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Abstract

The proliferation of accelerators in modern clusters makes efficient coprocessor pro-

gramming a key requirement if application codes are to achieve high levels of per-

formance with acceptable energy consumption on such platforms. This has led to

considerable effort to provide suitable programming models for these accelerators,

especially within the OpenMP community. While OpenMP 4.5 offers a rich set of

directives, clauses and runtime calls to fully utilize accelerators, an efficient imple-

mentation of OpenMP 4.5 for GPUs remains a non-trivial task, given their multiple

levels of thread parallelism.

In this thesis, we describe a new implementation of the corresponding features

of OpenMP 4.5 for GPUs based on a one-to-one mapping of its loop hierarchy par-

allelism to the GPU thread hierarchy. We assess the impact of this mapping, in

particular the use of GPU warps to handle innermost loop execution, on the perfor-

mance of GPU execution via a set of benchmarks that include a version of the NAS

parallel benchmarks specifically developed for this research; we also used the Matrix-

Matrix multiplication, Jacobi, Gauss and Laplacian kernels for better understanding

the potential performance issues.
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Chapter 1

Introduction

1.1 Motivation

Most modern clusters include nodes with attached accelerators, NVIDIA GPU ac-

celerators being the most commonly used. But recently, accelerators such as AMD

GPUs, Intel Xeon Phis, DSPs, and FPGAs have been explored as well. The energy

efficiency of accelerators and their resulting proliferation has made coprocessor pro-

gramming essential if application codes are to efficiently exploit HPC platforms. As

a result, considerable effort has been made to provide suitable programming models.

One may first distinguish between low-level and high-level programming libraries

and languages; the user has to choose one programming API that suits her appli-

cation code, level of programming, and timing. CUDA [1] and OpenCL [24] are

low-level programming libraries. On the other hand, high-level directive-based APIs
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for programming accelerators, such as OpenMP [12] and OpenACC [23], are easy

to use by scientists, preserve high-level language features, and provide good perfor-

mance portability features. Recently, multiple open-source compilers (e.g., GCC,

LLVM, OpenUH) and commercial compilers such as Cray, IBM, Intel and PGI, have

added support for these directive-based APIs (or are in the process of doing so).

OpenMP’s multithreading features are already employed in many codes to ex-

ploit multicore systems. The broadly available standard has been rapidly evolving to

meet the requirements of heterogeneous nodes. In 2013, Version 4.0 of the OpenMP

specification made it possible for user-selected computations to be offloaded onto ac-

celerators; some important features were added in version 4.5 [8, 9]. Implementations

within vendor compilers are under way.

OpenMP 4.0 added a number of device constructs: target can be used to specify

a region that should be launched on a device and define a data device environment,

and target data, to map variables on that device. Pragma teams can be used

inside target to spawn a set of teams, each containing multiple OpenMP threads;

note that teams can be mapped to a CUDA block. Finally, distribute is used to

partition the iterations of an enclosed loop to each team of such a set.

Compared to OpenMP 4.0, OpenMP 4.5 changed the semantics of the mapping of

scalar variables in C/C++ target regions. It also provides support for asynchronous

offloading using nowait and depend clauses on the target construct. The mapping

of data can also be performed asynchronously in OpenMP 4.5 using target enter

data and target exit data. The clause is device ptr was added to target to
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indicate that a variable is a device pointer that is already in the device data envi-

ronment, so it should be used directly. The clause use device ptr has been added

to target data to convert variables into device pointers to the corresponding vari-

able in the device data environment. Finally, device memory routines were added

to support explicit allocation of memory and memory transfers between hosts and

offloading devices, such as omp target alloc.

A typical GPU architecture, for which some of the above-mentioned features

were designed, provides three levels of parallelism, namely thread blocks, warps, and

threads inside each warp. OpenMP 4.5 provides three levels of loop hierarchy paral-

lelism as well, namely teams, parallel, and SIMD. For traditional CPU architectures

and CPU-like accelerators, the mapping of these three levels of parallelism is straight-

forward. However, a typical GPU architecture differs substantially from a CPU, and

thus the design of an efficient implementation of OpenMP 4.5 on GPUs is not a

trivial task. In this work, we describe an efficient implementation of the OpenMP

offloading constructs in the open source OpenUH compiler [10] for NVIDIA GPUs.

Our implementation of OpenMP 4.x offloading is based on a one-to-one mapping

of OpenMP levels of parallelism to CUDA’s levels of parallelism, i.e, grid, thread

block, and warp. To assess the suitability of this approach, we also implemented an

OpenMP accelerator version of the NAS Parallel Benchmarks, and used it to test

our implementation.
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1.2 Contribution

This thesis makes the following contributions:

• we propose a one-to-one mapping of the loop hierarchy parallelism available in

OpenMP 4.x to the GPU thread hierarchy and implement this mapping in the

OpenUH compiler;

• we use a set of benchmarks to assess the impact of this mapping, especially the

use of GPU warps to handle innermost loop execution, on the performance of

GPU execution;

• we adapt the NAS parallel benchmarks to use OpenMP offloading, and make

them available for use by the OpenMP community to test other implementa-

tions and platforms.

1.3 Organization

Part of this thesis has been published in [26]. The organization of this thesis is

as follows. Chapter 2 gives a brief introduction of modern accelerators’ architec-

tures. Based on those hardware platforms, we go through major programming mod-

els designed for accelerators. Chapter 3 will discuss about current support of other

compiler vendor’s implementation of OpenMP 4.x. Then we introduce the OpenUH

compiler infrastructure. Chapter 4 reviews the OpenMP 4.x programming model us-

ing most commonly used directives. Chapter 5 will discuss about how the offloading

4



support is integrated in OpenUH. Chapter 6 describes the one-to-one loop hierarchy

mapping to the GPU thread hierarchy that we have adopted. Performance results,

comparison and discussions are given in Chapter 7. Chapter 8 concludes the whole

work in the thesis and looks into some future directions of the current work.
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Chapter 2

Background

In this chapter, we provide a brief overview of the architecture of modern GPUs and

Intel Xeon Phi accelerator, then we will give a brief introduction of high-level and

low-level prevailing programming models.

2.1 Modern GPU Architecture

Modern GPUs consist of multiple streaming multiprocessors (SMs or SMXs); each

SM consists of many scalar processors (SPs, also referred to as cores). Each GPU

supports the concurrent execution of hundreds to thousands of threads following the

Single Instruction Multiple Threads (SIMT) paradigm, and each thread is executed

by a scalar core. The smallest scheduling and execution unit is called a warp, which

is typically composed of 32 threads. Warps of threads are grouped together into a

thread block, and blocks are grouped into a grid. Both the thread blocks and the
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grid can be organized into a one-, two- or three-dimensional topology.

