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Abstract

The rapid development of multi-channel optical imaging sensors has led to increased uti-

lization of hyperspectral data for remote sensing. For classification of hyperspectral data, an

informative training set is necessary for ensuring robust performance. However, in remote

sensing and other image analysis applications, labeled samples are often difficult, expensive

and time-consuming to obtain. This makes active learning (AL) an important part of an im-

age analysis framework — AL aims to efficiently build a representative and efficient library

of training samples that are most informative for the underling classification task. This

thesis proposes an AL framework that leverages from superpixels. First, a semi-supervised

AL method is proposed that leverages the label homogeneity of pixels in a superpixel, lead-

ing to a faster convergence using few training samples. Secondly, a spatial-spectral AL

method is proposed that integrates spatial and spectral features extracted from superpixels

in an AL framework. The experiments with an urban land cover classification and a wet-

land vegetation mapping task show that the proposed methods have faster convergence and

superior performance compared to baselines. Importantly, our proposed framework has a

key additional benefit in that it is able to identify and quantify feature importance — the

resulting insights can be highly valuable to various remote sensing image analysis tasks.
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Chapter 1

Introduction

1.1 Hyperspectral Imaging

Hyperspectral imaging modalities acquire information from hundreds of bands of the

electromagnetic spectrum with fine wavelength resolution (e.g., 0.01µm) and covers a wide

range of wavelengths (typically 0.4 − 2.5µm) [1]. For remote sensing, they utilize the fact

that different materials have specific reflectance profiles that can be characterized via such

imagery. Such imagery provides the unique spectral reflectance signature for objects. For

remote sensing applications, hyperspectral sensors are typically deployed on either aircraft

or satellites [2]. The data of a hyperspectral sensor is a three-dimensional array with its

width and length corresponding to spatial dimensions and the third dimension correspond-

ing to the spectral profile of each point.

1.2 Applications of Hyperpectral Imaging

Hyperspectral imaging is widely used in applications such as precision agriculture, medi-

cal diagnosis, food processing and surveillance. For example, hyperspectral images are used

to detect grape variety and to obtain an early warning for disease outbreaks [3]. In the food

processing industry, hyperspectral images improve the identification of defects and foreign

material (FM), hence enhancing the product quality and increase yields. Hyperspectral

images can be used to determine the physical, chemical, and biological contamination on
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food products [4]. Through detecting a drop in oxygen consumption in the retina, the hy-

perspectral sensor can indicate potential diseases [5]. In surveillance applications, objects

are detected by their unique signature from a large region of the visible and near infrared

spectrum [6].

1.3 Active Learning for Hyperspectral Image Classification

in Remote Sensing

With the development of remote sensing technology, enormous quantities of data can

be obtained from satellite, airborne and ground-based sensors. The basic goal of classifi-

cation for remote sensing is to assign labels to different objects in an image according to

their spectral and spatial information. In practical scenarios, during hyperspectral image

collection, only the hyperspectral information for each pixel can be acquired, while the la-

bel information is often manually acquired by experts. The process of annotation is time

consuming, tedious and often costly. As a result, in recent years, researchers have focused

on development of semi-supervised and active learning methods for classification of remote

sensing data.

Active learning (AL) is an online learning method that provides a framework for classifier-

in-the-loop annotation by an oracle. Based on an appropriate query strategy, AL can induct

the most informative data into the training set which labeled by an expert enhances the

underlying classification performance. From an image classification point of view, AL query

strategies can be divided into three main categories. The first category is designed for a

margin-based classifier such as a support vector machine. By this strategy, AL will select

the data point which is closest to the separating hyperplane [7][8]. In [9], AL tends to
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choose the sample which is not only closest to the separating plane but also far from the

existing support vectors. The second category is Uncertainty sampling. Uncertainty sam-

pling tends to query the samples for which the current classifier is least certain to label

[10]. In [11], the measurement of the uncertainty is based on the entropy of the predicted

labels. Samples with the maximum entropy are considered as the most uncertain ones and

are hence queried. Another query strategy based on uncertainty is breaking ties (BT) [12].

In this strategy, the difference between the two highest posterior probabilities is used as the

measure of uncertainty. A modified BT algorithm is proposed in [13] to provide unbiased

sampling for different classes. The last query strategy is query by committee. The sample

which has the greatest disagreement in a committee is taken as the most informative one

[14]. It is important to note that the the underlying goal in such work is selecting new train-

ing samples based on a strategy using only spectral information — i.e., it is traditionally

pixel based AL. However for remote sensing (and other) image analysis problems, samples

are intrinsically defined in both the spectral and spatial domain. Hence an active learning

strategy which considers both spectral and spatial information can be expected to be more

effective for hyperspectral classification.

In this thesis, two superpixel-based active learning techniques are proposed that take

advantage of the spatial-spectral information provided by hyperspectral imagery. The first

method is referred to as semi-supervised active learning. In this approach, superpixels

work as co-trainers. They enable automatic labelling of an unlabeled sample according to

a labeled neighbor in the same superpixel. In each active learning query iteration, not only

will the human labeled sample be added into the training set, but its neighbors from the

same superpixel will also be added into the training set. By collectively inducing all samples
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in a superpixel at a query step, local spatial variation in spectral content is accounted for in

the training library, hence leading to higher efficiency compared to traditional pixel based

active learning. The second proposed method is called spatial-spectral active learning. In

this method, a pixel is identified by the spatial-spectral features extracted from superpixels.

Hence, when one pixel is added into the training set, the information of its neighbors

as encoded in appropriate spatial features (e.g., textural features) will be utilized in the

training and classification process, making the system more robust. Finally, we propose

an approach to learn feature importance (relevance) within our proposed active learning

framework — we note that this can be highly beneficial to gain data specific insights about

the underlying image analysis task — such feature importance learning can potentially also

be incorporated in an active learning process for visualization of useful features and/or

design of tailored query strategies.
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Chapter 2

Related Work
Active learning is an online (annotator-in-the-loop) learning method to select the most

informative training samples for labeling that when inducted into the training dataset will

yield robust classification. In a hyperspectral image, neighboring pixels are highly corre-

lated. The spatial information derived from the neighboring regions have been shown to be

crucial for image analysis tasks. Traditional active learning methods are typically based on

a pixel-level architecture. This thesis integrates spatial contextual information as provided

by superpixels into active learning. We utilize a subspace-based multinomial logistic regres-

sion classifier [15] as the backend classifier, since it has the ability to fuse multiple feature

types “algorithmically”. Moreover, by analyzing the feature weights in the classifier, feature

importance can be effectively quantified.

