
DESIGN CONSIDERATIONS FOR LARGE DISTRIBUTED
ELECTRONIC MAIL SYSTEMS

A Thesis
Presented to

the Faculty of the Department of Computer Science
College of Natural Sciences and Mathematics

University of Houston, University Park

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

By
Hui-Tung Yuen

May, 1987

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and
appreciation to my thesis advisor. Dr. Wael Bahaa-El-Din
for his valuable guidance and advice. In spite of his heavy
work load, he always found time to speak with me when I
needed guidance.

I would also like to thank the other members of my
thesis committee, Dr. Pen-Nan Lee and Dr. Tiee-Jian Wu,
for their interest in my research. They kindly provided
comments and suggestions on my thesis.

I am particular thankful to my parents, Wai-Ping and
Yuen-Wah Yuen, for their encouragement and support.

Finally, to many friends who have given encouragement
and help, I thank each of them most sincerely.

iii

DESIGN CONSIDERATIONS FOR LARGE DISTRIBUTED
ELECTRONIC MAIL SYSTEMS

An Abstract of
a Thesis

Presented to
the Faculty of the Department of Computer Science

University of Houston, University Park

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

By
Hui-Tung Yuen

May, 1987

i v

ABSTRACT

Electronic mail is one of the most important means for
communication and information exchange in internetworking
environments. In this thesis, three methodologies for
designing large mail systems are investigated, namely, mail
systems with syntax-directed naming, mail systems with
location-independent access, and attribute-based mail
systems. Mail systems with syntax-directed naming identify
users by names which are syntactically structured according
to user locations. Algorithms for load balancing among mail
servers, system reconfiguration, and efficient message
delivery are developed and are tested using simulation.
Mail systems with location-independent access allow users to
access them from different locations. Procedures for
keeping track of migrated users and redirecting their mail
are presented. The attribute-based mail system provides
maximum flexibility to users by allowing them to identify
one or more mail recipients by attributes instead of only by
precise names. It can also be used in mass distribution of
electronic mail. An algorithm for efficient broadcasting
and searching using Minimum-weight Spanning Tree (MST) is
investigated. Criteria for evaluating electronic mail
systems are presented. Simulation experiments are used to
test the procedures and algorithms, and to study the
performance of the three mail systems,

v

TABLE OF CONTENTS

List Of Figures .. viii
1 Introduction ... 1

1.1 Electronic Mail Systems 2
1.2 Motivation and Objectives 5
1.3 Thesis Outline 7

2 Literature Survey 9
2.1 Background 9

2.1.1 Objects 9
2.1.2 Names 10
2.1.3 Group Names 10
2.1.4 Name Structure 11
2.1.5 Characteristics of Names 11
2.1.6 Name Space and Context 12
2.1.7 Distribution of Name Space 13
2.1.8 Name Servers 15
2.1.9 Name Resolution 16

2.1.9.1 Name Resolution Models 17
2.1.9.2 Name Resolution Mechanisms 20

2.2 Procedures and Mechanisms for Electronic Mail ... 20
2.3 Existing Electronic Mail Services 24

2.3.1 Grapevine 24
2.3.2 ARPANET 25
2.3.3 CSNET 26
2.3.4 UUCP .. 27

2.4 Summary ... 28
3 Design Methodologies for Large Distributed Electronic

Mail Systems .. 29
3.1 Syntax-directed Naming System 30

3.1.1 Naming and Addressing 30
3.1.2 Message Delivery 36
3.1.3 Reconfiguration 42
3.1.4 Migration of Users 44

3.2 Location-Independent Access to the Mail System .. 45
3.2.1 Naming and Addressing 46
3.2.2 Message Delivery 48
3.2.3 Reconfiguration 50
3.2.4 Migration of Users 51

3.3 Attribute-based Electronic Mail System 52
3.3.1 Application Examples 52

vi

3.3.2 Attributes 55
3.3.3 Broadcasting and Searching 56

3.3.3.1 Minimum-weight Spanning Tree (MST) 56
3.3.3.2 Cost Analysis 62
3.3.3.3 Message Control 63

3.4 Procedures Common to the Three Mail Systems 65
3.4.1 Flow Control 65
3.4.2 Message Archiving and Clean-up 67
3.4.3 Error and Failure Handling 68
3.4.4 User Interface 69

3.5 Summary .. 71
4 Comparative Study Of Electronic Mail Systems

Performance .. 73
4.1 Evaluation Criteria 73

4.1.1 Efficiency 74
4.1.1.1 Response Time 74
4.1.1.2 Message Delivery 74
4.1.1.3 Data Distribution 75
4.4.4.4 Caching 75

4.1.2 Reliability 76
4.1.2.1 Service Availability 76
4.1.2.2 Message Flow Control 76
4.1.2.3 Buffer Clean-up 77
4.1.2.4 Consistency 77

4.1.3 Flexibility 79
4.1.3.1 User Migration 79
4.1.3.2 Group Naming 80
4.1.3.3 Reconfiguration 80
4.1.3.4 User Interface 82

4.1.4 Cost .. 83
4.2 The Simulation Model 83
4.3 Assumptions 86
4.4 Comparative Evaluation 88
4.5 Summary ... 93

5 Summary and Areas for Future Research 94
References ... 98

vii

LIST OF FIGURES

1.1 Environment of Electronic Mail System 3
2.1 ARPANET Tree Structured Name Space 14
3.1 Topology and User Distribution 34
3.2 Initial Server Assignment and Load Distribution ... 35
3.3 Final Server Assignment 35
3.4 Name Resolution Scheme 38
3.5 Group Mapping Using Hash Function 47
3.6 A Connected Undirected Graph 57
3.7 Backbone MST Connections of Regions 60
3.8 Backbone MST and Local MST 61
3.9 Response Collections from Other Nodes to Source

Node 64
4.1 Topology of the Simulation Model 85

vi i i

CHAPTER 1
INTRODUCTION

In order to facilitate communication, information
exchange and sharing in todays' complex business
environment, immense interconnections of public and private
data networks have been established [TER 85]. Among the
many services built upon these networks, electronic mail
service is one of the most important and widely used
facilities. Present mail systems vary from exchange of
messages among users on the same computer system, to some
large multinetworking distributed systems that involve
hundreds of networks and thousands of users residing on
different part of the world. For example, DARPA Internet
consists of over 300 networks connecting most of the major
U.S. universities, military organizations and computer
corporations, and is still growing. The industry of
electronic mail will increase tremendously in the near

1

2

future as systems become easier to use and less expensive.

Since communication is so important in our daily work,
its efficiency will directly affect the performance,
productivity, and competence of people and organizations in
an increasingly complex world. Electronic mail system
provides a convenient, efficient and reliable way of
communication and information exchange and sharing. It
offers the advantages of speedy delivery and rapid reply.
Also the messages, which can be in the form of text or
graphic information, are replicated and stored as written
records. Moreover, the cost of electronic mail becomes
less expensive than telephone communication in recent
years. In this thesis we investigate the nature of
electronic mail systems and explore design methodologies
for large distributed mail systems.

1.1 ELECTRONIC MAIL SYSTEMS

Electronic mail system is composed of users, user
interfaces, hosts, mail servers, mail forwarders and
networks, as shown in Fig. 1.1.

3

□ SERVER

Fig. 1.1 Environment of electronic mail system.

4

A user or client is identified by a name which is used
for the purpose of reading mail, accessing the mail
services, and addressing his mail. This name may be
different from the user's computer account. A host is a
computer connected to the network. The user interface is a
software package that interacts with the users and assists
users in composing, sending and receiving, reading and
filing mail. A mail server is a process responsible for
obtaining address of recipients, sending, relaying and
delivering messages to the mail recipients. It contains
information about users, hosts, networks, and other
servers. A mail forwarder is a host computer that can
store and forward messages. The networks provide
communication facilities for message transportation.

When a user wants to send a message, the message is
first composed and formatted by the user interface. The
user interface locates an active mail server, to which the
message is submitted. The mail server then obtains the
address of the recipient using name resolution scheme, and
sends the message to the recipient's mail server through
the forwarders using the communication services. Upon
receiving a message, the server notifies the recipient (if
possible). The recipient user retrieves the message from
the server through the user interface, and can read and

5

file the message.

In this internetworking environment, each network may
be totally unique in the sense that each has its own
network protocol and own administrative and management
policy. However, the many different networks have to
operate and co-operate concurrently. The environment can
be characterized as large and diverse. Every machine in
the global network can communicate with other machines
using some basic communication facilities such as virtual
circuit and datagram services, routing and flow control.
Such services can be provided by standard protocols such as
the Transmission Control Protocol (TCP/IP). The mail
system is built on the top of those facilities. Most of
the mail traffic is within the local environments and at a
very high speed while a small portion is internetwork
traffic at a relatively slower speed.

1.2 MOTIVATION AND OBJECTIVES

Most of the current electronic mail systems are
limited to a single corporation (Grapevine) or a group of
institutions (ARPANET and CSNET). Aided by increasing uses
of computers and powered by new technologies, future
electronic mail systems are expected to connect everyone

6

with everyone else, just like today's telephone systems.
The hardware used in electronic mail systems may range from
small personal computers through workstations to
minicomputers, mainframes, and supercomputers [QUA 86].
Significant work has been done in the area of naming and
addressing in multinetwork systems ([COM 85], [TER 85],
[PET 85]). However, most of the naming and addressing
schemes are limited in flexibility that they have many
constraints on system reconfiguration and expansion, the
movement of objects. Moreover, algorithms for efficient
load balancing and models for mass distribution of mail
based on attributes are not investigated in previous work.