SIMT execution within a warp in GPUs can be compared to SIMD execution

in a CPU. In each case, the same instruction is broadcasted to multiple arithmetic

units. However, the CPU comes with vector instructions to process several elements

of short arrays in parallel, whereas, in SIMT mode (within a warp), several elements

of an array are processed in parallel.

Modern GPUs deploy a deep memory hierarchy, which includes several different

memory spaces. Each of them has special properties. The global memory is the main

memory in GPUs that all threads can make use of it. The so-called shared memory

is shared by threads within a thread block only. The texture memory is read-only

memory that allows adjacent reads in a warp.

Each kind of memory requires specific attention. For example, accesses to global

memory may be coalesced or not; accesses to texture memory could come with a

spatial locality penalty; accesses to shared memory might suffer from bank conflicts;

and accesses to constant memory may be broadcast. Memory coalescing is a key

enabler of data locality in modern GPU architectures. Under it, memory requests by

individual threads in a warp are grouped together into large transactions. When con-

secutive threads access consecutive memory addresses, this enables the exploitation

of spatial data locality within a warp.

Modern NVIDIA GPUs are using SMXs as the fundamental part of the processing

core architecture. Each SMX unit consists of a lot of CUDA cores. Each CUDA core

contains arithmetic logic units for integer and float point operations. There are

7



hardware level scheduler inside each SMX for thread scheduling. The GPU threads

are scheduled in groups consists of 32 threads. At a certain time, the warp scheduler

will select several warps to issue concurrently.

Threads

Shared 
Memory

L1 
Cache

Read‐Only
Data Cache

Register Files

GPU Global Memory
Texture 
memory

Constant 
memory

L2 Cache

Figure 2.1: Memory hierarchy of NVIDIA GPUs

NVIDIA GPUs also have a deep memory hierarchy, each GPU thread can load

data from a variety of types of memory spaces. The closest memory for each compute

thread is the thread local register files, the farthest memory for each thread on the

device is in GPU gloabal memory. The global memory is connected with host memory

via PCI-Express interface. Threads within each SMX are able to share L1 cache,

read-only cache and shared memory. The constant memory and texture memory are

bundled with the global memory, they will be loaded into L2 cache.
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2.2 Intel Xeon Phi Architecture

Xeon Phi is a name of a series of Intel branded manycore processors, it is targeting

the high performance computing markets. It supports some common parallel pro-

gramming models such as OpenMP and OpenCL [4]. The Xeon Phi contains many

low-power architecture cores [28]. Those cores are organized in a ring interconnect.

There are four hardware threads of each core. Each core has two pipelines: scalar

processing and vector processing. The scalar and vector processing units can share

data from L1 and L2 cache. The vector processing unit (VPU) features a 512-bit

length SIMD instruction set. The VPU contains mask registers for per lane predicted

execution. The interconnect ring of the cores is bidirectional. The interconnect ring

provides the cores with the ability to share data, commands and addresses.

Figure 2.2: Intel Xeon Phi Architecture

The global memory is placed in a interleaved manner with compute cores. At a
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certain time when a core is requesting memory, it will fetch from the L2 cache, if there

is a cache miss, an address request will be generated and put on the interconnect

ring, the request will be captured by the global memory controller, then the data

will be fetched from global memory and sent back to the ring.
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Chapter 3

Related Work

3.1 Related Implementations of OpenMP Target

Model

Support for OpenMP 4.5 in vendor compilers is still a work in progress. The Intel

compiler 16.0, released in August 2015, fully supports OpenMP 4.0 for the Intel Xeon

Phi coprocessor. The Cray Compiling Environment 8.4 was released in September

2015. It provides support for the OpenMP 4.0 specification for C, C++, and Fortran,

enabling the execution of OpenMP 4.0 target regions on NVIDIA GPUs.

Regarding open-source compilers, GCC 6 was released in April 2016; it fully sup-

ports the OpenMP 4.5 specification for C and C++. GCC targets Intel XeonPhi

Knights Landing and AMD’s HSAIL (Heterogeneous System Architecture Interme-

diate Language).
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LLVM 3.8.0 was released in March 2016. Its frontend Clang supports all of

OpenMP 3.1 and some elements of OpenMP 4.0 and 4.5. LLVM uses an OpenMP

offloading library called libomptarget. The current implementation of this library

can be divided into three components: target-agnostic offloading, target-specific of-

floading plugins, and target-specific runtime library. The libomptarget library was

designed with the goal of supporting multiple devices; it currently targets the IBM

Power architecture, x86 64, Nvidia GPUs, and Intel Xeon Phi. In [5], its OpenMP

4.0 offloading strategy is described and some optimizations are applied, such as a

control loop scheme [6] that avoids dynamic spawning of GPU threads inside the

target region; this implementation targets NVIDIA GPUs. As already discussed in

the experimental section, the current implementation of LLVM does not efficiently

map the simd OpenMP level to GPU warps, thereby hurting performance.

3.2 Current OpenUH Infrastructure

The OpenUH compiler [10] is a branch of the open-source Open64 compiler suite for

C, C++, and Fortran 95/2003. It offers a complete implementation of OpenACC

1.0 [27], Fortran Coarrays [14], and OpenMP3.0 [19]. OpenUH is an industrial-

strength optimizing compiler that integrates all the components needed of a modern

compiler; it serves as a parallel programming infrastructure in the compiler research

community. OpenUH has been the basis for a broad range of research endeavors, such

as language research [15, 16, 14], static analysis of parallel programs [11], performance

analysis [25], task scheduling [2] and dynamic optimization [7].
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The major functional parts of the compiler are the front ends (the Fortran 95

front end was originally developed by Cray Research and the C/C++ front end comes

from GNU GCC 4.2.0), the inter-procedural analyzer/optimizer (IPA/IPO) and the

middle-end/backend, which is further subdivided into the loop nest optimizer (LNO),

including an auto-parallelizer (with an OpenMP optimization module), global opti-

mizer (WOPT), and code generator (CG). Currently, x86-64, IA-64, IA-32, MIPS,

and PTX are supported by its backend. OpenUH may also be used as a source-to-

source compiler for other machines using its IR (Intermediate Representation)-to-

source tools. OpenUH uses a tree-based IR called WHIRL which comprises 5 levels,

from Very High (VH) to Very Low (VL), to enable a broad range of optimizations.

This design allows the compiler to perform various optimizations on different levels.