2.1 Superpixel Segmentation

In a real hyperspectral image, contiguous pixels are similar to each other in terms of

spectral content, intensity, or texture. Superpixel segmentation is commonly used in color

image processing as an approach to oversegment images for efficient downstream processing.

With respect to hyperspectral image analysis, superpixel segmentation has the following

desired properties: (1) Computationally efficiency: It reduces the complexity of images

substantially by grouping similar pixels together, that can then be treated as one unit or as

proposed in this work, can be used as an analysis window for feature extraction. (2) Enabling
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efficient spatial-spectral classification [16] by incorporating local spatial information.

Mean shift [17], Felzenswalb and Huttenlocher (FH) [18], and watershed [19] are three

popular graph based superpixel segmentation methods. Mean shift has tolerance to the

local variations; while FH and watershed are very computationally efficient. Generally,

superpixels produced by the three methods have large variations in terms of size and shape,

some of which cover multiple objects [20][21]. NCuts was proposed by Ren and Malik

[22] to address the irregular size and shape problem, but it has a very high computational

complexity. Compared to all the above-mentioned segmentation algorithms, entropy-rate

superpixel segmentation has the advantage of resulting in superpixels that have compact

shape and similar size.

Entropy-Rate superpixel segmentation is a graph based segmentation method, where an

image is represented as a graph, G = (V,E), each pixel is represented as the vertex of the

graph denoted by set vij ∈ V and, pair of pixels are connected by an edge eij which belongs

to the set E. Each edge has been assigned a weight wij according to the similarity of the

pair of pixels connected by it. For an undirected graph, the weights of edge are symmetric,

i.e. wij = wji.

Graph partition : Suppose S is an entire graph, a graph partition divides the vertex

set V into disjoint subsets S = {S1, S2, ...SK}, and K is the number of superpixel. Graph

partition selects edges to connect pixels. The pixels which are not connected by selected

edges are separated. A selected subset of edges A ∈ E makes the graph G = (V,A) contain

K superpixels.
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Entropy: Entropy H is a measurement of the uncertainty of a random variable. Sup-

pose X is a discrete random variable, the entropy H(X) of X is defined as

H(X) = −
∑
x∈X

pX(x) log pX(x), (2.1)

whereX is the support of X, and pX(x) is the probability mass function.

Random walks on graphs: X = {Xt|t ∈ T,Xt ∈ V } is a random walk on the graph

G = {V,E}. The transition probability is defined as

pi,j = p(Xt+1 = vj |Xt = vi), (2.2)

where wi =
∑

k:ei,k∈E wi,k is the sum of incident weight of the vertex vi. The entropy rate

of the random walk can be computed by

H(X) = H(X2|X1) = −
∑
i

∑
j

wij
wT

log
wij
wT

+
∑
i

wi
wT

log
wi
wT

. (2.3)

Suppose that subset edge set A has been selected to construct a graph G = (V,A). The

transition probability can be calculated as

pij(A) =



wij

wi
, if i 6= j, eij ∈ A,

0, if i 6= j, eij /∈ A,

1−
∑

j:eij∈A
wij

wi
, if i = j.

(2.4)

Hence, the entropy rate of the random walk on G = (V,A) can be computed as

H(A) = −
∑
i=1

µi
∑
j=1

pij(A)log(pij(A)), (2.5)

where µi = wi/Σ
|V |
i=1wi is a stationary distribution with respect to a random walk on the

graph. Entropy is the criterion used to obtain compact and homogeneous segmentation.

Balancing Function: Balancing function is utilized to encourage clusters to have a

similar size. Let A be the selected edge set. Let NA be the number of connected components
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in the graph, and ZA be the distribution of the cluster membership. Suppose the edge subset

A produces the partition SA = {S1, S2, S3, ..., SNA
}, then the distribution ZA is given as

pZA
(j) =

|Sj |
|V |

, ∀j ∈ {1, 2, ..., NA}. (2.6)

The balancing term is defined as

B(A) = H(ZA)−NA, (2.7)

where H(ZA) is the entropy of ZA. It favors clusters with similar sizes, whereas NA favors

fewer number of clusters.

Objective function : The overall objective function is defined as

max
A⊆E

F (A) = H(A) + λB(A), (2.8)

where λ is the weight of balance term. The entropy rate H(A) of the random walk on graph

tends to produce compact and homogeneous clusters, while the balance term B(A) favors

clusters with similar size and fewer clusters. The objective function is submodular and

monotonically increasing. It can be optimized by a Greedy algorithm [23]. This algorithm

begins with an empty edge set A, and gradually adds edges to set A according to the

objective function. At each iteration, this algorithm adds edges that makes the most gain

in the objective function of A. The iterations will be terminated once the number of clusters

reaches the preset superpixel number K.

2.2 Subspace-based Multinomial Logistic Regression (MLR-

sub)

Multinomial logistic regression is widely used in hyperspectral image classification to

model the posterior class distributions in a Bayesian framework, based on which a few

8



state of the art hyperspectral image classification methods are built. The motivation for

choosing MLRsub in this work as a backend classifier are as follows — (1) It can integrate

multiple features without ad hoc weights (weights are determined via optimization); (2)

Feature importance can be efficiently measured by the automatically learned weights in

the expression for the posterior probability. Consider an image as a set of pixels. Let

x = {x1, ...,xN} denote the original feature vectors of an image, where N is the number

of pixels. Y = {y1, ...,yN} is the label set of an image. The yi is the label vector of

pixel i. Suppose there are K classes, then yi = {y1i , ..., yKi }. If pixel i belongs to class

k, then yki = 1, otherwise yki = 0, j ∈ {1, 2, ...K}. For supervised classification method,

a subset of pixels should be labeled by an expert in order to train the classifier. Let

DL = {(x1,y1), ..., (xNT
,yNT

)} be a training set. In hyperspectral image classification,

there are two main problems: (1) Limited training samples; (2) Mixed pixels: Due to sensor

design considerations, the wealth of spectral information in hyperspectral data is often not

complemented by extremely fine spatial resolution. This leads to the problem of mixed

pixels, which represent a challenge for accurate hyperspectral image classification [24]. In

the MLRsub mode, the resulting model can be expressed as

xi =
K∑
k=1

rkm
k + α

K∏
k=1

mk, (2.9)

where mk, k = 1, ...K is the spectral of the K end-members. rk and α are the parameters

controlling the linear and nonlinear terms.

The posterior density p(yki = 1|xi,ω) for a given class is defined as [15]

P (yki = 1|xi,ω) =
exp(ω(k)Th(xi))∑K
j=1 exp(ω(j)Th(xi))

, (2.10)

where h(xi) = [||xi||2, ||xiTU (1)||2, ..., ||xiTU (K)||2], U (k) is a set of r(k) -dimensional

9



orthonormal-basis vectors for the subspace associated with classes k = 1, 2, ...,K. By defini-

tion, the final feature vector h(xi) consists of the energy of the original spectral reflectance

vector projected onto all the classes and the energy of the spectral reflectance vector itself.

