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ABSTRACT

We consider coupled reaction-diffusion models, where some components react

and diffuse on the boundary of a region, while other components diffuse in the

interior and react with those on the boundary through mass transport. We proved

if vector fields are locally Lipschitz functions and satisfy quasi-positivity condi-

tions, and if initial data are component-wise bounded and non-negative then there

exists Tmax > 0 such that our model has component-wise non-negative solution

with T = Tmax. Our criterion for determining local existence of the solution in-

volves derivation of a priori estimates, as well as regularity of the solution, and the

use of a fixed point theorem. Moreover, if vector fields satisfy certain conditions

outlined in the dissertation, then there exists solution for all time t > 0. Classical

potential theory and estimates for linear initial boundary value problems are used

to prove local well-posedness and global existence. This type of system arises in

mathematical models for cell processes.
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Chapter 1

Introduction and Motivation

Systems of semilinear parabolic partial differential equations result from a gen-

eral conservation law which states that the rate of change of the amount of con-

stituents in a domain is equal to the rate of flow of the constituents across the

boundary into the domain, plus the amount of the constituent created in the do-

main. They arise naturally in the modeling of a variety of biological and chemical

processes. In those settings, they are also referred to as reaction-diffusion sys-

tems. The idea that reaction-diffusion phenomena is essential to the growth of

living organisms seems quite intuitive. Indeed, it would be rather hard to envi-

sion how any organism could grow and operate without moving its constituents

around and using them in various bio-chemical reactions [23]. For example, bac-

terial cytokinesis is one of the processes which involves reaction-diffusion systems.

During the bacterial cytokinesis process, a proteinaceous contractile ring assem-

bles in the middle of the cell. The ring tethers to the membrane and contracts

to form daughter cells; that is, the “cell divides”. One mechanism to center the
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CHAPTER 1. INTRODUCTION AND MOTIVATION

ring involves the pole-to-pole oscillation of proteins Min C, Min D, and Min E.

Oscillations cause the average concentration of Min C, an inhibitor of the ring as-

sembly, to be lowest at the midcell and highest near the poles [36]. This centering

mechanism, relating molecular-level interactions to supra-molecular ring position-

ing (the interactions between spatial oscillation of Min proteins and FtsZ reac-

tions) can be modelled as a system of semilinear parabolic equations. The model

is developed within the context of a cylindrical cell consisting of 2 subsystems;

one involving Min oscillations and the other involving FtsZ reactions. The Min

subsystem consists of ATP-bound cytosolic MinD(DATP
cyt ), ADP-bound cytosolic

MinD(DADP
cyt ), membrane-bound MinD(DATP

mem), cytosolic MinE(E), and membrane

bound MinD:MinE complex(E : DATP
mem). These Min proteins react with certain

reaction rates that are illustrated in Table 1.1. Our study involves analysis of the

system involving the Min proteins. The evolution of the Min concentrations is

described by a reaction-diffusion system of the form

ut = D∆u+H(u) x ∈ Ω, 0 < t < T

vt = D̃∆Mv + F (u, v) x ∈M, 0 < t < T

D
∂u

∂η
= G(u, v) x ∈M, 0 < t < T (1.0.1)

u = u0 x ∈ Ω, t = 0

v = v0 x ∈M, t = 0

where Ω is a bounded domain in R3 with smooth boundary M, ∆ and ∆M denote

the Laplace and Laplace Beltrami operators, η is the unit outward normal vector

to Ω at points on M ,
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CHAPTER 1. INTRODUCTION AND MOTIVATION

Table 1.1: Reactions and Reaction Rates
Chemicals Reactions Reaction Rates

Min D DADP
cyt

kexc−−→ DATP
cyt Rexc = kexc[D

ADP
cyc ]

Min D DATP
cyt

kDcyt−−−→ DATP
mem RDcyt = kDcyt[D

ATP
cyc ]

DATP
cyt

kDmem [DATPmem]−−−−−−−−→ DATP
mem RDmem = kDmem[DATP

mem][DATP
cyc ]