13



Chapter 4

OpenMP 4.x Target Model

Application Programming

Interface

OpenMP 4.x target model makes it possible for user-selected computations to be

offloaded onto accelerators. It allows programmers to add directives as hints to

the compiler, and the compiler will map those directives to compute regions on the

accelerator. These directives includes data management and thread management.

It extends its original shared memory model to multiple devices. Programmers can

easily adapt their serialized code to parallel version with minimum modification.

In this chapter, we will first describe the memory and execution model of OpenMP

4.x target model, then we will give a brief introduction of major offloading directives

according to OpenMP 4.x specification. We will also provide some code examples to

14



illustrate to usage of those directives.

4.1 Memory Model

OpenMP 4.x supports offloading compute regions to compute devices. Since each

compute device has its own memory space, the device and host can not have access

of data of each other directly. It is necessary to provide a mechanism to support data

transferring between device and host. In OpenMP 4.x target model, each device has

its own data environment and maintains a shared-memory environment for device

threads.

Figure 4.1: OpenMP 4.x memory model

Explicit data movement can be accomplished through a variety of data mapping

15



constructs. Those data movement operations are implemented by the compiler and

runtime, the compiler will generate low-level data mapping APIs from high-level

OpenMP directives, and at runtime the data transferring will happen between host

and device. This mechanism is very similar to some existing parallel programming

models such as OpenACC, CUDA and OpenCL, those models also suppose discrete

memory spaces and thus data mapping APIs are important.

The separate memory space between host and device implies that it is the users

responsibility to carefully manage those data movements. The user should consider

data movement overhead while exchanging data since the transferring cost could be

high; the device memory size could be smaller than host memory so that multiple data

exchanged could be used; it is important to maintain a reliable data synchronization

mechanism between host and device.

4.2 Execution Model

The accelerators are used to parallelize compute-intensive tasks on devices. Since the

host and the device are supposed to have separate memory space, the accelerators

need to provide thread management for its offloading region. The host should guide

the execution at the entry and the exit of the offloading region. The compute kernels

should be executed in parallel on the device. This host-centric execution model

requires that the program should begin with some host threads, when the program

encounters the OpenMP target region, a target task will be generated and the data

referenced by the compute region will be implicitly allocated and initiated on the

16



device, device threads will then be created and execute the computation task. The

host thread which creates the offloading task will wait until the device has finished

its job. At the exit of the compute region, device data will be transferred back to

the host threads.

OpenMP target model provides a variety of device constructs for users to con-

trol the data transferring, thread spawning and executing. Those constructs could

transfer the control flow of the host threads to the device threads in a scoped device

data environment. Users should consider the tradeoffs between host executing and

device executing since they may have quite different architecture.

Figure 4.2: OpenMP 4.x execution model

OpenMP 4.x provides up to three levels of parallelism, each level contains bundles

of threads. Most of the state-of-the-art accelerators are capable of using three levels

of parallelism. However, due to the hardware design differences, those accelerator

17



could vary a lot in architecture, a high-level abstraction of thread hierarchy should

be well defined. In general, each accelerator may contain some groups of execu-

tion units [18] [21], each group of execution units contain multiple basic execution

threads, each thread may have its own SIMD lane which could issue SIMD instruc-

tions. OpenMP target model contains teams, parallel and SIMD level parallelism.

The coarse-grain team’s level bundles a number of execution threads produced by

hardware units. The fine-grain parallel level will spread workload across threads in

each team. The SIMD level provides vectorization for loops with SIMD vector regis-

ters. The compiler should be able to choose the best mapping strategies for different

types of accelerators, and the user will also be responsible to better utilize those

directives to reach good performance.

4.3 Offloading Directives

We will discuss the definition and usage of the most commonly used directives in

OpenMP 4.x target model. Those directives are supported in current OpenUH im-

plementation and will cover most use cases in real-world applications.

4.3.1 Data Transferring Constructs

The current OpenUH supports target data and target update constructs. The

target data construct encloses a structured block, at the entry of the structured

block, the device data environment will be created but the device compute kernels

18



will be launched after the target construct is encountered.

Figure 4.3: OpenMP 4.x data transferring construct

Note that if there is no target region specified inside this block, the execution will

still be done on the host side, the target data construct only create the device data

environment but not transfer the control flow. The map clause is always associated

with target data construct, it is used to describe the data referenced in the device

data environment. Users can control the data flow and data range by specifying the

map-type in the syntax. The data variable listed in the map clause could either be a

scalar or an array pointer, if it is a array pointer, users can specify its data range, the

array section should reside in an contiguous memory space. The map clause provides

several map-type keywords for users to manage data movement. The alloc-type

means the data will be created on the device and with undefined initial value; the

to-type means the data will be created and initialized with the host value; the from-

type means the data will be copied from the device back to host; the tofrom-type is

a combination of to-type and from-type.

Figure 4.4: OpenMP 4.x data updating construct

The target update construct is used to maintain consistency of host data en-

vironment and device data environment. There are two motion-clauses associated
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with this construct, the to-clause assigns the value of the original array section to the

corresponding device array section, the from-clause assigns the value of the device

array section to the original host array section. If the list array section does not exist

on host or device, the data assignment will not happen.

4.3.2 Target Construct

The target construct encloses a structured block that will be executed on the device.

When the host thread encounters the target construct, a device task is generated

and the control flow of the host thread will be offloaded on the device. The map clause

can also be applied to target construct, which means that the data environment

will also be created at the entry of the target region, and the behavior of map clause

is identical with target data construct. Inside the target construct, some thread

creating constructs are always included for parallel execution of the device task.

Figure 4.5 shows an example code snippet.

Figure 4.5: OpenMP 4.x target construct
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In the above figure, there are multiple target regions inside the target data

block, this is the situation that multiple compute kernels are launched, each kernel

has its own loop scheduling plan. At the end of each kernel region, the target task

finishes its job and the data remains in the device memory, then at the end of the

target data region, device data with map-type tofrom will be copied back to host.

4.3.3 Teams and Distribute Constructs

The teams construct is used to create a league of thread teams on the device, each

team contains a number of threads. The number of teams is determined by num teams

clause and the number of threads is determined by thread limit clause. The number

of teams will not be changed during execution of the omp teams region. During the

execution period of the teams construct, only the master thread is active and other

thread are idle, the other thread will not be involving in the execution until a further

parallel region is specified. Note that each master thread of the teams will do the

complete iterations, this can be explained in the following Figure.

Figure 4.6 shows that the highlighted master thread of each team will have the

same execution plan, the complete loops enclosed by the teams construct will exe-

cuted by master threads. The teams construct should be strictly contained within

a target construct. At the end of the teams region, the encountering thread which

triggers the creation of thread teams will continue its execution in the target region.

