achieve its 

maximum when there is no correlation present. It is symmetric to the point 0  . For 

both mean and standard deviation, permittivity has changed very little while the 

conductivity has changed a lot. Back to (6.15) and (6.16), the new variables’ mean and 

standard deviation are basically a weighted summary for both of the two original 

variables. When one variable is much larger than the other one, which is the case in this 

problem, the rotation angle becomes very small. At two particular points 1   , the 

conductivity vanishes. This violates the original assumption for a lossy medium. That is 

because the joint PDF as shown in (6.13) will blow up for 1   . 

We performed five sets of simulation with five different correlation coefficients, 

which are 0.5, 0.2,0,0.2,0.5    . The input value for permittivity and conductivity are 

listed in Table 6-4. Each case requires 22 simulations, determined by 2D sparse grid 

method. 

 
Table 6-4 Permittivity and conductivity input values for different correlation coefficients 

 

Correlation 

 coefficient 

Permittivity 

mean 

Permittivity 

standard 

deviation 

Conductivity 

mean 

Permittivity 

standard 

deviation 

-0.5 4.09986 0.410003 0.0450003 0.00259806 

-0.2 4.09995 0.4100004 0.0360003 0.00293938 

0 4.1 0.41 0.03 0.003 

0.2 4.10004 0.4100004 0.0239997 0.00293938 

0.5 4.1008 0.410003 0.0149993 0.00259806 
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Figure 6-31 Mean value of the differential output voltage varying with different correlation 

coefficient. 

 

 

Figure 6-32 Standard deviation of the differential output voltage varying with different 

correlation coefficient. 
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According to [64], the characteristic impedance of a microstrip line is given by 

0
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In the above five cases, the geometry factor remains unchanged; the mean value of 

permittivity changes very little, so the characteristic impedance of the transmission line 

changes very little. When feeding the TL with a 50   resistance, from a voltage divider 

point of view, the actual voltage injected into the transmission line will be almost the 

same. This explains why the voltage amplitudes at the beginning of the mean values are 

almost the same. However, with the correlation coefficient decreasing, the mean value of 

the conductivity increases, which means the conducting loss of the substrate material 

increases. So with the signal propagating on the transmission line, the difference between 

the signals’ amplitude would become larger and larger. From Figure 6-31, the standard 

deviations between these five cases are almost the same. And the output signal’s standard 

deviations are also almost the same. It indicates the correlation would affect the output 

variations very little. 

     Next, for the case when 0.5  , we validate the results with the MC method. The 

input data are determined by a correlated bivariate Gaussian random generator. As shown 

in Figures 6-30 and 6-31, both mean and standard deviation have good agreement. It tells 

us that for bivariate correlated Gaussian random variables, after the linear mapping 

technique, the current existing method used to deal with independent random variables 
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such as the SG method can still be applied without losing accuracy. 

 

 
Figure 6-33 Mean value comparison of the differential output voltage by sparse grid method and 

Monte Carlo method when 0.5  . 

 

 
Figure 6-34 Standard deviation comparison of the differential output voltage by sparse grid 

method and Monte Carlo method when 0.5  . 
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6.5  Summary 

In this chapter, random medium with correlation in both physical space and 

random space are investigated. Due to the correlated nature of these two kinds of 

problems, a traditional uncertainty analysis method cannot be applied since it requires the 

probability space’s ability to be characterized by a set of independent random variables. 

To deal with the spatial correlation, the Karhuen-loeve expansion can be used to 

decompose the covariance function into a set of eigenvalues and eigenfunctions. In this 

way, the stochastic process can be expressed by its mean value and a sum of higher order 

variations in terms of eigenvalues, eigenfunctions. and a set of independent random 

variables. For the correlation in the probability space, a linear mapping, or equivalently 

coordinate rotation technique, can be applied. After the linear transformation, two 

correlated Gaussian random variables will be uncorrelated (independent). In both of these 

two cases, the spare grid based stochastic collocation method can be directly borrowed 

from Chapter 5. And numerical examples prove them to be efficient ways to deal with 

this kind of correlation problems. 
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Chapter 7 Conclusions and Future Work 

7.1  Conclusions 

Stochastic analysis in the electromagnetic (EM) simulation is of great importance 

for a better understanding of the true physics associated with uncertainties. This 

dissertation introduces stochastic methods into the area of electromagnetic simulations. 