The feature vector is not x itself, but the projections onto the subspaces learned from the

training set, which enhances the class separability and reduces the feature dimension.

The training procedure of the subspace-based multinomial logistic regression involves

finding an optimal ω which fits the training set. According to [25] [26], The ω is estimated

by a maximum a posterior (MAP) method. The objective function can be defined as

ω̂MAP = arg max
ω

L(ω) = arg max
ω

[l(ω) + log p(ω)], (2.11)

where p(ω) is the prior on the parameters ω, l(ω) is the log-likelihood function,

p(ω) ∝ e−β/2||ω||
2

and (2.12)

l(ω) =

NT∑
i=1

logP (yi|xi,ω). (2.13)

The optimization function in Eq. 2.11 is concave. Consider the second order Taylor

series for the log-likelihood for regressor ω at t’th iteration

l(ω) ≥ l(ωt) + (ω − ωt)
Tg(ωt) +

1

2
(ω − ωt)

TB(ω − ωt) and (2.14)

where B is the lower bound of the Hessian of l(ω),

B ≡ −1

2

[
I − 11T/(K + 1)

]⊗ NT∑
i=1

h(xi)h(xi)
T. (2.15)

g(ωt) is the gradient of l(·) at ωt. According to the bound optimization algorithm [26], the

update equation is

ω̂t+1 = (B − βI)−1(Bω̂t − g(ω̂t)), (2.16)

10



2.2.1 Data Fusion via MLRsub

Let pm(yki = 1|xmi ,ωm) be the posterior probability associated with feature m, m ∈

{1, 2, ...,M}, there are M features. According to the LOGP rule in [27], for any pixel

i = 1, ..., N ,

pLOGP (yki = 1|x1
i , ...,x

M
i ,ω1, ...,ωM , α1, ..., αM ) =

∏M
m=1 pm(yki = 1|xmi ,ωm)αm∑K

j=1

∏M
m=1 pm(yji = 1|xmi ,ωm)αm

,

(2.17)

where {αm|0 ≤ αm ≤ 1,
∑M

m=1 αm = 1} is a tunable parameter which controls the affection

of each feature vector on the final probability. Notice that, for this multiple feature type

problem, there are two parameters — (1) the logistic regressors ωm, which are associated

with the classifier and (2) the set of weight parameters αm associated with the feature m.

These two parameters should be optimized in the training process. By using the MLRsub

classifier to model the posterior possibility pm(yki = 1|xmi ,ωm), the regressors ω and weight

parameters αm can be combined into a new parameter, so only one parameter needs to be

optimized. The model of MLRsub is shown in Eq.2.10. Substituting the MLRsub model in

Eq.2.10 to the LOGP framework in Eq. 2.17:

pLOGP (yki = 1|x1
i , ...,x

M
i ,ω1, ...,ωM , α1, ..., αM ) =

exp
(∑M

m=1 αmω
(k)
m h(xmi )

)∑K
j=1 exp

(∑M
m=1 αmω

(j)
m h(xmi )

) .
(2.18)

By letting ω̃
(k)
m = αmω

(k)
m ,

pLOGP (yki = 1|x1
i , ...,x

M
i ,ω1, ...,ωM , α1, ..., αM ) =

exp
(∑M

m=1 ω̃
(k)
m h(xmi )

)∑K
j=1 exp

(∑M
m=1 ω̃

(j)
m h(xmi )

) . (2.19)
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Notice that Eq.2.19 has the same model as the original MLRsub classifier. Hence the

combined regressors ω̃ can be optimized as the aforementioned MAP method. By this

fusion framework, the multiple features are integrated without the need for ad hoc weights,

hence there is a great flexibility in the fusion of different information. Moreover, from the

Eq. 2.19, it can be readily concluded that [28], if ω̃
(k)
mph(xi

mp) > ω̃
(k)
mqh(xi

mq),mp,mq ∈

{1, 2, ...,M}, then the feature mp is the dominant feature for classification. This way, the

feature importance can be quantified, which is the another motivation for choosing MLRsub

as the classifier in this thesis.

2.3 Active Learning for Hyperspectral Image Classification

Active learning aims to select the most informative samples from the unlabeled candidate

data. After being labeled by an expert, these selected samples will be added into the training

set. The classifier will then be trained with the updated training set, hence enhancing

classification performance. In the beginning, the classifier is trained by an initial training set

DL. Then the unlabeled candidate samples will be sent to the classifier to get the predicted

label information. According to the predicted label information, the query strategy selects

a set of the most informative samples x∗. Following this, a human expert manually labels

x∗ with y∗. The pairs (x∗,y∗) will then be inducted into the training set DL, and the

classifier will be retrained by the new training set. These iterations will go on until the

classification performance converges to a plateau. The flowchart of general active learning

is shown in Figure 2.1. Dashed lines indicate the active learning process.

Generally, active learning strategies can be classified into different types based on the

query strategy. Uncertainty sampling is commonly used with multi-class classification.
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Figure 2.1: Flowchart of general active learning

Among the unlabeled candidate set U , the uncertainty sampling strategy queries the samples

for which the current classifier is most uncertain in predicting the class label. For multi-class

classification problems, the uncertainty criterion is calculated according to the posterior

probability of labels predicted by the current classifier.

There are three uncertainty sampling methods:

1) Least confident (LC) — it can be defined as Eq. 2.20.

x∗LC = arg max
x∈U

1− p(ŷ|x), (2.20)

where ŷ is the predicted label with highest probability,

ŷ = arg max
y

p(y|x).

2) Breaking ties (BT), it can be defined as

x∗BT = arg min
x∈U

p(ŷ1|x)− p(ŷ2|x), (2.21)

13



where ŷ1 and ŷ2 are the first and second most probable labels for x predicted by the current

classifier.

3)Entropy (E), it can be defined as

x∗E = arg max
x∈U
−
∑
k

p(yk|x) log p(yk|x), (2.22)

where yk ∈ {y1, ...,yK}. They all have their strengths and weaknesses. An empirical com-

parison between them is often utilized to identify which of those is suitable for a particular

application [29].

2.4 Spatial Feature

Spatial features contain important information about the shape, size and texture, etc.

from a fixed or adaptive region of the image in and around objects of interest. In hyper-

spectral images, the spatial context of a pixel can provide additional information, as spatial

context often has information unique to the different objects. By integrating spatial in-

formation, better classification can be performed yielding more accurate results. Classical

spatial feature extraction methods are based on Gabor filters [30], morphological operators

[31], wavelet decomposition [32] and gray-level co-occurrence matrix (GLCM) [33].