The distribute construct is as the name suggests, the execution of the associated

loop will be spread across the master threads of each thread team, each master thread
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Figure 4.6: OpenMP 4.x teams construct

will obtain a number of iterations.

Figure 4.7 shows that distribute construct behaves like a worksharing construct,

the outer loop will be shared among master threads. The distribute construct

should be tightly nested inside the teams construct.

4.3.4 Parallel Loop Construct

Before OpenMP 4.x, the parallel loop construct is a combined construct which

will distribute the execution of its associated loop among the threads of the team.

Each thread will get a few iterations of its binded loop. OpenMP 4.x has extended its

usage to the scope of device threads. After a team of threads is created on the device,

the workloads of its associated loop will be shared by the team members including

the master thread. This is the fine-grain level of parallelism for most accelerator

types.

22



Figure 4.7: OpenMP 4.x teams distribute construct

The parallel loop construct contains an implicit barrier at the exit of its execu-

tion region, unless the nowait clause has been specified, there will be a synchroniza-

tion for threads. If the parallel loop construct appears within the target region,

it becomes a worksharing region for current thread team on the device. If there is

no teams construct inside the target region, a single team will be created and the

workload will be shared among team members.

4.3.5 SIMD Construct

In the definition of the SIMD execution model, the loop with simd hint denotes

that it will be translated into a SIMD loop. Modern accelerators usually support

vectorization operations using vector processing units at hardware level. The simd

construct provides the vectorization capability in OpenMP which means multiple
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Figure 4.8: OpenMP 4.x target parallel loop construct

data elements will be processed simultaneously using a single hardware instruction.

The SIMD instruction should follow the dependency restrictions among iterations

and within each iteration.

In the hardware implementation of a vectorization unit, data elements are always

stored in a vector type simd register. For example, a 128 bit vector can hold 16 bytes

or 4 words or 2 double words depending on the data element type, a data array with

4 float type elements could be packed into this vector and the iterations of the loop

will be mapped into the register. At any time during execution, the data in the

simd vector will have the same execution pattern, which means that there is only

one program counter shared by the data elements in that vector.
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In order to load data more efficiently into vectorization units, SIMD may re-

quire memory alignment for better performance. The simd construct provides data

alignment clause for users to specify alignment information for a certain hardware.

Another important issue for simd processing is divergent branching, branching in-

structions will affect the efficiency of SIMD execution because vector elements should

be decomposed and processed sequentially. When there is control flow within the

binding loop of simd construct, an authenticity check will be performed to evaluate

if the condition is true or false, then both true and false conditions are executed on

the running SIMD lanes. After the calculation of vector elements, for each result

that satisfy the condition evaluation, the outcome will be selected and stored in the

resulting vector. In general, SIMD operations usually use masking operations for

both conditions.

Figure 4.9 shows the complete three levels of parallelism, the innermost loop is

vectorized using simd construct. The length of SIMD lane depends on the hardware

implementation. Each thread of the teams will issue its SIMD instructions using

thread local hardware resources.
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Figure 4.9: OpenMP 4.x simd construct
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Chapter 5

OpenUH GPU Offloading Model

We have implemented the OpenMP accelerator constructs in the OpenUH compiler.

Note that OpenUH also supports OpenACC, another directive-based API for device

programming. The existing OpenACC implementation generates CUDA/OpenCL

kernel functions for NVIDIA and AMD GPUs, respectively. In this work, we target

NVIDIA GPUs because of their wide popularity in the HPC community. We plan

to address AMD GPUs in the future work.

The creation of an OpenMP compiler for accelerators requires a significant im-

plementation effort to meet the challenges of mapping high-level loop constructs

to low-level threading architectures. This implementation is divided into frontend,

backend and CUDA kernel generation phases.
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Figure 5.1: OpenUH compiler framework for OpenMP offloading constructs

5.1 Front-end Support

OpenUH compiler is using GNU GCC 4.2 front-end for parsing C/C++ syntax, the

front-end will generate very high level WHIRL IR (Intermediate Representation). We

have extended the existing front-end to support the following directives and clauses

of OpenMP 4.5: target, target data, target update, and the loop parallelism

directives, namely distribute, teams and simd. We also extended the parallel loop

sharing construct for GPU threads. Those construct are parsed and a variety of new

IRs are generated.
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5.2 Back-end Support

In this phase, we transform the generated IR nodes into runtime library calls, which

further invoke lower-level CUDA library routines to allocate/deallocate memory

within GPUs; this corresponds to the LOWERING module in Figure 5.1. Then,

we outline each OpenMP target region as a CUDA kernel function that will be

fed to another module of Figure 5.1, called WHIRL2CUDA, in order to generate

CUDA source code. The WHIRL2CUDA module is a modified module derived from

WHIRL2C module which enables converting IR tree to corresponding C codes. Fi-

nally, we replace the original outlined target region with a runtime function call that

is used to launch the kernel. Note that during the outlining step, we perform a

one-to-one mapping of parallel loops to the threading architectures; we detail this

mapping in the following chapters.

Since our translation is based on source-to-source translation to handle target

regions, we use the CUDA SDK environment to translate the CUDA kernel func-

tions into NVIDIA GPU assembly code, also called PTX code. The source-to-source

translation plan make it more flexible to track each optimization phase in the back-

end, it also extends the ability to adapt itself to new hardware architecture changes

with minimum modifications.

The Pre-OPT phase and LNO phase contain a variety of optimizations for OpenUHs

offloading backend. Live variable analysis [17] is applied and an extended version for

the whole computer region is implemented in the back-end. For the data transferring

constructs, this liveness analysis is used to assist variable allocation on the device.
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The loop transformation strategy which converts associated loops into correspond-

ing CUDA thread scheduling codes is included in the LNO phase. Our OpenMP

4.x implementation has already made use of those optimization strategies in the

back-end.

5.3 Runtime Support

The compiler back-end will generate CUDA C kernel codes for each offloading region,

and the host IR contains device function calls. The runtime system is responsible

for launching device function calls as well as data transferring management. As we

mentioned in the previous sections that the data management constructs is used to

create device data environments, the runtime support is responsible for data map-

ping. As a source-to-source translation plan for OpenMP target model, the core

data management routines in the runtime system is based on CUDA driver APIs

with additional data handlers.

