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Abstract

This paper studies the problem of robust spectrum-awargngin a multi-hop, multi-channel
Cognitive Radio Network (CRN) with the presence of malidmodes in the secondary network. The
proposed routing scheme models the interaction among tken8ary Users (SUs) as a stochastic
game. By allowing the backward propagation of the pathtutiiformation from the next-hop nodes,
the stochastic routing game is decomposed into a seriea@é gfames. The best-response policies are
learned through the process of smooth fictitious play, wiscfjuaranteed to converge without flooding
of the information about the local utilities and behaviofs. address the problem of mixed insider
attacks with both routing-toward-primary and sink-hol¢éaeks, the trustworthiness of the neighbor
nodes is evaluated through a multi-arm bandit process fon &J. The simulation results show that
the proposed routing algorithm is able to enforce the caatjmar of the malicious SUs and reduce the

negative impact of the attacks on the routing selection gssc

Index Terms

Cognitive radio networks, spectrum-aware routing, stetbagjame, two timescale learning

I. INTRODUCTION

In Cognitive Radio Networks (CRNs), Dynamic Spectrum Asc€éBSA) policies require
Secondary Users (SUs) to opportunistically access idlarala which are temporarily unused

by the Primary Users (PUs). Although being considered anieffi way of spectrum utilization
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[1], with DSA, SUs do not have channels which are always atbgl to access. As a result,
new coupling between the PHY-MAC layers and upper layerquals arises. At the network
layer, a routing protocol is thus expected to explicitly ses the impact of unstable channels on
the topology and the link performance of the secondary nétw®enerally, routing problems in
CRNs exhibits a certain level of similarity to routing prebis in multi-channel ad hoc networks

[2]. However, routing in CRNs faces a number of new, diff¢reimallengesl|[2],13]:

(i) spectrum awareness: timely adaptation to the dynamangé of the channel availability
due to DSA, and
(i) self-organization: proper route configuration witretlimited/heterogeneous level of channel

resource knowledge.

Due to the information uncertainty or locality caused by D@Adistributed route discovery
process in CRNs also tends to be more vulnerable to the maftieks than that in conventional
ad-hoc networks. As indicated hyi [4],/ [5], an attacker in GRXploits the following character-
istics of DSA schemes: (i) vulnerabilities due to inforneatiocality with respect to sensing and
reporting of spectrum states, and (ii) the imperfect knogéof SUs about the time-varying PU
channels. Since the accuracy of the channel state infavmadirectly affects the performance
of the DSA schemes in CRNs, most of the identified attacks iINE€Rarget at channel state
information distortion for attacking the PHY-MAC layer pozols [6]-[8]. Similarly, it is how
possible for routing attackers to bypass the network-layénerabilities used by traditional
routing attack schemes and only need to distort the chargtettion/access information in the
DSA mechanism to disrupt the routing process.

In this paper, we study the routing mechanism in a multi-howylti-channel CRN and
address the challenges of spectrum awareness, informatiality and routing security as a joint
problem. We consider limited spectrum sensing abilitiesaath SU in a real-world situation. We
also consider the presence of malicious SUs which can applyisticated attacks by combining
different methods of attacks including Sink-Hole (SH) armuing-toward-Primary-User (RPU).
In order to tackle the routing-under-attack problem for tiplé flows, we formulate the joint
channel-relay selection process of the SUs as a stochamtie.gWe propose a distributed,
adaptive channel-relay selection scheme for SUs to leainrtbuting strategies with only limited

amount of information exchange. To defend the SH attack imittrmation distortion, we model



the routing performance evaluation process as a Multi-Aandt (MAB) problem and use the
estimated arm-selection probability as an indicator ofrtbighbor trustworthiness. The proposed
routing scheme is featured as a self-organized strategwileg process in a series of single-state
repeated games. Neither the a-priori channel activity modeinformation flooding among the

SUs is required for implementing the learning scheme.

I[I. RELATED WORK

1) Routing in CRNs:The solutions to the routing problems in CRNs are usuallyutea by
a cross-layer design that directly integrates channelisgasmd MAC operations into the routing
protocols. These routing protocols may vary significanthe do different assumptions on the
PU activity model and DSA mechanisms. Such variation is lhsuaflected by differences
in the selection of link metrics and routing scheme typeg.{(egeactive and proactive). With
respect to the different channel occupation models (ergleday vs. overlay/interweaving), the
link metrics may be designed in different ways. For oveitagfweaving CRNs, many studies
designed the routing mechanism based on a snapshot of theetldynamics/[9]--[13]. In these
studies, delay-based link quality metrics were proposexdan the collision map for the SUs
over the PU channels. For underlay CRNs, the link qualityrimehay be designed based on
the link capacity as a function of the interference to the P143. For both groups of solutions,
routing schemes were usually designed in a time-slottednerato analyze and optimize the
impact of DSA mechanisms on the route performance. If cotapldormation on the channel
states and local routing decisions is assumed, the routioiglgm is usually formulated as an
optimization programming problem (e.g., convex or integesgramming) and solved with a
centralized route scheduler [10]—[14].

In contrast to routing mechanisms using instantaneoussioril maps, a number of works
designed their link quality metric based on an a-priori piuibstic channel dynamic model [15]—
[17]. Since the impact of DSA schemes on the link performasceflected by the stochastic
channel activity model, it is possible for the secondarymoek to treat the routing problem in
CRNs as a routing problem in conventional ad-hoc networlssaAesult, we can adopt existing
protocols (e.g., link state routing [15], AODV [17] and RFL8])) with little modification. The
advantage of such an approach is that it provides a way ofttiefiiethe channel dynamics in

the probabilistic link metrics based on the stochastic nkaactivity model. Hence, the routing



protocols does not need to consider the instantaneous trop#ee PHY-MAC layers. Since no

collision map or route scheduler is needed, such an apprisatiore appropriate for designing
a distributed routing mechanism. However, many of thesgibliged routing mechanisms only
provide a heuristic routing solution. Also, it is often ualistic to assume an a-priori channel
activity model in practical scenarios and the applicapiit deploying the aforementioned routing
mechanisms may be limited.

In practice, the channel dynamics may exhibit heterogen@baracteristics with respect to
the geolocation. In addition, SUs may have limited capgbiif acquiring information about
the channel states and their neighbors’ behaviors. Corséigugame theoretic analysis have
become the focus of CRN routing protocol design, since it efficiently solve the distributed
control problems with constraints on the information exaf@ Game-based routing solutions
can be found in the studies on spectrum-aware, multi-flowimgu19], [20] and traffic engi-
neering [21] in CRNs. In these studies, the SUs are assumied tmn-malicious and honest in
sharing information, and the model of repeated (noncodpejagames is usually applied. The
cooperation among the SUs is implicitly enforced througbeegedly playing the game and the
performance of a route is ensured by the value of the game.

2) Security Issues for Routing in CRN#| the literature, most of the studies on security
problems in routing protocols target conventional ad-hetworks [22], [23]. In these studies,
the main focus is to prevent information distortion (e.githwublic-key distribution([24]) or to
identify the attackers with limited traffic monitoring (e.d25], |26]). When game theoretic
solutions are adopted, the interaction between the hornestnaalicious nodes is typically
modeled as a constant/zero-sum game and solved by obtéi@mginimax equilibrium strategies
in the game (e.g./ [27]/128]).