GLCM texture measurements have been a popular method for texture extraction in

remote sensing images since they were first introduced by Haralick in the 1970s [33]. Given

a spatial relationship defined among pixels in a texture, the GLCM represents the joint

distribution of grey-level pairs of neighbor pixels. Specifically, for various orientations,

GLCM features are estimated as Eq.2.23

Pi,j =
Vi,j∑N−1
i,j=0 Vi,j

, (2.23)
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where N is the number of grey levels, i is the reference pixel value, j is the neighbor pixel

value, Vi,j is the number of times the combination (i, j) or (j, i) occurs in a window for the

given orientation operator. The GLCM features used in this thesis are summarized in Table

2.1.

Table 2.1: GLCM feature of 7 sources

# GLCM feature Formular

1 Contrast
∑N−1

i,j=0 Pi,j(i− j)2

2 Homogeneity
∑N−1

i,j=0
Pi,j

1+(i−j)2

3 Energy
√∑N−1

i,j=0 P
2
i,j

4 Entropy
∑N−1

i,j=0 Pi,j(− lnPi,j)

5 Variance
∑N−1

i,j=0 Pi,j(i− µi)2

6 Mean
∑N−1

i,j=0 i(Pi,j)

7 Correlation
∑N−1

i,j=0 Pi,j [
(i−µi)(j−µj)√

(σ2
i )(σ

2
j )

] 1

1µi = µj =
∑N−1

i,j=0 i(Pi,j)

σ2
i = σ2

j =
∑N−1

i,j=0 Pi,j(i− µi)
2
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Chapter 3

Superpixel based Active Learning
In this thesis, we propose to utilize spatial information derived from superpixels to en-

hance the active learning process via two approaches: the first one can be considered to

be a semi-supervised variant of active learning, for increasing efficiency, while another is a

spectral-spatial superpixel-level active learning with spatial features derived from superpix-

els. As we will demonstrate, the second method not only reduced the convergence time (in

obtaining peak classification performance) for the AL system, but also improved the overall

performance itself, compared to baseline methods.

3.1 Data Description

In this thesis, two data sets, University of Houston and a wetland imagery dataset from

Galveston are used to validate the proposed methods.

3.1.1 University of Houston

The University of Houston data set is acquired by an ITRES-CASI (Compact Airborne

Spectrographic Imager) 1500 hyperspectral imager. It covers the University of Houston

campus and its neighboring urban area. The hyperspectral image consists of 144 spectral

bands ranging from 380nm - 1050nm with spatial resolution of 2.5m. The classes and the

number of labeled superpixels for each class are listed in Table 3.1. There are 15 classes

defined in this data. The image was segmented into superpixels with the average size of

81 pixels per superpixel. 8 classes that contain enough superpixels to perform reasonable
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validation studies were used for validating the proposed methods, which are shown in bold

in Table 3.1. Figure 3.2 is the mean signatures (spectrum) of the defined 15 classes.
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Figure 3.1: True color University of Houston hyperspectral image cube with ground truth
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Figure 3.2: Mean signatures of objects in Unversity of Houston hyperspectral image
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Table 3.1: Classes and the number of superpixels for each class of UH data

Name of classes Number of superpixel

1 Grass-healthy 99
2 Grass-stressed 97
3 Grass-synthetic 10
4 Tree 179
5 Soil 79
6 Water 9
7 Residential 127
8 Commercial 318
9 Road 191
10 Highway 94
11 Railway 61
12 Parking Lot 1 155
13 Parking Lot 2 60
14 Tennis Court 7
15 Running Track 8

3.1.2 Galveston Wetland

The Galveston wetland data is acquired by the Headwall hyperspectral imager. It

covers a small part of wetland in Galveston by the research team in our laboratory. The

hyperspectral image consists of 163 spectral bands ranging from 400nm - 1000nm with very

high spatial resolution. Analysis of such images is particularly useful in ecological studies

over wetlands, and in applications such as monitoring ecological health post natural or

anthropogenic disasters. There are 8 classes defined in this data, shown in Table 3.2. The

image is segmented into superpixels with an average size of 121 pixels per superpixel. The

classes are listed in Table 3.2.
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Figure 3.3: True color Galveston wetland hyperspectral image cube
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Figure 3.4: Mean signatures of objects in Galveston wetland hyperspectral image
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Table 3.2: Classes and the number of superpixels for each class in Galveston wetland data

Name of classes Number of superpixel

1 Soil 395
2 Sedge 247
3 Borrichia 214
4 Spartina paten 289
5 Mangrove 674
6 Batis 584
7 Spartina-alterniflora 298
8 Water 351

3.2 Semi-supervised Active Learning

Semi-supervised classification methods train a classifier with both labeled and unlabeled

samples. The motivation is that for real world applications, labeled samples are often

difficult, expensive and time-consuming to obtain, while the unlabeled samples are relatively

easy to obtain. Semi-supervised methods use labeled and unlabeled data together to train

the classifier, aiming to obtain the satisfactory classification result with a small cost of data

annotation.

3.2.1 Proposed Method

In general active learning, only the selected informative sample will be labeled and

included in the training set. In this thesis, a semi-supervised active learning method is

proposed to involve not only the most informative sample but also its similar and contiguous

neighbors within the same superpixel into the training set, with the assumption that they

belong to the same object and capture local spectral variability. It has been shown that

entropy rate based superpixel segmentation have a satisfactory performance in terms of

undersegmentation error. Low undersegmentation error implies that high percentage of

superpixels contain only one kind of object [16]. It is reasonable to assume that pixels
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in the same superpixel should have the same label. Hence, superpixel segmentation in the

proposed method works as a co-trainer. It labels the unlabeled data according to its labeled

neighbors in the same superpixel. This superpixel-level labeled data will be included in the

training set to improve the classifier. The flowchart of the proposed method is shown in

Figure 3.5. The dashed box refers to the active learning process.

Figure 3.5: Flowchart of the proposed semi-supervised active learning

In the beginning, a small number of samples are randomly selected from an initial

training set I = {xI1, ...,xIn1
}, n1 is the number of initial training samples. Following this,

experts manually assign these initial training samples with labels of y = {yI1, ...,yIn1
}.

Superpixels containing the pixels in initial training set will be selected SI = {SI1 , ..., SIn1
}.

Pixels in a superpixel SIn are assumed to be the same class as xIn, hence they are assigned

a label of yIn. Following this, samples in conjunction with the initial sample will be added

to the training set DL to train a preliminary classifier. The resulting classifier then is used

to evaluate the samples in the unlabeled candidate set U . According to Eq. 2.21, the most
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informative sample x∗BT is selected. A human expert manually assigns it with a label y∗BT .