In this thesis, we present design methodologies for
electronic mail systems in large and diverse distributed
environment using three different approaches. The first
one is a mail system with syntax-directed naming scheme.
It emphasizes the hierarchical partitioning and
distribution of the mail services using syntax-directed
names. Algorithms for balancing loads among servers, and
message delivery are developed. The second methodology is
location-independent access to mail systems, which provides
flexibility in accessing the mail services and user
movement. It allows users to access the mail services
through any host in the local region. The last system is

7

called attribute-based mail systems, which allow selective
search of recipients and mass distribution of mail using
some defined attributes.

There are many important aspects in designing large
electronic mail systems. In this thesis, special
considerations are given to the problem of naming and
addressing, flexibility in reconfiguration and user
movement, and mass distribution of mail using attributes.
Criteria for evaluating the performance of mail systems are
also developed.

1.3 THESIS OUTLINE

In this thesis, we discuss some important issues in
designing large electronic mail systems for multinetwork
environment. The major considerations are on naming and
addressing of mail system users and mail boxes, balancing
the load among mail servers, system reconfiguration and the
problem of user migration and system growth.

Chapter 2 provides the background and basic concepts
of electronic mail systems. Formal terminologies are
defined. The fundamental procedures and mechanisms for
large distributed electronic mail systems are listed. Four
existing mail systems are examined.

8

Chapter 3 is the core of the thesis. It presents the
three methodologies for designing large electronic systems.
Important mechanisms and procedures of naming and
addressing, load balancing, reconfiguration, flow control
and user migration for each methodology are discussed.

Chapter 4 discusses criteria for evaluating mail
systems and compare the performance of different
approaches.

Finally chapter 5 is the conclusion of this thesis.
Some areas for future research are proposed.

CHAPTER 2
LITERATURE SURVEY

In this chapter, the background for designing large
distributed mail systems is given. First we introduce the
basic concepts. Then the fundamental procedures and
mechanisms required in a distributed mail system are
listed. Finally, several existing distributed mail systems
are described.

2.1 BACKGROUND

The followings are basic terminology and concepts.

2.1.1 Objects

The distributed electronic systems are conceptually
view as a collection of objects [PET 85]. Objects are the
physical and logical entities in the system. They can be

9

10

either active or passive. In the electronic mail system,
the major objects we are referring to are users, mailboxes,
and servers.

2.1.2 Names

Each object is associated with a name for the purpose
of identifying, locating, and accessing it in distributed
environment. It should be noted that names and addresses
are closely related, and addresses are also names that
indicate the physical location of the objects. Names can
be translated into addresses when accessing the objects.
The names need not be bound to addresses until mapping
occurs.

2.1.3 Group Names

One objective of computer mail system is to share
information among the users. Therefore, recipients of mail
messages should not be restricted to individuals only.
They can be groups or distribution lists. Distribution
lists represent named sets of recipients. The grouping may
be based upon organizational structure, geographical
locations, job responsibilities, projects or interests.
When a message is addressed to a distribution list, each

11

member in the list will receive a copy of the full message
or a summary that each member can request the full message
t be sent if he is interested. This is a convenient way to
distribute messages to groups of people in a distributed
environment.

2.1.4 Name Structure

Names are usually structured as a set of
alphanumerical symbols separated by delimiters. A name is
a string composed of a set of symbols chosen from a finite
alphabet [PET 85]. A general form of name is "X.Y.Z.",
where X, Y, Z are name tokens and is a delimiter. The
name tokens X, Y, Z correspond to some characteristics or
attributes of the object. Each existing distributed system
has its own naming convention. For example, the original
ARPANET users are identified by a flat name, and its
present names are in the form of "user@host". Grapevine
uses a hierarchical name in the form of "F.R", where F is
the unique user-id and R is the registry name. Names in
UUCP is like "hostl!user@host2" which represents a
source-route naming convention.

2.1.5 Characteristics Of Names

12

Since names are used to identify objects in the
system, the set of names used should be simple, sharable
and easily understandable by human beings. Another concern
about names is the degree of ambiguity and uniqueness. A
name is unambiguous if it identifies at most one object. A
name is unique if it is the only name for an object. The
same name cannot be used to refer to several different
objects but several non-unique names may identify the same
object. Therefore, names must be unambiguous but not
necessarily unique. Actually all computer systems enforce
the uniqueness rule on the names of user-ids. Therefore,
many mail systems use the user-id of the systems as the
mailbox addresses. A name is said to be global or absolute
if it has consistent meaning for all users in the system
regardless of their locations in the environment. On the
other hand, a name is said to be relative if its
interpretation varies with some state information.

2.1.6 Name Space And Context

In order to have a uniform naming scheme, each system
has naming convention which is a set of rules that govern
the syntactic representation and semantic interpretation of
names used in the system. The set of names complying with
a given naming convention is called the name space.

13

Furthermore, names always exist within some contexts. A
context is the domain in which a name is valid. In
distributed system, the name space is partitioned into
contexts, often along geographical or organizational
boundaries. A name can belong to more than one context and
contexts may be nested.

2.1.7 Distribution Of Name Space

In a single computer system or single network
environment, the size of its name space is very small that
the name space can be contained in a single centralized
database. However, in a large distributed system, a single
centralized database is too inefficient to use and manage.
Therefore, the name space is partitioned into some easy
manageable contexts and distributed among servers so that
no server needs the complete knowledge of the whole space.

The name space can be partitioned into levels or
hierarchies. For example, Grapevine divides its name space
into registries and distributes them among the registration
servers. ARPANET Domain name scheme has a tree structured
name space. An example is shown in Fig. 2.1.

14

Fig. 2.1 ARPANET tree structured name space.

15

Terry [TER 85] proposed "Structure-free Name Distribution"
which distributes names to authority servers bases on some
clustering conditions. This is quite different from the
syntax-directed naming discussed in [PET 85], which
partitions the name space according to syntactic
characteristics of the names.

2.1.8 Name Servers

Name service is a very important component of a
distributed system that it enables users to name, locate
and access resources and share information about the
objects of the system. To manage the name space and to
maintain the name service, name servers are needed. A name
server is an active process that offers name services to
its clients, generally in co-operation with other servers.
In computer mail systems, the principal functions of name
servers are to facilitate mail services by translating
names into addresses at which objects can be located based
on the set of bindings between names and addresses,
providing directory assistance in locating addresses of
mail recipients, and aiding in forwarding mail. The
functions are not partitioned but the control and data are
decentralized. All name servers play identical roles in
the system but each server manage a subset of the name

16

space. A server usually runs on a single computer. The
argument of whether servers should run on dedicated
machines will be left to the designers and administrators
to consider based on factors such as cost, performance
requirement, system environment etc. In this research, the
name service is considered as part of mail server
functions.

In some systems like ARPANET, CSNET, centralized name
services are provided, where a single name server manages
the complete service database. In other systems like
Grapevine, Clearinghouse, Domain Name System, several name
servers collectively manage the name space and support the
basic set of operations. Each server does not contain the
complete name space database. It only contains part of the
name space. All name servers present a common interface
and accept requests from any client. If the contacted name
server does not contain enough information to process the
request locally, it can pass the request to another
server(s) .

2.1.9 Name Resolution

Name resolution is the process of determining the
authority name server for a given object [TER 85]. Given a

17

name of an object, there must be a mechanism to translate
the name into an address in order to access the object. In
the next sections we will discuss the name resolution
models and mechanisms.

2.1.9.1 Name Resolution Model

Names can be resolved syntactically or
algorithmically. Syntactic name resolution depends on the
syntax of the names. Basically it is a pattern matching
method. Algorithmic name resolution, on the other hand,
does not rely on the syntax of names. Some algorithms or
functions are used to map the names into addresses.

1. Syntax-directed

The syntax-directed name resolution model
resolves names based on the syntax of the names. In
[PET 85], a detailed discussion on the syntax-directed
name resolution model is presented. In that model,
names are divided into three sets: resolvable,
unresolved, and unresolvable. The name resolution
process involves the mapping of arbitrary names into
resolvable names. The model does not distinguish
between "names" and "addresses". They are treated as
different forms of names existing in different levels

18

of the system. Names are viewed as purely syntactic
entities, and the name resolution as a syntax-directed
operation.

2. Structure-free name management

In most existing distributed name services, the
assignment of servers to objects, as well as the
mechanisms for name resolution depends heavily on the
name structure. A recent research by Terry [TER 85]
suggests a structure-free name management model which
breaks this dependency between the structure of names
and name assignment and resolution.

The differences between Terry's model [TER 85]
and other models are that the owner of an object may
choose its naming authorities, subject to
administrative constraints, and independent of the
object's name. This gives flexibility to the
assignment and reassignment of authorities. A list of
authoritative name servers are maintained for each
object. When the authoritative servers for an object
need to be changed or reassigned, only this authority
server list is changed. Most importantly, the name of
the object need not be changed because it is

19

independent of the assignment of authority.
Furthermore, the changes in name resolution procedures
also will not require name changes.

The name space is partitioned into contexts using
some clustering conditions. A clustering condition is
a function that will yield either TRUE or FALSE value
when applied to a name. Given a name to be resolved
in some context, the particular context is searched
for either an authority attribute for that object or a
context binding which points to another context where
the name might be resolved. The resolution activity
will migrate from context to context until the
authoritative name servers for the named object are
located. This is called the resolution chain. The
length of the chain varies for each name.

By separating the authority assignment and name
resolution from the structure of the names, the system
becomes more flexible. The name service can be easily
reconfigured. New servers can be added to the system
and assume authority over parts of the existing name
space. Object names need not be changed because they
do not reflect the underlying configuration.

