EXISTENCE AND UNIQUENESS IN THE FINITE
ELASTOSTATIC DIRICHLET PROBLEM

A Dissertation
Presented to
the Faculty of the Department of Physics

University of Houston

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

by

John F. Pierce

December 1973



ACKNOWLEDGMENTS

I wish to thank the members of my committee,
Drs. J. C. Allred, R. E. Collins, C. Goodman, R. H. Walker,
and A. P. Whitman for their support throughout the preparation
of this thesis. I particularly acknowledge the confidence of
my advisor Dr. R. M. Kiehn. Without their encouragement the
thesis would not have been brought to fruition.

I also express my personal gratitude to Dr. C.-C. Wang
whose conversations with me inspired the work. Though he
early recognized the enormity of the task I sought to undertake,
he continued to extend encouragement and constructive criticism,

If patience be personified, she is my typist,
Verna Henderson. The quality of the manuscript stands as
evidence of her artisanship.

Finally I acknowledge the personal concern and the
financial support of the Department of Physics at the University

of Houston.



EXISTENCE AND UNIQUENESS IN THE ‘FINITE

ELASTOSTATIC DIRICHLET PROBLEM

An Abstract of a Dissertation
Presented to

the Faculty of the Department of Physics

University of Houston

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

by

John F. Pierce

December 1973



EXISTENCE AND UNIQUENESS IN THE FINITE ELASTOSTATIC

DIRICHLET PROBLEM

ABSTRACT

A qualitative model for the finite elastostatic
Dirichlet problem is presented. The principal feature is
that the solution space is a differentiable manifold as
opposed to a topological vector space. The nature of the
solution manifold reflects the imposed boundary condition,
the body topology, and varies with them., The model per-
mits one to utilize contemporary mathematical methods to

resolve existence and uniqueness questions.
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EXISTENCE AND UNIQUENESS IN THE

FINITE ELASTOSTATIC DIRICHLET PROBLEM
I. INTRODUCTION

THE ULTIMATE PURPOSE OF THE WORK

This thesis attempts to build a mathematical model
for the finite elastostatic Dirichlet boundary value pro-
blem (or place boundary value problem) which will allow
one to phrase more accurately and answer in greater detail

the following ''qualitative' questions:

(1) Existence in Elastostatics: Given a nonlinear
material body, a body force field, and a specific

place boundary condition, does there exist at least one
configuration of the material body satisfying the
boundary condition, and equilibrating the given body
force?

(2) Regularity in Elastostatics: Given a configura-
tion satisfying the requirements of question (1), how
smooth is it? Can one be assured that if the given
place boundary condition is sufficiently regular, and
the body force and the stress-strain relation vary
smoothly from point to point over the body, the con-
figuration equilibrating the body force and satisfying
the boundary condition will be at least as smooth?

(3) Global and Local Uniqueness in Elastostatics:
Given one configuration satisfying the requirements of
question (1), is it possible to find a second configu-
ration satisfying the place boundary condition and
equilibrating the body force? Can the second configu-
ration be gained from the first configuration by a
slight perturbation? Is it gained from the first
configuration by a finite deformation?



The model will allow one to investigate these questions
more effectively by transforming the finite elastostatic
Dirichlet problem from its real analysis setting as a
classical partial differential equation with boundary
conditions to a geometric/topological setting as a
differentiable mapping between manifolds. By so doing,
the mathematical methods of global analysis, differential
topology, and differential geometry can be utilized in the

investigation.

INSTANCES OF NONUNIQUE BEHAVIOR IN ELASTIC SYSTEMS

Existence, uniqueness, and regularity questions are
always a part of any physical theory where the motion of
the system is yepresented by differential equations.
However, for the "usual" linear differential equations
encountered by the physicist in his study of classical
elasticity, investigating the uniqueness and regularity
questions yields‘results which are more or less what is
intuitively expected: if a solution exists, it is unique,
and as smooth as the body, the boundary conditions, the
forces, and the differential equation itself permits.
Moreover, the existence of a solution is demonstrated in a

straightforward way: one solves the equation. In contrast,

classical elastic systems whose linear differential
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equations yield results counter to what is expected were
regarded as physically untenable for many years. As a
result, the study of the existence and uniqueness questions
for a classical elastic system came to be regarded as a
rather academic, formal exercise, which for all practical
purposes was devoid of physical content.

But when one examines normally classical elastic
systems near critical behavior situations, or when one
examines continuum mechanical systems undergoing finife
deformations, questions of existence, uniqueness, and
regularity gain more than a passing interest. For instance,
in the process of bursting, a balloon can be pictured as a
classical elastic isotropic body, but one whose modulii 1lie
outside the "physically reasonable'" range of values esta-
blished by classical criteria{ Also, an elastic column
undergoing finite deformation may buckle, in which case it
admits a unique elastostatic solution for one set of place
boundary conditions, and two distinct elastostatic solutions
for another set%' Such nonunique behavior is uncomfortably

foreign to physicists schooled in the usual linear models.
Factors Which Influence Uniqueness in Linear Elasticity

In linear elasticity, two factors reveal themselves

as affecting the uniqueness conclusions for a given solid:



the stress-strain relation for the material comprising the
solid, and the shape (topology) of the body itself. For
example, by Kirchoff's theorem, if the elastic coeffi-
cients of the material satisfy a certain definiteness
condition, or in particular, if the moduli for an iso-
tropic material lie in a particular range of values, one
is assured that the linear elastic place boundary value
problem admits at most one equilibrating solution.
Moreover, the uniqueness result holds for all place
boundary conditions, all body forces, and for all shapes
of the body. Provocatively, when the elastic coefficients
fail to satisfy the Kirchoff conditién, one does not
automatically obtain nonunique results. For instance? for
an isotropic material one finds that one geometric shape
for the body leads to nonunique equilibrating solutions
only for certain values of the moduli outside the range
established by Kirchoff; a second geometric shape leads

to nonuniqueness ,at a different set of values for the
moduli; a third geometric shape continues to display
unique equilibrating configurations for all values of the
moduli. In linear elasticity theory there is currently no
general way to anticipate how the geometric shape of the
body will affect the uniqueness conclusions when the
elastic coefficients for the material fail to satisfy the

definiteness conditions. One must simply resolve the
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question for each geometric shape on an individual basis.

Additional Factors in the Nonlinear Elasticity Theory

Which Affect Uniqueness Conclusions

In finite deformation theory a third factor reveals
itself as affecting the uniqueness conclusions: the boundary
condition. In the linear elasticity theory, for a given
body shape and material, the conclusion one draws as to
the uniqueness or nonuniqueness of the solution to the
Dirichlet boundary value problem for one particular place
boundary condition continues to hold for all place boundary
conditions. This universal property ceases to hold when one
passes to nonlinear elastic materials, or the finite defor-
mation theory. At present, even when one is given the
topology of the body, and the (nonlinear) elastic response
of the material comprising it, there is no general method
by which one can anticipate which boundary conditions admit
unique solutions and which do not. Here again, one must

investigate each boundary condition separately.

The Objective this Thesis Pursues

How can one begin to incorprate the boundary condi-

tions and the body topology factors into his study of



existence and uniqucness in a unified way? It is this
author's contention that the mathematical means by which
one can model nonlinear continuum mechanical systems in a
way sensitive to all three factors affecting the existence,
uniqueness, and regularity questions have only recently
become available. Moreover, the mathematical tools which
are capable of resolving the questions are only now being
forged as theorems in the Algebrajc Topology, the
Differential Topology, and the Differential Geometry. The
task undertaken in this thesis is to construct a geometric/
topological model for nonlinear continuum mechanical
systems which can exploit the contemporary mathematical

tools as they become available.

THE VALUE OF A GEOMETRIC/TOPOLOGICAL MODEL

The Model is the Continuum Mechanical Counterpart
to Poincare's Qualitative Model for a Point

Mechanical Dynamic System

Why would one desire a model which is more of a
topological nature, as opposed to one utilizing the more
familiar elements of the real and complex analysis? .The
reason lies in the ''qualitative" or global nature of the

questions under investigation. One can appreciate the



mecaning of this statcment by examining a parallel develop-
ment in the mathematical model for point particle mecha-
nical systems.

Usually, a point particle mechanical system is re-
presented by a system of nonlinear ordinary differential
equations. The solution to the system is not always
available in closed form. Rather, the best one can some-
times do is gain a formal, open expansion for the solution
whose radius of convergence {(domain of validity) is
limited. H. Poincare noticed that the information one
desired to gain about a nonlinear system could bé grouped
into two classes. One class involved questions about the
general nature and characteristics of the physical behaviof
admitted by the system. For instance, does the system
admit periodic behavior, or equilibrium points; or, is a
particular behavior admitted by the system sustained under
perturbation? Such information is called 'qualitative" or
"global" information. The second class involved more
specific solution questions: given the existence of a solu-
tion having some desired property (like periodicity) what
precisely 1is its morphology?

To answer these questions Poincare foﬁnd it advan-
tageous to examine the nonlinear mechanical system from

. . 5 . . . .
two points of view. The first point of view pictures the



cquations of motion in geometric terms as specifying a
ficld of vectors on a suitably chosen phasc space. The
sccond point of view realizes the cquations of motion
using elements of the real analysis as ordinary differcn-
tial equations. Both points of view, the geometric model,
and the analysis model, are legitimate ways of picturing
the same dynamic system. One finds that the two points
of view complement each other: questions which are
difficult to examine from one point of view yield to the
other point of view. In particular, Poincare's investiga-
tions indicated that questions of a qualitative nature,
like existence, uniqueness, local uniqueness, regularity,
and stability of motion could be viewed more easily and
with greater insight from the geometric point of view.
Questions concerning the morphology of solutions could be

more successfully resolved in the analysis model.

In the Continuum Mechanical Case,

the Qualitative Model has Distinct Practical Value

Although the geometric viewpoint allowed Poincare to
view the qualitative questions of a point mechanical system
with greater c¢larity, the geometric and topological tools

available were insufficient to allow him to actually resolve



very many. Indeed, the tools capable of resolving such
questions did not begin to appear until the middle of the
twentieth century. The first significant achievement of
the geometric model after the work of Poincare came in the
1960's with the proof of the existence and orbital sta-
bility of the Poincare orbits of the second kind in the
restricted three-body problenm.

Regrettably, during the interim between Poincare's
efforts and today, numerical techniques have advanced
sufficiently that the brilliance of the geometric break-
through is dulled considerably from a practical point of
view. With the advent of high speed computers the applied
mathematician finds that, as far as orbital analysis is
concerned, applying improved numerical integration tech-
niques to the real analysis model with randomly varying
initial conditions resolves the qualitative questions with
sufficient efficiency and at a reasonable cost. The
necessity of constructing an entirely new model for the
same phenomenon is abnegated. Sadly, one must concClude
that, from an applied point of view, the breakthrough in
the geometric model for point particle systems germinated
a decade too late to bear noteworthy fruit.

When one goes to continuum systems, however, the

situation is reversed. Attempts to numerically integrate
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the three-dimensional partial differential equations have
been stymied: few materials can be modeled with suffi-
cient simplicity so that integration procedures can be
applied; moreover, the cost of the computer time necessary
to integrate even the simplest of equations is prohibitive.
Hence, fertile ground is available for the germination of

a qualitative model for continuum mechanical systems.
The Qualitative Model Complements the Analytical Mecthods

One can anticipate how results from the qualitative
model can complement investigations in the real analysis
continuum model. If one can be assured that a given con-
tinuum mechanical system admits a motion having the de-
sired physical characteristics (for instance, bounded, or
periodic), if one can be assured that the solution is
stable with respect to perturbations in the initial condi-
tions, boundary conditions, and the equation of motion, and
if one can even be given the initial conditions generating
the desired motion, then numerically integrating the three-
dimensional partial differential equations to gain the
morphology of the particular motion, though expensive,

becomes a cost effective procedure.
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QUALITATIVE MODELS ARE RECENT IN ORIGIN

AND DIFFICULT TO CONSTRUCT

The Space of Possible Solutions is Necessarily

Infinite-Dimensional

Several problems obstruct the generalization of the
geometric model for point particle systems to continuum
mechanical systems. The most prominent question is what
is the '"configuration space" for a continuum system? For
a single point particle, the configuration space is
obvious: a three-dimensional Euclidean space. For two
point particles, if one imposes impenetrability, the con-
figuration space is roughly a six-dimensional region lying
in Euclidean six-space. As one goes to a continuum system,
one must expect the dimension of the configuration space to
grow accordingly; in short, to be some sort of infinite-
dimensional space. What is the explicit specification of
this space? What 1is its geometric and topological struc-
ture? Can one even meaningfully use these terms? Moreover,
even if one can construct a configuration space, how do the
equations of motion manifest themselves upon it? How does
one incorporate the boundary conditions? Finally, with

such a model, how does one draw even one conclusion from it?
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The Mathcmatical Tools for Developing and Exploiting

a Qualitative Model are Quite Recent

The possibility of constructing a geometric model
for a continuum mechanical system is quite recent. Erect-
ing a reasonable configuration space was severely hampered
until the advent of the infinite-dimensional differentiable
manifold theory in the early 1960'5.7 The first signifi-
cant breakthrough in a global geometric model for linear
elliptic differential equations dates from the middle

1960's.8

The topological and geometric foundation for a
global nonlinear analysis was only first set forth in a
complete foxm in 1968.3 Finally, the mathematical methods
capable of utilizing this structure to resolve the ques-
tions of interest are only now evolving. In short, the

elements are only now available for developing a qualita-

tive model for a continuum mechanical system.
CURRENTLY EXISTING QUALITATIVE MODELS

What is a Geometric Model in Linear

Elasticity Theory, and How is it Used?

In chpater two some currently existing geometric and

analysis models for nonlinear continuum systems are presented.



13

Generally specaking, they are outgrowths of the models which
were successful in resolving existence and uniqueness qucs-
tions for linear clastic systems. The success of thc’linear
system models rests upon the ability to view the linear
differential equations of motion as a linear mapping between
two topological vec£or spaces, a "solution" space and a
"data'" space. One can easily see how this point of view
arises. If ¢ , 6 are two solutions to a linear
differential equation, their sum ¢ + 6 , and any
multiple A¢ are also solutions to the same equation.
Hence, to speak of a "space'" of possible solutions to a
linear differential equation is to speak of a set of func-
tions which form a vector space. Moreover, if one adopts
some sense of the '"nearness" of one function to another,

the space of possible solutions becomes a topological vector
space. Likewise the inhomogeneous terms of the equation are
a set of functions which can form a topological vector space,
called the 'data'" space in the model. Finally, the linear
differential equation itself, when viewed as acting on

these function spaces, becomes an operator associating

with each function of the solution vector space, a function
in the data vector space. Since the differential equation
makes the association in a linear manner, it may be viewed

as a linear operator. Depending upon how the topologies are
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chosen the linear operator may take nearby solution func-
tions into nearby data functions, in which case the operator
is called a continuous linear operator.

When cast in this manner the questions of the exis-
tence of a solution to the linear elastic system may be
rephrased in terms of the properties of the continuous
linear operator: when does the continuous linear operator
map the solution vector space onto, as opposed'to into,
the data vector space? The question of uniqueness may be
rephrased as: when is the continuous linear operator one-
to-one? These questions can be answered by exploiting
theorems from the mathematical theory of continuous linear
operators. Hence, the questions of existence, uniqueness,
and regularity for linear elastic systems can be answered
when the proper topological vector spaces are found to
model the space of solutions and the space of data, and the
proper linear operator is constructed to model the linear

elastostatic differential equations.

The Main Features of the

Currently Existing Nonlinear Geometric Models

The qualitative models for nonlinear elastic systems

currently in the literature are modifications of the models
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for linear elastic systems. Whereas the solution space
and the data space are still assumed to be topological
vector spaces, the elastostatic equation is pictured as a
nonlinear operator relating the two spaces. By utilizing
the linear structure of the solution and data spaces, some
conditions can be found which if satisfied by the non-
linear operator insure the existence and regularity of

solution. These conditions, however, appear as ad hoc

elements in the elasticity theory and are without a
really firm physical basis. For this reason, these models

have met with limited acceptance.

Objections are Raised to these Models

More specific objections can be raised to modeling
the finite elastostatic systems in terms of nonlinear
operator between topological vector spaces. Three objec-
tions appear in chapter four of the thesis. They question
whether one can model the space of solutions for a finite
elastostatic system as a topological vector space at all.
The first objection is that the usual vector space models
for the space of solutions possess elements which can not
correspond to physical configurations of the body. The
second objection is that if one adopts any topological vec-

tor space model for the space of solutions, one precludes:
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a priori alternatives of possible behavior for the body.
The third objection is that a topological vector space is
insensitive to changes in boundary conditions and the
shape (topology) of the body. These objections will be
developed in turn.

The usual models for the space of solutions arise
in the following way. Let the body be viewed as occupying
a region § of physical space RS. If the body is de-
formed into a new configuration, the body points which
were initially in the region & will be taken into another
region of RS. The deformation can be represented mathema-
tically by a function § which takes points of § into
points in RS, a vector-valued function on Q. To reflect
the fact that the body is not torn apart during the deforma-
tion, mathematical conditions are placed upon the function:
it is continuous (Co), continuous through first derivatives
(Cl), and so on. If one wishes to model all possible con-
figurations of the body it suffices to view them as elements
of the set of all Ck functions from f into R3, denoted
Ck(Q s RS). All possible configurations of the body Q
in R3 have a representative in this set. Moreover, the set
is a vector space, albeit infinite dimensional. Finally,
by introducing a notion of distance between functions, it '

becomes a topological vector space. The topological vector
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Ck(Q ,RS) serves as the initial choice for the space of
solutions in the current models for the finite clastostatic
problem. More advanced choices are built from it by adding

more elements, and introducing more exotic topologies.

The First Objection

Although the topological vector space Ck(Q ,Rs)

contains all possible configurations of the body @ in Rg,
the first objection raised in the thesis is that it also
contains elements which cannot correspond to postures
physically attainable by the body. In chapter three, a
function in Ck(Q ,R3) is cited which physically would
correspond to a deformation in which a region of the body
collapses upon itself. Hence, using the entire vector

space Ck(Q ,RS), or one of its generalizations, as the
space of solutions is physically untenable, and the models
incorporating such a solution spaceAmust be reviewed to

determine if they used any of the non-physical elements of

the space in drawing their conclusions.
The Second Objection

In addition to objecting to the specific use of the

topological vector space Ckﬁz ,Rs) or its generalization
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as the model for the space of solutions to thec nonlincar
clastostatic problem, one can object to the usc of any
topological vector space. The second objection raised in
the thesis addresses this point: if one adopts a topological
linear space for the space of solutions, one precludes
a-priori alternatives of possible behavior for the material
body. An example is given in chapter four for a material
body which possesses two equilibrating configurations for
the same boundary condition, and body force. If one

assumes that the space of solutions is a topological vector
space it follows that the two equilibrating configurations
can be continuously deformed from one into the other

without violating the boundary condition. Such a conclu-
sion precludes a-priori the alternative that the two config-
urations can be deformed into one another.only by violating
the boundary condition at some state in the deformation.

This latter alternative may be easily visualized.
The Third Objection

The third objection to a topological vector space
is that its mathematical structure is too simple to reflect
how intimately the existence and uniqueness conclusions in
a finite elastostatic.problem depend upon the particular

boundary condition under consideration and the shape
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(topology) of the body itself. When one models the solution
space for a finite elastostatic problem as a topological
vector space, the solution spaces for various particular
boundary conditions appear as subspaces which are simply
translates of each other. They all have the same mathema-
tical structure. llence, simply by looking at the solution
subspaces one cannot anticipate that for one boundary
condition thersystem might exhibit unique behavior, while
for another it might exhibit nonunique behavior. Likewise
if one drills a hole in the experimental sample, or other-
wise alters the topology of the material body, one cannot
see it registered as any alteration in the mathematical

structure of the solution space.

THE NONLINEAR QUALITATIVE MODEL

PROPOSED IN THIS WORK

(1) The Solution Manifold

In 1light of these objections an alternative formula-
tion for the space of possible solutions for a finite
elastostatic problem is presented in chapter four. Rather
than adopt a-priori a topological linear space, the thesis
firstly identifies which mathematical functions can repre-

sent meaningful configurations for the material body, and
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subsequcntly determines what geometric structure the set
of admissible functions can possess.

Two types of solution space models arc constructed.
The first one includes all functions which can represent
configurations for the material body, and subject to no
other condition. This set represents all possible solutions
to the finite elastostatic problem subject to no boundary
conditions. For this reason it is called the solution set
for the finite elastostatic free boundary problem, or the
free boundary solution set. The second solution set is
excised from the first by selecting only those configura-
tions which carry the boundary of the material body into a
given prescribed shape or place in the physical space. This
subcollection of configurations constitutes the set of all
possible solutions to the finite elastostatic problem sub-
ject to a given Dirichlet boundary condition. For this
reason this subset is called the solution set for a finite
elastostatic Dirichlet boundary condition. For simplicity -
this subset is called the solution set for a finite
elastostatic Dirichlet boundary value problem. It remains
then to determine what geometric structure these sets can

" possess.
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The Solution Set for the Free Boundary Problem

is a Differentiable Manifold

What one finds in the case of the free boundary
solution set is that the functions representing configura-
tions of the material body constitute a subset of the
topological vector space Ck(Q ,RS), namely the subset
of embeddings of @ into RS. Under suitable conditions,
the subset of embeddings possesses the structure of a c”
differentiable manifold which lies as an open submanifold
or "open domain" in Ck(Q ,RS). When viewed with this
geometric structure the set of possible solutions to the

free boundary problem will be called the free boundary

solution manifold.

Complications Arise in Modeling
Place Boundary Conditions

The inveséigation of the solution set of a particular
Dirichlet boundary condition is somewhat more involved. The
first complication one must encounter is the question of
whether one can even realize a given Dirichlet boundary
condition at all. If one arbitrarily chooses a place
boundary condition for a material, it does not follow auto-

matically that there exists even one configuration of the
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body which has the proper degrece of smoothness required
for the problem, and which permits the boundary of the
body to satisfy the given place boundary condition. For
cxamplc, one can impose postures for a boundary of a body
which can be fulfilled only by mathematical functions which
would recpresent posturcs where the interior of the body
would collapse into itself, or which would represent pos-
tures where the body would develop a "kink" or a '"crease'".
The first instance would have to be ruled out as a non-
physical situation, while the second'would have to be
dismissed by virtue of the inadequacy of the mathematical
tools used. Until recently, one's only recourse was to
assume a-priori that if the boundary condition was
"sufficiently smooth' then one could be assured there
exists at least one configuration of the material body
satisfying the given place boundary condition. Indeed, in
most models for the finite elastostatic Dirichlet problem
currently in tﬁe'literature, this assumption is one of

the axioms of the model. In the model presented here,
however, one can go a step further in investigating this
queétion. By utilizing some recent results from the global
analysis and algebraic topology, one can begin to anaiyze
how the smoothness characteristics of the place boundary

condition and the tbpology of the material body itself
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determine whether a given place boundary condition can be
rcalized by at least one physical configuration of the
body.

A second complication arises when one considers the
question of just how the set of functions satisfying a
given boundary condition is to be selected. There are at
least two mathematical ways in which one can group these
functions. Interestingly enough, they correspond physi-
cally to the situations in which one maintains the given
Dirichlet boundary condition by simply supporting the
boundary, and by rigidly supporting the boundary, respect-

10
ively.

Two Solution Manifolds are Proposed

for the Dirichlet Boundary Condition

What one finds for the Dirichlet boundary condition
case is that the set of functions representing configura-
tions satisfying the given boundary condition which
corresponds physically to a simple support not only lies
as a subset of the free boundary solution set, but also as
a "surface" or closed submanifold in the free boundary
solution manifold. Morcover, if one further constrains

the boundary condition by requiring that it be maintained

1
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more rigidly, (an overdetermined situation), one gains an
even finer structure for the Dirichlet solution set. The
Dirichlet solution manifold corresponding to the simply
supported boundary condition itself becomes viewed as
composed of '"surfaces'" or closed submanifolds. Each sub-
manifold corresponds to a particular way of rigidly
supporting the given boundary condition. In either case,
however, the geometric structure which one may endow upon

the Dirichlet solution set is well defined.

The Topology of the Solution Manifolds Reflects

Alternatives of Mechanical Behavior for the Body

The models for the free boundary and Dirichlet solu-
tion manifolds introduced in chapter four overcome the
three objections raised to the topological vector space
models. They have features which make them very attractive
candidates. By virtue of being a differentia; manifold
as opposed to a topological vector space the topology of
the free boundary solution manifold may now be more complex
than that of previous models. In particular, the model
introduced here may not be simply connected. It may have
"holes" in it, a condition not possible for a topological

vector space. Consequently, a submanifold representing



the solution manifold for a particular Dirichlet boundary
condition may or may not be connected, depending upon how
it intersects the holes. The connectedness or non-
connectedness of a Dirichlet solution manifold has physical
significance in that it indicates whether or not two con-
figurations satisfying the same Dirichlet boundary condi-
tions can be deformed into one another with or without
violating the given boundary condition. If the Dirichlet
solution manifold is connected, i.e. it consists of one
pliece, or component, then any two configurations satisfy-
ing the same Dirichlet boundary condition can be continuously
deformed into one another without violating the boundary
condition. However, if the manifold consists of more than
one piece, or component, then there are configurations
satisfying the given Dirichlet boundary condition which

can be deformed into one another only by violating the
boundary condition. This latter alternative is precluded
if one assumes that the space of solutions is a topological

vector space, as it is always simply connected.

The Topology of a Dirichlet Solution Manifold

can Vary from Boundary Condition to Boundary Condition

Significantly, the connectedness or non-connectedness

of a Dirichlet solution manifold can vary from Dirichlet
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boundary condition to Dirichlet boundary condition. Thus,
alternatives of mechanical behavior can vary from boundary
condition to boundary condition. This result is in con-
trast to the "universal'" result one gains with the linear
models or their generalizations, where the solution vector
spaces for the various Dirichlet boundary conditions are

identical in mathematical structure.

The Topology of the Solution Manifold Depends Upon

the Topology of the Body

Finally, one is not at a loss in discerning the
number of components comprising the solution manifold for a
Dirichlet problem. The thesis indicates how contemporary
mathematical methods (in particular, the Obstruction theory)
can be utilized to resolve thé question. One finds that
the number of components in the solution manifold is in-
fluenced by the topology of the material body itself, or the
shape of the experimental sample. Roughly speaking, if one
drills a hole in the experimental specimen, one can alter
the number of components in the solution manifold, and
thereby one can alter the alternatives of behavior possible

for a Dirichlet boundary condition.
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(2) The Dynamic Elements

The Data Space is a Linear Vector Space

In chapter five the dynamic elements of the finite
elastostatic model are investigated. The usual model for
the data space of body force density fields is a topological
vector space of functions. This model is also adopted in
this thesis. The primary motivation for retaining the topo-
logical vector space structure for the data space is the
fact that body force density fields superimpose: their
combined effects are additive. One can represent a body
force density field as a vector-valued function defined
over the region & occupied by the body which has a suit-
able degree of smoothness (i.e. CO,CI, etc.). For modeling
the data space of body force density fields, then, the
topological vector space of Ck vector-valued functions

defined over Q, Ck(Q , R3

), for a suitable choice of k,

is a quite legitimate candidate.

The Finite Elastostatic Operator Prescribes the Links Be-

tween the Solution Manifolds and the Data Manifolds

The remainder of chapter five deals with the con-

struction of the non-linear operator which models the
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finite clastostatic differential cquations and links the
above solution manifolds and data spacecs. If the matecrial
body is a matcrially uniform, simplc, elastic body of grade
one, a particular kind of non-linear material body, the
finite clastostatic differential cquations for it deter-

mine a nonlinear operator linking the solution manifolds and
data spaces which is a differential operator of order two.
The "differential operator of order two'" nature of the
correspondence means that the operator associates with con-
figurations continuous through kth order derivatives over

2, body force density fields continuous only through (k-2)th
order derivatives. Hence, the specific way in which the
non-linear operator links the solution manifolds to the

data spaces 1is b} taking ck configurations into ck-2
body force density fields. If one were to consider
material bodies othcr than the one specified, for instance,
a material body of grade £, non-elastic bodies, materials
with facing memory, or non-simple bodies, the non-linear
operator modeling'the finite elastostatic differential
equation would not be a simple differential operator of
order two. Rather, it would be a more complicated integro-
differential operator. Consequently, the operator would
link the solution manifolds and data spaces in a manner

entirely different from that for the simple, grade one,

elastic material body. One can now appreciate how models
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proliferate as one considers finite, non-linear continuum
problems, in contrast to the single, universal, linear-
differential-operator-of-order-two model which completely
characterized infinitesimal, classical linear elasticity
theory.

For the materially uniform, simple, elastic material
body of grade one, the combination of free boundary or
Dirichlet solution manifolds, body force density field
(data) spaces, and non-linear differential operator devel-
oped above serves as the models which will be used in
this thesis for the finite elastostatic free boundary and
Dirichlet problems defined over the classical functions.
The fourth chapter ends with a comparison of these models
with ones which currently exist in the literature, in order

to point out contrasts.

THE MODEL IS ADAPTED TO ACCOMODATE

CONTEMPORARY MATHEMATICAL TOOLS
Why an Adaptation is Required

By adapting the models for the finite elastostatic
free boundary and Dirichlet problems completed in Chapter
four, one has replaced the hybrid models involving non-linear

differential operators linking topological vector spaces by



30

modecls in which the solution manifolds possess no linear
structure. By doing so, however, one loses not only the
results which were gained from the previous models by the
use of the linear structure on the solution space, but also
the tools, theorems, and techniques which made these re-
sults possible. If the new models introduced here are to
have a utilitarian values, one must find alternative
mathematical methods to replace those which have been
rendered inapplicable. These methods and tools are only
now evolving in the fields of infinite dimensional geometry,
and algebraic topology. In order to be in a position to
exploit these methods, however, one must make one additional
improvement in the models for the finite elastostatic
problems developed here: they must be extended from modelsl
over the classical Ck functions to functions having a more

general form of continuity and differentiability.

The Extension in the Case of the Earlier Linear Models
The technique of extending models for differential
equations constructed over classical Ck functions to models
constructed over more general function spaces has its origin
in the "method of weak solutions' for linear elastic systems.
The motivation for the technique is that sometimes it is

easier to answer questions about a linear differential equation
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by vicwing it in its "intcgrated form'", as opposcd to its
differential equation form, The mcthod of solution by
Green's function is such an example. In such a method,
however, one must extend one's solution and data spaccs to
include functions which are not continuous or differentiable
in the usual limit process sense, but which can be regarded
as continuous, or differentiable when viewed under the
integral sign. The procedure, generally speaking is to
choose the generalized function spaces for the space of
solutions and the space of data in such a way as to yield

as easily as possible criteria for the existence and
uniqueness of solution to the linear differential equation.
One then seeks to prove "regularity theorems" which state
that if the given data is in fact a classical Ck function
then the generalized function solution corresponding to it
is also a CKX function. Hence, the three areas of investiga-
tion which grow out of the method of weak solution to linear
differential equations are: to establish existence and
uniqueness criteria for the differential equation when
viewed in the generalized function setting, and then seek

to pull back the results to the classical function setting

by regularity theorems.
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The Extension of Currently Existing Non-Linear Models

For the models of a non-linear elastostatic pro-
blem in which topological vector spaces serve as the space
of solutions and the space of data, the extension to a
generalized function setting is relatively straightforward.
The space of solutions and the space of data extend to the
same gcneralized function spaces that arise in the linear
differential equation theory: The space of square inte-
grable (Lz) functions over the body £, or some closed
linear subspace 6f it, like the Holder spaces or the
Sobolev spaces. The extension of the non-linear operator
to an operator linking the generalized function spaces 1is
a little more involved than in the linear case. However,
one can establish by extensive norm calculations that for
the Holder or Sobolev spaces the non-linear operator can
be extended to the generalized function spaces, and the
extension is as continuous as the original non linear
operator linking'the solution and data spaces built over

the classical functions,

The Extension of the Free Boundary Solution

Manifolds Proposed Here is More Complicated

The extension of the model introduced in the thesis

to the generalized function is not at all straightforward,,
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in fact, the mathematical tools necessary to construct

the extension did not exist until the work of R. Palais and
S. Smale in the late 1960'5?l The principal difficulty in
extending the model lies in the fact that the classical
function solution sets is not a topological space, but
rather a differentiable manifold. 1In chapter six the
free boundary solution manifold is extended to the general-
ized functions. The extension, when it exists, has the
structure of a C differentiable manifold, and lies as
an open submanifold or "open domain' in a generalized
function topological vector space. The conditions suffi-
cient to permit the extension, and the manifold structure
endowed upon the extension are provided by theorems from
the mathematical theory of global non linear analysis. 1In
addition, the method of extension may be applied to many
different classes of generalized functions, including the
Holder and Sobolev spaces. Hence, in extending the free
boundary solution'manifold, one is not limited to a single
class of generalized functions, as is the case in the
currently existing models. Rather, one may choose that
class which is most advantageous for the problem of

interest,

The Extension of the Data Space

The space of body force density fields may also be
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extended to the generalized functions. As it is a topolo-
gical vector space its extension is rather straightforward,
and the resultant generalized function space parallels the

equivalent elements found in the other models.

The Extension of the Finite Elastostatic Operator is Achieved

by Theorem, as Opposed to Norm Calculation

The remainder of chapter six is devoted to the ex-
tension of the non linear operator representing the finite
elastostatic differential equation to the generalized func-
tion manifolds representing the extended free boundary solu-
tion manifolds and data spaces. The technique for extending
the operator used in this thesis differs significantly from
the extension technique used in other models. First of all,
the existence of the extension, and its continuity proper-
ties (i.e., whethcr or not the extended operator is con-
tinuous, Cl, etc.) are gained by theorem as opposed to
extensive norm calculations. Hence, the details of the
mathematics do not cloud the important features of the
extension. Moreover, when the extension is accomplished
by theorem as opposed to norm calculation, one can extend
the operator to several different classes of generalized

functions simultaneously., If one relies on norm calcula-

tions one must treat each class of generalized function
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extension separately, as the norms are distinct.

Chapter six ends with an explicit display of the
finite elastostatic free boundary value problem modeled
over a particular class of generalized functions, the
Sobolev spaces. 1In this extended form the model 1is
sufficiently abstracted so as to be able to utilize the
methods of infinite-dimensional differential geometry and
algebraic topology to answer questions of existence and
uniqueness. This is the level in the formulation of the
model for the free boundary problem where oneican begin to
recoup the existence and uniqueness statements that were
rendered inapplicable when the linear structure of the solu-

tion space was lost, and begin to develop others.

The Extension of the Dirichlet Boundary

Solution Manifold

In chapte? seven the model for the finite elasto-
static Dirichlet problem constructed over the classical
functions is likewise extended. The models for simply
supported and rigidly supported boundary conditions are
treated separately. The extension pa;allels the development
of the previous chapter. Once again, one gains a model
which is sufficiently abstracted so that the original

questions of existence, uniqueness, and regularity for the
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non-linear clastic system can now be formulated in terms
amcnable to analysis by contemporary geometric and topolo-
gical methods. Moreover, one can anticipate a means for
more deeply analyzing non-linear systems which exhibit
locally nonunique behavior. The models show that in some
cases a body can exhibit locally nonunique behavior under
simply supported boundary conditions but locally unique
behavior when the boundary conditions are more rigidly

supported.

HOW THE MODEL CAN BE UTILIZED IS ANTICIPATED

The remainder of the thesis is devoted to indica-
ting specifically how the mathematical methods of infinite
dimensional geometry and topology can be utilized., As the
mathematical tools are rather new, the thesis concentrates
on indicating how they may be used, as opposed to develop-
ing particular rgsults. Two methods are discussed in
detail: the Morse Theory, and the Lusternik-Schnirelman
Theory.

If one restricts his attention to hyperelastic
materials, (materials which possess a strain-energy function),
and the body forces are conservative, then the partial
differential equations for both the free boundary and

Dirichlet problem may be represented in the analytical model
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as Euler-Lagrange cquations of a variational integral.

When the variational integral is viewed in the qualitative
modecl, it specifies a function defined over infinite-
dimensional solution manifold. The configurations in the
solution manifold which are the critical points of the
function are the solutions of the Euler-Lagrange equations;
hence they are the equilibrating configurations for the
elastostatic problem. The Morse theory permits one to
determine how many critical points the function has. - The
thcory indicates that the number of critical points of the
function depends upon the nature of the function itself
{(hence, the material response), and the topology of the
solution manifold (hence, the boundary condition, and the
topology of the sample). Thus, the topology of the solution
manifold becomes directly related to the mechanical behavior’
of the body. The richness of the topology, and its varia-
tion with boundary condition and body shape provide a

wealth of provocative subjects for future study.

The Lusternik-Schnirelman theory is an attractive
tool for extracting information from the finite elastostatic
models., Existence and uniqueness questions are, once again,
relatecd to the topology of the solution manifold and the
nature of the finite elastostatic operator. The results,
however, are not extensive as with the Morse theory. Even

in non-variational cases directions for investigations are
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becoming apparent. References are given which addresses

this point,.

In short a model for the finite elastostatic
Dirichlet problem is constructed in this thesis. It
attractive feature that its solution manifold is not
logically trivial, and can vary in a predictable way

boundary condition and body shane. Morecover, it can

has the
topo-
with

serve

as a vchicle by which heretofore pure, contemporary mathe-

matical methods may be brought to bear on fundamental ques-

tions in non-linear continuum mechanics. It awaits exploi-

tation. The areas suggested here provide some directions

for future study.
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II. THE DISTINCTION BETWEEN ANALYTICAL
AND QUALITATIVE MODELS

What comprises a geometric or qualitative model for
an elastic system? How does the approach for answering
existcnce and uniqueness questions using it differ from the
approach using analytical methods? In this chapter, exam-
ples of some analytical results for existence and unique-
ness questions for elastic bodies are presented. One finds
that they usually deal with very specific situations: the
response must depend linearly upon the infinitesimal strain,
the material must be isotropic, the moduli must lie in a
certain range. If one wishes to pursue the questions in a
more general point of view one musf adopt another method.
The qualitative models provide such an alternative. To
understand what comprises a qualitative model and how it is
used, two models for the elastostatic Dirichlet problem
currently in the literature are examined in detail.

)

RESULTS FROM PURELY ANALYTICAL METHODS

Some existence and uniqueness statements for the
elastostatic Dirichlet problem arise from analytical methods.

The most familiar results reside in linear elasticity theory.

|
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Foremost among thcse is a strong version of Kirchoff's

result

Theorem (Kirchoff) Let B be a linearly elas-
tic solid occupying a bounded region in space,
and possessing elastic coefficients Cjjk1(x)

satisfying the Cauchy symmetry condition

C = G = C,,
ijk1 1j1k jikl

(a) If the elastic coefficients satisfy a posi-

tive definiteness condition

Cijkﬁx) gﬁ(x) Ekl(x) > 0, for all x & B,

and for all symmetric tensor fields Eﬁ(x) on
B, then the linear elastostatic mixed boundary
value problem has at most one classical

solution.

(b) If the material is isotropic
Cisaalx) = ALx) &6, +u(x)(838; 7 - 6;571851)
for A{(x), p(x) the Lamé and shear moduli,
respectively, then the positive definiteness
condition holds if and only if, for each x € B

W(3A + 2u) > 0

or equivalently
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H(x) # 0) and U(X) € (’1’1/2)
for o(x) the Poisson ratio defined by

2u(x)o(x) _
(T-20() - (¥

The thecorem is established by determining what conditions
are sufficient to insure that the only solution to the
homogeneous displacement boundary value problem is the
trivial solution.