Meanwhile, in the superpixel image (segmented image), the superpixel S∗BT which contains

the sample x∗BT will be selected. All the pixels in S∗BT together with the label y∗BT are

included into the training set. The classifier will then be trained with the new training set.

3.2.2 Experiments with Superpixel Segmentation

First, entropy rate superpixel generation is used to obtain the superpixels. Figure3.6

shows the superpixels of cropped UH generated by entropy rate segmentation. The number

of superpixels for Figure 3.6 is 50000. It can be seen that entropy rate segmentation has

a good performance with regards to preserving the edges around objects, in addition to

oversegmenting within objects. Further, most superpixels only contain one object type

(often, there are multiple superpixels within an object), which is an assumption we make

in our proposed semi-supervised active learning method. Moreover, in [16], it is shown that

for such hyperspectral imagery, the undersegmentation error decreases as the number of

superpixel increases, which implies that with an appropriately chosen number of superpixels,

it is possible to make the the resulting superpixels pure.
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Figure 3.6: Superpixels generated by entropy-rate segmentation from different regions of
the University of Houston dataset.

In addition to the number of superpixels, the balancing term λ is an important parameter

for superpixel generation via the entropy rate method. With a large value λ, the entropy

rate segmentation tends to partition the image into superpixels of balanced size. Figure 3.7

shows the superpixel size distribution with different values of λ. We note that in this work,

we found the value of λ = 0.5 to be optimal empirically.
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Figure 3.7: Superpixel size distribution

3.2.3 Experimental Setup and Results Semi-supervised Active Learning

(SemiSAL)

For traditional breaking ties AL, only the selected most informative pixel will be included

in the training set. However, the proposed method will involve all the pixels in a superpixel

which contains the most informative pixel to the training set, while assigning them the

same label as the most informative pixel. The proposed method were evaluated with two

baseline methods. The first one is a window based AL. Similar with superpixel-based AL,

the window based AL will add all the pixels covered by the same window frame into the
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training set. For a fair comparison, the average superpixel size is similar to the window

size. For UH data, the window size is 9× 9. The second comparative method is pixel level

AL, where only the queried pixel is added to the training set.

For the first data set, University of Houston, we note the following settings (1) the

initial training set contains 5 samples from different superpixels per class ; (2) Testing set

contains 40 samples from different superpixels per class. For a fair comparison, we ensure

that the testing samples are not covered by the superpixels which have already covered

training samples and candidate samples; (3) The candidate set contains all the left labeled

pixels. The batch size for superpixel-based AL is one superpixel. For window-based AL, it

is one window. For pixel level AL, it is one pixel.

The experiment is repeated 10 times with 10 different randomly selected initial training

sets and testing sets. The average results, in terms of over all accuracy (OA) and the

class accuracy (CA), are shown in Figure 3.8.From Figure 3.8(a), it can be seen that the

proposed method outperforms the two baseline methods for all the query iterations in terms

of OA, and it yield a relatively small standard deviation. The window based AL performs

even poorer than the pixel level AL, because the window on the boundary of an object will

involve the pixels from other objects, resulting in inaccurate classification. The proposed

method addressed this problem using the efficacy of superpixels to oversegment objects.

Table 3.3 shows that, the accuracy with the proposed method is 8% greater than window

based AL and 5% greater than pixel level AL. In terms of class accuracy, the proposed AL

outperforms the two baseline methods for Grass-healthy, Grass-stressed, Tree, Commercial,

Road and Parking Lot 1. Moreover, Figure 3.8 (b)(c)(d) shows that for the 6 classes the

AL result of proposed method converges faster than the baseline methods.
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Figure 3.8: OA and CA of Semi-Supervised AL of UH
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Table 3.3: OA and CA of Semi-Supervised AL of UH

SemiSAL SemiSAL AL
# Class Superpixel Window Pixel

1 Grass-healthy 76.67 66.89 75.65
2 Grass-stressed 74.41 61.60 65.72
3 Tree 94.48 70.08 81.93
4 Residential 58.69 47.56 63.58
5 Commercial 83.82 68.78 78.31
6 Road 84.16 85.09 73.98
7 Highway 19.50 28.50 31.75
8 Parking Lot 1 65.55 61.05 49.62

OA 69.66 61.19 65.07

For the second data set, Galveston wetland, we note the following experimental settings

— (1) Initial training set contains 5 samples from different superpixels per class. 2) Testing

set contains 60 samples from different superpixels per class. For a fair comparison, we

ensure that the testing samples is not covered by the superpixels which have already covered

training samples and candidate samples. 3) Candidate set contains all the remaining labeled

pixels. The batch size for superpixel-based AL, window based AL, and pixel level AL are

one superpixel, one window and one pixel, respectively.

Figure 3.9 shows the average of results of 10 random subsamplings of training and test

data in terms of overall accuracy and class-specific accuracy. From Figure 3.9(a), it can

be seen that the proposed method yields higher accuracy through all the query iterations,

especially at the initial iterations. The OA of the proposed method converges much faster

than the two baseline methods. Comparing the Figure 3.9(b)(c)(d), it can be seen that

the proposed method leads to faster convergence for most of the classes such as Borrichla,

Spartina paten, Spartina alterniflora and Water. Table 3.4 shows that the proposed method

is 2.84% better than window based AL and 2.74% better than pixel level AL. In terms of class

accuracy, the proposed AL outperforms the window based AL for 7 classes and outperforms
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pixel level AL for 6 classes.
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Figure 3.9: OA and CA of Semi-Supervised AL of Galveston wetland
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Table 3.4: OA and CA of Semi-Supervised AL of Galveston wetland

SemiSAL SemiSAL AL
# Class Superpixel Window Pixel

1 Soil 90.83 92.33 98.00
2 Sedge 87.67 82.67 93.83
3 Borrichia 89.37 81.26 89.02
4 Spartina paten 95.83 95.00 94.67
5 Mangrove 97.67 96.17 93.67
6 Batis 96.00 93.67 94.17
7 Spartina-alterniflora 72.83 70.33 50.67
8 Water 97.19 93.21 91.38

OA 90.92 88.08 88.18

3.2.4 Conclusion

Pixels in one superpixel are similar, but they do capture the local spectral variability

about the objects in the image. The proposed semi-supervised active learning utilized this

spatial variability based on the assumption that pixels in one superpixel have the same

label. In each iteration, the proposed method can involve extra “free” (and information

bearing) pixels to improve the performance of the classifier. The results of experiments

with UH and Galveston hyperspectral images show that the proposed method yields higher

classification accuracy compared to related baseline methods with samilar labeling costs.