20

2.1.9.2 Name Resolution Mechanisms

The name resolution mechanism depends very much on the
partition, distribution, and replication of the name space.
If the name space is centralized and managed by a single
server, the scheme is very simple. All clients will pass
the request to a server which can resolve all names.
However, this scheme is not very reliable because the
server may fail and services become unavailable. Also the
response time is relatively long. Another scheme is to
replicate the name space information fully in all servers.
Then name resolution involves a single database query. It
seems to be easy and fast but in very large and diverse
environment, the database is undoubtedly too cumbersome to
be stored everywhere in its entirety. Also there are
problems concerning the storage, updates and consistency of
the databases. A more efficient scheme is to partition and
distribute the name space among the servers. Distribution
will reduce the amount of storage required in each server
and the amount of update activity required for adding
servers or users to the system. The databases are also
replicated to increase their availability and reliability.

2.2 PROCEDURES AND MECHANISMS OF COMPUTER MAIL SYSTEMS

21

The computer mail system can be functionally divided
into the following procedures and mechanisms:

1. Naming and Addressing

Naming and addressing procedure is a vital
part of the system. It specifies how objects in
the distributed system are named and addressed.
It also defines how name distribution and
assignment are done.

2. Message Delivery

The message delivery procedure defines how a
message is transferred from the sender to the
recipient. It is further divided into three
parts: connection setup, name resolution and
forwarding, and delivering. The user must setup a
connection with a server in the mail system in
order to use the services. After receiving the
request from the user, the server is responsible
for resolving the name into an address and
forwarding the message to the server that is
responsible for managing the recipient's mailbox.
The server will then deliver the messages to the
recipient.

22

3. Reconfiguration

Reconfiguration mechanism allows the system
to make logical and physical changes in order to
adjust to the changes in the environment. The
basic changes are increases or decreases in users
population, and adding, deleting, or moving of
hosts and servers. New networks may also be
included due to expansion and growth. The
reconfiguration mechanism must involve minimum
human interference.

4. Flow Control

The traffic pattern in electronic mail system
may vary dramatically and must be under
appropriate control. Flow control mechanism is a
preventive measure that will guard the system from
over congestion of messages in the networks and
servers. It is an essential part of a reliable
mail system. Its function is to monitor the
traffic condition of the system and make
appropriate adjustment to the system.

23

5. Clean-up

Clean-up policy is important in preventing
overuse of system resources. The main resource we
are considering here is the system's message
buffers. The buffer management policy defines the
allocation of buffers to each users and the
maintenance of the buffers. Clean-up procedures
also defines how and when old messages should be
archived to repository storage.

6. Error and Failure Handling

The ability of the system to handle errors
and failures determines the survivability and
reliability of the systems. The system should be
able to detect errors such as message duplicates,
message loses, inconsistencies in the system
databases.

7. Migration of Users

Users in the distributed system are not
necessarily static. They may move from one
location to another. Users should be allowed to
move as freely as possible without much
inconvenience and overhead. This way the users

24

can access the mail system from any host in a
local region.

8. User Interface

Computer mail is a system service that should
not be accessed directly by the users. Users can
only access the service through user interface.
The user interface provides a large variety of
primitives that will assist users in using the
mail services. The design of user interface
should be friendly, convenient, and powerful.

2.3 EXISTING MAIL SERVICES

Many electronic mail systems already exist. In the
following sections, some major identifiable mail systems
that have been implemented and documented are examined. We
choose four existing systems - Grapevine, ARPANET, CSNET
and UUCP, to discuss because they are representatives of
the different types of current electronic mail systems.

2.3.1 Grapevine

Grapevine, developed by XEROX, is a distributed
and replicated system that provides mail, resources

25

location, access control and authentication services
[BIR 82]. It is a typical single-corporation system
that connects the computers and workstations of a
company. It is considered one of the most successful
electronic mail systems for the office environment.
Names in Grapevine are structured as a two-level
hierarchy and are of the form "F.R", where "R" is a
registry name and "F" is unique within registry "R".
Registries correspond to locations, organizations, and
applications that exist within the user community.
The registration database is distributed and
replicated among the many Grapevine computers.

2.3.2 ARPANET

ARPANET, developed by the department of defense,
is one of the oldest and largest networks that
connects geographically distributed computers and
provides full range of services to many institutions.
Electronic mail is one of its most popular facilities.
Through the years of operations, it experienced rapid
growth of user community and host, leading to a slow
progression in the name services [TER 85]. At the
beginning ARPANET hosts have been identified by flat
alphanumeric names. A host table containing the

26

database of bindings of host names to Internet
addresses is maintained by a central authority that
oversees changes to the table and distributes copies
of the table to every host in the Internet. This
centralized host table approach assumes that changes
happen infrequently, and that the number of hosts
remains relatively small. This flat name space has
become impractical when the number of hosts in ARPANET
increased [COM 85].

A new scheme called Domain Name System is being
developed to decentralize the management of host
information [COM 85]. Under the Domain Naming
convention, a tree structured name space is used. The
original flat name is replaced with a hierarchical
one. This allows the single host table to be
partitioned and distributed over multiple databases,
thus makes the name space more manageable [COM 85].

2.3.3 CSNET

CSNET is a logical network that is build on
ARPANET, Telenet, and Phonenet. It is used for
communication among computer science researchers from
academic and industrial institutions. The CSNET Name

27

Server, a directory service, is implemented by a
central database at University of Wisconsin [SOL 82].
A mail recipient can be unambiguously identified in a
location-independent way by supplying a suitable set
of keywords, which are mapped by the server to a
mailbox address in the form of "user@site". Most mail
users use mail facilities directly without consulting
the name service.

2.3.4 UUCP

The name "UUCP", for UNIX to UNIX CoPy,
originally applied to a transport service used over
dial ups between adjacent systems [QUA 86]. It
differs from other systems in that it uses a relative
naming and addressing scheme. In UUCP, the mail
addresses are called source-route addresses because
they specify the route through the network from source
to destination computer. The addresses, in the form
of "hostl!host2!sitelluser", are only relative because
a recipient is identified relative to the sender.
Another sender might identify the same recipient
differently. The UUCP map and pathalias have made
this bearable, but it is still nuisance [QUA 86].

28

2.4 SUMMARY

This chapter provides the fundamental background and
basic concepts of electronic mail systems. Naming and
addressing is an important part of the electronic mail
systems. Many research have been done to investigate name
distribution and management. The syntax-directed naming
model provides simple and straight forward solution to the
naming problems. However, it has many constraints on the
system reconfiguration and user movement. The other
approach to separate the name assignment and management
from the syntax of the names is more flexible and suitable
for very large and diverse computing environments. The
discussion of existing mail systems shows that there are
still many unresolved problems and limitations in current
systems.

CHAPTER 3
DESIGN METHODOLOGIES FOR LARGE ELECTRONIC MAIL SYSTEMS

In this chapter, we develop three design methodologies
for electronic mail systems that can be used in large and
diverse distributed environments. The three models are
mail system with syntax-directed naming, mail system with
location-independent access, and attribute-based mail. For
the syntax-directed naming model, name assignment, load
balancing and message delivery algorithms are developed.
For location-independent access model, the main concern is
to develop a flexible system which allows users to access
the mail service from any location, and a system that can
be reconfigured easily without much overhead. The
attribute-based mail model is developed to distribute
information based on some attributes possessed by the
users. An algorithm for efficient broadcasting is
explained. For each model, the procedures or mechanisms of

29

30

naming and addressing, message delivery, reconfiguration,
and user migration are described. Finally the common
problems of flow control, storage clean-up and user
interface for electronic mail systems are discussed.

3.1 ELECTRONIC MAIL SYSTEM WITH SYNTAX-DIRECTED NAMING

Before messages can be delivered, names, which are
used to identify users or mailboxes in a mail system, must
be first translated to addresses to indicate the locations
of the users or mailboxes. In order to facilitate the
mapping between names and addresses, it is natural to
incorporate some location attributes into the structure of
the names. Syntax-directed naming scheme uses the syntax
of a name to identify the location. In this model location
dependent hierarchical names are used. This model provides
a straight-forward approach to the naming and resolution
mechanisms. However, the rigidity of name structure and
syntactic pattern matching requirement somehow reduce the
system's flexibility and ability to grow.

3.1.1 Naming And Addressing

In large system, the name space is partitioned and
distributed in a hierarchical fashion. The number of

31

hierarchies depends on the environment. The current
hierarchical numbering scheme for telephone services is a
good example of syntax-directed naming for an environment
that covers almost every part of the world. The four level
hierarchy of country, state, city, and local switch can be
applied to electronic mail system. In this thesis we use a
four level hierarchical name to identify users of the
computer mail system. The name is in the form of
"country.region.host.user". The name components are
location dependent. The country and region name is
globally unique; the host name is unique within a region;
and the user name is locally unique within a host.

The name space consists of all names of the form
"country.region.host.user". Each user is assigned an
authority server which stores information about him, and
assumes responsibility for reliably managing that
information. The authority server is responsible for
sending and receiving mail on behalf of the user, and is
also involved in name'resolution, forwarding and delivering
of messages. Assigning a single authority server for each
user is not reliable enough because if the server goes
down, the user will be unable to use the mail services.
Therefore, each user is assigned several authority servers,
which are ordered in a list such that the first server in

32

the list is the primary server for the user, and the next
is the secondary server, and so on. If one server fails,
the user can still access the mail system through other
authority servers in the list.

