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Abstract 

Magnetic resonance imaging (MRI) is one of the most effective and widely used 

noninvasive imaging techniques for disease diagnosis, due to its superior performance in 

soft tissue imaging without harmful ionizing radiation. However, the radiofrequency (RF)-

induced heating which causes temperature rises and tissue burns, is a major hazard for 

patients with implantable medical devices to have an MRI. Recently, the RF-induced 

heating for passive implantable medical devices (PIMDs) has been carefully assessed to 

clarify the safety conditions for MRI examination in standard and fully controlled 

environments. However, these assessment needs costly measurements or numerical 

simulations which can take a relatively long time. Therefore, it is not applicable in 

providing the RF-induced heating of all available configurations for diverse configurations, 

for fast predicting the RF-induced heating in the design stage, or estimating the potential 

risks for patients with unlabeled implantable devices in emergency situations, etc. It is 

necessary to provide a fast prediction method of RF-induced heating in standard and fully 

controlled conditions or environments for different kinds of implantable medical devices. 

Numerical modeling and simulations are conducted to study the RF-induced 

heating for general PIMDs, such as commonly used plate systems, and external fixators, in 

a 1.5 T or 3 T magnetic resonance (MR) environment. RF-induced heating for various 

configurations of the implantable medical devices in the phantom that covers possible 

clinical scenarios is investigated to be the ground truth data.  Then, the neural networks 

(NNs) can be used as the surrogate model to train and predict the RF-induced heating 

against various configurations for different kinds of devices. To get accurate prediction 

performance, different architectures of NNs are applied to predict the RF-induced heating 
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of the implantable medical devices based on numerical or measure results. To validate the 

NNs, part of the ground truth data was used for training, while the rest were used to test 

the performance. Once the NNs had been trained, the possible hazard of the new 

implantable medical devices with predefined configurations would be clarified.  
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 Introduction 

Implantable medical devices are widely used in clinical treatments to diagnose 

damaged biological tissues or structures. Typically, the general passive implantable 

medical devices (PIMDs) are composed of plate and serval screws, which could represent 

the widely used implantable devices for bone trauma and fracture treatments. Different 

configurations with variation in dimension could be applied to treat certain specific bone 

fractures based on the patient’s conditions. For patients with severe bone fracture 

conditions, implantable devices with complex shapes are needed to support bone 

repairment.  

Magnetic resonance imaging (MRI) is one of the state-of-the-art imaging 

techniques that have superior performance in disease diagnosis due to its benefits of non-

invasion and capability to discriminate soft tissues. However, PIMDs in patients may lead 

to localized radiofrequency (RF) energy deposition in tissues during the MRI procedure. 

The metallic parts of these implantable medical devices will interact with the 

electromagnetic field from the RF coil. During such interactions, a surface current is 

induced on the devices to generate a scattering field to satisfy the boundary condition. 

Therefore, a strong total electromagnetic field could be occurred and induced heating if the 

current flows into the human tissue and concentrates at the tip of devices. Such RF-induced 

heating can be high enough to cause unintentional tissue damage and device malfunctions. 

Thus, RF-induced heating is a major hazard for patients with implantable medical devices 

during MRI procedures. It is necessary to fully evaluate the RF-induced heating for the 

implantable medical devices to clarify the safe conditions so that patients can proceed to 

the MRI examination. 
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Nowadays, both experiment measurement and numerical simulation approaches 

can be performed to evaluate the RF-induced heating [1-6]. For the PIMDs, the RF-induced 

heating is assessed in a standard experiment measurement or numerical simulation 

approach per the American Society for Testing and Materials (ASTM) standard F2182-11a 

[7]. For the experiment measurement approach, many efforts have been focused on the 

measurement of RF-induced heating inside phantom [1-3], since in-vivo RF-induced 

heating evaluation is very expensive and sometimes can only be performed in animals  [8-

10].  For the numerical simulation approach [4-6], anatomical human models or phantom 

models were used to assess the RF-induced heating. However, accurately full-wave 

modeling the submillimeter structure of the implantable medical devices is very 

challenging and time-consuming. Consequently, neither experiment measurement nor 

numerical simulation is efficient to evaluate the RF-induced heating for implantable 

medical devices. 

To ensure the safety of patients, the safe conditions for some individual implantable 

devices have been carefully studied following these conditions [11-13]. However, due to 

inefficient experiment measurements or numerical simulations, it is difficult to use a simple 

reference studied case to represent the possible situations or to evaluate the RF-induced 

heating for each situation. For example, to fully investigate the RF-induced heating of 

orthopedic devices under different situations, various configurations of the devices with 

variation in dimensions were evaluated in the heterogeneous human body under different 

MRI environments [14]. The recent research [15] evaluates RF-induced heating for a 

typical cochlear implant system by investigating thousands of configurations with a 

different combination of factors, such as lead trajectory, lead type, human model, and MRI 
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landmark.  Therefore, it is not applicable in many scenarios, such as providing the MRI RF 

exposure of all available configurations for diverse device configurations, for fast 

predicting the MRI RF exposure in the design stage, or estimating the potential risks for 

patients with unlabeled implantable devices in emergency situations, etc. A commonly 

used multi-configuration implantable device can have thousands to millions of different 

configurations to cater to clinical requirements, thus brute-force one-by-one RF-induced 

heating assessment is too costly and almost infeasible. A complexity-reduced method was 

suggested in [16], but the method can’t provide MRI RF exposure for each configuration 

and may underestimate the possible worst-case situation [17, 18]. 

Preliminary studies have indicated that neural networks (NNs) could be used to 

predict the MRI RF-induced heating for the simple passive implantable devices in an in-

vitro way per the American Society for Testing and Materials (ASTM) F2182 standard [19, 

20]. To parametrize the medical devices and obtain the ground-truth training data, the step 

size for a specific geometrical feature determines the training set. However, the criterion 

to determine the minimum training data set was not identified which is critical for fast 

prediction by using NNs.  Moreover, the fine 3D spatial information of the complex shape 

implantable medical devices that are related to MRI RF-induced heating has not been taken 

into consideration. Some of the unnoted geometrical changes such as sharpness of screw-

tip, kurtosis or skewness of plate-end, small changes on the surface, translation, and 

rotation, etc. play important roles in MRI RF-induced heating evaluation.   

It is essential to fully validate the NNs approach which can provide RF-induced 

heating fast evaluation or prediction for the implantable medical devices by using 

minimum training data set. The RF-induced heating for patients who have been implanted 
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PIMDs could be underestimated if the devices were modeled by simplified geometrical 

structure or measured inside the homogeneous ASTM phantom. This is dangerous for 

patients implanted with these kinds of devices, thus should prevent the patients from MRI 

examination. This can also be alleviated if NNs can provide the feasibility of fast and 

accurate RF-induced heating evaluation for these PIMDs. Therefore, the applicability of 

NNs to fast evaluate the in-vivo RF-induced heating, even the possibility of fast prediction 

for complex geometrical shape implantable medical devices should be validated.   
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 Problem Statement 

With the widespread application of MRI, it is important to ensure the safety of patients 

due to RF-induced heating under different clinically relevant conditions. The factors or 

conditions, such as different kinds of devices with different configurations or components, 

different implantation positions, different imaging conditions, different coil settings, 

different stature, and different landmarks of patients will contribute to different levels of 

RF-induced heating. To conservatively evaluate the RF-induced heating these conditions 

need to be carefully studied by experimental measurement or numerical simulation based 

on standard procedures as shown in Figure 1. However, both experimental measurement 

and numerical simulation are very time-consuming or need high computational power to 

support the numerical calculation.  Thus, the benefits of MRI are limited in many scenarios, 

such as providing the MRI RF-induced heating of all available configurations for diverse 

device configurations, fast predicting the MRI RF exposure in the design stage, or 

estimating the potential risks for patients with unlabeled implantable devices in 

emergencies, etc.  NNs can work as a surrogate model to replace time-consuming 

experimental measurements or numerical simulations. The safety labeling of the implants 

(MR safe, MR conditional, or MR unsafe) can be fast decided by the predicted specific 

absorption rate (SAR) or heating from the NNs from a wide range of clinically relevant 

factors.   
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Figure 1. RF-induced heating related to various clinically relevant factors and evaluated by 

standard measurement or simulation. 

Preliminary studies have indicated that neural networks (NNs) could be used to predict 

the MRI RF-induced heating for the simple passive implantable devices within predefined 

clinically relevant conditions [19, 20]. Numerical simulations are still needed to get the 

training data of the NNs for the multi-configuration devices. For a multi-configuration 

system with N parameters and 𝑀𝑛 optional values for the nth parameter, the total number 

of configurations is N nM . Thus, it’s computationally expensive and practically 

prohibitive to get all the simulations. Furthermore, some optional values inside the 

parameters can be redundant for NNs. Therefore, to reduce the computational burden of 

numerical simulations and training time of the NNs by using the minimum number of 

configurations, the proper criterion to determine the training data should be proposed to 

address the issue. 

Although the RF-induced heating for simple-shape implantable medical devices 

inside ASTM phantom has been used to validate the ANN, the complex shape devices are 
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not considered in previous studies. Complex shape implantable medical devices cannot be 

parameterized by simple geometrical features (length, width, depth, etc.). Thus, it’s not 

feasible to predict the RF-induced heating for complex shape implants using the NNs 

approach with simple geometrical features. The notable detail three-dimensional (3D) 

information will be lost if only using simple geometrical features which is important for 

accurate RF-induced heating evaluation. Many structures cannot be described using simple 

parameters such as shown in Figure 2.  

 

Figure 2. Examples of devices that cannot be parameterized (a) screw tip, (b) sharp 

corner, and (c) diameter not constant. 

The edges and corners of the main structure of the complex shape medical devices 

also may contain slightly small variations. Based on the idea that electromagnetic 

simulations will use meshes in the simulations, we study the possibility of predicting the 

results of RF-induced heating use the device meshes with the CNN network. 

Based on the analysis and instruction above, to fast evaluate the RF-induced heating 

for various implantable medical devices, the NNs approach still needs to be validated: 

i. How to select the minimum number of configurations and which configurations 

should be selected for a given multi-configuration device?  

ii. Can NNs adapt to the RF-induced heating fast prediction by using the minimum 

number of configurations? If so, how is the performance? What are the major 
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factors affecting the in-vivo RF-induced heating? 

iii. Whether the NNs can be used to fast evaluate or predict the complex shape of 

medical implantable devices?   
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 Preliminary Literature Review 

U.S. Food Drug Administration (FDA) recommended standard procedures in 

ASTM F2182-11a to evaluate the RF-induced heating of PIMDs [7]. The RF-induced 

heating among all possible configurations for the specific PIMDs was exhaustively studied 

by numerical simulation in [12, 16, 21]. These previous studies [22-28] have demonstrated 

that the RF-induced heating was related to multiple factors such as device geometrical 

dimension, patient orientation, landmark positions, etc. To reduce the computation 

complexity, Zheng. el [29] simplified the problem by searching for the worst-case situation 

by considering different combinations of configurations. However, it is still limited in the 

RF-induced heating efficient evaluation for each configuration under different situations. 

NNs have been widely applied in radiology as the modeling tool for medical diagnosis and 

have demonstrated superior outcomes. Automated fracture detection and classification 

using the neural network were achieved very high sensitivities [30, 31]. Automation of 

liver biometry across different imaging modalities and detection of myocardial delayed 

enhancement patterns can be facilitated by deep neural networks [32, 33]. Pulmonary 

nodule, urinary stone, anterior cruciate ligament tear within the knee joint, and acute 

ischemic large vessel occlusion stroke can be diagnosed and assessed by innovative models 

[34-37].  The ANN was first proposed in [19] to fast predict the MRI RF-induced heating 

for simple implantable plate devices and fully validated in [20]. The RF-induced heating 

of a generic stent with arbitrary orientation could also be fast predicted by using ANN [35].  

However, the ASTM phantom environment is different from clinical situations, many 

researchers have studied the difference of RF-induced heating between the ASTM phantom 

and the human body [4, 7, 10]. Thus, the validity of ANN needs carefully studied or adapt 
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to in-vivo RF-induced heating. Besides, the fast evaluation of RF-induced heating using 

ANN only studied the simple-shape PIMDs in-phantom environment.  In clinical testing, 

multi-configuration devices may result in a very large number of possible device 

configurations and complex shape components [16]. 

Although the present literature already shows the potential applicability of NNs to 

facility the fast evaluation of RF-induced heating of simple-shape PIMDs. The proper 

criterion to determine the training data should be addressed to reduce the computational 

burden of numerical simulations and training time of the NNs by using the minimum 

number of configurations. The variation of the device itself and different combinations of 

configurations are contributed to the difference in RF-induced heating, and thus different 

safe conditions. Hence, the NNs must be improved to be capable of handling more complex 

cases, such as fast prediction or evaluation of RF-induced heating for complex shape 

implantable medical devices.   
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 Objectives 

Preliminary studies have shown that ANN was one feasible solution to provide a 

fast prediction of the MRI in-vitro RF-induced heating for simple PIMDs. However, the 

criterion to determine the minimum training data set was not identified. Moreover, the fine 

3D spatial information related to RF-induced heating has not been taken into consideration, 

which is critical for standard RF-induced heating evaluation. Some of the small geometrical 

changes play important roles in MRI RF-induced heating evaluation.  

In this study, numerical simulations were first performed for specific PIMD to get 

the ground truth data which can be used to validate the NN. To select the minimum number 

of configurations and reduce the computational burden of multi-configuration devices, a 

training data selection criterion was first determined. The determining criterion was 

validated by different types of implantable medical devices.  For the fast evaluation or 

prediction of RF-induced heating for the complex shape implantable medical devices, the 

generic complex shape of multi-configurational devices was used to validate NN. With 

these thorough validations, the advantages of the NNs for RF-induced heating fast 

evaluation will be identified.  Once the NNs were validated, the safe conditions for various 

kinds of implantable medical in different clinical scenarios can also be clarified and prevent 

patients from having potential undesired heating hazards undergoing MRI examination. 
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 Mechanism Behind Neural Network and RF-induced Heating 

 Mechanism Behind Neural Network 

The neural networks learning task needs to define a sample space which consists of 

input space 𝑿  and output space 𝒀 . For a sample (𝒙, 𝑦) ∈ 𝑿 × 𝒀  in the sample space, 

suppose the relation between 𝒙  and y can be described by an unknown real mapping 

function 𝑦 = 𝑔(𝒙).  The objective of the neural networks is to find a model that is similar 

or close to 𝑔(𝒙).  

The actual form of the mapping function 𝑔(𝒙) is unknown. Therefore, we can only 

hypothesize a set of functions ℱ based on experience, which is called hypothesis space. 