Due to the complex nature of EM problems, the primary goal is to find efficient ways to 

determine uncertainty quantifications so as to reduce the total computational cost. 

Compared to the traditional Monte Carlo sampling method, the proposed alternative 

methods such as the generalized polynomial chaos (gPC) method-based stochastic 

Galerkin scheme (SGS) and the sparse gird method-based stochastic collocation scheme 

(SCS) prove to be much more efficient. 

As for computational time, SGS is favorable compared to the MC method in that it 

turns the original problem into solving the expansion coefficients. All the expansion 

coefficients can be updated the same as in the FDTD algorithm. Thus, only one 

simulation is required. The drawback with this feature is the demand for more memory 

requirements. Besides, it is relatively difficult to implement. As shown in Chapter 4, 

modifications are needed due to the coupling between the expansion coefficients. When 

large scale or complex problems are considered, tons of codes for the deterministic case 

might already exist. Further modification takes too much effort or is even impossible to 

implement.  

The SCS has an obvious advantage in that it only requires repetitive realizations of 

existing deterministic solvers as discussed in Chapter 5, similar to the MC method. By 
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properly choosing interpolation polynomials, it can inherit the fast convergence as in the 

gPC method. And by using an efficient sampling technique such as the sparse grid 

method, the total number of realizations needed can be greatly reduced, especially in the 

multi-dimensional problems. The non-intrusive nature makes it even more powerful and 

useful with the help of commercial software used to analyze complex structures. 

The biggest contribution of this dissertation is the stochastic analysis with the 

presence of correlations, both in spatial coordinates and probability space. The key step is 

to decompose the random process or transform the correlated random variables into a set 

of independent random variables. In this way, the stochastic collocation method can be 

applied. 

7.2  Future Work 

Many state-of-art stochastic computational techniques are largely based on the 

stochastic finite element method. Detailed reviews can be found in [75][76]. There are 

still many more aspects in the area of stochastic modeling that remain challenging and 

need further research effort. As a direction, several important areas of future work are 

listed below. 

For the gPC-based stochastic Galerkin method, despite the computational cost 

concern, there are some problems observed for this kind of implementation such as long 

term integration and discontinuity. To handle this problem, the so called multi-element 

gPC method is proposed [77][78] . Furthermore, for multi-dimensional problems, the 

implementation of the gPC method into the existing EM solver needs more detailed 

investigation. 

The stochastic collocation scheme is highly preferred in the statistical modeling of 
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EM problems, in which the selection of collocation points in critical. The sparse grid 

method proves an efficient way to deal with this. There are some other methods such as 

Stroud’s rule of degree-2 and degree-3 [79]-[81], which is a better way when the problem 

dimension is much greater than one. Also, the adaptive sparse grid method [82] is 

proposed to further reduce the computational cost. Many numerical examples in the area 

of high-speed circuits are studies in this dissertation using the collocation method. There 

are a lot more applications that we can look into such as antenna array design [83][84], 

computational study of the human body’s exposure to RF field generated by MRI coil 

[87][88] , etc. 

The Karhuen-Loeve expansion provides a good way to characterize a random 

process, where the covariance function plays an important role. Throughout the analysis 

in Chapter 6, we are assuming the covariance decays with distance. While it is a 

reasonable assumption from intuitive thinking, whether it can be applied in a particular 

problem remains an open question. Material’s spatial correlation is an interesting topic as 

shown in [89]. The weave of FR4 material can be modeled as a two-dimensional 

correlation random process. The remaining task is to extract a covariance kernel that is 

capable of describing the material’s electrical property using the measurement date. For 

the correlation in the probity space, different types of random variables’ correlation and 

their de-correlation techniques require further study. 
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