The list of authority servers consists of first the
local servers and then some non-local servers in the nearby
neighbor regions. The length of the list depends on the
probability of server failures and the degree of
reliability requirements. Basically, the assignment of
server to users is based on some "cost" measure. The
"cost" depends on the communication cost between the server
and the user, the processing cost and the queuing delays in
the server. Next we develop a new algorithm for server
assignment. The algorithm has two objectives:

1. To assign a closest server as possible,
2. To balance the load among servers,

so that the total cost (communication + processing +
queuing) from each user to all servers in the region is
minimized (within a small range). The algorithm first
assigns a local server to every host arbitrarily. Then it
will move users from a server with higher cost to one with
lower cost until the costs are balanced. The algorithm is

described as follows:

33

Hi = Host i, 1 <= i <= TotalNumOfHost;
Sj = Server j, 1 <= j <= TotalNumOfServers;
C[i,j] = communication_cost between Hi and Sj;
Pj = processing time of server j;
Lj = current load of server j;
MLj = max. load of server j;
RHOj = the load factor of server j = Lj/MLj;
TC[i,j] = total cost

= Communication_cost * factorl +
(1 + load_factor/(1 - load_factor)) *
processing_cost * factor2

= C[i,j] * fl + (1 + RHOj/(l - RHOj)) * Pj * f2
Ni = number of users in host i;
A[i,j] = number of users of host i assigned to server j;
factorl, factor2 = some constant factors used to assign

different weight to communication cost
and the queuing delays

procedure Initialization;
begin

{** each host is assigned to the nearest server. **}
for i := 1 to TotalNumOfHosts do

{ A[i,j] := Ni; where (TC[i,j] is min. for all j's)
}

{** At this point, some servers may be overloaded. **}
end ;
procedure balancing;
begin
repeat
change := false;
for i := 1 to TotalNumOfHosts do

{Smin := server with min. total cost (TC[i,j]);
Smax := server with max. total cost (TC[i,j]) among

the servers with users from this host
(i.e. A[i,Smax] > 0);

if (Smin <> Smax) and (TC[i,Smin] < TC[i,Smax]) then
(move one user of host i from Smax to Smin;
adjust load of Smin, Smax and the total cost to them
if (TC[i,Smin] > TC[i,Smax]) after adjustment then

{ undo the previous action
(i.e. move user back from Smin to Smax);

else
change := true;

}
until no more changes needed;
end;

34

The following is an example to show how the algorithm
works. Fig. 3.1 shows the topology and user distribution
of our example. The processing powers are the same for all
servers. Servers, Si, S2, and S3 are in the same region
while S4 belongs to another region. The communication cost
is one unit for all local links, and 100 units for
inter-region links. After initialization, the server

N Number of users in the
host

Fig. 3.1 Topology and user distribution.

35

assignments and load distribution among servers are shown
in Fig. 3.2. The final result of balancing the loads is
shown in Fig. 3.3. It can be seen that users from some of
the hosts are assigned to different servers. Therefore, we
must apply some functions to identify the authority server
of a particular user, for example using a hashing function.

User | Servers
Assignment! Si S2 S3
— — ——— — — — — —- + —-------- — —------- — — ——— — — —------

Host 1 | 50
Host 2 | 60
Host 3 j 50
Host 4 | 60
Host 5 | 40
Host 6 | 20

------- ———————4.— — — -.-----—----------------------------------

Server | 160 100 20
load

Fig. 3.2 Initial server assignment and load distribution

User
Assignment] Si

Servers
S2 S3

Host 1 |
Host 2 |
Host 3 j
Host 4 j
Host 5 |
Host 6 j-------- +
Server |
load

34 3
44
15

48
40

93 91

13
16
35
12
20
96

Fig. 3.3 Final server assignment.

36

3.1.2 Message Delivery

The message delivery process starts after the message
is presented to the mail server for delivery and ends when
the message is delivered to the recipient. The mechanism
can be further subdivided into three phases, namely,
connection setup, name resolution and forwarding, and
delivering.

(a) Connection Setup

The users need to contact a server through the user
interface in order to use the mail service. Since each
user is assigned a list of authority servers, the user
interface will contact the first server from that list, and
ask for a mail service. If that server is not available,
he will contact the next one and etc.

The problem with this scheme is that it requires large
overhead in maintaining the authority server list for each
user in the user interface. Some grouping of the users can
reduce number of lists, such as keeping a list for each
host. However, the lists still need to be updated when
there are changes in system configurations, (i.e. adding
or deleting a server).

37

Another way to establish connection between a user and
a server is through name servers. A name server maintains
complete information about the status of servers in the
network and is able to locate an active server for a
client. The scheme seems to be simpler than the previous
one and offloads the responsibility of locating a mail
server to the name server. However, it may introduce
another problem - how to contact the name server, which is
similar to the problem of locating mail servers. So the
problem still exists but in a different level. This scheme
is used in Grapevine which uses a primitive and inefficient
broadcasting technique to locate name servers.

(b) Name Resolution and forwarding

The name resolution scheme is based on the syntax of
names. A name is said to be resolved if an authority
server for the name is located. Given a name, the
resolution procedure will either return the authority
server or a server that may be able to resolve the name.
The structure of name resolution tables are shown in Fig.
3.4.

38

Fig. 3.4 Name resolution table.

39

A procedure for resolving names can be as follows:
{ In Server }
Procedure ResolveName(Name)

return Server;
BEGIN

IF RegionName = LOCAL THEN
BEGIN

groupld = MappingFunction(HostName);
Locate a server for that group;
return the server;

END
ELSE

BEGIN
Locate a connecting server for the region;
return the server;

END
END;

(c) Delivering the Message to Recipients

The hosts or computers used by the users are not
necessarily large computers. They can be terminals,
personal computers, or workstations. The users will not
have a lot of storage of their own, and a user's machine
will not be turned on all the time (for example a personal
computer). Therefore, the received messages are stored in
the servers' storage space until the users retrieve them.
When a server receives a message on behalf of its
recipient, it tries to notify the user immediately by
sending an alert signal to him if he is logged on or notify
him as soon as he is connected to the system. The user can

40

choose to save the message in his own storage or delete it
after he reads it. Another option can be provided to allow
a copy of the message be retained on the server. In that
case, some policy of message archiving and clean-up must be
implemented to protect the servers' storage from being used
up.

Since each user is assigned an ordered list of
authority servers {Si,S2,...Sn}, mail will be deposited in
the first active server from the list. Servers may become
unavailable because of failures or being disconnected from
the network. As a result, the user messages may be
deposited in more than one server. To retrieve the
messages, the most straight-forward method is to poll all
the authority servers for that user. However, this is very
inefficient and for most times unnecessary. We present an
algorithm for retrieving messages that is more efficient
than the scheme which polls all servers because it will not
check servers when it is sure that they do not store any
messages for the user. For each user, the system records
the time when the user last checked his mail
(LastCheckingTime) and a list of servers
(LastUnavailableServers) that were unavailable at that
time. Each server records the time (LastStartTime) that it
is last recovered from failure or initialized. Whenever a

41

user wants to check his mail, the interface will check with
the first active server in the user's authority server
list. If the user's LastCheckingTime is greater than the
server's LastStartTime, this means the server has been
unavailable for receiving mail for sometime since
LastCheckingTime and that some mail might be deposited in
other servers. In this case, the user needs to check with
other servers in the list. Also the user always checks
with active servers who are in the LastUnavailableServers
list. The following is the pseudocode for the algorithm,
procedure ReceiveMail(user);

return messages;
BEGIN
recv_mail_time(user) := current_time;
while not finished and there are more server to be checked do

{
Si := next server in the authority server list;
if Si is alive then
Get mail;
if LastCheckingTime(user) > LastStartTime(server) then

{
for all server Sj(j>i) in the LastUnavailableServers do

{
if Sj is alive then
{check_mail;
remove Sj from the LastUnavailableServer;

}
}

finished := true;
}

}
else

{ if Si is not in the LastUnavailableServers then
add Si to the LastUnavailableServers list; }

}
END;

42

3.1.3 Reconfiguration

In large distributed systems, the environment is
dynamic and changing. From time to time, users, hosts, and
servers are added, deleted, or moved. The system may also
expand to include new regions and networks.
Reconfiguration is needed to adjust to these changes.

(a) Add/Delete Users

The adding or deleting of users to the mail
system is very common operation and usually will not
affect the configuration of the system. However, if
too many users are added, existing servers will be
overloaded. New servers must be added. The load will
be redistributed among the servers using the algorithm
for server assignment specified before.

(b) Add/Delete hosts

43

The system can include new hosts. When a new
host is added to the system, the new load is
distributed among the servers in the region.

On the other hand, if a host is removed, the load
balancing state among the servers is upset. The
system can reassign the servers among the users by
moving some load from servers with high load to
servers with low load.

(c) Add/Delete Servers

Adding of new server requires the system to
reconfigure. Most changes will be localized to the
region where the server is added, although some
changes are made to tables in all servers. First, the
new server notifies all other servers about its being
added and exchanges identification and other
information with them. Then the server assignment
procedure is performed to redistribute the load so
that some users are assigned to the new server.
Between the transformation from the old server
assignment to the new one, some mechanism of
synchronization are needed to co-ordinate the
reconfiguration so that old messages are redirected

44

and new messages are forwarded to the new addresses.
Also the databases and tables in the system are
updated correctly and consistently.

Deleting a server follows the same procedure as
adding a server. The server to be deleted notifies
all other servers before it is removed. Those servers
then cooperate to share the load of the removed
server. Again the server assignment procedure
specified before can be used to change the authority
servers for the users and to balance the load among
the servers.

3.1.4 Migration Of Users

Since the names in this model are location dependent
and the resolution mechanism depends on the structure of
the names, migrated users have to change their names to
indicate their new locations. Also the users are assigned
to new servers. Basically the operation involves adding
the user to the new location, then deleting the user from
the old location. Between the two operations, mail
addressed to a migrated user can be redirected to the new
user address, and the senders are notified about the name

45

changes. This is not a very flexible approach.