Then, select an ideal hypothesis 𝑓∗ ∈ ℱ by observing its characteristics on the training set 

𝐷.  The hypothesis space can be expressed as 

 ℱ = {𝑓(𝑥; 𝜃)|𝜃 ∈ ℝ
𝐷

},  (1) 

where 𝑓(𝒙; 𝜃)  is the function or model with a parameter of 𝜃 , 𝐷  is the number of 

parameters. Generally, the hypothesis space can be classified into two categories, linear 

and non-linear hypothesis space.  If the model is in linear hypothesis space,  

 𝑓(𝑥; 𝜃) = 𝑤𝑇𝑥 + 𝑏,  (2) 

where 𝜃 is the parameter of the model, and the parameter 𝜃 contains the weight vector 𝒘 

and bias b. Furthermore, the model is commonly seen in a non-linear hypothesis space, and 

consist of non-linear basic functions 𝜙(𝒙), 

 𝑓(𝑥; 𝜃) = 𝑤𝑇𝜙(𝑥) + 𝑏,  (3) 

where 𝜙(𝒙) = [𝜙1(𝒙), 𝜙2(𝒙), … , 𝜙𝐿(𝒙)]𝑇 is a vector that consists of 𝐿 non-linear basic 

functions. If 𝜙(𝒙) itself is a learnable basic function, 

 𝜙𝑘(𝑥) = ℎ(𝑤𝑘
𝑇𝜙′(𝑥) + 𝑏𝑘), ∀1 ≤ 𝑘 ≤ 𝐾,  (4) 
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where ℎ(. ) is non-linear function or activation function, 𝜙′(𝒙) is another basic function, 

𝒘𝑘 and 𝑏𝑘 are learnable parameters, then 𝑓(𝒙; 𝜃) will be equivalent to a neural network. 

In this study, the rectified linear units (relu) non-linear function [38] was used. 

In the case of multi-channel and multi-dimensional input data, a neural network can 

convert the composite function of each layer into the sum of several identical non-linear 

basic functions, i.e. the convolution kernels in a convolutional neural network [39]. 

An ideal neural network model 𝑓(𝒙; 𝜃) should get all the same (𝒙, 𝑦) as the real 

mapping function 𝑦 = 𝑔(𝒙), 

 |𝑓(𝑥; 𝜃) − 𝑦| < 𝜀, ∀(𝑥, 𝑦) ∈ 𝑋 × 𝑌,  (5) 

where 𝜖 is a very small positive real value.  To quantitively measure the difference between 

the predicted value �̂� = 𝑓(𝒙; 𝜃) and the actual value y, one common cost function, mean 

absolute percentage error (MAPE) could be used,  

 𝑀𝐴𝑃𝐸(𝑦, �̂�) =
1

𝑛
∑ (|�̂�𝑖 − 𝑦𝑖|

𝑛
𝑖=1 /𝑦𝑖),  (6) 

where n is the number of measured or predict data points in the hypothesis space . 

It is an optimization problem to find the best model 𝑓(𝒙; 𝜃) as the training process 

of the neural network is to find the best model parameters 𝜃∗ to make the MAPE as small 

as possible, 

 
* arg min ( ).MAPE =   (7) 

A general neural network usually contains many hidden layers, different weights, and 

biases for each layer. Then, the training process of the neural networks becomes a non-

convex optimization problem. The simplest and commonly used optimization algorithm 

for neural networks is gradient descent, 

 
1

( )
,t t

MAPE 
  


+


= −


  (8) 

where 𝜃𝑡 is the parameter at t-th iteration, 𝛼 is the searching step size or learning rate. In 
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this study, the neural network was optimized with Adam's stochastic optimization 

algorithm [40].  

 Mechanism Behind RF-induced Heating 

The RF heating of the medical implants under MRI environments is related to 

various parameters, such as RF coil type, subject type, subject loading position, 

implantation location, the geometry, and properties of medical implants, etc.  In the field 

of electromagnetics, the energy dissipated in the lossy biological tissues is described via 

the SAR, 

 
2

( ) ( ) ( ) ( ),
2 2

t t tSAR r E r E r E r
 

 

= =   (9) 

where 𝐸𝑡(𝑟) is the total electric field, and σ, ρ is the conductivity and density of biological 

tissue respectively. Thus, the total SAR is related to the total electric field, as well as the 

conductive current density on the surface of the device.  

The RF-induced heating near implantable devices can be simplified as a scattering 

problem of implanted structures buried in the lossy medium under specific sources. The 

incident field radiating from the RF coil penetrates the ASTM phantom or human body, 

interacts with the metallic devices. A surface current is induced on the device during such 

interactions to generate a scattering field that satisfies the boundary condition.  The surface 

current density can be calculated as  

 ( ) ( ) ( ),sJ r H r j D r= −   (10) 

 

where 𝐷(𝑟) is the electric flux density and 𝐻(𝑟) is the magnetic field. Due to the limit of 

boundary conditions, the current density flowing on the surface of the perfect electric 

conductor would be related to the tangential electric field or perpendicular magnetic field. 
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The current on the implants would flow into the human tissue at the tip of the device so 

that a strong total electric field could be observed.  Due to this intense power flow, a hotspot 

would probably show up at the end of the device.  Thus, the total electric field at the tip of 

the device could be separated from the vector incident electric field 𝐸𝑖(𝑟𝑡𝑖𝑝) and scattering 

electric field 𝐸𝑠(𝑟𝑡𝑖𝑝), which could be described as 

 ( ) ( ) ( ).t i s

tip tip tipE r E r E r= +   (11) 
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 Parameterized NN for in-vitro Condition of Fully Implanted 

Devices 

In this study, fully implanted devices that in in-vitro conditions are used as the study 

subjects. One simplest rod was created as a study example to determine the criterion for 

the training data set. Then three representative fully implanted devices were used to 

validate the criterion for the training data set. To obtain the ground-truth data, the RF-

induced heating for these PIMDs was numerically investigated based on ASTM 2182 11-

a inside the ASTM phantom.  Numerical simulations were conducted in SEMCAD X 

(SPEAG, V14.8.6.1) software package based on the finite-difference time-domain (FDTD) 

method. The NNs architecture was constructed based on the validating cases which contain 

different inputs. At last, the NNs were trained by the training data set determined by the 

criterion, while the rest were used for fast evaluation of RF-induced heating and testing 

performance of the NNs.  

 Neural Network 

w

b

+

Hidden Layer 1

11

Input

1

Outputw

b

+

Hidden Layer 2

w

b

+

Output

256 256 1

w

b

+

Hidden Layer 3

128
 

Figure 3. The architecture of the NN. 

A simple three-layer feed-forward network was used to fit the SAR [19, 20], which 

had 3 hidden layers and 1 output layer as shown in Figure 3. The training set with different 

step sizes was used for training. The NN was used to predict the RF-induced heating for 
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all cases and the worst-case. The number of inputs was 11 (random parameters) and the 

number of the output was 1 (the SAR value).  Non-uniform numbers of hidden layers were 

used in this study. The first hidden layer was added with 256 neurons to capture the non-

linear relationship between the input layer and the hidden layer in the high dimensional 

space. Then the number of neurons was decreased gradually to map the high dimensional 

features to lower-dimensional features between the hidden layers. Thus, the final output 

layer was able to learn the linear relationship from the low dimensional features in the last 

hidden layer.  

 The Criterion for Training Data Set 

The simplest rod was created as a study example as shown in Figure 4. Rod length 

varies from 80 mm to 500 mm. The diameter was set to 3 mm. Numerical simulations were 

conducted at both 1.5 T and 3 T to get the RF-induced heating, in terms of peak 1/10 gram 

(g) averaged specific absorption rate (SAR1/10g) in the ASTM phantom. The rod was placed 

at the vertical center on the right side 2 cm away from the phantom wall and at the center 

along the bore direction. All the results were normalized to a whole-body SAR of 2 W/kg. 

 



18 

 

 

 

Figure 4. (a) rod, (b)simulation in phantom, (c) simulation results in 1.5T. 

6.2.1 Training Set 

A total number of 86 cases were studied as shown in Table 1. For each MRI 

operating frequency, the training set was selected as step size of 10 mm, 20 mm, 30 mm, 

40 mm, 50 mm, and 60 mm. The worst-case rod length was not included in the training set. 

The worst-case rod length at 1.5 T is 190 mm with a SAR10g=76.44 W/kg and SAR1g = 

268.71 W/kg. The worst-case rod length at 3 T is 100 mm with a SAR10g = 33.35 W/kg and 

SAR1g = 120.10 W/kg. 

Table 1. Study of Rod Length. 

Parameters 𝑹𝒐𝒅 𝑳𝒆𝒏𝒈𝒕𝒉 𝑺𝒕𝒆𝒑 𝑺𝒊𝒛𝒆 No. of Values 

1.5 T [80~500] mm 10 mm 43 

3T [80~500] mm 10 mm 43 

 

6.2.2 Results 

The ANN results at a 1.5 T system with a different step size of rod length were 

shown in Figure 5 and Figure 6. The neural network was first trained with a small step size 
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of 10 mm and the worst-case configuration was excluded from training. Then, the step size 

of rod length will be increased by 10 mm each time to validate the predicted results of the 

network. The Worst-case error (Ew) denotes the error between true worst-case SAR and 

predicted worst-case SAR. The overall error (Ea) denotes the mean error between all SAR 

and all predicted SAR. The prediction errors were small when the step size of rod length 

was less than 50 mm.  However, the prediction errors of SAR10g will larger than 4.41% 

when the step size of rod length was larger than 50 mm. Furthermore, the predicted worst-

case SAR10g will be lower than the true worst-case SAR10g and the predicted worst-case 

error will larger than 3.26%. Although the SAR1g was much higher than SAR10g under the 

same frequency, the prediction errors were still small when the step size of rod length was 

smaller than 50 mm.  Therefore, the step size used to select the training set of the neural 

network should be less than 50 mm in a 1.5 T system. 

 
Figure 5.  The ANN results (SAR10g) at 1.5 T system with different step sizes of rod 

length. 
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Figure 6. The ANN results (SAR1g) at 1.5 T system with different step sizes of rod 

length. 

The ANN results at 3 T system with a different step size of rod length were shown 

in Figure 7 and Figure 8. The prediction errors were small when the step size of rod length 

was less than 20 mm.  It is more obvious for the worst-case SAR10g prediction error which 

was larger than 10.54% when the network was trained using a step size of 30 mm. In the 

same circumstance, the worst-case SAR1g prediction error was larger than 6.63%.  In a 3 T 

system, the neural network needs more training samples with a smaller sampling step size 

compared to a 1.5 T system. The step size used to select the training set of the neural 

network should be less than 20 mm in a 3 T system.  
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Figure 7. The ANN results (SAR10g)  at 3 T system with different step sizes of rod length. 

 
Figure 8. The ANN results (SAR1g)  at 3 T system with different step sizes of rod length. 
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Based on the study, to ensure the worst-case heating construct can be identified 

with ANN, it is suggested that one should use dimensional variations between training 

elements should be less than 1/10 of the wavelength. Overall, it should be around 24 mm. 

The wavelength in the lossy medium having both conductivity loss and polarization loss is 

calculated as  
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  (12) 

 

where 𝜆 is the wavelength, 𝑘′ is the real part of the wavenumber in the medium, 𝜇 is the 

permeability of the medium,  𝜖𝑐 is the complex permittivity of the medium, and 𝜎 is the 

electrical conductivity of the medium. The medium used in the study is defined in Clause 

8.2 of the ASTM F2182-11a [x], the plastic box was filled with gelled-saline, which was 

set to be 𝜖𝑟= 80.38, σ = 0.47 S/m both at 1.5 T and 3 T. Thus, the wavelength at 1.5 T 

(𝜆1.5𝑇) is 432.20 mm and the wavelength at 3 T (𝜆3𝑇) is 243.93 mm. 

 

 Gain Analysis for the Neural Network 

The gain of the neural network can be obtained if the criterion for the training set has 

been identified. In this study, the gain of the network was defined as the percentage of data 

saved in the global sample space by using the identified training data set criterion. 

Generally, the parameterized neural network can be used if the implantable medical device 

can be described by several parameters. The dimension of each parameter was bounded in 

a range [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥] . The number of configurations ( 𝑁𝑐  ) needed for numerical 

simulations for one parameter can be calculated as 
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where 𝑑𝑚𝑎𝑥 is the max dimension for the parameter of the device and 𝑑𝑚𝑖𝑛 is the smallest 

dimension for the parameters of the device in clinical applications. 𝜆  denotes the 

wavelength at different operating frequencies under the MRI environment. The global 

sample space can be reduced to a smaller sample space if the device dimension was in a 

continuous sample space. For the device dimension that was in a discrete sample space, it 

also works if the number of values (𝑣) for the parameter satisfied the condition for 𝑣 > 2 

and 𝑣 > 𝑁𝑐.  Otherwise, it’s not necessary to use the identified training data set criterion 

as the global sample space has been very small. Assume that the implants were described 

by 𝑀 parameters, and there were 𝑛 (𝑛 ≤ 𝑀) parameters that can be reduced to smaller 

sample space. Then the gain of the network (𝐺𝑁𝑁) can be defined as  
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where 𝑖 is the i-th parameters, 𝑢 is the 1 unit of the dimension. In this study, 𝑢 = 1 𝑚𝑚, 

and the wavelength (𝜆) should be chosen based on the MRI operating frequency, for 

example, 
𝜆1.5𝑇

10
≈ 24 𝑚𝑚 at 1.5 T system and 

𝜆3𝑇

10
≈ 44 𝑚𝑚.   
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 Application of Compression Implants 

 
Figure 9. Parameters of the general compression plate. 

The general compression plate system can be used as one study subject to validate 

the lambda/10 rule. This type of implant is commonly used to replace missing bone or to 

support fractured bones. The implants can be described by 6 parameters using plate length 

( 𝑙𝑝𝑙𝑎𝑡𝑒 ), plate width( 𝑤𝑝𝑙𝑎𝑡𝑒 ), plate depth( 𝑑𝑝𝑙𝑎𝑡𝑒 ), the screw length( 𝑙𝑠𝑐𝑟𝑒𝑤 ), screw 

diameter(𝑑𝑠𝑐𝑟𝑒𝑤), and screw spacing (𝑠𝑠𝑝𝑎𝑐𝑖𝑛𝑔) as shown in Figure 9.  The detailed device 

dimension was shown in Table 2.  As we can see, the plate length can be in the range from 

50 mm to 300 mm in the continuous space. The plate depth can be 3 mm or 5 mm, the plate 

width can be 10 mm or 20 mm, the screw spacing can be 10 mm or 20 mm, the screw 

length can be in the range from 20 to 100 mm in the continuous space. 
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Table 2. Dimension of General compression plate. 