A second example of a uniqueness theorem in linear
elasticity theory arises when one considers homogeneous
materials. Again one constrains the elastic coefficients,
but in a way not as strong as the positive definiteness

condition.

Theorem. If B is a homogeneous body

(a) and the elastic coefficients satisfy the

strong ellipticity condition

%jklaiaksjsl > aaiaiBij , a>0 a constant

then there exists at most one (weak) solution

to the linear elastostatic Dirichlet problem.

(b) If the material is isotropic, the strong

ellipticity condition is satisfied if and only if
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H >0 and A+ 2u >0

or u > 0, and oe(-21/2) U (1,%«)
Examples of Nonunique Behavior in Linear Elasticity

Instances of nonunique behavior in linear elasticity
allow one to evaluate how necessary conditions set forth in
the uniqueness theorems are. Knops and Payngapresent a |
varied collection of such counter examples to unique be-

havior, Among them are:

(1) An ellipsiod of homogeneous isotropic material

with boundary given by

For homogeneous body force and displacement
boundary conditions, non-trivial solutions

are possible of the form

Ui = Qpi,

for-Pi a polynomial of non-negative degree, 1if

and only if the modulii satisfy the condition

(A + 2u) < 0,
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This solution may be added to any other solu-
tion to the linear elastostatic equation for
a given body force and boundary condition to

produce a second solution,

Notice that the condition cited in the example fails to
satisfy the strong ellipticity criterion. Thus the strong
ellipticity criterion is necessary in the following sense:
there exists a class of (ideal) materials which do not
satisfy the strong ellipticity condition, and a body

shape for which nonunique behavior is revealed.

(2) The homogeneous isotropic elastic sphere with

boundary

exhibits nonunique behavior if and only if

Poisson's ratio has value

) g =1

or O_ = —;—(1-311)(1-2r1)"1 n=1,2,...

Notice that the values of Poisson's ratio lie outside the
uniqueness range cited in the strohg ellipticity condition;
however, for the body shape given, only particular values

for the ratio lead to nonunique behavior. All other
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values yield unique behavior.

(3) The inhomogeneous isotropic material in the

shape of a sphere with a cavity
nT < r < (n + m)mw

with elastic moduli satisfying the conditions

13 +m+1
u=z_2+1nir.l_u

}\4‘2“:.1_
by T T

2 ?

admits the nontrivial displacement solution

(sinxr, 0, 0)

to the homogeneous problem. Thus it exhibits

nonunique bechavior.

Notice in this example that the moduli in this example
satisfy the strong ellipticity conditioh at every point.
Hence, the strong ellipticity condition is not sufficient

to insure uniqueness in the case of inhomogeneous materials.
Comments on the Nature of the Existence Theorems
Two important points follow from these examples.

Firstly, while the conditions advanced in the theorems are

sufficient to achieve unique behavior, their necessity 1is
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qualified. Even when the elastic moduli fall outside the
range of values cited, it is still possible to achieve
unique bechavior., Secondly, the uniqueness theorems involve
conditions on only the elastic coefficients of the material.
They are indcpendent of the body shape (topology). Yet in

the counter examples, the body shape plays an integral part.

Uniqueness Theorems for Nonlinear Systems

are even More Complicatea

When one uses analytical methods to establish con-
ditions sufficient to guarantee unique behavior for a system
undergoing finite deformations, one finds that the restric-
tions placed upon the elastic response are even more spe-
cialized and complex than in the linear case. Counter-
examples to nonunique behavior involve specifying the
boundary conditions, as well as the body shape and the
material response. Moreover, one must distinguish between
local nonunique behavior and global nonunique behavior. In
particular, it is possible for a body to exhibit unique
behavior with respect to small deformations about any arbi-’
trary state of strain, yet still exhibit nonunique behavior

under finite deformation,
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The Qualitative Point of View

Must the investigation of existence and uniqueness
questions be so fractured? Can one not adopt an approach
which would enable him to picture all factors contributing
to the existence and uniqueness conclusions in a unified
way? Such a point of view would require an approach
different from the analytical methods. Qualitative models
provide such an alternative setting. From this new pers-
pective, existence and uniqueness conclusions would follow
as a consequence of a relationship between the material
itself, the boundary condition under consideration, and
the body topology, as opposed to the categorical imposition
of "necessary'" and sufficient conditions on some one factor.
For this reason, the goal of this theéis is to establish an
adequate, general setting for the finite elastostatic
Dirichlet problem which manifests the qualitative point of

view.

EXISTING NONLINEAR QUALITATIVE MODELS

There are models for the finite elastostatic
Dirichlet problem in the literature which manifest the
geometric/topological point of view. Examples are the

4 15
models advanced by W. Van Buren, and I. Beju.
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Although these models arc available in the literature, it

is instructive to examinc them in detail before going fur-
ther. One can then see what has already been accomplished,
what particular elcments of the models are noteworthy, and
what particular elemcnts appear vulnerable. The information
will be valuable in indicating where the model developed in
this work ought to coincide with the models which currently
exist, and where it ought to depart. Moreover, the investi-
gation will also provide a clue as to how one can use the

model once it has been established.
VAN BUREN'S MODEL

The model of W. Van Buren is an outgrowth of the works
of F., John and F. Stoppelli.w The works of the latter authors
permit one to examine local existence and uniqueness ques-
tions for the finite elastostatic place and traction boundary
value problems in the vicinity of a natural state by viewing
a corresponding classical linear infinitesimal elasticity boun-
dary value problem. Van Buren's generalization allows one the
opportunity to make local uniqueness and existence statements
in the vicinity of states of finite strain, or non-natural
states. The statements are gained by judiciously exploiting
a geometric model for the finite elastostatic place boundary

value problem. Van Buren's model is erected by making
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sufficient assumptions about the nature of the possible
solutions, the possible loads, and the differential equa-
tion governing thec elastostatic problem so that the problem
may be viewed geometrically as a nonlinear differential
operator linking Banach spaces. Once this is done,

Van Buren utilizes the inverse function theorem for Banach
spaces to give a local existence and uniqueness theorem for
a body in a given equilibrated strained state. For com-
Pleteness of exposition, the notation and basic definitions

employed by Van Buren are summarized in his article.

Van Buren's Analytical Model

For Van Buren, the analytical representation for the

finite elastostatic place boundary value problem consists

of the classical partial differential equation

[}
RO
[~

m

Divy (S(F(X), X) + b, (X) B, (II1.1.)
subject to the place boundary condition

g(%) = Ba(g) Z € 0B. _ (I1.2)

Here, B is the region in R3 occupied by the body in the

reference configuration, 3B 1is its boundary, S(F,X) is
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[}

the first Piola-Kirchoff stress tensor field relative

to the given reference configuration, g(%) is the dis-
placement vector fiecld rclating the deformed configuration
to the reference configuration, F(§) is the deformation
gradicnt tensor ficld relative to the reference configura-
tion, ba is the given body force density per unit mass

~

in the reference configuration, and u, is the given dis-
placement boundary vector field corresponding to the place
boundary condition. Notice that the reference configura-
tion need not be a natural state.

Van Buren's analytical model for the problem of

infinitesimal displacement superimposed upon a given state

of strain consists of the partial differential equation
Divy ([A(X)][Vu(X)]) + b2 (X) = 0, X e B, (I1.3)

and the boundary condition (II1.2). Here, the reference con-
figuration is chqsen to be the given strained state, E;(E)
is the excess body force density vector field, representing
how much the given body force density exceeds that

necessary to equilibrate the reference configuration, and
A(%) is called the elasticity tensor field for the

material body for the given reference configuration, and is
the partial gradient of the first Piola-Kirchoff tensor

field with respect to the first variable F,
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AX) = T,8(F,X)
(1,%)

Van Buren now proceeds to develop a geometric model
for the finite and infinitesimal problems by realizing
them as differential operator equations linking two Banach

spaces, a "solution space', and a "load space'.
Conditions Van Buren Imposes on his Qualitative Model

Local existence and uniqueness statemecnts about the
finite elastostatic operator are intimately linked with the
invertability of the infinitesimal operator in the geome-
tric modcl., The critical point in erccting Van Buren's
model and utilizing it lies in the proper matching of the
solution space, the load space, and the differential
operators in order to guarantee invertability. To insure
proper matching from the point of view of differentiability

Van Buren imposes three sets of conditions on the possible

solutions, loads, and the differential operators.

Hypothesis 1. The region B occupied by the body in
the reference configuration ’
a) 1s an open connected set whose closure is
compact. 240,
b) The boundary 9B of B is C for some
fixed o, 0 < a < 1,



51

N
llypothesis 2, The response function S and its par-
tial gradients

fa) ~ (2)1\ n (2)/\ (3)A (2) ~
ViS, V,s, v;%s, wv,s, v;¥s, v;Vs, vi9lvs,
()¢ (3) &
vlvz S, V2 S

are bounded and uniformly continuous on the domain
NY X B where

3

Ny = {FeL(R>,R®) : |F-1]|<y}

Hypothesis 3, The following vector fields satisfy the

conditions:
a) b is Holder continuous on B .
b) u and its first two tangential gradients

are Holder continuous of 3B.
Some Comments on the Conditions

It is instructive to examine in detail the attract-
iveness of theselaxioms, since it will be imperative to
adopt axioms which will insure the compatability of the
elements of the model which will be developed in this work.

The first hypothesis is most natural. As Van Buren
points out, Hypothesis 1(b) insures that (1) the exterior
unit normal and its tangential gradients are Holder

continuous on the boundary of the body, (2) a function
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which is llolder continuous on the body may be extended
continuously to the boundary of the body, and (3) a
function with a bounded continuous gradient on the body 1is
[folder continuous on it.

The compactness condition imposed by Hypothesis
1 (a) upon the body plus boundary allows one to speak of
the set of possible solutions as a '"space'". The compact-
ness insures that the set of all continuous bounded dis-
placement vector fields is a linear space capable of
supporting a Banqch space structure. Moreover, the
connectivity of the body, a physically justifiable assump-
tion, greatly simplifies the mathematical structure of
the model. It is relied upon heavily when one characterizes
a configuration as a vector-valued function which satisfies
a (local) impenetrability condition. This point is made
explicit in chapter 1V,

The attractiveness of Hypothesis 2 rests upon the
facts that (1) it is sufficient to insure that the order
of partial differentiation of the Piola-Kirchoff stress
tensor field is immaterial, and (2) along with Hypothesis
1(b), it insures that the second order partial derivatives
of g, and thereby the coefficients of the infinitesimal
elasticity operator are Holder continuous. Holder
continuity of the coefficients of the infinitesimal elasti-

city operator is desirable, because there are differential
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equations whose coefficients are continuous, but not

Holder continuous, and which, even under the most favorable
circumstances do not admit solutions with the desired
degrce of differentiability. (This fact is succinctly
revealed in chapter IV). Hence, lack of Holder continuity
in the coefficients of the infinitesimal elasticity opera-
tor can potentially jeopardize its invertibility, an
essential requirement for establishing local uniqueness

and existence theorems.

Van Buren also reveals the attractiveness of
Hypothesis 3, Without the requirement of Holder continuity
on the load, one can not be assured that the solution to thé
infinitesimal elasticity equation, if it exists, will have
continuous derivatives up to the order of the equation,
and be, thereby, a solution in the classical sense. Such
a situation would potecntially jeopardize the invertibility
of the infinitesimal elasticity opecrator. Conversely,
the Holder continuity requirements placed upon the possible
solutions, coupled with Hypothesis 2 insures that for any
possible displacement, the load equilibrating it (or
equivalently, linked to it by the finite or infinitesmial

elasticity operator) is itself Holder continuous.
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Van Buren's Qualitative Model

Van Buren's geometric model may now be erected, As

the load space, Van Buren chooses the collection

B = {(b,w) t b and w satisfy Hypothesis 3}

~

of pairs consisting of possiblz body force density fields
b and place boundary condition fields w. The set ]B is

a linear space. It may be given the structure of a Banach

space if one imposes the norm

[1 (o, w)]] = sup|b(X)| + €, (B) +
Xe B

~
~

sup {|w(Z)| + |grad w(z)]| +
EeBB

(2)
lgrad>®? w(z) [} + € 42, (B,
where grad w and grad(z)y represent the first and
second gradients of w, and Cb(B) and C (29(8) are
~ 2 grad-"w
suitably chosen constants.

As the solution space, Van Buren chooses the

collection of displacement vector fields

D = {u : u is C2+a on B}
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2+0 . .
where C mcans that the displaccement vector ficld and
its first two derivatives arec continuous in the llolder
sensc with exponent o, This set is also a linear space

which can be given the structure of a Banach space by

choosing the norm

ol = sup {Ju(x)| + Jegrad u(x)| + |grada‘®uo|}
XeB v ~ T~ ~tn

+ C

(B)
gradcz)g

Here the first and second gradients of the vector field

u are as indicated, and Cgrad(z)u(B) is a suitably
chosen constant. For purposes of~setting the finite
elastostatic operator it is convenient to introduce open
subsets in ID which represent neighborhoods of disp}ace-
ment vector fields about the given reference configuration
whose associated deformation gradients do not deviate

greatly from the'identity. For vy a real number, vy > 0,

let NY denote the subset
WY = {ueD : lgrad u |<y}.

One may now realize the finite and infinitesimal

elastostatic problems as differential operators linking
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the solution space D, and the load space IB. Acting on

the solution space ID and the subset |N assuming Y is

Y’
properly chosen, one may define the infinitesimal and finite

body force operators a and b by, for veD and ueN

Y’
a(y); = -Div_([A(X)](grad v(X))
X < ~'a
D (u) = -Div (8(1 + grad u(X),X))
~" 5 X bt ST R
for XeB. Moreover, one may define the boundary displacement

operator w acting on D by, for veD and ZedB

One may now construct two operators which realize
the finite and infinitesimal elastostatic equations as
mappings defined on lNY and D, 1respectively. Moreover,
if one imposes th; conditions of Hypothesis 2, one is then
assured that the range of the operators is the load space B.
Hence, the proper matching of the solution space, the load
spacc, and the differcential operators from the point of
view of differentiability allows one to depict the operators

having domains of definition INY and D, respectively,

and range 1B:



¢ NY + B (I1.4)
u 2(u) = (b(u),W(w))

At oD . B (11.5)
v A = (EO)LW))

Finally, if one denotes a given body force density
field and boundary displacement field and their excess over

the reference load as the elements of B

— * = * *
L, = (b,,u)) and 2 (bo»ulds
respectively, then the place boundary value problems for the
finite and infinitesimal cases, relative to the given

reference configuration, may be written as the operator

equations
o(u) = 2,
and
- *
ACy) = %a

These equations justify regarding ¢ and A as the finite

and infinitesimal elastostatic operators for the place
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boundary value problem,

The triples of Banach spaces and mappings between
them given by relations (II.4) and (I1.5) <constitute
Van Buren's geometric models for the finite and infiniti-
simal elastostatic place boundary value problems. They
complement the analytical models given by equations (I1.1),
(IT.2), and (II1.3). By means of this model one may now
proceed to exploit theorems in tﬁe infinite dimensional

Banach space theory to gain existence and uniqueness in-

formation.

How the Local Uniqueness Problem Manifests Itself

In particular, Van Buren's model allows one to in-
vestigate solutions to the finite elastostatic problem in
the neighborhood of a given equilibrated configuration.
One can establish that the finite elastostatic place
boundary value problem (II.1) and (II.2) has the
{analytic) prope;ty of local existence and uniqueness of
solution in the vicinity of the given configuration if one

can establish the (geometric) property that the operator

® in (IT1.4) has an inverse on some neighborhoods of the

vector fields u = 0 in NY, and ¢(9) = 20 in B. For,
if ¢ admits such an inverse, then for any load %

~a

sufficiently close to the reference load &0, one 1is



assured that therec exists one and only one displacement
field u near 0 which is equilibrated by it. Notice
that such a local uniqueness property does not imply a
global uniqueness property: tﬁere may exist displacements
u distant from O equilibrated by the same given load.

In order to establish sufficient conditions for
the local existence and uniqueness property, Van Buren
exploits the inverse function theorem for Banach spaces.
If one can show that the finite elasticity operator ¢
is continuously differentiable on NY and its Frechet
differential 6@(9) at the zero displacement field 0 is
a linear hemeomorphism of D onto B (hence, the critical
requirement that the spaces be properly matched), then
the inverse function theorem insures that there is a neigh-
borhood [E of 0 in NY such that the restriction of ¢

to [E is an invertible mapping of I|E onto a neighborhood

®(E) of the reference load ¢(0) = go in B.

’

Van Buren's Result for Local Uniqueness

Van Buren's accomplishment for the place boundary
value problem consists of showing that if one chooses the
spaces D and B to satisfy the hypotheses given above,
and if one bestows upon them the norms as stated, then by

a series of rather intricate norm calculations one can
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verify that ¢ is continuously differentiable on Ny’
when Yy 1s suitably chosen, and that the Frechet differ-
ential §&§9(0) at 0 is the infinitesimal elasticity

operator A.

Theorem: {(Van Buren) ¢ is of class C1 on
NY and its Frechet differential at 0OeN
coincides with the infinitesimal elastici%y

eperator A:

§o(0) = A,

Even with the proper match of operators and spaces
provided by Hypothesis 1 through Hypothesis 3, and the
above result, the invertibility of Van Buren's infinitesimal
elasticity operator does not immediately follow. For this
reason, Van Buren is forced to impose an additional hypo-
thesis:

Hypothesis 4: The body, reference configuration,
and the elasticities

" A(X) = grad; S(1,X) , XeB

are such that the infinitesimal place boundary value
problem

*
Mw =1,

defined by (I1.5) has, for each g* belonging to
B, a unique solution u belonging to D. :
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If one imposes such a condition, onc gains the following
thcorem on the cxistence and local uniquecness of solution

to the finite clastostatic place boundary valuc problem

as an analytical translation of the gcomectric result ob-
tained from thc application of the inverse function theorem.

"Thcorem: Let Hypothesis 1 through 4 be satisfied.
Then there are positive numbers Y. and p1 such
that for all data (ba,ga) in B Satisfying

e - agol] < ¥

the finite elastostatic place boundary value pro-
blem

Divx§(1+ grad u(X),X) + Pa(X) = 0, XegB

~

u(z) - u,(2) = 0, ZedB

has in the space D one and only one solution

¥ -

for which

|

u < pl.

Comments on the Invertibility Hypothesis

The attractiveness of Hypothesis 4 is questionable.
Two comments indicate where it is vulncrable.
(1} When the reference configuration Kk 1is a

natural configuration the infinitesimal elasticity operator
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is preccisely the classical lincar elasticity operator.

For this particular case Van Buren's results reduce to

thosec originally gained by F, John{7 Under this circumstance,
one may then physically justify imposing additional condi-
tions which insure the invertibility of the infinitesimal
elasticity operator based upon results from the theory of

the cla;sical linear elasticity place boundary value pro-
blem. For instance, with experimental justification one

may impose one of the classical elasticity inequalities,

or by requiring real wave speeds in linear elastic materials,
one may impose a strong ellipticity condition, or finally,
onc may impose the Coleman-Noll condition, or one of its
generalizations. Any of these conditions insure the inver-
tibility of the classical linear elasticity operator, and
thereby insure Van Buren's Hypothesis 4,

(2) When the reference configuration K is not a
natural configuration, then the infinitesimal elasticity
operator is not Fhe classical linear elasticity operator
which would be associated with the configurationfe As a
result, one has much less physical justification for
imposing upon the infinitesimal elasticity operator the
conditions one imposed when K was a natural configuration.
Hence, for this situation, though mathematically sufficient,
Hypothesis 4 appears much more ad hoc than the previous

three.
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In short, Van Burcn's model provides one means for
gaining local existence and uniqueness information about
an elastostatic system about a given reference state of
strain. Exploitation of the implicit function theoren,
however, does not give rise to information regarding finite
deformations from the rcference state. As F. John has
pointéd out67a material body may satisfy a local uniqueness
condition like that of Van Buren's for every conceivable
rcference configuration, and yet for a given place boundary
condition possess two equilibrating configurations, (A

""global" non-uniqueness of solution to the finite elasto-

static place boundary value problem).

THE MODEL OF I. BEJU

If iocal existence and uniqueness conclusions do
not lead immediately to conclusions concerning finite de-
formations, how does one gain such information? What
additional mathematical tools are available for exploita-
tion?

One approach for gaining global information is
provided by the model of I. Beju?a Generally speaking,

Beju's geometric model for the finite elastostatic place

boundary value problem is similar in structure to
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Vaﬁ Buren's, in that it realizes the problem as a nonlincar
mapping between Banach, (in fact Hilbert) spaces. However,
by limiting his attention to materials whose response
functions are derivable from strain energy functions,
(hyperclastic materials), Beju is able to go further than
Van Buren in gaining global information. By imposing
sufficient conditions to insure that the finite elastostatic
operator is monotone, Beju is able to utilize the mathe-
matical theory of monotone operators to yield a global
uniqueness statement for the finite place boundary value
problem. By imposing slightly stronger conditions he 1is
able to apply "maximum-minimum" theorems of the variational
theory to the energy integral constructed from the strain
energy function to gain existence statements.

The basic concepts and mathematical tools used by
Beju in constructing his model and using it are summarized
in his article. The salient features are set forth below,

'

Monotone Operator Tools Which Beju Uses

The primary mathcmatical tool utilized by Beju to
gain global uniqueness information from his model is the
following abstract mathematical theorem, which Beju attri-

butes to A. Lagenbach.



Theorem II:1.2'(Lagcnbach) Let §& be a bounded
region of RN with boundary 9. Let H(§1) be
any lilbert space of vector-valued functions

on . Assume that the boundary of Q is suffi-
ciently regular to insure the validity of the
Green's-Stokes Theorem. Let P be a non inear
operator,

P : D(P) » H(Q), D(P)< H(Q)
and for f e H(Q), consider the nonlinear equation
P(u) = £ (11.6)

subject to the set of linear homogeneous boundary

conditions

{Liu = 0, i-1,2,...,p} (11.7)

Let D_(P) = {ueD(P) : u satisfies (II.7)}.

Assume
(1) DO(P) and D(P) are linear sets, and DO(P) is
dénse in H(Q),

(2) for all wueD(P), heD(P), P has a linear
Gateaux differential and (DP)(h) is a continuous
mapping of u in every two dimensional hyper-
plane containing u,

(3) P(O0) =0
(4) for all ueD(P), h,g,c DO(P)

<(DP)(u)h,g> = <(DP)(u)g,h> (a symmetry condition)
(5) for all wueD(P), heDO(P), h # 0

<(DP)(u)h,h> > 0 (a positive definiteness
condition)
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(a) if there cxists a solution u EDO(P) to (I1.6),

it is unique,

functional

and on Dg(P) it%minimizes the

F : D (P) > R
° (I1.8)
u » F(u) = J(u) - <£f,u>

for
J : D(P) > R
(11.9)
U ———r J(u) = f1<P(tu),u>dt
0

(b) Conversely, if an element ueDO(P) minimizes the
functional (II1.8) it is a solution of (II.6).

Comments

Theorem II.lT is

on the Theorem

a global unidueness theorem., A

moment's reflection gives one insight into how the hypotheses

are utilized in establishing the conclusions. Four of the

assumptions are particularly critical: the linear and

dense nature of DO(P),
properties of the linear
symmetry property of the
definiteness property of
examined in turn.

The linearity of

the operator P and the

the existence and special continuity
Gateaux differential of P, the
differential, and the positive

the differential. They will be

the domain of definition D(P) of

existence and continuity of the

TTheorem II1.1.should be distinguished from Equation II.
This procedurc for eenoting equations, theorems, etc., holds

thyoughout the paper.
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linear Gateaux differential allow one to relate the action
of the operator at two points to an integral expression

involving its derivative:

for x,x, € D(P)

0
P(x) - P(xy) = ofl[(DP)(x0+t(X-x0))](x-—xo) at.

The symmetry property of the differcntial relative
to the Hilbert space inner product, allows one to relate
variation of the integral function F with an integral
expression involving the Gateaux differential (DP). The
positive definiteness property allows one to establish that
a solution uoeDO(P) to the equation (II.6) minimizes
the integral function F on DO(P).

Moreover, positive definiteness property of (DP)
insures that the operator P 1is a monotone operator on
DO(P). This property allows one to establish the unique-

ness of solution u, ¢ DO(P), if it exists.

0

One can now begin to appreciate the diverse mathe-
matical elements entering into a global uniqueness theorem:
a '"minimax" principle for the variation of an integral
expression, and a result from the theory of monotone ‘
operators,

I{ onc strengthens the positive definitcness pro-

perty onc begins to gain existence information.
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22
Theorem I1.2, If condition (5) of Theorem II1.1
is changed into a stronger one
2
<(DP) (wh,h> >c||h|], ueD(P), heD,(P), ¢>0, a constant,
then

(a) the functional (II.8) 1is bounded below
on DO(P),

(b) moreover, it is strictly convex on D (P),
that is, for u,v ¢ DO(P), u#v, and for
te(0,1),

F(tu+(1l-t)v) < tF(u)+(1-t)F(v)

(¢) Any minimizing sequence of the functional
is convergent in H(R).

Definition II.1. A generalized solution to equa-
tion (II.6) is defined to be the limit of a mini-
mizing sequence for the functional (II.8).

Theor@m I1.3. The generalized solution to (II1.6)

is unique.
The proof of Theorem II.2 is non-constructive, in the sense
that the desired solution is not explicitly constructed in
the proof. After intricate computations one establishes that
some minimizing sequence must exist; its specific nature is
not determined. |

One can, however, gain some limitations on where
in H() the solution lies from additional theorems which
can be found in Lagenbach's paper.

llow is Beju able to utilize Lagenbach's abstract

results to gain information about the finite elastostatic

problem? He accomplishes the feat by carefully erecting a
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gcometric model for certain finite elastostatic problems
which fulfill the assumptions of Theorem II.1. The first
elements which are formulated from the analytical model are
the data and solution spaces and the finite elastostatic

operator.

Beju's Analytical Model

Beju's analytical model for the finite elastostatic
place boundary valuc problem is gained in the following way.
Let § represent the region in R3 occupied by the body in
the reference configuration. Let the boundary 9§ Dbe suffi-
ciently regular to guarantee that the Stokes-Green theorems
hold., For a given deformation X of the body from the

reference configuration,

X = X(X) s 589
let the deformatipn gradient field F(X) be given by
E(X) = Grad X(X)

Let the constitutive relation for the first Piola-Kirchoff

tensor field be given by
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Let b(X) represent the given density of external body forces
per unit mass. Then the differential equation for finite

elastostatics becomes

Div h(E,X) + ppb(X) = 0

where o is the mass density in the reference configura-
tion. The boundary condition of place is specified by
imposing a requirement that the boundary of the body assume

a given shape
X(X) = X,(X),  Xedq

For convenience of presentation, consider the case
where the body is homogeneous, and the reference configura-
tion is a homogeneous reference configuration. The response
function becomes a function of the deformation gradient

only,

i

To formulate the model it is convenient to characterize the

deformation in terms of a displacement vector field u(X),

u(X) = X(X) - X.

The differential equation for finite elastostatics and the

boundary condition of place may then be expressed in terms
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of the displacement vector ficld as

Div h + pRE = 0, for Xef (I1.10)
u(X) = a(X) for XeodQ (I1.11)
where h = h(F),

F(X) = 1+1(X)

~

il

and H{x) Grad u(X).

The Homogeneous Boundary Condition Formulation

Equations (I1.10) and (II.11) constitute Beju's
analytical model for the finite elastostatic place boundrry
value problem. It is a differential equation with inhomo-
geneous boundary coﬁditions. In view of Langenbach's
results, the first step in Beju's construction is to trans-
form the boundary value problem into one with homogeneous
boundary conditions. This step is accomplished by intro-
ducing a known, but arbitrary vector field v defined over

the reference configuration plus boundary € which satis-

fies the given place boundary conditions:

v(%) = a(Xx), Xea,
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Beju now takes as the unknown the vector field w defined

~

by
w(X) = u(X) - v(X), XeQ

One may now formulate the finite elastostatic boun-
dary value problem as a homogeneous value problem in terms
of the vector field w, and develop a finite elastostatic

operator. Define an operator A which takes vector fields

u into vector fields by
A{u) = -(l/pR) Div h(1 + H) - b (II1.12)

The finite elastostatic differential equation becomes

A(w) = A(y + w) =0
Introduce a second operator Ev which takes vector fields
into vector fields by
EL(W) = A(y + W) - A(Y).

~

If one defines the vector field £ by

£ = -ALY),

then the finite elastostatic boundary value problem of
place (II1.10) and (II.11) 1is transformed into a nonlinear

boundary value problem with homogeneous place boundary
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conditions

[E, (w31 (X) = £(X) XeQ (11.13)

w(X) = 0 Xeof (I1.14)

4

The operator Ev will serve as the finite elastostatic
operator associated with the place boundary Value problem.
Notice that it depends upon the choice of the fixed vector
ficld V. The subscript on the operator emphasizes this

point. Comments about the dependence upon Vv are reserved

until later.
Beju's Geometric Model

Equations (II.13) and (II1.14) serve as Beju's analy-
tical model for the finite elastostatic place boundary value
problem in homogeneous boundary formulation. A geometric/
topological model may now be developed by extending the
finite elastostagic operator from acting on vector fields
with classical differentiability properties, to vector
fields which are differentiable in a more generalized sense.
Beju's data space is constructed from Lz(ﬂ), the Hilbert

space of vector-valued functions which are square integrable

over . The inner product on the space is chosen to be
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<u,v> = [ pRujvidQ
Q

As the space of possible generalized solutions,
WQ(Q), Becju chooses the subset of LZ(Q) which belongs to
Cz(Q) and satisfy the requirement (II,14). An element
of WZ(Q) thereby satisfies the homogeneous place boundary
condition and is continuously differentiable through second
order in the classic sense. As Beju points out, it is possi-
ble to show that WZ(Q) is a linear dense subset of Lz(Q).
Notice, however, that the set is not complete in the Cauchy
sense,

Finally, Beju's geometric model for the finite elas-
tostatic place boundary value problem is gained by consider-
ing the finite elastostatic operator of equation (II.13)

extended to the generalized solution space. As Ev is classi-

~

cally a second order operator, it can be shown by theorem

that the extension of

E oWl - L,(2) (I1.15)

<

Hence, Beju's solution space, data space, and finite
elastostatic operator are "properly matched" in a manner
similar to Van Buren's model (II.15) is Beju's geometric

model for the problem.



How Beju Utilizes His Model

Like Van Burcen's modecl, Beju's geometric model con-
sists of a nonlincar mapping betwcen two topological vector
spaces., It differs from Van Buren's model in that the data
space is a Hilbert space, as opposed to simply a Banach
space. Secondly, the place boundary condition is incorpor-
ated as an algebraic constraint which helps define the
solution space WZ(Q), as opposed to being incorporated
into the data space. Finally, for Beju, the finite elasto-
static differential operator need not be continuously
differentiable in the sense of Van Buren. This is why Beju
investigates the Gateaux differentiability of the operator
as opposed to the Frechet differentiability. Gateaux
differentiability is slightly more general,.

It is in how the model is utilized that Beju's con-
clusions go beyond those of Van Buren. By a series of )
lemmas Beju is able to determine sufficient conditions on
the elastostatic‘operator in order that it satisfy the
hypotheses of the Langenbach theorems. When interpreted
physically, these conditions delimit the class of material
bodies to which the conclusions of the Lagenbach theorems
apply.

The first lemma indicates what conditions must be

placed upon the finite elastostatic operator and the body
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force to insurec that it have a linear Gateaux differential
with the continuity requirements needed by the Langenbach
theorem, These conditions fulfill the role played by
Hypothesis 2 in Van Buren's model,

23
Lemma II.1. If the response function h and

the body force density field b have continuous
derivatives of second and first order, respec-
tively, then

a) the operator Ey 2has a linear Gateaux
differential on ~W7(RQ)

b) The differential _can be represented cxpli-
citly: for w, chZ(Q)

- o k k
[(DEvl)(}!)]g = '(1/QR) [Aikg’B]’Oc - bi,kg
o Bh? ah?
for A = =
ik gxk aFg

’B
c) For a given g, [(DE )(w)]g 1is a continuous
mapping of w in every hyperplane which contains
the point w.

4) E,(0) = Q.

Hyperelastic Materials with Certain Material
Symmetry Satisfy the Criterion of Langenbach's
Theorems

Next, Beju shows that if one restricts attention to
hyperelastic materials experiencing conservative body forces,

the Gatecaux differential of the finite elastostatic operator
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fulfills the symmectry Property demanded by the Langenbach

theorem.

at
Lemma I1.2, If the body is hyperelastic and if
the body forces b are conservative:

h = ppog
i 90
hu = PR3k
X,
o
b = -Grad V
Vi = Vs

then the operator Ev has the following symmetry
property ~

<(DE) (¥)g.8> = <(DE))(x)%,g> for w, 2, geW (%),

where

. -
IA?Q gl,a lk,BdQ + .fV,ik,Q,lg'< dm
Q Q

<(DE,) (¥)g,4>

The third and fourth lemmas provide mathematical
conditions which insure that the Gateaux differential of

Ev satisfies the positive definite properties of Theorem

II1.1 or Theorem II.2,

15
Lemma II.3, If the hypothesis of the previous
lemma are satisfied and if for all w,geWZ2(Q),
g # 0, ~
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32

ik,
JWos ee -—-—3—E——— g5 .8 ,B] dm > 0 (11.16)
'8

then the lincar Gateaux differential of Ev is
positive: - ~

<(DE ) (w)g,g> > O

4
Lemma II.A? If the hypothesis of the previous

lemma are satisfied and if condition (I1.16) is
strengthened to

ik 5% k i
f[v’ik gg + ——Ef————i— g 'y 8 ’B] dm > ¢ fgig dm (I1.17)
X 3 s Q
B
then the linear Gateaux differential of E is

positive definite

2
<(PE) (W)g.g> z_cllgﬂ L,e) c>0, a constant.

As Beju points out, the mathematical conditions
(11.16) and (II.17) have a physically justifiable basis.
They are related to the condition imposed by Coleman and
Noll to insure the static stability of a configuration of
a hyperelastic material under conservative body forces.
Notice also, that the last two conditions are global condi-
tions, (integrated conditions), as opposed to local condi-

tions which must be satisfied point by point.
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A Global Uniqucncss Result in the Weak Problcem

The above lemmas now allow Beju to gain global
existence and uniqueness statcments for finite elastostatics
from his model. Lemmas II.1 through II.4 insure that the
conditions of Langenbach's Theorem II.1 are satisfied,
Applying the theorem, Beju gains the following uniqueness

theorem for some hyperelastic materials.

a7
Theorem II1.4, If

(1) the material body is hyperelastic,

(2) the body forces are conservative,

(3) the constitutive equation satisfies
equation (I1.16),

then

(a) given £ ELZ(Q), if a solution W € WZ(Q) of

the cquation

E. (w) = £ (11.18)
Y’OM —

exists, it is unique and attains on WZCQ) the
minimum ¢f the functional

F:owl) R

W — F (y) = J(x) + <£,w> (II1.19)

where J(w) 1s defined in Theorem II.1

OEWZCQ) attains

on WZ(Q) the minimum of the functional (II1.19),
then it is a generalized solution of (II.18).

(b) Conversely, if an element y
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Uniqueness in the Classical Problem

The uniqueness thcorem guarantces the global
uniqueness of solution of cquation (II.18) 1in Beju's
model. Illowever, Becju notes, it does not immediately insure
the uniquecness of the solution to the classical inhomo-
gencous boundary value problem (II.10) and (I1.11). One
must establish the role played by the vector field y, wused
to convert the problem to a homogeneous boundary condition.
Given two distinct vector fields 1y, and Y00 which repre-
sent the inhomogeneous boundary condition, the Theoren
IT.4 insures the uniqueness of solutions w, and Yoo tO
equation (II.18) for the operators Ev and E

%0 200
respectively. However, it does not insure that the two

]

solutions to the inhomogeneous problem (II.10) and (II.11)

~0 ~0 0
200 = Yoo T Zoo0
are identical. A critical element in understanding Beju's

conclusions rests in comprehending under what conditions the

two classical solutions are unique.
8 . . .
Lemma II.5, Given Beju's model (II,15), 1if a

solution u € C2(Q) exists, to the inhomogeneous
problem (II,10) and (II.11), it is unique,



o
for]

The proof of the lemma requires that onc establish that the
operator A defined by cquation (II.12) 1is strictly

monotonc on the domain
D(A) = {uec?(Q) : u(X) = a(X), Xeaql.

Beju gains this result by showing that the domain D(A) is
convex, and that the condition (II.16) insures that the

directional derivative

-Ell—t-<A(g + tg), g>
t=0

is positive for all u € D(A) and g such that

~

g = 0.
MIBQ

An Existence Result

Finally, an existence theorem is gained if one

imposes the stronger condition (II,17):

Theorem II.S.z9 If the hypotheses of Theorem II.4

are satisfied and the constitutive relation
satisfies (II.17), then

(a) The functional (II.19) 1is bounded below
on W2(Q).

(b) The functional (II,19) 1is strictly
convex on W2(Q).
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(c) Any minimizing scquence of (T71.19) is con-
vergent in L,(Q), and its limit is a general-
ized solution"of (I1,18)

(d) The generalized solution is unique.

The proof of the theorem is non-constructive; however, one
can gain some limitations as to where in LZ(Q) the
generalized solution may lie, One is referred to Beju's

paper for this result,
Some Comments on Beju's Model

Several features in Beju's model are worthy of note
for one who wishes to build a more general geometric model
for the finite clastostatic place boundary value problem.
The main reason why Beju's conclusions go beyond those of
Van Buren's, at least in one direction, is that at the
proper time Beju releases himself from the full generality
of his geometric @odel. Like Van Buren's model, Beju's
geometric model (II.16) holds for all material bodies with
the proper degree of smoothness in body and response. But
whereas Van Buren attempts to draw conclusions utilizing
the universal model, Beju restricts his attention to the
subclass of smoothly responding materials which are hyper-
elastic and satisfy a condition like the Coleman-Noll

condition for finite stability.



Such restriction 1s in kceping with the spirit of
nonlincar investigations. When one investigatces phenomena
in terms of a linear model, for instance, infinitecsimal
dcformations, one cxpects to draw conclusions of a universal
nature applicable to all materials. But as one investigates
more finite deformations one expccts the particular charac-
teristics of materials to manifest themselves., Out of the
common, universal lincar behavior sprout many differcnt sub-
classes of nonlinear behavior, which become more.numerous
as the deformations become more extreme. Thus, in order
to utilize any future model for the finite elastostatic
place boundary value problem to any profitable degree, one
must expect to restrict one's attention, in turn, to
particular subclasses of materials, The particular mathe-
matical tools available influence which subclasses will be
considered. TFor instance, in Beju's model, it was the
Langenbach symmetry condition which dictated the restriction
to hyperelastic Waterials.

The specific class of materials chosen by Beju, the
hyperelastic materials, is an especially propitious one, in
that the finite elastostatic operator may be viewed as
derivable from a variational principle. In the Algebraic
and Differential Topology there is a wealth of untapped
resources which may be applied to operators of the varia-

tional type. The Langenbach theorems are but one example
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of the utilization of a part of this rcsource: a minimax

principle coupled with a theory of monotonec opecrators.