3.3 Spatial-spectral Active Learning

Pixel-wise spectral features are limited to spectral reflectance information and suscep-

tible to the noise. The hyperspectral images have information in both the spectral and

spatial domain. Hence, it is expected (and well understood) that spatial information is

important for hyperspectral classification. In the second method we propose, spatial infor-

mation derived from superpixels is utilized to improve the performance of active learning

and classification.
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3.3.1 Proposed Method

In this thesis, GLCM features are used as the spatial-spectral features for classification

in AL process — we note that this is simply for illustration, and that these features can

be replaced by any other spatial features as required by the task at hand. Traditional

GLCM is extracted within a fixed size sliding window. In order to capture the texture

information for an object, the window must be smaller than the object, but large enough

to include the characteristic variability of the object. Hence choosing a proper window size

is a challenging task. Moreover, a fixed window size can not fit the objects of different

sizes and shapes throughout the image. In order to address these problems, we propose to

extract texture from superpixels as adaptive analysis windows. Superpixel boundaries per-

fectly fits the requirements for an adaptive analysis window, on the one hand, superpixels

(when appropriately generated) are generally pure, and can be set to be large enough to

capture the underlying texture. On the other hand, the size of superpixels is not fixed, so

it can automatically fit objects of different sizes and shapes — infact, typically, they serve

as an oversegmentation, and an object is partitioned into several superpixels of varying

shapes and sizes, while preserving edges. The 7 GLCM features extracted in this the-

sis are shown in Table 2.1. The MLRsub classifier is used to automatically fuse multiple

feature types because it can efficiently fuse multiple feature types without the need for

adhoc parameter estimation. This advantage of MLRsub is detailed in Chapter 2. More-

over, during classification, the importance of each feature can be measured by the weights

ω̃
(k)
mph(xi

mp),mp ∈ {1, 2, ..., n} from MLRsub in Eq. 2.19. We propose that these weights

can be utilized as a tool to measure online feature importance during active learning and

classification. The features in this thesis are defined in two ways: (1) by partitioning the
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wavelength spectrum into appropriate subbands. All the bands in an image are divided

into 7 groups according to the wavelength range as indicated in Tab 3.5. Each feature in

this setup contains the 7 GLCM features extracted from every band in its corresponding

wavelength range. (2) by partitioning based on the type of GLCM features, shown in Table

2.1. One GLCM feature derived over of all bands are stacked to form one feature set and

this is repeated to generate the multiple feature types.

Table 3.5: Wavelength range

Source Name Wavelength (nm)

1 Violet 380-450
2 Blue 450-495
3 Green 495-570
4 Yellow 570-590
5 Orange 590-620
6 Red 620-750
7 Near-infrared 750-2500

3.3.2 Experimental Setup and Results for Spatial-spectral Active Learn-

ing (SSAL)

The University of Houston data set and Galveston wetland data are used to test the

proposed spatial-spectral AL method. The results of proposed method are compared with

the results of a window-based method and a pixel-level (spectral-only) method.

For the first data set, University of Houston, the training set, testing set and candidate

set are formed in the same way as in experiment for semi-supervised AL. From Figure

3.10 (wavelengths fusion) and Figure 3.11 (GLCM features fusion), it can be seen that,

the spectral-spectral AL outperforms the spectral-only method, pixel level AL. Moreover,

the superpixel-based spatial-spectral AL has higher accuracy than window based spatial-

spectral AL at all the query iterations. The change of class accuracy during AL process
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for the three methods are plotted in Figure 3.10 (c) (b) (d) for wavelengths fusion and Fig

3.11 (c) (b) (d) for GLCM features fusion, it can be found that for most of the classes, the

class accuracy of superpixel-based spatial-spectral AL is higher and converge faster than

the two baseline methods, such as Grass-healthy and Tree. The OA and CA of wavelengths

fusion, at the 400th iteration are shown in Table 3.6. The OA of the proposed method

is 2.63% and 12.12% higher than that of the window-based method and that the pixel

level method, respectively. With regards to class-specific accuracy, the SSAL-superpixel

outperforms SSAL-window for 7 classes and outperforms AL-pixel for 8 classes.
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Figure 3.10: OA and CA of UH data with wavelengths fusion
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Table 3.6: OA and CA at the final iteration of UH data with wavelengths fusion

SSAL SSAL AL
# Class Superpixel Window Pixel

1 Grass-healthy 82.20 82.92 81.59
2 Grass-stressed 78.60 74.80 73.59
3 Tree 93.87 89.82 89.07
4 Residential 79.47 75.01 56.91
5 Commercial 82.60 81.66 81.58
6 Road 83.10 79.37 71.98
7 Highway 66.25 64.01 33.50
8 Parking Lot 1 73.64 71.11 54.59

OA 79.97 77.34 67.85
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Figure 3.11: OA and CA of UH data with GLCM features fusion
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Table 3.7: OA and CA at the final iteration of UH data with GLCM features fusion

SSAL SSAL AL
# Class Superpixel Window Pixel

1 Grass-healthy 84.77 81.99 81.59
2 Grass-stressed 75.23 74.92 73.59
3 Tree 93.62 89.32 89.07
4 Residential 84.74 76.23 56.91
5 Commercial 88.67 83.15 81.58
6 Road 87.56 77.59 71.98
7 Highway 69.00 60.50 33.50
8 Parking Lot 1 75.65 69.11 54.59

OA 82.40 76.60 67.85

A similar trend was observed for the Galveston wetland dataset. The training set,

testing set and candidate set are set in the same way as in experiment for semi-supervised

AL. From the Figure 3.12 (a) for wavelength based fusion and Figure 3.13 (a) for GLCM

feature based fusion, it can be found that the proposed superpixel-based spatial-spectral AL

yields the highest OA through all the query iterations and it has relatively small standard

deviation. Figure 3.12 (c) (b) (d) and Figure 3.13 (c) (b) (d) show how the class accuracy

for each class changes through all the iterations using different AL method. It can be found

the SSAL-superpixel converges faster and has higher class accuracy for most of the classes,

such as soil, spartina alterniflora and water. Table 3.8 shows that with the wavelengths

fusion, at the converged iteration, the OA of proposed superpixel-based spatial-spectral AL

is 3.33% and 7.20% higher than that of the window based spatial-spectral method and that

of pixel level AL, respectively. Table 3.9 shows that with the GLCM feature fusion, at

converged iterations, the OA of the proposed superpixel-based spatial-spectral AL is 3.00%

and 6.10% better than that of the window based spatial-spectral method and that of the

pixel level AL respectively.
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Figure 3.12: OA and CA of Galveston wetland with wavelengths fusion
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Table 3.8: OA and CA at the final iteration of Galveston wetland with wavelengths fusion