Parameters Device 

Dimension(mm) 
𝑙𝑝𝑙𝑎𝑡𝑒 [50-300] 

𝑑𝑝𝑙𝑎𝑡𝑒 [3,5] 

𝑤𝑝𝑙𝑎𝑡𝑒 [10,20] 

𝑠𝑠𝑐𝑟𝑒𝑤 [10,20] 

𝑙𝑠𝑐𝑟𝑒𝑤 [20-100] 

𝑑𝑠𝑐𝑟𝑒𝑤 [3,5] 

6.4.1 Numerical Simulations 

Numerical simulations were performed to obtain the ground truth data. In this study, 

for the geometrical features, the minimum step size of lambda/10, and lambda/8 were 

adopted to get all the simulation cases as shown in Table 3. The total number of unique 

configurations at 3T are 1472 and 624 unique configurations at 1.5 T. 

Table 3. Parameter dimensions used for simulations of compress plate. 

Parameters 
3 T 1.5 T 

Dimension(mm) No. of Values Dimension(mm) No. of Values 

𝑙𝑝𝑙𝑎𝑡𝑒 
[50,74,80,98,110,122, 

140,146,170,194,200,218,

230,242,260,266,290,300] 

18 [50,94,105,138,16

0,182,215,226, 

270, 300] 

10 

𝑑𝑝𝑙𝑎𝑡𝑒 [3, 5]  2 [3, 5]  2 

𝑤𝑝𝑙𝑎𝑡𝑒 [10, 20]  2 [10, 20]  2 

𝑠𝑠𝑐𝑟𝑒𝑤 [10,20] 2 [10,20] 2 

𝑙𝑠𝑐𝑟𝑒𝑤 [20,44,50,68,80,92,100] 7 [20,64,75,100] 4 

𝑑𝑠𝑐𝑟𝑒𝑤 [3,5] 2 [3,5] 2 

 

Numerical simulations were conducted both at 1.5 T and at 3 T using a full-wave 

electromagnetic solver based on the FDTD method to get the RF-induced heating in the 

ASTM phantom. Two high passes non-physical RF transmits body coils were adopted to 

model the MRI RF body coil operated at 64 MHz and 128 MHz respectively. The RF coil 
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was loaded with a model of the ASTM phantom. Eight current sources were placed on the 

rungs of the coil to generate a uniform magnetic field inside the coil. Absorbing boundary 

conditions were used on all sides of the simulation boundaries.  

 

Figure 10. (a) The device was placed at the vertical center on the right side 2cm away from 

the phantom wall and at the center along the bore direction. (b) Example of RF-

induced heating under 3 T system. 

The ASTM phantom was a plastic container with a relative dielectric constant 𝜖𝑟 =

3.7  and an electrical conductivity 𝜎 = 0 S/m. As defined in Clause 8.2 of the ASTM 

F2182-11a, the plastic box was filled with gelled-saline, which was set to be ϵr = 80.38 and 

σ = 0.47 S/m at both 64 MHz and 128 MHz. The plate device was placed at the vertical 

center on the right side 2 cm away from the phantom wall and at the center along the bore 

direction (the location which provides maximum and uniform electric field-induced 

heating inside the phantom) as shown in Figure 10.  An example of the RF-induced heating 

of the compression plate device under the 3 T system showed that the hot spot occurred at 

the end of the screw.  In the numerical simulation, all metallic materials were modeled as 
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perfect electric conductor (PEC).  

The non-uniform mesh was used in the simulations to approach the balance 

between accuracy and complexity because the size of the coil, phantom, and devices was 

different. The larger mesh step size can reduce the total simulation time, but the coarse 

mesh cannot represent the device structure. The smaller mesh steps unbearable 

computational burdens and the divergent results. It was determined with several 

convergence analyses that the mesh size of 1 mm was applied to the plate devices. The 

mesh size of the gelled saline was 5 mm, and the plastic box was 10 mm. The grating ratio 

of the mesh size was set to 1.15. To ensure convergence, the simulation time was set for 

25 periods.  The convergence of the numerical simulation is quantified with a Convergence 

Level (CL) which is based on the difference between the last two estimations in the 

frequency domain [41]. Lower CL leads to more accurate estimation but requires longer 

simulation time. All the numerical simulations reached a CL of -35 dB at 1.5 T and -50 dB 

at 3 T as shown in Figure 11. All the results were normalized to a whole-body SAR of 2 

W/kg. 

 

Figure 11. Numerical Simulations Convergence Analysis at (a) 1.5 T and (b) 3T with 25 

periods for Compression Plate. 
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6.4.2 Training Set 

The study parameters with different step sizes at the 1.5 T and 3 T system were shown 

in Table 4. These training sets with different step sizes will be used to train the NN. Once 

it has been trained, it can be validated using the test data which was the whole data set from 

simulation to predict the RF-induced heating.  

Table 4. The training set for general compression plate. 

Parameters 

3 T 1.5 T 

𝝀𝟑𝑻/𝟏𝟎 (mm) 𝝀𝟑𝑻/𝟖 (mm) 𝝀𝟑𝑻/𝟓 (mm) 𝝀𝟏.𝟓𝑻/𝟏𝟎 (mm) 𝝀𝟏.𝟓𝑻/𝟖 (mm) 
𝝀𝟑𝑻/𝟓 
(mm) 

Plate Length 

[50,74,98,122,

146,170,194,2

18,242,266,29

0,300] 

[50,80,110,1

40,170,200,

230, 

260,290,300

] 

50,98,146,1

94,242,290,

300] 
[50,94,138,182,

226,270, 300] 

[50,105,160,2

15,270,300] 

50,138, 

226, 

300] 

Plate Depth [3, 5]  [3, 5]  [3, 5] [3, 5]  [3, 5]  [3, 5] 

Plate Width [10, 20]  [10, 20] [10, 20] [10, 20]  [10, 20] [10, 20] 

Screw 

Spacing 
[10,20] 

[10, 20] [10, 20] 
[10,20] 

[10, 20] [10, 20] 

Screw Length 
[20,44, 

68,92,100] 

[20,50,80,10

0] 

[20,68,100] 
[20,64,100] 

[20,75 ,100] [20,100] 

Screw 

Diameter 
[3,5] 

[3,5] [3,5] [3,5] [3,5] [3,5] 

 

6.4.3 Results 

The simulation results of the compression plate system were shown in Figure 12. It 

has a mean SAR10g of 16.09 W/kg at 3 T system and a mean SAR10g of 30.50 W/kg at 1.5 

T system. The RF-induced heating in terms of SAR1g also was evaluated. The results have 

shown that it has a mean SAR1g of 44.49 W/kg at 3 T system and a mean SAR1g of 83.73 

W/kg at 1.5 T system. The statistics of all the simulation results for the compression 

implants were shown in Table 5.  
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Figure 12. Simulation results for the compression plate system. 

The worst-case SAR10g is 30.45 W/kg and the worst-case SAR1g is 91.85 W/kg for 

the compression plate system at 3 T system. The corresponding worst-case configuration 

at the 3 T system has a plate length of 98 mm, a plate width of 10 mm, a plate depth of 3 

mm, a screw length of 20 mm, a screw diameter of 3 mm, and a screw spacing of 20 mm. 

The worst-case SAR10g is 66.93 W/kg and the worst-case SAR1g is 200.21 W/kg for the 

compression plate system at 1.5 T system. In this case, the corresponding worst-case 

configuration at 1.5 system has a plate length of 194 mm, a plate width of 10 mm, a plate 

depth of 3 mm, a screw length of 20 mm, a screw diameter of 3 mm, and a screw spacing 

of 20 mm. The example of worst-case RF-induced heating for the compression plate system 

was shown in Figure 13. The hot spots usually occurred at the end of the plate. 
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Table 5. Statistics of the simulation results for the compression implants. 

Statistics 
SAR10g SAR1g 

3 T  1.5 T 3 T  1.5 T 

Min 9.19 (W/kg) 13.27 (W/kg) 22.79 (W/kg) 35.86 (W/kg) 

Max 30.45 (W/kg) 66.93 (W/kg) 91.85 (W/kg) 200.21 (W/kg) 

Mean 16.09 (W/kg) 30.50 (W/kg) 44.49 (W/kg) 83.73(W/kg) 

Variance 20.51 (W2/kg2) 129.03 (W2/kg2) 173.09(W2/kg2) 907.11 (W2/kg2) 

 

 

Figure 13. Example of worst-case RF-induced heating of compression plate system at (a) 

1.5 T and (b) 3 T. 

The ANN results (SAR10g) at 3 T system with a different step size of compression 

plate system were shown in Figure 14. The network was first trained by the minimum step 

size of lambda/10.  The results indicated that the correlation coefficient of the ANN was 

larger than 0.90 and the mean absolute percentage error (MAPE) was close to 5.10%. The 

worst-case prediction error was less than 0.60 %.  The ANN has learned the non-linear 

relationship between the parameterized features and the RF-induced heating by using the 

minimum step size of lambda/10. However, the correlation coefficient of the ANN was 
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less than 0.80 and the worst-case error was larger than 12.56% when the ANN was trained 

by the minimum step size of lambda/8. The network will not learn the non-linear 

relationship if trained by using the step size of lambda/5 as the correlation coefficient was 

less than 0.51 and the MAPE was as high as 21.00%.   

 

 

Figure 14. The NN testing results (SAR10g) were trained by different step sizes for 

compression plate system at 3 T system. 

Although the RF-induced heating in terms of SAR1g was much higher than SAR10g,  

the ANN still can be used to predict the worst-case and the overall heating using a minimum 

step size of lambda/10 as shown in Figure 15. The worst-case error was less than 1.66% 
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and the MAPE was less than 4.76% at the 3 T system when the network was trained by the 

minimum step size of lambda/10.  The performance of the network will be low as the worst-

case error will be as high as 14.31% when using a step size of lambda/8. Thus, it’s 

recommended to use a minimum step size lambda/10 for the compression plate fast 

prediction using ANN at the 3T system. 

 
Figure 15. The NN testing results (SAR1g) trained by different step sizes for compression 

plate system at 3 T system. 
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Figure 16. The NN testing results (SAR10g) were trained by different step sizes for 

compression plate system at 1.5 T system. 

The ANN results (SAR10g) at 1.5 T system with different step sizes of compression 

plate system were shown in Figure 16. The network can predict the RF-induced heating 

with a small error rate when it was trained by the step size of lambda/10. The correlation 

coefficient of the network was larger than 0.95 and the MAPE was less than 3.59%.  The 

network can predict the worst-case SAR10g with an error that was less than 0.53%. The 

worst-case error was much larger compared to a minimum step size of 10/lambda when 

trained by the minimum step size of lambda/8.  The performance of the network will not 
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be guaranteed if trained by the step size of lambda/5. The correlation coefficient of the 

network was very small. The prediction error became very large which means the network 

was not converged. The ANN results (SAR1g) at 1.5 T system with different step sizes of 

compression plate system were shown in Figure 17. The results have shown that the ANN 

can be used to predict the SAR1g at 1.5 T system if the network was trained by a minimum 

step size of lambda/10. The worst-case prediction error was less than 4.81% and the MAPE 

was less than 3.92%.  However, the worst-case prediction error will be larger than 15.08% 

if the network was trained by a minimum step size larger than lambda/8. Therefore, it’s 

also recommended to use a minimum step size of lambda/10 for compression plate fast 

prediction at the 1.5 T system. 

 

Figure 17. The NN testing results (SAR1g) trained by different step sizes for compression 

plate system at 1.5 T system. 
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For the device parameters in the continuous sample space, the parameters were swept 

in fine step size. The other parameters remained unchanged when a selected parameter was 

swept. The training data set used a converged step size of lambda/10 and the errors between 

the prediction results and the simulation results both at the 1.5 T and 3 T system were 

shown in Figure 18. The largest predicted error for the plate length was less than 11% and 

the largest predicted error for the screw length was less than 14% at the 3 T system. The 

largest predicted error for the plate length was less than 9% at the 1.5 T system, however, 

the largest error for the screw length was close to 13%. This indicated that the RF-induced 

heating studied by parameters will not follow a simple linear relationship for the 

compression plate system.  

 

Figure 18. NN prediction error for compression plate system with a fine step of 10 mm. 

For the compression plate system, there are two parameters used for the ANN that 

can be reduced to smaller sample space. One of the parameters is the plate length. Another 

parameter is the screw length. It’s recommended to use a converge step size of lambda/10 

to get more accurate prediction results. Therefore, the gain of the network (𝐺𝑁𝑁) for the 
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study of compression plate system at 1.5 T system is 𝐺𝑁𝑁(1.5𝑇) = [1 −
1

(24)2] ≈ 99.82%. 

The gain of the network (𝐺𝑁𝑁) for the study of compression plate system at 3 T system is 

𝐺𝑁𝑁(3𝑇) = [1 −
1

(44)2] ≈ 99.94%.  

 

 Application of Cervical Plate System 

 
 

Figure 19. Cervical Plate System Parameters. 

The cervical plate system is commonly used for the treatment of cervical 

degenerative diseases, trauma, and tumor.  The device can be parameterized by plate length, 

screw length, screw spacing, and screw diameter as shown in Figure 19.  The dimension 

of the cervical plate system was shown in Table 6, the plate length was in the range from 

20 mm to 130 mm in the continuous space. The plate width can be 10 mm or 20 mm, screw 

length can be 3 mm or 5 mm, screw diameter can be 5 mm or 10 mm, the screw spacing 

can be 20 mm to 135 mm in the continuous space. 
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Table 6. The device dimension of the cervical plate system. 

Parameters Device 

Dimension(mm) 
Plate Length [30-140] 

Plate Width [18,25] 

Plate Depth [3,5] 

Screw Length [10,20] 

Screw Diameter [3, 5] 

Number of Holes [1,2,3,4] 

 

6.5.1 Numerical Simulations 

Numerical simulations were performed to obtain the ground truth data. In this study, 

for the geometrical features, the minimum step size of lambda/10, and lambda/8 were 

adopted to get all the simulation cases as shown in Table 7. The total number of unique 

configurations at 3T is 528  and 320 unique configurations at 1.5T. 

Table 7. Parameter dimensions used for simulations of cervical plate system. 

Parameters 
3 T 1.5T 

Dimension (mm) No. of Values Dimension (mm) No. of Values 

Plate 

Length 

[30, 54, 60,78, 90, 

102, 120, 126,140] 
9 

[30, 74, 85, 

118,140] 
5 

Plate Width [18,25] 2 [18,25] 2 

Plate Depth [3,5] 2 [3,5] 2 

Screw 

Length 
[10,20] 2 [10,20] 2 

Screw 

Diameter 
[3, 5] 2 [3, 5] 2 

Number of 

Holes 
[1,2,3,4] 4 [1,2,3,4] 4 
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Figure 20. Numerical Simulation of the Cervical Plate Conducted at 3T: (a) Front view, (b) 

Side View (c) Example of the RF-induced Heating. 