There are relatively few works on the secured routing paitdesign in CRNs. Among them,
most of the studies are confined to handling the jamming kdtac PUE attacks which distort
the quality of an established link between the legitimatedrfal) SUs (e.g., [29]). A more
sophisticated routing attacks in CRNs recently identifiedhe Routing-toward-Primary-User
(RPU) attack in multi-hop, overlay CRNSs [30]. Unlike the PINWVAC-layer dominated attacks,
the RPU attack exploits the geographical heterogeneitylbfaBtivities and tunnels the traffic
to the SUs in the footprint of the PU transmission. An RPU ckiéa emulates a combined
attacking mechanism of both the Sink-Hole (SH) attack [28] ¢he Selective-Forwarding (SF)



attack [22]. However, the RPU-caused packet drop/delaptiglimectly due to the network layer
operation, but due to the collisions with PU transmissionghe PHY-MAC layers.

The paper is organized as follows. Section Il describesntibelels of the PU activities and
the SU behaviors. Based on these models, a spectrum-awdéreuality metric is proposed
to reflect the impact of the channel state dynamics on theinguytrocess. In Sectiop 1V,
the multi-flow routing process in the secondary network ismiglated as a layered average-
reward stochastic game and then is shown to be equivalengtoup of single-state repeated
games. In Sectioh TVIB and Section I\V-C, am adaptive stgategrning mechanism and a
trustworthiness-evaluation mechanism are proposed &ndnmal SUs to seek the best-response
routing strategies against the attackers with limitedrnmiation exchange. The simulation results
are provided in Section]V to demonstrate the Effectivenésheoproposed routing mechanism.

Section_ V] concludes the contribution of this paper.
[1I. NETWORK MODEL

We consider a multi-hop CRN that interweaves ugororthogonal PU channels. The normal
SUs abide by the interweaving DSA rule and establish linkerahe temporarily free PU
channels. The nodes in the CRN are divided into three typessource SUs, sink SUs and
relay SUs. We consider that the relay SUs do not generatesfsaakd only forward the received
packets to their neighbors. Among the relay SUs, some makchodes adopt RPU-like attacks

to cause delay to the traffic as much as possible.

A. Dynamic Spectrum Access Model

Based on the empirical study of the PU channel occupatioe im[31], we assume that
the PU activities over each channel can be modeled as anendept continuous-time Markov
process with the binary statédle (‘'0’) and Busy(‘'1’). For a channek, we assume that; ' and
;' are the mean holding times for statee and Busy respectively. Then, the corresponding
transition matrix is given by [31] as follows:

1 A Ape Rt N — Ny oAt )t
T Nt \ g — g O N g O

Py (t) 1)

Since in practical scenarios the PU activities are usuatlyggaphically different, we assume
that the CRN can be geographically divided into a set of neerapping, independent spectrum

activity clusters according to the local PU activities. Femnciseness, we consider a snapshot



of the network, during which the cluster topology remainshanged. The cluster topology can
be managed in a similar way to the CogMesh protocol [32] bgtivarthy cluster heads. The
cluster heads maintain the cluster formation through nggessxchange with neighbor nodes
using a dedicated control channel.

We assume that SUs access the PU channels in a time slottatem&ue to the practical
limit on the number of radio interfaces in each SU, we assumédn SU can only sense one
PU channel during one sensing slot. To reduce the deteation &Us in the same cluster sense
the PU channels following a round-robin schedule in an atiognorder of the channel indices
(Figure[1). The sensing results from the SUs in the sameerlase aggregated by the cluster
head [1]. We assume that the detection error is negligiblke aggregated sensing. For a cluster,
the state of channe| ic K={0,..., K—1}, is updated only wheh=(n mod K) at slotn. For
channelsk, k#1, the SUs in the cluster keep the most recent sensing ressibtab; (n) =n—
[(K+i—k) mod K] as their estimated state. For clusjgtet o?(n)=[of(n), 0(n), ..., 0% ,(n)]"
denote the vector of estimated channel states atislands?(n)=[si(n), s{(n),...,s% (n)]"
denote the real channel state vector. According[td [33], ghecesso’(n) is an irreducible,
periodic, discrete-time Markov chain. Lét= (n+1) mod K be the channel sensed at slot
(n+ 1), then the transition probability a#?(n) can be obtained based dd (1) as:

PYKT L, 0f g =17,
P(of(n+1)=s'lof(n)=s)= Pl )](578) / _ 2)
0, otherwise

wherePg is the transition matrix of channglin clusterq, T is the slot length an¢P§(KT)](S7S,)

is the element on. transiting froms to s'.

B. Impact of Node Behavior on Link Quality

Let \V; denote the set of one-hop neighbors of an Sfihcluding 7). We assume that in slot
n, SU i can freely choose its target relay SU in the neighborhoodtarggt channel among the
PU channels for data forwarding, if no constraint on SU bairaus presented. We denote such
an action by the action vectar,(n)=(j, k), wherej e N;\{i} andk €. In a multi-hop CRN,
it is natural to consider that the more hops used for packetaaing, the larger total delay
the path has. To enforce that packets are forwarded towargittk SUs and no cyclic path is
formed, each SU is able to exchange its geographical infiomavith its neighbors. Using the

geographical information of the neighbor SUs, we introdtlee distance advancement metric
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Fig. 1. Radio activities in a two-channel CRN with coordathiFig. 2. The SU links in a CRN of two clusters.

periodic sensing in the secondary network.

of a relay toward its sink [16] to help evaluate the link gtyalLet L. denote the sink SU, the
distance advancement of Slby choosinga; = (j, k) is defined as the reduction of distance
from SU i to SU L when routing via SUj:

where D(i, j) is the Euclidean distances between SUand j. Based on the relay distance
advancement in_{3), we impose the rule that an SU is forbiddeselect relays that produce
negative distance advancement. Then for Slthe set of candidate actions for channel-relay
selectiona; = (j, k) is defined by{j : j € NM;\{i}, 4;(j) > 0}.

Let (4, 7), denote the link formed from SWto SU j over channek when SUi takes action
a; = (j, k). According to the rule of DSA interweaving, link, 7). is accessible only when
channelk is free for both SUs. Lef(:) denote the spectrum activity cluster that i3 in, then
link (7, 7), can be classified into two types as shown in Fiddre 2:

. Type I:7 andj are in the same clusteg(:) = ¢(j).

. Type ll: i andj are in different clustersj(i) # q(j).
For Type | links, we only need to consider the channel statenaf cluster, while for Type I
links it is necessary to consider the joint channel statéuéem of the two involved clusters.

We consider that the quality of link, j), is measured based on the Effective Transmission
Time (ETT) [34]. When the link is stable, the ETT over lifik j), can be measured as:

L
ETT
T _ 4
d(w)k R(l _ Pe(/{:)y 4)



where L is the packet lengthi? is the transmit rate ang.(e) is the packet error rate due to the
physical layer error over channgl When lacking stable channels, it is necessary to explicitl
reflect in the link quality metric the impact of the DSA meclsam and MAC protocol. We note
from (2) that due to the imperfect knowledge on channel stadransmission failure may occur
in the secondary network even when the current channel gtater indicates that channklis
free. Therefore, in order to determine the accessibilityirdf (i, j), it is necessary to consider
the conditional probability for channélto beldle during slotn given the observed state vectors
of clustersq(i) andgq(j) at the beginning of slot. Based on[(1), the probability for chanrel

to beldle for a periodr from the beginning of slot in clusterg(i) can be calculated as:
PO(r,01 () = PV (s1 (nT+7) =000 (n) = s (én(n)T))

= [P1 (0~ 64(n)T)] ©

Y

(51 (@ (m)T),0)

wheree "7 is the probability for the channel to remain idle for timesince the beginning of
slot n, and [P ((n — ¢ (n))T)|, is obtained from[{L).
[P (n — ou(n)T)] (9 o) @)
The link availability probability for(i, 7), at slotn depends on the probability of chanriel
staying idle at both end SUs. Based on our discussion of tikeype, the probability of channel

k being available for link(é, j), during slotn can be expressed as:

P, 0l (n)), if q(i)=q()),

P (0) =PGRS N =N s 1 o011y 20, o9 o), 46 00,

(6)

whereo is the concatenation of the observed state vectors of altlisters. Based omnl(4) and

(6), we can obtain the spectrum-aware link delay metric(fof), at slotn as follows:
gy, (0(n) =T (1= P (0] (n), ofV (m) ) + dETT, P (0" (n), ol (m)),  (7)

whereo(n) represents the joint state of the entire secondary netwoskot.