3.2 LOCATION-INDEPENDENT ACCESS TO MAIL SERVICES

For a system that is changing and growing constantly
and dynamically, flexibility in configuring and
reconfiguring the system is strongly desired. In
syntax-directed naming model, server assignment and name
resolution are based on the syntactic characteristics of
the names and hence changing server assignment requires
changing user names. Furthermore it places some
restrictions and constraints on the reconfiguration, growth
of the system and migration of the users. On the other
hand, complete independence of the name structure will give
the system flexibility at the expense of increasing the
overhead and response time. Therefore, we must make a
compromise between flexibility and cost.

For efficiency purposes, the authority server for a
user should be in close vicinity to the user. It is
inefficient to allow a user to choose a server that is far
away from the user, despite its flexibility. In this
model, we divide the name space into regions. Maximum
flexibility is allowed within a region - server assignment
and name resolution do not depend on the syntax of names;

46

users can move freely and can send or receive messages from
any hosts without having to change names. Also
reconfiguration can be localized and has minimum effects on
users and on other parts of the system.

We still use the concept of "region" to enhance
forwarding of messages so that any reference to a name can
be forwarded immediately to the recipient's region and
further name resolution and message delivery can be done in
the local region.

3.2.1 Naming And Addressing

Although we still use a hierarchical name in the form
of "region.host.user", the "host" here indicate the primary
location of the user. It does not tell anything about the
current location of the user. The difference between this
scheme and the previous one is that a user is no longer
attached to a fixed host and can access the mail system
through any host in the region.

The name space is partitioned into regions. Regions
are further divided into small groups of manageable size
using some mapping functions. For example, if a region is
to be divided into K groups, a function that will map names
into an integer in the range of {1..K} can be used. Users

47

are assigned a list of authority servers using the
algorithm described in the previous model. Fig. 3.5 is an
example of group mappings.

Fig. 3.5 Group mapping using hash function.

48

3.2.2 Message Delivery

(a) Connection set-up

The users set up a connection to a mail server through
the user interface. A user always contacts the nearest
active server. All server in a region will co-operate to
keep track of the movement of users.

(b) Name resolution and forwarding

Upon receiving a request from the user, the server
will try to resolve the name. In this model, all servers
can resolve local names within the region. In this case, a
hash function is applied to the name to find out in which
sub-cluster the name belongs. Then the name can be
resolved within the context of that sub-cluster. If the
name is not a local name, the server has to contact the
corresponding server in the region where the name belongs.
The request will be forwarded to that server which will
presume the responsibility of resolving the name and
delivering the messages.

Procedure ResolveName(Name)
return a server;

BEGIN
Extract region name;
IF region = LOCAL THEN

BEGIN

49

Sub-cluster := Hash(Name);
Get an active server for that sub-cluster;
return the server;

END
ELSE

BEGIN
Locate a connecting server for the region;
return the server;

END
END;

(c) Delivering Messages to Recipients

The mechanism for this model is more complicated than
the previous scheme because of possible movement of users.
Whenever a user logs on to a host, the host will signal the
nearest active server to retrieve mail messages for this
user. The connecting server keeps the information about
the current location of this user. When a server receives
a message on behalf of its recipient, it tries to notify
the user immediately. From the user name, the primary
location of the user can be obtained. The server can send
an alert signal to the user if he logs on to his primary
location. If the user is not at his primary location, the
server has to consult other local servers to find out the
current location of the user. This scheme is the same as
the previous model if the user does not move. Overhead is
only incurred if the users moved to other locations other
than his primary location.

50

3.2.3 Reconfiguration And Expansion

Since reconfiguration mostly involves changes within
regions, there is no need to change user names as long as
they are inside a region.

Add/Delete Users

Users can be added, deleted or moved within
regions without any difficulty. However, if there are
too many users in a region that existing servers
become overloaded, new servers must be added and
reconfiguration is needed.

Add/Delete hosts

In this model host can be added, deleted, or even
moved within a region. Since the name assignment and
resolution are independent of which host the users
belong as in the previous model, adding of a host is
treated as addition of a group of users.

Add/Delete Servers

51

When new servers are added, the system can
reconfigure easily because of the independence between
server assignment and name structure. Reassignment of
servers and rebalancing of load can be done by
changing the clustering conditions and the hashing
functions. The main advantage of this scheme is that
reconfiguration can be done easily without much
overhead. Also it does not require changing of names.

3.2.4 Migration Of Users

In this model, since names are not host or location
dependent within a region, users can move freely within a
region without changing names. The server assignment of
the migrated user need not be changed because the
communication cost among the servers is very low and does
not vary much with the relative location inside the region.

If users moved from one region to another, the
overhead of redirecting the mail from old location to new
location may be very high. This may also result in long
response time for all mail of the migrated users.
Therefore, obtaining a new name will in long term be
beneficial to the migrated users and place less overhead on

52

the system, although it might cause temporary
inconvenience.

3.3 ATTRIBUTE-BASED MAIL SYSTEM

It has been projected that electronic mail will be a
major means of communication for everybody in the future,
not only in the office environment, but also at home. It
may become as popular as today's telephone services and may
replace large part of" postal services. It is usually
insufficient just to communicate with people you know.
Today's business communication requirements go far beyond
that. People have to reach out to find potential clients
for their markets, services or for information exchange.
The attribute-based mail system allows messages to be
delivered to recipients who possess certain particular
characteristics or attributes even though the senders do
not know the complete names of the possible recipients.
This model, if properly designed can be a very powerful
communication tool for tomorrow's mail systems.

3.3.1 Application Examples

Before we discuss the details of the attribute-based

53

mail system, we first describe some examples of how the
system can be used, so as to give some ideas about the
characteristics and possible problems in such a system.

1. Directory Look-up

In our daily communications with other people, we
seldom use their full legal name. Instead first names
or nicknames are more preferred. In electronic mail
system, names are assigned by the system to meet the
system naming constraints and to avoid ambiguity. The
names usually have very rigid structures. This will
impose difficulties on using and remembering those
names. People do not always remember the exact
spelling of the system names for so many users in such
a large and diverse system. Misspelling occurs so
often that the system fails to recognize them and
services cannot be provided. In attribute-based mail
system, the users are allowed to provide aliases,
nicknames or some possible misspellings of the names,
together with some other information of the intended
recipients such as organization and location. The
system will try to locate users with the given
attributes. There may be more than one user being
found possessing same attributes. In that case the
user can provide more information to separate them or

54

resolve them by himself using his intuition,
experience or a trial and error method.

2. Information Exchange

A large portion of business communications are
between people who do not know each other very well
but they have some common interests. They share
information to do business. One important task is how
to locate people who might be the potential
information holders or recipients. The common ways
people are using now are checking telephone
directories, advertising, recommendations from other
people, sending letters, mail lists and etc. These
methods are not very convenient and efficient. Using
attribute-based mail services, users can easily locate
a group of people who share a common set of
attributes. For example, a user who wants to collect
some information on a special topic can send requests
to users who are specialized in the field by using the
topic or field name as the attribute for the system to
carry out searches.

55

There will be no doubt that such attribute-based
mail services can have many other applications such as
job search, marketing, surveying, etc.

3.3.2 ’ Attributes

In this model, a user is identified by a name and a
set of attributes. To implement this, there must be a well
defined and well designed set of attributes. Attributes
can be any characteristics that are associated with a user.
The possible types of attributes are too numerous. To name
some of them, they can be

- names
- nickname
- alias
- commonly misspelled names
- nationality
- social security number
- job title
- type of job
- organization
- type of organization
- location
- region (city,county,state,country)
- school of graduation
- year of graduation
- college major
- expertise/specialty
- experience
- interests
- hobbies

Each attribute has a type and a value. The "type"
indicates the format and the meaning of the value field.

56

The choice of the attributes must be those in which most
mail service users are commonly interested. The values of
the attributes should not be ambiguous.

3.3.3 Broadcasting And Searching

In most current mail systems, a single request usually
involves one recipient or a group of recipients. The
number of recipients and their names and locations are
usually known at the time the request is generated. In
attribute-based mail systems, however, the names and
locations of the recipients may be unknown. The number of
the recipients involved can range from zero to all users in
the system. If each time, we send messages to all servers
in the system to carry out the search, the performance of
the system will be very poor. Therefore we need an
efficient method for broadcasting and searching for
potential recipients.

3.3.3.1 Minimum-Weight Spanning Tree (MST)

One interesting feature of attribute-based mail system
is to search a class of customers. We assume that the
networks on which the mail system is built, form a

57

connected undirected graph with computers as nodes and the
communication links as the edges. Each edge is assigned a
finite weight. Fig. 3.6 is an example of such graph.

£------ weight of edge

Fig. 3.6 A connected undirected graph

58

Starting from any node in the graph, we can find a path to
go to all other nodes. Such a path is* called the Spanning
Tree for the graph. The weight of the tree is defined as
the total sum of the weights of the edges in the tree [GAL
83]. Minimum-weight Spanning Tree (MST) is the spanning
tree of minimum weight among all the possible spanning
trees.

(a) A Distributed Algorithm for MST

We first introduce some properties of MST. A fragment
of an MST is defined as a subtree of the MST, that is , a
connected set of nodes and edges of the MST. The algorithm
starts with each individual node as a fragment and ends
with the MST as a fragment. An edge is called an outgoing
edge of the fragment if one adjacent node is in the
fragment and the other is not.

PROPERTY 1. Given a fragment of an MST, let e be a
minimum-weight outgoing edge of the fragment. Then joining
e and its adjacent nonfragment node to the fragment yields
another fragment of an MST.

59

PROPERTY 2. If all the edges of a connected graph
have different weights, then the MST is unique.