Numerical simulations were also performed both at 1.5 T and 3 T system based on 

the FDTD method to get the RF-induced heating in the ASTM phantom.  The high pass 

non-physical RF transmits body coil and the ASTM phantom were the same as the study 

of compression plate system. The cervical plate device was placed at the vertical center on 

the right side 2 cm away from the phantom wall and the center along the bore direction as 

shown in Figure 20.  An example of the RF-induced heating of the complex shape plate 

device under the 3 T system showed that the hot spot occurred at the end of the plate.  In 

the numerical simulation, all metallic materials were modeled as perfect electric conductor 

(PEC). 

The non-uniform mesh was used in the simulations. A mesh size of 1 mm was 

applied to the plate devices. The mesh size of the gelled-saline was 5 mm and the plastic 

box was 10 mm. The grating ratio of the mesh size was set to 1.15. To ensure convergence, 

the simulation time was set for 25 periods.  All the numerical simulations reached a CL of 

-50 dB at 3 T and -30 dB at 1.5 T. All the results were normalized to a whole-body SAR 
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of 2 W/kg. 

 

6.5.2 Training Set 

The study parameters with different step sizes at the 3 T system was shown in Table 

8.  For the plate length in the continuous space, the training data points were chosen based 

on the step size. Once the network has been trained, it can be used to predict the device 

dimension shown in Table 6.  

Table 8. The training set was used for the cervical plate system at the 3 T system. 

Parameters 
3 T 1.5 T 

𝝀𝟑𝑻/𝟏𝟎 (mm) 𝝀𝟑𝑻/𝟖 (mm) 𝝀𝟑𝑻/𝟓 (mm) 
𝝀𝟏.𝟓𝑻/𝟏𝟎 

(mm) 
𝝀𝟏.𝟓𝑻/𝟖 
(mm) 

𝝀𝟏.𝟓𝑻/𝟓 
(mm) 

Plate 

Length 
[30, 54, 78, 

102, 126, 140] 
[30,60,90,120,140] 

[30, 78, 102, 
140] 

[30, 74, 118, 
140] 

[30,85,140] [30,118, 140] 

Plate Width [18,25] [18,25] [18,25] [18,25] [18,25] [18,25] 

Plate Depth [3,5] [3,5] [3,5] [3,5] [3,5] [3,5] 

Screw 

Length 
[10,20] [10,20] [10,20] [10,20] [10,20] [10,20] 

Screw 

Diameter 
[3, 5] [3, 5] [3, 5] [3, 5] [3, 5] [3, 5] 

Number of 

Holes 
[1,2,3,4] [1,2,3,4] [1,2,3,4] [1,2,3,4] [1,2,3,4] [1,2,3,4] 

 

6.5.3 Results 

The simulation results of the cervical plate system were shown in Figure 21. The 

simulation results indicated that the mean SAR10g at the 3 T system is 17.29 W/kg and the 

mean SAR10g at the 1.5 T system is 33.21 W/kg.  The mean value of RF-induced heating 

in terms of SAR1g at the 3 T system is 42.43 W/kg and the mean SAR1g at the 1.5 T system 

is 80.27 W/kg. 
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Figure 21. Simulation results for the cervical plate system. 

 

Figure 22. Illustration of worst-case RF-induced heating of cervical plate system at (a) 

1.5 T system and (b) 3 T system. 

The statistics of the simulation results for the cervical plate system were shown in 

Table 9. The worst-case SAR10g is 28.15 W/kg and the worst-case SAR1g is 68.51 W/kg for 

the cervical plate system at 3 T. The corresponding worst-case configuration has a plate 

length of 140 mm, a plate width of 18 mm, a plate depth of 3 mm, a screw length of 10 
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mm, a screw diameter of 5 mm, and 4 holes. The worst-case SAR10g is 57.42 W/kg and the 

worst-case SAR1g is 152.42 W/kg for the compression plate system at 1.5 T system. The 

corresponding worst-case configuration has a plate length of 102 mm, a plate width of 18 

mm, a plate depth of 3 mm, a screw length of 10 mm, a screw diameter of 5 mm, and 1 

hole. The illustration of worst-case RF-induced heating for the cervical plate system was 

shown in Figure 22. The hot spots usually occurred at the screw tips. 

Table 9. Statistics of the simulation results for the cervical plate system. 

Statistics 
SAR10g SAR1g 

3 T  1.5 T 3 T  1.5 T 

Min 8.47 (W/kg) 11.65 (W/kg) 13.66 (W/kg) 23.71 (W/kg) 

Max 28.15 (W/kg) 57.42 (W/kg) 68.51 (W/kg) 152.42 (W/kg) 

Mean 17.29 (W/kg) 33.21 (W/kg) 42.43 (W/kg) 80.27(W/kg) 

Variance 20.15 (W2/kg2) 185.51 (W2/kg2) 163.42(W2/kg2) 1184.92 (W2/kg2) 
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Figure 23. The NN testing results (SAR10g) were trained by different step sizes for the 

cervical plate system at 3 T system. 

The ANN results (SAR10g) at 3 T system with a different step size of cervical plate 

system were shown in Figure 23. The ANN can predict the worst-case configuration and 

the corresponding RF-induced heating with small error rates by using a minimum step size 

of lambda/10. The correlation coefficient between the testing and predicted results was 

larger than 0.97. The MAPE was small and close to 2.49%. The worst-case prediction error 

was less than 0.60%.  The performance of the network still can achieve acceptable worst-

case prediction results when it was trained by a minimum step size of lambda/8. The worst-

case prediction error was less than 6.55% and the MAPE was less than 3.00%. In this 
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trained network, the correlation coefficient was larger than 0.95 which indicates the 

network still can capture the non-linear relationship between the input and output. However, 

the worst-case prediction error was larger than 37.51% when the ANN was trained by the 

minimum step size of lambda/5.  Furthermore, the network could underestimate the worst-

case heating if trained by the step size of lambda/5.  The ANN results (SAR1g) at 3 T system 

with a different step size of cervical plate system were shown in Figure 24.  The network 

can get accurate worst-case prediction results and overall prediction results when it was 

trained a minimum step size of lambda/10. However, the worst-case error will be very large 

as it was close to 17.65% when the network was trained by a minimum step size of 

lambda/8.   

 
Figure 24. The NN testing results (SAR1g) trained by different step sizes for the cervical 

plate system at 3 T system. 



44 

 

 

 

Figure 25. The NN testing results (SAR10g) were trained by different step sizes for the 

cervical plate system at 1.5 T system. 

The ANN results (SAR10g) at 1.5 T system with different step sizes for cervical plate 

system were shown in Figure 25. As shown in the figure, the network converges very well 

when trained by a minimum step size that was less than lambda/8. The correlation 

coefficient of the network was larger than 0.99 and the prediction error was also very small.  

The MAPE was less than 1.40% and the worst-case prediction error was less than 1.04% 

if trained by a step size of lambda/8.  However, the worst-case prediction error was larger 

than 9.54% and the MAPE will be larger than 7.16% when the network was trained by a 

step size of lambda/5. It can be indicated that the step size should be smaller than lambda/8 

to get more accurate prediction results for the cervical plate system. The ANN results 
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(SAR1g) at 1.5 T system with different step sizes for cervical plate system were shown in 

Figure 26. The network can get accurate worst-case prediction results and overall 

prediction results in terms of SAR1g when it was trained a minimum step size smaller than 

lambda/8. In this study, the network still converges well with a minimum step size of 

lambda/5 as the worst-case prediction error was less than 2.9% and the MAPE was less 

than 6.17%. To get the conservative prediction results, it’s recommended to use a minimum 

step size of lambda/8 for the RF-induced heating fast evaluation of the cervical plate system. 

 

Figure 26. The NN testing results (SAR1g) trained by different step sizes for the cervical 

plate system at 1.5 T system. 

To study the performance of the network to predict the whole sample space using the 
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smallest number of training data set.  The trained network was used to predict the device 

parameters in the continuous sample space and these parameters were swept in fine step 

size. The other parameters remained unchanged when a selected parameter was swept. The 

training data set for the cervical plate devices used a converged step size of lambda/8 and 

the errors between the prediction results and the simulation results were shown in Figure 

27. The plate length defined in a continuous sample space was studied as shown in Table 

6. The largest predicted error was less than 15% with the different number of holes at the 

3 T system. The largest predicted error was less than 7% with the different number of holes 

at the 1.5 T system. 

 

Figure 27. NN prediction errors for the cervical plate system with a fine step of 10 mm. 

For the cervical plate system, the plate length is only one parameter used for the ANN 

can be reduced to smaller sample space. It’s also recommended to use a converge step size 
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of lambda/10 to get more accurate prediction results. Therefore, the gain of the network 

(𝐺𝑁𝑁) for the study of cervical plate system at 1.5 T system is 𝐺𝑁𝑁(1.5𝑇) = [1 −
1

24
] ≈

95.83%. The gain of the network (𝐺𝑁𝑁) for the study of cervical plate system at 3 T system 

is 𝐺𝑁𝑁(3𝑇) = [1 −
1

44
] ≈ 97.72%.  

 

 Application of Thoracolumbar Device 

 
Figure 28. Thoracolumbar Device. 

The thoracolumbar device is commonly used for deformities treatment. It consisted 

of rods, interconnected components (crosslink), and screws. The general spinal cord fixator 

was shown in Figure 28. The detailed device dimension was shown in Table 10.  
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Table 10. The detail device dimension for the thoracolumbar device. 

Parameters Device 

Dimension(mm) 
Rod Length [40-520] 

Rod Diameter [2.5,5] 

CrossLink Length [20,40] 

CrossLink Diameter [5] 

Screw Length [20-116] 

Screw Diameter [3,5] 

 

6.6.1 Numerical Simulation 

Numerical simulations were performed to obtain the ground truth data. In this study, 

for the geometrical features, the minimum step size of lambda/10, and lambda/8 were 

adopted to get all the simulation cases as shown in Table 11. A total number of 720 unique 

configurations at 3 T and 280 unique configurations at 1.5 T were studied. 

Table 11.Parameter dimensions used for simulations of thoracolumbar device. 

Parameters 
3 T 1.5 T 

Dimension (mm) No. of Values Dimension (mm) No. of Values 

Rod Length 

[40,64,70,88,100,1
12,130,136,160,18
4,190,208,220,232
,250,256,280,304,
310,328,340,352,3
70,376,400,424,43
0,448,460,472,490
,496,520] 

33 

[40,84,95,128,150,172
,205,216,260,304,315,
348,370,392,425,436,
480,520] 

18 

Rod 

Diameter 
[2.5,5] 

2 
[2.5,5] 

2 

CrossLink 

Diameter 
[5] 

1 
[5] 

1 

CrossLink 
Length 

[20,40] 
2 

[20,40] 
2 

Screw 
Length 

[20,44,50,68,80,92
,110,116] 

8 
[20,64,75,108,116] 

5 

Screw 
Diameter 

[3, 5] 
2 

[3, 5] 
2 
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Figure 29. Numerical simulation of the thoracolumbar device conducted at 3T: (a) Front 

view, (b) Side view (c) Example of the RF-induced heating. 

Numerical simulations were also performed both at 1.5 T and 3 T system based on 

the FDTD method in the ASTM phantom. The high pass non-physical RF transmits body 

coil and the ASTM phantom were the same as the studies of compression plate system and 

cervical plate system. The thoracolumbar device was placed at the vertical center on the 

right side 2 cm away from the phantom wall at the center along the bore direction as shown 

in Figure 29.  An example of the RF-induced heating of the complex shape plate device 

under the 3 T system showed that the hot spot occurred at the end of the rod. In the 

numerical simulation, all metallic materials were modeled as perfect electric conductor 

(PEC). 

The non-uniform mesh was used in the simulations. A mesh size of 1 mm was 

applied to the thoracolumbar devices. The mesh size of the gelled-saline and plastic box 
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was the same as the setting of the compression plate system. The grating ratio of the mesh 

size was set to 1.15. To ensure convergence, the simulation time was set for 25 periods.  

All the numerical simulations reached a CL of -50 dB at 3 T, and a CL of 30 dB at 1.5 T. 

All the results were normalized to a whole-body SAR of 2 W/kg. 

6.6.2 Training Set 

The training set used for the thoracolumbar device was shown in Table 12. The range 

of the rod length is covered in 40mm to 500 mm and the crosslink length ranges from 20 

mm to 100 mm. Both rod length and crosslink length used the step size of 𝜆3𝑇/10.   

Table 12. Different step sizes study for the thoracolumbar device. 

Paramet

ers 

3 T 1.5 T 

𝝀𝟑𝑻/𝟏𝟎 (mm) 𝝀𝟑𝑻/𝟖 (mm) 𝝀𝟑𝑻/𝟓(mm) 𝝀𝟏.𝟓𝑻/𝟏𝟎 (mm) 
𝝀𝟏.𝟓𝑻/𝟖 
(mm) 

𝝀𝟏.𝟓𝑻/𝟏𝟎 
(mm) 

Rod 

Length 

[40,64,88,112,136,

160,184,208,232,2

56,280,304,328,35

2,376,400,424,448,

472,496,520] 

[40,70,100,130,

160,190,220,25

0,280,310,340,3

70,400,430,460,

490,520] 

[40,88,136,1

84,232,280,3

28,376,424,4

72, 520] 

[40,84,128,172,21

6,260,304,348,39

2,436,480,520] 

[40,95,150,20

5,260,315,370

,425,480,520] 

[40,128, 

216,304, 

392,480,5

20] 

Rod 

Diameter 
[2.5,5] [2.5,5] [2.5,5] [2.5,5] [2.5,5] [2.5,5] 

CrossLin

k 

Diameter 

[5] [5] [5] [5] [5] [5] 

CrossLin

k Length 
[20, 44,68,92,116]  

[20, 

50,80,110,116]  
[20,68,116]  [20,64,108,116]  [20,75,116]  

[20,108,1

16]  

Screw 

Length 
[20,40] [20,40] [20,40] [20,40] [20,40] [20,40] 

Screw 

Diameter 
[3,5] [3,5] [3,5] [3,5] [3,5] [3,5] 

 

6.6.3 Results 

The simulation results of the thoracolumbar devices were shown in Figure 30. The 

simulation results indicated that the mean SAR10g at 3 T system is 16.58 W/kg and the 

mean SAR10g at 1.5 T system is 22.26 W/kg.  For the simulation results in terms of SAR1g, 



51 

 

 

the mean SAR1g at the 3 T system is 57.65 W/kg and the mean SAR1g at the 1.5 T system 

is 83.46 W/kg. 

 

Figure 30. Simulation results for the thoracolumbar devices. 