Now, we consider the impact of the MAC protocol on the statelimk availability. Let
A; = N;\{i} x K denote the set of candidate actions for §WDue to the channel instability,
it is difficult to directly adopt MAC protocols based on siegthannel random access with
exponential backoff in the secondary network. Instead, wasicler that the contention over
each channel is resolved through a reservation mechaniemtbg common control channel.
We consider that the negotiating phase over the controlreda divided intoX” subslots, and

the SUs compete for channklin the corresponding subslot by sending Request-To-Seh8)(R



packets and listening to Clear-To-Send (CTS) packets fiosir target relay SUs (Figurg 1).
Since more than one RTS sent in S9 neighborhood over the same channel will result in
collision, the channel negotiation can be considered asndora access mechanism which is
similar to slotted-ALOHA.. If channek is free, the probability of SU successfully sending the
RTS packet over channél after taking actiorz; in AV; can be written as:
Play,) = I(aip k) [[ (1= 1I(ama, k), (8)
meN;\{i}
whereay, is the joint SU action inV; and I(z,y) is the indicator functionl(z,y)=0 if z#y
and/(z,y)=1if x=y. Similarly, considering the existence of hidden termintie probability
of SU j successfully receiving the RTS packet from $0ver channek can be written as:
Play,) = I(aiz, k) [ (1= I(ama. k). 9)
meN;\{i.j}
Based onl[(B) and [9), we can expreSs (7) under the joint actighanda,;, as follows:

di g (0(n), an;, an;) = T (1—Pf(an,) PF(an;)) + di.j), (079 (n), 079 (n)) PF(ax;, ) PF(ay;,). (10)

In addition to the delay caused by the SU actions following pmoposed DSA-MAC, we
also need to consider the delay caused by interference betmeltiple flows in the CRN. We
assume that each SU can only respond to one randomly chosenliRing a transmission slot.
For the proposed DSA-MAC, the number of potential links ttah be established to SuUs:

Ni<a>2( ) R’f(am%(%)), (11)

kek \meN;\{i}
wherea is the joint action of all the SUs. According to the queueietpgt model based on round-
robin packet processin@![3], we need to adjust the expeatiddelay in [10) by substituting
d'(':ZTJT)k in (@) with Ni(a)d'(EiTjT)k:

di(0(n),2) =T(1= P an) P an;) )+ (7 (1 = P (o(n)) ) + Ni(a)dETS PiY (o(n)) ) Pl (ax,) P (axy ).
(12)

C. Link Quality Metric

Let P(io, i) = {(%0, 1)Ky, (41, %2)ky, - - -, (in—1,7L)k,_, } denote the path formed by a sequence
of links between SU, and SUi;. According to Sectioi_IlI-B, the additional path delay afte



including SU1 into P(ig, 1) is jointly determined by the cluster states of its neighbodes
and the joint action of its two-tier neighbor nodes, @t (11). Based om(4)-(11), we can
express the link added by Slas a function of the joint action of all the Sds= (a;, ..., ajn) in
(@12). Combining the metrics of the adjusted link delaylin)(A2d the relay distance advancement
in (3), we can define the instant local utility of Slas a function of the joint state(n) and

the joint actiona in the secondary network i _(113):

o Ai(ai)
u;(o(n),a) = Tlo(n),a)

According to [(3) and[(12)y;(o(n),a) > 0. With (13), a normal SU, measures the quality of its

(13)

pathP(ig,i;) as the expected average of the cumulative link utility altimg path as follows:

™1

1
UP(iO,iL) = Th_glo ;EO Z Z U (o(n),a(n))

n=0 jE€P(io,ir)

o(0) =of . (14)

Then for a normal SU, the goal of its relay-selection schesite maximize the value dfp, ;).

D. Impact of Malicious SUs

We consider that in the CRN, no SU is superior to the other SUshtaining network
information. As a result, both the normal SUs and the maligi8Us make their relay-channel
selection decisions based on the same level of local infbomaFor a malicious relay Sy
in path P(ig, i), the goal is to cause delay as much as possible by minimitiagekpected
cumulative utility Up; ;,y while avoiding being detected as an attacker. To avoid tietgcSU
j disguises itself by complying with most of the routing rulesthe network layer. Based on
its local channel state record, SUerforms the RPU-like attacks by violating the interwegvin
DSA rule and forwarding the packet over the link that has tlyhdst probability of being at
stateBusy SU j may also attempt to send packets to the neighbor SUs whicriexge larger
delay due to channel contention caused by flow intersecBmte normal SUs are limited by the
number of the equipped radio interfaces, they are not abje$sively monitor the neighbors’
behaviors. Also, due to imperfect information about theantaneous channel states, normal SUs
may have difficulties in discerning the delay due to attacksnfthe delay due to PU activities.

Since the SUs cannot exchange the routing information, (e.cal utility and relay-selection
decision) with the entire CRN, to form an efficient path thegimly rely on the information

exchanged between the neighbors. From the perspective lafiona SUs, such a situation of
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information locality allows them to provide fake informai by distorting the announced value
of the expected cumulative link utility for sub-routj, i;) and induce the normal neighbors to
forward packets to them. Malicious SUs behave similarhh® $H attackers. Since the operation
of information distortion heavily depends on the routindpesme adopted by the normal SUs,

we will provide more details of this type of attack in the @lling sections.
IV. ROBUST ROUTING BASED ON STOCHASTIC GAME

For ease of presentation, in this section we will tempoyaghore the possibility of informa-
tion distortion by malicious relays and assume truthfubiniation exchange between neighbor
SUs. Following our discussion of the node behavior and thke tuality metric in [1B), we
analyze the routing mechanism using a game theoretic madath explicitly addresses the

interaction between the normal and the malicious SUs.

A. Relay Selection as a Stochastic Game

We define the secondary network global state as the contiaterdd the state vectors from
all the clusterso = o!|| - - -||0?|| - - - ||o?, whereq = 1,...,Q is the cluster index. With a slight
abuse of notation, we omit the index of the sink §Uand denote a path starting from Slas
P;. Then, from Section IlI-A, the evolution of the joint stateEany SU sequence retains the

Markovian property, as stated in Propositidn 1:

Proposition 1. For any sequence of SU3, its joint observed state vectqjgzjeq(j) p, 07 forms

Vi€
a Markov chain, of which the transition of each state elemembdependent of the SU actions
and can be described byl (2).