As shown in figure 5.2, at the entry of the data region, the device version of

the data pointer referred inside the target region will be created and a hash map

will be used to store the host-device pointer pairs. This hash map is called Data

Present Table (DPT) [27]. The host pointer is used as the hash key of the table and

the value represents the corresponding device pointer. The DPT is useful for data

address retrieving on the device to reduce the extra data transferring cost. At the

entry of each compute region, the runtime will search for the data pointers referred

in the compute region. If the data pointer exists in the DPT, the runtime will use its
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Figure 5.2: Runtime support for OpenMP target model of OpenUH

corresponding device pointer to handle the data. If the data pointer does not exist

in the DPT, the device data will be allocated and initialized.
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Chapter 6

One-to-One Parallelism Levels

Mapping for OpenMP in OpenUH

OpenMP 4.x contains three levels of parallelism: teams, parallel for and simd. With

the traditional CPU architecture and in CPU-like accelerators, the mapping of these

three levels of parallelism is straightforward. In the latest Intel 72-Core Knights-

Landing (KNL) accelerator, for example, each core has two 512-bit vector units and

supports four threads. In this case, we might, e.g., create 72 teams containing 4

threads each. Each thread can then perform 512-bit SIMD operations. The typical

GPU architecture does not permit this straightforward approach, and thus designing

an efficient implementation of OpenMP 4.x on the GPU is not a trivial task. In

this work, we introduce, and subsequently assess, an approach based on a one-to-one

mapping of the OpenMP levels of parallelism to the levels of parallelism found in

CUDA, i.e, grid, thread block, and warp [13].
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6.1 Mapping Strategy Overview

Our main goal is to follow the OpenMP target model specification while attaining

high performance on the GPUs as well as CPU-like accelerators despite the signifi-

cant differences in their architectures. The individual cores in CPU-like accelerators

contain SIMD units. Their ability to issue SIMD instructions makes it very easy

for the cores to exploit the SIMD directives in OpenMP, which are important for

performance on such platforms. In contrast, GPUs are highly suitable for massively

parallel processing. Their thread hierarchy is flatter than on CPUs. The warps are

basic scheduling units on GPUs and this makes it challenging to map different levels

of parallelism.

Performance portability, where a single source code runs well across different

target platforms, is increasingly demanded. Progress toward this goal in the context

of OpenMP requires that accelerator directives be implemented efficiently on GPUs

as well as CPU-like accelerators. In order to achieve this, it is necessary to effectively

exploit each level of architectural parallelism, between and within groups of threads,

and to map all three levels of OpenMP 4.x parallelism onto the GPU. Mapping the

simd construct of OpenMP is critical to fully exploit the corresponding computing

capabilities. Table 6.1 shows the mapping of OpenMP parallelism concepts to CUDA

parallelism levels that was used in this work.

Table 6.1: OpenUH Loop Mapping in Terms of CUDA Terminologies

OpenMP Abstraction CUDA Abstraction

teams thread blocks within the grid
parallel warps within a thread block

simd 32 threads within a warp
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6.2 Mapping Three Levels of Parallelism

How to distribute loops among threads for thread blocks is an very important topic.

Due to the hardware architecture differences and limitations, the compiler should be

able to use an effective way to handle loop distribution, especially for programs with

multiple levels of parallelism. The NVIDIA GPUs have a flat organization of CUDA

cores in hardware level, the compute cores are organized as SMX (Streaming Mul-

tiprocessor). The grids, thread blocks and threads are representations of abstracted

thread hierarchy from the hardware. Each grid can be composed of multidimensional

thread blocks, each thread block can also be composed of multidimensional threads.

The thread hierarchy in CUDA provides the possibility for mapping OpenMP device

threads to CUDA threads. In OpenMP target model, each team contains multiple

threads and each thread has vectorization capability using SIMD instructions.

The teams construct is translated directly into thread blocks in CUDA because

the thread blocks are independent of one another and consist of a group of threads

that run on the same execution unit (SMX). In the OpenMP target region, the

environment of the compute kernel is initialized, which includes device data creation

and CUDA kernel generation. At runtime, target data will be transferred between

host and device according to the information from map clause, then the CUDA kernel

will be launched.

When the program encounters the teams construct, a league of thread teams will

be created. This mapping strategy will basically create a grid that consist of thread

blocks; then the computation load will be taken by each thread block. Strictly
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following the specification of OpenMP, the workload will be taken by the master

threads of thread blocks. Note that all master threads of thread blocks will do the

same calculation at this time, the workload will not be distributed across those master

threads until the distribute construct has been specified. As each thread block

represents a team in our implementation, there will be no synchronization among

teams, the thread synchronization mechanism are only effective within a team.

Figure 6.1: Mapping teams construct for OpenMP target model of OpenUH

In OpenUHs implementation, thread teams are configured as the x-dimension of

the grid, each thread block represents the target thread team in OpenMP. There is

only one grid created during every kernel launch.

The implementation of the omp parallel for directive inside the omp target

region is based on a single thread block. A thread block will get a chunk of data

and distribute the associated loop across threads. In OpenUH, the distribution is

actually accomplished among warps within a thread block, and the master thread

in each warp finishes the workload and waits at a synchronize point. This kind of

mapping strategy makes it possible to utilize shared memory resources in each thread
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Figure 6.2: Mapping parallel loop construct for OpenMP target model of OpenUH

team on GPU-like accelerators.

Each warp consists of 32 threads; the first thread of each warp corresponds to the

thread with the smallest thread-id. A parallel region is executed by each first thread

in all the warps within the same thread block. If for is combined with parallel,

these first threads will workshare the parallel loop region.

The GPU architecture supports the SIMT approach by executing the same in-

struction on several elements concurrently, within a warp. Therefore, a single in-

struction that is executed by a warp can be considered to be a SIMD operation as

defined by OpenMP standard. Thus, in our implementation of OpenMP offloading

for GPUs, we interpret the simd construct as the execution unit of a warp. Specifi-

cally, the iterations of a loop that is annotated by the simd directive are distributed

or vectorized among threads within the same warp. The SIMT approach is much

more flexible than SIMD. In addition to traditional SIMD operations, SIMT provides

multiple addresses, registers and flow paths using a single instruction. In OpenUH,
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the compiler backend is able to utilize some SIMT exclusive features to accomplish

corresponding SIMD operations in programms.

Figure 6.3: Mapping simd construct for OpenMP target model of OpenUH

When a loop has a simd hint, each thread in the warp may contain some thread

private variables copied from outside the kernel region, those variables include point-

ers and scalar types, this situation results in redundant data items and a waste of

register files. While for accelerators which support the exact definition of SIMD, the

array and scalar pointers will be kept in different registers. The SIMD vector type

register has the ability to accommodate a variety of data types, for example, a 256 bit

length register can hold either 8 4 bytes integers or 4 8 bytes double precision floats.