 
Figure 31. Illustration of the worst-case RF-induced heating of thoracolumbar device at (a) 

1.5 T system and (b) 3 T system. 

The worst-case RF-induced heating for the thoracolumbar devices was shown in 

Figure 31. The hot spots usually occurred at the top of the rod. The statistics of the 
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simulation results for the thoracolumbar device were shown in Table 13. The worst-case 

SAR10g is 41.33 W/kg and the worst-case SAR1g is 172.21 W/kg for the thoracolumbar 

device at 3 T. The corresponding worst-case configuration has a rod length of 112 mm, a 

screw length of 20 mm, a crosslink length of 40 mm, a screw radius of 1.5 mm, a rod 

diameter of 2.5 mm and a crosslink radius of 2.5 mm. The worst-case SAR10g is 52.79 

W/kg and the worst-case SAR1g is 201.64 W/kg for the thoracolumbar device at 1.5 T 

system. The worst-case configuration has a rod length of 205 mm, a screw length of 20 

mm, a crosslink length of 40 mm, a screw radius of 1.5 mm, a rod diameter of 2.5 mm, and 

a crosslink radius of 2.5 mm. 

Table 13. Statistics of the simulation results for the thoracolumbar devices. 

Statistics 
SAR10g SAR1g 

3 T  1.5 T 3 T  1.5 T 

Min 8.49 (W/kg) 11.26 (W/kg) 9.77 (W/kg) 31.38 (W/kg) 

Max 41.33 (W/kg) 52.79 (W/kg) 172.21 (W/kg) 201.64 (W/kg) 

Mean 16.58 (W/kg) 22.26 (W/kg) 57.65 (W/kg) 83.46 (W/kg) 

Variance 40.88 (W2/kg2) 89.34 (W2/kg2) 814.26 (W2/kg2) 1323.04 (W2/kg2) 

 

The ANN results (SAR10g) at the 3 T system with a different step size of the 

thoracolumbar device were shown in Figure 32. The ANN can accurately predict the worst-

case SAR by using a minimum step size of lambda/10 at the 3 T system. As demonstrated 

in the figure, the correlation coefficient of the ANN was larger than 0.93 by evaluating the 

ground-truth simulation results and the predicted results by using a minimum step size of 

lambda/10. The worst-case prediction error of the ANN was less than 2.02%. The 

prediction accuracy of the ANN tends to be decreased dramatically when it was trained by 

a minimum step size of lambda/8. In this case, the correlation coefficient of the ANN was 

less than 0.86 and the worst-case prediction error was larger than 13.03%.  For all the 
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testing cases, the MAPE was larger than 6.63 %.  

 

Figure 32. The NN testing results (SAR10g) were trained by different step sizes for the 

thoracolumbar device at the 3 T system. 

The ANN results (SAR1g) at the 3 T system with a different step size of the 

thoracolumbar device were shown in Figure 33. The correlation coefficient of the network 

was larger than 0.90 when it was trained by a minimum step size of lambda/10. The 

predicted worst-case error will be less than 3.11% and the MAPE will be less than 6.86%. 

However, the worst-case prediction error will be larger than 23.42% when the network was 

trained by a minimum step size of lambda/8.  Thus, the criterion of the lambda/10 still can 

be applied to the thoracolumbar devices at the 3 T system.  
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Figure 33. The NN testing results (SAR1g) trained by different step sizes for the 

thoracolumbar device at the 3 T system. 
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Figure 34. The NN testing results (SAR10g) were trained by different step sizes for the 

thoracolumbar device at a 1.5 T system. 

The ANN results (SAR10g) at the 1.5 T system with different step sizes of the 

thoracolumbar device were shown in Figure 34. The worst-case prediction error was low 

when the network was trained by a minimum step size of lambda/10 and the MAPE of the 

ANN was less than 8.80% for all the testing data. However, the overall prediction error 

will be increased if the network was trained by using a minimum step size of lambda/8. As 

shown in the figure, the MAPE will be increased to 14.83%.  As the step size was larger, 

the network performance will decrease dramatically.  
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Figure 35. The NN testing results (SAR1g) trained by different step sizes for the 

thoracolumbar device at 1.5 T system. 

The ANN results (SAR1g) at the 1.5 T system with different step sizes of the 

thoracolumbar device were shown in Figure 35. The network can learn the non-linear 

relationship between the parameters and the SAR1g when the network was trained by a 

minimum step size of lambda/10 because the correlation coefficient of the network was 

larger than 0.90. The worst-case prediction error for the SAR1g evaluation was less than 

2.49% and the MAPE was less than 10.97%. The MAPE of the network prediction results 

will be larger than 13.73% when the network was trained by using a minimum step size of 

lambda/8. Thus, to get more accurate RF-induced heating, it is recommended to use a 
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minimum step size of lambda/10 to train the network for the thoracolumbar devices. 

To study the general performance of the network to predict the whole sample space 

using the smallest number of training data set. The trained network with a converged step 

size of lambda/10 was used to predict RF-induced heating using the device parameters in 

the continuous sample space. These parameters were swept in fine step size and other 

parameters remained unchanged when a selected parameter was swept. The errors between 

the prediction results and the simulation results were shown in Figure 36. In this study, the 

rod length, and screw length were in the continuous sample space. The structure of the 

thoracolumbar device was more complicated than the compression plate system and the 

cervical plate system. Thus, network predicted results tend to diverge and errors would be 

larger. The largest predicted error was less than 18% for the study of rod length and the 

largest predicted error was smaller than 5% for the screw length at the 3 T system. The 

largest predicted error was also less than 18% for the study of rod length and the largest 

error was less than 9% for the study of screw length at the 1.5 T system. 

 

Figure 36. NN prediction errors for the thoracolumbar device with a fine step of 10 mm. 

For the thoracolumbar devices, both the rod length and screw length which was used 

as the input of the ANN can be reduced to a smaller sample space. It’s also recommended 
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to use a converge step size of lambda/10 to get more accurate prediction results. Therefore, 

the gain of the network (𝐺𝑁𝑁) for the study of thoracolumbar devices at 1.5 T system is 

𝐺𝑁𝑁(1.5𝑇) = [1 −
1

(24)2] ≈ 99.82%.  The gain of the network ( 𝐺𝑁𝑁 ) for the study of 

thoracolumbar devices at 3 T system is 𝐺𝑁𝑁(3𝑇) = [1 −
1

(44)2
] ≈ 99.94%.  

 

 Time Analysis for Parameterized NN 

The upper bound of time complexity of the parameterized NN can be expressed as, 

 
2( ),O n t x l k      (15) 

 

where n is the number of training samples, x is the number of features, l is the number of 

layers, k is the max number of nodes in all layers, and the training epochs (iterations) of 

the network. The time cost of the entire training of the network for our 4-layer network 

with thousands of samples, devices described by 11 features, and trained by 2000 epochs 

was within 120s. This is much less than the full-wave modeling of the devices.  Because 

each device inside the phantom will cost more than 2 hours by the numerical simulation 

using an NVIDIA C2075 high-performance graphics processing unit (GPU) which had a 

normal 1150 MHz clock rate of 448 CUDA cores. Once the network has been trained, the 

3-layer network predictive models are capable of producing thousands of RF-induced 

heating predictions within seconds. 
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 External Fixation Use in-vitro Phantom with Parameterized 

NN 

The partially implanted devices that in in-vitro conditions are used as the study 

subjects. One rod with two pins was created as a study example to determine the criterion 

for the training data set. Then one representative partially implanted device was used to 

validate the criterion for the training data set. To obtain the ground-truth data, the RF-

induced heating for the devices was numerically investigated based on the FDTD method. 

The same NN architecture was constructed the same as the architecture used by fully 

implanted devices but with different input dimensions. At last, the NNs were trained by the 

training data set determined by the criterion, while the rest were used for fast evaluation of 

RF-induced heating and testing performance of the NNs. 

 The Criterion for Training Data Set 

The external fixation device is partially implanted in the body. The wavelength/10 

rule may not apply since the incident field can change. Thus, we use the rod with two pins 

to determine the criterion. The device can be described by two parameters, the rod length, 

and insertion depth. The insertion depth the part of the device inserted into the gel. 
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Figure 37. The study rod with two pins. 

7.1.1 Numerical Simulation 

 

Figure 38. Numerical simulation of the simple external fixator conducted at 3T: (a) Bottom 

view, (b) Side view (c) Example of the RF-induced heating. 

The external fixation devices are usually made of metallic materials and were set 

to be the perfect electric conductor (PEC) in the simulations. An example of the simple 

external fixator conducted at the 3 T system in the ASTM phantom is shown in Figure 38. 

The hot spot was close to the end of the pins. The high pass non-physical RF transmits 
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body coil and the ASTM phantom were also the same as the studies of compression plate 

system. Adaptive meshing was adopted at 3 T, and other settings like mesh size and grating 

ratio were the same as the setting of the compression plate system. All the voxelized models 

were checked to avoid meshing errors. All the simulation results were checked to ensure 

convergence. All the results in terms of SAR10g were also normalized to a whole-body SAR 

of 2 W/kg. 

The rod length can be in the range from 80 mm to 500 mm, and insertion depth can 

be in the range from 20 mm to 70 mm. Both rod length and insertion depth were using a 

step size of 10 mm.  The commonly used rod diameter of 5 mm and a screw diameter of 3 

mm were studied. Thus, there are a total number of  43 × 6 = 258 configurations. 

 

Table 14. The study parameters and step size for the rod with two pins. 

Parameters Values (mm) 𝐒𝐭𝐞𝐩 𝐒𝐢𝐳𝐞 (𝐦𝐦) No. of Values 

Rod Length [80~500] 10 43 

Insertion Depth [20~70]  10 6 

Rod Diameter 5 / / 

Pin diameter 3 / / 

 

7.1.2 Training Set 

Part of the data was selected and used as the training data set which contains 

different step sizes as shown in Table 15. For each MRI operating frequency, the training 

set was selected as step size of 10 mm, 20 mm, 30 mm, 40 mm, 50 mm, and 60 mm. The 

worst-case configuration was not included in the training set.  
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Table 15. Training data set for the rod with two pins. 

Parameters Values (mm) 𝐒𝐭𝐞𝐩 𝐒𝐢𝐳𝐞 (𝐦𝐦) No. of Values 

Rod Length [80~500] [10,20,30,40,50,60] 43 

Insertion Depth [20~70]  [10,20,30,40,50,60] 6 

Rod Diameter 5 / / 

Pin diameter 3 / / 

 

 

7.1.3 Results 

The worst-case configuration at 1.5 T has a rod length of 130 mm and an insertion 

depth of 20 mm with a SAR10g=14.84 W/kg and SAR1g = 36.45 W/kg. The worst-case 

configuration at 3 T has a rod length of 500 mm and an insertion depth of 20 mm with a 

SAR10g = 12.76 W/kg and SAR1g = 33.96 W/kg. 

The ANN results (SAR10g) at a 1.5 T system with different step sizes were shown 

in Figure 39. The neural network was first trained with a small step size of 10 mm and the 

worst-case configuration was excluded from training. Then, the step size will be increased 

by 10 mm each time to validate the predicted results of the network. The prediction errors 

were small when the step size was less than 50 mm.  However, the prediction errors will 

larger than 3.62 % when the step size was larger than 50 mm. Furthermore, the correlation 

coefficient between the parameterized features and the output SAR10g was smaller than 

0.72. This indicates the network will not learn a strong non-linear relationship between 

input and output. The predicted results could be underestimated if it is lower than the 

ground-truth RF-induced heating. The overall prediction errors for SAR10g will be larger 

than 5.51% if the network was trained by a step size of 60 mm. The ANN results (SAR1g) 

at a 1.5 T system with different step sizes were shown in Figure 40. The overall prediction 
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errors for SAR1g will be larger than 5.68% if the network was trained by a step size of 50 

mm.  Therefore, the step size used to select the training set of the neural network should be 

less than 50 mm in a 1.5 T system. 

 

 

Figure 39. The ANN results (SAR10g) at 1.5 T system with different step sizes for simple 

external fixator. 

 
Figure 40. The ANN results (SAR1g) at 1.5 T system with different step sizes for simple 

external fixator. 
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The ANN results (SAR10g) at the 3 T system with a different step size of the simple 

external fixator were shown in Figure 41. The overall prediction errors were small when 

the step size was less than 20 mm.  The worst-case prediction error was less than 1.50% 

when the step size was smaller than 20 mm. The performance of the network will decrease 

dramatically when the step size was larger than 30 mm as the worst-case error was larger 

than 27.26% and the correlation coefficient was very small. Similarly, the ANN results 

(SAR1g) at the 3 T system with a different step size of the simple external fixator were 

shown in Figure 42. The overall error will be larger than 16.78% if the network was trained 

by a step size larger than 30 mm.  Thus, the step size used to select the training set of the 

neural network should be less than 30 mm in a 3 T system.  

 

Figure 41. The ANN results (SAR10g) at 3 T system with different step sizes for simple 

external fixator. 
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Figure 42. The ANN results (SAR1g) at 3 T system with different step sizes for simple 

external fixator. 

Based on the study, to ensure the worst-case heating construct can be identified with 

ANN, it is suggested that one should use dimensional variations between training elements 

that should be less than 1/10 of the wavelength at 1.5 T system (≈ 50𝑚𝑚). For the devices 

at the 3 T system, the dimensional variations between training elements should be less than 

1/8 of the wavelength (≈ 30 𝑚𝑚).  

 Application of Complex External Fixator 

The more complex external fixator will be more stable as it contains clamps to stable 

multiple screws as shown in Figure 43. The typical parameters will be the rod length, screw 

radius, screw spacing, frame distance, and insertion depth. 
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Figure 43. The Complex External Fixator. 

The detail dimension for each parameter was shown in Table 16. The rod length, 

insertion depth, and frame distance were in continuous sample space. The rod length is in 

the range from 64 mm to 140 mm, the insertion depth is in the range from 20 mm to 80 

mm, and the frame distance is in the range from 40 mm to 100 mm. For the screw radius 

and screw spacing, these two parameters can take optional values for dimension changes. 

The commonly used rod radius of 2.5 mm was used in this study. 

Table 16. The device dimension of the complex external fixator. 

Parameters Device 

Dimension(mm) 
Rod Length [128-280] 

Insertion Depth [20-80] 

Frame Distance [40-100] 

Screw Radius [3,5]  

Screw Spacing [10,20] 

 

7.2.1 Numerical Simulations 

Numerical simulations were performed to obtain the ground truth data. In this study, 

for the parameterized features, the minimum step size of lambda/10, and lambda/8 were 

adopted to get all the simulation cases as shown in Table 17. A total number of 716 unique 
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configurations were studied at 3 T and 292 unique configurations were studied at 1.5T. 

Table 17.Parameter dimensions used for simulations of the complex external fixator. 