The proof of the two properties can be found in [GAL
83], Using the properties, we can find the MST for a graph
with different edge weights. Starting from one or more
fragments of single nodes, these fragments can grow in any
order based on Property 1. Whenever two fragments have a
common node. Property 2 assures that the union of these
fragments is also a fragment, allowing fragments to be
combined into larger fragments.

In a distributed algorithm for MST [GAL 83], each node
performs the same local algorithm, which consists of
sending messages over adjoining links, waiting for incoming
messages and processing the messages. Messages can be
transmitted independently in both directions on an edge and
arrive after an unpredictable but finite delay, without
error and in sequence. A detailed description of the
algorithm and the program codes are presented in [GAL 83],

60

Region 2

Fig. 3.7 Backbone MST connections of regions.

61

Region 2

O Node

Connecting Node

—► Backbone MST
—► Local MST

Fig. 3.8 Backbone MST and local MST.

62

(b) A Modification of the Algorithm

Since our mail system is partitioned into regions, we
modify the algorithm to find a back-bone MST to connect all
regions. Then the MST algorithm can be performed in each
region to span all local nodes. The back-bone MST is
formed by nodes which are directly connected to nodes in
other regions. Fig. 3.7 shows an example of a back-bone
MST. and Fig. 3.8 shows the back-bone MST and the local
MSTs.

3.3.3.2 Cost Analysis

The amount of traffic in such a system can be very
large as each request may generate many messages. It is
very important to estimate and calculate the cost of
broadcasting and searching before sending mail to the
potential recipients and before getting their responses. A
detailed estimate is given to users about the cost for a
fee. Based on the detailed estimate of charges and traffic
volume, the user can select his recipients and the amount
of search he wants to be done. The cost includes the
communication cost for broadcasting to the regions to be
searched, processing cost for searching the databases in
those regions, and delivering messages to users.

63

Since the weight associated with each edge in the MST
is the communication cost between the nodes, the total cost
of traversing the MST is the sum of the weights of the MST.
When an MST is generated following the previous algorithm,
a table listing the costs for delivering to the targeted
recipients in each region can be generated. The user who
is interested in broadcasting mail then can choose the
regions he wants to send his mail to, based on the cost
table.

3.3.3.3 Message Control

Another advantage of using the MST for broadcasting is
that it can be also used to collect the responses from all
other nodes to the source node in a reverse manner.
Instead of each node sending a response to the sources,
responses can be grouped together to form one summary
message as the responses are returning from the leaves of
the tree to the root. The scheme is illustrated in Fig.
3.9.

64

source
node

Fig. 3.9 Response collections from other nodes to source nodes.

Upon receiving a request from the father node in the
MST, each node sends the message to its son nodes, and wait
for the messages to come back from all the son nodes. It
then combines them into a single summary message and
returns it to its father node. Problem may occur if one of
the son nodes goes down while the father node is waiting.
Therefore, a father node should time out if it waits for
certain period of time. In that case, the estimate for the

65

failed node can be marked as unavailable.

3.4 PROCEDURES COMMON TO THE THREE MAIL SYSTEMS

The following are the procedures common to the three
mail systems.

3.4.1 Flow Control

The function of flow control mechanism is to limit the
traffic flow to a rate that can be handled by the receiving
servers and the message recipients. We assume that there
are already flow control procedures implemented at network
level. At the mail service level, flow control involves
distribution lists control and buffer management.

1. Distribution List

When sending a message to a group of users
identified by a group name or distribution list,
the size of distribution list can be very large
such that sending a copy of the message to every
member in the list may introduce huge amount of
traffic and cause congestion. Therefore it is
important to let members of the group share one
copy of the message as much as possible. One way

66

is to expand the distribution list in a
hierarchical manner One copy of the message is
sent to every primary server of the members of the
group. Those members will share the message. Of
course, a member can request a copy of the message
and store it in his own storage.

2. Buffer Management

a. Buffer allocation

Each user is allocated a specified amount of
space for storing the messages. The allocation
should be reasonably large that under ordinary
situation, it will not be used up. Some buffers
are shared among users for storing short system
messages such as control or alert messages.

b. Policy of Using Buffers

When a message comes, it is normally stored
in the user's allocated buffers. If the user's
buffer is full, a short alert message is generated
to inform the render that the receiving user is
out of buffers, and messages might not be
delivered and should be sent later. An alert

67

message is also sent to the recipient to inform
him that messages have been discarded because
buffers are full. The alert message to the
recipient should include information about the
number of messages discarded, the senders of the
messages and the subject of the messages.

The messages can also be categorized
according to their importance and characteristics.
For example, they can be divided into urgent
messages, personal messages, group messages or
advertisement, etc. The user can specify the
categories in the order of preference. When the
buffers are full, less important messages are
discarded and important messages are saved.

Buffer clean-up is also important in buffer
management and is discussed in the next section.

3.4.2 Message Archiving And Clean-up

Users have responsibilities to clean-up their buffer
space. After the user reads his message, he can delete the
message, or keep a copy of the message in his own storage.
The penalty of not cleaning-up the buffers is that incoming

68

messages may be discarded when the buffers are full.

The system cannot rely on the self-discipline of users
for cleaning-up their buffers. It should have mechanisms
to archive the old messages to some repository storage.
The archiving of messages should be done periodically, e.g.
once a week or two weeks. If resources permit, it is
preferable to provide automatic clean-up when the buffers
are full.

3.4.3 Error And Failure Handling

The systems we present are very reliable because they
use multiple authority servers for each user. When some
servers fail, the services can still be provided through
other servers. Distribution and replication of data also
enhance reliability of the systems that if some server
crashes, the data can be recovered from other copies of the
data.

To further minimize the chances of loosing messages,
priority is assigned to each message. Urgent and important
messages can be sent with multiple copies.

69

In distributed systems, data that are distributed and
replicated to improve availability and response time must
be kept consistent. Usually updates are propagated by
messages. Temporary inconsistency is unavoidable.
Synchronization is necessary to co-ordinate the updates and
hence to maintain consistent behavior of the system.

For example when a user moves from location A to
location B, we cannot delete the user from location A
immediately, and then add him to location B because this
will result in a time period that the user cannot be
accessed at both locations. The user should be added to
location B first. All mail for the user addressed to the
old address should be redirected to the new location.
After a certain period of time, the user can be deleted
from location A. This shows that the ordering of events is
important.

3.4.4 User Interface

User interface is important from users' point of view
because it is the middleman between the users and the mail
system. Each user interface may either be implemented as a
set of subroutines, that it serves a single client, or can
be incorporated in the operating system with system calls

70

to revoke service operation. In the latter case, A user
interface is shared by several clients.

In general, a user interface should provide facilities
for preparing, sending, reading, exchanging, removing and
organizing messages. Besides the basic functions such as
EDIT, SEND, READ, SAVE, and DELETE, the following is a list
of useful options. A brief discussion of each service is
given.

AUTOREPLY: sends a pre-prepared reply message to all
senders in case the user is absent or change his id or
location.

APPEND: append file(s) to a message.

MESSAGE SUMMARY: indicates, for each message, whom it
was from, when it is mailed, and its subject. The
summary can be grouped along sender, time period, or
subject.

FOLDER: groups related messages into folders so that
they can be reviewed for later references.

REDIRECT: redirects messages automatically to another

71

recipient specified by the user. This is useful when
user moves.

TIMED-DELIVERY: provides the capability of
constraining the date and time of message delivery.

PRIORITY-DELIVERY: provides for expedited transfer
and delivery of messages.

ADDRESS-LOOKUP: helps to find the mail address of
another user by giving information such as name,
alias, misspelled name, and location etc.

PERSONAL DIRECTORY: records a list of frequent mail
partners. Their addresses are mapped to numbers so
that the user need not to remember and type lengthy
names and the chances of mis-typing and misspelling
are reduced.

3.5 SUMMARY

Syntax-directed naming model provides a
straight-forward solution to the distribution and
management of name space in very large distributed mail
systems. It allows the name space to be partitioned

72

hierarchically. The name resolution and message delivery
mechanisms are based on the syntax of the names. This
model is less flexible than the system with
location-independent access. In the latter model, names
are location-independent within regions. Therefore, names
need not be changed when the system reconfigures. Also
mail services can be accessed from any host by a user.
Attribute-based mail system provides flexibility in
addressing recipients by specifying some attributes of the
intended recipients, and it can have many applications.
For example, most of the mail we receive at home is
computer generated letters and advertisements. The
attribute-based mail services will be very useful in the
future to replace the paper mail because electronic mail
will be cheaper, faster and easier to distribute.

CHAPTER 4
COMPARATIVE STUDY OF MAIL SYSTEMS PERFORMANCE

In this chapter, we establish criteria for evaluating
the performance of electronic mail systems. The main
performance measures are efficiency, reliability,
flexibility, and cost. Using these measures and some
simulation modeling and analysis, we evaluate and compare
the three methodologies we developed in the previous
chapter. Using our criteria and the aforementioned
performance measures, we evaluate and compare the three
methodologies for developing large mail systems.

4.1 EVALUATION CRITERIA

Many computer mail systems already exist. Some of
them have been in operation for quite a long time. There
are many ways to design a mail system, and each has its

73

74

advantages and disadvantages. In order to evaluate them,
we establish the following criteria:

4.1.1 Efficiency

Efficiency is always a major concern of any system
because it will affect the performance of the system
greatly. In electronic mail systems, the efficiency
criteria is measured in terms of response time, message
delivery, data distribution, and caching capability.

4.1.1.1 Response Time

The response time is the period between the
sending of a message and the time the message arrives
at its destination. The perceived delay for
interactive users should be a few seconds while the
actual transport delay should be a few minutes at
most. Service connection setup, name resolution,
message transportation and delivery are the major
components that will affect the response time.