Min E E +DATP
mem

kEcyt−−−→ E : DATP
mem REcyt = kEcyt[E][DATP

mem]

E +DATP
mem

kEmem[E:DATPmem]2−−−−−−−−−−→ E : DATP
mem REmem = kEmem[DATP

mem][E][E : DATP
mem]2

Min E E : DATP
mem

kexp−−→ E +DADP
cyt Rexp = kexp[E : DATP

mem]

u =


[
DATP
cyt

]
[
DADP
cyt

]
[Ecyt]

 , v =

 [
DATP
mem

]
[
E : DATP

mem

]


D̃ =

σDmem 0

0 σE:Dmem

 , D =


σDcyt 0 0

0 σADyct 0

0 0 σEcyt



F =

RDcyt +RDmem −REcyt −REmem

−Rexp +REcyt +REmem

 , G =


−RDcyt −RDmem

Rexp

Rexp −REcyt −REmem

 ,
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CHAPTER 1. INTRODUCTION AND MOTIVATION

H =


Rexc

−Rexc

0

 ,

and expressions of the form Kα and σβ are positive constants. In (1.0.1), Ω rep-

resents the cell and M represents its membrane. There are some components that

are bound to a membrane, and other components that move freely in the cyto-

plasm. Also, the components on the membrane and cytoplasm react together on

the boundary.

System (1.0.1) is somewhat similar to two-component systems where both of

the unknowns react and diffuse inside Ω, with various homogeneous boundary

conditions and nonnegative initial data. In that setting, global well-possedness and

uniform boundedness has been studied by many researchers Alikakos [3], Masuda

[29], Hollis Martin Pierre [19], and many others [33].

Consider

ut = d∆u+ F (u, v) x ∈ Ω, 0 < t < T

vt = d̃∆v +G(u, v) x ∈ Ω, 0 < t < T

d
∂u

∂η
= d̃

∂v

∂η
= 0 x ∈M, 0 < t < T (1.0.2)

u = u0 x ∈ Ω, t = 0

v = v0 x ∈ Ω, t = 0
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CHAPTER 1. INTRODUCTION AND MOTIVATION

For d, d̃ > 0, and a vector field having the form

F (u, v) = −uh(v)

G(u, v) = uh(v)

where h is a given non-negative function, and u and v satisfy various homogeneous

boundary conditions, Alikakos [3] proved that solutions of (1.0.2) exist globaly

provided that h(z) ≤ Kz
n+2
n
−ε +L for some non-negative constants K and L, and

Masuda [29] proved global existence and uniform boundedness on Ω × (0,∞) for

h(z) ≤ Kzr + L with r arbitrary, as well as convergence as t → ∞. Haraux and

Youkana [15] were able to obtain the result for h(z) ≤ Ke
√
z + L, and similar

results were obtained in [5] and [18].

In [19], Hollis, Martin and Pierre proved global existence and uniform bound-

edness of solution for a class of reaction-diffusion systems involving two unknowns.

They assumed that the unknown u is uniformly bounded,

1. There exists γ ≥ 1, L0 ≥ 0 such that |G(ζ, µ)| ≤ L0(1 + µ + ζ)γ for all

ζ, µ ≥ 0.

2. There exists δ0 ≥ 0 such that F (ζ, µ)+G(ζ, µ) ≤ δ0(1+µ+ζ) for all ζ, µ ≥ 0.

Then they employed duality arguments to obtain Lp estimates for v for arbitrary

p ∈ (1,∞), which together with polynomial growth in the reactions term implies an

L∞ bound for v. Later, Hollis and Morgan [20] showed that if blow-up occurs, then

this blow up must occur for both components at the same point in Ω. Morgan

[30],[31] extended the results of Hollis et al. to handle arbitrary m component
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CHAPTER 1. INTRODUCTION AND MOTIVATION

systems under the assumption of quasipositivity, polynomial growth of reaction

terms, and an “intermediate sums” condition. Pierre [33] gives an excellent survey

of these results.