Parameters 
3 T 1.5 T 

Dimension (mm) No. of Values Dimension (mm) No. of Values 

Rod Length 
[128,152,158,176,188,20
0,218,224,248,272,278,2
80] 

12 
[128,172,183,216,2
38,260,280] 

7 

Insertion 
Depth 

[20,44,50,68,80]  5 [20,64,75,80]  5 

Frame 
Distance 

[40,64,70,88,100] 5 [40,84,95,100] 4 

Screw Radius [3,5]  2 [3,5]  2 

Screw Spacing [10,20] 2 [10,20] 2 

 
 
 
 

 
Figure 44. Numerical simulation of the complex external fixation device conducted at 3T: 

(a) Bottom view, (b) Side view (c) Example of the RF-induced heating. 

An example of the complex external fixator conducted at 3 T system in ASTM 

phantom is shown in Figure 44. The hot spot was close to the end of the pins. Other settings 

were keeping the same as the settings of the simple external fixator. All the simulation 

results were checked to ensure convergence. All the numerical simulation results reached 

a CL of -50 dB at 3 T and -30 dB at 1.5 T. All the results were normalized to a whole-body 
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SAR of 2 W/kg. 

 

7.2.2 Training set 

The different step sizes at the 3 T system for the studied parameters of the complex 

fixator was shown in Table 18. The range of rod length is from 64 mm to 144 mm, the 

insertion depth is with a range from 20 mm to 80 mm, and frame distance is a range from 

40 mm to 100 mm. The screw radius usually very small, thus it can be set to two optional 

values.  The screw spacing was used to identify the distance between screws. The network 

will be trained by each training set and tested by all the configurations.  

 

Table 18. The different step sizes for studied parameters of the complex external fixator. 

Parameters 
3 T 1.5 T 

𝝀𝟑𝑻/𝟏𝟎 (mm) 𝝀𝟑𝑻/𝟖 (mm) 
𝝀𝟑𝑻/𝟓 
(mm) 

𝝀𝟏.𝟓𝑻/𝟏𝟎 (mm) 
𝝀𝟏.𝟓𝑻/𝟖 

mm 
𝝀𝟏.𝟓𝑻/

𝟏𝟎 (mm) 

Rod Length 
[128,152,176,200
,224,248,272,280
] 

[128, 
158,188,218,2
48,278,280] 

[128,176,
224,272,
280] 

[128,172,216,260,
280] 

[128,183,2
38,280] 

[128,216
, 280] 

Insertion 
Depth 

[20,44,68,80]  [20,50,80]  
[20,68,80
]  

[20,64,80]  [20,75,80]  [20,80]  

Frame 
Distance 

[40,64,88,100] [40,70,100] 
[40,88,10
0] 

[40,84,100] [40,95,100] [40,100] 

Screw Radius [3,5]  [3,5]  [3,5]  [3,5]  [3,5]  [3,5]  

Screw 
Spacing 

[10,20] [10,20]  [10,20] [10,20]  [10,20]  [10,20]  

 

7.2.3 Results 

The simulation results of the complex external fixator were shown in Figure 45. 

The mean SAR10g at the 3 T system is 11.95 W/kg and the mean SAR10g at the 1.5 T system 

is 21.26 W/kg from all the simulations. The mean SAR1g at 3 T is 26.52 W/kg and the mean 

SAR1g at 1.5 T is as high as 47.35 W/kg.  
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Figure 45. Simulation results for the complex external fixators. 

 
Figure 46. Illustration of worst-case RF-induced heating of complex external fixator at 

(a) the 1.5 T system and (b) the 3 T system. 

The worst-case RF-induced heating for the complex external fixators was shown in 

Figure 46. Typically, the hot spots would occur at the location that was close to the tip of 

the screw. The statistics of the simulation results for the complex external fixator were 

shown in Table 19.  The worst-case SAR10g for a complex external fixator device at 3 T is 
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20.86 W/kg. The corresponding worst-case configuration has a rod length of 280 mm, an 

insertion depth of 20 mm, a frame distance of 100 mm, a screw radius of 3 mm, and a screw 

spacing of 10 mm. The worst-case SAR10g of the complex external fixator device at 1.5 T 

system is 51.72 W/kg. The corresponding worst-case configuration has a rod length of 280 

mm, an insertion depth of 20 mm, a frame distance of 40 mm, a screw radius of 3 mm, and 

a screw spacing of 10 mm. The worst-case SAR1g for a complex external fixator device at 

3 T is 66.59 W/kg. The worst-case SAR1g of the complex external fixator device at 1.5 T 

system is 123.68 W/kg. The worst-case configurations of the RF-induced heating 

quantified SAR1g was the same as the worst-case configurations quantified by SAR10g. 

Table 19. Statistics of the simulation results for the complex external fixator. 

Statistics 
SAR10g SAR1g 

3 T  1.5 T 3 T  1.5 T 

Min 8.74 (W/kg) 11.79 (W/kg) 15.42 (W/kg) 22.12 (W/kg) 

Max 20.86 (W/kg) 51.72 (W/kg) 66.59 (W/kg) 123.68 (W/kg) 

Mean 11.95 (W/kg) 21.26 (W/kg) 26.52 (W/kg) 47.35 (W/kg) 

Variance 6.77 (W2/kg2) 120.64 (W2/kg2) 90.83(W2/kg2) 940.89 (W2/kg2) 

 

The ANN results (SAR10g) at 3 T system with a different step size of complex 

external fixator were shown in Figure 47.  The network can get low prediction errors when 

using a minimum step size of lambda/10 as the training data set. The correlation coefficient 

of the ANN was larger than 0.98 for all the testing data. The MAPE of the ANN was less 

than 1.89% and the worst-case prediction error was less than 0.55%. The network still can 

be used to predict the worst-case RF-induced heating even using a minimum step size of 

lambda/8 as the training set. The worst-case prediction error was less than 3.80% and the 

overall prediction error was less than 2.53%. The performance of the network continued 

decreasing if the step size was larger. The predicted RF-induced heating will deviate far 
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away from the ground-truth values if the network was trained by a step size of lambda/5. 

Although the overall RF-induced heating in terms of SAR1g was higher than SAR10g, the 

neural network still performs well on predicting the overall heating and the worst-case 

heating if using proper training data set as shown in Figure 48. It can be indicated that the 

neural network can be used to predict the overall SAR1g and worst-case SAR1g if it was 

trained by a step size less than lambda/5. Otherwise, the worst-case SAR1g prediction errors 

will be larger than 8.61%. Therefore, the worst-case heating can be accurately predicted by 

the network using the step size of lambda/8 as the training set at 3 T. 

 
Figure 47. The NN testing results (SAR10g) were trained by different step sizes for 

complex external fixator at 3 T system. 
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Figure 48. The NN testing results (SAR1g) trained by different step sizes for complex 

external fixator at 3 T system. 
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Figure 49. The NN testing results (SAR10g) were trained by different step sizes for 

complex external fixator at 1.5 T system. 

The ANN results (SAR10g) at a 1.5 T system with different step sizes of complex 

external fixator were shown in Figure 49.  The ANN results at the 1.5 T system show that 

the correlation coefficient for all the test cases was larger than 0.99 by using a training set 

with lambda/10 step size. The overall MAPE was small which was less than 3.24%. 

Furthermore, the worst-case prediction error was less than 3.58%. However, the 

performance of the network was not guaranteed when trained by the larger step size of 

lambda/8 at 1.5 T.  The worst-case predicted SAR10g will as be high as 15.45% and will be 
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much lower than the actual worst-case from simulations. The ANN results (SAR1g) at a 1.5 

T system with different step sizes of complex external fixator were shown in Figure 50.  

The worst-case prediction error for SAR1g was smaller than 1.6% and the overall MAPE 

was less than 1.94% if the ANN was trained by using a step size of lambda/10.  The worst-

case prediction error for SAR1g will be larger than 12.88% if the step size was lambda/8. 

Thus, the criterion of the lambda/10 still can be applied to the complex external fixator 

both at 1.5 T and 3 T system. Otherwise, the predicted RF-induced heating might be 

underestimated if the network was trained by a step size larger than lambda/10. 

 

Figure 50. The NN testing results (SAR1g) trained by different step sizes for complex 

external fixator at 1.5 T system. 
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To study the general performance of the network to predict the whole sample space 

using the smallest number of training data sets for the complex external fixator. The trained 

network with a converged step size was used to predict the RF-induced heating for device 

parameters in the continuous sample space. There are three parameters, the rod length, the 

insertion depth, and the frame distance in the continuous space. The other parameters keep 

unchanged when study one selected parameter. The errors between the prediction results 

and the simulation results were shown in Figure 51. The largest predicted error was less 

than 6% for all the study parameters at the 3 T system. The largest predicted error was less 

than 13% for all the studies of parameters at the 1.5 T system. The RF-induced heating of 

the complex external fixator with the variation of the insertion depth in y-direction induced 

larger errors compared to other parameters.  

 

Figure 51. NN prediction errors for the complex external fixator with a fine step of 10 mm. 

For the complex external fixator, the rod length, the insertion depth, and the frame 

distance can be reduced to the smaller sample space. It’s recommended to use a converge 

step size of lambda/10 to get more accurate prediction results. Therefore, the gain of the 

network (𝐺𝑁𝑁) for the study of complex external fixator at 1.5 T system is 𝐺𝑁𝑁(1.5𝑇) =

[1 −
1

(24)3] ≈ 99.99%. The gain of the network (𝐺𝑁𝑁) for the study of complex external 
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fixator at 3 T system is 𝐺𝑁𝑁(3𝑇) = [1 −
1

(44)3] ≈ 99.99%.  
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 Mesh-based Convolutional Neural Network 

Many structures cannot be described using simple parameters. Based on the idea that 

electromagnetic simulations will use meshes in the simulations, we study the possibility of 

predicting the results of RF-induced heating use the device meshes with the CNN network.  

 Convolutional Neural Network 

To accurately predict the MRI RF-induced heating and cater to clinical 

requirements, one specific type of NNs, convolutional neural network (CNN) was 

developed in this study to model the MRI RF-induced heating for the devices that cannot 

be parameterized using simple dimensional features. The CNN is an end-to-end 

architecture that can automatically capture the geometrical features without the need to get 

hand-craft features (length, width, thickness, etc.) as the input. Another benefit is that it 

can handle devices with various geometrical, spatial changes, and capture these fine 

features on the surface of the object. Thus, it will allow us to predict the various complex 

shape of medical implants without any substantial contradictions.  

 

Figure 52. CNN architecture of RF-induced heating fast prediction for complex shape 

medical devices. 
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The architecture of CNN is case sensitive and depending on the data size, input, 

training algorithm, number of layers, etc. The architecture was similar to AlexNet [42] and 

implemented using the Tensorflow framework [43]. After several analyses, a convolutional 

neural network that had three convolutional layers with a 3×3 filter for each and three dense 

layers was used to predict the psSAR10g of the multi-configuration and complex shape plate 

devices as shown in Figure 52. Input will hold the raw data of the device, consists of layers 

of slices that have depth in the y-direction), width in the x-direction, and length in the z-

direction. The convolution layer will compute the output of neurons that are connected to 

local regions in the input, each computing a dot product between their weights and a small 

region (in x-z plane/slice) they are connected to the input volume. The filter was used to 

find the spatial correlation in a sliced layer of image and taken as the receptive field. The 

detailed spatial information was captured by this receptive field after the convolutional 

operation. The first convolution layer was responsible for capturing low-level features such 

as edges, corners, shapes of the 3D device from filters. Each filter corresponding to one 

feature map obtained from convolution.  

The max-pooling layer will perform a down-sampling operation along the spatial 

dimension for each slice in length and width. This also has the effect of making the 

resulting max-pooling feature maps more robust to changes in the position of the feature 

in the image. The max-pooling will take the most activated presence of a feature in the 

layers of images. The max-pooling layer was also used for dimension reduction to reduce 

computational cost which reduces the dimension of images. 

With added more convolution layers, the CNN was adapted to the high-level 

features, which can capture the precise 3D geometrical representations of the device. This 



79 

 

 

will increase the number of feature maps gradually by twice for each layer. The dense layer 

with relu activation function was added to learn non-linear combinations of the high-level 

features as represented by the output of the convolution layer. In this way, the convolution 

layers could automatically capture the 3D geometrical information which covers 

geometrical dimensions, shape, and material information.  

Three dense layers formed a feed-forward neural network and backpropagation 

were applied to every iteration of the training process. To keep the features learned from 

previous convolutional layers which contain precise geometrical information, the size of 

the dense layers was gradually decreased to one dimension to get the psSAR10g. Over a 

series of training iterations, the CNN was able to predict the psSAR10g with low-level 

features in the form of sliced images. The testing data are used to examine the validity of 

the results predicted by CNN.  

For the mesh-based CNN, the 3D mesh can be sliced into 2D meshes in one specified 

direction. Thus, the 2D meshes can be used as the input of the CNN as shown in Figure 53. 

To cover all different dimensions of the devices, a large box needs to be defined and has 

the largest dimension. Then, the 3D mesh can be sliced into layers of 2D meshes according 

to the smallest resolution Δ𝑟 and these 2D meshes contains detail geometrical features of 

the devices even when the geometrical features are small. According to the defined box 

size, a total number of 100 slices (y-direction), each slice is 100 mm x220 mm was studied. 

For the volume-based estimation, the resolution could be 1 mm or 2 mm since most plates 

would be thicker than 3mm and the screw size was more than 2 mm in diameter. The 

boundary edge-based meshes, another form of input by getting the difference for adjacent 

points for each sliced layer can also be used as the input of the CNN.  
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Figure 53. Get input for the CNN. 

  

 Application of General Compression Plate using Mesh-based CNN 

8.2.1 Training Set 

To study the mesh-based CNN, the same training set for the ANN at the 3 T system 

was used. These training sets with different step sizes will be used to train the CNN. Once 

it has been trained, it can be validated using the test data which was the whole data set from 

simulation to predict the RF-induced heating.   
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Figure 54. Compression plate used for mesh-based CNN. 

The compression plate devices in 3D will be sliced into layers of images. To reserve 

the geometrical dimension, a box with a geometrical dimension that can cover all the 

configurations was first defined as shown in Figure 54.  In this study, the box dimension is 

125 × 40 × 300 (𝑥 × 𝑦 × 𝑧). The device in 3D will be sliced into layers of images in the 

x-z plane in a y-direction with a step size of 1 mm. Therefore, there are a total number of 

40 layers for each complex shape device. Each layer covers an x dimension of 125 mm and 

a z dimension of 300 mm. The image plots (x-z plane) that some layers will include the 

devices, and other layers include the screws were shown in Figure 55. The details in a 

sliced layer of the compression plate device for volume-based estimation was shown in 

Figure 56. The materials type of PEC will be defined as 1 and other materials will be 

defined as 0. 
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Figure 55. Forty-layers of images in y-direction for each complex shape device. 