4.1.1.2 Message Delivery

75

The recipient users should be notified about the
arrivals of new messages as soon as possible. When
messages arrive, some signals in textual, visual or
audio form should be displayed on the recipient's
computer. If the recipient does not logon at that
time, the signals should be displayed as soon as he
logs on the system.

4.1.1.3 Data Distribution

The distribution of data can have a major impact
on overall efficiency, in terms of both responsiveness
and cost-effective use of the system. It also plays
an important role in imposing the storage requirements
on the system, and increasing the availability of
data.

4.1.1.4 Caching

Caching is another way of enhancing efficiency.
Local cache can be maintained to store data that are
frequently used, or most recently used so that the
information needed can be found in the cache. Care
must be taken to maintain a proper balance between
level of cache accuracy and the cache hit ratio.

76

4.1.2 Reliability

The system must be reliable and secure such that users
can have confidence in the mail system that their messages,
once accepted for delivery, will be made available to the
intended recipients or returned with proper error messages.
The requirements for reliability is based upon services
availability, message flow control, buffer clean-up, and
consistency.

4.1.2.1 Service Availability

A major concern is to provide continuous service
of the system as a whole in the face of server and
network failures. Failures should be localized so
that a user can use mail services as long as one of
his authority servers is functioning and reachable.
The system should also use replication of data to
increase reliability and availability.

4.1.2.2 Message Flow Control

As computer mail services become more popular and
less expensive, they might become too convenient that
people will use them without any reasonable control.
In this case, the proper functioning of the system may

77

be jeopardized. For example, sending lengthy messages
might lead to congestion on the communication network,
especially during peak traffic period. It might also,
flood the receivers of the messages.

On the other hand, many messages may be
irrelevant or of no interests to the recipients of the
messages. A user usually must delete a lot of "junk
mail." If not controlled properly, those "electronic
junk mail" can be more wasteful than the traditional
"paper junk mail", because it is so easy to send or
broadcast electronic messages.

4.1.2.3 Buffer Clean-up

Buffer clean-up is very important because mail
services cannot continue if the buffers are full.
Therefore it is necessary for the system to clean-up
buffers periodically. The system should setup rules
or policy regarding the priority of buffer allocation
when buffers are full.

4.1.2.4 Consistency

78

In distributed systems, data is distributed and
replicated to improve availability and response time.
There are consistency constraints that must be
maintained. Such constraints apply not only to
individual pieces of data, but to distributed sets of
data as well. Usually updates of user information and
system status are propagated by messages. Temporary
inconsistency is unavoidable. Synchronization is
necessary to co-ordinate the updates and hence to
maintain consistent behavior of the system.

Therefore, during the use of mail services, the
user should be informed of the state of availability,
accessibility and changes of the system if such
actions are needed to justify the unexpected or
inconsistent behaviors such as duplication of
messages, failure to receive mail or failure to access
a user who has just been added to the system, etc. By
trying to hide everything from the users, they might
not understand the behavior of the system. This
problem might raise doubt about the integrity and
reliability of the system.

79

In summary, reliability should not be achieved only by
replication of messages and services, but also by reliable
software, hardware and communication, appropriate
management of system resources.

4.1.3 Flexibility

Flexibility deals with the system's ability to provide
wide range of functions, to minimize restrictions and

constraints on users, and to adjust to changes in the
system. The most important issues concerning flexibility
are related to user migration, group naming, system
reconfiguration and user interface design.

4.1.3.1 User Migration

It is conceivable that users may move from one
organization or area to another, especially in large
corporations which tend to restructure their
organization charts and move people from one group to
another reasonably frequently. If a user who moves is
forced to change names, this is considered to be
unnecessary impairment of naming freedom. The system
should allow a certain degree of user migration
without requiring the users to change names. For

80

temporary migration such as business trips or
temporary relocation, mail should be redirected to the
temporary location. This way a user can access his
mail from any part of the system.

4.1.3.2 Group Naming And Attribute-based Addressing

One objective of electronic mail system is to
share information among the users. Therefore,
recipients of mail messages should not be restricted
to individuals only. They can be groups or
distribution lists. A group of users can be
identified either by a group name or by a common set
of attributes. One copy of the message can be shared
among members of the group whenever possible.

4.1.3.3 Reconfiguration

An important feature that a distributed system
must have is the ability to expand and reconfigure
itself in order to increase processing power, decrease
response time, increase availability of data or adjust
to changes in the system. To maintain continuous
services, reconfiguration must be done dynamically or
with little intervention by humans and without

81

interrupting system operations.

The problems of reconfiguration deal with when to.
reconfigure, and how to reconfigure. Usually the
system needs reconfiguration when a server or host is
added to or deleted from the system, or when new
networks are included in the system. Reconfiguration
procedures include updating entries in the databases
and reassigning servers. If the original
configuration is not well designed, reconfiguration
can lead to large system overhead. For example if
each server contains a copy of database for all users,
a slight change in a single record will require
changes be made in all servers. However if the
database is distributed and partially replicated among
the servers, only the servers involved need to make
updates. System reconfiguration should be transparent
to users.

Internet computing environment are continuously
evolving and expanding in size, either by the
participating organization acquiring new computing
equipments or by their interconnecting to other
computing environments. The initial design of the
system must consider the potential for the system to

82

grow and expand. Basically, the system has to deal
with the adding of new users, hosts, servers, networks
and regions. In any cases, the size of the components
of the mail service at individual sites and the number
of interactions between components should not be
directly proportional to the size of the environment.
Also the size of the databases should not be directly
proportional to the size of the user community.

4.1.3.4 User Interface

The objective of electronic mail is to increase
people's efficiency in communications. Beside
providing basic facilities for interpersonal
communications, electronic mail system must be
convenient, easy and friendly to use in order to
attract people away from traditional ways of
communications. The user interface plays an important
role. A variety of facilities and functions should be
provided to aid the users in dealing with the
messages. The requirements for a user interface are
that it should be friendly, easy to use, and
intelligent.

83

4.1.4 Cost

The system must be cost-effective. Cost can be
measured in terms of response time, storage space
used, implementation overhead, and many other factors.

These are the criteria we use to evaluate
electronic mail systems. Actually some of these
criteria are related to each other. The effectiveness
of flow control and clean-up will affect both the
efficiency and reliability of the system. On the
other hand, some of them may have conflicting
requirements. For example it is very difficult to
have a very efficient system and a very flexible and
reliable system at the same time. Shorter response
time may require more storage for additional data in
the databases. Therefore, it is necessary for
designers and administrators to weight different
alternatives and make a balance between the benefit
and cost.

4.2 THE SIMULATION MODEL

Simulation programs have been developed to simulate
the procedures and algorithm described in previous chapter.
Simulation means driving a model of a system with suitable

84

inputs and observing the corresponding outputs. It is
widely used to study systems that have not been implemented
or cannot be accessed directly. We use simulation
experiments to test our procedures and algorithms, and to
compare the performance of the three methodologies.
Details that are not relevant to the operation and traffic
flow of the system, such as user interface, users, and host
computers, are not represented. Only the relevant parts of
the model such as messages, servers, the links are
incorporated in the simulation experiments. Therefore it
is reasonable to use simulation instead of implementation
of the whole model.

In our simulation model, we use the topology of
Grapevine system as our backbone structure because
Grapevine is a real distributed system that has been in
operation for some time. Fig. 4.1 shows the topology we
used. The size of the network under study represents a
compromise between the large computer time needed for
simulation experiments and a fair representation of a
distributed network topology.

85

Fig. 4.1 Topology of the simulation model.

86

The simulation program is written in SIMULA, a
language specially designed for simulation experiment
purpose. The SIMULA provides queue manipulation, process
scheduling and a set of random number generators to ease
the task of writing simulation programs. The simulation
uses an event driven approach.

4.3 ASSUMPTIONS

The following are the assumptions about regions,
servers, users, messages and traffic rate of our simulation
models.

1. The system consists of twelve regions connected by
long distant links. Each region is treated as a
collective unit of local networks. The region
consists of hosts and servers. Fixed routing is
used to route messages. Traffic flow control is
part of the network communication services but is
not simulated in our experiment because we assume
the traffic load is not heavy and congestion will
seldom happen.

87

2. There are at least two servers in each region for
reliability reasons because we want to provide
continuous services to users even when some
servers are down. Since the chance of one server
going down is very small, the chance of two
servers in the same region going down is
negligible. Even if the later case does happen,
the services can still be available using servers
of nearby regions.

3. There are two systems. In one system, users are
attached to hosts and in the other one, each user
has a primary host but can move to other hosts.
The selection of sender is random. Once the
sender is selected, the recipient is selected
either locally or externally. We assume that 80%
of the messages are addressed to a recipient
within the same region while 20% is destined to
users in remote region. We further assume that
all remote users have equal chance of being the
recipient of the message.

4. All messages generated are single-packet messages.
The packet length is assumed to have a truncated
exponential distribution with mean of 6500 bits.

88

5. The number of messages generated by each host is
proportional to the number of users in that host.
Messages are generated according to a Poisson
distribution. The generated traffic is found to
have bursty nature of real systems.

6. Messages are removed from the system when they
arrive at the buffer areas where they can be
accessed.

7. A server is said to be overloaded when the number
of users under its management exceeds a certain
limit. In this case a new server is added to the
region of the overloaded system and
reconfiguration is performed.

4.4 COMPARATIVE EVALUATION

The following is the comparative evaluation of the
three methodologies using our criteria. Since the
performance measures depend on the implementation of the
mail system, our comparisons are based on the design issues
rather than particular implementations. The importance of
the criteria is discussed in previous sections. In the
following section, we present some results from our

89

simulation experiments.