POINTS OF DEPARTURE FOR FUTURE MODELS

The models of Van Buren and Beju also contain cle-
ments which are promising points of departure for future
models., Attention will be focusecd upon four particular

points: the role played by the mathematical structure
imposcd upon the model in drawing cxistence and uniqueness
conclusions, how the models reflect changes in the boundary

conditions and the body shape, which elcments of the models

are constrained in order to gain existencec and uniqucness
conclusions, and which mathematical mecthods are used to

gleen information from the models. These points of decpar-

ture will be examined in turn.

lfow many of the existence and uniqueness conclusions
gained in the models presented above depend upon the parti-
cular mathematical structure imposed? In Van Buren's model,
the tlolder space structure is relied upon heavily in drawing
conclusions. 'For example, the theorem relating the Frechet
derivative of the finite elasticity operator and the infi-
nitesimal elasticity operator follows only after intricate
calculations in the norms previously specified. 1Is the
relationship independent of the particular norms imposed?
If not, onc would be faced with the unenviable task of

physically motivating the choice of norms,.



A second difficulty arising from Van Buren's
reliance upon a particular Holder space structure is that
many results which are available from the classical linear
elasticity theory cannot be immediately implemented. They
are gained by imposing a Sobolev space structure on the
solution and load spaces, as opposed to a Holder space
structure. To incorporate them into Van Buren's model one
is faced with the task of adopting a suitable Sobolev norm
for Van Burcn's model, and performing a myriad of intricate
norm calculations to determine if Van Buren's original
conclusions withstand the revision.

A profitable alternative to Van Buren's approach
would be to cast the geometric model in terms of several
different function space settings simultancously. 1In
chapter threc, mathematical methods are presented which
give circumstances under which one can accomplish this
reformulation. One may then determince which conclusions
hold for all settings. Moreover, one gains these conclu-
sions by theorem; as opposed to intricate norm calculations.
Hence, a means is available by which one can choose a par-
ticularly convenient function space setting for analyzing
a particular aspect of the boundary value problem, draw
conclusions, and then carry the conclusions over to another
function space setting to analyze some other aspect of the

problen.
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The sccond point of departure is concecrned with how
conditions arc imposed upon the model to achieve existence
and uniqucness conclusions, In Van Buren's and Beju's
models conclusions follow from conditions placed upon the
clastostatic operator and its derivative, or the response
of the material comprising the body. The conclusions
drawn in both models are independent of the shape of the
body and the boundary condition imposed. An attractive
alternative would be a modecl in which all three factors
can affect the conclusions. This perspective leads to the
next point of departure: in constructing a model sensi-
tive to all threc factors, ought one to regard the solution
space as a linear space?

In the linear infinitesimal theory a linear solu-
tion space is quite natural; however, as one generalizes to
a finite nonlinear model, uncomfortable features arise.
From Van Buren's and Beju's models one sees that if the space
of all possible solutions is a linear space, then the sub-
sets representing different place boundary conditions are
all alike topologically. They are but translates of the
zero boundary displacement space. Consider a problem where
one place boundary condition admits a unique equilibrating
configuration for a given load, whilec a sccond one admits

more than one solution for the same load. In both models
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onec cannot cxpect to anticipate the discrepancy by simply
looking for topological diffcrences betwecen the two solu-
tion subspaces. Onc is forced to solve the problem before
the information becomes available, In other words, the
solution spaces in eitiucr model are insensitive to the
dependence of the uniqueness question upon the boundary
condition imposcd.

Could the dependence be incorporated into a topo-
logical distinction betwecen various place boundary solution
subspaces? The question is made more provocative when one
recalls that in Beju's proof of the uniqueness of the
classical solution of the finite elastostatic problem, a
critical element was the convex nature of the domain D(A),
a topological property. This particular alternative will
be investigated more thoroughly in chapter four.

Another question of interest is what happens to the
uniqueness and existence conclusions if one drills a hole
in the material body? If one changes the topology of the
material body it'is not obvious that one can anticipate how
Van Buren's model or Beju's model will be altered. It
would be most satisfying if a future model would allow one
the luxury of accommodating such changes in the material

body. This point will also be examined in chanter four.
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Finally, in addition to the basic structure of the
geometric model, Beju's model and Van Burcen's model point
the way to more rcfincd mcthods for glcaning information
from future models. TFor instancec, Beju's use of Langenbach's
thecorems gives onc a grasp on situations wherce behavior is
uniquecly determined; however, it docs not give onc any insighf
into non-unique situations. There are, however, mathematical
tools which may be applied to variational problems which give
some insight into the extcnt of nonuniquencss of solution.

The Morsc thecory is an cxample, Lven the non-variational
casc can be investigated to some cxtent using ncwer functional
analysis methods.

Thus in examining the models of Van Buren and Beju
one is introduced to what constitutes a geometric model for
the elastostatic place boundary value problem what features
are particularly valuable for any model, and where one might
begin to improve on existing models. With this foundation

one may now confidently break ground on a new model,

'
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TIT. THE MODERN SETTING FFOR GLOBAL ANALYSIS
Illow to Read this Chapter

One can improve upon the cxisting qualitative
models for continuum mechanics by ecmploying some mathcmati-
cal tools which are quite reccent in origin, and which,
herctofore, were regarded as '"pure'" in nature. Recent
advances made in setting the foundation for the theory of
global analysis yields the capacity to revise the current
models with an econony of effort.

One may see this point most clearly by example. 1In
the last chapter one found that the solution space could be
improved markedly if one could replace its topological vec-
tor space structurc with an alternative structurc which was
more sensitive to change in the boundary conditions and the
body shape. Such alternative structures were not available
even as late as a decade ago. However, with the advances
in the diffcrentiél geometry and algebraic topolozy, and
the development of a geometric/topological setting for the
theory of differential cquations, which have been made in
the last ten years, altcrnative structures are now becoming
available. In particular, subsequent chapters will show
that the solution space can possess a well-defined structure

as a differcentiable, but infinite-dimensional, manifold.



The problem with utilizing the new mathematical
tcchniques in that they are not common knowledge amcng
physicists. Therefore, for the conveniencc of the reader,
this chapter presents a summary of the mathematical sctting
which will be utilized to cast the qualitative model
developed in this thesis. As one examines this chanter,
onc should kcep in mind several features which the contem-
porary gcomectric/topological setting for the thecory of
differential equations cexhibit. These fcaturcs reflicct
comments made at the end of the previous chapter, They arc:

(1) that the solution and data spaccs may be

differentiable manifolds, as opnosed to
simply topological vector spaces;

(2) that thc abstract sctting is '"categorical"
in nature; hence, one may simultancously
cast a differcntial cquation in several
function space settings simultancously, as
opposed to being limitcd to one setting at
a time;

(3) that one may dcduce properties of the ele-

wents of the setting, like a linearization
of a differential operator, by theorem, as
opposed to resorting to intricate norm
calculation.

The chapter is divided into two parts. The first
part provides a description of how the theory of differen-
tial equations evolved to its contemporary abstract setting.
The non-mathematical description provides one with an

42

overview of the sctting. The second part sets forth the

particular mathematical elements of the setting. It is
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rccommended that one simply scan this latter part on the
first recading, and return to it as speccific elements are

called upon.

THE EVOLUTION OF MODERN GLOBAL ANALYSIS

The Use of TFunction Spaces to Study Linear

Partial Differential Equations

Recall that the theory of linear partial differen-
tial equations in n-variables gained new impetus when the
"method of weak solutions'" was investigated in a rigorous

30
manner, The result of the investigation was a program for
considering linear partial differential equations which
consisted of threc steps. Firstly, a collection or '"chain"
of function spaces, which were well-defined infinite dimen-
sional topological vector spaces, were specified. These
spaces generalized the set of weak solutions in the
classic partial differcntial equation theory. Examples of
function spaces used frequently were the Ck spaces, the
Holder spaces, the Lipschitz spaces, and the Sobolev spaces,
Secondly, a sct of embedding theorems rclating function
spacecs of the chain was developed; for cxamwle, the Rellich
and Sobolev embedding theorems. Finally, the linear partial

differential ecquation was generalized to a continuous linear



map bhetween spaces of the chain, extending the classic

notion of the linecar partial differential equation in the
"weak!" or integrated form. In this setting, the qucstions

of the existence, uniqueness, and rcgularity of solution to
the lincar partial differential equation could be investi-
gated using the thecory of linear operators on Banach spaces.
31

The thcory of Elliptic Diffcrential Operators in n-variables

is agood example of the success of such an approach.

Linear Partial Differential Equations in

Non Euclidean Manifolds

In recent years the above program nas been 'global-
ized". With the development of the vector bundle theory it
has hecomec possible to '"piece together! an n-variable theory
to investigate lincar partial differential equations on
mathematical manifolds which can only locally be identified
with an n-dimensional Euclidean space. In this setting,
the functions which werec investigated in the n-variable
setting are now generalized to sections of a vector bundle.
The chains of function spaces which served as the solution
and data spaces in the n-variable theory are now replaced
by chains of spaces of scections, Each section spaces 1is
a Baznach Space. The differential equation again is

manifested as a linear mapping between DBanach spaces., Hence,



over non Fuelidean manilobtds the setting far o lincar partial
diterential cquation is similar in structure to the func-
tion space sctting of the n-variable thecory. The major
diffcrence is that the analytical cxpressions onc usually
cncountcers for differential cquations now arc regarded as
local coordinate representations of a global, intrinsic state-
ment.

Some statements about the existence and uniquecness
of Eiliptic partial differential operators on manifolds have

. 32 .
been achicved using this sctting. Such results are particu-
larly of valuc to Continuum Mechanics when one investigates
material bodies which can not be mathematically modeled as
an n-dimensional Euclidean space, or for which such a model

is inconvenient. Inhomogeneous bodies serve as an example.
The Abstract Setting for Global Linear Analysis

With the advent of the Category thecory, it became
possible to abstrgct the program for linear differential
equations to a theory independent of the choice of function
spaces serving as the data and solution spaces. As a result,
the formulation of existence and uniqueness cuestions be-
come much clearer, because the complicating factors which
arise solely from the particular choice of function space

setting can be removed., It is this abstract formulation
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of the original program for the study of lincar cquations

which 1s called the theory of global lincar analysis.

The Abstract Setting for Global, Nonlincar Analysis

3z
uite recently, through the effort of S. Smale
(&3

and R, Palais{ a foundation for 2 theory of global nonlinear
analysis has Dbeen achicved by extending or '"piecing to-
gether™ the theory of global lincar analysis. In the theory,
a chain of infinite-dimensional manifolds, each having a
well-defined differentiable structure, is achieved. These
manifolds arc modeled on a suitable Banach function space;
hence, locally, the chain of manifolds resemble the chain

of clements of a global linear theory. Secondly, embedding
theorems arc obtained which relate the manifolds of the
chains, analogous to the imbedding thcorems for the global
linear theory. Thirdiy, the nonlinear partial differen-
tial equation gains representation as a differentiable
mapping betwcen ﬁanifolds of the chain. The derivative of
the mapping, viewed as a linear mapping betwcen the Banach
function spaces modeling the manifolds of the nonlinecar
thcory, may be related to the classic "linearization" oxf

the nonlinecar differential operator. Tourthly, the boundary

P

condition associated with a Dirichlet problem manifests



itsclf as a constraint which sclects a subsct of points

of the solution manifold associatcd with the "{rce boundary"
problem. A remarkable achicvement is that this subsct of
points has a well-defined structure as a diffcrentiable
submanifold of the frec boundary solution manifold. The
Dirichlet problem may then be vicwed as the study of the
nonlincar differential operator restricted to the submani-
fold of possiblec solutions satisfying the boundary condi-
tions.

Finally, whercas the thcory of lincar opcratdrs
could be used to investigate questions in the global linear
analysis, the cntire weight of the Differential Geometry,
the Differential Topology, and the Algebraic Topology may
be brought to bear on questions in nonlinear analysis,
when formulated in the above terms. One element of
the Differential Topology, the Inverse Mapping Thecrem, has
been utilized in previous works. Yet it is the still
untapped resources which hold the most promise for exploi-
tation. More will be said about these possibilities at

the conclusion of this work.

ELEMENTS OF THE GLOEAL LINEAR ANALYSIS

Having summarized the current setting for the

theory of global analysis, the particular elements of the
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thecory nccessary for the reformulation of finite elasto-
statics may now be precsented., The clements of the global
lincar theory will be nresented first., How they extend

to the nonlinear thcory will then be summarized, using the

results of Palais cited above.
The Banach Space-Valued Secction Functor

The initial element of the global lincar analysis

is the capability of associating with any vector bundle

Fod

over a given mathematical manifold a set of Banach spaces
which can serve as solution and data spaces for linecar
equations. Exploiting the Category theory, this task can

be most effectively accomplished by the specification of a

Banach space-valued section functor from the category of

vector bundles over the given manifold and vector bundle
morphisms into the category of Banach spaces and continuous

lincar maps.

~
Definition III.I;) (Panach space-valued scction functor).
Denote by M a covariant functor from the catcgory of
C* wvector bundles over a finite-dimensional, compact,

C*® manifold, M, (possibly with boundary), and vector
bundlc morphisms into the category of Banach spaces and
continuous linear maps:

. . . . . v 0
a) & is a function which associates with a C
vector bundle & over M a complete normable
topolosical vector space [M(E) of sections of &

s . © A .
which includes C (&) and which 1is a sudspace
of the vector space S(&) of all sections of £.



97

5 P . L0 -
b)Y M associates with cvery C vector bundle
P - ~ 0
morphism f of C vector hundles &, n over
M,
f:{f —— "

a continuous linecar map M(f) of thec image scction
spacces

M{E): M(E) ————— M(1).
Term M a Banach space-valued scction functor.
An example of such a functor is CO.

Given a functor M it 1s convenient to gencrate
from it a sct of derivative functors defined as follows.
Recall that for &£ a C” vector bundle over M, Jk(g)
denotes the bundle of k-jets of sections of §, also a

C® wvector bundle over M.

36

afinition III.2. (Derivative Functors). Given a
Banach space-valued section functor M, for every
C® wvector bundle & over the compact C® n-manifold
M, let

k

) My (@) = {seCt(B) 1 3ysed (e,

a vector spacce. Topologize M (&) Dby the
: e ) (x)
requirement that the map

Jgs

<

be an into homeomorphism, H(k\(i) is then a
normable topological space,



D%

M0 to be the complietion of H
so that j, cxtends to
M. (5) onto a

b)  Deline (P)(g)
in the above topology, )
a continuous lincar isomorphiism ol

closed subspace of M(Jk(g)).

An cxample of a collection of derivative functors would
0

functor C as (Co)k.

he

k .
the functors €7, dcrived from the

The propertics desired for such functors may be

conveniently cexpressed in terms of four axioms stated in

Palais!' text, Morec will be said about them latcr.

A Differential Operator is Represented as a Linear
Mapping of Banach Spaces

Introducing the section functor i1s valuable, in that

it allows the notion of a linear differential operator to be

conveniently expressed and viewed as a linear mapping on
well defined vector spacecs:

Definition III.3?7 (Linear Differcntial Operator)
A lincar differential operator D of order X
(with C® coefficients) taking sections of & into
sections of 1 1is a linear continuous mapping.

D: C®(&) ~ C%(n)
T order jet bundle of

which factors through the k't
there exists a (C®

sections of g. That is to say,
vector bundle morphism

4K
f: J () -+ T

4
such that D = f*-jk:
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fa

c® 3% (gy)

th . . .
Denote the set of k-— order linear differential operators

from & iato n Dby Diffk(g,n).

3
Theorem III.l.8 {The action of lincar differcntial
operators on scction functor spaces.) If M is a
Banach space-valued section functor satisfying axioms
(Bgil) through (B%4) in Palais' work , and if D is
a linear differential operator of order k <from §
into n, . then

D: C®(&) > Co(m)

extends to a set of continuous lincar mappings of the
section spaces tMr(g)} and {Mr(n)} as

= CM Yoy U
DI‘ Mr(D)- AII""I{(EJ > ‘r(n):
r = 0,1,2,.... When there is no confusion, the exten-
ded operator Dr will be dcnoted simply by D.
It is with the last theorem that the connection can be scen

between the Banach section functor setting and the itodern

theory of linear partial differcntial equations. Tor if M
is taken to be the lolder functor Ca, or the Sobolev

P . . 0 2 .
functor LO {(in particular H~ = LO), assuming for the

t

moment that these functors satisfy the four axioms, then a
system of lincar partial differential equations may be

viewed as defining a linear mapping betwcen the well-defined



100
vector spaces, The questions of existecnce, uniqucness,
and rcygularity of solution for given data may then be in-
vestigated in this sctting.

ELEMENTS OF TiiE GLOBAL NONLINEAR ANALYSIS

Axiom D355 The Banach Manifold-Valued Section Functor

The recent significant advance in the thecory of

g

analysis of intcrest here, is the fact that if the

functor M satisfies one additional axiom, the above

[ N

setting for global linear analysis extends to a setting for

a global nonlincar analysis.

. 39 - . .
Axiom III.1, (B§5). If £& 1is a vector bundle over
a compact, C%®, mn-dimensional manifold ¥, and M
is a Banach space-valiued section functor,

0 . . . .
a) then MN(Z) € C (&), and the inclusion map is
linear and continuous.

b} DMoreover, if 1N 1is a second vector bundle over
M and
|

£: € R (
is a C° fiber bundle morphism, then
0 0
fo: C(8) > €7 (n)

restricts to a continuous map (albeit not
linear)

M(£) + M(§ (M) .
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<
[

4,

Lemma IT1.1. If M satisfics axioms (L%1) through
(BE5), then Mk satisfies the axioms (B31) +through
(B85).
T 4/ ™ . - . 3 £ 1 4 -

Theorem TT1I.2, (The Banach manifold-valucd scction
functor.) If M satisfies (B31) through (BZ5), then
M extends to a cevariant functor from the category
of C° fiber bundles and €7 fiber burndle @ rphnisms
over compact C® n-manifolds into the catecrory of
Banach manifolds and C° manifold naps., That is to
say:

a) ii E is a € fiber bundle over M, M g)

.

L
posscsses a well defined structure as a C
differentiable manifold mudglcd on a danach
spacce, and

. . Y] .y v q vs }
b) if £ 1is a C floer bundle morphism from the

fiber bundle Ej, into a fiber bundle 1,
then M(f) 1is a c” mapring of Banach manifoids
M(£): M(Eq) > M(E5)
s M(f)s = £,s.

A Nonlinear Differential Operator is Rcpresented As

a Differentiable Mapping Betwcen Manifolds

In this setting, nonlinear differential operators

become well defined as manifold mappings:

Z
Definition III.4.¢ {(Nonlinear diffecrential operator).
Given fiber bundles E; and Ej, a nonlinear
differential operator of order k, from Ej into
E2 is a mapping D of C® sections

D: C®(Eq) » C7(E5)

- + . ’ ~
which factors through the kR order jet bundlc of
sections of Ly, a weli-defined fiber bundle over M.

-1 00

That is to say, there exists a fiber bundle
morphism
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1\ N 3
£ J (Ll) > Ez
such that D = f*'jk,:
[o o] D 2 G
CT(E]) > c°(52)
J‘k Ty

(ee]

Lk .
C® (3% (E1))
o ~ ;. th X PR . -

Denote the set of k— order differcential operators from E1
into E, by Df. (E.,E,.).

2 ‘\ A -

- ery o 43 0 . \ . c

Theorem ITII.3. Let M satisfy (B£1) through {(333),

and for Ej, Ep, C® fiber bundles over compact, C%

n-dimensional manifold M, 1let DeDfy(E;,Ep). Then

D extends to a C° map of manifolds, also denoted
by D,

D: M, (E)) » M(E,),

Notice that the ability to extend nonlincar differential
operators to mappings of manifolds is a proverty of the

functor M, as opposcd to the particular fiber bundies.

The Derivative of a2 Nonlincar Cperator Mapping
Extends the Classic Notion of the Linearization

of the Operator

Theorem III.3 insures that the extended differential
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operator is continuous when viewed as a nonlincazr mapping
of manifolds, and its derivative exists and is continuous,
The devivative of the mapping may be explicitly determincd
and recluted to an cextcnsion of the classic notion of the
lincarizetion of the operator., Morcover, the rclation
is independent of the particular functor M under con-
sideration, so long as it satisfies the axioms,
/y
Theorem I1I11.4, {(Tangent spacce to M(El))' Let I
(e8] . .
be a C fiber bundle over M, Let M be a Banach
manifold valued section functor satisfying (BE&1)
through (B§S).
he Sy 3 - - .
a) 1If seC7(Ey) then the tangent space to the

manifolda M(E7) at s may be identified
canonically with a Banach snace M(TS(EI)),

l'\

T(M(E))s = MITG(E{)).

Here, T.(E;) is &« vector bundie over

derived From E; and s. Hence, M(Tg(E;))
is a well-defined Banach space.

by If

£ El i EZ
is a C® fiber bundle morphism, and if
M(£):  M(E]) ————— {{Ep)

the induced manifold map, then the differential
of M(£f) at s,

s . = 2 Ve =

Om(I)S. T(M(El))s M(TS(EI)) nd T(M(Lz))f.s

H(Te, o (Ep))

is given by
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d(MD)) g = M8 D).

where Ggf is a C* wvector bundlc morphism

§ . f: T (Fp) +Te . (Ep)

defined in Palals' work. (Essentially, Gsf is
the vertical differcntial of £ along s).

Corollary III.1. (Derivativec of an extended differen-
tial operator). If M satisfies (RB81) through (B§5),
and if D

3 ,

D = £, §, ¢+ C%(E;) ——— C”(E,)

is a nonlincar differential operator of order k, which
[oo] -
extends to a C manifold map

D: Mk(El) >M(EZ),

a) then for seCm(El), the derivative of D at s
is given by

dbg: T(M (E)) = M (T (E})) ——H{Ty (E,))

o] —-~————>[,‘.1(Sjksf)] (jko)

b) More generally, if s & M, (E,) and if & and
S ! 1
€, are vector bundle neipghbdrhoods of s and
Ds in E; and Ep, 7respectively, then

3 . { —_ = A F — Y(E = M/
GDs. T(‘M}\(El))s .Mk(\, 1) 7 T(ul(uz))Dg MLF,Z)

s (85, 55 1(5,0) .

. 45 . . . . i
Theorem III.5. (The classic lincarization 1n vector
bundie terms). Let D € ka(El’Ev)’

D

= £ j
ko 1(.
a) If seCw(El), tnen

“~

- .1 o . -
83, st Ty sWTED) = IT(T (E)) —— Ty (B))



o
<
[¥2]

[ee]
is a C vector bundle morphism,

b) ijsf thus determines a2 lincar differential
operator of order k

ALDY, & DAff (T_(B),T,_ (E,)),

= v ' ® : wrT :
MDY g = (85, s,y ¢ CT(T (B )= €Ty (E,))
Term it the lincarization of D at s.

c) If & 1is a vector bundle neighborhood of s
in El (so that Ts(El) = §g), then for

ceC®(E),

A(D) (o) (x) = d/dt {D{s+tg)(x)}
: t=0

llence, A(D)g is a global extension of the
classic linearization of a differential opcrator.

46 . .

Corollary I11.2, I D is a nonlincar difierential
opcrator of order k, and M satisfics axioms (B§1)
through (B§5), then for seC®(E;j),

dd i TCH, (B g = My, (T (E;)) —>

k+r
M : = M E
T(MT(EZ))DS i I‘(TDS( 2))’
r =0, 1, 2, .... , 1is an extension of the classic

linearization

MDY s CT(T4(E) » C® (T, (E,))

to the chain of Banach spaces determined by .

i

A rcpresentation of the linearization of D at s in local
coordinates is developed in Palais' work, It recduces to

the classic linearization of a nonlinear differential
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operator in n-variables about a given function,

T“he Lincarization is Prescribed by Thcorcm,

as Opposcd to Computation

The important point to recaliize is thot the lincari-
zation at s of a given diffcrential operator is independent
of the particular choice of section functor M wused in the
formulation., If onc has calculated it once, no matter what
the sctting (liolder, Sobolev, ctc.), then onc has calculated
the lincarization for all scttings. Morcover, the extcnsion
of the linearization to the various functor spaces is pro-

vided by the derivative of the extended opcrator. This

e

derivative will vary from functor to functor; however, one
is assurcd that it exists, and in fact, a prescription for
it is given by Corecllary III.1. No further intricate norm
calculations are required.

Casting the differential operator and its lineariza-
tion in global tcfms allows one to examine propcrties of
the operator from a global point of view. In particular,
the symbol of a differcntial operator is a global object,
and from it one can meaningfully define 2 nonlinear e-1liptic

ions are rather

=
[o
et

differential operator. As these defi

[

intricate, and their presentation at this stage might

detract from the main purpose, one is referred to
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Palais' text, Reference will be made to them, however,
once the model for continuum mechanics has been erccted, and

onc begins to utilize it,

How A DIRICULET DOUNDARY CONDITION MAY BLE SET

In setting the boundary conditions of place, know-

lcdge of a particular submanifold of the Banach manifold

M(E) is valuable:

e ) 47 . . B,
Definition III.S. (A sctting for the piace boundary
coudition). Let M satisiy axioms (331) through
(B§5), and let feM(E). Define the subset [.,.(E) of
- I Z e S
M(E) to be the closure in M{E of the set of 2ll

sections geM(E) such that for some mneighborhood U of
oM (U depending on g),

fl = g .

U Iy

Theorem III.6.4”(A characterization of M f{u)). i M
satisfies axioms (B8§1) through (B§5), "then for

fep(E),
. - (o] .
a) “W”(E) is a closed C submanifold of JM(E)
<. . - . . [ee]
and the injection is C .
Tn fact, if sg c“ﬁf( ‘Y, and & is a vccecior
bundle neighborhood of sy in I, then

-
7
s

@
M) 1 Myp(E) = 5o+ i (E)

where Mo(g) is the closcd lincar subspace of

M(Z) obtained by taking the closure in M(g) of
Co(&) = {seC®(g) : support of s is dibjoint}
from 9M, .

¢) In particular, if E = g, a vector bundle,
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(1) My (8) = s+ HO(8), for s el (2,

0 o

" - 2 k. e

(M) £ M= L7 = 1M, then (l’ ;, (F) 15 a
Hilbert manifold (a 1ox?d auumanlfol
of the Hilbert space (F))

Corollary II1,3. {Indc pcndcnce of the subranifo
from the particular choice of ). If g““af(L)’ then

Notice that the setting for thc placec boundary condition sct
forth here is availablce for all functors {{ satisfying the
axioms, Moreover, some of the basic propertics of the
submanifold representing a place bounua;y condition (for
instance, the model space being Mo(g)) may be expressed in
”0( ¥} a general way in terms of the functor M. Hence, one
is not immediately forced into cxamining features of the

particular functors.

THE TFUNCTION SPACES REGULARLY USED IN CONTINUUM
MECHANICS ENTEND TO A NONLINEAR ANALYSIS SETTING

Finally, and most importantly, the function spaces
of current intercst in Continuum Mechanics may be viewed as
functors satisfying the axioms, including B55. Hence, they

extend to a g¢global nonlinear setting.

47
Definition TIT.6 Let &£ be a C® vector bundle over
a C%, compact, n—manifold M with a Riemannian struc-
ture <,> , XeM,

Ex
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(1) (The €92 functor). Let CO({) be the
complete normable topological vector space
with respect to the norm

iy ixy. 172
Hs]p = sup <s(x),s(x)>, .
XEM 2 X
(2) (C®), = Ck with the usual ”Ck topology"
& K = L, ! s 1 topoLogy .

(1) (The Holder functor, C*). For 0< 5<1,
define CY%{f) to be the complete normable
topological vector space of sections s of g
which satisfy a global liolder condition of

order ¢, which is gained by piecing together
the following local requirement: the local
coordinate represcntation of a section is
bounded to order O in the Holder sense. That

is to say, for any chart (U,6 ) of M and liccal

representation sy o of s, then there cxists a
constant KU > 0 such that

Sgo(X) - SGO(Y)! < Ky Hx=vil

for all x,y 6 (U). A norm for s c¢an be the’
lcast upner bound of the collcction {KU},
which exists, since M 1is compact.

. . k+c
{(2) Dcnote (CQ)L by C %,

AN
The Lipschitz functor Cl_). If ¢ is sct to
i, dcnote the resulting functor by ci-.
Likewise, sct (Cl7), = ck*l-,

(1) (The Sobolev functor LP). Choosing 2
strictly positive smooth re A on M, ’and
2 Riemannian structure < > on £, let LY{&)
be the normablie complete tdPolotical vector space
of 711 Borel measureable sections s of §, such
that

\
v

€

oM

/2 1/p
sl ey = (7<s(x),s00> 207 au )7 F <o,
M X
{ : (LPy, = LD
{3} (The Sobdolev functor HY . In particular,
2 . . .
L; is a Hilbert spgce—valued section functor,
usually denoted HX.
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The nrcm I11,7, The axioms (B81) through (DES) are sati

fied DLy
kK . \ ‘ '
a) C for all %k = 0,1,2, ...
. k+a .
b) C for ail k=0,1,2, ..,, and 0 < o < 1.
) ¢ for a1 x=0,1,2,...
d) '{ if k>n/p, where n=dimension M,

Thus 1£ it is possible to view the elastostatic

ficld equations for a matcrial body as a non-lincar diffcr-

ential operator taking sections of a bundle into scctions
of a sccond bundic, the above theorewms will immediately:

{1) show under what conditions the elastostatic field
equations cxtend to the desired function spaces,

{2) show undcr what conditiops the cxtendbu operator
is continuous, and in fact ¢ , without resorting to
intricate norm calculations, and no matter which func-
tion space is chosecn,

{(3) explicitly specify what the derivative of the
operator is, again without extended norm calculations.

The model for the finite elastostatic boundary value

probicm of pliace will now be initiated. One may begin by
showing how the configurations and the kinematic state of
a material body may be viewed as sections of suitable
bundles, and under what conditions the elastostatic field
equations may be viewcd as determining a differential

operator.

-
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1
2
Dediuittion IV, A conlisuration ¢ ol B in I 1is
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S ¢+ B ————— R3
PO - Frp— FIN BN N o 3 - )
winich is open, und if »p 4 g in B,
then
LN 4 . 5y
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A RN P I T e I B
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P 2
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g . N c o :
{n),  the setv ol C conligurations, Bab7 (o). iv a0,

set in a bansch space; hence, 1t possesses Tae Slfuciure oo
an infinite-dimensional open submanifold,
The topoloyy of the ircce boundary wanliold ol

9
configurations Lmb™(n) 1is best understood when onc exanincs

the submanifeolds represcenting particular Dirichlet boundary

conditions. When one chocoses a given configuration for the
. ; . \ ‘ ~ 2 o
boundary of the body one {finds that the sct of C configu-

rations satisfying the bouncary condition constitutec a sudset
- . . L . .
of the frece boundary manifold Imb ' (n). The subsct nay e

N
_given the structure of a closcd subnasizold in  Lub™(n).

Cnce agaln, chavis in the manifold atlas way ve displayced,
Morecover, onc muy cexXemince in sarprising decail how wnc
tonoiogy of the Divichlet configuration manifolas muy vary

with boundary condition, and with tho topclegy of tho

specimen itsclf. One may thenn edpreciate the overall attrac-

h

tiverness of the model for wvae conflyuration space whicn is

presentcd herc:

(13 The elements of tho space are conilgura-
tions and only configurations.

(2) The space has a well defined goometric
and topological structurc, and toaewve
arc tcechniques by which one can “nvesti-
saie thom,

{3) the manifold is sensitive cnenoh o
reficct rmpOZO“iCulfv ChoMiw . 7 o
dary condition avd che shuyc (Lonwioly)
Or Tha2 S$BACimcii, HOTedveT, *crA;A\Lc
are cvallabice o Jeveriiac tousSe Chlnges,
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The Main Result for the Free Boundary

Configuration Manifold

The purpose of the development which follows is to
give meaning to and prove the following assertion about the
geometric structure which the set of Cz configurations

may possess.

5
Theorem IV.1. Let B be a C%, compact, connected,
oriented material body with boundary 93B. Let n
represent the vector bundle of all possible posi-
tions which a material point p may take in R?,
taken over all points of B:
wn:n=B$cR3-—-——>3
a) A configuration ¥ of B in R?® may be

represented as a section sy of the bun-
dle n, given by

Sy + B ——— n = B x R?
p , Sy(P) = (P, ¥(p)).

Under the representation the set of all ct
configurations subject to no boundary con-
ditions constitutes a subset, denoted
Emb2(n), of the set of all C% sections of
the vector bundle n, denoted Cl(n):

Embi(n) < ci(n).

b) The set of C& configurations Emb%(n)
has the structure of an infinite-dimen-
sional differentiable manifold which may
be viewed as the intersection of two
manifolds,

Emb2(n) = Immi(n) /1 Deg%(n).

and which lies as in open submanifold of the
Banach space Cl(n). The model space for
the manifold is the Banach space ctm).
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d)
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For any configuration s one may display
explicitly manifold char¥5'about sy! one
may specify an open neighborhood Us of
s in Emb%(n) and a diffeomorphis% )
o¥ the neiﬁhborhood onto an open neighbor-
hood in C*(n)

z: st ———>2(U5x) Cz(ﬂ)

which takes s into the zero section in
Cl(n), and which is C® compatible with
other intersecting charts.

In particular, about each configuration Sy
there is a chart (U,Ze)

L. Ug

%
e Usy— I (Us) < c*(n)

t

— I (t

y y)

where

Ze(t

!t B —— n =B x RS

¢)
P —— (_(£))(P) = (P, uy(p))
and uy(p) = ¥(p) - X(p)

is the "displacement vector field" characteriz-
ing the configuration Y when ¥ 1is used as

a reference configuration.

The Set of Configurations is a Subset of a Set of

Sections of a Vector Bundle

To describe the manifold structure of the set of

configurations, it is mathematically convenient to view a

configuration as a section of a vector bundle,

The transi-

tion is a simple process. A configuration is a mapping of

the body into physical space,
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¢ ¢+ B ——— R?

p — ¢(p)

Associate with ¢ a mapping ap from B into a product

space of the body B and the physical space R?¥:

) B ———+ B x R} =

6
p ——m S¢(p) = (pnq)(p))'
If one views the product space N together with the body
manifold B,
T :n=BxR — B

(p,r} — P

one may regard n as attaching to each body point p of

B the space {pl} x B = Ny which represents all the
possible ways that the single body point can lie in physical
space. The segment np is called the fiber of n at p.
The product space n thereby constitutes a "bundling
together" of all possible ways each body point of B may
lie in physical space. n is called a bundle space. Since
the fiber over each point is a vector space, n is called

a vector bundle space. The triple consisting of the vector
bundle space n, the body manifold B, and the projective
link between them Ths is called a vector bundle. The

structural details of the vector bundle Tn are rendered

in Appendix 1IV,1,
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In the vector bundle context the mapping S
associates with each body point p of B a particular

position in physical space. Notice the composition of

s
¢
with the projective 1link L is the identity map on B
wn-s¢ ¢t B —m B

p — Pp.
Mappings of B into n which have this property are

called sections of the vector bundle 7 The set of all

ne
sections of 1”] which are continuously differentiable
through order QJ(CQL form a vector space, denoted Cz(n).
The vector space may be given a Banach space structure.

By the association established above, the set of

all CR

configurations of B in physical space,
Embl(B,Rs))may be identified with a subset of Cl sections
of n. Deéenote this subset by Embg(n). One then has the
correspondence
Emb¥(B,R?) «———— Emb¥(n).
¢ —— %9

Not all sections of w, correspond to configura-
tions. Thus, the set Embz(n) lies as a proper subset of
c?

the space of all sections,

Emb¥(m) < c*m).

To emphasize this fact, C2 sections of wn which
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correspond to Cz configurations will be called Cz

configuration sections. The set Embl(n) will be called
the set of C2 configuration sections, or, on occasion,
the set of Cl embedding sections of 7w

n-

The Configuration Sections are the Injective

Immersive Sections

One may now begin to capture the manifold structure
for the set of Cl configurations by determining the
manifold structure for the set Embl(n) of Cz configura-
tion sections. In order for a Cz section of m, to be

a configuration section the mapping

S!B—————*T]:BXRa

¢
p — s¢(p) = (p,9(p))

must satisfy a condition of impenetrability. The condition

can be interpreted mathematically as two constraints:

(1) that there be no "internal collapse", a suffi-
cient condition for which is the requirement that on
the interior and boundary of the body, the determinant
of the derivative of the configuration be non-zero,

det[¢,(p)] # O

PEB;

(2) that there is no boundary penetration. That 1is
to say, the mapping is one-to-one, or injective over
the entire body manifold with boundary.
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The first requirement implies that the configuration is a

c® immersion of the manifold, which one denotes by
S¢ € Immm(n) < C’L(n).

The second requirement implies that ¢ is a c¥ injection

of the body manifold, denoted
sg € Init(m) < c*n)

If the body B is modeled as a compact manifold, (that is,
it occupies a closed, bounded region‘in physical space),

by adapting the work of R, Abrahamjf one may show that

the set of c?* configuration sections is the intersection
of the two sets of sections determined by the impenetra-

bility criterion:
Embl(n) = Immz(n) /q Injz(n).

One may then determine the manifold structure of the set of

L

C configuration sections from the manifold structure of

the intersecting section spaces,
The Immersive Sections are Sections of a Fiber Bundle

One obtains the manifold structure for the’

immersive section by firstly establishing that they consti-

2-1

tute a set of C sections of a fiber bundle. The

manifold structure for the set then follows by applying the
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methods of chapter three,

The fiber bundle wherein the immersive sections lie
is a subbundle of the first jet bundle extension of the
position vector bundle n. The jet bundle is defined as
as follows:

Definition 1v.25‘Let B be a C* material body

which is compact., Let n be the vector bundle |
of positions. Define the vector bundle J'(n),

J'(n) ———— B

™

Jt(n)
in the following way:
a) The set J'(n):

(1) For t, seCl(n), 2>1 , and for pe€B,
define the equivalence relation

t.s <=> for (a,a_,U) a vector bundle
o
chart for n about p, and ao(p) = X,

Pat(x) = pys(x)
Dpat(x) = Dpas(x).
Denote by jlsp -the equivalence class
jia. = {teCz(n) i t>s}),
1'p P

Term jls the first jet extension of s
at p. T

(2) Denote by Jl(n)p the set

Jl(n)p = {35, ¢ sec*m)}.

Term Jl(n) the fiber to the first jet
bundle of *n at p,.
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(i) As a set, note that Jl(n) may be put
into one-to-one corresponHence with
the set

R?® x L(R%},RY)

(ii) Jl(n)p may be given a vector space struc-
ture by defining

Jisp * gty T 3p0s+t),, s, teCt(n)

. - L
AJlsp = Jl(As)p , AeR, seC”(n)
(3) Denote by Jl(n) the bundle of sets taken over

all points p of the body

J'tmy = v J'mp.
peB

(4) Define ann) to be the projective mapping

™ : J? 8
3t (n) ) ——
jlsp —_— D,
The triple may be given a vector bundle structure. Details

of the structure, and in particular, the vector bundle

atlas, is presented in the referred work.

Lemma IV.1. J!(n) 1is a c* 1 yector bundle with

standard fiber
R¥ x L(R3RY)

J'(n) is called the first set bundle of sections
of n.

The bundle of positions n and the first jet bundle

J(n) are related. For £>0, the Cz sections of
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-1

lie in a nice way in the C sections of Jl(n):

57
Lemma Il.z. Let n be the bundle of positions
of a C, compact material body B, and let
J'(n) denote the first jet bundle of sections
of n. Then the first jet extension map

. L -1

jp 2 €T —— T ()

S — jls

is a linear map taking the vector space of Cl

sictions of n into the vector space of

Cz-l sectiins of Jl(n). Moreover, when

c”(n) and c*-1 (Jl(n)) are viewed as Banach

spaces, j3 1is a homeomorphism Ofl Cg(q) onto.

a closed linear submanifold of C '1(J (n)).

The fiber bundle in which the immersive sections
lie may now be excised from the first jet bundle of n.
Recall that the standard fiber for Jl(n) is the vector
space R® x L(R3,R?®). 1If one views the elements of

L(R3,R?*) "as three-by-three matrices, one may single out

the subset of nonsingular matrices,
GL(3,R) = {geL(R%,R%®) : det g#0} L(R3},RY).