 
Figure 56. The details in a sliced layer of the compression plate device for volume-based 

estimation. 
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Each sliced layer of the compression plate device could be further processed by 

getting the difference between two adjacent points. In this way, the edge representation for 

the device was obtained for the input of the CNN. The details in a sliced layer of the 

compression plate device were shown in Figure 57. The materials type of PEC will be 

defined as 1 or -1, and other materials will be defined as 0.  

 

Figure 57. The details in a sliced layer of the compression plate device for edge-based 

estimation. 
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8.2.2 Results 

 

Figure 58. The mesh-based CNN testing results (SAR10g) trained by different step sizes for 

the compression plate system at 3 T system, (a) volume-based estimation, and 

(b) boundary edge-based estimation. 

To get the comprehensive performance comparison between the mesh-based CNN 

and the parameterized NN, the same training sets from the study of the parameterized NN 

were used for the mesh-based CNN. The mesh-based CNN testing results (SAR10g) both 

for the volume-based estimation and boundary edge-based estimation at the 3 T system for 

the compression plate system were shown in Figure 58.  For the volume-based estimation, 

the CNN trained by lambda/10 step size can predict the worst-case heating with an error 

rate of less than 5.47%. The boundary edge-based estimation had a worst-case prediction 

error of 0.45%. The MAPE of the CNN was less than 4.1% both for the volume-based 

estimation and boundary edge-based estimation.  It can be indicated that the minimum step 

size to predict the worst-case and all other configurations should be less or equal to 
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lambda/10. The worst-case prediction error was larger than 14.22% if the CNN was trained 

with a step size of lambda/8. The overall prediction error was larger than 32.37% when the 

step size was lambda/5.  

 

Figure 59. The mesh-based CNN testing results (SAR1g) trained by different step sizes for 

the compression plate system at 3 T system, (a) volume-based estimation, and 

(b) boundary edge-based estimation. 

The mesh-based CNN testing results (SAR1g) both for the volume-based estimation 

and boundary edge-based estimation at the 3 T system for the compression plate system 

were shown in Figure 59. It can be indicated that the lambda/10 criterion can be applied to 

predict the worst-case SAR1g and overall SAR1g at the 3T system using the CNN. The 

worst-case prediction error for the volume-based estimation was less than 2.71% and the 

MAPE was less than 3.76%. The worst-case prediction error for the edge-based estimation 

was less than 0.29% and the MAPE was less than 6.24%. The CNN may not be converged 

if it was trained by a minimum step size larger than lambda/10.  
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Figure 60. The mesh-based CNN testing results (SAR10g) trained by different step sizes for 

the compression plate system at a 1.5 T system, (a) volume-based estimation, 

and (b) boundary edge-based estimation. 

The mesh-based CNN testing results (SAR10g) at the 1.5 T system for the 

compression plate system were shown in Figure 60.  The CNN trained by lambda/10 step 

size can predict the worst case with an error rate of 1.86% for volume-based estimation. 

The worst-case prediction error for boundary edge-based estimation was smaller than 

2.07%. The overall prediction error of the CNN was smaller than 4.88% both for the 

volume-based estimation and boundary edge-based estimation. In this case, the network 

has a high correlation coefficient (larger than 0.96) between the input and output. The 

correlation coefficient of the network was lower than 0.65 and the overall prediction error 

was larger than 7.37% when trained by a step size of lambda/8. The network might not be 

converged if it was trained by a minimum step size of lambda/5.  
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Figure 61. The mesh-based CNN testing results (SAR1g) trained by different step sizes for 

the compression plate system at a 1.5 T system, (a) volume-based estimation, 

and (b) boundary edge-based estimation. 

The mesh-based CNN testing results (SAR1g) at the 1.5 T system for the 

compression plate system were shown in Figure 61.  The network converged well by using 

the minimum step size of lambda/10. The correlation coefficient was larger than 0.93 both 

for the volume-based estimation and boundary edge-based estimation. The worst-case 

prediction error was less than 2.89% and the MAPE was less than 4.79% for the volume-

based estimation. The worst-case prediction error was less than 2.00% and the MAPE was 

less than 5.05% for the boundary edge-based estimation.  

The performance comparison between the ANN and CNN for the prediction of 

SAR10g was shown in Figure 62. The results indicated that the performance of the ANN 

was better than the CNN. The prediction error of the ANN tends to be lower than the CNN 

with the training data set using a step size of lambda/10.  In this case, the worst-case 

prediction error and the MAPE were lower than 6%. The prediction error with the training 
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data set using a step size of lambda/8 tends to be much larger than a step size of lambda/10. 

The performance of the network was not guaranteed when it was trained by using a step 

size of lambda/5 as the overall MAPE was very high.  

 

Figure 62. The performance comparison between ANN and CNN for the prediction of 

SAR10g. 

The performance comparison between the ANN and CNN for the prediction of 

SAR1g was shown in Figure 63.  The worst-case prediction error and the MAPE were also 

lower than 6% by using the minimum step size lambda/10. However, the worst-case error 

and the overall prediction error will be very large if the networks were trained by a 

minimum step size larger than lambda/8. Thus, its’ recommended to use the minimum step 

size of lambda/10 for the RF-induced heating fast prediction. 
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Figure 63. The performance comparison between ANN and CNN for the prediction of 

SAR1g. 
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8.2.3 Resolution (Mesh Size) Study 

 

Figure 64. The mesh size study results (SAR10g) for the compression plate system using 

CNN at 3 T system, (a) volume-based estimation, and (b) boundary edge-based 

estimation. 

The minimum resolution used in CNN that converges and predicts the worst-case 

was studied. The results (SAR10g) of the mesh size study at 3 T were shown in Figure 64. 

The correlation coefficient of the CNN will decrease and the overall prediction MAPE will 

increase with larger mesh size. For the volume-based estimation, the correlation coefficient 

of the network was lower than 0.54 and the MAPE was larger than 11.09% when trained 

by a mesh size of 5 mm. The CNN might not be converged if the mesh size was larger than 

5 mm. The correlation coefficient was less than 0.45 and the MAPE was larger than 15.11% 

if trained by a mesh size of 10 mm. The CNN performance used for boundary edge-based 

estimation shown similar performance. The results (SAR1g) of the mesh size study at 3 T 

were shown in Figure 65. The worst-case prediction error and the overall prediction error 

were small by using a mesh size of 1 mm.  Otherwise, the network will not converge as the 

correlation coefficient was smaller than 0.59 and the overall prediction error was larger 

than 11%. Thus, it is recommended to use a mesh size that was smaller than 5mm to ensure 



91 

 

 

better prediction performance. 

 

Figure 65. The mesh size study results (SAR1g) for the compression plate system using 

CNN at 3 T system, (a) volume-based estimation, and (b) boundary edge-based 

estimation. 

The mesh size study results (SAR10g) at the 1.5 T system as shown in Figure 66. For 

the volume-based estimation, the worst-case prediction error using a mesh size of 5 mm 

was comparable to a mesh size of 1mm.  However, the network would not converge as the 

correlation coefficient of the network was lower than 0.51 and the worst-case error was 

larger than 13% when the network used a mesh size of 10 mm. For boundary edge-based 

estimation, the network might not converge if the CNN trained by using a mesh size of 5 

mm as the worst-case prediction error was larger than 14.50%. 
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Figure 66. The mesh size study results (SAR10g) for the compression plate system using 

CNN at 1.5 T system, (a) volume-based estimation, and (b) boundary edge-

based estimation. 

The mesh size study results (SAR1g) at the 1.5 T system as shown in Figure 67. The 

performance of the CNN was similar to the mesh size study results of SAR10g. For the 

volume-based estimation, the worst-case prediction error of a mesh size of 5 mm also was 

comparable to a mesh size of 1mm.  The network would not converge as the correlation 

coefficient of the network was lower than 0.5 and the worst-case error was larger than 64% 

when the network used a mesh size of 10 mm. For boundary edge-based estimation, the 

network might not converge if the CNN trained by using a mesh size of 5 mm as the worst-

case prediction error was larger than 13.50%. 
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Figure 67. The mesh size study results (SAR1g) for the compression plate system using 

CNN at 1.5 T system, (a) volume-based estimation, and (b) boundary edge-

based estimation. 

 

 Application of Complex Plate System 

The complex shape plate system was commonly used among various clinical 

scenarios for setting and stabilizing fractured bones, such as arm and leg bones. To cater 

to different fractured bones, the construction of the plate system will be different. Thus, 

each construction will be varied in size and shape of the plate. For this study, 384 

constructions were constructed based on clinical applications.   

 
Figure 68.The complex shape plate system construction details. 
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The commonly used complex shape plate system, which consists of a plate and 

screws, was created as an example subject as showed in Figure 68. It has been known the 

device has angle difference, edge difference, length variations, etc. To compare with the 

parameterized NN, we try parameterized the device. The small variations on the edge or 

corner were hard to describe, but the arc length was measured in this study. The 

configuration of the plate has a longer length variation from 200 mm to 220 mm. The 

configuration of the plate has a longer length variation from 80 to 300 mm, width variation 

from 25 mm to 35 mm, shorter length variation from 50 mm to 60 mm, arc length variation 

at the bottom right corner of the shorter plate from 10 mm to 20 mm, and arc length 

variation at the top left corner of the longer plate from 15 mm to 25 mm. The configuration 

of the screw is varied with length in the range from 20 mm to 30 mm and diameter in the 

range from 5 mm to 8 mm. The angle between the shorter plate longer plate can be in the 

range from 60 degrees to 120 degrees. 

 

Table 20. Device dimension of the complex plate system used of mesh-based CNN study. 

Parameters Device 

Dimension(mm) 
Plate Length 1  [200-220] mm 

Plate Width  [25,35] mm 

Plate Length 2  [50,60] mm 

Arc Length 1  [10,20] mm 

Arc Length 2  [15,25] mm 

Screw Length  [20,30] mm 

Screw Diameter  [5,8] mm 

Angle  [60∘, 90∘, 120∘] 

 

 

8.3.1 Numerical Simulation 

For the complex shape plate system, numerical simulations were conducted at 3 
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Tesla(T) using full-wave electromagnetic solver based on FDTD method to get the RF-

induced heating, in terms of peak 10 gram (g) averaged specific absorption rate (psSAR10g) 

in the ASTM phantom. In this in-vitro way, the data collection phase for NNs will save 

more time for this study since the NN has been validated for in-vitro RF-induced heating 

fast evaluation. A high pass non-physical RF transmits body coil was adopted to model the 

MRI RF body coil operated at 128 MHz for a 3 T system. This non-physical coil model 

has been widely used and validated as in [44]. The RF coil was loaded with a model of the 

ASTM phantom. Eight current sources were placed on the rungs of the coil to generate a 

uniform magnetic field inside the coil. Absorbing boundary conditions were used on all 

sides of the simulation boundaries.  

 

Figure 69. (a) The device was placed at the vertical center on the right side 2cm away from 

the phantom wall and at the center along the bore direction. (b) Example of RF-

induced heating under 3 T system. 

The ASTM phantom was a plastic container with a relative dielectric constant 𝜖𝑟 =

3.7  and an electrical conductivity 𝜎 = 0 S/m, filled with gelled-saline, which had the 𝜖𝑟 =
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3.7 and 𝜎 = 0.47 S/m. The plate device was placed at the vertical center on the right side 

2 cm away from the phantom wall and at the center along the bore direction (the location 

which provides maximum and uniform electric field-induced heating inside the phantom) 

as shown in Figure 69.  An example of the RF-induced heating of the complex shape plate 

device under the 3 T system showed that the hot spot occurred at the end of the plate.  In 

the numerical simulation, all metallic materials were modeled as perfect electric conductor 

(PEC).  

The non-uniform mesh was used in the simulations to approach the balance 

between accuracy and complexity because the size of the coil, phantom, and devices was 

different. The larger mesh step size can reduce the total simulation time, but the coarse 

mesh cannot represent the device structure. The smaller mesh steps unbearable 

computational burdens and the divergent results. It was determined with several 

convergence analyses that the mesh size of 0.5/1 mm was applied to the plate devices. The 

mesh size of the gelled-saline was 5 mm and the plastic box was 10 mm. The grating ratio 

of the mesh size was set to 1.15. To ensure convergence, the simulation time was set for 

25 periods. All the results were normalized to a whole-body SAR of 2 W/kg. 
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8.3.2 Training Set 

 

 

Figure 70. Complex shape device used for CNN. 

To get input for the NN, the complex shape devices need to preprocess and transfer 

to a proper input format. The complex shape devices cannot be described by simple 

geometrical features. Images are the simplest input format when dealing with a 3D object. 

Thus, the complex shape devices in 3D will be sliced into layers of images. To reserve the 

geometrical dimension, a box with a geometrical dimension that can cover all the 

configurations was first defined as shown in Figure 70.  In this study, the box dimension is 

125 × 300 × 40 (𝑥 × 𝑦 × 𝑧).  

The device in 3D will be sliced into layers of images in the x-z plane in a y-direction 

with a step size of 1 mm. Therefore, there are a total number of 40 layers for each complex 

shape device as shown in Figure 71. Each layer covers an x dimension of 125 mm and a z 
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dimension of 300 mm. The image plots (x-z plane) were shown that some layers will 

include the devices, and other layers include the screws. 

 

Figure 71. Forty-layers of images in y-direction for each complex shape device. 
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Figure 72. The details in a sliced layer of the complex shape device using mesh 

representation. 

The details in a sliced layer of the complex shape device using the mesh 

representation were shown in Figure 72. The materials type of PEC will be defined as 1 

and other materials will be defined as 0. Thus, the geometrical dimension, shape, 

orientation, and material type information were included and used as the input of NN. 
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Figure 73. The details in a sliced layer of the complex shape device using the edge 

representation. 

Another type of input representation can be extracted by getting the difference 

between two points in each layer of the slices. The edge information would be identified 

as 1 or -1 in each layer as shown in Figure 73.  Each device with the layers of edge 

representations will be used as the input for the CNN. 
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8.3.3 Results 

 

 
Figure 74. The correlation coefficient of the CNN and ANN results. 

Simple geometrical features, such as the plate length, plate width, screw length, and 

screw diameter, etc. were used as the input for ANN which has lower-dimensional data 

representation. For the higher dimensional input which contains 40 layers of images will 

be used as the input for CNN. The output is one-dimensional psSAR10g value for the 

complex shape plate system.  The 384 configurations of the complex shape plate devices 

were randomly divided, 70% of which were used for training, while the residuals were used 

for testing. The training and testing correlation coefficient results for both ANN and CNN 

are shown in Figure 74. The training and testing results of the ANN are divergent which 

has a correlation coefficient of less than 0.39. However, CNN training and testing results 
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which have the correlation coefficient were larger than 0.97. The correlation coefficient 

results of the ANN indicated that the neural network cannot learn the non-linear 

relationship between the simple geometrical features due to the loss of detailed structure 

information in the complex shape implants. The detailed 3D geometrical representations 

were included in the CNN, so the performance of this network will be better than ANN.  