This gives rise to a fundamental mathematical question concerning global exis-

tence for (1.0.1). Namely, what conditions on F and G will guarantee that (1.0.1)

has global solutions, and how are these conditions related to the results listed in

Pierre [33] . The focus of this dissertation is to give a partial answer to this ques-

tion. We observed that in order to obtain global well posedness of the solution to

system (1.0.1), it was sufficient to analyze the system

ut = d∆u x ∈ Ω, 0 < t < T

vt = d̃∆Mv + F (u, v) x ∈M, 0 < t < T

d
∂u

∂η
= G(u, v) x ∈M, 0 < t < T (1.0.3)

u = u0 x ∈ Ω, t = 0

v = v0 x ∈M, t = 0

where d, d̃ > 0, F , G : R2 → R, and u0 and v0 are smooth functions that satisfy

the compatibility condition

d
∂u0

∂η
= G(u0, v0) on M.

From a physical standpoint, it is natural to ask under what conditions the

solutions of (1.0.3) are non-negative, and the total mass is either conserved or

reduced. It is also important to ask whether these conditions arise in the problems
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CHAPTER 1. INTRODUCTION AND MOTIVATION

similar to the above mentioned cell biology system. Conditions that are similar

in spirit to Lightbourne [28] and Hollis, Martin, and Pierre [19], [33] result in

non-negative solutions for system (1.0.3). More precisely, we show (1.0.3) has non-

negative solutions for all choices of non-negative initial data u0 and v0 if and only

if F and G are quasi-positive. That is, F (ν, 0) ≥ 0 and G(0, ν) ≥ 0 whenever

ν ∈ [0,∞). Conservation or reduction of mass translates to requiring

∫
Ω

u(x, t)dx+

∫
M

v(ζ, t)dζ ≤
∫

Ω

u(x, 0)dx+

∫
M

v(ζ, 0)dζ (1.0.4)

for all t ≥ 0. Integration leads to

d

dt

(∫
Ω

u+

∫
M

v

)
= d

∫
Ω

∆u+ d̃

∫
M

∆v +

∫
M

F (u, v)

=

∫
M

(G(u, v) + F (u, v))

Clearly, for (1.0.4) to hold, we need

∫ T

0

∫
M

(G(u, v) + F (u, v)) ≤ 0

Therefore we expect to need an assumption such as

G(u, v) + F (u, v) ≤ 0 ∀u, v ∈ R+

More generally, for (1.0.3) we assume there exists α > 0 such that

F (ζ, ν) +G(ζ, ν) ≤ α(ζ + ν + 1) for all ν ≥ 0, ζ ≥ 0 (1.0.5)

7



CHAPTER 1. INTRODUCTION AND MOTIVATION

Assumption (1.0.5) and Lemma 6.1.12 (which is proved in Chapter 6), generalizes

mass conservation by implying that total mass,
∫

Ω
u(x, t) dx+

∫
M
v(ζ, t) dζ, grows

at most exponentially in time t.

Now we return to our goal of proving global wellpossedness of solutions to

(1.0.3). The natural conditions, quasipositivity and conservation of mass, are not

sufficient to obtain global existence in (1.0.2) (see [34]), and we suspect the same

will be true for (1.0.3). In order to show solutions do not blow up in finite time, we

need stronger conditions. First we obtain Lp bounds for all p > 1 and then obtain

L∞ bounds. To obtain Lp bounds for all 1 < p <∞, we impose a condition similar

to Morgan’s intermediate sums [30] and [31]. Namely, that there exists Kg > 0

such that

G(ζ, ν) ≤ Kg(ζ + ν + 1) for all ν ≥ 0, ζ ≥ 0 (1.0.6)