If one bestows upon L(R?,R%®) the structure of a nine-
dimensional Euclidean space, the subset GL(3,R) inherits
the structure of an open differentiable submanifold, which
is nine-dimensional, and has th components. Roughly
speaking, GL (3,R) may be viewed as an open, somewhat

complicated region of a Euclidean space upon which functions
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may be defined and differentiations may be carried out.
Notice, however, that GL(3,R) does not inherit a vector
space structure,

Consequently, if one views R? x L(R%®,R%) as a
twelve dimensional Euclidean space, the subset R? x GL(3,R)
constitutes a twelve-dimensional, differentiable, open sub-
manifold which is not a vector subspace.

One cén construct a fiber bundle whose standard
fiber is R3® x GL(3,R). It lies as an open fiLer
subbundle in J!(n).

Proposition IV.lfg Let B be a compact, C%,

material body, Let n be its bundle of

positions, and let

J'(n) ———— B

T31(n)

be the first jet bundle of sections of n.
Define by y(3) the following subset of

JIn):

w(3) = {J s €J'(n) : relative to some
vecgor bundle chart of J!'(n),
jqs » lies in R® x GL(3,R)}.

Then

a) the set w(3)  is independent of the
particular charts used in its specifi-
cation,

b) w(3) is an open subset in J'(n),

¢y w3 respects the fibration of J'(n);
hence,

3
T3 = ") WS ———
w3
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is an open fiber subbundle in Jl(n).

The proposition is proven in the reference. As one might
intuitively suspect, w(3) may be related to the bundle of
local configurations over B, and sections of W(s) may b;
related to local configuration fields. As shown in the
referenceg a section of the fiber bundle W(s) correspondg
to the specification of simultaneously a configuration of
B in R3, and a lécal configuraﬁion field over B.

One may now identify the Cz .immersive sections

-1

with a subset of C sections of W(S).

Lemma IV.3$57Let B be a compact, c” material

b?dy, let n be its bundle of positions, and
J (n) be the first jet bundle of extensions. Let

L '3
Imm™(n) C C7(n)

denote the subset of Cz sections of 1 which

are immersive. Then Imm*(n) may be identified

as the set .

L . =1y, g %- 3
() = 370Gt ) N Ftw 3y

That is to say, the Cz immersive sections are

those C*-1 sections of the fiber bundle W(3)

which are integrable.
The lemma follows from the definition of W(S), and the one-
to-one nature of the first jet extension map j1 introduced
in Lemma IV.1.

When the immersive sections are viewed in this way,

the geometric structure for Imml(n) follows immediately,

using the methods of chapter three,
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The Space of Immersive Sections is a
Differentiable Manifold

One discovers the geometric structure which

Imml(n) supports by examining the spaces which comprise

it in Lemma IV.3, The critical step is the identification

£-1

of the geometric structure supported by the C sections

of W(Sz

Proposition IV.2, Given the hypothesis of the pre-
vious lemma then

C%-I(W(S))

is an infinite-dimensional differentiable manifold
which lies_as an open submanifold in the Banach
space C%’I(Jl(n))

The proposition follows immediately. By Proposition III.7,

HC

-1

" itself may be viewed as a Banach space-valued section

functor which satisfies the axioms for a global nonlinear

extension. Thus, as

W(s) is a fiber bundle over B,

2-1

the set of C sections, Cz"l(w(s)) supports the struc-

ture of an infinite dimensional differentiable manifold,

given by Proposition III. 2. Moreover, since

W(S) lies

as an open subbundle of the vector bundle Jl(n), the

differentiable manifold

Cl_l(w(s)) lies as an open sub-

manifold in the Banach space Cz—l(Jl(n)).

of

Hence, without any further effort, the structure

Cl—l(w(S)) is completely specified. 1In fact, a pre-

scription exists for displaying its manifold charts, if
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one desires them,

The structure of the second component space com-
prising Immk(n) follows in an equally straightforward way.
By Lemma IV,2, the first jet extension map is a linear
homeomorphism onto a closed linear subspace; hence, jl(Cz(n))
is a closed Banach subspace of CZ(Jl(n)).

Combining these results, one gains the structure
for Immz(n). As Cl-l(w(s)) is an open submanifold in

Cz'l(Jl(n)), the intersection

et /1 ety

is a submanifold of the Banach subspace jl(Cz(n)) which
is open in the relative topology. Since j; is a homeo-
morphism, or one-to-one and open both ways, the preimage

of the intersection

PR E MGl OOM A IR UISP D EEIR EERICY

is an open submanifold in Cz(n). Therefore, the C2

immersive sections Immg(n) support the structure of an

open submanifold in the Banach space Cz(n).
The Injective Sections Lie in an Open Set in Cz(q)

In determining the manifold structure on the set

of injections Injz(n), a problem arises. The Cl
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injecting sections do not constitute an open subset in the
Banach space Cz(n) of C2 sections of n. An example
given in Appendix IV,2 establishes this point. The
injecting sections, however, may be viewed as elements of

a larger subset which is open in Cz(n), and which may be
used to characterize the Cz configuration sections. The
subset is the collection of degree one configuration sec-
tions of ﬂn. They are best defined in terms of the degree

one mappings from B into R?3,

é
Definition IV.3. Let B be a compact region in
R®, 8B#¢, and let

¥ + B ——» R3

be a differentiable Tapping of B into R3, Let
reR3®, and for pef *(r), let

sgn(J(£) (p))
dénote the sign of the Jacobian of the mapping

at p. Define the degree of f at 1r relative
to B to be the integer

deg(f,r,B) = I _  sgn(J(£f)(p))
pef-1(r)

1f £ 1(r) = ¢, take deg(f,r,B) = 0
For a more rigorous definition of the degree of a mapping,
especially for the definition of the degree of f when
is a critical value, £ is continuous, .but not |

differentiable, or when B 1is a compact manifold with

boundary, as opposed to a region of R¥, one is referred
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t

to the Schwartz text.élThe properties of the degree of a
map given in the reference will be used extensively.

Oﬁe may easily carry over the notion of degree one
mappings of B into R?® to sections of the position
bundle n. Recall one has a bijective correspondence be-
tween a mapping ¢ of B into R® and a section sy of

m given by

n

Sy + B——n = B x R3
p — (p,¥(p))

Hence, one may speak of the degree of the section sy at a
point r 7relative to B in terms of the degree of the
associated mappang.

From the notion of the degree of a section three
facts follow., If B is a connected manifold one may
define unambiguously a subset of the space of sections
Cl(n) whose elements are of degree one on B. Moreo;er,
the subset is open in Cz(n); and has the structure of an
open Banach submanifold. Finally, those degree one mappings
which are also immersions are precisely the injective
immersions, or the embeddings. For convenience, these
facts are formalized as a theorem:

Theorem IV,2, Let B be a Cz compact, coﬁnected

manifold with boundary B and interior 9B. Assume
B is orientable and oriented,
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i

{a) The collection

Degy (n) = g,ec Yy : deg(¥, v(p), B) = 1,
forl some, hence all peB}

is a well-defined subset of sections in
ct(n).

(b) Dogn(n) is an open subset of Cz(n), and
hns a structuri of an opon Banach sub-
manifold in (n).

{(¢) (1) The intersection

Imml(n)/q Deg%(n)
is open in Cl(n).

(2) Set theoretically,

tant(n) /1 pegdtn) = 1anteny (1 1n%my.

The Space of Embedding Sections is a
Differentiable Manifold

The manifold structure for the space of configura-
tion sections Embz(n) now follows. As the intersection
of two open manifolds in Cz(n), Embl(n) has the structure
of an infinite-dimensional differentiable manifold which
lies as an open submanifold of the Banach space Cl(n).
Moreover, by using the bundle exponential map introduced
in chapter three manifold charts for Embz(n) may be

displayed. 1In particular, the manifold charts built off
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the trivial bundle exponential map may be related to the

usual representation of the manifold of configurations in

terms of a set of "displacement vector fields" relative to

a reference configuration. 1In order to coalesce these

ideas, they are formalized as a proposition, the details

of which may be found

§Z
Theorem IV.3, Let B be a Cz compact, connected,
oriented material body with boundary 9B,

a)

b)

The set of configurations Emb¥ (n) has the
structure of the infinite d1men51ona1
differentiable manifold

Embz(n) = Immz(n)/q Deg%(n)’

which lies as an open Banach submanlfild
of the Banach space ct (n) of all
sections of the position bundle n. The
model space for the manifold is the Banach
space (n)

Let Exp be a bundle exponential map for
Tn. (For a definition, see the reference
Let s be an arbitrar{ configuration. A
manifold chart for Emb (n) at sy can be
built from Exp: there is an open neigh-
borhood Ug Exp of in Emb%(n) and
a mapping ,Exp of tge nelghborhood onto
an open nelgh orhood in % M),

Y 3 L
Isy,Exp? Usy ,Exp = Is, Exp(Usy,Exp) C7(N)
t [[SX*(ExP)]*]'lt

which takes s to the zero section in
C*(n), and is" C* compatible with inter-
secting charts.
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For the particular case where Exp is
the trivial bundle exponential map E,

E : TFn ® nXgn ——— 1
(b,c) b+c
the manifold chart at sy associated with

E 1is globally diffeomorphic onto an open
subset DSX,E of Cl(n):

L
Loy, EMD (M) —— 5y g(EmbE(N)) =
DSX,E cL(m) '
t t-s = s
t,sy
(1) Let

u : B ————9 R3
denote the C% function such that

St,sy ¢ B 7

P stﬁ%p)= (p,u(p)).

Then u is the '"displacement vector field"
characterizing the configuration t when
X is used as the reference configuration.

(2) The manifold chart (ZSX’E ’USX,E)

extends to a global characterization corres-
ponding to the usual representation found in
the literature for configurations in terms

of a subset of displacement vector fields
relative to a reference configuration. (Note
that the pair (I, g,Emb*(n)) need not be

a manifold chart for Embl(nD.
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¢t )

FIGURE IV, 2,

A Visualization of How Embz(n) may lie as an Open
Submanifold in Cc¥(n)." |
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THE DIRICHLET SOLUTION SPACE IS A CLOSED SUBMANIFOLD OF
THE FREE BOUNDARY SOLUTION SPACE

One feature remains outside the model for the kine-
matic elementsy the ability to model a given place boundary
condition, Until now, the model for the space of configura-
tions has been a "free boundary" one. A model for the space
of configurations satisfying a given place boundary condi-
tion will be ekcised from the free boundary model. Once
again, the model developed here will differ from those
usually found in the literature iﬁ that it is a manifold,
as opposed to a subspace of a topological linear space. As
a consequence, one will gain some distinct features not
found in the usual models; the topology of the manifold of
configurations satisfying a given place boundary condition
can vary with the place boundary condition, and can vary
with the topology of the body itself. Hence, the model
presented here has the significant capacity of, for instance
permitting some alternatives of mechanical behavior for one

boundary condition, while denying them for another.

The Model for the Dirichlet Solution Space

for the Linear Elastic Case

How does one incorporate a Dirichlet boundary condi-

tion into the formulation of a solution space? One may
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modify the mathematical procedure used to specify the
Dirichlet solution space for an infinitesimal elastic
problem.

In the linear theory the usual model for the free
boundary space of configurations is the topological linear

space CY(B,R?) of ct

displacement vector fields

defined over some region B of R} which serves as a
reference configuration for the body. One excises the usual
model for the space of configurations satisfying a given
place boundary condition, by introducing the boundary
operator 'BB . This operator assigns to each C£ displace-
ment vector field g defined on the entire region B the
c* restriction glyg of the field to the boundary 3B of
the body. The operator is linear; hence, it may be viewed

as a linear mapping of the Banach space CR(B,Ra) into the

linear space Cz(aB,Ra)

IaB : CL(B,Ra) —_ Cz(aB,Ra)
g QIQB
Moreover, the linear operator is continuous. Finally,

either by assumption or theorem one establishes the fact
that if the boundary is of a suitable degree of smoothness,
say &%, then the boundary operator is surjective. Hence,

given any place boundary condition g with a suitable
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degree of smoothness £, and viewed as an element of
CQ(BB,Ra), one is assured that there exists at least one

Cz displacement vector field g defined over the entire

body which assumes the given. boundary condition,

9'35 = g.

The preimage of g under the boundary operator,
-1 9 3
[1,517 (8) = {geC*(B,R*) 1 g|,p = g}.

constitutes the usual model for the set of configurations
satisfying the given boundary condition in the linear

theory. The surjectivity of the boundary operator insures
that the set is not empty, The continuity of the operator
insures that the set is a closed subset of the topological
linear space C}(B,Rs). The linearity of the operator insures
that the set is a translation of a closed linear subspace in
CQ(B,RS), the subspace modeling the zero displacement boun-

dary condition. That is to say, if ge[laB]_l(g), then

-1 -1
[1ag) " (&) = g + [ly5]1 "(0),
where the sum is in the sense of Cz(B,Ra), and

1

(55171 (0) = {nec®(B,R) : h| =0} = kex(lyg) = [C¥(B,R)],

0B

is a closed linear subspace of CZ(B,Ra). One denotes the

usual model for the set of Cz configurations satisfying
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the boundary condition g by [Cg(B,Ra)]g,

R, = g o).

How One Incorporates the Boundary Condition into

a Nonlinear Model

One may excise from the free boundary finite elasto-
static Cz configuration manifold Embl(n) a model for
the finite elastostatic Dirichlet configuration manifold by
introducing a bundle counterpart to the boundary operator.
Let B be a material body with a non-void boundary

0B, Let n denote its vector bundle of positions,

"n: n = BxR}® ———— B

A1l possible positions of the boundary points of B may be
represented by a second vector bundle nIBB which is the

restriction of the position bundle to the boundary:

' ™ : nl = 3BxR%® ———on 3B
, | 98 9B
2

A C section of this bundle specifies a position in R?®

for each point of the boundary of the body which is Cg
smooth, Hence one may specify a Cl smooth Dirichlet

boundary condition for B by specifying a Cz section of
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the bundle n‘ .
dB
The boundary operator may now be viewed as an opera-

tor which takes Cz sections of the position bundle n

into C2 sections of the restricted vector bundle n]aB:

lgp ¢+ €¥m) ——— ¢t yp)

S —

°|oB

When the section spaces are viewed with their Banach
structure, the boundary operator is linear, continuous,

and surjective if & > 0,

The Dirichlet Configuration Manifold Which
Models Simple Support

Lying as an open submanifold in Cz(n) is the finite
elastostatic free boundary Cz configuration manifold
Embk(n). One may consider the boundary operator restricted

to this manifold:

l ag : EmbY (1) —— c“(n|aB).

lemb® (n)

Since Embz(n) is an open set in Cl(n), under the restric-
tion the operator remains a c” mapping; however, it is no
longer linear. Moreover, its restriction to Embz(n) is

a submersion, or a local surjection of the free boundary
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Cz configuration manifold,
One may now excise the various Dirichlet configura-
tion manifolds, Let g be a Cz section of the restricted

position bundle nlBB which represents a possible Dirichlet
boundary condition, Let [Embz(n)]g denote the set of C£
configurations whose image under the restricted boundary

restriction operator is the section g:

emb* ()1, = Oy 17 )

lEmb® (n)

The elements of the set are Cl configurations associate
with interior of the body very different postures, yet as
one approaches the boundary of the body, they all coalesce
into the same boundary condition g, From a physical poiﬂt
of view, the set mathematically represents all Cz smooth
postures for the body which are conceivable while one main-
tains the boundary condition in a simple supporting manner.
In Figure IV.3, one visualizes some configuration sections
which would 1lie in such a set, in the’case where B is

one-dimensional.
The Geometric Structure of the Manifold

The continuous and submersive properties of the

restricted boundary operator insure ti it the preimage of g
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r=BXR o F

l—=0

O v

B

FIGURE 1IV. 3.

- Several Elements of [Emb'e'(n)]g for n = [0,7] X R, B'= [0,7],
~and 3B = {0,w} . '
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under the mapping is a closed subset of the free bouﬁdary
manifold Embz(n), lies as a closed submanifol&, and is
specifically the intersection of the preimage of g under
the unrestricted operator.and the free boundary manifold:

2 -1 -1 /) ) 2
[Emb"(n)1_ = [] 177(8) = (ag) " (g)! ! Emb™ ()
g aBIEmbg'(n) 9B

[clcn)]g/w Emb*(n) .

As 'in the free boundary case, one may explicitly
detail the geometric structure of [Embl(n)]g and display
some of its manifold charts. The following corollary

summarizes these aspects:

Corollary IV.1., Let B be a C* material body
with non-void boundary 9B. .Let n be its bundle

of positions and 1let ’

FY:
. L L
denote the boundary restriction operator. Let

geCz(nlaB) represent a Dirichlet boundary condi-

tion.
a) If not null,

emb (1 = 0y 1T,
|Emb % (n)

is a C* differentiable manifold whose model
space is
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[Cl(n)]o, a closed Banach subspace of Cz(n).

b) [rzmb"(n)jg (|aB)’1(g) N Emb*(n), and 1ies as

a closed submanifold of the Cz free boundary
manifold.

¢) As a closed submanifgld of Embz(n), the mani-
fold atlas for [Emb (n)]g follows by a suitable

restriction of the atlas ®of the freezboundary
manifold., In particular, for ge[Emb (n)]g,

.there is a neighborhood U and a diffeomorphism
Zg given by

I, U—— ) [chm],,
g —> I,(8) =% -¢8

where the difference is in the sense of [Cz(n)]o

Part <c¢) of the <corollary allows one to compare this model
for the Dirichlet configuration manifold with that of

I. Beju presented in chapter two. [Cg’(n)]° is the linear
space used by Beju to model the Dirichlet problem. Thus,
locally about any given configuration s satisfying the
boundary condition, the Dirichlet configuration manifold
presented here and Beju's model coincide. However, as one
considers finite deformations from the reference configura-
tion, the two models differ. In particular, the model
developed here may be quite complicated topologically.

One can envision how the various Dirichlet configura-
tion manifolds may inherit such a complex structure from
the free boundary manifold using finite dimensional
illustrations. Figure IV,4, illustrates, in finite

dimensional terms, this phenomenon.
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emb” (n) ]

[Emb“cn)lg

Emb® (n)

FIGURE IV, 4,

A Visualization of How the Dirichlet Configuration Manifolds
mny'lio in tho PFroe Boundary Configuration Manifold, |
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Different Dirichlet Configuration Manifolds

Need Not Be Homeomorphic

The manifolds [Embz(n)]g for gECR(nIBB) '
have one distinct feature which make them most attractive
candidates for the models for the Dirichlet configuration
manifolds. They need not be topologically identical, or

homeomorphic.

Proposition IV.3., Let g and g be sections of
nl which represent different Dirichlet boundary
oB

conditions. Let

2 L

(Emb"(m)] ~ and  [Emb (m)]g

denote the corresponding Dirichlet c¥
tion manifolds. Then

configura-

a) the topology of each manifold depends upon the
boundary condition, and the topology of the
body itself.

b) the two manifolds need not be identical topo-
logically. .

It is the non-homeomorphic property of the Dirichlet con-

figuration manifolds developed here which stands in direct
contrast to the models which exist in the literature, and

which gives the model developed here the capacity to

reflect changes in the boundary condition and the body

shape.
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One may intuitively visualize how the topology of
the Dirichlet configuration manifold can change from
boundary condition to boundary condition using Figure 1IV.4,
The topology of a Dirichlet manifold depends intimately upon
how the subset of configurations representing the given
boundary condition intersects the '"holes'" in the free
boundary manifold. Subsets representing different boundary
conditions may intersect different numbers of holes. 1In
such a case, the manifolds would differ topologically, and

thereby be non-homeomorphic.

HOW ONE GAINS THE TOPOLOGY FOR THE DIRICHLET
CONFIGURATION MANIFOLDS

The Dirichlet Configuration Manifold is Identified

with the Dirichlet Immersive Section Manifold

There are in fact mathematical methods available by
which one can discern information about the topology of the
Dirichlet configuration manifolds, and witness the dependence
upon the boundary condition and body shape. One is able
to employ these methods in the special case of a connected'
body, where one can identify ~[Embl(n)]g- with the single

manifold [Immx(n)]g, as opposed to the intersection of two

manifolds
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|
et 1, = ety () ekl
The first manifold of the intersection conveys a require-
ment which a configuration must satisfy on a local, or
point-to-point basis: a determinant at each point must be
non-zero, The second manifold conveys a global requirement, .
or a requirement which involves all points of the body
simultaneously: no two points of the body must be taken
into the same point in R? by the configuration. The
following theorem indicates certain conditions under which
the knowledge that the global requirement is satisfied by
the boundary condition insures that the requirement is satis-

fied over, the interior of the body as well by all configura-

tions which satisfy the boundary condition.

;3
Theorem IV.4 (Interior penetration) Let B be a
c? material body with boundary 9B which is compact,
connected, and for convenience, oriented. Let’
s eEmbg(n) be a given configuration serving as
reference. Let

s¢eImm£(n),
and since B 1is oriented, take the sign of the
Jacobian of ¢ to be positive at all points in
the interior of B,

sgn J(¢,)(p) > 0 for p € §.

If the boundary value of s is identical to that
of the reference configuration, ’

"olag ~ ¥y’
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then s¢ is a configuration section of n,
s EEmb" (1),

proof: see Appendix IV.3,

By the theorem, if one is assured that the boundary condi-
tion can be realized by a Cz configuration, then the local
requirement manifested by the manifold [Imml(n)]g comple-
tely determines the Dirichlet Cz configuration manifold,.
One may thereby characterize [Embz(n)]g in terms of the
single manifold [Immz(n)]g:

Corollary IV.2, Let B be a Cz material body

which is compact, connected, and, for convenience,

oriented. Let the boundary of the body be denoted

3aB. Let

g : 3B ——— W
9B

be a given place boundary condition section, and

suppose
[Emb“(n)]g £ 0,
Then
% _ %
[Emb (n)]g = [Imm (n)]g,
where

L = L . -
[Imm (n)]g {feImn®™(n) : f'aB gl

is a closed submanifold of the free boundary mani-
fold of immersions Immz(n).

proof: see Appendix IV.4.
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The Obstruction Theory is Employed to Gain Information
About the Topology of the Dirichlet

, Immersive Section Manifold

One is now in a position to utilize the Obstruction
Theory to gain information about the topology of the

Dirichlet configuration manifold. Recall that a Cz

C’z"l section of the

immersive section may be viewed as a
fiber bundle W(S).' To examine those immersive sections
Which satisfies a given boundary condition g, one is led

to consider the following diagram, which is a common

setting in the mathematical Obstruction Theory:

jyg
9B 1 > W(S)
a
Pd
rd
(7).
i s w(3)
v ., . 1 Y
B B N B .

Two questions investigated in the Obstruction Theory in
terms of the diagram are: (1) does there exist at least
one extension of jlg to all of B which commutes the
diagram, (as indicated by the diagonal line), and (2) if
more than one exists, are any two homotopic relative to the

diagram? When one interprets these questions in terms of
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the Dirichiet configuration manifold, one sees that they
provide information about its existence and topology.

An answer to the first question indicates whether
or not a Dirichlet configuration manifold corresponding
to the boundary condition g exists. If one is informed
that there does not exist a diagonal mapping which commutes
the diagram, then one is assured that the set of immersive
sections of modeling the boundary condition g is null.
Consequently, a negative answer to the first question
implies that the section g cahnot specify a Dirichlet
boundary condition, Conversely, if the Dirichlet ¢ con-
figuration manifold [Embg’(n)]g for the given boundary
condition is not null, then a diagonal mapping for the
diagram exists, and the answer to the first question is in
the affirmative.

An answer to the second question gives one informa-
tion about the number of compoﬁents comprising the Dirichlet
configuration manifold. Assume that the manifold [Embg’(n)]g
is not null, Then the first jet extension of each section in
the manifold is a diagonal map for the Obstruction Theory
diagram. To say that any two of them are homotopic relative
to the diagram is to say one can continuously deform from
one to the other without violating the boundary condition.

The two sections would, thereby, lie in the same component



162

of the Dirichlet configuration manifold, Hence, if one
finds that all diagonal maps of the Obstruction diagram
are homotopic one may conclude that all sections in the
Dirichlet configuration manifold under consideration are
connected to each other, or the manifold has but one

component. Accordingly, the number of distinct homotopy
classes of diagonal mappings of the Obstruction diagram

indicates the maximum number of components comprising

[Emb® (n)1,.

The Topology of the Dirichlet Configuration Manifolds
can Vary with Boundary Condition and Body Shape

One is now in a position to apply the mathematical
results which are available in the Obstruction theory to
gain information about the topology of the Dirichlet con-
figuration manifolds. 1In particular, two elementary obser-
vations indicate immediately how the topology of a Dirichlet
manifold can vary as one changes the boundary condition,
and as one changes the topology of the body itself,

One may compare two different Dirichlet configura-
tion manifolds, say [Embg’(n)]g and [Embz(n)]g, using

the Observation theory by examining the two diagrams



Since the boundary conditions g and g are distinct, one
finds that the conclusions drawn from the first diagram need
not be the same as the conclusions drawn from the second.
For example, the number of homotopically distinct diagonal
maps in the first diagram need not be the same as the number
of homotopically distinct diagonal maps in the second. When
rephased in terms of the configuration manifolds, such a
conclusion would imply that th; number of components of
[Embg'(n)]g differs from the number of components of
[Embz(n)]E. Hence, different Dirichlet configuration mani-
folds can possess different topologies, and thereby admit
different alternatives of meéhanical behavior. Significantly,
there are results in the Obstruction theory which allow one
to ascertain when two diagrams yield the same conclusions
and when they do not.af

One may also ascertain how the change in the body
topology affects the topology of the Dirichlet configura-
tion manifold. Speaking in general terms, the principal

mathematical elements which one utilizes in the Obstruction
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theory to answer the two central questions about a

diagram, which were presented above, are the cohomology

groups of the base space, relative to the boundary,
{u"(B,3B,m 1},

where m 1is a suitable ring of coefficients. 1In the

‘'situation considered here, the base space is the material

body manifold itself. If oneralters the cohomology groups,

one alters the conclusions drawn about the Obstruction

diagram,

In particular, an Obstruction theory result relates
the number of generators of the cohomology groups and the
number of homotopically distinct classes of diagonal maps
of an Obstruction diagram, under suitable circumstances.
If one rephases the result in terms of the Dirichlet
configuration manifold, one may relate the number of
generators of the cohomology groups of the material body
manifold, relative to the boundary, and the number of
components of the particular Dirichlet configuration mani-
fold under consideration., Hence, if one alters the
topology .0of the material body itself, by drilling a hole
in it, for instance, one can alter considerably the
relative cohomology groups, and in turn, the topology of
the Dirichlet configuration manifold.

Thus the Dirichlet configuration manifold model

presented here has the most attractive feature of being
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sensitive to changes in the given boundary condition and
body topology. Moreover, once one has achieved this
setting, one is in a position to apply the full force of
the Obstruction theory to resolve specific continuuﬁ
mechanical problems, This approach promises ts be a most
fruitful direction of inquiry. A comment to this end is

reserved for the last chapter,

THE DIRICHLET CONFIGURATION MANIFOLD
WHICH MODELS RIGID SUPPORT

Before concluding the chapter it is worth mention-
ing that one can devise other models for the Dirichlet
configuration manifold which are as sensitive to varying
conditions as the one presented above, and which have an
even finer structure. One particularly attractive model
is the one suggested in chapter three. The configurations
in the manifold are required not only to satisfy the bound-
ary condition, but also to come off the boundary in a
designated manner.

The motivation for the alternative manifold is the:
observation that two configurations for a material body
may model the same boundary condition but may differ
markedly even very close to the boundary. A visualization

of the situation is suggested in Figure IV,5, in which two
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(x) =0
$(x) = sin(x) xe[0,m]

FIGURE IV, S,

Two Functions on [O,n] Médeling the same Dirichlet Boundary
Conditions Which are Not Coincident on any Neighborhood of

the Boundar} in the C1 sense,
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real-valued functions defined on [o,T] model the same zero
boundary condition, but are not close in the Cl sense in
any neighborhood of the boundary.

One formally specifies the subset of configurations
modeling a given boundary condition and particular way
of coming off the boundary by means of the following lemma
and definition:

14 k .

Lemma IV.4 (The set q)(n)) Let B be a material

body which is compact,g connected, orientable, and

oriented. Let 0B denote the boundary of B.

Let n be the vector of bundle of positions of

B in R®., Let C%(n) denote the Banach space of

all Cc%* sections of n. Let gecl(n). Then the
set

k
|(C )ag(“)

the closure in Ck(n) of

{seCk(n): an open neighborhood ;
Ug of 9B on which s =g

a) 1is a closed set in Ck(n)

b) 1is a translate of a closed linear subspace
Namely, for

Ee(Ck)ag (n) arbitrary,
(€ () = F + (X ()

where ,(Ck)o(n) = the closure in Ck(n) of

seCk(n): support of s is disjoint}
from 9B
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Definition [V.3. Let Embz(n) be the frce
boundar C configuration manifold, Let

be a C configuration section for B, Define
the set (Embz)ag(n) by

(Emb&), (n) = (%) (n) ARFTLIE

Notice that although the behavior of the configuration
sections in the set are severely limited near the boundary,
it is unrestrained in the interior. The situation is
illustrated in Figure IV,6. The elements of the set may be
regarded from a physical point of view as modeling configu-
rations for the material body for which the Dirichlet
boundary 'condition .is maintained in a more constrained,
rigidly supported manner, as opposed to a simply supported
£7
manner,

As one may anticipate, the new sets have the
structure of a differentiable manifold, lies as a c;osed
submanifold of the free boundary configuration manifold,
and also lie as closed submanifolds of the previously
defined Dirichlet configuration manifolds. Moreover, each
previously defined Dirichlet confiéuration manifold may be
viewed as '"partitioned" by the newer manifolds, yielding
a structure which is finer than its original structure:

Theorem IV,5 Let g be a Divichlet boundary

condition, and [Embz(n)]g the corresponding

Dirichlet configuration manifold. For each
ge[EmbY(n)]g, let
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7 = BXR

B

FIGURE IV, 6.

5 . ‘ _ -
|

Several Elements of (Cg')ag(n), for n = [0,71) X R, B =[0,7],
9B = {0,7} ., '
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L
(Emb )ag(n)

be the Dirichlet configuration manifold defined
above. Then

a) (Emb ) {(n) 1is differentiable manlfold
whose mgdel is the Banach space Co(n).

b) (Embz)ag(n) lies as a closed submaEifold
of the "free boundary manifold Emb™(n).

¢) Moreover, if g B'= g, then (Embz)3 (n)
lies as a closed submanifold of the
D1r1ch1et conflguratlon submanifold
[EmbL (n)]

d) Set theoretlcally,

[Emb¥(n)]. = L/ {(Embz)8 (m)}l,
. gelemdi(m)], &

a disjoint union.

e) The topology induced upon the set [Embg(n)]
when it is viewed as a disjoint union of
closed submanifolds is finer than its mani-

fold topology.

Proof: see Theorem III.6.

As will become evident in chapter seven, the finer structure
will be extremely valuable in allowing one to study local

nonuniqueness problems,.
A SUMMARY
To recapitulate, in this chapter the free boundary

configuration set has been modeled as an infinite dimen-

sional differentiable manifold. The set of configurations
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satisfying a given place boundary condition have been
modeled in two ways, depending on whether one maintains
the boundary condition by simple or rigid support.

The manifold structure and topology of these models have
been developed somewhat and compared to the usual
topological linear space model, The models developed here
are shown to be more versatile than the linear space
models in that their topology may vary in accordance with
the topology of the body and the boundary condition under'
consideration. The variationg in the topology in the
models reflects variations in the alternatives of possible
physical behavior available to the body., One may now turn
one's attention to the formulation of the dynamic elements

of the theory.
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V. A TORMULATION OF THE DYNAMIC ELLMENTS AND
THE FINITE ELASTOSTATIC OPERATOI

In this chapter the dynamic elements of the finitec
clastostatic theory are incorporated into the geonctric
model using the tools available from the global nonlinear
analysis., The incorporation is accomplished in a two step
process. First of all, the classical dynamic clements
must be presented in such a way that one can apply the
global analysis techniques of chapter three. This reccuire-
ment leads one to cest the clcments in terms of a fiber bun-

dle formulation, Once the dynamic c¢lements are set, the

(¢

global analysis theorems may be applied, and the geomctric
model follows straightforwardlv.

One achicves the following results in this chapter.
The set of bvody force density fields are shown to consti-

tute a Dana

[¢]

h snace of sections of a vector bundle. The
stress tensor fields can also be cast into a bundle

eiasto-

)

formulation. From them, one can evolve a finit
static opecrator which serves as the geometric representative

for the elastocstatic cguations. The onerator iinks the

+h

th

£
[ )

free boundary or Dirichlet con ration manifolds

bae
02
o

the body force density Banach ces.

wn
g
)

he perticular
response of tuc materisi determines the particular charac-

teristics of the elastostatic operator link. With the



specification of the configuration manifolds, the body
force density spaces, and thce finite elastostatic operator
linking them, one completes the qualitative model for the
finitec elastostatic free boundary and Dirichlet problems.
Inevitably, the development in this chanter taxcs
the reader considerably., The frustration must be compounded
further when the reader discovers, in contrast to the
dramatic departure scen in the solution manifolds, that the
results obtained for the dynamic elements do not differ
significantly {from previcus modcls. In truth, the chapter
plays a supporting role in the overall work. Illowever, the
role is an esscntial one, and one must maintain the rigor
if Tesults are to be warranted. Consequently, the casual
readcr 1s forwarmed to take the chapter with a considerable
grain of salt, and the involved reader is encouraged to

review the immense detall of the development at his léisure.

MATHEMATICAL PRELIMINARIES

The Vector Bundles Used to Fornulate

the Dynamic Elements are Introduced

The dynamic elements of a finite elastostatic thoory,

ct

such as the traction vector field, the body force dcasity

field, and the stress tensor field, may be given a bundie
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formulation. In the classical formulation the traction
vector Ti1eid and the body force ficld arce defined over a
region of Duclidecan space as opposcd to the body itself,
Indeced, if the confipguration of the body changes, thc.rcgion
of Buclidean space over which the ficlds arc dcfined changes.
This situation is most inconvenient for sctting the mathe-
matical problem. Hence, new bundles arc introduccd which
allow these ficlds to be viewed as differcnt vector ficlds
over the same basc space. They are the vertical tangent

bundle, and its pullback relative to a given configuration.

The Vertical Tangent Bundle

92}
(oW
(9]
Hh
[
@]
[o 9

to view ficl over a region of physical space as

ficlds defined over the abstract bnody itself. Let B be a
material body, and lct nn = B I R be its bundie of
positions. At each point (p,r) irn N one may idcntizfy

a closed subspacé of the tangent space Tn(p,r) to n

at (p,r): the vector subspace which is tangent to the fiber

N,

1

T ory = o,

Figure V.1 displays the subspace. It is called the s

of vectors tangent to the fiber of n at (p,r), or the
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space of vertical vectors {(to n) at (p,r). The vertical

subspaces may be bundled together to form a vector obundle

14

ot
R

over N, the verticul tangent bundle over n . Its standard

. . 3 - . ~
tiber i1s R¥. It is a closed subbundle of the tangcnt bundle
TW, and is denoted TFN. The subbundle rclationship is

indicated schematically in the following diagram

"FN = o~

Tt 8] T(np)(p,r) > TN
(p,r)en

! !

n 1N

Note in particular, that there is a canonical identification
of the fibers of TFn and the fibers of n: that is, if
69

Wp €n, WP determines isomorphism of the fibers

W_: TFn s T(np)w — N
K

The Pullback of the Vertical Tangent Bundle

-3

he vertical tansent pundle allows fields defined
over regions of R® occupied by the body to be choricterized

by fields defined on the body B itself, provided one i3
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a1,

given a veference configuration, Given a configuration )

of B in R?®, or cquivalentiy, given a configuration

SV of 1n, one nay view the body B as a submanifold of
)
the bundlce space 1, namely thec closcd submaniiold sw{“).

bundle to this

—
(e
=
[ad

cstriction of the vertical ta

)
jos)
~
o
e

submanifold of n, TN, ., has thc structurce of a vecto
i Sv(,]) (L)
bundle over B. Mathematically, 1t is the vertical tangent

' *

W

¥

bundle "pulled back"™ Dby SW: s, (TFN). The bundle 1s

denoted TSwn. The vector bundle which makes the diagram

* ™ - "~ n T
s, " (TFR) = Tsyn——t—> TFN

B

commute, The details of the bundle are given in the foot-

70
noted reference. In particular, note that the bundles

i ) > isom hi through the 1som hism me i d
Tgyn and nare isomorphic, through the isomorphism mentioned

sy
above,
The two bundlecs introduccd here allow the dyneamic

elcments of the elastostatic theory to be placed in a

ch the global analysis machinery

e

mathematical setting to wh
nay be applied. The eclements wnich will be nlaced in the

setting are: the body force density field, the traction

vector density field, and the stress tensor field.



174

BODY FORCE DENSTTY FIELDS ARE SECTIGHS GF
71
THE VERTICAL TANGENT BUNDLE

Recall that the body force density ficld is defined
classically as follows: if X 1s a configuration of the
body B in the physical space Rs, then the specification
of a body {orce density ficld on X(B) 1is the spccification
at cach point x of X(B) of a body force density vector
b(x), viewed as an element of R®. Thus the body force
density field 1is an R? == valued function on X(B)Y. To
set the field idn the bundle thecory, rTeczll that at ceach
nplace x in X(B), the tangent space to R3 at x TR?®

may be identified with R®., Ilence, a body force densit
2

field may be regardsd as a specification at cech place X

. pe - 3
in X{8) of an elcment of the tangent space to R at x.
Let SX be the section of the bundle of positions N

sguration Y. From tne isomorphnism

Lt}
1

associated with the comn:
betwecen the tangent space TRi at the place x  in ¥ (B)

and the vertical tan

[tfe]

ent space TFn, at s _{(»

D'X(p) Xt

may view the body force deunsity field, b as specifying

, one

~/

at cach configuration section point sx(p) an clement

b, of the vertical taagent space TFng (p) -
wo

vocdy force density ficld may be viewed as a section of the

)

Hence, the

.

restricted vertical tangent bundle TFnN Finally,
-

stcm.



pulling back the vertical tangent bundle by Sy , Gne

may cxpress the body force density field as a scction of
the buandic TSXn. Onc denotes this fact by writing

b e I'(Tg n). In this way one transforms a body force

~

~

density field from a Ffield defined over a region of R? to

a

e

cction of the vector bundle Tsxn over the body B
assoclated with the configuration section SX.

THE CAUCHY STRESS TENSOR FIELD IS
GIVEN A BUNDLE TORMULATION

For a Given Configuration the Cauchy Stress '
Teuasor Field 1s a Section of a Linear Map Bundle

The Cauchy stress ternsor ficld asscciatcd with the

body B in the configuration ¥ Dby the material compris-

72
it 1s classicaily viewed as a £

teld of lincar mappings

—

of R® defined over the region X(B) of physical space:

T : y(3) ——— L(R? RrRYy,

It may also be formulated as a section of a vector bundle
defined over B. TFirst of all, by the identification of

n 3
38

space to R® at the place x, the

ot

with the tangen
Cauchy stress tensor at x may be regarded as a lincar

mapping of tangent spaces
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T, € L(R*,R%) = L(TR3X,TR3X).