The instant utility of pathP; can be obtained froni_(14) as:
up,(0(n), a(n)) =u(o(n),a(n))+ Y wufo(n),a(n)). (15)
JEP\i}
For conciseness, we usg, to represent the value @fp; ;) in (I4). Since an SU only controls
its own decision of choosing the next-hop and observesdt latility, the path quality evaluation
by SU+ will depend on the utility information provided by the ndxtp SU. Then, based on the
path utility in (I3) and Propositionl 1, we can define a stotbasuting game in the secondary

network as a five-tuple multi-agent Markov Decision Prod@dbP) [35]:

Definition 1 (Stochastic routing game)fhe SUs in the CRN form a general-sum stochastic

game in the form of a five-tupl&i. = (N, O, A, {up, }icenr, P(0']0)), in which
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o N is the set of SUs.

O is the space of the concatenated cluster state vectors.

o« A= X;enA; is the set of joint actions of the SUs.
. up, : O x A — R is the instantaneous utility of the path starting from g8s in (15).

« P: 0 x 0O —|0,1] is the state transition map.

Let a_; denote the joint actions of all SUs except $Ur;(o)=(m;(0,a):a € A;) denote the
mixed strategy of SU at stateo, andw_;(0) =(m;(0,a_;):a_; € A_;) denote the mixed strategy
of all SUs except SU at stateo. We note that given the SUs’ joint strategy— (m;(0),m_;(0) :

o € 0), the goal of normal SU is to maximize its expected average utility [n(14), while th

goal of malicious SUn is to minimize the average utility. Given, we have:

Unfom) = lin Eor{ 3 3 wy(olm,atu]ol0)=a. (16)

n=0 jeP(io,iL)
With (I5) and [(16), we can define the Nash Equilibrium (NE) k¢ game as:
Definition 2 (NE). #* = (w},w*,) is an NE forG,, if Vi € ' andVoeO the following conditions

are satisfied for anyr;:

Up, (0,7, @*;) > Up, (0, m;,®*,), if SU ¢ is normal
Up, (0,7}, m*,) < Up,(0o,m;,7*,), if SU ¢ is malicious
Observing [(16), we note that gangg differs from a typical stochastic game because the
instantaneous individual payoff is determined by not orilg tocal link utility, but also the
utility of the sub-route starting from the next-hop SU. Tdfere, to obtain the NE fog,, the
SUs are required to know the sub-route utility of their nleap nodes. In order to examine the

property of the NE forG,, we introduce the concept of the bias value in a multi-agebiPv

Definition 3 (Bias value) With initial stateo and policyr = (m;,w_;), the bias value of SWis

the expected accumulated difference between its instaatsnand stationary utilities:

T—1

hp,(0,m) = lim E{Z(uﬂ.(o(n),w)—Upi(o(n),'lr)) l0(0) :o}. (17)

T—00
n=0

Based on[({1) and Propositioh 1, we can readily conclude thaieg, in the sense of a multi-
agent MDP is ergodic/recurrerit [36]. Then, using the bidsevan Definition[3, we introduce

the representation of an average utility MDP in the form & Bellman optimality equation:
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Lemma 1. Regardless of the initial state, the bias value of each SU in garge is constant
given any stationary policg and can be expressed as:

hp,(0,m) =up,(0,m)—Up, (0, )+ Y _ P(d|0)hp,(o',m). (18)
Proof. According to Proposition]1, the transition of the observiies is independent of the
SUs’ actions. Therefore, according [9 (1), for any deterstimstrategya, the underlying Markov
chain converges to the same limiting distribution and tlusrgodic. Observing (13), we note
that the instantaneous local link utility; is bounded for a finite number of relays. Then, for a
sub-routeP;, the expectation and summation inl(16) is interchangedtan [16) we obtain:

Up,(0,m) = lim % i E, (E,, ( 3 uy(o(n), a(n))) ‘0(0) :0> = lim % i P(0’|0)< 3 uj(o',ﬂ)).

JEP; n=0 JEP;

(19)

where

Z Z <u]0a XMy X - ><7F|N|>. (20)

at€Ar  apn €AW
Therefore, with respect to the stationary joint strateggach SU’s state-value evolution in game
G, is reduced to a finite-state, recurrent Markov reward pmcé&ken, Lemmall immediately
follows Theorem 8.2.6 of [36]. 0J

By fixing the observed channel state @sn the stochastic game, we define the stage game
of G, at stateo as G, (o) = (N, A, {up,(0) }ien). G-(0) is a normal-form repeated game with
normal SUs aiming at maximizing their instantaneous pailities and malicious SUs aiming
at minimizing the instantaneous path utilities at si@té&ased on Lemmal 1, we can derive the

following results on the NE points d,:

Theorem 1. (i) 7* is an NE ofG,, only if the following conditions are satisfiettr;:

hp,(0,7*) > up,(0,m;,®* ;) —Up, (0, 7* +ZP (o'|o)hp, (o', m"), (22)

hp,(0,7*) < up,(0,m;,m;)—Up, (0, 7") +ZP (o'|o)hp,, (o', 7%), (22)

for every normal SU and malicious SUj.
(i) 7*(o) is also an NE strategy of,. (o). The NE strategies of all the stage gamés(o :
Vo€ ), constitute an NE strategy ©f..
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Proof. See Appendix’A. O

Remark 1. Theorenill establishes the equivalence between the NEgigmtEf G, and the group
of NE strategies of its corresponding stage games. It ishwaoting that Theoreri] 1 is based on
PropositiorL_LL. In this case, all the NE of the stochastic gamethe stationary Markov perfect
equilibria. In contrast, for a general-case stochasticeyarhere the state transition is usually
a function of the players’ actions, the equality inl(18) mat hold except for the equilibrium
strategies, and the second property in Thedrem 1 does rgit exi O
Due to the overhead caused by information flooding, it is alisgc for the SUs to frequently
exchange the information about their private actions arldieg with the SUs beyond the one-
hop neighbors. To determine the level of information exgeaim the routing game, we consider
another multi-agent MDP based on each SU's local utility We define the MDP agj, =
(N, 0, A, {u;}ien, P(0'|0)). Let h;(o,m) denote the bias value @; and U;(o, ) denote the
average gain value @;. Then, we can show that Lemrnh 1 also applies to the pair ahd U;
in G,. Let 7, ; denote the strategy of Sfor selecting the next hop; » denote the strategy of
SU i for selecting the transmitting channel, a®y,, denote the sub-route i; starting from
the node that is chosen by SUwith actiona;;. Based on LemmB]1 and Theoréin 1, we can

show thatgG, can be decomposed into a layered multi-agent MDP in theiatig theorem:
Theorem 2. (i) With stationary joint policyr, the relay selection process of $dan be expressed
as (23):

hpi<077r>+UPi(o77r> =

ui(0, 1)+ P(0'|0)hi(0', w)+ By, {up (0,11, Ty, ) +3 P(0[0) i, (0, 51, i, w_i)}.