While for SIMT, each thread holds its own data elements and does the calculation

regardless of the data length.

In a kernel region with simd hints, the compiler should generate codes for loading

data to vector registers on CPU-like accelerators, and for loading data from device

global memory to thread local registers on GPUs. In both cases, the program might

need some random access of data elements. For SIMT architecture, the memory

access happens at certain memory transaction cycles, random access will take more

cycles for data loading operations. Although modern GPUs have shared memory for

threads within a thread block to share resources, bank conflicts could be a common

problem depending on applications. The SIMD model also needs extra instructional

level support for random access of data elements.

37



Figure 6.4: Data mapping for SIMT registers

Figure 6.5: Data mapping for SIMD registers

The SIMT architecture on GPUs makes it more convenient to deal with control

flows compared with SIMD model. This is especially convenient for our source-to-

source translation plan. As we have described in the previous chapters that SIMD

always use masking operations to deal with the branch divergence. OpenUH is using

a similar approach to deal with control flows through invoking NVCC compiler. The

SIMT implementation on NVIDIA Kepler architecture bundles 32 threads into a

single warp, and the hardware level warp scheduler is used to issue several warps

concurrently [22], thus different warps can not be guaranteed to be executed at the

same time. If the control flows span multiple warps and each warp has a single flow

path, there is no need to engage extra branching instructions since different warps can

execute different instructions. However, this is not the case that the simd construct

could be applied to this loop because the threads are not launched concurrently.
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Placing a simd construct before a loop with control flow inside occurs frequently.

In such scenario, warp divergence will happen. The warp divergence means that

threads within a warp will go to different paths. The NVCC compiler invoked in

OpenUH provides some prediction mechanism in some cases which the branching

variable can be determined at compile time. In other cases, all threads will do all

paths and then the correct results will be picked based on the branching variable.

The branching cost using simd construct could be pretty high if each thread executes

a particular path.

In OpenUH, the parallel for construct in the target region is mapped as the y-

dimension threads in a thread block, the simd construct is mapped as the x-dimension

threads in a thread block. Our compiler is using the coalesced memory access pattern

to distribute loop iterations across threads. The coalesced access pattern make the

consecutive threads have access to consecutive memory addresses, and during each

memory transaction, those memory accesses will be bundled together [20].

Figure 6.6 is using a simple example to demonstrate how the memory coalesc-

ing is performed by OpenUH. The elements of the vector is stored in consecutive

memory addresses, the GPU threads have been created in the compute kernel and

each thread a unique thread ID. In the upper example of the figure, each thread

is responsible to have access to a small group of consecutive memory addresses, in

this case, memory access is not coalesced, the GPU hardware will typically use more

memory transactions to load all elements. This situation could result in much lower

memory bandwidth usage in GPU global memory. In the lower example of the figure,

the first thread will load the first element of each sub-vector, the second thread will
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Figure 6.6: Memory coalescing for OpenMP target model of OpenUH

load the second element of each sub-vector and so on. In this case, each thread has

a fixed step size for accessing memory addresses. Note that in some programs, inner

loop interchange will be needed to help the OpenMP directives to enable memory

coalescing.

The arrangement of GPU threads in OpenUH target model is based on this

coalescing plan to better make use of GPU global memory bandwidth. We expect

our loop transformation could cover most of the cases, some programs still need to be

modified to adapt to memory coalescing. Since there are three levels of parallelism

in OpenMP target model, there could be a combination of device constructs for each

compute kernel, the step size for each thread to load data elements becomes more

complex. The step size is determined by the current combination of constructs used

in the compute kernel.
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Table 6.2: Step size for GPU thread arrangement of OpenUH target model

Target Constructs Step Size

teams gridDim.x
parallel for blockDim.y

simd blockDim.x
teams + parallel for gridDim.x * blockDim.y
parallel for + simd gridDim.x * blockDim.x

teams + parallel for + simd gridDim.x * blockDim.y * blockDim.x

Table 6.2 is using CUDA predefined variable to describe the step size for each

combination of OpenMP target construct. Note that this thread arrangement plan

is targeting on GPU-like accelerators, since the CPU-like accelerators have quite dif-

ferent memory accessing patterns in hardware level, this plan may not be as efficient

as on GPUs.

6.3 Mapping Strategy Analysis

Figure 6.7 shows an example code that contains three levels of OpenMP offloading

parallelism in a triple-nested loop.

We demonstrate the one-to-one mapping of this nested loop to the thread hier-

archy. In this triple-nested loop, three thread blocks are generated and each thread

block contains multiple warps, as we have the simd hint before the innermost loop,

the computing can be distributed among threads inside warps with coalesced mem-

ory access model. This is a typical case that will fully utilize the three levels of

parallelism of OpenMP target model, and it can also make full use of GPU threads

resources. It is important that all threads within a warp are involved in the compute
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#pragma omp target teams distribute

for (i=1;i<=isize -1;i++)

#pragma omp parallel for

for (j=1;j<= jsize;j++)

#pragma omp simd

for (k=1;k<= ksize;k++)

temp1 = dt * tx1;

temp2 = dt * tx2;

lhsX[i][j][k] = ...

Grid

Block0 Block1 Block2

Block1

Warp0 Warp1 Warp2 Warp3

Figure 6.7: One-to-One Mapping of the Three Levels (top) of OpenMP Parallelism into a
GPU (bottom)

task, otherwise there will be very high thread synchronization overhead which will

harm performance.

Figure 6.8 shows an example code that contains two levels of OpenMP offloading

parallelism in a double-nested loop. The innermost loop is at thread level and no

further vectorization is required. For this code snippet, on a CPU-like accelerator,

using parallel for is better than using simd for the inner loop because the inner

loop control flow could be costly, SIMD on CPUs should identical instructions; if we

use the simd construct instead of parallel for, the inner loop may be less efficient

because of the divergent branching. CPU cores are typically much more powerful

than GPU cores. On a GPU-like platform, using parallel for will make only one

thread inside the warp in the computation which results in poor performance. On

the programmers perspective, the same code should obtain desired performance on
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different hardware platforms, this requires the compiler to optimize its implementa-

tion based on different accelerators types. In the OpenUH implementation, we have

automatically attached the simd construct after the innermost loop to obtain reason-

able performance. This transformation still spreads computation load across thread

teams, but in a more efficient way. Since this transformation happens in the inner-

most loop, it is semantically legal. The performance of the code is heavily dependent

on the target accelerator type. In OpenUH, the current compilation strategy was

designed to take advantage of the warp-wise execution model, which assumes that

the workload of the innermost loop always be spread across threads within warps.