(a) Response Time

The response time of a message is defined to be the
elapsed time since the message was generated until the
message is stored in one of the recipient's authority
servers. The main components of response time are shown
below.

1. Connection Time (CT) - the time used to locate an
active server and setup the connection for
service. It is measured as the elapsed time since
the message is generated until it reaches one of
the servers from the sender's computer.

2. Name Resolution Time (RT) - the time used to
resolve a name to a destination address.

3. Processing Time (PT) - the time used to process
each message by the server or host.

4. Transmission Delay (TD) - the time used to
transmit a message from one node to another.

90

The evaluation of response time hinges on the analysis
of the individual components. However, sometimes the
boundaries between the different times are not clear cut.
There is some overlapping. This makes it difficult to
measure the different kind of delays. For example, the
name resolution procedure may involve more than a single
step. When a server does not have enough information to
resolve a name, it will find a more knowledgeable server
and forward the request to it. That server will repeat the
name resolution procedure until the name is resolved in
some server.

Mean Response Time (in seconds)
Model Local traffic Outbound Traffic Total

I 0.2 1.1 0.4
II 0.3 1.3 0.5

III 0.4 1.5 0.6

I: Syntax-directed naming model
II: Location-independent access model (no user migration)

III: Location-independent access model (10% user migration)
* Assume the local to outbound traffic ratio is 80:20

Table 1. The mean response time for model I and II.

Table 1 shows the mean response time for
syntax-directed naming model and location independent
access model. The response time is measured separately for
local traffic and outbound traffic. The total mean depends

91

on the ratio of local and outbound traffic. It can be seen
that the response time for the second model is very close
to that for the first model when there is no user
migration. However, when users are allowed to move, the
response time increases moderately due to the increase in
connect time as users move farther away from their primary
server. This shows that flexibility of the system to
handle user migration may affect the efficiency of the
system.

The attribute-based mail model has a different
approach. The response time for broadcasting includes the
time to traverse the Minimum Weight Spanning Tree and the
time to search the database at each node.

(b) Message Retrieval

Since the messages received for a recipient may be
stored in more than one server, there must be a way to
retrieve them. One way of retrieving the messages is to
poll all servers who may store some messages for a user.
We use a message retrieval algorithm which does not need to
poll all servers. The algorithm is described in chapter 3,
and is used for both model I and II. We assume that each
user is assigned a list of 5 authority servers.

92

Using polling policy, each time the user poll all his
authority servers. This is unnecessary and wastes a lot of
time. Using our algorithm, the user only needs to check
with the primary server if the probability of server
failure is small. As the probability of server failure
increases, the mean number of polls also increases. As
technology advances, the server failure probability in mail
system is getting smaller. A user needs to poll two
servers at most under ordinary situation.

Another factor that affects the mean number of polls
is migration of users. When a user moves away from his
primary host, he has to contact a nearby server which will
in turn contact the primary server for user so the number
of polls increases when the user migrates

The polling method is simple and easy to implement.
Our algorithm has larger overhead because it needs to
record some information about the time a user last
retrieves his mail, the servers that are unavailable at
that time and the restarting time (after failures) for each
server.

(c) Cost

93

The syntax-directed naming model is straight-forward
and easy to implement. It also saves a lot of space
because location information is embedded in the syntax of
names. The location-independent access model is more
flexible but has larger overhead because it needs to keep
track of the current location and movement of users. Also
there are some delays due to longer connect time when users
move. The attribute-based mail system needs large
databases to store the attributes for users.

4.5 SUMMARY

We use efficiency, reliability, and flexibility as
our criteria for comparing and evaluating electronic mail
systems. Simulation models and experiments are developed
to gain some quantitative measures about the performance of
the systems in term of response time, efficiency of message
retrieval, and cost of implementation.

CHAPTER 5
CONCLUSION

5.1 SUMMARY

Electronic mail will become one of the major means of
communication and information exchange in the future. In
this thesis, we develop three methodologies for designing
electronic mail system in large and distributed
environments.

In syntax-direct naming model, names of users are
hierarchical and location-dependent. This model can serve
as a framework of large systems because it fits the current
geographical division of communities. Hierarchical name in
the form of "country.region.host.user" can be used. We
develop a load balancing algorithm to distribute loads
among servers systematically using some cost measure. This
algorithm can be applied to the initial server assignments

94

95

and server reassignments when adding or deleting hosts and
servers.

Using the first model as the backbone structure, we
develop location-independent access model to improve the
flexibility of the system by reducing the dependence
between the syntax of names and the locations of users.
The system includes an algorithm for keeping track of user
movements so that users can move and access the system from
different hosts in a region without the need to reassign
names and servers. Another advantage of this model is that
the reconfiguration is simpler and with less overhead.

We further enhance the mail system by using
attribute-based naming scheme. Mail recipients can be
identified using attributes which are usually more
meaningful than just the simple user names. It can be used
for mass distribution of mail and information exchange.
Its usage in address lookup, information exchange,
marketing and advertising can be very powerful.

The requirements of large distributed electronic mail
systems are efficiency, reliability, flexibility and cost.
These are the criteria we use for comparing and evaluating
electronic mail system design. The response times for the
three mail systems are very reasonable. There might be

96

longer delays due to broadcasting and searching when using
the attribute-based naming but we use the Minimum-weight
Spanning Tree algorithm to minimize the delay. The
reliability of the systems is enhanced through the use of
multiple authority servers and distribution and replication
of data. Also our algorithm for retrieving messages
guarantees that no messages will be lost even when some
servers fail. Moreover, the algorithm is more efficient
than a simple polling scheme and the number of polls per
retrieval request is at most two under most conditions.
Also user migration, group naming, and flexible
reconfiguration make the systems very flexible.

5.2 AREAS FOR FUTURE RESEARCH

Several interesting areas for future work related to
electronic mail systems are discussed herein.

Integration of voice, video and text data: Electronic
mail systems should be able to transfer messages that
consist of different forms of data, such as voice,
video, graphs, and facsimile. The systems should be
able to convert the information into some standard
formats and transmit it through the networks. Before
presenting the messages to the users, data should be

97

transferred back to its original form.

Message Filtering: The volume of electronic mail will
be very huge as it become easier and less expensive to
send electronic mail. Some process with artificial
intelligence should be developed to categorize and
distinguish the importance and relevancy and priority
of messages so that unwanted mail can be filtered out.

REFERENCES

[BIR 82] A. Birrell, R. Levin, R. M. Needham, and M.
D. Schroeder. "Grapevine: An Exercise in
Distributed Computing," Communications of ACM,
Vol. 24, No. 4, April 1982, pp. 260-274.

[CHE 84] R. F. Cheng. "Naming and Addressing in
Interconnected Computer Networks," Ph. D.
Thesis, University of Illinois at
Urbana-Champaign, May 1984.

[CHO 83] W. Chou, A. A. Nilsson and S. C. Chang.
"Distributed Directories in Internetworking
Environment: Strategy and Performance,"
Proceedings IEEE INFOCOM 83, April 1983, pp.
563-571.

[COM 83] D. Comer. "The Computer Science Research
Network CSNET: A History and Status Report,"
Communications of ACM, Vol. 26, No. 10, October
1983, pp. 747-753.

[COM 85] D. Comer and L. Peterson. "Issues in Using
DARPA Domain Names for Computer Mail,"
Proceedings 9th Data Communication Symposium,
September 1985, pp. 158-164.

[CRO 79] David H. Crocker, Edward S. Szurkowski, and
David J. Farber. "An Internetwork Memo
Distribution Capability - MMDF," Proceedings of
the Sixth Data Communication Symposium, November
1979, pp. 18-25.

[GAL 83] R. G. Gallager, P. A. Humblet, and P. M.
Spira. "A Distributed Algorithm for Minimum-
Weight Spanning Trees," ACM Transactions on
Programming Languages and Systems, Vol. 5, No.
1, January 1983, pp. 66-77.

[HUM 83] Pierre A. Humblet. "A Distributed Algorithm for
Minimum Weight Directed Spanning Trees," IEEE
Transactions on Communications, Vol. 31, No. 6,
June 1983, pp. 756-762.

98

99

[LAN 85] K. Lantz, J. Edighoffer, and B. Hitson.
"Towards a Universal Directory Service,"
Proceedings Fourth Symposium on the Principals of
Distributed Computing, Minaki, Canada, August
1985, pp. 250-260.

[PET 85] Larry L. Peterson. "Defining and Naming the
Fundamental Objects in a Distributed Message
System," Ph. D. Thesis, Purdue University, May
1985.

[QUA 86] John S. Quarterman and Josiah C. Hoskins.
"Notable Computer Networks," Communications of
ACM, Vol. 29, No. 10, October 1986, pp.
932-971.

[SCH 84] M. D. Schroeder, A. D. Birrell, and R. M.
Needham. "Experience with Grapevine: The Growth
of a distributed System," ACM Transactions on
Computer Systems, Vol. 2, No. 1, February 1984,
pp. 3-23.

[SHO 78] J. F. Shoch. "Internetwork Naming, Addressing,
and Routing," Proceedings 17th IEEE COMPCON,
September 1978, pp. 72-79.

[SOL 82] M. Solomon, L. H. Landweber, and D.
Neuhengen. "The CSNET Name Server," Computer
Networks, Vol. 6, No. 3, July 1982, pp.
161-172.

[SUN 82] C. A. Sunshine. "Addressing Problems in
Multi-network Systems," Proceedings INFOCON 82,
March 1982, pp. 12-18.

[TER 85] D. B. Terry. "Distributed Name Servers:
Naming and Caching in Large Distributed Computing
Environments," Ph. D. Thesis, University of
California at Berkeley, February 1985.