(23)
(ii) Strategy# is an NE point ofG, when for any normal SW and malicious SUj,
7, =arg max(hp, (0, m;, ;) +Up, (0, m;, T_;)),
_ " _ _ (24)
7Tj:argI{Iri_ﬂ(hpj(077Tj77f—j)+U7>j(077Tj77f—j))7
Proof. See AppendixB. O

Remark 2. Theoreni2 shows that given a stationary joint polcythe relay-selecting process
of an SU is composed of two value iteration processes in tha fof the Bellman optimality

equation. The first one is determined by the local multi-ad¢DP G,, and the second one is



14

determined by the sub-path starting from the selected meptSUa; ; in G,. Furthermore, the
second Bellman optimality equation for S&J; can be decomposed into the same two-layer
form as [(2B) with respect to its own decision on next-hopctae. 0J
According to Theoreml2, to derive its local NE strategy SU : needs its neighbor nodes
J € Ni\{i} to truthfully provide the information on the equilibrium lua@ of hp (0,a;1 =
Jymig, ) +Up,(0,a;1 = j,m;2, ;). It requires that the NE for gamé, is solved through
backward induction. Observing_(16) and(17), it is straigivtard to show that when stochastic
gameg, is reduced to a stage gargg(o) with a single state, providing the valuéip, (0, a;1 =
Jy g, ™ HUp, (0,a:1 = j,m; 2,7 ;) is equivalent to providing the valuey (0, a; 1 = j, T2, % ;).
Such an observation paves the way for developing a straésgging method based on limited
information exchange between the SUs.

B. Strategy Learning with Truthful Information Exchange

According to Theorenill, an NE for the stochastic routing gaawe be constructed based
on the state-dependent NE strategies for each stage rayaimg with fixed estimated channel
states. Therefore, we consider a stage routing game atstadigo) = (N, A, {up,(0) }icn),
where up,(0,a) = u;(0,a) +up,  (0,a). Based on Theorerl 2, the NE f6f.(o) is achieved
when each normal SW and malicious SUj play the strategieg* that satisfy the following
conditions:

Up, = max (ul(o 7, ;) + Er,, {UPGM (o, Clz',l,"fz',%”f*_i)} ),
Up, = mm (uj(o T, T ;) + Er, | {uPaj,l (o, aj71,1rj72,1r*_j)} )

To avoid information roodlng, we assume that the SUs do nateslwith their neighbors the

(25)

local action information. An SU is only able to share its \eabf actions by exchanging routing
request (RREQ) and routing response (RREP) packets witheitghbors. In this section, we
consider that malicious SUs do not provide distorted infation. Since an SU cannot observe
other nodes’ actions, we resort to reinforcement learnimngltain the NE under the condition
of incomplete information. We assume that a stationaryt jeirategyr is adopted by the SUs

in gameg, (o). Then, we consider the following action-value learninggess for SUi:

u%—i_l(O» ai) = ﬁ% (07 ai) + a(n)l(ai(n)v ai) (uPi(Ov q; (n)> a—i(n)) _ﬂ%i(ov al)) > (26)
wherei} (o, a;) is the expected path utility learned for acti@nat slotn, and0 <«a(n) <1is a se-

quence of learning rates. According to reinforcement lisgrtheory [37], ifup, (o, a;(n),a_;(n))
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is perfectly known by SU, i3, (o, a;) converges almost surely to the real valuewgf(o, a;, 7_;),
given that all the possible action combinations are visitdéhitely often by the SUs and.(n)
satisfies the conditiony. «(n) = oo and)_ a?(n) < oco.

We first assume that an Sls able to timely calculate the instantaneous accumulatiéty u
of path’P; based on its local observation @f(o(n), a(n)) and the instantaneous sub-path utility
UP&L_J(O(TL),&(TL)), which is fed back by its next-hop Sy = a,;. In this case,[(26) can be
adopted by each SU to estimate their action value in stage ¢gafm). Then, we can adopt the

algorithm of Stochastic Fictitious Play (SFP) [38] for SWo learnw;(o,a;,m_;):

72 (0, ) =770, 2:)+ A(n) (BR(h, (0). &)~ (0.:)). @0

wheretu?, (o) is the vector of utilityay, (o, a;) for all actiona; at time slotn, and BR:) is the

perturbed best response strategy of Sidr actiona; in the form of the Logit function:

exp (Ai (@5, (0,4)))
D bed, exp (A (“P o b)))7
(i

oal)

i is normal

exp (A (28)

,1 1S malicious

\ D bed, €XP (Ai (@, (o, b))_l)
The utility learning process i _(26) and the SPF-basedegyalearning process in_(27) arid (28)
form a two timescale learning scheme, which has the follgudganvergence property:

Theorem 3. 1If up,(0,a(n)) is known to each SU at every time slot, and the following dards
are satisfied: li_}rn >, a(n)=o0, 1i_)m >, a2(n) < oo, li_}rn >, B(n) =00, 1i_)m >, 5% (n) <oo

and JLH;O(B(nBL/;n)) =0, then {;?(O;,ai)} given by :heoolearning proce;ﬁ@]%) converges

almost surely to an NE for stage garge(o).

Proof. See Appendix . O

Although the learning scheme given by (27) ahdl (28) possegsed convergence property,
the assumption of perfectly knowing the instantaneous pétity is fairly strict. It requires a
large amount of signaling to be performed within a singleetisiot. To address such a problem,
we relax the requirement on information exchange by assyithiat SU: only shares its locally
estimated value ofip, (o, m) with the neighbors. Based on the discussion[of (26), it isias
that an SU can learn its expected local link utilityo, a;, 7_;) through an iteration which is
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similar to (26), as long as all possible joint actions aretegsinfinitely often:
' (0,a;) = @(0,a;) +a(n)I(a;(n),a;) (u;(0,a(n)) —il(o,a;)). (29)

Using the value ofi}'(o, a;) and the value oﬁ;ga.l(o) provided by the next-hop SY = a, ,

we introduce the learning scheme feg, (o, 7):

ﬂ;‘;l(o) = )+ vi(n (Zﬂ' (0, &) (@ (0,a;) + up, | (0)) —ﬂ%i(o)>. (30)
We also modify the learning scheme bf(27) and obtain:

710, a,) =7 (0, a;) + B(n) (BR(ﬁ?(o, a;) + i, (0).a;) — (o, ai)) , (31)

where BR-) is the modified perturbed best response strategy:

p

exp( (Zoazjtupa1 )) N
( : ))) , 1 1is normal
. . > iexp)\ulob+ua o
SR(ar(0)+ 5, (01 ) =) L oy v, (o)
" : P i is malicious
\ ZbeAiexp <)\ (uz(o b) +u7;a 1(0)) )

(32)

The learning scheme defined Hy (28){(32) does not require; 8Jimmediately report the
instantaneous path utility to its previous-hop SU. Howgeemparing [(30) with[(25), we note
that (30) provides a biased estimationgf(o, 7), given thatr converges. Since the learned path
utility in (80Q) is a biased estimation, the new learning sokecan only obtain an approximation
of the NE point of the stage game. The convergence condifidgheolearning scheme given by
(29)-(32) is provided in Theorem 4.
Theorem 4. Assume that the following are satlsfledim Z (n) = oo, JLIEOZaQ(n) < 00
T 3 u(n) =00, lim 700 <00, Jim 3 (n) =00, lim' " 52n) <05, Iim () () =
0, nli_)rrolo(ﬁ(n)/%(n))zo, andglrgo(yi(n)/yj(n)): 0, if SU@ is closer to the sink SU than SUin
terms of distance. TheRs! (o, a;)} obtained through the learning process defined[by (29)-(32)

converges almost surely.