#pragma omp target teams distribute

for (i=1;i<=isize -1;i++)

#pragma omp parallel for

for (j=1;j<= jsize;j++)

temp1 = dt * tx1;

temp2 = dt * tx2;

lhsX[i][j][k] = ...

if ()

else

Figure 6.8: One-to-One Mapping of the Two Levels of OpenMP Parallelism into a GPU

#pragma omp target

#pragma omp parallel for

for (i=1;i<=isize -1;i++)

a[i] = ...

if ()

else

Figure 6.9: One-to-One Mapping of the One Level of OpenMP Parallelism into a GPU

Figure 6.9 shows an example code that contains just a single level of OpenMP

offloading parallelism in a single loop. Since we do not have a teams construct, only

one thread block is created and the workload is shared among the threads inside this
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thread block. As described above, in a naive implementation only the master thread

in each warp is working and the other threads simply wait at the synchronization

point. There is a large overhead for synchronizing threads, which further degrades

performance. In this kind of scenario, OpenUHs implementation will automatically

spread the workload to warp threads which has an effect similar to that of using

a combined parallel for simd construct. Note that this approach, and the previous

insertion of simd constructs, does not affect the semantics of the program.

Figure 6.10: Improved warp-wise execution plan for OpenMP target model of OpenUH

Figure 6.10 provide an intuitive description of our mapping strategy for the inner-

most loops. Threads marked red are master threads. The native scheme will let only

the master threads involved in the execution, other threads will wait for the master

44



threads to finish and then be synchronized. Our improved plan will further share

workloads among all threads within each warp. The hardware level GPU thread

scheduler use warp as a basic scheduling unit, it is better to make full use of threads

since the scheduling cost for an entire warp and a single thread of that warp are

nearly identical.
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Chapter 7

Performance Evaluation and

Discussion

In this chapter, we present the results of experiments that used our implementation of

the OpenMP 4.5 offloading model to translate the NAS parallel benchmarks (NPBs)

for a GPU. We also compare our implementation with that of LLVM. We will first

describe the test environments including the hardware platform and test kernels.

Then we will compare the performance with LLVM. Finally, we will discuss about

the performance issues based on the test results.

7.1 Test Environments

We will describe the hardware platform and give a brief introduction of the test

codes.
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7.1.1 Compilers and Test Beds

The NVIDIA GPU used for this evaluation includes a host with 2 Intel Xeon E5-

2640 CPUs (16 threads per CPU) and 32GB main memory; the attached GPU is a

K20XM with 5GB global memory. CUDA 6.5 is used for the OpenUH backend GPU

code compilation with -O3 optimization. For the comparative analysis, we used the

Clang 3.8 implementation of OpenMP that is available at https://github.com/

clang-omp/libomptarget. We use -fopenmp -omptargets=nxptx64sm 35-nvidia-

linux -O3 for the LLVM compiler options. To obtain reliable results, all experiments

were performed five times and then the average performance was computed. We also

compare the GPU execution with 2 Intel Xeon E5-2640 CPUs.

7.1.2 NAS Parallel Benchmarks for OpenMP 4.x

In order to assess the performance of the OpenUH implementation of the OpenMP

offloading model, we modified the NAS parallel benchmarks (NPB) [3] to make use

of OpenMP offloading directives, including data movement and parallel region con-

structs with the corresponding clauses. The NAS parallel benchmarks contains sev-

eral test kernels and some of the kernels come from computational fluid dynamics

applications. Since those tests have been adjusted for large scale compute platforms

consist of multi-core/many-core processors, the benchmarks result is valuable and

comparable to real world applications.

The NAS benchmarks have an OpenACC version [29]. The OpenACC version has

made some changes on the original codes to optimize the performance on GPUs. Our
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modified OpenMP 4.x version NPB has adopted some of the optimization changes

because our implementation is also targeting on GPUs, especially for the loop inter-

changes which help the directives to better utilize coalesced memory access pattern.

We used seven tests in NPB, for each test the modified version contains some

compute kernels. We used two different data size options (Class B, Class C). The

details of each test are described as follows: the BT test stands for Block Tridiagonal

Solver and contains 46 compute kernels; the CG test stands for Conjugate Gradient

and contains 17 compute kernels; the FT test stands for Fast Fourier Transform and

contains 13 compute kernels; the EP test stands for Embarrassingly Parallel and

contains 5 compute kernels; the LU test stands for Lower-Upper symmetric Gauss-

Seidel and contains 56 kernels; the MG test stands for MultiGrid and contains 18

compute kernels; the SP test stands for Scalar Penta-diagonal solver and contains 65

compute kernels.

7.1.3 Common Compute Kernels

In order to measure the performance difference between OpenUH and LLVM, we

used four small computer kernels: 2d-jacobi, matrix-matrix multiplication, gauss and

laplacian. Those small kernels are more flexible and will make it easier to understand

the performance gaps between different compiler implementations.

Figure 7.1 shows the code snippet of the 2d-jacobi kernel, it contains two nested

loops. Note that this compute kernel is part of the whole jacobi kernel and will

be launched multiple times, it is a good example for monitoring the kernel launch
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Figure 7.1: Code snippet for 2d-jacobi kernel

overhead.

Figure 7.2: Code snippet for matrix-matrix multiplication kernel

The matrix-matrix multiplication kernel is shown in figure 7.2. There is depen-

dency between the innermost loop and the outer loop, we can only use OpenMP

target directives to parallelize the outer two loops. Each thread sharing the second

loop need to calculate a complete loop.

The gauss kernel shown in figure 7.3 contains two nested loops. The inner loop

does not contain any control flow but it has a lot of data loading operations. This
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Figure 7.3: Code snippet for gauss kernel

sample kernel could be used to measure the data loading efficiency on GPU threads.

Figure 7.4: Code snippet for laplacian kernel

The laplacian kernel contains three levels of parallelism. It will fully utilize the

three levels of OpenMP thread hierarchy. The implementation for OpenMP of-

floading on GPUs should be able to efficiently exploit thread resources. The simd

construct should be mapped to the GPU threads in a way that benefit from GPU
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hardware architecture.