Let p € B be the material point occupying the place X imn

the configuration X, and lct Sy be the section of

associated with X, If ISX(P) denotes the isomorphism of
- S e RS " S 1 1 " -
the fibers LRX and stnp provided Dby sy, Tx may be
viewcd as a linear mapping of fibers of TSXn:

Tis,(p)) = Igl(p)- T v Ts, (p) € LiTs ny, Tsongd e

X X X (p) X P x"p, xNp
L(Tgq T is the fiber at p of a bundle of linear
Fsynp, Tsxp) *

naps L(TSYH’TSXH) over B. Allowing thc point p € B to

vary, one achieves a mapping

T(SX(-)) Pl ——— L(TSXH,TS n).

X
In fact, this mapping is a cross section of the lincar map
bundle. One denotes this fact by writing
?(SX(-)) el (L(Tsxn,Tsxn)-
llence, for o given prescent configuration section Sy s
specification of the Cauchy stress tensor field is cquiva-
lent to the specification of a cross section of a vector
bundle. In fact, the differcntiability of the Cauchy stress

~ .

“1eld mavy be consa {1

.

oS
iy
o
3
(]
3
I

R o B N 3
tCnsor erca 11 terns Ooxr tace G

]

tiability of the cross section.



THE TFIRST PIOLA-KIRCHOFF STRESS TENSOR FIELD
IN BUNDLE TORMULATION

Why the Tield is Introduced

At this stagc in the formulation the first Piola-
Kirchoff stress tensor field may be convenicntly »nrescnted.
While 1ts introduction is not essential in ordcer to
formulate the Dirichlet problem, it is necessary when onc
formulates tlic Neumann, or traction boundary value problem.
By formulating the Dirichlet model in terms of the first
Piola-Kirchoif stress tensor field initially, the author

~

is anticipating a future cffort in which tihe modcl is

cxtended to encompass the traction boundary value problcem.

The TFirst Piola-Xirchoff Stress T r Field 1s

€1NSoT
a Scection of a Vector Bundle

Recall that the first Piola-XKirchoff stress tensor
ficld is a mixed tensor field defined over a reference
contfiguration K (B) for the material body which
characterizes the stress of the body in some deformed

2
- . ~ N . -
configuration ¢(B). The bundle formulaticn of the tensor

o

field proceeds in a manner similar to that of the Cauchy

ield. By idecatifying the tangent bundle to

i

stress tensor
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the physical space R® with the vertical tangent bundle

s

197

to the present configuration section s_, and by pulling
o N\
AY

back to a bundlec over the body B by the reflcerence

confipuration section S, One can identify the first Plola-
NircholL tensor at p € B as a lincar mapping of thce fiber
of the vector bundle over B  associated witi the rcecference

configuration scction s . :

v
-
-

=
—
.

TsKnp R E— Ts Ny

—3
w
~~

Ui
-
g
(>
(

L(TSKn p’TSKnp) .

Allowing thc point p to vary, TSK(SX,—) may be rcgarded

as a cross section of a bundle of linear maps, denoted

Ts (s, ) & I(L(Ts.n,Ts, )

The Piola-Kirchoff Stress Operator 1is Developed

A pivotal peint in the development is now reached.

vith the bundic formulation onc gains the ability to view

the Piola-Kirchoff stress tensor fie

-
(a9
3
[%4]
S
—
w0
2
1
~
=)
o3
ct
)
o]

configuration SX as arising from an operator correspendence.
One may casily sec how this point of view arises.
7

Let the present configuration of the material body change,
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say to s ., and lect the nevw Cnuchy stress ftensor ficld he
denoted T‘s¢(~)). As before, the Cauchy stress tensor
ficld pencerates a new first Piola-Kircholf stress tensor
ficld over the refercence configuration «, The new ficld
may bLe viewed as a scction of the bundle oi lincar maps

rom the refercnce configuration bundle TSKn into the

reference configuration hundle Tsrﬂ

N

ISK(S(I),-) € L(TSKT‘.;TSKT‘J-

The new Piola-Xirchoff stress tensor field is a section

of

the same vector bundle as the old ome. Hence, in this
formulation, a change in the present configuration of the
body manifests itself as a change 1in section of the fixed
linear map bundle LCQMU,TQJU- Consequently, one may assert
~

that there exists an operator correspondence TSK which

associates the sections of 1n which correspond to

F

configurations, scctions of the linear map bundie L(TsKn,Tsrn).

Symbolically, one may write

~
T°K : {set of configuration scctions) ————- F(L(TSKn,TSKn))
P 4
~N
o 4 - L) I
s — Te (s = T S_,=).
X SKL X) SK.L X.\ )

The correspondence will be called the Piola-{irchoff stress
tensor operator, and will serve as the basic element with

which one incorporates the elastostatic field eguations



into the gcometric model.
In order to sct the clastostatic field cquations

in terms of the first Piola-Kirchoff stress operutor, it

—
Ui

convenient to mwake one more mathematical identification

I{ a counnecction 1s specificd on the bundlic of configurations

n, and if the reference configuration scction S is

sucih that its first jet cxtension is invertible in the jet
74

bundle sense, then the covariant derivative of S VnSK’

determines a vector bundle isomorphism betwecen the tangent

bundle body B, and the bundle TSKn. Hence, a section

Tg,n 1s uniquely identifiabie with a vector field over

B, With this identification, the first Picla-Kirchoff

tensor field relative to the refcrence confi

S or a preseént configurati 3 5
. X

Lt
581
s
3
ct
H
@]
o
[}
o
[¢]
ot
[
]
js]
2
-

.]
~~
[}
~t

-

may be identifiea with a section of the bundle of linear

mans from the tansent bundle over B into the bundle of

kS

configuration n,

TS (sx)(_) = TSH(SX,—)'VnsK(-) e (L .u,lsK )Y .

e

Thus, the Plola-Kirchoff stress operator may be viewed as

a correspondence TSK which associates with configuration

scctions of the bDody B scctions of the vecctor bundle

L(Tb,x 'ﬂ),
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Tsy {set of configuration sectionS} — r(L(TB,TsKn))

S ¢ — T5, (5

The elastostatic operator will be developed from this

operator,

THE MATERIAL RESPONSE SPECIFIES THE
PIOLA-KIRCHOFF STRESS OPERATOR

Once one is assured of the existence of a Piola-Kirchoff
stress operator, one may examine ways of specifying it.

The stress operator is specified in analytical terms by
mathematical constitutive relation which characterizes the
particular response properties of the material comprising
the body. By employing some elements of the global
analysis one may see how the mate;ial response of the body
manifests itself in the geometric model. One finds that .
it determines the specific way in which the Piola-Kirchoff
stress operator "links" the various configuration manifolds

to their corresponding spaces of stress tensor fields.

A Smoothly Responding Material Specifies
the Piola-Kirchoff Operator as a Mapping

Defined on the Configuration Manifolds

Héw‘can the geometric model reflect the property that
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the material cowprising the material body is smoothly
responding?  To say that a wmaterial body B has a "smooth

response” means that a smooth present configuration of 3

. . . 76
results in a smooth Piola-Kirchoff stress tensor field. in

mathematical terms this means that a confisuration section
the bundle n if ¢°% gives rise to a Piola-Kirchofif

V(SX)’ which when viewed as a section of

- . . co ~
the vector bundle L{TB, TsKn), is also C . lence, for

.

the purposcs here, 1f the body B  has "smooth response',

the Piola-Kirchoff stress operator takes the clements

Sk
& 1 % S LN 5 o3 s 1, ® :
of the C manifold of configurations, Emb (n), into

the space of C® sections of L(TB,TsKn), or

© o [
TSK : Emb (n)< C (n) ————— C (L(TB,TSKn}). .
; . e - , . st : s s
The Piola-Kirchoff Operator is an 1 Order Differcntial

Operator When the Body is Elastic of Decgrece 1

To say that the matcrial body B is simnle clastic
of degree 1 is to say that at cach point the Piola-Kirchoff
stress tensor depends only upon the first derivative of

77
the prescnt configuration. Any other configuration identical

to the present configuration up to order 1 at & particular
Place generates the same stress. This condition may be

expressed in global analysis terms as stating that the
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. .. - -~ 3 . .
Piola-Kirchof{f stress correspondence 5.0 13 detormined

vy a constirtutive relation which depends only upon the

151’. ., ~ . . Y . - P
order jet of the configuration section at each point.
From the definition in cha»ter thrce, mappings
which take smooth scctions oi a bundlic into smooth sections

of another bundlce and

.

factor through the jct scction map,
or a covariant derivative map, are called differential

. [o0] . . ~ 1
opcerators (with C coefficicents). Thus, one may express

the conditions imposed upon the Piola-KircioiIf stress oser..tor

A

by the material resmonsce in the language of global analysis
in the following way:

Definition V,1. Let B be a material body, n

the position bundie of B in R®, and T3 the
tangent bundale to B. To say that B 1s a siooth
clastic material body simple of grade 1 is to say
that the first Piola-Kirchoif stress tensor opecrator
relative to any reference configuration 1is deter-
mined by the Tesponse function associated with the
material body which is a differential operator of
ordcr one:

‘7

a} That is to say ”QV takes the manifold of
smooth configuration sections, an open submani-

~

fold of the smooth scctions of the vector vpundle
n, into the smooth sections of a linecar map
space

T, @ Emb  (n) < €7 (n) > CO(L(TB,Ts m)),

8
ot}
o

-

the constitutive re
ough the wmonifold of
scctions Wid) by means
morphism;

o
~’

»tion for Tg_  factorx
C locul cerifiguration
f a fiber bundle

"
)
)

ot



(3)
hg ¢+ W e L(TB,TSrn)
is a fiber bundlc morphism, and
fee] .-
———— CY(L(TD,Ts n))

is the induc::. mapping on the scction manifolds.
One has the diagran
T
- Sk
Emb™(n) € C7(n) ——— C™(L(TB,Ts L))

i]mb (;:\\\\\\\ \\iii>x<;/////;:;j:z

cewl®y ¢

To say that the stress depends only upon the
crodicint of the deformation 1s to say that the
Plola-Yirchoff constitutive reiation factors
through the manifold of locusl coniiguration scc-
tions of pgrade once in a special way: the factoring
is accomplished by the covariant derivative on n:

rFSK = (“SK.i)k.vn’
for .V ¢ Emb”(n) ———— s, e )
i L s,y ——— w63

and onc¢ has the diagram
Ts

Enb™(n) < ¢(n) » Cm(L('PB Ts, M)

N

=) (Ten)) @ ¢ (L (TR ) .
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~

The bundles arc as ccfined in chapter threc,

One may also spocify a matcrial resvonse of higher order
in similar terms.

Complex as these diagramns may appcar their raison
d'ctr~ is quite simple. They show in a precisec, succinct
way how the constitutive rclation for the matcrial
manifests itseclf in the gcounetric model as specifying the
1Tink between the (kinematic) manifold of configurations
and the (dynamic) space of stress tensor ficlds. Indced,
if the material body werc not simple of degree onc, but
rather simple of degrce k, or composcd of a material with

.

fading memovry, then the specification ¢of thoe Piola-Kirchoff

stress operator link would bhe radically different.  The

d
b

oring

operator could no longer be viewed as {fact o through the

nanifoid of local configuration sections; rather, it would

¥

sher order bundle, or a series of

-~

factor through a hi

77

bundles. The situation 1s charvacterized in giobal analysis

¢

1

terms when thc operator 1s characterized as a differential
opervator of higher order, or a more general integro-
differential opevator. The question will be examined further

after the geometric model 1is presented.
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A Local Representation for the Material Response

Formulating the stress opcerator in terms like the
diagrams above 1s exccllent for investigating its global
properties, and in particular, existence and unicucness
questions. This advantage will be scen shortly. liowever,

in ordecr to gain somc insight into the diagrams, and morce

t

H .
=]
o
o
]
o}

tly, in order to utilize results from Continuumn

-

>
i

[&]
(@]
=
£
=
)J

ics in the geometric model, onc must have the ability
to represent the stress opevator in terms of the classical
analysis. At this stage, then, it is instructive to show
what the stress operator looks like in terms of a coordinate
specification. By so doing, onc will discover how the
classical representation for the response function relative
to a given refercnce local configuration field determines
the £iber bundie morphism hV which occurs in the global

diagran,

If one chooses a coordinatc chart (aO,U) on the
body B with coordinate functions X, and trivializations

A

U) on n, with coordinate functicns (X,X

N

(CagX¥y)» oy ,

for x the classical '"place'" coordinate functions for

R3, and using the induced charts on J!(n), TB, and

A o . - LR ad “- ~ Py 1 ~. o 2 as ~ an T RS ™
B, Ts.1), any dadferential opeorator of order cne from
~



fady c?(n) ——r Cm(L(Th,TSKn])

nay be represcented as an operator on the polynomial

3 p? into

built on R into tne spacc of lincar maps of

itscelf:

* - -1 , . 3 ;
[(a xy )& a T+ £ [T (o xv )] = o (W) X R® X L(R%,R%) - a (U) X L(R3,RY

In pavticular, if the differential operator factors through

the covariant derivative, as is the case with the Plola-

tensocr operator,

[¢]
e

Kirchoff stres

somewhat simplified: for

presentation of the operator is

1, a (U) X L{R®,R%) » a (U) X L{(R%,RY)

T
-
-
o]
—
~
P
I
Fh
~TN
>~
<
o8]
~
A
.

For the Piola-Kirchoff strcss tensor operator relative to

the reference configuration S
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- Pavits 3 X \.—.* "1 . LTt r g o~ N 2,5
[(uoxyo)ml ao]th[(aoxyo)hx N POl X L(R*, 13 - oo (B} £ L{RZ,R
(X, N (X, Aig (%, F)

. 2 v 1 . e s .
Ihe tensor-valued function MSK(A,P) is the classic repre-

sentation of the Piola-Kirchoff response function relative

ot

to thc choice of charts. Onc gains the usucl interpreta-

(a2
[&]

tion of g as the represcntation of the clastic

e

Piola-Kivchoff response function relative to a fiecld of

79
rcicrence local coniigurations upon realizing that, given

a connection on n, the admissible charts on L(TB,n) are

in bijective correspondence with the ficids of the first

jet vuadle of sections ¢f 1 which are invertible at

cach pnoint, These iuvertivple fields may be indentified

with fields in the bundle of frames of B, which in turn

are identified with the fields of reference local

THE CLEOMETRIC MODEL FOR THE FINITE ELASTOSTATIC PROBLEM

The finite elastostatic field eguations may now be

set into thz geometric model through the introduction of

o
a finite clastostatic operator. The operator specifies

Ny
i

2 link between the manifold of C contfiguration sections

o
jou ]

ja N
ct
-t

1c space of smooth body force density sections. The
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methods of chapter threce then allow onc to cxtend the link
to coniiguration scctions wihich have lesscer degrees of

smoothness.
The Finite Elastostatic Operator

The bundle formulation of the divergence operation
allows one to develop the finite clastostatic operator.
T w1 c 0-* 13 s
In the theory of vector bundles, thac divergence operation
"div"™ wmay be viewed as a lincar mapping which takes the
smooth sections of the linear map bundle L(TB,n) into
smooth sections of the position bundle 1,

div : ¢®(L(TB,n)) —— CT(n).

From this operator and the bundle isomordhism

between n and TSKn, onc¢ obtains the bundle countcerpart

to the divergence operator over the reference configuration.
It is a lincar mapping "Div" which takcecs smooth sections
of the lincar map bundle L(TB,TSKn) into smooth scctions

of the bundle TsKn,
. . . o,
Div :vc“Tu(Tu,TsKn)) —> C ({Tg ).

<

&l

vl

ch

Hiy
ry

s

Morcover, in the language of the global arnalysis o

b

three, it is & linear differential operator of order one.



Conscquentiy i{ a Piola-Xircholf stress tensor ficld
Tg (s.) 1s viewed in the bundle forwmulation as & $u00t]

vergence is

(<3

[=n

scction of the above Iinecar map bundle, its <

a well-deflined swmoothh section of the buanclce T
. o e <%} -
D1v(-§<@x)) g C (‘Sﬁn)

Thus, ii{ the material cowprisin

i ¢ the body has a swnooth
response, one may define an operator which links the

-~ - 00 S . . .
nanifold of C configuration sections with smooth vector

ficlds over the body by

Div TSK: Embm(n) —_— Cw(TsKﬂ)

SX _— Div(sz(sX)).

This opecrator serves as the finite clastostatic operatcr
for the gecomeiric model developed here.

The specifications placed upon the Piola-Kirchoff
stress operator by the material response may be carried
over to the finite elastostatic operator. In particular,
if the material body is simpie, elastic of degree one, then

the finite elastostatic operator may be characterized in
e

j o

global analysis terms as a particular kind of differential
operator of order two,

> % TSK]’])

. . . )
Div ISK = DlV'(th)*'Vn:Emo (n)
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The factoring may be vicwed in tcrms of the diagran

DivTSr o
JeRt (n) < C (ri" —_ - — —» ( (TS<T‘|)
N
1Div
(hg J.
\ i<
¢ (13n)) = L eTEn )

More generally, if the material body is simple, elastic
of degrec k, or a body with fading memory, then the
fi

1 to

)
b
H'

te

=
e

4
-

(¢

astos ¢ operator would be characterized as a
diffcrential operator of higher order, or as a more complex

integro-differcntial operator.

The TFinite Elasostavic hiocdel over the Classical Functions

Once the nature of the finite eclastostatic operator

is specified in global analysis terms, tac results of
chapter three may be cmployed to construct & gcometric
model for the finite elastostatic problem over the classi-
cal functions. The model for the simple elastic bLody of

degreceone will now be presented,
T oAe o ’Q’( R BN s r DU L on ~ -
Let (Cub" MYy 2 = 0,1,2,...5 unt 1C LLSKn), 2=0,1,2...}

denote the families of configuraticn scction manifolds and

o

©

body force density spaces of varying degrees of differentiability.
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The peoumciric model over the classical functions is
completed when one snecifies which ceontiguration manifclds
arce linked with which body force deusity spaces vy tic
finite clastostatic operator., From Van Burcen's nodel onc
sces that the proper choice of compatibility conditlon

on the orders ot aiflferentiability is critical to csta-
Dlishing the link, TIudecced, i% onc is iaterested in
questions of cxistence, once must be cxtremcly caref{ul not
to mismatch the solution and data spaces, if one is not to
inciude unnccessarily data Jov which no solution cxists.
In fact, the matcaing problem is so significant that it
constitutes one of Van Buren's assumptions for his model.

If on¢ employs the global analysi

92}
PJ
w
w
o
ct
o+
H
=3
c2
(e}
[

chapter threce to establish the link, the compatibility

is automatically incorporated into the model in the exten-
sion of the finite elastostatic operator, For, the classi-

cally diffcrentiable sections of n are characterized by
the Banach space-valued section functor C°. The functor
satisfies the axioms for a global nonlincar setting.

Conscquently, if the material body is simple, elastic of

grade onc, 1its finite elastostatic opcrator

- ey - ‘CO o
pDiv T, : Emb (n) > C (TSKn),
AN
PECERP NS . ns
a dilffervential overator of order two, extends to a C

nonlincar mapping defined over the manifolds of C
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confipurations

042
biv Ty onad” TR (n) —— cFiry ) 2=0,1,2, ...

'
[

AN

A

A prescription for the extended operator is given by -
tircosrem, as opposcd to intricete norm calculation, its
diflferentiability is assurcd, and the compatibility
domain and range 1s assurcd.

For the simple, eclastic body of decwurce one, the

triples

Div St Emb™ ~(n) > C LFSKn) 2=0,1,2,...,
consisting of a2 configuration scction manifolid, a body

force density space, and a finite elastostatic operator

linking them constitute the geomctric model for the finite
he

citassical functions. Roughly spezking, the nodetl consists

oif two manifoldas with & nonlinear differventiavle mappirg
linking theowm. The model may be picturcd in terms of
finite-dimensional elcements as in Figure V.2, Notice

that the parvticuler way in which the configuration mani-

folds arc linked to the body force spaces by the finite
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i
~ . PR - e N
confipurations are cquilibrated by C sody faorces, If the
matewial response ol tihe body werce diffcrent, for cxamnle,
clastic of o higher deoroe, tace cxtension oif the finmite

clastostatic operator would have linked spuces ol cntirely

[
>

different deogrecs of dififercentiavility.
Using thce results of chapter four one may cxcise
from the free boundary model a geometric model for the

. C s . . J
finite clastostatic Divicilet prodlen. Given a C nlace

boundary condition ¢g¢ C (n Ds’ the manifoid of Cg
configurations modeling the boundary condition in a simpile
supporting manner

(Emb7(n)]
lies as a c$oscd submanifold of the {ree boundary manifold.

fee]

As the extended finite elastostatic operator is C cver
the frec boundary wmanifolds, its restricticon to the closed
submanifold remains continuously differentiable. One therebdy

¢ains the family of triples

Div

»
=
r
=
o
—~~2
=
A
o=
¥
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=
~
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b
it
[ew]
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This family szrves as the geometric model for the finite
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Dirichlet problem. It is illustrated 1in
Fipure V.3.

One may envision how the qualitative questions

H
tt

~
=
:
I
Fa
e
.

themsclves in the geometric modcl, The existence
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question for the {inite clastostatic Dirichlet problemn
reintive to the body fowrce density s, asks 1f it is
possible to find a configuration section s satisfying

the boundary condition

nn
v

and cquilibrating Sy In

terams of the peometric model, the bLody {force density
scction Sy, may be viewed as a poiant in the scction space
(TSKU). The cxistence question then becones, docs sy
have a preimsge under the finite clastostatic operator
Div Ts . in the closed submanifold [Fmb
giobal uniquencess question may be phrased as, docs there

. , . - . +2 .
exist more than one preimage of Sp  in [Emo (q)] Tae
local uniqueness question inquilires whether or not It is
. . . P s . . L R+2 1
Ppossible to separate coanfiguration sectizns in [Enmb ()1,
equilibrating s, Dby ncighborhcods. An example of these
situations is dJuepicted in Figure V.3,

One cuickly anvreciates the tonolonical and
[§ L7 a £ <>

g‘\

ceometric nature of the reformulated questions. One can
casily anticipate how the geometric and towmological theory

of diifcrentiable mappings cn marnifolds can be employed to

resolve them

A COMPARISON ¥WITH B
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comparison will be wade with {hc model of I. Beju. One
finds, pleasantly enouph, that the inite clastnntatic
operators are comnarabie, and that the critical dis-

similuarities in the wmodels stem frowm the basic diiferences
in the way the conlfiguration manifclds arce picturcd.

Beju's representation for the finite eclastostatic
opcrator is as a global opncrator definced over the body B
whose argunent 15 a displacement vector field. One may
gain such a2 represcatation from the bundle finite

clastostatic opervator developed above. The procedurc is

Fh

a particular instance of choosing a chart for the manifold

9
of convigzurations Lmo™(n). Reccall frem Cha

. . % .
charts on Emb (N} about

¢ any scction can be explicitiy

dis‘i)la"in“ usiu\" t:".e bundie xnoae Atial 4P . In a;ticu-

Py 7 O =1

larx if S is a4 reference conyizuration and Exp is a
E K o ks

bundle exponential map on TFn, there is an open sct
h ) I

V. about S in the manifold Emb (n) an open
Exp,s K ? ‘
L‘p’hK

ncighborhood of vector bundlce sections . about

Exp,s, .
~

. . %
the zero section in the Eanach space C7(n), and a
dififeoworphism ., _ iinking then
- £xp,s

2,
Q. A VI B Eab™ (n)

wiiich takes the configuration s, 1nto tne zero scction
in Wy, . The pair % Qn is 2 magnifold
: EXp,s P ( Exp,s ' TExp, SK) GAEAT AR
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chart fox Emhg(n) about s , which may bc viewcd as
assoclating with cach scction s ncavrby s a vector
ficld of n mncar the zero section.

In particular, if one chooscs the trivial exponcn-

PR T g, N W e 4
tiazl map, ¢, on TFn the map QE g csn be giobalized,

H
and onc¢ may parametrize the entire manifold Inb ' (rn in

L

terms of "dispiacencnt vector fields" xelative to 5 ¢

It
T

0
(@]

4]
Q¢ : Emo(n) — Qr s r(Embh(n))

7]
[

where s+ u = s,, and the sum is in the sense of
i~ %
Q/ P
27 (n) . QE s s the classic representation of the C
? e
conEl ruraticns relatd L - s
configuraticas relative to S, as C displacecment vector
fields., Recall, that zlthough this »aramctrizaticn exists,
N . o P .
{(End™"(n), Q- .} need not be & manirold chart at s _,
£,8.,.,7 K
: 2 h . . - _
since Emb”(n) may not be contractible to S,
If onc represcnts the finite eiastecstutlic opcrator

introducced ahove in terms of the parametrization, one

piacement vector

=
[ %]

achicves an oncrator whosc argument is a 4

ficld
- 9 2
Div 7. @ L1 D, ¢t (n) —— P )
5 » 5 Cs 5
K K K
u Div 7% {s + u)
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The operator so gaincd in Deju's free boundary operator A,

mins the pody force pact, The critical dilfcerence beoivwrcen

the two eporators lic in their deounnins ol dedinition: the
opevator aained here is defined only over an oncn
. " 2 . .

subnenlifold ol C (ri}, as opposcd to the topologicl
lincavr space,

The principal difference between the model presen-
{od here and the Beju's wodel 1ies with the Dirichlet
problem. Io Beju's wodel, the subnanilolds representing

difterent Dirviciilet soclution spaces are aiffcomorphic.

1 D1

[

licnce, Beju reduces a richlet problem models to a

single geomctric model by introducing a homwoscneous

cs'
o
o
pih )
o
o
*

condition space, and a suitably modificd clastostatic
operator L. In the model presented here, the

different Dirichlet configuraticn manifolds are topologil-
cally distinct, in gernevral. Hence, 1t 1is impossible to
reduce all finite elastostatic Dirichlet problem models

to a single homogerncous model. Comments have already been
made about the significance of this differcence in the

previous chapter.
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VI. THE GEOMETRTC MODEL FOR THE FRER BOUNDARY PROBLER
BUILT OVER TIIE SOBOLLV SPACES

WilY THE GEOMETRIC MODEL MUST BE MODIFIED

In the previous chapter the geometric models for
the finite elastostatic free boundary and Dirichlet pro-
blems for the simple, elastic material body were completed.
One now begins to examine the question of how one gleans

information from them.

Previously Used Mathematical Methods are Useless

The question cannot be quickly dispatched. For
when one replaces the hybrid éeometric models involving
topological vector spaces by a model whose solution mani-
fold possesses no lincar structure, one loses not only
many of the hybrid model results, but also the very use of
the tools, theofcms, and tcchniques which made them
possible, In order to utilize the models developed in the

previous chapter, onc must discover alternative mathe-

matical methods to replace those rendcred uscless.
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The Ncw Mcthods Require More General Scttings

The alternative methods and tools are only now
cvolving as abstract thcorems in infinite-dimensional
gcometry theory and algebraic topology. Some of thc tools,
like the implicit function thcorem used by Van Buren, can
be applied immediately to the geometric model built over
the classical CK functions to obtain cxistence and unique-
ness conclusions. However, most of the tools cannot be
applicd effectively to the geometric model as it now stands.
In order to accommodate them, one must modify the models.
For example, to employ the Morse Théory, or the Lusternik-
Schnirelman Theory effectively, it is most profitable to
extend the modcls to ones built over functions having a
more gencral form of continuity and.differentiability.
This situation parallels that in Beju's model, wherc, in
order to cffectively apply Langenbach's results, Beju
generalized his data space to the llilbert space of square
intcegrable fields.

The Holder functions and the Sobolev functions
mentioned in chapter three are particularly attractive
candidates to use in the extension. Indeed, since much
work on the existence and uniquencss problems for the
lincar infinitesimal elastostatic problem has been done

using the Sobolev function spaces, it is of value to
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cast the nonlincar problem in the samec sctting.

The Regularity Question Ariscs

But how does one gain cxistence or uniqucness con-

clusions for "concretc'", classically Ck

configurations

for a material body from a generalized function setting?

The proccdure onc deveclops consists of two steps. Firstly,
onc chooses a gencralized setting for the gcomctric model
which yields as easily as possible conclusions for the
existence and uniqueness questions for the finite elasto-
static problem. One then attempts to pull back the results
to the classical function setting by proving theorems which
state that i1f the given data are in fact ck differentiable,
then the gencralized function solution is in fact CR
differentiable. Theorems which accomplish this purpose are
called "regularity theorems," and the investigation of which
conclusions can be pulled back and which cannot is called
"the regularity Auestion”. Hence, one witnesses the three

fundamental areas of investigation in a geometric model:

existence, uniqueness, and regularity.

What the Development Accomplishes

In short, this chapter casts the geometric model
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for the free boundary in a more gencral mathematical sctting
which will allow onc to more cffecctively appnly Eontcmporary
mathematical methods to draw physical conclusions about
cexistence and uniqueness questions. The model onc ohtains
has fecatures similar to the classical function model. It
scts the problem as a differentiable mapping betwecen mani-
folds. The speccification of the configuration manifold,
data spacec, and finite clastostatic operator is given by
befinition VI.1, Theorem VI.1, and Theorem VI.2, which
constitute the main results of the chapter. The generalized
configuration manifolds have the same homotopy type as the
ck manifolds; hence, alternatives of mechanical behavior
arc not gained or lost by the mathematicsl generalization.
However, the topology and geometry o¢f the generalized con-
figuration manifolds are more sophisticated than that of

its classical function counterparts. The more sophisticated
structure permits the more effective use of the mathematical
tools. In chapter seven, the Dirichlet model will be
similarly generalized.

In this chapter and the next, the reader will
encounter a development which is more mathematically than
physically motivated. However, as illustrated in Beju's
nodel, the development is a necessary step if one is to

glean physical conclusions from the model. The relevance
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of the development will manifest itself in chapter cight,

where one actually percecives how to glcan information from

the model.

PROBLEMS ONE ENCOUNTERS IN EXTENDING TIIE
' FREE BOUNDARY MODEL

The Extension of the Infinitesimal Elasticity Model Relics
llcavily Upon Its Linear Structurc

Illow does one go about extending the free bounaary
model to a generalized function setting? One may cxamine
the extension of the infinitesimal elasticity model for
clues.

The extension of the linear elastostatic place
boundary value problem to a generalized function space
setting is an intricate, but straightforward process?Z'The
solution spaces and data spaces are completed to form two
families of Banach spaces of generalized functions. The
families are linked by the extension of the infinitesimal
elasticity operator, whose properties are usually gained

by a series of intricate calculations.
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The Problems in Extending the

Finite Elasticity Modcl

Two problem areas arise in extcnding the finite
clastostatic model: the generalization of the c®
configuration manifolds, and the extension of the elasto-
static operator.

The problem one encounters with extending the con-
figuration manifolds rests in their lack of linear struc-
ture. The cxtension of the linear solution spaces Cz(n)
for the infinitesimal eclastostatic problem rely hecavily
upon their linear structurc. The manifold of c* con-
figurations Embg(n), which lies only as a subsct of Cz(n),
and posscsscs no linear structure, cannot be extended in
the same manner. Rather one must pursue the extension
more carcfully.

A parallel problem arises in the extension of the
finite clastostatic operator. If the operator were
defined over the’cntire Banach space Cl(n), its extension
to a generalized function setting woﬁld be given
immediately by theorem. However, its domain of definition
consists only of the open set Embz(n). Hence, the
extension 1s not a trivial matter.

Although the nonlinear problem does not extend to

the generalized function space setting with the speed and
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dispatch that the linear problem does, one is not relegated
to a hopeless position. The tools provided by the global
nonlinear analysis provided in chapter three still allow
one to set the configuration manifolds, and extend the
finite elastostatic operator in a precise manner. Both the
llolder functions and the Sobolev functions may be viewed

in tcrms of Banach spacc-valued section functors: the

llolder functors of exponent a, Ck+a, and the Sobolev

functors L; = HK. By Theorem III. 7, both functors
satisfy the axioms for a global nonlinear sctting. Thus
the tools of the global nonlincar analysis may be cmployca
to assist in the extcnsion of the configuration manifolds
and the elastostatic operator, and to insure the proper
matching of the solution manifolds and the data spaces.

Most importantly, one may accomplish the extensions by

use of theorems, as opposed to extensive norm calculations.
THE EXTENSION OF THE DATA SPACES

Since the body force density section spaces
Cr(TsKn) built over the classical functions maintain their
lincar structure, their extension to the Sobolev spaces
follows immediatcly by thcorem from the methods of chapter

three. The Sobolev functor H° is a Banach (in fact, Hilbert)



212

space-valucd scction functor which satisfies the axioms
B51 through BS%4 of the global lincar analysis. licnce by
theorem, onc is assured that the classical force density
scction spaces Cr(TSKn) may be extended in a continuous
way to a chain {Hr(TsK(nﬁ} of Banach spaces of force
density sections with more gencralized differentiability
and continulty properties. For the convenicnce of the
reader the extension is summarized as a corollary, which

one may establish from the work of chapter three:

83
Corollary VI.1. Let B be a smooth, compact,
matcrial body. Let mn =B x R’ be its bundle
of positions, s be a reference configuration

section for B, and let Cr(TsKn) denote the
space of CT¥ ©body force density field relative
to Sk,

Then

a) for each integer r, the Sobolev space
H'(Ts M) of sections of Tg, M which are
square integrable to order r over B is
a well defined Hilbert space,

b) the classical body force density section
spaces Cr(TsKn) inject in a continuous,

linear manner into the corresponding Sobolev

space:
i: Cr(TsKn) _— HT(TSKn) r=0,1,2,3,..
c) one has the following embedding theorems

which indicate the relation between the
classically differentiable sections and the

generalized sections: <for k, T, into

(1) dgp: Hk(n) —_— Hr(n), for k>r>0,
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3
(2) it () ——— (), for v2z+0, 920,

The family of spaces {lI¥(n)} scrves as the gcomctric
modecl for the body force density sections built over the

Sobolev function spaces,

HHOW THE FREE BOUNDARY CONFIGURATION MANIFOLD
EXTENDS TO THE SOBOLEV SPACES

The manifolds of Cz configurations may be e¢xtended
to open submanifolds of the Sobolev spaces Hz(n). The
definition of the classical Embl(n) manifolds themselves
provide the clue for constructing the extensions. Moreover,
the fact that one may employ the methods of chapter three
permits one to construct the extensions without being in-
undated with a plethora of norm calculations. The essential
clements of the extension are contained in the following

definition and theorem.

'

Definition VI.1. Let B be a smooth, compact,
connected material body which is oricntable and
oriented. Let n be h? vector bundle of positions
of B in R®. Let W'°) be the open fiber sub-
bundle of non-degenerate one jets in J (n). Let
Degi(n) denote the open submanifold of continuous
sections of 1 which are of degree one.

a) Let

ipr #5 () ——— ut il
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denote the continuous lincar homeomorphisn
onto a closcd subspace which cxtends the one
jet extension map from the classical (c’)
scction spaces. Tor 1 > 3, define
T .-l 3
Imm I (n) = iq (I 1(W( )))

Term Imm HY¥(n) the H'-gencralized immer-
sive sections of n.

b) For r > 2, let

irg ¢ nrm) ———— c¢c°(m)

be the continuous, linear inclusions speci-
fied in Corollary VI.,1. Define

Deg,H" (n) = ill(Degi(n)),

and term it the Hr—generalized degree one
sections of 7.

c) For r > 3, define
Emb H'(n) = ImmHT (M) r\neglﬂr(n)

to be the HY-generalized embedding sections
of nn, or the HY configuration sections.

Theorem VI1. Under the hypotheses of Definition VI.
EmbH' (n) < 0¥ (n)

:

is an open C° submanifold having the following
proverties which reflect the fact that it is an
"admissible" extension of EmbT(n):
a) The continuous linear inclusion
i: ¢*(N) —mm Hr(ﬂ)
. [e ] . v
restricts to a C inclusion

i: Emb¥ (1) ——— EmbHT (),

for r > 3.
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b) For r > 3, g > 0 intecgers satisfying the
relation v ifB/Z + %, then the continuous,
lincar inclusion

ip, @ () ——— c* (n)
(1) restricts to a c® inclusion
irpv : EmbHY (n) ——m Embg(n).

Hence, elements of EmbHT(n) are embeddings
of B into R3 in some classical (C%)
sense.

{(2) Moreover,

b et (n) = (seHr(n) ¢ i, (s)eEnbt(r)} = EmbHT(n).

That is to say, all elements of Hr(n) which

are embeddings in any classical (Cl) sense

are in EmblT(n).

¢) For k > 1r > 3 integers, the lincar, con-
tinuous inclusion

i, H5(M) s 17 (n)
T
(1) 1zrcstricts to a c® inclusion

i ¢ Embi®(n) ———— EmbH"(n).

(2) Moreover,

17T (EnbH" (n)) = {sei¥(n) : i, (s) € EmbH"(n)} = Embii“(n).

That %s to say, all elements of Hk(n) which
are H; embeddings for some r, 3 < r< Kk,
are H embeddings.

d) EmbHY(n) = Emb (n).
The proof of the theorem follows straightforwardly from the
24

. @ . . .
work of Palais. Moreover some insight into the topology of

the extended configuration manifolds can be gained from the
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following theorem rclating the homotopy type of Emka(n)

and Emb°(n):

-
2
Theorem VI.2. TFor k > 3, the inclusion map

Embii®(n) ——— Emb®(n)

is a homotopy equivalence.

The particular details of the extended manifolds
Embuk(n) have not been included in this work, as they are
not particularly germane to the development of the model.
Rather, it suffices to say that within the chain of Sobolev
spaces over 1, {Hk(n)}, there exist open submanifolds

T

which generalize the C domains of definition of the finite

elastostatic operator.
THE EXTENSION OF THE FINITE ELASTOSTATIC OPERATOR

It remains to see how the finite elastostatic opera-
tor extends. If traditional methods were employed to resolve
this question, one would now be faced with a profusion of
norm calculations. However, using the global nonlinear
analysis methods set forth in chapter three, one may now
establish by theorem, as opposed to calculation, those
domains to which the finite elastostatié operator extends,

and the degree of differentiability of the extended operator

over these generalized domains.
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For a smooth materially uniform clastic material
body simple of degrece once, the finite Piola-Kirchoff clasto-

static operator rclative to a refercnce scction S ¢ is a

o

differential opecrator of order two defincd over the
configuration scctions. That is to say,
. . o0 ‘00 oD ”
Div TSK : Imb (n) £ C (n) — C (FSKn),
and

Div Tg = Div(hs ) YV, = (Hs ).,j,

satisfies the diagram

Emb” (n) < €7 (n) =———————r C"(Ts n),

c”(w, )y = ¢

for

, (3
HSK : (hz( )) ——————+T5Kn

a C° fiber bundle morphism on chs), an open fiber
subbundle of the &ector bundle J%(n). Taking n=3, p=2, and
choosing k=2 > 3/2, Theorem III.2 and Theorem III.7
assure that the functor L; = H2 satisfies the axioms B§2
and B85, Hence, one is assured that the fiber bundle

o . ©
morphism HsK extends to a C mapping of the chain of C

manifold H2+S(W2(3)) of generalized sections:



218

2+ 2+ 3 2+s
H2* g ) ¢ HPS 0,3y WS (1 ), s=0,1,2,...

The extension of the j2 map is also well behaved when restric-

ted to open submanifolds:

Lemma VI,1, The continuous linear map

. 2+s5+2 2 2

i, t BT (M) —— WS ()
restricts to a C° inclusion

iy ¢+ EmbHY () ——— w2, %)y,

for s=0,1,2,...