SSAL SSAL AL
# Class Superpixel Window Pixel

1 Soil 99.83 97.90 98.02
2 Sedge 98.00 95.83 93.83
3 Borrichia 91.86 88.69 89.02
4 Spartina paten 96.83 96.50 94.56
5 Mangrove 97.17 98.00 93.76
6 Batis 98.67 96.50 94.17
7 Spartina-alterniflora 81.33 69.17 50.67
8 Water 99.34 93.83 91.38

OA 95.38 92.05 88.18
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Figure 3.13: OA and CA of Galveston wetland with GLCM features fusion
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Table 3.9: OA and CA at the final iteration of Galveston wetland with GLCM features
fusion

SSAL SSAL AL
# Class Superpixel Window Pixel

1 Soil 98.33 97.57 98.02
2 Sedge 97.01 94.83 93.83
3 Borrichia 86.57 85.02 89.02
4 Spartina paten 95.50 95.00 94.56
5 Mangrove 97.67 98.67 93.76
6 Batis 95.75 94.47 94.17
7 Spartina-alterniflora 83.67 70.83 50.67
8 Water 99.71 93.83 91.38

OA 94.28 91.28 88.18

3.3.3 Conclusion

In this work, the spatial-spectral features are extracted from within the superpixel

boundary. The motivation for this idea is that superpixels not only oversegment while

effectively protecting the boundary of an object, but can also serve as an adaptive analysis

window. Next, the features are utilized in an AL framework. Experimental results show

that the proposed superpixel-based spatial-spectral AL drive the OA to converge faster and

higher than the window-based method and the pixel level method. Looking at the class

accuracy changing process in detail, it can be seen that the class accuracy of the proposed

method converges faster and higher for most of the classes.

3.4 Feature Importance

Feature importance can be considered as a quantitative measurement of the contribution

of one or more features for the underlying classification task. As discussed in Chapter 2, the

importance of feature mp can be measured by the weight ω̃
(k)
mph(xi

mp) in Eq. 2.19, which

is learned automatically.
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3.4.1 Experimental Setup and Results for Feature Importance to Deter-

mine Useful Spectral Channels

The wavelength features are defined according to the wavelength range of the visible

spectrum and near-infrared spectrum. All the bands are divided into 7 features listed in

Table 3.5. The weights are calculated within each class respectively and normalized to [0 1].

The normalized feature weights of UH and Galveston wetland are shown in Table 3.10

and Table 3.11, respectively. Features whose weight is larger than a preset threshold are

considered as dominant features for the underlying classification task. The dominant fea-

tures for each class of UH with the threshold of 0.5 are shown in Table 3.12. The dominant

features for each class of Galveston with the threshold of 0.5 are shown in Table 3.13.

Table 3.10: Normalized wavelength feature weights for each class of UH

ωs1h((xi)s1 ωs2h((xi)s2 ωs3h((xi)s3 ωs4h((xi)s4 ωs5h((xi)s5 ωs6h((xi)s6 ωs7h((xi)s7
Grass-healthy 0.00 0.45 0.44 0.33 0.45 0.13 1.00
Grass-stressed 0.16 0.00 1.00 0.74 0.48 0.07 0.97

Tree 0.30 0.50 0.15 0.00 0.62 0.11 1.00
Residential 0.81 0.88 0.00 0.32 0.40 1.00 0.93
Commercial 0.40 1.00 0.17 0.00 0.19 0.60 0.57

Road 0.95 0.08 0.93 1.00 0.00 0.81 0.71
Highway 0.57 0.28 0.30 1.00 0.00 0.76 0.34

Parking Lot 1 1.00 0.13 0.92 0.00 0.68 0.77 0.37

Table 3.11: Normalized wavelength feature weights for each class of Galveston wetland

ωs1h((xi)s1 ωs2h((xi)s2 ωs3h((xi)s3 ωs4h((xi)s4 ωs5h((xi)s5 ωs6h((xi)s6 ωs7h((xi)s7
Soil 0.53 0.00 1.00 0.32 0.28 0.31 0.04

Sedge 0.60 0.83 0.00 0.39 0.60 1.00 0.81
Borrichia 0.05 0.00 1.00 0.09 0.00 0.05 0.42

Spartina paten 0.34 0.28 0.00 0.51 0.47 0.40 1.00
Mangrove 0.08 0.30 0.00 0.21 0.21 0.18 1.00

Batis 0.25 0.00 0.62 1.00 0.61 0.11 0.55
Spartina-alterniflora 0.00 0.19 0.21 0.00 0.08 0.18 1.00

Water 1.00 0.17 0.41 0.12 0.10 0.09 0.00
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Table 3.12: Dominant wavelength features for each class of UH

Class Dominant Feature

Grass-healthy s7
Grass-stressed s3 s4 s7

Tree s2 s5 s7
Residential s1 s2 s6 s7
Commercial s2 s6 s7

Road s1 s3 s4 s6 s7
Highway s1 s4 s6

Parking Lot 1 s1 s3 s5 s6

Table 3.13: Dominant wavelength features for each class of Galveston wetland

Class Dominant Feature

Soil s1 s3
Sedge s1 s2 s5 s6 s7

Borrichia s3
Spartina paten s4 s7

Mangrove s7
Batis s3 s4 s5 s7

Spartina-alterniflora s7
Water s1

From Table 3.12, It can be seen that for UH data, 6 classes are dominated by the

feature S7. 4 classes are dominated by feature S1, and 5 classes are dominated S6. It

can be concluded that the classification of UH data is dominated by feature S1, S6 and

S7. With this result, It can be gathered that the information from visible spectrum and

near-infrared spectrum are both important for classification, which is something that we

indeed expect from a-prior knowledge in this example. In order to further validate the

measurement of feature importance by weights from MLR-sub. The Fisher’s ratio of each

feature is calculated. The normalized Fisher’s ratio (range−[0 1]) is shown in Table 3.14.

Note that the three largest Fisher’s ratio comes (across all classes) come from S1, S6 and

S7, which is consistent with the result derived from the weights of MLRsub. We note that
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these weights can hence be used to quantify feature importance in an online setting, as more

training data is inducted via active learning. These weights can also be utilized as a query

metric to induct samples that have several dominant features.