Proof. See AppendixD. O
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C. Strategy Learning with Truth-telling Enforcement

Now, we consider the situation when the malicious SUs alstopa the SH attacks. In this
case, the malicious SUs may distort the valueipf(o) and report an estimated utility which is
much larger than the real value to their neighbor SUs. Asutrtesnormal neighbor with strategy
learning scheme in_(81) will choose the malicious SU as leyreith a higher probability. Then,
the malicious SU will induce the neighbor SUs to forward mpeekets to them. To address
this situation, we introduce a feedback mechanism for ayr8ld to measure the real delay of
the path that it chooses toward a sink SU. We consider thatraaloelay SU; is able to insert
a Request-ACK packet into the flows that it serves in randone tintervals. SU records the
time stamp for sending the Request-ACK packet. When rewgitne Request-ACK packet, the
corresponding sink SW. replies the Response packet to $B8y including the time stamp for
reception in the packet. We assume that the data in the Respaacket is protected by a pair
of keys and is always reliable. With the two time stamps, Sid able to calculate the total
delay time of the Request-ACK packet over the sub-path tirdbe next-hop SY = a;; that
it chooses with actiom;. Let ¢;(a;) denote such a delay measured by SUOhen, SUi needs
to evaluate the trustworthiness of its next-hop gbased on sequende’(a;(n))}, in which 7
is a time slot for SU; to send a Request-ACK packet.

We consider that with a certain termination condition, tharhing scheme given if_(29)-(32)
can always reach a stationary polity Meanwhile, a malicious Suh shares a fixed distorted
value of ip, (o) with the neighbors. From the perspective of a normal SWhen sending a
Request-ACK packet, its relay selection can be consideseal ulti-Arm Bandit (MAB) [39]
process, since at slat SU i can choose only one neighbor as its relay according 1¢n), and
only the real path delay through relay noalg (n) can be confirmed. We note that the real path
delay (i.e., the cost of each arm) is a stochastic functigardened by stationary distributian,
while the arm selection sequence is generated by the laedégyn,. Formally, we can define
the MAB for trustworthiness evaluation as follows:

Definition 4. For each normal SU, the MAB for trustworthiness evaluation in statecan be
defined by a 4-tupleB; = (A;, {c?(0,a;(1)) }a, {x(7)}4, {A}), in which

. A; is the set of the single-bandit processes and correspontisetset of actions of S

« {c(o0,a;(n))}s is the sequence of cost.
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« {z(n)=a;(n)}, is the sequence of relay (i.e., arm) selection decision.

It is worth noting that the MAB given in Definitionl 4 differsdm a typical MAB in that the
sequence of arm selectidn:(n) }; is generated following a given policy;. Therefore, we can
consider the MAB process up to time slotas a utility exploration phase with a given sampling
distribution;. With the MAB given in Definitior #4, SU; is able to calculate the accumulated

delay for the Request-ACK packets that it sends with actign) = a:

(o) — | Oa)+CIT0a) it n e @} ain) = a 3
C" o, a) otherwise
and the sampled frequency of each action is:
Z"0,2) = (I(a(n), ) + (n — 1)2""(o,a)). (34)

With (33) and [(34), we can obtain the sampled average patly d$ISU: at actiona(n)=a as

R} (o,a)=C"(0,a)/Z'(0,a). Then according ta [39], a greedy, sub-optimal mixed sgater

arm allocation to minimize the average path delay can beirdausing the Logit function:
exp ()\Z-(R? (o, a))_l)

> bea, &P (N (R (0,b)) 1)

which is in a similar form to[(28)5"(a) does not have to be consistent with the learned

(35)

7'(o,a) =

equilibrium policy when every SU is honest. However, it capresent the ranking value of
the trustworthiness of the relay associated with actioBuring the estimation of the perturbed
best response, a normal SU will consider the contributiothefreported sub-path utility by its
neighbors in proportion to the trustworthiness credit ihassigns to each neighbor. According

to (53), a normal SU modifies its smooth best response objective as follows:

BR(r_) = arg max (az mi(a) (ui(o, w(a;), ;) +57(0, a;)up,, (o, 1r)) A miay) logﬂ'i(ai)).
Z | (36)

a;

Then, its perturbed best response strategy can be adjusted a

e (e + ot )
BR( i(o)+ap, (o), z) = S oD (Ai@i(o,b)+5?(0>b)ﬂ%ai,1(°))>7 (37)
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V. SIMULATION RESULTS

Firstly, we demonstrate the convergence property of thegeed path selection mechanism
given by [29){(3R). Without loss of generality, we assumat tthe state transition maps are
identical for all PU channels. We set the parameters for mblastate transition asd—! =0.2s,
u~t=0.42s, T=0.5s, and for a valid linkd®™™ = 0.01s. For convenience of visualization, we
examine a randomly generated 2-channel, 3-cluster CRN 2vftbws in Figure B. In Figurél3,
SUs 1 and 2 are the source nodes and SUs 16 and 17 are the sex iibé strategy evolution
for the source SUs is shown in Figure 4. According to our dismn about channel contention
on (8)-(11), any source selecting SUs 3, 4 or 5 as its relalyresuult in a higher probability of
conflict with the other source. Therefore, SUs 1 and 2 are agdeto geographically separate
their next hop as much as possible. As shown in Figlire 4, ighléarning scheme given by
(29)-(32), SUs 1 and 2 separate the two flows by choosing SUsd67aas their relays with
non-zero probabilities. The strategies of relaying thfto@jJs 3, 4 and 5 finally converge to
near 0. A mixed-strategy NE is reached and SUs 1 and 2 selésede the two channels
for transmission with non-zero probability. The highestability result of joint relay-channel
selection for each SU at the NE is shown by the colored lineSigure[3.

In Figure[%, we compare the performance of the algorithmergiby [26)428) and[(29)-
(32) with that of a reference algorithm based on OpportimiSbgnitive Routing (OCR) with
Cognitive Transport Throughput (CTT) as the link performametric [16]. The original OCR-

CTT algorithm was designed as a heuristic joint chann@yralearching method for efficient
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Fig. 5. Average path delay vs. number of flows for differemoaithms.

single-flow routing in CRNs. To address the bottleneck efigith multiple flows, we mod-
ify the original OCR-CTT algorithm by introducing a centeald, greedy channel assignment
mechanism. The simulation is set iR80mx250m area with 100 relays randomly deployed in a
2-channel, 3-cluster CRN. The coverage radius of each Seti®s35m. As shown in Figuié 5,
the proposed algorithms (SFP and Approximated SFP) witledastrategies have slightly larger
delay than that of the deterministic OCR-CTT algorithms wilee number of flows is small
and the active SUs are sparse in the network. However, astimork becomes more congested
with a larger number of flows, the proposed algorithms are &bbetter avoid channel conflicts
and reduce the averge path delay by 30% compared with thelioabed OCR-CTT algorithm.

In Figure[6, we evaluate the performance of the proposetegirdearning algorithm when
malicious SUs exist. The simulation is conducted in the seamdomly generated network for the
simulation in Figurés. We investigate the “aggressivehetan attacker by varying the scale of
information distortion by the malicious SUs based on thé value of the sub-path utility. The
larger the scale that an attacker uses for information distg the more aggressive the attacker
is. There are 4 flows in the CRN and for each source node theneeisnalicious SU randomly
placed in its one-hop neighborhood. Comparing the average gelay at 4 flows in Figurel 5
with the average path delay at scale 1 in Figure 6, we notetlieatouting performance is not
affected by the presence of attackers when malicious SUtladopt SH schemes. Intuitively,
this is because with the proposed learning mechanisms, ais &ble to switch to alternative

normal relays when performance deterioration from theckéis is detected and the network is
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not congested. However, when truth-telling enforcementasenabled, the malicious SUs are
able to quickly attract the nearby flows by exaggeratingrtregported value of sub-path utility
(see Figurél6a). Consequently, a steep increase in aveatigel@ay can be observed in Figure
[Bb. In contrast, when truth-telling enforcement is enapild performance of multi-flow routing
remains in the same level of the case of no attackers. As cabdmrved in[(35), given sufficient
time for delay-evaluation based on the proposed feedbadkhamésm, the exponential operator
in (39) is able to reduce the weight of non-optimal relays(3id)(to near-zero. Therefore, as
long as the network is not congested, the source node cangetlgonnected to the malicious
nodes if the routing performance through the malicious sagdeno worse than the performance

through any other neighbor nodes.