Combining the results, (and, indeed, without any further
calculation), one is assured that the finite elastostatic
operator

Div Tg, Emb’ (n) ——s Cw(TsKn)

extends to a nonlinear mapping of manifolds

2+s 2+s+2

HY"S (Hg ) +j, : EmbH 2+s

(n) —— H” " (Ts,n)

for s=0,1,2,..., which is c”. Thus, one is assured that
the generalized operator is continuous, and has continuous
Frechet derivative at every point in the domain of

definition.
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THE EXTENDED GEOMETRIC MODEL FOR THE FREE BOUNDARY PROBLEM

Viewing the finite elastostatic operator simply as
a nonlinear differential operator of order two, the above
equation asserts that the most general data over the Sobolev
spaces consistent with the c” extension of the finitg
elastostatic operator is that lying in .Hz(TsKn), the spa;e

of sections whose derivatives through order two are

Lebesque square integrable over the body B:
: 4 ' 2
Div TSK : EmbH (n) ————— H (TsKﬂ)-

For an arbitrary second order operator, this is as
far as the global analysis permits the operator to be
extended, However, since the finite elastostatic operator
is a particular type of differentiable operator, a divergence
operator, one may proceed at least one step further in the
extension. Since a divergence operator of order two is a
composition of a linear differential operator of order one
and a nonlinear operator of order one, and since a linear opera-
tor extends continuously to all Hk(n) spaces, k > 0, the
finite elastostatic operator may be extended to a c” map
from the generalized 3 configuration manifold into data

which is in Hl(n):
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Thecorem VI.2. Given a finite elastostatic operator
. . © o
Div TSK = Dlv(th)*Vn : Emb (n) ——— C (Tg5.),

a divergence operator of order two, taen the
operator extends to a C% map

Div Tg Embii 2 St oy —. H2+S'1(T5Kn), $=0,1,2,... (VI-1)

In particular, the most gecneral data for the c”
extended operator lies in Hl(TsKn)

Div Tg i EmbH3(n) —— Hl(TSKn)

The proof of the theorem 1s given in the reference,

The collection of configuration manifolds, data
spaces and finite elastostatic operator link set forth in
equation (VI,1) constitutes the geomoctric model for the
finite elastostatic free boundary problem built over the
Sobolev spaces. The model possesses four features which are
sufficient significant, so as to warrant the attention of
the reader. Firstly, it is a geometrical topological model.
As in the classical function setting, the final result for
the free boundary geometric model built over the Sobolev
sections is a family of differentiable manifolds linked by
well prescribed differentiable mappings. One may therefore
view existence and uniqueness questions from a geometric
and topological perspective. The perspective will be
examined in chapter eight.

The second feature 1s that, unlike Van Buren's ncdel,

the model presented is a global model. If one restricts the
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model to a small region about given configuration, the modcel
presented here reduces to the classical infinitesimal
elasticity model built over the Soboiev functions., The
modecl, hence, represents a particular '"piecing together" of
infinitesimal elasticity models. How the patching process
is carried out is determined by the topology of the material
body itself, and the material response.

Thirdly, many of the propcrties of the model are
specified by theorem, as opposed to extensive calculation,
Not least among them are that the finite elastostatic operator
is differentiable, and that, in fact, a prescription for its
derivative is set forth in chapter three.

Finally, one should appreciate how the proper match-
ing of solution and data spaces follows automatically by
thcorem when one can employ the global analysis tools. In
particular, one can appreciate how tenuous is the position
of postulating that the gecneralized problem 1s "suitably
set" in terms of spaces which are given a priori.

In summary, setting the frcece boundary problem in
finite elastostatics is more involved than its counterpart in
the infinitesimal case. When the finite elastostatic
opcrator may be extended, it is defined only over a portion
of an entire Sobolev space. The topology of its domain

of definition is thus more complicated than that of the
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HHilbert space in which it lies. Complex as this situation
is, however, theorcms are available from the globul analysis
which permit the generalized problem to be set with surpris-
ing precision, and with a minimum amount of information. One
may now look forward to the utilization of the model, which

will be discussed in chapter ecight.
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VII. THE GENERALIZED SETTING FOR THE PINITE

ELASTOSTATIC DIRICHLET PROBLEM
THE MAIN RESULTS

The Generalized Dirichlet Configuration Manifold for

a Simply Supported Boundary Condition

The tools provided by the global nonlinear analysis
permit one to excise from the free boundary model a geo-
metric model for the finite elastostatic Dirichlet problem
built over the generalized function spaces. Two geometric
models for the Dirichlet problem are constructed. They
correspond to whether one simply supports or rigidly
supports the Dirichlet boundary condition.

The first part of the chapter concentrates upon the
simpie support model, One shows that the classical (Ck)
configuration manifo}d for a simply supported Dirichlet
boundary condikion, which was introduced in chapter four,
has a generalization to the Sobolev function spaces. The
generalized manifold has a well-defined structure;'moreover,
it lies as a closed submanifold of the generalized free
boundary configuration manifold introduced in chapter six.

The topology of the Dirichlet configuration manifolds may’

be quite complex; in addition, two configuration manifolds
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for differcent Dirichlet boundary conditions need not be
diffcomorphic. The dctails of the manifold structure,
and the relationship to the free boundary configuration
manifold are presented in Theorem VII.3, and Theorem VII.4,
How the extended finite elastostatic operator
behaves upon restriction to the Dirichlet submanifolds is
then examined, Using the tools available from chapter
three, one may show, by theorem, as opposed to norm
calculation, that the generalized finite elastostatic
operator maintains its differentiability properties when
restricted to the submanifolds. Thus, one achieves a
geometric model for the fintie elastostatic Dirichlet pro-
blem built over the Sobolev generalized functions. It may
be viewed as a differentiable mapping linking infinite
dimensional manifolds in a nonlinear way. The section
closes with some comments on how existence, uniqueness, and
regularity questions reveal themselves as topological and

geometric questions in the model.

The Generalized Dirichlet Manifold for a

Rigidly Supported Boundary Condition

The extended geometric model for the Dirichlet
problem for which the boundary conditions are maintained

by rigid support is constructed in the second part of the
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chapter. For this case, elements of a particular configura-
tion manifold not only satisfy the given Dirichlet boundary
condition, but also represent a particular way of ''coming
off the boundary." In Theorem VII.4, one shows that the
generalized configuration manifold for a rigidly supported
boundary condition lies as a closed submanifold of the
generalized configuration manifold for the simply supported
boundary condition. When one restricts the finite elasto-
static operator to the new submanifold, one finds that, once
again, its differentiability properties are maintained,
Hence, one may construct ; second geometric model for the
Dirichlet problem, one which models a rigidly supported

boundary condition,
One Model Refines the Other

In the last part of the chapter, one investigates
the relationship betyeen the two geometric models for the
Dirichlet problem., By Theorem VII.4, one finds that one
may view the Dirichlet configuration manifold for a given
simply supported boundary condition as the disjoinf union
of those configuration manifolds which are associated with
the various ways of rigidly supporting the same boundary
condition. By so doing, one may bestow upon the Dirichlet

configuration manifold representing a simple support, a
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geometric and topological structure which is finer than
that which it was shown to possess in the first part of
the chapter. The section ends with some comments which
indicate that, with a finer structure on the solution
manifold, one may probe deeper into questions on the
uniqueness and local uniqueness of solutions to Dirichlet

problems.

THE GENERALIZED SETTING FOR THE PLACE

BOUNDARY OPERATOR

In Chapter four the specification of the boundary
condition of place was given a bundle formulation through
the introduction of the boundary restriction operator. In
the bundle formulation, the specification of a boundary
condition of place amounts to the specification of a cross
section g of the bundle of positions restricted to the

boundary of the body, The assignment of a boundary

"lan
condition is accomplished through the introduction of the
boundary operator '|3B, which is a linear differential

operator which takes C% sections of the bundle of positions

n into C° sections of the boundary restricted bundle

o’
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lg # € (M > C7(n|yp)

Two questions now arise which must be resolved before one
can consider the generalized Dirichlet models. Firstly,

how does the boundaryloperator extend to the Sobolev spaces?
Secondly, if one is given a boundary condition g, when can
one be assured that there exists at least one configuration
section of a suitable generalized differentiability class,
say ‘geEmka(n), which when restricted to the boundary of

the body coincides with the boundary condition:

9|p = 87

The extension of the boundary operator to the
Sobolev spaces is not a trivial result. 1In general, it is
impossible to find any section of the bundle of positions
which can model the given boundary condition without some
condition being plac;d upon its differentiability. It
becomes necessary, therefore, to investigate what conditions
on the boundary configuration section are sufficient to
guarantee at least one extension with the proper degree of
differentiability. Until recently, the only available

alternative was to conjecture that certain reasonable

8
assumptions on the boundary conditions were sufficient,
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llowever, with the advent of the linear global analysis,
sufficient conditions have been deduced by theorem,
Hormanderngtiyahegand others have shown that if one allows
the Sobolev spaces to be defined for non-integer orders,
the boundary restriction operator extends to a continuous

linear mapping of the Sobolev space of order k > 1 into

the Sobolev space of order k-1/2:

pk-1/2

lsp @ HE(M) —— (n]yp)

The significant result for the purposes here, however, is
that the linear global analysis allows one to prove that

the continuous linear extension is in fact surjective.

0
Theorem VII.l.q Let n be a vector bundle over

a compact manifold M with C® boundary 3M.
Then for k-1/2>0, the linear continuous mapping
lam : Bk (n) —— Hk'l/z(nlaM)

admits a linear continuous section, and hence 1is
surjective,

The conditions sufficient for modeling the boundary
conditions for a differential operator whose domain of
definition is an entire Sobolev space follows immediately
from this theorem. Given such a differential operétor of

order r, whose free boundary model is

D : Hk(n) —— Hk"r(n),
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and given a place boundary condition ge(nlaB), if the
derivatives of on the boundary 3B, (the ""tangential
derivaties" locally), are Lebesque square integral on 3B,
at least through order k-1/2, the one is assured that there
exists at least one mapping of B into R? éf suitable
differentiability (Qer(n)) which "models'" the boundary

condition, in the sense that

9ls = &

In particular, for the models of the finite elastostatic
problem found in the literature, where the domain of defini-
tion of the finite elastostatic operator is an entire
Sobolev space, the usual axiom of requiring the tangential
derivatives of the given boundary condition to have the same
order of differentiability as the solution is now seen to

be more than adequate,

When one adopts a more rigorous model for the finite
elastostatic problem, one in which the generalized configu-
manifold of the finite elastostatic is not an entire Sobolev
space, then the previous simple existence theorem for model-
ing boundary conditions becomes narrowed. One can achieve
the following modification:

Theorem VII.2, Let B be a materially uniform body,

simple of grade one, compact, connected, orientable,

and oriented. Let 0B denote the boundary of the
body. Let
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n=58XR?
denote the bundle of poéitions, and let
njzp = 3B X R’

denote the bundle restricted to the boundary of
the body.

a) Then for k > 3, k integer, the boundary
restriction map extends to a C* sub-
mersion

lap : EmbHN(n) —— EmbH¥-1/2(n|, )
Hence, (1) if geEmka'l/z(n|aB) has a
preimage in EmbH"(n), every g

near, g has a preimage in
EmbHK (1)

(2) If geEmka(n) is such that
g|lo = g, _then every g nearby
it in EmbHK(n) has a boundary
restriction nearby g,

b) However, for

k-1/2 k-1/2

Iaél(EmbH (n|3B))E{S€HR(n) : slaBeEmbH (”]as)}

then
-1 :
EmbHN (n) = |55 (BmbRX "1/ 2(n|5p)),

and the containment is proper.

What the proposition asserts is that although simple
differentiability conditions on the boundary value g are
sufficient to guarantee the existence of some mapping of B
into R?® which models g and has the proper degree of
differentiability, (i.e,, it lies in Hk(n)), one cannot be

assured that the mapping is in fact a configuration (i.e., it
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lies in Emka(n)). One can only be assured that if one
finds a boundary condition g which can be modeled by a
configuration, then boundary values g nearby g can be
modeled by configurations. It appears that if one wishes
to impose additional conditions to insure the modeling of
the boundary value by configurations, these conditions will
be imposed upon the body itself, as opposed to just the
boundary conditions. It is conjectured that fhe additional
conditions concern the topology of the material body. At
present, however, the problem of the additional conditions

is left as an open question.

THE EXTENDED GEOMETRIC MODEL CORRESPONDING TO SIMPLY

SUPPORTED BOUNDARY CONDITIONS

The Generalized Dirichlet Configuration Manifold
Corresponding to Simply Supported Boundary Conditions
In spite of the difficulties one encounters in
modeling a given boundary condition g in terms of a con-
figuration, if one can be assured that g can be modeled by
a configuration with the proper degree of differentiability,
one can deduce a structure for the set of all configurations

satisfying the given boundary condition. It is a closed
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C® submanifold of the free boundary solution manifold:

Theorem VII.3, Let B ©be a connected, Cm, com-
pact, materially uniform body simple of grade one
which is orientable and oriented. Let the free .
boundary finite elastostatic problem be given, rela-
tive to a reference configuration section, by

H "1/ 2 (n)

Let ger"l/z(n 5B) be a given Dirichlet boundary
condition. Then for

Div TSK : Emka(n)

[Emka(n)]g ='{seEmka(n): SIBB = g}

either

(1) [EmbHK(m)]g = p -
or (2) [Emka(n)]g . is a closed C submanifold
of EmbHX(n).

Moreover,

[EmbHK ()15 = |55 Ce) N Embik n)

for
ls“l(g) = {senk(n) : s|sp = &}-

The proof parallels that given for ck case in chapter four,
Such parallel results emphasize the 'categorical' nature of
the global nonlinear analysis setting, as mentioned in
chapter three.

From the proposition one sees that one may slice
out of the free boundary solution manifold for a finite
elastostatic problem for a given material body submanifolds,

[Emka(n)]g, which can serve as solution manifolds for the

finite elastostatic problem subject to the given place

!
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boundary condition. Since [Emka(n)]g is a submanifold

as opposed to a topological vector spéce, its topology may
be quite complicated, For two different boundary conditions
g and g the Dirichlet solution manifolds [Emka(n)]g and
[Emka(n)]g need not be diffeomorphic, The topology of the
Dirichlet manifolds, and thereby alternatives of mechanical
behavior, ma& Qary with the boundary condition and the topo;
logy of the body. In short, one may obtain results which
parallel those obtained for the ck . case in chapter four.
One may thus picture the generalized Dirichlet manifold

using finite dimensional elements as shown in Figure VII.1,

The Geometric Model for the Dirichlet Problem Built

Over the Sobolev Spaces

One may erect the geometric model for the finite
elastostatic Dirichlet problem over the Sobolev spaces by
examining how the extended finite elastostatic operator
developed in chapter six behaves under restriction to the
Dirichlet configuration manifolds corresponding to a simply
supported boundary condition. For a connected, coﬁpact
material body simple of degree one, Theorem VI.2 indicates
that the finite elastostatic operator extends to a nonlinear,
but C* mapping between the generalized free boundary

configuration manifolds and the Sobolev data spaces:



r

[Emka(n)]g

Emle(n)

FIGURE VII. 1.

A Visualization of the Generalized Dirichlet Configuration
Submanifold Using Finite Dimensional Elements,
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Diy Tg, EmbHZ*(n) —— Hz(TSKn) L =1,2,... .

If one specifies a boundary condition g, the restriction
of the extended finite elastostatic operator to the
generalized Dirichlet configuration manifolds [Emka(n)]g

determined by g determines a mapping

[DistK]l , t [EmbH2*A(n)], —— Hz(TsKn), 2=1,2,..
[EmbH2¥(n) ],

Since [EmbH2+z(n)]g is a closed submanifold of the free

boundary solution manifold, the finite elastostatic operator
maintains its differentiability properties upon restriction.
Hence, one is assured that the restricted operator is a non-
linear, C° mapping between differentiable manifolds.

The triples, consisting of the restricted finite
elastostatic operator, the diffe¥entiab1e manifolds of
possible solutions satisfying the given place boundary con-
ditions, and the spaces of data constitute the generalized
geometric model for Fhe finite elastostatic Dirichlet problem
built over the Sobolev spaces.

One can anticipate how questions of existence,
uniqueness, regularity, and local uniqueness can be viewed
in terms of this geometric model. The question of the
existence of a solution for the given data and place boundary

condition manifests itself as the question of whether there
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exists a point on the differentiable manifold of solutions
satisfying the boundary conditions which is mapped by the
finite elastostatic operator into the given point in the

data space, The question of uniquencss of solution manifests
1tself as the question of how many points on the solution
manifold are mapped into the given data point., Regularity
reveals itself as the following question: if the data point
is an element of a '"more regular" (CT) subspace of the

data Sobolev space, will the point which maps into it under
the finite elastostatic operator be simultaneously an element
of the solution manifold and an element of a '"more regular"
(Cr+£) subspac? of the free boundary solution Sobolev space?
Finally, the question of local uniqueness reveals itself as

the question: 1if a solution is given to a Dirichlet problem

for given data and boundary conditions, do there exist
neighborhoods of the solution and data points upon which the
finite elastostatic operator is one-to-one and C” both ways?
The important fact to notice is that the questions of existence,
uniqueness, regularity, and local uniqueness, which were
originally viewed in terms of the analytical model, haﬁe now
been transformed into topological and geometric queétions in

the qualitative model.
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How Existence and Uniqueness Questions Appear in the

Geometric Model

One can now appreciate the fact that by causing
the finite elastostatic Dirichlet problem in the above form
all the tools of the Algebraic Topology, the Differential
Topology, and the Differential Geometry may be directly
employed to probe the questions of existence, uniqueness,
and regularity of solution. In particular, the Inverse
Mapping theorem, which was used by VanBuren to investigate
questions of local uniqueness, represents but one tool in
the vast resource. Other tools which can be used will be

considered in chapters eight and nine.

THE EXTENDED GEOMETRIC MODEL CORRESPONDING TO RIGIDLY

SUPPORTED BOUNDARY CONDITIONS

The Generalized Dirichlet Configuration Manifold

Corresponding to Rigidly Supported Boundary Conditions

Attractive as the above model for the Dirichlet
problem is, there are questions of local uniqueness which
it cannot resolve because the structure imposed upon the
manifold of configurations is still too simple. It is of

value to see how the global nonlinear analysis provides an
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alternative way of viewing the solution manifold which
provides some additional structure. Roughly speaking, the
global analysis results allow the configuration manifold for
a given boundary condition to be viewed as partitioned into
a family of mutually disjolnt closed submanifolds, Each
closed submanifold represents a "judiciously overdetermined"
set of possible configurations for the Dirichlet problem
which, not only model the given boundary condition, but also
represent a particular way of coming off the boundary. Phy-
sically speaking, the situation corresponds to a circum-
stance where the boundary condition is maintained not in a
simple supporting manner, but in a more constraining rigid
supporting mannerﬁl

One recognizes the finer structure by realizing that
although two configurations in the above defined Dirichlet
manifold may model the same boundary condition, they may
differ markedly even very close to the boundary. The two
sections may come off the common boundary condition in very
different ways. A visualization of this situation 1is
suggested in Figure VII.2, in which two real-valued functions
defined on [0,T] model the same zero boundary condition,
but do not maintain the closeness in the H1 sense in any
neighborhood of the boundary.

For many questions concerning.the given Dirichlet

roblem, it is inconsequential whether one chooses one or
P ’ q
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BXR BXR

0 m 0 o
f(x) = Apsindx

g(x) =0

x e [0,m]

FIGURE VII, 2,

Two Functions Defined on [0,w] Which are Not Close in tho
nl  Sense.,
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the other of the two sections to model the given boundary
condition, It is sufficient simply that the boundary
condition can be modeled. However, there are some questions
where the specific choice can make a marked difference.

This consequence is particularly true in situations where
the original solution manifold for the given Dirichlet pro-
blem has many components,

If there are many ways to model the same boundary
condition in terms of configuration sections coming off the
boundary in different ways, is it possible to subclassify
the configurations into collections which represent this
feature? If so, do these subcollections possess a geometric
structure? The answers to both questions are in the
affirmative. From Palais' work, one has the following
definition of the subcollections, and theorems about their
geometric structure.

Lemma VII. 1% (The set (Hk)a (n)). Let B be a

material body, which is compdct connected,

orientable, and oriented. Let B denote the
boundary of ‘"B, Let n = B X R3 be the vector bundle

of positions of B in R, Let Hk(n) denote the
Hilbert space of all sections of n which_ are

continuous in the HK sense, and let ger(n). Then
the set
(Hk)ag(n) = the closure in Hk(n).of seCk(n) : an open

neighborhood Ug of
9B on which S{Us
QIUS

(a) 1dis a closed set in Hk(n),
(b) 15 a translate of a closed linear subspace of
HK (n).
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Namely, for
Ee(Hk)ag(n) arbitrary,
k - T k
(HE), ) = F « k) (),
where
(Hk)o(n) = the closure in Hk(n) of
seCk(n):
support of s is

disjoint from 9B,

and the sum is in the Hk(n) sense.

The elements of (Hk) (n) are those sections which not only

99
model the same boundary condition as g, (i.e. glaB = gIBB)’
but also come off the boundary in the same way as g (i.e.
§|U— = glug). Notice that although the behavior of sections
g
in this set are severely limited near the boundary of B,
they are unrestrained in the interior. The situation is
visualized in Figure VII.3.

Using the space introduced in Lemma VII.1 as the
basic building block, one may construct the Dirichlet con-
figurations manifolds corresponding to rigidly supported
boundary conditions and investigate their properties.

Definition VII.2. Given the conditions of the

previous lemma, let Emka(n) denote the manifold

of HK configuations of B in R}, Let g be an

Hk configuration,

geEmka(n).

Define the set
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7 = BXR

B

FIGURE VII. 3.

Several Elements of (Hl)3 (n) for n = [o,m] X R, B = [0,m] \
and 3B = {0,m}. 3
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(EmbHK), (n) = (%), () (] Embi* (o)

Theorem VII.4. Given the conditions of the previous
definition, let

gIBB = g’
and let [Emka(n)] denote the Dirichlet solution

manifold for the bgundary condition g which was
previously defined. Then

(a)
k
(EmbHK) 4 (n)
is a closed C°° submanifold in Emka(n) which

is also closed relative to the Dirichlet solution
manifold

[EmbEY ()]
(b) (1) Ifg_e(Emka)aq(n),then
EmbHK) _ = (EmbHX .
(Em )ag(n) (Em )ag(n)
That is to say, the specification of the
manifold is independent of the particular
element used to characterize it.
(2) If g (Emka)ag(n), then
(EmbHX) —(n) /1 (EmbH*)  (n) = p
dg 204
That is to say, manifolds modeling different
ways of coming off the same boundary condi-
tion are disjoint.,
(c) Set theoretically,
k k
EmbH = EmbH
(EmbH* ()] = | ] (EmbHS) ()
ge[Emka(n)]g
(d) The topology induced upon the set [Emb]lk(n)]g
when it is viewed as a disjoint union of
closcd submanifolds is finer than its mani-

fold topology.

The proof of the theorem parallels that of Theorem IV.5,
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As a consequence of the above theorem the previously
defined Dirichlet solution manifold may be viewed as parti-
tioned into a disjoint set of closed submanifolds. A visual-
ization in terms of finite dimensional figures of how the
partitioning can occur is offered in Figure VII.4., By a
"finer topology" one means that open sets in the manifold
topology for [Emka(n)]g may be constructed from open sets

in the "disjoint union" topology for [Emka(n)] but not

g?
vice-versa. The finer structure allows one to differentiate
between points in the Dirichlet solution set [Emka(n)]g

to a degree that would otherwise not be possible. For in-
stance, points which could not be separated in the usual
structure could be separated in the finer structure. This
property will be most important in resolving local unique-

ness questions. The reader is again referred to Figure VII.5

for a visualization of this assertion.

The Generalized Geometric Model for the Dirichlet
Problem Corresponding to a Rigidly Supported Boundary

Condition

One can anticipate how the geometric model for the
Dirichlet problem corresponding to a rigidly supported
boundary condition can be posed in terms of the Sobolev

spaces.
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L
(EmbH™) ()
agl

L
(EmbI™) ()
399 5

‘ [Embllz(r'\)]g

FIGURE VII. 4,

The Dirichlet Solution Manifold [Embllz(n)]g for the Boundary

Condition g now Viewed as a Disjoint Union of Submanifolds,
5.

(Embli )Bg(n)'
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[Hmbug(n)]y

(Emh“z)ag(n)

an open sct in the
manifpld topology of
[Emh“'(n)]g

.= The open set viewed in
the finer structurc as

i
65553 a composite of finer
> P

- open sets,

a) Open Sets in [Emsz(n)] from the Manifold Topology and
the Finer Disjoint Union TopBlogy.

[Emle(n)]g
usual viewpoint:

O

curve points are
not separated in tl
manifold topology.

o,
&+

In the finer struc-
ture each point of
the curve lies in
its own open set,

(Embi") 5 ()

b) How points in the set [Emle(n)] which are not separated
in the usual manifold topology can be” separated in the finer dis-

joint union topology.
FIGURE VII, 5,
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Thcorem VII.5. Let k > 3, and lect [Embk(n)] be .
the Dirichlet configuration manifold for the
simply ﬁupported boundary condition g. Let
de[EmbH (n)]g. Then

DivTg - . (Embu2**
K| (Embu%*™) _ (n)

99

L
)ag(n) — H (TSKH),

L= 1,2,...

i§ a nonl%near c” 'mapping frgmzthe smogth,
dlffere?tlable manifold (Emggl )aq(n) into the
topological vector space H (TSKh).
The theorem is established when one shows that under restric-
tion, the finite elastostatic operator maintains its smooth-
ness properties. By Theorem VII.4d), the disjoint union
topology of [Emka(n)]g is finer than its manifold topology.
Consequently, any property the finite elastostatic operator
has on [Emka(n)]g with respect to its usual manifold
topology, in particular continuity or smoothness, it
possesses over (Emka)aq(n) in the finer topology. Thus,
if the finite elastosta;ic Dirichlet problem can be
modeled as a smooth, nonlinear differential operator linking
the Dirichlet configuration manifold corresponding to a
simply supported boundary condition with the generalized
data space, its restriction to the finer submanifolds
corresponding to particular ways of rigidly supporting the

boundary condition is also smooth., Therefore, the triple

specified by Theorem VII.5 may be taken as the geometric
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model for the generalized finite elastostatic Dirichlet
problem with boundary condition g modeled near the

boundary by the configuration g.
THE TWO GEOMETRIC MODELS ARE RELATED

How the Finer Structure can be Used to

Examine Local Uniqueness Questions

One can now appreciate how a finer, but more com-
plicated as the one for the Dirichlet problem under rigid
support can be valuable in dissecting problems which are
locally nonunique (degenerate) when viewed in terms of the
model for the Dirichlet problem under a simply supported
boundary condition. Consider a situation where a finite
elastostatic Dirichlet problem corresponding to a given
simply supported boundary condition does not have a locally
unique solution. That is to say, a slight perturbation of
a given equilibrating configuration while keeping the boun-
dary configuration fixed in a simply supported manner results
in a new equilibrium configuration. In order to géin some
insight into the nature of the nonuniqueness, one might
inquire if it is possible to impose additional constraint
upon, the boundary of the body which would eliminate the

local nonuniqueness.
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Figure VII.5 ©b) for the finer structure of the
rigidly supported Dirichlet problem provides a visual clue
as to how to constrain the material body physically in
order to possibly remove the degeneracy. If a solution to
a given Dirichlet problem with éimply supported boundary
condition is locally nonunique, the solutions to the problem
manifest themselves geometrically in the configuration
manifold [Emka(n)]g as a curve, like the one pictured in
Figure VII.5 b). The various points on the curve, or
equilibrating configurations, cannot be separated using the
the manifold topology of [Emka(n)]g. However, if one
imposes the finer structure of the rigidly supported model,
also pictured in Figure VII.5 b), one may be able to separate
points of the curve of equilibrating solutions. 1If a parti-
cular rigidly supported Dirichlet configuration manifold
contains but one point of the curve, one is then assured
that the corresponding rigidly supported Dirichlet problem
would have a locally.unique solution. For instance, one
might find that the configuration manifold (Emka)ag(n) is
transversal to the curve, while (Emka)aa(n) is nof. One
would then know that the local nonunique;ess of the equili-
brating configuration in the simply supported problem is of
such a nature, that in order to resolve the degenerate
situation, one would have to (1) rigidly support the boun-

dary, as opposed to just simply supporting it, and
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(2) rigidly support it in a particular way, (as dictated
—. 97
by g as opposed to g), An example of this circumstance

is suggested in Chapter eight.
A SUMMARY

In summary, it has been shown that the Dirichlet
problem on finite elastostatics may be given an extended
geometrical formulation over the Sovolev function spaces
as a nonlinear, differentiable mapping between infinite
dimensional differentiable manifolds. Two ways of formula-
ting the geometric model have been presented, one corres-
ponding to a simple support of the boundary condition, the
other corresponding to a rigid support. The relationship
between the two models have been examined, and the value
of the finer structure provided by the latter model in
analyzing local uniqueness questions has been anticipated.

The casting'of the mathematical model for the finite
elastostatic Free Boundary and Dirichlet problems is now as
complete as is necessary for this thesis. One may now begin
to concentrate on how one can exploit the contempofary
mathematical methods aﬁd tools now becoming available in the
Algebraic Topology, Differential Geometry, and Differential
Topology to glean information from the models, and actually

resolve questions of existence and uniqueness.
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VIII, GAINING LOCAL INFORMATION FROM THE MODEL

In chapters six and seven, the geometric models for
the finite elastostatic free boundary and Dirichlet problems
built over the Sobolev function spaces were completed. The
erection of the models represénts the principal effort of
the thesis, In the remaining two chapters of this work one
considers how one gains information from these models,

As mentioned in the previous chapters, when one
releases the topological vector space structure on the
solution manifold one loses many of the mathematical tools
and methods previous models had been able to exploit to
answer local and global questions. What alternative methods
replace them? How does one employ the new methods? Which
conclusions carry over to the new models, and which are
altered? One cannot hope to answer these questions in this
work. However, one will find in this chapter and the next,
that new mathematical methods are emerging which will
replace those rendered inapplicable, Moreover, one will
gain an insight into how to employ them to gain existence
and uniqueness information. Finélly, one can anticipate that
many of the local existence and uniqueness conclusions may
be carried over and even augmented, while the global con-

clusions are severely altered,
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In this chapter one examines how one gains local
information from the models, The first part of this chapter
concentrates upon the development of the geometric model for
the free boundary and Dirichlet infinitesimal deformation
problems. The finite elastostatic models are linearized
using the methods of chapter three. Upon restriction to
small deformations the finite elastostatic model presented
here reduces to the well known linear infinitesimal elasti-
city models, which have proven so successful. Two points
are worth noting about the derivation of the infinitesimal
models, The linearization may be accomplished (1) by
theorem, as opposed to computation; and (2) simultaneously
for several settings of the elastostatic problem (Holder,
Sobolev, etc.).

From the linearized models one obtaines local unique-
ness results which parallel those developed in the previous
models. In addition, the geometric nature of the models
allows one to exploit differential topélogical tools to
dwell deeper into the local existence questions, and aug-
ment the previously drawn conclusions, As an example, ways
of modifying Van Buren's invertibility hypothesis tHypothen
sis 4) are examined through the introduction of the index of
a nonlinear Fredholm operator. A mathematical result of

particular relevance to this investigation is the infinite
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dimensional version of Sard's theorem proposed by Smale.

As a consequence, several questions about Fredholm mappings
under current mathematical consideration, and heretofore
regarded as abstract in nature, now become quite relevant.

Finally, other tools for investigating local
uniqueness questions are mentioned. Principal among these
is the algebraic degree of a nonlinear mapping. A sequence
of Dirichlet elastostatic problems is envisioned in which
the branching of a family of secondary equilibrating con-
figurations from a given one is anticipated by means of a
change in the degree of the finite elastostatic operator,
A1l in all, one gains some appreciation of the wealth of
untapped resources which the models make available,

As the mathematical tools with which one explores
the models are only now emerging, the comments made in this
chapter are necessarily general. They are meant to indicate
how the models introduced here permit one to formulate local
uniqueness and exist?nce questions in a geometric manner to
examine how one uses the abstract tools to explore the
questions, employing specific examples when available, and
finally to anticipate which questions show promise; and are

resolvable.
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THE GEOMETRIC MODEL FOR THE FREE BOUNDARY AND

DIRICHLET INFINITESIMAL DEFORMATION PROGLEMS

One can derive from the geometric models for the
finite elastostatic free boundary and Dirichlet problems
models for the infinitesimal deformation problem about a
given initial configuration. The derivation of the

linearized model is quite geometric in spirit,

The Geometric Models for the Infinitesimal Problems

are Derived from the Finite Elastostatic Models

For a compact, connccted, oricnted simple matcrial
body of degree one, the geometric models for the finite
elastostatic free boundary problem, and the simply supported

and rigidly supported Dirichlet problems are, respectively:

L
Div TSK : EmbH +2(n) _ Hz(TsKn), L = 1,2,,..,,
Div Tg | P : [Embﬂhzcn)]g___ HQ'(TSKn)JV:l,Z,...
K1 [EmbH (n)]g :
2+2 L.
Div TSKI 242 (EmbH )ag(n) —~— H (TSKn),R—l,Z,...
(EmbH )8 (m)
¢

As established in Theorem VI,2, Theorem VII,2, and

Theorem VIT.4, the finite elastostatic operators are

2

differentiable mappings, At a given H2+ differentiable



255

configuration, say s, the derivative of the operator is

a continuous, linear mapping of the tangent space to the

H2+2 configuration manifold at s into the tangent space

to the body force density space at Div TsK(S)' Symbolically,

one may write

d(DivTg ) (s): T(EmbH "2 (1)), — T(Hl(TsK(n))DivT

sK(S)’

d(DivTg Sy )(s): T([EmbH 2(m] gls —
[EmbH (n)]
%
T (H (TSK(n)))DiVTSK(S):
d (DivT J(s): T((Em bH ) (n)) N
SK'(Embn’”z)agcn) 997 7s

L
T (H (TSK(n)))DiVTsK(S) ,
and one may visualize the derived models geometrically in
terms of finite dimensional elements as shown in Figure

VIII,1,

2+2
The Derived Models are the H Extension of the

Classic Linearized Models

One may relate the derived models to the classical

linearization of the finite elastostatic models about the



l(lth (n)) . T(“z(TS (n)))s
lp K

I d(DiVTy ) (sy)

o" ' \
L/ )
4 7
r([EmbH (n)] )
[Embll (n) ]
Div Ts|<
N .
\ b
EmbHY 2 ()
' 2
Sy . H (TSK(n))

FIGURE VIII, 1.~

A Visualization of the Finite Elastostatic Free Boundary
and Simply Supported D1r1chlet Models Using Finite Dlmen51ona1
Elements,
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. given initial configuration, The nonlinear analysis tools
presented in the latter part of’chapter three permit one to
establish by thcorem what the tangent spaces in the derived
models look like, and what the derivative of the finite
elastostatic operator is. For convenience of the develop-~
ment the initial H2+2 configuration is taken to be smoothly
differentiable, say Sy |
As the generalized data space Hz(TsKn) is a
Hilbert space, its tangent space at any point 1s easy to
specify, It is but a copy of the Hilbert space itself, and
the identification is a natural one:
T (T n)) = vt (T, n),
K 1VT5K(SW) S
The tangent space to the configuration manifold at sy is
obtained in an equally straightforward manner, By
Theorem VI,2, Theorem VII.2, and Theorem VII.4, the model
spaces for the free boundary, the simply supported Dirichlet,
.and the rigidly supported Dirichlet bonfiguration manifolds

are, respectively, ﬂ2+2(n), [H£+2(n)]o, and (H2+2

)oo (M)
where '"o'" is the zero section in n. By Theorem III.1, the
tangeﬁt spaces at sy are isomorphic with the model spaces.

Hence, one has the identifications

TEmbH 2y 1t )

T(EmbHE*2 ()1 ). » [HA*2(m)],

g7 sy
2,4-2) £+2

TCEmbH D)y (), (H

)0 (M),
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although the identifications are not canonical,

Finally the derivatives of the finite elastostatic
operators are prescribed by Theorem III.4, 1If A(DiVTSK)Sw
represents the classic linearization of the finite
elastostatic free boundary operator at sy, (see

Corollary III.l),
A DiVT C 18] C I
( SK)S!]) . ( ) ( s I)J

a linear differential operator of order two, then the

derivative of the linearized operator extended to the

H2+2 L+2

function spaces is the H extension of the

linearization,

AOVTs) (s, = W2 A@ivTg)sy): TEbHZm)) ~ 82y + i),
L =1,2,... .

Applying the theorems in a similar manner to the Dirichlet
problems, one determines that the derivatives of the finite
elastostatic Dirichlet operators at sy are the Sobolev

extensions of their classic linearizations:

= B2 (A(DivTg

d(DivTg
<l [ Embrt*2 (M1, K'[Embﬂ“zcn)lg

) gy )

Sy

T(EmbH 2 ()] g) g, v 1Pl —— P
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d(DivVT ) (sy) = HA* 2 CADivT

sKl(meu**z)ag(n) SKI(EmbH2+2)ag(n))sw):
chnmbn“*z)agcn))sw s a2y ) —— )

The Derived Models are the Geometric Models
for the Infinitesimal Deformation Problem

at the Initlial Configuration

Viewed in this manner, the differentiation of the
finite elastostatic models at sw reduce to the geometric
models for the infinitesimal elastostatic free boundary and
Dirichlet problems about the initial configuration Sys
built over the Sobolev function spaces.quhe ldentification
may be made more transparent if one takes the reference
configuration s, to be the initial configuration, and if

one represents the derived model in terms of a local

coordinate representation about it, For example, let
EmbHZ+2(n) be the solution manifold for the finite elasto-
static free boundary problem, and let s, denote both the

reference configuration, and the configuration about which
the linearization is formulated. Let the finite elastostatic
operator be specified in terms of a response function as

Definition V.1)

Div Tg, = Div'(Hs ), Vy.
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For any point peB, let (yoxl, YO,U) be a vector bundle
chart on n., Let the parametric representation of the
finite elastostatic operator about p relative to the

induced charts by (see Chapter IV)

i
25 (hg G(X,F)),

i

o the local coordinate representation of the response

for th
function, relative to the induced charts
-1,

Yo (U)XL(R*R®) , L(R®*R?)

(T, ¥ 8 Tv,) Hg,

(Ts, 8 Tyo)
X F o+ (hg )l(x,F)

By theorem, the classical linearization of the operator

has the parametric representation

i 18 . oo > ©0
2 Qpghy O5F) | ) 2 3 (A, 00) = €7 > ¢7(m)

The HY*2

extension of the linearized operator is the infi-
nitesimal elastostatic free boundary operator for the
infinitesimal deformation problem about the initial

configuration s built over the Sobolev function,spacesﬁg

K?
Thus for small deformations about a given configuration, the
finite elastostatic model presented in this work reduces

to the linear elastostatic model for small deformations

superimposed upon a given strain. One thereby gains the
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reassuring result that, for local questions, the conclu-
sions drawn by the currently existing infinltesimal

theories are sustained by the model developed here,

The Models for the Dirichlet Infinitesimal
Deformation Problems are Restrictions of the

Free Boundary Infinitesimal Deformation Model

As one might intuit, the geometric models for the
rigidly supported and simply supported Dirichlet infinitesi-
mal deformation problems at sy are not independent of each
other, or of the free boundary infinitesimal deformation
model, One may establish that the manifest themselves as
restrictions of the linearized free boundary problem to
various subspaces of the tangent space at sy. Figure VIII.1,
anticipates this idea,

The simply supported Dirichlet configuration mani-
fold lies as a close§ submanifold of the free boundary one,.
Its tangent sﬁace at s, may then be viewed as a linear

subspace of the free boundary tangent space at s, :

B2y, 8= 1,2,...,

2+2
T ([EmbH™" (”)]g)s,,  T(Embl sy

or equivalently, in terms of model spaces for the manifolds

2+2

2y, « ¥ e = 1,2,
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Moreover, the submanifold nature of the Dirichlet configura-
tion manifold insures that it "splits'" locally relative to
the free boundary manifold. Consequently, the derivative

of the Dirichlet finite elastostatic operator may be viewed
as a '"partial derivative'" of the free boundary operator, or
more properly, as the restriction of the derivative of the
frce boundary operator to the tangent subspace to the
Dirichlet submanifold., The model for the simply supported
Dirichlet infinitesimgl problem at sy thus may be dis-
played as

d(DivTg 042 ) (sy) = d(DivTs,) (sy)

<
[EmbH™ ~ (n)]
; T([EmbH* 2 ()] )

T([Emsz+2(ﬂ)]g)sw* T(H“(TSK”))DivTS

In a like manner, the model for the rigidly supported
Dirichlet infinitesimal problem at Sy whose solution mani-
fold lies as a closed submanifold of the simply supported

one, may be cast into the form

< (sy)
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d (DivT 042 ) (sp) = d(DivTg ) (sy) :

< | (Embr**2), (n)
%9 T((Embu“+2)ag(n))

Sy

242

T((EmbH T (T

)y ()
g

P S\p sKn))DiVTSK(Slp)
Although the relationship between the free boundary
and Dirichlet models developed here seems an obvious one,
it is by no means trivial. As will be seen presently, one
gains a valuable tool for examining local uniqueness ques-

tions when one can "judiciously overdetermine' a system by

imposing stronger and stronger boundary conditions.