Table 3.14: Normalized Fisher’s ratio for wavelengths of UH

s1 s2 s3 s4 s5 s6 s7
Fisher’s ratio 1.00 0.14 0.07 0.00 0.09 0.18 0.35

Similarly, for Galveston data, 7 classes are dominated by the feature S7. 3 classes are

dominated by feature S1, and 3 classes are dominated by feature S3. Hence S1, S3 and

S7 are the dominant feature for the classification of Galveston data. From the Table 3.15,

the three most dominant features are S1, S5 and S7. Two of the most important features

derived from two methods are the same, which further validate the feature importance

measurement by MLRsub weights.

Table 3.15: Normalized Fisher’s ratio for wavelengths of Galveston Wetland

s1 s2 s3 s4 s5 s6 s7
Fisher’s ratio 0.58 0.00 0.15 0.26 0.28 0.22 1.00

3.4.2 Experimental Setup and Results Demonstrating the Use of Feature

Importance to Determine Useful GLCM Features

The 7 GLCM features extracted in this thesis are shown in Table 2.1. The normalized

feature weights of UH and Galveston wetland are shown in Table 3.16 and Table 3.19,

respectively. The feature whose weight is larger than the preset threshold is considered as

the dominant feature for classification. The dominant features for each class of UH with the

threshold of 0.5 is shown in Table 3.17. The dominant features for each class of Galveston

with the threshold of 0.5 is shown in Table 3.20.
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From Table 3.17, it can be found that the classification of UH data is dominated by

feature S2, S4 and S6, among which the feature S6 is the average spectral signature, and

S2 and S4 are two texture features. Hence, both spectral feature and texture feature are

important for classification, which would be a good motivation for the proposed spatial-

spectral AL. The dominant features calculated by Fisher’ ratio are also S2, S4 and S6.

For Galveston data, the dominant features calculated by MLRsub weights are S1, S4,

S6, which means the both the spectral feature and the texture feature contribute to the

classification. From the Fisher’s ratio values, the first four dominant features are S1, S2,

S4 and S6. These results further validates the utility of MLRSub weights as a means to

quantify feature importance.

Table 3.16: Normalized GLCM feature weights for each class of UH

ωs1h((xi)s1 ωs2h((xi)s2 ωs3h((xi)s3 ωs4h((xi)s4 ωs5h((xi)s5 ωs6h((xi)s6 ωs7h((xi)s7
Grass-healthy 0.27 0.00 0.44 0.28 0.28 1.00 0.28
Grass-stressed 0.17 0.00 0.32 0.05 0.17 1.00 0.26

Tree 0.16 0.00 0.24 1.00 0.18 0.48 0.22
Residential 0.27 0.48 0.22 1.00 0.24 0.00 0.06
Commercial 0.04 0.00 0.00 0.09 0.03 1.00 0.03

Road 0.04 0.00 0.03 0.02 0.03 1.00 0.10
Highway 0.41 1.00 0.00 0.52 0.40 0.66 0.38

Parking Lot 1 0.16 0.64 0.00 0.21 0.20 1.00 0.24

Table 3.17: Dominant GLCM features for each class of UH

Class Dominant Feature

Soil s6
Sedge s6

Borrichia s4
Spartina paten s4

Mangrove s6
Batis s6

Spartina-alterniflora s2 s4 s6
Water s2 s6
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Table 3.18: Normalized Fisher’s ratio for GLCM features of UH

s1 s2 s3 s4 s5 s6 s7
Fisher’s ratio 0.04 0.47 0.29 0.40 0.00 1.00 0.00

Table 3.19: Normalized source weight for each class of Galveston

ωs1h((xi)s1 ωs2h((xi)s2 ωs3h((xi)s3 ωs4h((xi)s4 ωs5h((xi)s5 ωs6h((xi)s6 ωs7h((xi)s7
Soil 0.11 0.00 0.18 1.00 0.19 0.53 0.14

Sedge 0.05 0.19 0.07 1.00 0.06 0.00 0.06
Borrichia 0.00 0.34 0.11 1.00 0.11 0.07 0.11

Spartina paten 0.07 0.17 0.15 0.00 0.14 1.00 0.21
Mangrove 0.91 0.11 0.12 0.00 0.19 1.00 0.09

Batis 1.00 0.24 0.30 0.00 0.30 0.62 0.29
Spartina-alterniflora 1.00 0.45 0.41 0.00 0.48 0.55 0.43

Water 1.00 0.28 0.28 0.00 0.38 0.71 0.28

Table 3.20: Dominant GLCM features for each class of Galveston wetland

Class Dominant Feature

Grass-healthy s4 s6
Grass-stressed s4

Tree s4
Residential s6
Commercial s1 s6

Road s1 s6
Highway s1 s6

Parking Lot 1 s1 s6

Table 3.21: Normalized Fisher’s ratio for GLCM features of Galveston Wetland

s1 s2 s3 s4 s5 s6 s7
Fisher’s ratio 1.00 0.20 0.04 0.23 0.03 0.16 0.00

3.4.3 Conclusion

In this work, the feature importance is calculated through the feature’s corresponding

weight in the MLRsub algorithm. The results are validated with Fisher’s ratio. It demon-

strates that this feature importance method is effective and efficient and can facilitate rapid

online importance scoring of disparate features.
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Chapter 4

Conclusion
In hyperspectral image analysis applications, the annotation of data is expensive and

time consuming. Hence, constructing an efficient training set is an important part of a hy-

perspectral image analysis workflow. Active learning methods facilitate annotation driven

by incorporating the classifier in the loop, and hence result in training libraries that are

most informative to the resulting classifier. In the AL process, an expert labels the most

uncertain samples for the classifier, after they are inducted in the training library, enhanc-

ing classification performance. This thesis proposed two superpixel-based active learning

methods, utilizing the spatial-spectral information for efficient and robust classification.

The first method can be considered as a semi-supervised variant of active learning based on

superpixels. Pixels in the same superpixel are expected to have similar labels, yet contain

information about local spectral variability. Compared to the traditional AL method, the

proposed method not only involves the query strategy selected pixel but also its neigh-

bors in the same superpixel with the assumption that they all have the same label. As a

result, in each query iteration, the proposed method collected more information without

any additional annotation cost. The experimental results shows that the proposed method

converges much faster than the baseline method. The second method is a spatial-spectral

active learning system based on superpixel. It is built on the observation that in addition

to spectral information, spatial context is very useful for classification — superpixels are

44



used to integrate spatial and spectral information simultaneously for active learning and

classification. The proposed method derives spatial features (e.g., texture) using the super-

pixels as an adaptive analysis window. The experimental results show that the classification

performance of the proposed method converges faster and higher compared to the baseline

methods. Moreover, this thesis proposes a scheme to learn online feature importance based

on the feature weights in the MLRsub classifier. These can be useful to visualize and inter-

pret importance of features in online (e.g., active) learning and can also be used in a metric

that seeks samples with a large number of activated (dominant) features.
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