VI. CONCLUSION

In this paper, we have proposed a stochastic learning scf@amspectrum-aware, joint relay-
channel selection in a multi-channel, multi-hop CRN. Toradd the potential vulnerabilities
due to the combined Routing-toward-Primary-User (RPU) @mk-Hole (SH) attack, we have
formulated the distributed routing process as a stochgstice. By showing that the stochastic
routing game can be decomposed into a group of single-speated games, we have proposed
a a Stochastic Fictitious Play (SFP) based relay selectgorithm based on limited information
back propagation. We have also introduced a Multi-Arm BarfMAB) based truth-telling
enforcement procedure for normal SUs to evaluate the targtimess of their candidate relays.

With numerical simulations, we have demonstrated that tbpgsed routing algorithm is able to



22

reduce the average path delay by more than 30% compared\erdmnal routing mechanisms.
Moreover, we have demonstrated that with the proposeditepaigorithm, it is guaranteed that

the routing performance is not affected by the inside adesck

APPENDIX
A. Proof of Theorerhll

LetG=(N,S, A;, {r:}ien P(s'|s, a)) represents a general-case average-reward recurrenastoch
tic game, where;: Sx A —R (A= x.A4;) is bounded and state transition probability-) is a
function of all the players’ joint actiom. Let R; denote the expected average gain of player
given in [16) andy; denote its expected bias value as[inl (17). Then, for géme have
Lemma 2 (Theorem 2.6 of([35]) The joint strategyr* is an average NE point iff the pair of

R;(s,7*) and g;(s,m*) solves the following optimality equations for each play

Ri(s, ) = max{zp( s, mi )Ri(s’,'lr*)}, (38)

gi(s, ™) = max {ui(s,m,ﬂ*_i) — Ri(s,m*) + Z P(s’|s,7ri,1rii)gi(s’,1r*)}. (39)

™

According to Propositio]1, the state transition in gageis independent of SU actions.
Then, we readily obtain the two inequalities in (i) of Theord according to[(39).

To prove (ii) in Theoreni]1, we first consider the case of a nbi®ta Based on Lemmi 1,
we can substitutép, (o, 7*) in (1) with (18) and obtaitvr;:

up, (0, ) —Up, (0, 7*) +ZP (o'|o)hp, (o, 7*) > up, (0, m;, @* ;) —Up, (0, 7*) +ZP (o'|o)hp, (o, ™).
. (40)
From (40) we obtairup,(o,7*) > up,(o,m;, 7*,),Vr;, which is exactly the same as the con-
dition equation for an NE in gamé, (o). For a malicious SUj, we can showup, (o, 7*) <
up, (o, m;,m* ;) similarly with the help of [(2R) in Theorei 1.
To show that the NE strategies for the stage game g@up : Vo € O) constitute an NE

strategy forG,, we rewrite [(19) as follows:

Up, (0, ) = )g%(ZP 'lo)up, (0 W))- (41)
n=0

Consider the case thatcomprises of the NE strategies of the stage game graups(n*(o) :

VYo € O). If w is not an NE strategy of gamg., according to Definitiof |2, we can find at least
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one SU: (assume that SWis normal), satisfying the following inequality:
Up,(0,m) — Up,(0,7;,m_;) < 0, 37;. (42)

%

Then, after substituting/», in (42) with (41), we have:

T—00 T

lim 1(§P(o'|o) X <u7pi(0’,1r*(0’)) —up, (0, 7,(0)), 1" i(o’)))) <0, (43)

which contradicts the fact that*(o) is the NE strategy of stage gargg(o). Therefore, property
(i) of Theorem[1 holds.

B. Proof of Theorerh]2

After exchanging the order of expectation and summationcare expand(16) as:

T—1
Up,(o,m) = lim ~ 3" E, (ui(o(n),m)|o(0)=0)+
T—00 T
1T 1 =0
E"l{}g&;ZE" (upam (o(n),a;1,m;2,m_;)|0(0) :0>} :U,-(o,'lr)jLE,ri,1 {Up%l (o, a'i,la"ri,Zaﬂ-—i)}a

(44)
where; ; is SU’s strategy for choosing the next-hop SU. Frdml (17) (44 obtain:

T—1

hp,(0,7) = lim ZEo{ui(o(n),wHEm{upa,_1(o(n),ai,1,1ri,2,7r_,-)}
T—xmnzo , i,

~Uj(0,m)— En, {Upai’l(o, ai,1,7ri,2,7l‘_z'))} ‘0(0) = 0}

T7—1 7—1
= lim » Eo{ui(o(n),w) - Ui(o,ﬂ')‘o(O) = 0} +1im > Eor,, {UP (0(n), 451,50, ;)
n=0 n=0
~Up,,, (o, ai,l,m,g,ﬂ_i)))o(O) :0} = hi(o,7) + Er, , {hpai’1 (o, ai71,7r,-72,7r_i)} .
(45)
Adding (44) and[(4b), we obtain:
hp,(o,m) + Up,(0,m) = h;(o,7) + U;(o,m)+
p,(0,) + Up,(0,) = hi(o,m) + Ui(o,m) )

By {hpai$1(07 @i,1, 5,2, 7r—i)+UPaiﬁl(0, i1, M52, 1r_,-)} .
After applying Lemmadll to[(46)[ (23) is obtained.
Consider a normal SWUe N. From [18), we can show that the best response ofi $Jthe

joint strategyr_; with respect to the sum of its bias value and gain value isinétawhen

hp,(0,7) + Up, (0,7) = max (upi(o,m, RS P(0’|0)hpi(0,1~r)>, (47)

™; o
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wherer is the solution to the right-hand side 6f (47). Frdm](38) dB@) (in Lemmd 2, we have

hp,(0,m*) + max Up.(0,8,7* ;) = max <U7>i (o,m;, ;) + > P(0'|o)hp, (0,11‘*)), (48)

andr* = (6*,7*,) is the NE strategy. For the malicious SUs, a similar pair afatipns to[(4l7)
and [48) can be obtained by substituting operatax(-) with min(-) in (44) and[(48). Comparing
the right-hand side of_ (47) and_(48), it is straightforwaodshow that the best response with

respective tdhp, (o, ) + Up, (0, 7) is also the NE strategy of the game.