The Infinitesimal Deformation Models are the Sobolev
Counterparts to Van Buren's Infinitesimal

Deformation Model

One may also develop a relationship betwcen the
lincarized models devecloped here and the infinitesimal
models developed by Van Buren, The infinitesimal elasto-
static operators developed above closely parallel those of
Van Buren, with the only difference being that the Sobolev
functor is used here, as opposed to the Holder functor.
Most particularly, notice that the derivative of the finite

elastostatic free boundary operator introduced here, and
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Van Buren's infinitesimal free boundary operator are
respectively, the Sobolev and llolder extensions of the

same classical linear operator, A(DivTSK)SK. This parallel
is precisely what is required by Theorem III.4. By the
theorem, Van Buren's frec boundary infinitesimal deforma-
tion model would result if one were to ecxtend the gcometric
model for the finite clastostatic frece boundary problem
introduced in chapter five to the Holder function spaces,
as opposed to the Sobolev spaces, using the methods of
chapter three. Naturally, the finite elastostatic free
boundary model which would be so obtained would still differ

from Van Buren's finite deformation.
A Comment on How the Local Models were Derived

Two points are worthnoting about the derivation of
the infinitesimal deformation models presented here.
Firstly, the linearization of the models are gained by
theorem as opposed to intricate norm calculations. By
using the tools of the nonlinear analysis, one may remove
much of the computational aspects of the linearization
procedure, which tend to confuse the local problem rather
than clarify it. Secondly, the linearization process
presented here is '"categorical'" in nature, That is to say,

the theorems by which one linearizes the model may be
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applied without modification to models, cast over the
Sobolev function spaces, the Holder function spaces, or any
other function space setting whose associated functor
satisfies the axioms introduced in chapter three. Hence,
one may begin to see most clearly which aspects of the
linearized problem are independent of the particular func-
tion setting chosen, and which are not. Such insight is
invaluable for understanding the models and using them

effectively.
HOW THE LOCAL UNIQUENESS QUESTIONS MANIFEST THEMSELVES

The Meaning of Local Uniqueness and Local

Existence Assertions

It is advisable to standardize what is meant by a
local uniqueness or local existence assertion in elasto-
statics., Let St be the body force density equilibrated
by the configuration sy for a given elastostatic problen.
To say that the finite elastostatic operator is locally
unique about sy means physically that if one perturbs
the equilibrium configuration sy by a suitably small
deviation while maintaining fhe body force s, and any

Dirichlet boundary conditions which may be imposed by the

problem, then the resulting condition of the body is not an
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equilibrium state, but a dynamic one. In this sense, the
configuration sy is the only one in its immediate vici-
nity which equilibrates the body force density s+ llence,
it is the only onec in its immediate neighborhood which is
associated with s, by the finite elastostatic operator.
Notice that if one releases the restriction on the size of
the perturbation it is possible to achieve a second equi-
librating configuration for sj. However, it will be
related to SW by a finite deformation. Also notice that
the local uniqueness assertion involves the boundary con-
ditions imposed. It is conceivable that for the free
boundary problem the finite elastostatic operator is not
locally unique at Sy but for one of the Dirichlet pro-
blems the operator is locally unique.

If a configuration Sy is equilibrated by a body
force section s} in a given elastostatic problem, and
if one perturbs the body force section by a small deviation,
while maintaining any boundary condition which might be
imposed, then one is assured that there is at most one
configuration nearby the initial one which will restore
equilibrium, The prohibition "at most" is necessafy because
there may exist no configuration nearby the original one
which restores equilibrium. To assert that every body
force section nearby sy is equilibrated by a configura-

tion, and that the prohibition "at most' may be removed,
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is to assert that the finite elastostatic opcrator possesses
a local existence property at s,. Notice that, once again
the boundary condition enters into the formulation of the
assertion, It is conceivable that for a given material the
finite elastostatic operators for the Dirichlet problems
exhibit no local existence property, while the free boundary
operator does. Notice also that the local existence ques-
tion has an elastodynamic manifestation as inquiring which
acceleration fields may be induced upon the body by perturb-
ing the equilibrating configuration while maintaining the
boundary condition and initial body force. To fully com-
prehend this point of view one must be familiar with the
relationship between the elastostatic and elastodynamic

problems.q

A Geometric Representation of Local Existence and
Local Uniqueness Assertions: Van Buren's Approach
How may one geometrically represent a local exis-
tence or uniqueness property for a finite elastostatic
operator? As a beginning, one may adopt the specification
introduced by Van Buren, in which the properties find
expression in the immersive and submersive characteristics

of the finite elastostatic operator.
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97
Recall that a mapping between two manifolds

f:X

P f(p)

Y

is an immersion at a point p of X if the mapping takes

a neighborhood of p in X onto a neighborhood of a
submanifold of Y about f(p) in a diffeomorphic way.

The mapping is a submersion at p if there is a neighborhood
of p in X which is taken onto a neighborhood of Y about
f(p) by the mapping. When one applies these concepts to
the gcometric models for the finite elastostatic problems,
one finds that the (analytical) assertion that a given equi-
librating configuration is locally unique is satisfied by
the (geometric) assertion that the finite elastostatic
operator is immersive at the given configuration.

Similarly, if one is given a body force density, and a con-
figuration equilibrating it, the (analytical) assertion that
.the finite elastostaﬁic operator possesses an equilibrating
configuration for all body force densities gained by a small
perturbation from the given one is satisfied by the
(geometric) assertion that the operator is a submersion

about the given equilibrating configuration.
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The Sobolev Counterpart to Van Buren's Result

A criteria for determining when the finite elasto-
static operator exhibits immersive or submersive charac-
teristics follows if one invokes the inverse mapping
thcorenqu'The theorem relates these characteristics of the
operator to properties of the derivative of the operator.
When restated in the context of the finite elastostatic
operator the local uniqueness and cxistence criteria 1s
glven by the following thcorem

Thcorem VIII.,1. Let

DivTg, : Embi**%(n) — it (Tg n), 2= 1,2,...

be a finite elastostatic free boundary problem

for a smooth, materially uniform, simple, connected
body. Let s be a configuration equilibrated

by a body force density sy. Then

a) a sufficient condition that sy be a locally
unique equilibrating configuration for sy is
that the finite elastostatic operator is an
immersion at sy, for which a necessary and
sufficient condition is that the derivative
map

d(DivTg,)gy T(EmbH£+2(n))sw HR(TSK(H))

is injective (one-to-one), and its range
splits.

b) a sufficient condition that the finite
elastostatic operator possesses a local
existence property at sy is that it be a
submersion at sy, for which a necessary and
sufficient condition is that the derivative
map

d(DiVTSK)Sw : T(EmbH2+2(n))sw _— Hz(n)
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is surjective (onto), and its kernel splits;
¢) a sufficient condition that for cach body force
in some 112(n) ncighborhood of sy, there
cxists a unique cquilibrating configuration in
some ncighborhood of sy is that the 1 *
extension of the linearized clastostatic
operator at sy
. L+2 2

d(D1VT5K)5¢ ; T (EmbH (n))sw——— HY (n)
be a one-to-one and onto linear mapping.

The theorem represents the counterpart to Van Buren's
results for the geometric models built over the Sobolev
function spaces. It indicates that one, indeed, can gain
local information about an elastostatic system from the

models presented here, and that the principal local existence

and uniqueness result carries over to the Sobolev setting,
AUGMENTING VAN BUREN'S RESULTS: THE SMALE-SARD THEOREM
Some Difficulties with Using Van Buren's Theorem

As mentioned previously, it is difficult to use
Van Buren's result or its Sobolev space counterpart,
Firstly, the theorem provides a criteria which, if satisfied
assures that the finite elastostatic operator possesses
local existence and uniqueness properties. The theorenm
does not, however, insure that criteria are satisfied. To

~overcome the difficulty Van Buren adopted his fourth axiom,
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the invertibility hypothesis, The vulnerable aspccts of
this axiom were examined in chapter two.

A second difficulty is the restrictive nature of
the geometric representation of local existence and
uniqueness properties. To equate these properties with
the submersive and immersive character of the finite
elastostatic operator is too stringent. For example, the
theorem would not allow one to attribute local existence
and uniqueness properties to the one-dimensional nonlinear
mapping.

f(x) = x°3
about the origin. In general, there are many elliptic
differential operators which are locally unique, yet fail
to satisfy the criteria of the theoremn.

To examine if Van Buren's local existence and
uniqueness results can be augmented, and if less stringent
conditions can be imposed upon the elastostatic operator,
one may employ some additional mathematical tools. One
promising opportunity lies in a generalization of the Sard .
theorem to infinite dimensional manifolds made by S. Smale.
After some preliminaries, the results from his work will be

summarized, and applied,
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The Kernel and Cokernel Spaces for the Linearized

Elastostatic Operator

In characterizing the immersive and submersive pro-
perties of a finite elastostatic operator, two subspaces
of the tangent spaces play a pivitol role: the kernel of
the derivative operator, and the cokernel, or complement
to the image of the derivative operator. The kernel of the
derivative of the finite elastostatic operator is the
linear subspace of the tangent space T(EmbH2+2(n))sw which
consists of those elements which are taken into the zero

element of Hl(n):
ker{d(DivTs )sy)} = {ueT(EmbH**2(n))g, : [4(DIvTg ) ] u=0} |

< T(EnbH 2 () g .

Since Hz(n) is a Hilbert space, the cokernel of the deriva-
tive operator may be defined as the subspace in Hl(n) which
is the orthogonal complement to the image of the derivative
operator under the inner product,

L wh )

]

coker[d(DistK)sw] = [Im(d(DistK)sw

The dimensions of the kernel and cokernel spaces can
characterize when the finite elasostatic operator exhibits

‘local uniqueness or local existence properties, In order
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for the finitc clastostatic operator to be immersive at

sy its derivative must possess a zero dimensional kernel.
To be submersive at sy, 1its derivative must possess a
zero dimensional cokernel, The local existence and unique-
ness result gained in Theorem VIII.1 rests upon the condi-
tion that the dimensions of the kernel and cokernel spaces
of the derivative operator be simultaneous zero, a rather

restrictive condition.

The Index of a Fredholm Mapping

The important point to notice about the relation-
ship between the kernel and cokernel spaces and the
immersive and submersive properties is that the certain
algebraic quantities associated with the operator (the
dimensions of the kernel and cokernel spaces) characterize
certain geometric/topological properties of it (immersion
and submersion), Thq augmentation of Van Buren's results
provided by the Smale-Sard theorem rests upon the relation-
ship between another algebraic quantity, the index of a
mapping, and the geometric and topological prOpertiés of
its image and.preimage.

In the theory of finite dimensional linear spaces,

-if one is given a linear operator between two vector spaces
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L ¢tV e— — W,
then the index of the operator is the integer which is the
difference of the dimcnsions of the kernel and cokernel
spaces of the operator:

index L = dim ker L - dim coker L

Roughly speaking, the index measures the size of the ker;el
of the operator relative to the cokernel.

When one passes to the theory of infinite dimen-
sional linear spaces, the index is defined only for a

subclass of linear operators, the Fredholm operators:

100
Definition VIII.1. A (linear) Fredholm operator
is a continuous linear mapping between Banach spaces
L:El—-———Ez

which has the properties:

a) dim Ker L < o

b) ImagelL is closed

c) dim Coker L < =

For L Fredholm, define the index of L to be
the integer

index L = dim Ker L - dim Coker L
The definition allows one to specify a particular

class of mappings between infinite dimensional manifolds,

the nonlinear Fredholm mappings.

. . 0]
Definition VIII.Z2. Let

f : M —N
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be a differentiable mapping between Banach (infi-
nite dimensional) manifolds.

a) £ is a Fredholm map if at each point x€M
the derivative map

Df(x) : TyM —— Te(x)N
is a linear Fredholm operator
b) If f is a Fredholm mapping, on each compo-
nent of M define the index of f to be
the index of Df(x) at some, hence all, x
in the component.

When one views the definition in terms of the
geometric model for the finite elastostatic free boundary
problem, and Theorem VIII.1, one sees that finite elasto-
static operators which satisfy the Sobolev counterpart to
Van Buren's invertibility hyppthesis are particular examples
of Fredholm mappings, namely those f such that

dim Ker Df(x) = dim Coker Df(x) = O
Thus the class of finite elastostatic operators which are

Fredholm mappings augment Van Buren's class,
Thé Smale-Sard Theorem

In finite dimensional theory Sard's theorem gives
one information about the extent to which a function between
two manifolds fails to be submersive, If

f: M — N

is a differentiable mapping between finite dimensional
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manifolds, one terms xeM a regular point if the derivative
map

DE(x) + TM —— Tgcyy

is surjective, and a singular point if it is not. The
image under f of a singular point is called a critical
value; all other points in the range of f are called
regular values, Sard's theorem relates the extent to which
the range space consists of critical values to the dimen-
sion of the spaces involved, and the differentiability

of the map.

1oL
Theorem VIII.2 (Sard). Let U be an open subset
of RP, and 1let
f: Uy — RrY

be a C° map, where s>max (p-q,0). Then the
set of critical values in R9Y has measure zero.

Smale's work extends Sard's theorem to a particular class
of mappings between infinite dimensional manifolds, the

nonlinear Fredholm mappings.

' 103
Theorem VIII.3. Let

f: M— N .
be a €% Fredholm map with

q >max ( index f,0)
(on each component). Then the regular values

of £ are "almost all'" of N; that is to say, except
for a set of the first Baire category.
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Of particular interest are the following corollaries to the

theorem,

Local Uniqueness Results for the Free Boundary Problem

104
Corollary VIII.2, If

"f ¢+ M — N
is a C9 Fredholm map, q>(index £,0), then for
almost all yeN, its preimage £~ "(y) 1is a
submanifold of M whose dimension is equal to
index f, or is empty.

105
Corollary VIII,3. 1If

f: M— N

is a Fredholm map of negative index, its image
contains no interior points,.

When one applies the Smale-Sard theorem to the

geometric models for the free boundary and Dirichlet elasto-

static problems,

one achieves results which greatly enhance

Van Buren's work, and generate some rather provocative ques-

tions which appear quite promising and, most importantly,

resolvable,

index of a Fredholm elastostatic operator to (1) the

The first corollary permits one to relate the

existence of equilibrating configurations for a given body

force,

and (2) the extent of local nonuniqueness. The

second corollary gives one a nonexistence theorem.
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Proposition VIII.1 (Free Boundary Version) Let
. L+2 L
Div TSK : EmbH (n) — H (TSKn)

represent a free boundary finite elastostatii

problem. Suppose on each component of EmbH +2(n)

the finite elastostatic operator is a Fredholm map.

Then for almost all body force density sections

sy eH (TsKn), the set of configuratioas equilibra-

ting sy in each component of EmbH +z(n) is a

submanifold of (finite) dimension index DistK,

or is empty.

Proposition VIII.2, (Free Boundary Version) Under

the hypotheses of the previous proposition, if the

index of the finite elastostatic operator is nega-
tive on any component, then almost all body force
densities are incapable of being equilibrated by
configurations lying in that component.

The theorems indicate that the more informative
quantity with which to study local uniqueness properties of
the finite elastostatic operator is the index of the map,
as opposed to the separate dimensions of the kernel and
cokernel spaces. The index is constant on each component
of the solution manifold, whereas the dimensions of the ker-
nel space, for example, can change abruptly from configura-
tion to configuration. If the index of the operator is
greater than zero on any component, then the finite elasto-
static operator is locally nonunique about most equilibrating
configurations in that component. Finally, the actual value

of the index gives one a measure of the extent of local

nonuniqueness,
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Local Uniqueness Results for the Dirichlet Problems

One may also formulate the propositions for the
Dirichlet settings and obtain local existence and uniqueness
results. One of Smale's own applications of the generalized
Sard theorem is a local uniqueness theorem for the nonlinear,
elliptic Dirichlet problem of second order built over the
Holder function spaces,

106
Corollary VIII,3, (Holder Space Version) Let Q

be a bounded region in R" with smooth boundary
oft
(1) Let

@ : CS*2@) — 5@ s >0
o (u)

be a nonlinear partial differential
equation of second order defined in terms of the
map

F : Jz(ﬁ) — R
by @ (u)(x) = F(jou)(x) = F(x,u(x),Du(x),d?u(x))

(2) For C%(R) the space of functions on &
which are Holder continuous of order o, let

£.ec2tO (@)
and define

c2+% ) = {fec?** (@) £] = £4] )
fo 1) 10!
Then:

(a) If F 1is a (strongly) elliptic operator
then the induced map

o ;2% —— (M
fO
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is a Fredholm map of index zero.

(b) For almost all aeC* (W) the set of
u C%*a(ﬂ) such that
o

¢(u) (x) = g(x)
is discrete,

The corollary enhances the local uniqueness results of
Van Buren by allowing one to release somewhat the stringent
requirement that the derivative operator be invertible at
each configuration. Moreover, the second assertion of the
corollary indicates clearly how the local uniqueness con-
cousions do not necessarily give rise to global unique ones.

Similar theorems may be formulated for the geometric
models for the Dirichlet settings presented here. For full
generality, they are formulated in a manner paralleling )
Corollary VIII.Z.

Proposition VIII.3, (Simple support version) Let

B OB M|y,

specify a boundary configuration which models a
Dirichlet boundary condition, Let

Lh2 £
DivT : [EmbH ()], — HY¥(T. n)
SKI[EmbH'Q"'"Z(T])]g & 7K

-

specify a simply supported Dirichlet problem,
Suppose on each component of the configuration
manifold the Dirichlet finite elastostatic operator
is a Fredholm map.
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a) Then for almost all body force density sec-
tions sbenz(n), the set oi configurations
in ecach component of [Embil +2(n)] equili-
brating it and satisfying the boungary condi -
tion is a submanifold of (finitc) dimension
index (DivT

SK'[EmbH£+2(n)];’

or is empty.

b) In particular, if the index is zero on any
component, then the set of equilibrating con-
figurations which satisfy the boundary condi-
tion is discrete,

Proposition VIII.4 (Rigid Support Version) Let
g : B——n

designate a particular configuratioﬁ which models
the Dirichlet condition g, and let

L+2

(EmbH™*2) () — (T3 M)

DiVTS
“IEmbut*2),  (n)

specify a rigidly supported Dirichlet problenm.
Suppose on each component of the configuration
manifold the finite elastostatic operator is a
Fredholm map.

a) Then for almos£ all body force density
sections sy€H”(N) the preimage under the
finite elastostatic operator in each component
of the configuration manifold is a submanifold
of finite) dimension index (DistKl

(EmbH*2)  (m)

09

or is empty,

b) In particular, if the index is zero on any
component, then the preimage is a discrete
set. ’

)
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How the Local Uniqueness Conclusions of the

Various Models are Related

The local uniqueness conclusions drawn from the
free boundary and Dirichlet models are not independent of
each other. Since the finite elastostatic operators for
the Dirichlet problems arise as restrictions of the free
boundary operator, one gains the following results linking

the indices of the operators,

Lemma VIII.1, Let geEmle+2(n) be an H2+2 con-

figuration, and

g| = g,
9B

Then the indices of the finite elastostatic operators,
associated with the rigidly supported Dirichlet
problem, the simply supported Dirichlet problem,

and the free boundary problem, when defined, are
ordered by the relation

L+2 ) =

index (DistK‘
(EmbH* ") 50 (n)

.

index (DivT

| A

242

)
I embrt* 2y,

index DistK.

As one imposes stronger and stronger boundary conditions,

the index of the elastostatic operator decreases,
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A provocative avenue of inquiry opens as to the
role played by the boundary condition in affecting local
existence and uniqueness conclusions. One may examine
-elastostatic problems which are locally nonunique in the
free boundary setting, but locally unique in the Dirichlet
boundary setting., Little work has been done on this aspect
of the existence and uniqueness problem, The principal
efforts in the literature are directed towards determining
what conditions can be imposed upon the response function
for the finite elastostatic operator to insure local
uniqueness in any, hence all Dirichlet problems, Neither
the manner in which the place boundary condition is imposed,
nor the the possibility of local uniqueness holding for one
boundary condition, but not another usually enter into the

treatment,

How Three Locally Nonunique Sjituations Manifest Themselves
Using the primitive tool provided by the relation-
ship among the indices of the three finite elastostatic
/
operators one may begin to examine how local uniquéness
conclusions may vary with boundary conditions, For example,

one may discern between three types of locally nonunique

situations associated with the finite elastostatic problem.
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Let a simple elastic material body be in a configuration

sy equilibrated by a body force sp. The first type of
local nonuniqueness results when the free boundary finite
elastostatic operator is not locally unique at sy, but

a simply supported Dirichlet finite elastostatic operator
is. In terms of the geometry of the configuration manifolds,
the situation may be visualized in the following way. To
say that the free boundary operator is not locally unique

at sy 1is to say that associated with the body force sy
are many configurations in the free boundary configuration’
manifold, of which sy is but one. The index of the free
boundary finite elagtostatic operator would be greater

than zero; the preimage of sy would be a manifold of
dimension index DivTSK. Geometrically, it would be
impossible to separate sy from other equilibrating confi-
gurations using open sets of the free boundary configuration
manifold EmbH£+2(n).

However, if one restricts to a suitable simply
supported Dirichlet configuration submanifold [EmbH2+2(n)]g
containing sy, local uniqueness would be characterized
by the zero index of the associated Dirichlet'finiie
elastostatic operator. Geometrically, one could separate
sy from other equilibrating configurations using open sets

of [EmbH%*?

(n)]g. A visualization of this nonunique
situation is given in Figure VIII.2.,a), using finite dimen-

sional elements,
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a) Noigkborhood of
Embii” (n) about Sy
(local nonunique%ess)

0

1) Ncighhorhood of
[EmbDHT (M) ] about'sw
(local uni&ueness)

b) NeighBorhood of

[EmbH" (n)]_ about s
(local nongniquenesg)

r'..‘l

b) Neighhorhood of

(EmbH™) 4 (n) about s
(Tocal tfliqueness) X
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Preimage of
| sy, under
h Div TS

K

(Emle)ag(n

c) Neighborhood of [Emle(ﬂ)]

about Sg (local non-
uniqueness)

[EmbH“(n)]g

Emsz(n)

A

[Z

¢) Neighborho6d of (EmbHR')3
about s (local non- g
uniqueness)

(

FIGURE VIII. 2.

Geometrically Visualizing Three Situations of Local Nonuniqueness,
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One is well acquainted with physical situations
corresponding to this type of local nonuniqueness. For
example, if a homogeneous isotropic hyperelastic solid
subject to no boundary conditions possesses an equilibrating
.configuration sy for a zero body force density field,
then any rigid body motion from the configuration will
result in a new equilibrating one, If the free boundary
operator is Fredholm, its indewaould be six, indicating
the extent of local nonuniqueness at sy. However, if sy
is a natural state, then the imposition of a simply supported
place boundary condition suffices to insure that sy 1is

107
locally unique.

A second type of local nonuniqueness results when
both the free boundary and simply supported Dirichlet
finite elastostatic operators are locally nonunique at Sy s
but the rigidly supported Dirichlet problem is locally
unique. If the elastostatic operators are Fredholm, the
situation would revegl itself as one where the indices
of the free boundary and simply supported Dirichlet finite
elastostatic operators, though ordered, are both positive,
while the index of the rigidly supported Dirichlet'operator
is zero, Geometrically, the situation is one where sX

may not be separated from other equilibrating configurations

using open sets in [EmbH£+2(n)]g, but may be separated
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from them using open sets in (EmbH£+2)ag(n). A visualiza-~
tion of this instance is given in Figure VIII,2.b),

A physical situation corresponding to this type of
nonuniqueness can be conjectured/ogConsider a homogeneous,
isotropic cylinder subject to‘a Dirichlet boundary condi-
tion. Suppose the boundary condition is so chosen, and the
response of the material is such that the cylinder admits
an interior buckling as depicted in Figure VIII.3.a).
Assume that the buckling may be axially symmetric. Then
for any cross-sectional plane of the cylinder the locus
of possible buckling of the centerline of the cylinder would
be a circle centered about the axis. Given any buckled
configuration sw satisfying the boundary condition and
a zero body force, any perturbation of the buckled point
around the circle would result in a new equilibrium con-
figuration, as depicted in Figure VIII.3.b). As the
propagation of the buckled point could be made as small
as desired, the simply supported Dirichlet problem would
exhibit local nonuniqueness at Sy

However, if one further constrains the boundary
condition by requiring that the equilibrating configuration
come off the boundary in a definite, nonisotropic way,

by rigidly supporting the boundary condition, for example,



a) An Instance of the Buckling is Envisioned,

b) A Plane Showing the Locus of the Possible Buckling,

g

c) The Locus of the Buckling Under Suitably Chosen Rigid Support,

FIGURE VIII, 3,

An Instance of Nonuniqueness in the Simply Supported Dirichlet
Boundary Condition,
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then it may be possible to reduce the equilibrating
buckled configurations in the plane section to antipodal
points of the éircle, as visualized in Flgure VIII.3,c).
As such equilibrating configurations are related by a
finite deformation, the equilibrating configurations

are locally unique in the rigid support setting,

The third type of local nonuniqueness occurs
when the finite elastostatic operator has a nontrivial
index in all three settings, A geometric visualization
of the configuration manifold for this situation is
given in Figure VIII.2.c). A physical situation corres-
ponding to it arises from the previous example, If one
chooses a rigidly supported model for the boundary
condition where the way in which the configuration comes
off the boundary is itself required to be isotropic,
then one again loses the local uniqueness property,

As cursory as these examples are, they do emphasize
the fact that for the nonlinear models presented here,
local uniqueness conclusions drawn for one boundary

condition need not hold for another.
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They indicate how one can dissect a locally
unique elastostatic situation by judiciously imposing
stronger and stronger boundary conditions., Moreover,
the index is revealed as a simple algebraic indicator
for characterizing when one attains a locally unique
situation, or the extent of non-uniqueness, As more
mathematical information becomés available on the compu-
tation of the index of a mapping, how it depends upon
the topology of the domain of definition, and how it
behaves under the restriction of the mapping, a more
complete understanding of how one can analyze nonunique

finite elastostatic problems will emerge,

Questions Outstanding in the Application of the

Smale-Sard Theorem

Several promising areas of investigation arise when
one views the Smale-Sard theorem in the context of the
elastostatic problem. The first deals with the availability
of studying finite elastostatic operators which are
Fredholm, A second deals with determining when the operator

is Fredholm., A third seeks ways to characterize local
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existence and uniquchess properties of Fredholm maps.

Onc can formulate questions in these areas which
appear resolvable in the immediate future, Firstly, how
restrictive is the precondition of Fredholmness on the
finite elastostatic operator? Secondly, if one knows that
the derivative of a finite elastostatic operator is a
Fredholm operator at one configuration, under what condi-
tions can one view the finite operator as itself a Fredholm
mapping? Thirdly, if one is given a finite elastostatic
operator with the Fredholm property, can one determine its

index without direct knowledge of its kernel and cokernel

spaces?

Surprisingly, these questions currently are the
focus of much mathematical activity. However, they are
disguised in terms of abstract investigations. For example,

the first two questions are subjects of interest in the
inquiry into whether, in the class of all mappings between
Banach manifolds, characterize those which are Fredholm,
and those which can be approximated by Fredholm mappings.
The reader is referred to the literature to examine the
extent to which abstract results have been obtained, but
/04,110
have yet to be applied.
Resolution of the third question has been advanced

significantly by the identification of the index of the

mapping, the mapping itself, and the algebraic topological
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i) 1
properties of the solution manifold/’ Although the speci-

fic results are too complex to present here, it deserves
mention that results like these point once again to the

intimate relationship between the operator, the topology
of the configuration manifold, and the existence and

uniqueness properties.
OTHER MATHEMATICAL TOOLS
Local Uniqueness and the Degree of a Mapping

The application of the Smale-Sard theorem represents
but one example of the powerful mathematical resources which
become available with the introduction of the geometric
models for the finite elastostatic free boundary and Dirich1e£
models, Another prominent tool is the algebraic degree of a
nonlinear mapping.,.

In chapter four one found that one may associate

with a mapping between finite dimensional manifolds

£ : UcR® —— RP
an algebraic quantity, deg(f, q,,U), which characterized,
roughly speaking the number of solutions p €U which satisfy

the equation

£(p) = qo-
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For more precision, the reader is referred to Definition
1v.3,

The definition of the degree of a nonlinear mapping
between infinite dimensional manifolds is under current
mathematical investigation, The degree of a Fredholm
mapping of a Banach space was defined by Smale in 1965/Ly
When the Fredholm map has index zero, the degree of the
map is an integer whose definition parallels the finite
dimensional definition. When the index of the map is
non-zero, (a locally nonunique situation), the degree is
no longer an integer; rather, it is a more abstract, but
equally comprehensible quantity, Much work has been done
on generalizing the definition to Fredholm mappings between
manifolds, and consequences, like an infinite dimensional
version of the Fredholm Alternative, and a rank theorem.”¢

Notably, the theory of the algebraic degree of a
nonlinear mapping betweén topological vector spaces has
received much attention in some special areas of hydro-

dynamics and elastodynamics, when the dynamic operator is

a particular type of compact perturbation of the identity.ﬂi

Some investigations of the onset of secondary flows as one

varies the Reynolds number have been made, in which the

onset is modeled as a bifurcation phenomenon in a nonlinear
16

eigenvalue problem, Also, problems in the buckling of

shells which arise in the Elastica theory have been
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"7, 118
similarly modeled. In each case, the hydrodynamic or

elastodynamic operator is stronély elliptic, (hence,
Fredholm of index zero), for each value of the parameter.
By intricate computation, usually, one establishes that
for some values of the parameter, the degree of the
operator has one integer value, and for other values of
the parameter the degree has a second value, By theorem
or computation one may then determine the value of the
parameter at which the discontinuity in the degree occurs,
It is at these values of the parameter that new motions
branch off from previously known ones, The chief feature
of the nonlinear eigenvalue problem, in contrast to the
linear éne, is that the new motions continue to exist and

grow as the parameter increases,

A Local Uniqueness Problem in Elastostatics
is Viewed in terms of the Degree

One may envision a family of Dirichlet elastostatic
problems which display an onset of secondary, locally unique
equilibrating solutions, One may view them in terms of the
geometric models presented here as bifurcation problems, to
which the algebraic degree theory may be applied,

Consider in greater detail the example proposed by

F, John mentioned in chapter four, It exhibits a body



295

displaying locally unique, but globally nonunique equilibra-
ting configurations for a given Dirichlet problem. The body
consists of aﬁ infinite cylinder with concentric cylindrical
boundaries of radius Ry < Ry, respectively., If the material
comprising the body were 1sotropic, and if the body admits
an equilibrating configuration in which the inner cylinder
is rotated through a straight angle, then the body admits
at least two locally unique equilibrating éonfigurations to
that particular Dirichlet boundary value problem. The
situation is pictured in Figure IV,1.

Now suppose that the material comprising the body
is such that the inner cylinder may be rotated through one
straight angle, but not through two. One would then have
a situation where the elastostatic Dirichlet problems in
which the inner cylinder is rotated through an angle ©
in an interval (8;,05) would possess two locally unique
equilibrating configurations, while those Dirichlet problems
in which the inner cylinder were rotated through an angle
in the interval [0,07) or (8,,2m] would possess a unique
equilibrating configuration, The situation is visualized
in Figure VIII.4.

How would such a problem appear in the geometric
models presented here, and how would one characterize the
" behavior? The boundary conditions would determine a

one-parameter family of simply supported Dirichlet
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configuration manifolds,

LBt ()T gy, 0€l0,2m)1,

lying in the free boundary manifold, Assume that for each
Dirichlet boundary condition the finite elastostatic
operator is Fredholm, Then the locally unique character of
the equilibrating configurations would be reflected in

the index of the elastostatic operator, For each value of
0, the corresponding Dirichlet finite elastostatic operator
would be zero, and the preimage of the body force density
would be a zero dimensional manifold. Allowing the para-
meter to vary continuously, one generates a one dimensional
submanifold which may be quite complicated topologically,

The onset of the second equilibrating confjiguration
would be signaled by the degree of the elastostatic operator,-
For some values of the parameter the degree of the associan
ted Dirichlet finite elastostatic operator would be unity,
while for other values it would deviate from unity, The
parameter values at thch the discontinuities in the dggree
occurs would mark the boundary values at which the second

equilibrating configuration appears,
Some Outstanding Questions About the Application of the Degree

The above conjecture reveals several very important

questions concerning the application of degree theory to
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a) The Critical Angles at Which the Number of Dirichlet
Equilibrating Configurations Change,

b) Two Equilibrating Configurations for a Boundary Condition
within the Nonunique Region,

c) The Equilibrating Configuration for a Boundary Condition
Outside the Nonunique Domain,

FIGURE VIII, 4.

A Situation Where the Number of Equilibrating Configurations
Vary with the Boundary Condition,
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elastostatic problems, and some provocative areas for
further inquiry., The primary question is how preciscly

can one compute the degree of the finite elastostatic
operator, and how does one determine when and where it
changes? As mentioned previously, much work has been

done on this question for Fredholm mappings which are
particular types of compact perturbations of the identity.”q
If the elastostatic operators have the particular form
referenced, the eigenvalues of the operator linearized
about a trivial solution constitute the values of the
parameter at which bifurcation occurs. Moreover, an exami-
nation of the higher order terms of the operators indicate
at which of these parameter values a disc&ntinuity of the
degree in fact occurs; hence, where branching occurs, and
how many branches form,

Current.mathematical investigations center about
characterizing the degree of a Fredholm mapping which links
infinite dimensionallmanifolds, as opposed to topological
vector spaces, and in particular maps which do not possess .

(10
the form alluded to above. Ways of determining the degree

from algebraic topological information also appear*imminent./Z/
Finally, the higher order degrees, which arise when the
index of the finite elastostatic operator has non zero

index (hence, is not strongly elliptic) remalns a provoca-

. 122
tive, yet completely untapped resource,
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A CONCLUDING REMARK

Embryonic as these developments are, they show
what promise resides in the geometric examination of local
uniqueness and existence questions. The above examples
permit the reader the opportunity to experience, at least
in general terms, how the geometric models developed here
provide the vehicle by which heretofore abstract mathema-
tical results are rendered quite relevant, The avenues of
inquiry which follow, only a few of which were mentioned
here, promise a more complete local uniqueness theory of
elastostatics, and stand as fruitful vistas for future

work resulting from this thesis,
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¥X., GAINING GLOBAL INFORMATION FROM THE MODELS

Can one gain global information from the models
for the elastostatic problems presented in this work? 1If
so, will the conclusions one draws from them differ signi-
ficantly from the results gained from previous models? 1In
this chapter, one is introduced to the mathematical methods
which are becoming available for application to the new
models, and which can replace those methods rendered
inapplicable in chapter four.

The examples permit one to anticipate significant
departﬁres in the approach to investigating existence and
gloﬁal uniqueness questions. With the previous models the
burden of the existence and uniqueness conclusions rested
primarily upon the material response. The methods
introduced in this chapter permit one to incorporate an
intimate dependence upon the boundary conditions, and the
body topology as well, The chief feature of the applica-
tion of the methods is the importance which is placed upon
the nontrivial topological nature of the manifold of

configurations.

The Methods Which Will be Considered in this Chapter

The examples presented in the chapter study the
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existence and uniqueness questions for bodies composed of
hyperelastic ma@erials. Two methods of analysis are
considered for application: the Lusternik-Schnirelman
theory, and the Morse theory.

When a body is composed of material possessing a
hyperelastic response the geometric model permits one to
view the existence and uniqueness questions as a problem of
the existence and number of critical points of a function
defined over the configuration manifold. One identifies
the elastostatic Dirichlet equations as the Euler-Lagrange
equations of an action integral. The action integral
determines a function which is defined over the Dirichlet
configuration manifold, and the equilibrating configurations
are critical points of the function. The existence of a
critical point for the function insures the existence of an
equilibrating configuration for the Dirichlet problem,
and the number of critical points characterizes the global
nonuniqueness.of the problem,

When the hyperelastic Dirichlet problem is viewed
in this manner, the abstract methods of the critical point
theory may be engaged to resolve existence and gloﬁal
uniqueness questions. The Lusternik-Schnirelman theory
and the Morse theory represent but two of these methods.

One does not go deeply into the application of

these methods in this chapter. Rather the purpose they
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serve is to illustrate how one can gain global information
from the geometric models presented in this work, and how
the information one gains can differ significantly from
the information gained in previous models.

Comments in this chapter are limited to hyperelastic
materials. However, some mathematical methods are becoming
available for resolving existence questlions for bodies

123
composed of nonhyperelastic materials. An example is the
/124
generalization of the Leray-Schauder degree. Consideration

of these methods will be reserved for future study.