7.2 Experimental Results and Analysis

7.2.1 Performance Comparison between GPU and CPU

We measured the execution time for data movement and for launching and running

the kernels in NAS benchmarks. The data sizes used for the benchmark are CLASS

B and CLASS C, the size of CLASS C is larger than CLASS B. The performance

comparison is between CPU and GPU using OpenUH compiler. The execution time

on CPU is based on our OpenMP 3.x implementation without GPU support. We

enabled 16 threads on the CPU side.
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Figure 7.5: NPB-OpenMP offloading vs. NPB-OpenMP using OpenUH (Class B). BT de-
notes Block Tridiagonal Solver; CG denotes Conjugate Gradient; FT denotes Fourier Trans-
form; EP denotes Embarrassingly Parallel; LU denotes Lower-Upper symmetric Gauss-
Seidel; MG denotes Multi-Grid; SP denotes Scalar Penta-diagonal solver.
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Figure 7.6: NPB-OpenMP offloading vs. NPB-OpenMP using OpenUH (Class C). BT de-
notes Block Tridiagonal Solver; CG denotes Conjugate Gradient; FT denotes Fourier Trans-
form; EP denotes Embarrassingly Parallel; LU denotes Lower-Upper symmetric Gauss-
Seidel; MG denotes Multi-Grid; SP denotes Scalar Penta-diagonal solver.

According to the test result, we can determine that the GPU version codes in

general ran faster than the CPU version codes. However, we noticed that the LU

kernel running on GPU using CLASS B data size has longer execution time than

CPU, while for CLASS C, the execution time is smaller than CPU. Since the LU

kernel contains a lot of data updating operations, the data transferring overhead is

quite large, the data exchange cost dominates whole execution time for small data

size. When the data size becomes larger, the relative performance difference between

CPU and GPU becomes larger.
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7.2.2 Performance Comparison between OpenUH and LLVM

We compared the performance of OpenUH with the LLVM implementation that

used libomptarget as an offloading runtime. In all kernels, our implementation

outperforms the LLVM implementation.
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Figure 7.7: Performance comparison between OpenUH and LLVM on Jacobi-OpenMP4.x
Kernel (using 20000 max-iterations)

For the matrix-matrix multiplication kernel, the performance gap between OpenUH

and LLVM is huge (notice the logarithmic scale on the y axis) for very large data

sizes. This is because Clang maps the loop hierarchy to the GPU threads in an

unefficient way.

In fact, LLVM does not fully utilize GPU warps as we believe it should be handled

while executing loops with a parallel for clause ahead. Indeed, LLVM mainly

addresses two levels of parallelism on the GPU: distribute and parallel. In the

current implementations [6, 5], the teams construct is mapped to the x dimension of
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the thread blocks in the grid. The parallel directive is mapped to the x dimension

of threads within each thread block. This indicates that LLVM does not handle the

innermost loop efficiently; yet when only master threads in warps are executing, a

large overhead for thread synchronization is incurred as described in the previous

section.
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Figure 7.8: Performance Comparison between OpenUH and LLVM on Matrix Multiplica-
tion Kernel

This explains why in all tests with only two nested loops, OpenUH’s performance

is far better than LLVM, especially in matrix-matrix multiplication and gauss kernel.

Both of the two kernels contains complex inner loops. The second loop of matrix-

matrix multiplication kernel has a complete loop inside, even if the second loop has

been shared by a bunch of GPU threads, each thread need to complete the entire

innermost loop. If there is only one master thread working in a warp, the execution

threads can not be bundled together, it will be a huge waste of GPU thread resources.

For the laplacian kernel, the performance gap between OpenUH and LLVM is
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Figure 7.9: Performance Comparison between OpenUH and LLVM on Gauss Kernel

smaller than for the other three kernels. The laplacian has three levels of paral-

lelism: distribute, parallel and simd, in this case, LLVM could make use of GPU

warps for the innermost loop, which could then be spread across threads within each

warp, resulting in much better performance. This example explains indirectly why

making GPU warps work under full load is so important for offloading to GPU-like

accelerators.

In OpenUH, the fact that we implicitly use GPU warps to handle innermost loop

execution leads to a much better performance than LLVM’s approach in general.

Therefore, we believe the one-to-one mapping introduced in this paper should be

used to fully exploit the thread hierarchy and to get better thread occupancy within

GPUs.
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Figure 7.10: Performance Comparison between OpenUH and LLVM on Laplacian Kernel
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Chapter 8

Conclusion

8.1 Conclusion

In this thesis, we describe our design and implementation of a compilation scheme

based on a one-to-one mapping of the loop hierarchy parallelism available in OpenMP

4.x to the thread hierarchy found in GPUs. The implementation was carried out

in the OpenUH compiler, which is well suited for prototyping novel techniques to

support parallel languages and new compiler optimizations. The mapping strategy

proposed in our work is valuable for offloading model for accelerators especially for

GPU-like accelerators. The warp-based inner loop mapping plan was applied, we

illustrated the efficient ways for inner loop transformations using OpenMP device di-

rectives. A set of benchmarks were employed to assess how this mapping, especially

the use of GPU warps to handle innermost loop execution, impacts the performance
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of GPU execution. The benchmarks include new versions of the NAS parallel bench-

marks that we specifically developed for this research; we also used four commonly

used kernels to help understand the performance gap between OpenUH and LLVM.

We show that our one-to-one mapping technique significantly outperforms the LLVM

implementation.

8.2 Future Work

We have built an usable and efficient implementation of OpenMP target model in

OpenUH. There are several directions that is worth to extend the ability and improve

the performance in our infrastructure:

• Modern GPUs contains some on-chip memory which is physically very close

the compute cores and thus has high bandwidth and low latency. For example,

the NVIDIA GPUs has the shared memory which can be shared among threads

in each thread block. Those on-chip memory can be used to enchance the data

locality optimization for GPU memory. However, the on-chip memory has very

limited size. In order to utilize the limited resource for large data sets, it is

important to design a robust and efficient method in OpenMP to make better

use of the on-chip memory.

• In many real-world applications, deep copy appears very frequently. Users

sometimes need to define their own data typed which may contain a complex

form of data members. Those data types may contain dynamically allocated
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arrays as well as array pointers which pointing to another type of structure.

The shape of the complex data structure requires to be explicitly described in

the corresponding directives. In order to use OpenMP directives to assist the

memory transferring between host and device, a lot of work need to be done

in the compiler and runtime.

• Nowadays, scientific applications always run on clusters which contains a num-

ber of compute nodes, each node also contains more than one GPU device.

We should not targeting our impementation only on a single GPU. Multiple

device support in OpenMP target model is needed to take advantage of multi-

GPU systems. Data synchronization and distribution are an important issues

that appear in porting applications into multi-GPU sytems. The communica-

tion overhead should be carefully studied. The modern NVIDIA GPUs have

built-in multi-GPU support using CUDA. Our current infrastructure can be

extended to incorporate this feature in our compiler framework.
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