C. Proof of Theorerh]3

From [37], we introduce Lemnid 3 in regard to the two timestedening process in (26)-(28):

Lemma 3 (Theorem 5 of([3[7]) Consider that in the following stochastic approximationgesses

{ O = O + AR (RL(07,88) + M), )

057" = 05 + 75 (Fa(07,05) + M3 ™),
for eachi, 0 is bounded,)’
continuous,{3*_ 7
for each6; the Ordinary Differential Equation (ODE)

dY
— = Fy(0,,Y
dt 2( 1 )7

has a unique globally asymptotically stable equilibriumirpcs(6;) such that¢ is Lipschitz

= 00, Y. ...("")? < oo, F; is globally Lipschitz

n

M}, converges almost surely, ardn, ... ~}/~vy = 0. Suppose that

continuous. Then almost surely,
Tim 63 — €(67)] =0,

and a suitable interpolation of the proce$8}} is an asymptotic pseudo-trajectory of the flow
defined by the ODE
dX
Let {@% (0,a;)} in (26) be{dy} in (49) and{x} (o)} in (27) be {67} in (49), then we define
the following two ODEs:

%;)’ai):ﬁé(a??pﬁi):UPi(O,ai)_api(()’api)’ (50)
AT00.20) _ 1 (up, 7,) = BR(1p (0)) ~ (0. 5,). 1)

dt
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According to our discussion of_(26)p, (o, a;) almost surely converges o, (o, a;,m_;). Then,
by Lemma3B, a suitable interpolation ¢f' (o)} is an asymptotic pseudo-trajectory of the flow
defined by the ODE in(31). It is well known [37], [38] that {5i) equivalent to[(52):

dﬂ'i o —_
) _ BR(r_ (o)) ~ (o) 52
where for a normal SU (we omit the state indicatas for simplicity)
BR(r_) = arg max (up, (mi,m-) =\ S mi(a) logmi(ay) ). (53)

aj;

and for a malicious SY

BR(m_;)= argmax(up (mj, )=\ Zﬂj a; logﬂj(aj)) (54)

becausel(28) provides the solutions[ial (53) (54) [38(58) and [(54), the entropy function
vi(m;) = — >, mi(a;) logm;(a;) is called the perturbation in SFP. According to[[38], we have
Lemma 4 (Proposition 3.1 of [[38]) Consider a general, normal-form repeated gadie=
(N, XienAiy {ui bien). Leta be the fixed point of the SFP dynamic given[by (52) with respect
a perturbation vecton™ = (uf, ..., vjy,). If the perturbation sequencev”} converges weakly,

and the sequencér!} converges tar;, thenr; is the NE forG.

By Lemmal4, when the solution to the ODE [n{52) converges txedfpoint, it converges
to the NE of gameg, (o). Then, based on the discussion following Lemima 3, provirg th
convergence of the learning process given[by (26)-(28) ¢oNE is equivalent to proving that
the solution trajectories to the SFP dynamic[in] (51) cornwemythe set of fixed points from
any initial condition. Observing the structure Gf(o), the proof can be developed using the
following properties of a repeated game:

Lemma 5 (Corollary 5.5 of [38]) If a generic repeated gantgis a supermodular game, then the
solutions to the smooth best response dynamic in the for@2)ffér G converges almost surely
to its rest point set from any initial condition. The remaginonconvergent initial conditions
are contained in a finite or countable unian/;, of invariant manifolds of codimension 1, and

hence have measure zero.

Lemma 6 (Supermodular game [40]A continuous normal-form gane= (N, {IL; }ienr, {wi(m;) bienr)
is a supermodular game if for any playee N/,
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i) the strategy spacH; is a compact subset @&*.
ii) the payoff function; is upper semi-continuous m; = (m;, 7_;).

iii) a?r “Laﬂ y > 0Vj #1,k, 1, wherer,, is the k-th element of vectort;.

With Lemmal6, we can check the supermodularity of gain@) with respect to strategy;.
According to [(18), we have,; >0 Vo, a. Then, according td_(20): # j
O (up, = Yiep, wi(m))
om;(a;)om;(a;)

Therefore, gamg . (o) in the form of continuous garHemth strategyr is a supermodular game.

> O Va a;, a;. (55)

By Lemmd.5, the smooth best response dynamic convergestamesy. By Lemmal4, Theorem
is proved.

D. Proof of Theorenhl4

The proof of Theorenmil4 can be achieved by applying Lemhina 3atedly to the learning
scheme given by (29) and (30), then to the learning schenendyy [30) and[(31). According
to our discussion on (29)(o,a;) has a unique globally asymptotically stable equilibrium
u;(0,a;,m_;) if  is fixed. Then, it is sufficient to prove that the following ODE

daz;f(()) :<Z7~T"(O’ a;)(@i(0, a;) +p,, , (0)) —@Pi(o)) : (56)

a;

is globally asymptotically stable to show that the learnprgcess given by (29)-(81) produces
an asymptotic pseudo-trajectory of the SFP flow. Omittirzagestndicatoro for convenience, we

duP (

denoteir, (a;) =u;(a;) +tp, , &= dei ande(a;) = , and define a Lyapunov function:

Vi) = () la) +iim, ) —in,) 57

a;
We sort the SUs in patl?; according to their distance in hop count to sibkn an ascending
order as{L — 1,L — 2,...,i}. Then, the two-timescale stochastic approximation p®des

Lemmal3 can be extended to multiple-timescale with the sama 6f function F; as in [49):

Fi(u;(ay),m) = u;(a;(n)) — u}(a;),

Fi(ti;(ay), ip,, ip,,,) = Zﬁ'z’(az’)(ﬂi(ai) +ip,, ) —Up,-

a;

(58)

1Such property also holds for malicious SUs as long as theitegly learning scheme complies with SFP given[hy (28).
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Since the learning process in_{29) is globally asymptdiicabnvergent, then at the stable

point of u;, d“r =0 ande¢;(a;) = d—l“ , Wherea; ; =i+1. We now examind/; and obtain

1dV; d eitp; (2i) dip,
2dt (Z” a;)iip; (@) = “7’2> X( ZZ LG el K

aj;

=s,-(2 (Z A(ZA ()()b) (es(as) —ex(b))in (1) + %(a)) -&),

)\ U73 (aL )\ UP (aL

=\ ZZ 2 6)\ ap, (b Ez(al) z( uP a; fz + Z )\ ip, (b ( 2)61_512

We start examining the property 6({1 in the way of backward propagation from SU— 1.
dVLA

Sinceup, =0, we havee,, (ar 1) =0, hence =—¢2 <0 at the stable point of the approx-
imation process represented BY ' (ii;_,, ). Therefore the ODE for SW — 1 in the form of
(B6) is globally asymptotically convergent. Then, we caplghemmal3B to the two-timescale
learning process featured B~ and F¥~2, and show that a suitable interpolation of the process
{up, .} is an asymptotic pseudo- trajectory of the flow defined by tﬁ)eECS% given in (56).

At the stable point ofip, ,, we have L =0, SO €z o(ar_2) =0. With the similar way to
dVL 1 ldVL 2

analyzing=g~, we have;
sequence of the learning processes featured (Y, Fi/~2), (FX 2 FF7°), ..., (Fi FDY,

we obtain Lemmal7:

——§L_2§0. By repeatedly applying the same analysis to the

Lemma 7. The learning process given if_(29) arid (30) is globally asytigally convergent,
provided that the following are satisfiegLrEOZa(n):oo, Jirr)roz&(n) < 00, JE&Z%(M:
00, nh—golo; 2(n) < oo, Jl)rgo(vz(n)/a(n)) —0 and nh_)r{)lo(%(n)/%(nrﬁ) =0, if SUi is closer to the
sink SU than SU in terms of hop count.

If hm( (n)/v:(n))=0, we can further conclude that the learning process giverBiily £énd
(32) yields an asymptotic pseudo-trajectory of the flow defiby the SPF-based ODE. We note
that Lemmd.b and Lemnid 6 still hold for a new game with thetutdf each player being the

convergent biased value estimation. Then, Thedrem 4 isegrov
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