Why the Global Conclusions will Differ from

Previous Models

The application of critical point theories to study
existence and uniqueness questions in the abstract Dirichlet
.problem, though rather new, is not novelej The methods have
even been applied to some previous models of elastic systems.ﬁz‘
What makes their application to the models presented in this
work distinct is the topological complexity of the models
themselves. The ;ignificant feature of the methods which
are illustrated .is the intimate relétionship they establish

between the algebraic topological properties of the solution

space and the existence and uniqueness conclusions. 1In
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previous models the solution space has been trivial from
an algebraic topological point of view; hence, existence
and uniqueness conclusions have depended primarily upon
the properties of the material response., In the models
presented here, the solution space is a manifold, as
opposed to a topological space, 1Its topology can be

quite complex, and the manifolds for different Dirichlet
boundary conditions need not be homeomorphic, Consequently,
when one applies the critical point methods the variety

of possible eﬁistence and global uniqueness conclusions
one draws from them is greatly enhanced. They come to
depend as intimately upon the choice of boundary condition
and the specimen topology, as upon the nature of the
material response,

With the completion of the illustrations one ends
the general study of the geometric models. The models
have been shown to be well defined, capable of providing
information about finite elastostatic systems, and most
importantly, potentially able to generate results quite
different from previous models. One may now turn to the
study of particular elastostatic problems in terms of the
models. In this spirit, the chapter ends with some
specific questions which can be resolved, and whose resolu-
tion will be a concrete contribution to the theory of

existence and uniqueness in finite elasticity.
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CRITICAL POINT THEORIES AND THE GLOBAL

CONCLUSIONS FOR HYPERELASTIC MATERIALS

An Bquilibrating Configuration is a

Critical Point of a Function

When a continuum mechanical body is composed of
material exhibiting a hyperelastic response, one may geo-
metrically view the equilibrating configurations for a
Dirichlet elaétostatic problem as critical points of a
function defined on the Dirichlet configuration manifold,
The function arises as the action integral determined by
the strain energy function associated with the materia1/27

For convenience of the development, let the body
force density be zero. Relative to the reference configura-
tion section, one may associate with the hyperelastic
material a strain energy function whose derivative generates
the Piola-Kirchoff stress tensor fieldﬁy In terms of the
free boundary model, one may view it geometrically as a
real-valued function defined over the classically

differentiable configurations. 1In the notation of chapter

five, one may write the function as

Ls. : EmbX(n) —— BxR

K
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If the material response is smooth, the function takes C°

configurations into c” functions over the body. 1In
general, the function depends upon the higher order deri-
vatives of the configuration section. For example, for a

simple elastic body, Ig

" is a nonlinear differential

operator of order one
Ise = (osK)*'Vn,
where

3
05K : L( )(TB, n) —— BxR

represents the usual specification of the strain energy
function as a morphism over the bundle of local configura-
tions,

One may associate with ZSK an action integral.
Geometrically, the integral defines a function on the mani-
folds of classically differentiable configurations. The
function is C~ if the material response is smooth. One

may denote the function as

z
J°S¢ : EmbX(nm) R
Sy [Bg () (P)Aus, ()
dus, denotes the volume.element on B determined by the
reference configuration., If one takes into account the

129
axioms of chapter four, the action integral function extends

to a C% function on $he free boundary Sobolev configuration
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manifolds,
L
J Sk Emka(n) —— R, k>3
Upon restriction, the action integral function determines
oo

a C function on ‘the Dirichlet configuration manifolds,

for example,

ZSK

J (Emka)ag(n) — R

(EmbH*) 5 o ()

The derivative of the action integral function is
given by theorem from chapter four, Choosing sy @ smooth

configuration for convenience,

I
43 "B (s s TCEMOH ) 50 () s HE ()

by o [TKGs]0 = ST T0 () dug, ()

I
As one might expect, the derived operator dJ 5K is the
: /130 .
Euler-Lagrange operator in integrated form, The equilibra-
ting configurations for the elastostatic Dirichlet problem

are precisely those which render the derived operator

trivial,

. )
43" (sy) = 0T ((BmbHE), (n))g
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Hence, they constitute the critical points of the action
integral function.

One thus achieves a representation for the
generalized elastostatic Dirichlet problem as a function
on the extended Dirichlet configuration manifold., 1Its
critical points are the equilibrating configurations for
the Dirichlet problem., The existence of eritical points
insures the existence of elastostatic configurations for
the body. If the critical points are isolated, then the
static configurations are locally unique. The number of
critical points characterizes how globally nonunique the

elastostatic problem is.
HOW ONE ENGAGES THE LUSTERNIK-SCHNIRELMAN THEORY
The Idea of the Lusternik-Schnirelman Theory

How many critical pointé may an action integral
function possess on a Dirichlet solution manifold, and
what are their character? 1In order to resolve the question,
one may engage the various '"abstract" critical poiﬁt
theories which have emerged in the modern mathematical
literéture. Two theories will be discussed in this

chapter, The first theory was developed by Lusternik and
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131
~Schnirelman in 1934, It has recently been extended to

Banach manifolds of arbitrary (infinite) dimension/Jl'

The Lusterntk-Schnirelman theory allows one to
determine the critical values of the function, and to asso-
ciate with each critical value an integer which charac-
terizes the topological nature of the corresponding
critical point set. In general, if one judiciously chooses
a class of subsets of the manifold, determines .the maximum
value of the function.on each set of the class, then
minimizes the maximum values for all sets in the class, one
gains a critical value for the functionflgThe Lusternik-
Schnirelman theory provides a particular choice for the
class of subsets over which to carry out the minimax
procedure. One finds that the choice intimately involves
certain topological features of the subsets of the manifold.

The features may be characterized by an algebraic topological

invariant, the (L-S) category of the set.
The (L-S) Category of a Set

To define the invariant quantity, one begins by
identifying when a subset of a topological space is "trivial",
or contractable.

/37
Definition IX.1, A closet set A of a topological
space X 1is contractable over X if the injection
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of A into X is homotopic over X to a constant
map. That is to say, there is a continuous map

H: AXI — X
having the properties
H(-,0) = 14, : A — A <X,

H(-,1) : A —— {P} £ X

Not all subsets of a topological space are contractable.
One introduces an algebraic quantity which characterizes
the extent to which a subset is not contractable. The
quantity is the (L-S) category of the set.
135
Definition IX.2. The (L-S) category of a closed
set A in X, denoted caty(A), is the least
integer n such that A can be covered by n
closed subsets of X each of which are contract-
able. Denote the category of X 1n X by cat(X).
Lemma IX.1. If A is contractable in X then

can(A) = 1,

The (L-S) tategory is an algebraic indicator of the
topological complexity of a space. If a space is trivial
topologically, its (L-S) category is quite low. For example,

cat (R™)

1 reflects the contractability of Euclidean space.

Cat (S™) 2 indicates that S™, though still rather simple
topologically, is more complex than R™., As one might
intuit, the (L-S) category of a space is closely related to

its homology and cohomology. The following theorem
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illustrates how knowledge of the cohomology of a space

provides information about its category.

. 13¢
Proposition IX.l1. Leﬁ X be an arcwise cognected
metric space, Let HX1(X,F) denote the kit

cohomology group of X with coefficients in a
field F. Let

cuplong (X)

denoﬁg the largest integer n such that for
IjeH®1 (X,F), k3>0, 1 < i < n, the cup product

ryV...vl, # 0
Then

cat (X) > cuplong(X) +1.
(L-S) Category and Critical Points

In what follows consideration is limited to manifolds
modeled on a Hilbert space which possess a Riemann structure,
The limitation is imposed for convenience; however, it is
consistent with the previous work. For example, Emka(n)
is a Hilbert manifold, and inherits a Riemannian structure
as an 6pen submanifold of the Hilbert space Hk(n).

. 137

Definition IX.3. Let M be a Riemannian manifold

modeled on a Hilbert space. Let f be a smooth

function on M. Let Vf be the gradient associated
with its derivative by the Riemann structure. For

¢ a real number, define the set of critical points

of f at level <¢ by

K, = {peM : £(p) = ¢, VE(p) = 0},
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Which values of f may be critical values?
An attractive collection of candidate values arises when
one minimizes the maximum values the function f may take
over sets of M of suitable category.

Definition IX.4PgI%n? k an integer, let T, (M)

denote the set of all subsets of M of (L-S

category > k. Define

cx (£) = inf {sup £(p)}.
AeT) (M) peA

If Ty(M) = p, take ck(f) = o,

The fundamental results of the Lusternik
Schnirelman theory are that under suitable conditions the
values {cm(f)} are critical values for f, énd moreover,
the (L-S) category of tﬁe critical point set KCm(f)
possesses a lower bound which may be determined. Conse-
quently, one gains information about how nontrivial the

critical point set of a function is topologically,
The Palais~Smale Condition (C)

From one's experience with non-Fredholm operators
in the previous chapter, one may cofrectly intuit that not
all fﬁnctions'defined'over arbitrary infinite-dimensional
manifolds will admit a Lusternik-Schnirelman theory. In

1965, R. Palais extended the theory to a class of infinite
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dimensional manifol#s and functions defined on them which
can include the elastostatic models presented herJ?g Let
M denote an infinite dimensional manifold modeled on a
separable Hilbert space. Assume that M possesses a c”
Riemann metric whose geodesics may be extended indefinitely,
(that is, M 1is a complete Riemannian manifold), Consider
those smooth functions f defined on M which satisfy the
following condition (C).

Vid4
Condition IX.1. (Condition (C)). If S 1is a
subset of M on which |f| is bounded, but on

which ||Vf|| is not bounded away from zero, then
there is a critical point of f 1in the closure
of S.

For example, the condition is satisfied if f 1is a
proper map. In particular, if M 1s compact (hence,
finite dimensional), any smooth function satisfies the

'

condition.
The Main Results of the Lusternik-Schnirelman Theory

Under the Palais-Smale condition (C), one achieves
the following theorem which identifies the critical values.
of f and determines the lower bounds on the (L-S) -

category of the critical point sets,
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141
Theorem IX.1. Let (M,f) satisfy condition (C).
Let {c,(f)} and K. be as defined previously.
Let K be the entire critical point set of f
on M, Then

(a) ¢y (£) = imf {£f(p) €M}, and
¢y (£) = Min {f(p) pEMg if £ is
bounded below,

(b) For each integer n > 1,

cn (£) < Chq (£).

(c) If - < cy(f) < =, then Cx(f) 1is a critical
value for f

(d) If some x(f) = @, then £ 1is unbounded
' on K, and K 1s infinite. In fact,

cp(£f) < sup {f(p) : pek}.
for all m.

(e) If 0<m<n < Cat (M), and -=<cZcp(f) = cp(f)<w,
then

Caty(Ke) > n-m+l.

From the Lusternik-Schnirelman theorem one may gain
information about the existencé and number of critical
points of a function defined on the manifold. The follow-~
ing corollary illustrates the type of abstract existence and

global uniqueness theorem one gains,

/42 .
Corollary IX.1., Let (M,f) satisfy condition (C),
and let f be bounded below.

(a) Then f assumes a minimum on each component
of M. :

~ (b)' In particular, on each component My, of M,
there are at least as many critical points
of f as the Lusternik-Schnirelman category
Caty(My) for that component.
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The Significance of the Lusternik-~Schnirelman

Theory for Elastostatics

The Lusternik-Schnirelman critical point theo?y
provides one method for resolvying existence and global
uniqueness questions for the finité elastostatic Dirichlet
problem for alhyperelastic material. The manifold M is
taken to be the manifold of possible configurations satis-
fying the given Dirichlet boundary condition. The
function f is taken to be the action integral function.
The critical points of the function are the equilibrating
configurations for the elastostatic problem. The conclu-
sions on the existence of critical points for the function
and the lower bounds on their number informs one about the
existence and the extent of global nonuniqueness of the
solutions to the finite elastostatic Dirichlet problem,

This value of the Lusternik~Schnirelman theory
has been recoénized by architects of previous continuum
mechanical models. Melvyn Berger has shown that if one
models the buckling problem for a two-dimensional elastic
body by means of the Elastica theory as a nonlinear eigen-
value problem, the application of the Lusternik-Schnirelman
theory successfully resolves some existence and global
uniqueness questions{%31n fact, he foresees the Lusternik-
Schnirelman theory as producing the nonlinear generaliza-

14¥

tion of the Sturm-~Liouville theory for the eigenvalue problem,
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- The Significance of the Lusternik-~Schnirelman

Results for the Models Developed Here

If one applies the Lusterﬁik—Schnirelhan theory to
the models for the elastostatic problem developed in this
work, will the existence and global uniqueness conclusions
differ significantly from those of previous models?
Corollary IX.1 1indicates that they will differ quite
significantly, The basis for the assertion is the intimate
involvement of the topology of the solution manifold with
the number of critical points which the action integral
function can sustain. For the models presented here, the
solution manifolds can be highly nontrivial topologically.
Hence, the quantity Caty(M,) may differ quite markedly from
unity. For the previous models, where the solution manifolds
are topological vector spaces, the quantity is precisely
unity.

It is insfructive to examine this point in detail,
For a given boundary condition, the Dirichlet configuration
manifolds for the models presented here may have many
components, each of which are of a different, nontrivial
topological character. A nontrivial topological character
signals a large category. Hence, Caty(M,) can vary for

each component, and, most importantly, differ from unity.
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Corollary IX.,1 then indicates that the number of critical
points which the action integral function possesses may
vary from component to component, and may have a lower
bound which is greater than unity., Moreover, since the
Dirichlet configuration manifolds need not be homeomorphic
in these models, the.existence and uniqueness conclusions
will change as one varies the boundary condition, or alters
the specimen topology. In other words, the conclusions on
the existence and global uniqueness of equilibrating con-
figurations from the models presented here would be rich
and varied.

Contrast these results with those which one would
gain from previous models, The Dirichlet solution manifolds
are affine subspaces of a Banach space. They are all
diffeomorphic‘to a closed linear subspace, 'A subspace of
a Banach space is contractable, Thus, the category of all
Dirichlet solution manifolds would be unity, Consequently,
Corollary IX.1 could indicate the existence of equilibra;
ting configurations for these models, but could convey no
information on the global uniqueness question, Moreover,
since all Dirichlet configuration manifolds are diffeomorphic
in these models, the Lusternik-Schnirelman theory could not
anticipate how the number of critical points of the action

integral might change as one varied the boundary condition.
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In short, the Lusternik-Schnirelman theory provides
a concrete indication of how the exlstence and number of
equilibrating configurations of a Dirichlet elastostatic
problem can depend as intimately upon the topology of the
configuration manifold as upon conditions imposed upon the
elastostatic operator itself. Froﬁ the nontrivial topo-
loglcal character of the Dirichlet configurafion manifolds
of the models presented here, one gains information on the
global uniqueness questions which is unavailable to previous
topological linear space models. Finally, the manifesta-
tion of the variations in the topology of the configuration
manifolds as one changes the boﬁndary condition, or alters
the specimen topology, as changes in the least number of
equilibrating configurations is most provocative. It
heralds a deeper insight into the confounding problem of
the interdependence of the solution of a nonlinear problem

and the shape of its boundary and domain,
THE MORSE THEORY AND THE HYPERELASTIC MODELS

The appliéation of the Morse theory to the finite
elastostatic models for the hyperelastic material body
illustrates the intimate relationship between the existence
and number of critical points of the action integral function

and the topology of the configuration manifold even more
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dramatically than the Lusternik-Schnirelman theory. When
applicable, the Morse theory allows one to utilize more
topological information from the conflguration manifold
to make stronger statements about the number of critical
points., Moreover, one can discern something of the nature
of the critical points: are they absolute minima, absolute

maxima, or saddle points?
The Idea of the Morse Theory

The relationship between the presence and nature of
critical points for a function and the topological structure
of the manifold on which it is defined can be much more
subtle and intimate than the Lusternik-Schnirelman theory
suggests, A simple, but dramatic example of the relation-
ship is provided by the height function on a two-dimensional
torus@%-This example is reproduced as Figure IX,1, Notice
that the onset of a critical point of the height function
is signaled by fundamental changes in the algebraic topolo-

gical structure of the function's preimage. Moreover, near

the critical points, one may choose a coordinate system for

146

which the function is represented as a quadratic expression,
The number of negative signs in the quadratic is called the

index of the critical point. Tt characterizes the nature
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of the critical polnt: maxima, minima, saddlepoint, The
index varies with the critical point and is also related
to the algebralic tdpological character of the function's
preimage, In shprt, the existence, nature and number of
critical points of a function is intimately related to the
algebraic topological structure of its domain of definition.

The Basic Elements of the Morse Theory

The fundamental results of the Morse theory for
finite dimensioﬂal manifolds are available from a number
of sources, For the convenience of the reader the perti-
nent definitions and theorems are set forth here. The
" central element of the theory is the nondegenerate critical

point of a function. 1Its nature is characterized by the

index of the function at that point,

47
Definition IX.5. Let f be a smooth, real-valued

function defined on an n-manifold M,

(a) A point peM is a critical point of f if
the tangent map -

fxp ¢ ™M, — R

is zero. .RelatiVe to a local coordinate
system (x) about p, the requirement

implies '
af af of
ax1 = 9x2 = ... = 9xn = 0,

x(p) x(p) x(p)
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where f is the representation of f rela-
tive to the coordinate system,

(b) A critical point p 1is nondegenerate if
relative to any local coordinate system
(x1) about p the matrix

J
BX'BX X (p)

is nonsingular, The matrix is the coordi-
nate representation of the Hessian of f
at p, the symmetric bilinear form on

TMp given by

Hp = f**p : TMP X TMP —— R,

(c) If p 1is a nondegenerate critical point of-
f, the index of f at p 1s defined to

' be the dimension of the maximal subspace of

™ on which the Hessian of f is negative

definite.
148
Lemma IX,2, (Morse). Let p be a nondegenerate

critical point of £, Then there exists a local
coordinate neighborhood U of p, and a local
coordinate system (yi) such that y(p) = 0, and
in U
£ = £00)-(7D 222 - 2 M 2 e ™ 2,
where A is the index of £ at p.
The critical points of f are those points at which f
attains an extremal value. Notice that the extremal value
is an absolute minimum for f if the index of the
nondegenerate critical point is zero, and an absolute
maximum if the index is n = dim M. For index values

/47

between these extremes the critical point is a saddle point,
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The fundamental theorems relating the appearance
of critical points of a function with a change in the
algebraic topological structure of its preimage now follow,
For seR a possible value for the function £, define
the preimage of f in M wup through the value s as the
set

MS = £71(1.0,57) = {peM : £(p) < s},

1h

It follows straightforwardly that M5 1s a closed sub-

150
manifold of M, possibly empty. The first fundamental

theorem asserts that a necessary condition for the absence

of a critical value for a function in a given interval
] f

[a,b] of values is the geometric equivalence, and in fact

- homotopy equivalence of the two preimages M2 and Mb,

15¢
Theorem IX,2., Let f be a real valued, smooth
function defined on an n-manifold, Let a<b in
R, and let the set £-1 ([ab]) be compact and
contain no critical points of f, Then
(a) M% is diffeomorphic to Mb

(b) M% is a deformation retract of Mb, and
the inclusion map

i:M? —— MP

is a homotopy equivalence,
The second theorem asserts that the previous homotopy
equivalence condition is also sufficient to insure against
the appearance of new critical points, In fact, it dictates

how the two preimage manifolds must differ homotopically

if additional critical polnts are to appear,
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152
Theorem IX.3, Let

f : M — R

be a smooth, real valued function on an n-manifold
M. Let p be a nondegenerate critical point of

f with index A. Let f(p) = c, and that for
some €>0,

£ 1([c-e, c+e]) -
is compact and contains no other critical points

of ef besides p. Then for sufficiently small €,
M¢** with a A cell attached (as a "handle'").

‘The latter theorem is more commonly recognized in its

original form as the Morse inequality theoren,

‘ /53 th .
Theorem IX.4., Let B;(M) denote the i Betti
number of the manifol M:-

Bj (M) = dimH; (M,R),

for H; (M,R) the ith homology group of M
with coefficients in R, a real vector space.
If C) denotes the number of critical points
of index A on a compact manifold M, then

BA(M) < CA for each A,

1™ B (M)
0 m

A

I~

m

and

nes1 8

" Bp(M) = ] (-1)7c .

m=0 m=0

These results of the Morse theory explicitly show how the
existence, number, and character of the critical points of

a function relate intimately to algebraic topological
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character of the manifold on which it is defined. Roughly
speaking, the more intricate the manifold structure the larger

the variety of critical points available.

The Infinite Dimensional Generalilzation
In order to utilize the Morse theory in the geometric
models developed here one must generalize the above results
to infinite dimensional manifolds, As with the Lusternik-
Schnirelman theory not'all functions defined over arbitrary
infinite-dimensional manifolds can support a Morse theory,.
In 1964 Palais and Smale showed that one could
extend the Morse theory to infinite dimensional manifolds
modeled on a separable Hilbert space, and which possessed
a complete C? Riemannian structure, if the function f£
satisfied the condition (C) set forth in Condition IX,1,
Under these conditions one achieves the following theorem
on the existénce of minimum points for f,
fheorem IX.Sf;yIf (M,f) satisfy condition “(C) and
if f 1is bounded below on a component My of M,
then f assumes its greatest lower bound on Mg,
(a) If Vf represents the gradient field of £,
and for peMg if ¢ (p) represents the
flow through p associated with Vf, then
(1) ¢¢(p) is defined for all positive t

and has a critical point as a limit
point as t-oew,
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(2) If all critical points of f are
nondegenerate then in fact

lim ¢4+ (p).

t=>o
exists.

(b) If £ is bounded below on all of M then
f assumes its greatest lower bound on M
provided the critical point set of f has
no interior, and in particular, if the
critical points ' of f are nondegenerate.

One also gains the following infinite dimensional version

of the Morse inequality theorem,

155
Theorem IX.6., Let (M,f) satisfy condition (C)
and assume that the critical points of f are
nondegenerate, Let a,beR be regular values for
f. Let

£2 = {peM : f(p) < a}
. £2:% = £-1([a,b])

Let Rg’b be the itM Betti number of (fb,fa)
with coefficients in a field and let C%:P be
the number of critical points of index i in
£2,P  Then

(-1ym-t

a,b ? m_ica,b
0 i=

" o~—3

i
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15¢ :
Corollary IX.2. Let. f be bounded below on M
and let R denote the ith Betti number of M
with coefficients in a field. Let Cj be the
number of critical points of f having index 1i.
Then
Ry < Cy,

and if each C3 is finite, i=0,1,2,...,m, then

m , 3 m m-i
NG LA VD S 3 § R PR
i=0 i=0

An Example Showing How One Uses the
Morse Theory
|
One can now appreciate the value of the infinite
dimensional Morse Theory for resolving infinite dimensional
existence and uniqﬁeness questions. As mentioned previously;
applying the Morse theory in this manner, though relatively
new, is not novel. The example provided by Smale and
Palais illustrates well how one transforms an abstract
nonlinear Dirichlet problem into a Morse theory question,
and how oné uses the ?opology of the solution manifold, and
knowledge of some critical points to deduce information
about other ones.
‘ For the convenience of presentation the example is

set forth in propositional fofm. The first proposition

casts the abstract Dirichlet problem in a geometric setting,
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The second one imposes some conditions sufficient for the
extension of the model to an infinite dimensional Hilbert
space setting. While the conditions differ from the axiom-
conditions imposed by the approach used in this work, the
two approaches are consistent. The third proposition
models the Dirichlet boundary condition solution space as
a complete Riemannian manifold. Finally, the fourth propo-
sition suggests conditions which insure the satisfaction
of condition (C). Consequentlf, the abstract Dirichlet
problem is transformed into a Morse theory question. For
details about a Morse theory question. The references are

indicated if one wishes greater details about the example.

/57
Proposition IX.2. Let M be a compact, smooth
differentiable manifold, let & be a finite
dimensional vector bundle over M, and let be
a smooth measure on M, Let
F:JY (&) Ry

be a smooth mapping. Define the integral functi

' J:C¥(E) —— R

f fP(jkf)du.
M

1f 1 > k, then J is a C® function on CT(§),

1

158
Proposition IX,3, Let

F:5k(£)

Ry

satisfy the following growth conditions: relative
to a local coordinate system (x,p) on Jk(E)
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Fix,p) < |lpl]? + ¢,
Fop(X-P) (B,8) < C3 18112,

BEE x L(V,E) x ...x LX(v,E)

Then the C%® function J on CK(E) extends to
a C® function on HK(E),.

s 159 : k k
Proposition 1IX.4, For £, eC (E%, let C; (&) be
the affine subspace of maps £feC*(§) such that

Jg-1f = jk-lfo

on oM. Let Hﬁ(g) denote the closure of Cg(E)
in Hk(E). Then Hg(E) is a complete Riemannian
manifold.

160
Proposition IX.5. If in addition, on each local
coordinate system (x,p) in JK(E), F satisfies
the following conditions

cqllp*ll2-c5 < LICRLY pkeLX (v,E)

112
cgllBl]? < Fokpk (X,P) (B,B),

then the restricted function

k
J = J, . ¢t H (8) —— R
} 0 | i ol
. HI(E) ,
satisfies condition (C). Hence, J, has a minimum
on HO(E), and if the critical points are non-

degenerate, the Morse theory is valid on (HE(E),JO).

How does the Morse theory dictate the number and

nature of the critical points? One invokes one's knowledge
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of the fopological character of the sélution space Hg(g)
and the Morse inequalities to resolve these questions. To

illustrate, two observations by Palals and Smale follow,

16/
Observation IX.1, Let Proposition IX.5., hold.
Then J, has at least one critical point of index
zero, and thus, J, attains a minimum on Ho(g)

Proof:

(1) Hﬁ(g) is a real topological vector space,
hence contractable.

(2) From classic algebraic topological results

1 i=0
H%(E) contractable implies Ri(Hg(E))={
‘ 0 i#0

(3) If C, 1is the number of critical points
of index zero, Corollary IX.2 implies

1 < C,.

(4) Finally, a critical point of index zero is
' a minimum,

162
Observation IX,2. If Jo admits two local non-
degenerate minima on HG(§), then J, admits at
least one other critical point.
Proof:

(1) Let C, = 2. By Observation IX.1, and
Corollayy IX.2,

"'Cl

or

Thus, there exists at least one critical
point of index one,
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The example thus illustrates how intimately the number and
-/

variety of critical points depends upon the topological

nature of the solution space as well as the conditions

placed upon the integrand.
The Morse Theory and the Elastostatic Models

How the glsbal conclusions drawn from the elasto-
static models presented in this work can differ significantly
from conclusions drawn from previous models becomes even
more apparent in the light of the previous example, When
the algebraic topological characte; of the solutjion space
is trivial, as 1s the case with previous elastostatic models,
and in the prévious example, the information about the
critical points availéble from the Morse inequalities
is quite limited. However, as the Betti numbers of the
solution space become nontrivial the number and variety
of critical points enlarge, and the information available
from the Morse inequalities increases. Palals and Smale
anticipate this possibility in their remark,

Presumably the theorem of this section
extends to subbundles n of & under

' . suitable conditions of ;| F and k2k>dir}1 M,
Then usually the homology of Hg(n) will

, be highly nontrivial and the existence
theory will imply much more./¢?
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As Iindicated in chapter four, the configuration
manifolds for the finite elastostatic problem are, roughly
speaking, sections of a fiber subbundle of a vector bundle.
Indeed, they have a highly nontrivial algebraic topological
character, in general, Moreover, this character may vary
with the boundary condition, and can be altered if the
topology of the experimental specimen 15 altered. ﬁence
if the Morse theory can be applied to the elastostatic model
for a hyperelastic material body one may expect conclusions
for the giobal nonuniqueness of equilibrating configurations
which would vary from boundary condition to boundary condi-
tion, and with the topology of the specimen. Such results
stand in contrast to coﬂclusions one can draw using the
Morse theory on previous models, as the Dirichlet boundary

manifolds are all alike topologically.

OUTSTANDING QUESTIONS ON THE APPLICATION OF THE
‘CRITICAL POINT THEORIES
Several outstanding questions now become quite
pertinent for the application of the critical poinf theory
to the models presented here. Somé appear immediately
resolvable. Their resolution will provide concrete
exaﬁples of the conclusions ahticipated in the previous

sections.
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What is the Cohomology of the Configuration Manifolds

Presented llere? In Particular, What are their Betti Numbers?

The application of the Lusternik-Schnirelman theory
to elastostatics can provide information about the global
uniqueness problem when (1) the number of components of
the Dirichlet configuration manifold is greater than one,
and (2) when some component has an (L-S) category greater
than one, Proposition IX.,1 indicates that knowledge of
the cohomology of the configﬁration manifold permits one to
determine lower bounds on the (L-S) category of its components,
Moreover, the zeroeth Betti number counts the number of
components éf the manifold.

At present, the zeroeth Betti number appears
obtainable for the Dirichlet configuration manifold associated
with particulér specimen topologies. 1In chapter four one
observéd how the obstruction theory could be used to deter-
mine the number of components of the configuration manifold,
According to the theory the number depends upon the elements
of the cohomology classes of.the material body, relative to
its boundary ’

{H*(B,3B)}.

Two avenues of investigation follow from this

question and appear quite promising. First of all, the rela-

tive cohomology classes are avallable for some specimen
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shapes which are physically important: the solid ball, the
solid finite cylinder with a hole, the infinitely long solid
cylinder with a hole, and the ball with a cavity., If the
conclusions for the zeroeth Betti number drawn from the
obstruction theory differ among any of these cases, then

the application of either the Lusternik-Schnirelman theory
or thelMorse theory will yleld a concrefe instance wﬁere
alteration of the specimenvtopology alters the number and
nature of equilibréting configurations,

Secondly, one may probe deeper into the global
nonuniqueness quéstion and the possibility of interior
buckling. Cohomology and Homotopy information about the
Dirichlet configuration manifolds is most helpful in
.answering the following questions. Are there two or more
equilibrating configurations for.the.given boundary condi-
tion? Can one deform from one to the other without violating
the boundary condition? If the (L-S) category of any compo-
nent is greater than one, the answer is immediate. Alter~
natively, one may rephrase the second quesfion as, '"Are
the two equilibrating configurations homotopically distinct
extensions of the boundary conditions?'", and aﬁply'the
obstruction theory. Once again,.thé cohomology groups of
the material body, relative to its boundary, governs the
ansQFr. The question may be considered for the particular

specimen topologies mentioned above,
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How Does a Punctional Analysis Condition like Condition (C)

Interface with the Physical Theory of Elastostatics?

The condition (C) of Palails and Smale is sufficient
to insure the application of the critical point theories
mentioned here. Is it a physically meaningful condition to
.impose? What alternatives are available? 1In 1968 Palais
indicated analyticai conditions‘which would guarantee that
an integral function would be bounded below and satisfy
Condition (C){‘the form of the condition sufficiently
parallels the generalized Coleman-Noll condition and, to a
lesser extent, Beju's conditions, as to warrant a thorough
" investigation. Conditions like GCﬁ heretofore have been
difficult to cémprehend because their exact purpose is
somewhat vague. Perhéps they might be more ad{antageously
viewed in the geometric setting as opposed to the analytical
one, For example, one might find that conditions motivated
by a desire to insure global uniqueness, or even stability
might be too strong. Condition (G) reflects this possibility
in that it permits many critical points (nonuniqueness) of

»

higher and higher index (stability).

In the Elastodynamic Model, Does the Index of the Critical

Point Provide Information About the Stability of
Equilibrating Configurations?
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One may extend the geoﬁetric model for nondissipative,
hyperelastic material bodles experiencing conservative body
forces to an elastodynaﬁic model. J. Marsden first suggested
the possibility in 1970?g;1though, once again, the configura-
tion manifold was a fopological vector space. The basic
feature of the model is that the evolution of the body is
portrayed by a flow on the configuration manifold which is
governed by a set of Hamilton's equations derivable from the
action integral function. Under the equivalence of the
Hamiltonian and Lagrangean representations for this situation
the equilibrium points of the Hamiltonian flow are the critical
points of the gradient of the action integral function. Hence,
the clastostatic configurations are the equilibrium points for
the elastodynamic problem for this case. One may now ask,
are these equilibrium points stable, unstable, or saddlepoint
stable? !

| Until the mid 1960's no effective way was availlable
for characterizing the stability of equilibrium points of a
flow beyond Poincare's‘theory of sgparatrices for two-
dimensional flows. In the middle 1960's Poincare's concept
of separatrix was generalized to larger finite-dimensional
dynamic flows through'thé introduction of the stable manifold,
the unstable mgnifold; and the center manifold«é Several

stability theorems on the dimension of these manifolds

1
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167
followed. A current subject of investigation in Topological

Dynamics is the extension of these theorems to infinite
dimensional flows./&y

If the equilibrium points of an elastodynamic flow
are nondegenerate, can the index of the critical points
provide information about their stability? The index of a
critical point carries information aBout its stability.
For example, a configuration minimizing the action integral
function has index zero. A higher order index indicates
that the critical point is a minimum point'relative to
variations in some directions, but a maximum relative to
variations in other directions. One may conjecture that
the index carries information about the dimension of" the
stable, unstable, and center manifolds at the equilibrium
point. Conversely, perhaps information about these mani-
folds would permit one to deduce the index of the critical
point.

)

What Technical Difficulties Does One Encounter in Applying

the Critical Point Theories?: Possible Future Models

i ;

Attractive as the possible consequences of the
critical point theories are, one must first carefully
establish - when they may legitimately be applied. One

}
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difficulty which arises is when are the cri£ica1 points of
the action integral function nondegenerate and when are they
degenerate?

Melvyn Burger indicates situations where the cri-
tical points of a continuum mechanical model built from
Elastica theory exhibits degenerate critical points!‘qFor
example, a locally nonunique equilibrating configuration,
or an equilibrating configuration at which a bifurcation
occurs relative to some parameter would be degenerate
critical points. For this situation, the Morse fheory is
inapplicable, whilg the Lusternik-Schnirelman theory may
hold.

The principal difficulty with the application of
the critical point theories is the requirement that the
configuration spaces be complete Riemannian manifolds,

The HK generalized configuration spaces are Riemanniap mani-
folds; however, their completeness is not immediate, They
are not closed submanifolds in Hk(n). Roughly speaking,

an evolving elastodynamic system can "run off the manifold"
by kinking, tearing or collapsing. To render the configura-
tion manifolds geodesically complete, one must augmént them,
Perhaps the augmentation requires simply the incorporation
‘of the boundaries of the manifolds; perhaps more is required,.
Is the algebraic topological character of the manifolds

altered radically by the augmentation? Since the augmenting
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elements would not corfespond to configurations as have been
previously defined,'what can one say about them? Such ques-
tions point towards geometric models for continuum mechani-
cal systems which would be more encompassing than the ones
presented here,

A CONCLUDING REMARK

In summary, ghe chapter'illustrafes that one can
gain .global information frém the geometric models presented
here, and how.the nature of the information and the manner
in which one acquires it can differ significantly from
previous m dels,

In concluding the work, one must remark on the value
of the 'approach taken here for other physical theories, The
models which were constructed and the mathematical techniques
which were considered can equally well be attempted for any
other nonlinear classical field theory. What makes finite
elastostatics particularly attractive is the preciseness and
fidelity of its mathematical model, One knows exactly which
mathematical functions are configurations and which are not,
It is pre;isely those functions which are excluded from the
set of.configurations which give the manifold its topological
richness, At present, few.other field theories can boast

of such a;well defined mathematical model,
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Moreover, if one were to adopt £he spirit of the
approach used here to other nonlinear field theories, the
results could be moSt beneficial, The days when ''nonlinear"
meant "not linear" are gone, One has advanced to questions
and phenomena which do not follow from '"suitable lineariza-
tions'", One has progressed to systems where a solution is
the last gem, given reluctantly, from a treasurehouse of
‘information. If the specifics of the work presented here
are not immediately relevant to the reader, perhaps the
promise its spirit holds, and the new directions of inquiry

it shows plausible will prove inspiring.
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APPENDIX 1IV.1

THE VECTOR BUNDLE STRUCTURE OF ﬂn

In this appendix one demonstrates that nn satisfies
the mathematical criteria for a vector bundle. In addition,
one shows that the choice of a vector bundle chart corres-
ponds to the choice of a neighborhood reference configuration.
One identifies sections of the bundle with configurations of
the body in physical space. Finally, one relates the represen-
tation of a section with respect to a vector bundle chart to
the representation of a given configuration as a relative
deformation from a reference configuration.

From Abraham and Robin, Transversal Mappings and Flows,

Chapter I, a triple (S, B, m) must satisfy the following cri-
teria in order to be a Ck vector bundle.

(1) S and B are Ck manifolds,
(2) @w: S+ B 1is an open, Ck, surjective map.
(3) For peB, the fiber over p 1is in bijective
correspondence to a Banach space E:
-1
m “(p) = E.

(4) For (ao,U) a chart on B, there is a mapping

u:n_l(U) —— o (U)XE

k
(a) one-to-one, and C,

(b) its inverse is Ck,
(¢) when restricted to a fiber,

-1
o im 2 (p) —0, (P)XE,
P

it is linear,



(d) The diagram

L) &+ a (U) X E
ki
ao
8] +uo(U)
commutes.

(a,ao,U) is called a bundle chart for .

(5) If (o,o. V) is a second bundle chart for T,
and p UV, the coordinate descriptions are
related by a transition function wBa given

by
1
B'a ao(UnV) X E ————+BO(U V) X E

-1
(x, e) (Bo2y ~(x), [¥py(x2]e).
One requires that, for each x, Wea(x) be
linear,
WBa: ao(UnV) ———— L(E,E),
and Y be Ck in x.
Ba

For the triple (BXR?, B,ﬁn) specified on pages 128-129,
one has a natural way of constructing bundle charts. If B 1is
a Ck material body, for each point p of B there is a
neighborhood U of p and at least one Ck configuration %
of U in R?Y,

. C 3
uo.U — aO(U) R®.,



The triple (ao X1, o U), specified by the diagram

o’
o X1
nn’l(U) ———a_(U) X R®
(p,r) (e, (p),T)
U +ao(U)
P a, (p)
satisfies the criterion for a bundle chart at p. Classically
speaking, a, corresponds to a reference configuration for U
in RS3,
If Bo is a second Ck configuration of U in R?,
(Bo X1, 60, U) is also a bundle chart about p. The transi-

tion function relating the two coordinate descriptions is
quite simple:
[(8 x1)" (0 x1) 11 (x,1) = (8o, "t (x), 1,
o o o0
or
TBa(x) = 1R3
for xeao(U). The transition function satisfies the last cri-
terion, The collection of all such bundle charts constitutes
k

a C atlas for Wn.

A section of wn is a mapping

s:B ———— 1

such that



Such a mapping may be written as

S ! B wemem—— B X R?

p (p, s(p)).

One may thereby identify configurations s of B in R?3

with sections of ﬂn. Not all sections of Wn correspond

to configurations, however,

If (ao X1, o U) is a bundle chart, onemmay represent

o’

the section s relative to the chart as

. 3
PyS ¢ ao(U) — R
-1
X SR (x),
by
vseo 1 3
(ao X 1)-s Oy ao(U) —_ ao(U) X R

X (x, pys(x))

PyS is called the principal part of the section relative to
the bundle chart. Classically speaking, it represents the
configuration s as the relative deformation PyS from the

reference configuration aO(U).



APPENDIX 1IV.2

Injk(n) IS NOT AN OPEN SET IN CX(n).

In order to establish the proposition for m = BXR3,
it suffices to show that the set of all Ck injections of

k

B into R® is not open in the set of all C maps of B

into R3%®, For convenience, choose a body B and a reference
configuration for which the body appears as a cube with
coordinates (X',X%?, X¥) -1 < X* < +1, i=1,2,3. Consider a

relative deformation

3 2 3
A (xl.v Xz: Xa) — ((Xl)’ X s X )-
The configuration it represents is injective. The sequence
of deformations
A, s (XN, X%, X)) —— (a(x1)?+ (1-a)X', X%, x7),

o

0 <a <1, require that some portion of the body must collapse

k

upon itself. The C distance is given by

A=A o= sup [T Q-2 XX [ [+ sup [IDA -2 (x5x3x3) [+
-1<x*<1 -1<x1<1
+ sup [ DM -0 (xEx3xNy ]
-1<xi«1

When one evaluates the sum one finds that given €>0 there is

at least one Aa in a ball of radius € about A. Thus, one



cannot find a neighborhood of A which does not contain
at least one non-injective map. Consequently, the set of
Ck injective mapping is not open in the set of all Ck

mappings.



APPENDIX 1IV.3

A PROOF OF THEOREM 1IV.4

Theorem IV.,4 follows as a consequence of the depen-
dence of the degree of a mapping upon the boundary. In
Schwartz Nonlinear Functional Analysis, p 72, one finds the

following property for a degree.

Dependence only on boundary value: if

b|ap = ¥|aps and PEO(AD) = ¥(3D), then

deg(p,9,D) = deg (p,¥,D).

If one takes ¥ in Theorem IV.4 as a reference configuration,
D = ¥Y(B), and 3D = ¥Y(9B), then by Appendix IV.1, ¢ may be
viewed as a relative deformation
¢y D > R®
x 6-¥ 1 (x)

Obviously

Since
= ¥
dD‘*’|aD ¥lap

for any point xeD, x ¢ D,

deg (x, ¢y ,D) = deg(x,¥y,D) = 1
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