 
Figure 75. Error histogram of the CNN and ANN results. 

The error histogram of the ANN and CNN are shown in Figure 75. The MAPE for 

the training of CNN was less than 1.08%, while it was less than 1.23% for testing. The 

error for both training and testing under the ANN model was much larger than the CNN 

model with a MAPE of 10.42%. The CNN can be used to predict the RF-induced heating 

after the training and testing process which has a relatively small error rate. However, it’s 

hard to predict the RF-induced heating by using the simple geometrical features for 
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complex shape medical implants as the testing correlation coefficient was less than 0.15 

and MAPE was larger than 10.85%.   

8.3.4 Minimum Resolution (Mesh Size) Study 

The larger mesh size (resolution) could be used to reduce the training time of the 

CNN. CNN results for volume-based estimation with different mesh sizes were shown in  

Figure 76. The time cost for the CNN using a 1mm mesh size both in x, y, and z-direction 

will be 912s, however, the time will be greatly decreased to 37s when using a larger mesh 

size of 10 mm. The MAPE is still relatively small with a mesh size of 10 mm which is 

close to 5.77% and the worst-case error is less than 7.26%. Similarly, CNN results for 

boundary edge-based estimation with different mesh sizes were shown in Figure 77. The 

time cost for a mesh size of 10 mm is 31s and the MAPE is 12.76%. In such a mesh size, 

the worst-case prediction error is less than 10.42%.  

 
Figure 76. CNN results for volume-based estimation with different mesh sizes. 
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Figure 77. CNN results for boundary edge-based estimation with different mesh sizes. 

8.3.5 CNN Performance using Different Training Set 

The performance of the CNN using different training sets both for volume-based 

estimation and edge-based estimation was shown in Figure 78. The worst-case prediction 

error and the MAPE was less than 5% if the CNN trained by more than 20% of the data 

set. The CNN will not converge if using a too-small number of the random training set (<

20%) as the MAPE will be larger than 13% for volume-based estimation. The performance 

of the CNN was not guaranteed if the training data set was less than 20%. Thus, it’s 

recommended to use a training data set that was larger than 20% for the RF-induced heating 

fast evaluation of complex plate systems. 80% of configurations will no longer be needed 

for numerical simulations if the CNN only takes 20% training data. Therefore, the gain of 

the CNN for the complex plate system is 𝐺𝑎𝑖𝑛𝐶𝑁𝑁 = 80%. 
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Figure 78. Performance of CNN using the different training set. 

 Time Analysis for Convolutional Neural Network 

The upper bound of time complexity of the network for external fixation fast 

evaluation can be expressed as, 
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where 𝑇𝑎𝑛𝑛 is the time complexity of all the dense layers, N denotes the total number of 

convolutional layers, 𝑙 is the index of the convolutional layer, 𝑛𝑙 is the number of input 

channels (slice of images in the x-z plane) of the 𝑙-th layer, 𝑠𝑙 is the size of the filter, and 

𝑚𝑙  is the output size of kernel convolution from the filter. In this study, the time for 𝑇𝑎𝑛𝑛 ≈

2𝑠. For the 3-layer convolutional network, the approximate time close to 460 s using a 

mesh size of 1 mm, thus the total cost time for the whole CNN is therefore close to 920s. 

This is much less than the full-wave modeling of the devices.  Because each device inside 

the phantom will cost more than 2 hours by the numerical simulation using an NVIDIA 

C2075 high-performance graphics processing unit (GPU) which had a normal 1150 MHz 

clock rate of 448 CUDA cores. Once the network has been trained, the CNN network 
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predictive models are capable of producing hundreds of RF-induced heating predictions 

within minutes. The training time is roughly three times the testing time. 
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 Uncertainty Evaluation 

The uncertainty process evaluation follows ISO/TS 10974 Ed. 1 Annex R. According 

to this document, the result of a simulation value is a function of N parameters 𝑥1, 𝑥2, … , 𝑥𝑁. 

The combined standard uncertainty 𝑢𝑐(𝑦)  can be derived from individual uncertainty 

components 𝑢𝑥𝑖
. The total uncertainty can be calculated from the root sum square of the 

uncertainty of the individual components 

 ( ) ( )2 2
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c i i
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u y c u x
=

=    (17) 

In this formula 
ic  is the sensitivity coefficient calculated by / iy x  . ( )iu x is the standard 

deviation of each term and ( )cu y  is the combined uncertainty. In this study, the 

uncertainties of the phantom position, the device position, the gel dielectric properties, and 

the grid resolution were included.  

 The Sensitivity Coefficient Evaluation 

Typically, individual uncertainty can be evaluated in two steps. First, the sensitivity 

coefficient 𝑐𝑖 needs to be identified. Then the standard deviation of each term 𝑢(𝑥𝑖) should 

be evaluated.  

 The sensitivity coefficients of the phantom position, device position, gel dielectric 

properties, and grid resolution are estimated. The temperature rise y  will be used as the 

target value. Then the relationship between y and the temperature of the gel 𝑇𝑔𝑒𝑙 can be 

expressed as 

 .gely T=   (18) 
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In this case, the 𝑇𝑔𝑒𝑙  is a function of the phantom position, rod position, gel dielectric 

properties, and grid resolution. It is a linear equation when the variation of these parameters 

is small. The sensitivity coefficient can be calculated as Δ𝑦/Δ𝑥𝑖. 

To calculate the sensitivity coefficients regarding the phantom position, the phantom 

position is moved ±5 mm in the x, y, z direction from the standard position where the 

isocenter of the gel at is at the middle of the coil in x, z-direction, and the phantom is placed 

in the y-direction, 420 mm from the top of the coil. The sensitivity coefficient is calculated 

for each direction. The relative percentage 𝑅𝑐  is obtained by dividing the sensitivity 

coefficient by the calculated temperature rise y when the phantom is at the standard position. 

The sensitivity coefficient of the phantom position is shown in Table 21. 

Table 21. Sensitivity coefficient of the phantom position. 

Position 𝚫𝒚 (∘ 𝑪) 𝚫𝒙 (𝒎𝒎) 𝚫𝐲/𝚫𝒙 𝑹𝒄(%) 

X direction 1 10 0.1 0.625 

Y-direction 0.7 10 0.07 0.437 

Z direction 0.2 10 0.02 0.125 

Combination NA NA NA 0.773 

 

To calculate the sensitivity coefficients of the device position, the position of the 

simplest rod is moved ±5 mm in the x, y, z direction from the standard position (4.5 cm 

under the gel and 2 cm from the boundary of the gel, center of z-direction).  The sensitivity 

coefficient of the device position is shown in Table 22.  
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Table 22. Sensitivity coefficient of the device position. 

Position 𝚫𝒚 (∘ 𝑪) 𝚫𝒙 (𝒎𝒎) 𝚫𝐲/𝚫𝒙 𝑹𝒄(%) 

X-direction 0.3 10 0.03 0.187 

Y direction 4.4 10 0.44 2.750 

Z direction 0.2 10 0.02 0.125 

Combination NA NA NA 2.759 

 

To calculate the sensitivity coefficient regarding the phantom properties (conductivity 

and permittivity), the value of conductivity and permittivity are set to be ±10% deviation 

from the original value separately. The relative percentage 𝑅𝑐 is obtained by dividing the 

sensitivity coefficient by the calculated temperature rise y when the conductivity and 

permittivity are the original value. The sensitivity coefficient of the phantom properties 

was shown in Table 23.  

Table 23. Sensitivity coefficient of the phantom properties. 

Properties 𝚫𝒚 (∘ 𝑪) 𝚫𝒙  𝚫𝐲/𝚫𝒙 𝑹𝒄(%) 

Conductivity 5.1 0.114 S/m 44.737 279.61 

Permittivity 0.1 16.06 0.006 0.039 

 

To calculate the sensitivity coefficient regarding the grid resolution, the max step of 

the mesh is set to be 0.5*0.5*1 mm and 0.25*0.25*0.5 mm. The sensitivity coefficient of 

the grid resolution was shown in Table 24.  
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Table 24. Sensitivity coefficient of the grid resolution. 

Properties 𝚫𝒚 (∘ 𝑪) 𝚫𝒙 (mm) 𝚫𝐲/𝚫𝒙 𝑹𝒄(%) 

Grid resolution 0.3 0.25 1.2 7.5 

 

The summary of sensitivity coefficients for each parameter was shown in Table 25. 

Table 25. Sensitivity coefficient for each parameter. 

Parameter 𝑹𝒄(%) 

Phantom position 0.773 

Device position 2.759 

Gel conductivity 279.605 

Gel permittivity 0.038 

Grid resolution 7.5 

 

 

 

 

 

 

 

 



111 

 

 

 The Evaluation of the Individual Uncertainty Components 

Based on the measurements, the estimated standard deviation of the phantom 

position is 5 mm and the estimated standard deviation of the device position is 5 mm. The 

relative permittivity of the water over the range of 0.1ºC to 99 ºC can be calculated using 

the following equation 

 
4 2 6 387.740 0.4008 9.398(10 ) 1.410(10 ) .t t t − −= − + −   (19) 

 

The measurement temperature usually ranges from 18 ºC to 45 ºC. The relative 

permittivity of the liquid gel under various temperatures is calculated by the above 

equation and the uncertainty of the permittivity is the standard deviation of 2.85. The 

uncertainty of gel conductivity is assessed by mixing the gel according to ASTM F-2182 

standard 10 times and using a conductivity meter to measure liquid conductivity. The 

measured results are shown in Table 26.  
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Table 26. The measure results of the conductivity. 

Measurement 
Conductivity 

(S/m) 

1 0.47 

2 0.48 

3 0.52 

4 0.50 

5 0.42 

6 0.41 

7 0.48 

8 0.46 

9 0.45 

10 0.50 

 

The standard deviation of these ten observations from Table 26 is 0.033 S/m. 

Furthermore, the uncertainty of the grid resolution is estimated to be 0.25 mm.  Therefore, 

the summary of the individual uncertainty component was shown in Table 27. 

Table 27. Summary of the individual uncertainty component. 

Component 
Standard 

deviation 

Phantom position 10 mm 

Device position 10 mm 

Gel conductivity 0.033 S/m 

Gel permittivity 2.85 

Grid resolution 0.25 mm 
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Based on the sensitivity coefficient evaluation results and the individual component 

evaluation results, the uncertainties introduced by each source (𝑐𝑖𝑢(𝑥𝑖))  can be calculated 

and shown in Table 28. 

Table 28. The uncertainty caused by each source. 

Source 
Uncertainty 

(%) 

Phantom position 7.73082 

Device position 27.59218 

Gel conductivity 9.2269749 

Gel permittivity 0.11091345 

Grid resolution 1.875 

 

In summary, the combined uncertainty from the phantom position, device position, 

phantom properties, and grid resolution is 30.162%. 

  



114 

 

 

 Discussion 

For the parameterized ANN, the minimum step size of lambda/10 can be used as the 

training set which can reduce the numerical calculation burden. The worst-case errors were 

less than 6% for all the study cases including three fully implanted devices and one partially 

implanted device. The worst-case prediction error is not guaranteed as more devices should 

be investigated in future studies.  The critical devices which can induce invertible damages 

to the human should follow standard guidance to do full investigations and shouldn’t use 

the neural networks for heating fast evaluations.  

The worst-case prediction using the neural network will induce large errors if the 

configurations corresponding to the worst-case SAR were not included within the cover 

range in the training set. The errors will increase if the cover range of the parameter in the 

training set was gradually moving far away from the worst-case configuration as shown in 

Figure 79.   

 

Figure 79. Worst-case prediction results outside the cover range of training set by studying 

the rod at 3 T system. 

In this case, the worst-case configuration was with a rod length of 100 mm at 3 T 

system. The training set will gradually exclude 10 mm of rod length away from the worst-
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case configuration. Thus, the cover range of the training set will be smaller. As shown in 

the figure, the predicted worst-case SAR from the neural network still can be good if the 

cover range was not far away from the worst-case configuration as it was still higher than 

the true worst-case SAR (error < 2.23%). However, the predicted worst-case SAR will be 

lower than the true worst-case SAR and the error will be increased to 7.55% as the cover 

range of the training set decrease to a range [130~250] mm.  

Therefore, to be able to conservatively predict the worst-case SAR using a neural 

network, the training set is better to cover the range of parameters necessary to include the 

configuration that corresponds to the worst-case SAR.  For example, the worst-case rod 

length is 100 mm at the 3 T system, then the training set is better to cover this worst-case 

rod length in the range of the training set or at least not far away from the worst-case rod 

length.  

For future study, the network can be investigated to estimate the RF-induced heating 

for more complex and realistic implantable devices. There are three ways to further 

improve neural network’s applicability: Firstly, enlarge the number of labeled devices by 

providing simulation results of different types of implants; Secondly, extract common 

features or complex features for different implants that can accurately predict the RF 

exposure; and Thirdly, consider other critical factors related to RF-induced heating, such 

as loading position, devices orientation, RF coil type, etc.   
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 Conclusion 

In this paper, a fast prediction method to evaluate RF-induced heating of PIMDs 

using NNs was proposed. Previously, it has shown the validity of ANN to predict RF-

induced heating of simple plate devices in a homogeneous ASTM phantom.  However, the 

criterion to determine the minimum training data set was not identified. Moreover, the 

devices that cannot be parameterized by simple geometrical features have not been taken 

into consideration, which is critical for standard RF-induced heating evaluation. Some of 

the small geometrical changes play important roles in MRI RF-induced heating evaluation. 

 Two types of NN were proposed to predict the RF-induced heating in-vitro 

conditions, the parameterized NN and the mesh-based CNN. The criterion for the minimum 

training data set was first identified with the simplest device for each type of network, then 

several complex devices were included to validate the criterion.  The training data set was 

selected based on the wavelength under the 1.5 T system and 3 T system. For the 

parameterized NN, the fully implanted and partially implanted devices were fully studied. 

For the mesh-based CNN, two different devices were investigated, the impacts of the mesh 

size were also studied.  

The results indicate that the parameterized NN can be used to predict the RF-

induced heating with a small error rate using the minimum step size at both 1.5 T and 3 T 

systems. The worst-case also can be accurately predicted by using the appropriate 

minimum step size. Similarly, the parameterized CNN can be used to predict the RF-

induced heating for the devices that cannot be parameterized. It is recommended to use a 

small mesh size to ensure the convergence of the CNN. It has shown that CNN can fast 

predict the RF-induced heating for the complex shape medical implants with layers of 
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image representations. The NNs can work as the surrogate model to predict the non-linear 

relationship between input parameters and the RF-induced heating for PIMDs in in-vitro 

evaluations.   
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