Our technique of obtaining Lp estimates of the solution is similar in spirit to

that of Morgan [30], but in the setting of the structure of the system (1.0.3). To

obtain L∞ bounds, we adopt a natural assumption of polynomial growth, which

has been considered in the context of chemical and biological modeling (see Horn

and Jackson [21]). That is there exists l ∈ N and Kf > 0 such that

F (ζ, ν) ≤ Kf (ζ + ν + 1)l for all ν ≥ 0, ζ ≥ 0

We also verify and make use of a remark of Brown [6], that if the Neumann data

8



CHAPTER 1. INTRODUCTION AND MOTIVATION

γ lies in Lp(M) for p > n+ 1, then the solution to

ϕt = d∆ϕ x ∈ Ω, 0 < t < T

d
∂ϕ

∂η
= γ x ∈M, 0 < t < T (1.0.7)

ϕ = 0 x ∈ Ω, t = 0

is Hölder continuous on Ω× (0, T ). We provide the proof of this result in chapter 4

for completeness of our arguments. As a result, Lp estimates for 1 < p <∞ imply

L∞ estimates for solutions of (1.0.3).

Our criterion for determining local existence of the solution to (1.0.3) involves

derivation of a priori estimates, as well as regularity of the solution, and the use of

a fixed point theorem. In our case, given a Cauchy problem on the manifold M ,

Ψt = d̃∆MΨ + f (ξ, t) ∈M × (0, T )

Ψ
∣∣
t=0

= Ψ0 ξ ∈M (1.0.8)

we prove the following result.

Theorem 1.0.1. If 1 < p < ∞ and T > 0, then there exists Ĉp,T > 0 such

that whenever Ψ0 ∈ W
2− 2

p
p (M) and f ∈ Lp(MT ), there exists a unique solution Ψ,

solving (1.0.8), and

‖Ψ‖(2)
p,MT

≤ Ĉp,T (‖f‖p,MT
+ ‖Ψ0‖

(2− 2
p

)

p,M )

9



CHAPTER 1. INTRODUCTION AND MOTIVATION

Tracing through the work in this direction, we found that Polden in [35] and [22]

and J.J Sharples [24] showed there exists a unique weak solution inW 2,1
2 (M×(0, T ))

of (1.0.8), provided the initial data belongs to W 1
2 (M) and f ∈ L2(M × (0, T )).

Note that the results of Amann [4] can be used to guarantee the local well

posedness of (1.0.3) subject to appropriate conditions on initial data and the func-

tions F and G. But semigroup theory does not provide the explicit estimates

that are needed in our this setting. Moreover, the semigroup approach (see [4],

[32]) requires the features of fractional spaces and their intermediate spaces which

make the analysis much harder. Our approach keeps the analysis on comparetively

simpler Lp spaces.

We note that many results obtained in the non-manifold setting also hold in

our setting. However, there is a difference. For example, our results do not apply

to the system

ut = ∆u x ∈ Ω, 0 < t < T

vt = d̃∆Mv − uavb x ∈M, 0 < t < T

∂u

∂η
= uavb x ∈M, 0 < t < T

u = u0 x ∈ Ω, t = 0

v = v0 x ∈M, t = 0

The results [19] apply in the non-manifold setting, but in our setting it is still an

open question.

This dissertation is organized as follows. In chapter 2, we provide the statement

of the main results, notations, and definitions used in the further work. Since

10



CHAPTER 1. INTRODUCTION AND MOTIVATION

the understanding of our problem depends mainly on the understanding of the

Cauchy problem on a manifold, in chapter 3 we give the extension of results by

Ladyzenskaya on a manifold. Chapter 4 discusses the detailed proof of the remark

in [6] made by Brown. Both of these chapters are helpful in establishing local,

global wellpossedness and uniform estimates of the solution of our problem. In

chapter 5 and 6, the proofs of the main results on local existence and global

existence are presented. In chapter 7, we apply our results to the 5 component

model example, which also provides the motivation of working on this problem.

11



Chapter 2

Notation and Definitions

This section defines the notations that make for the lucid comprehension of the

subject.

Throughout, we assume Ω is a bounded domain in Rn with smooth boundary,

M = ∂Ω belonging to the class of C2+µ with µ > 0 such that Ω lies locally on one

side of M . We note that M is said to be a C2+µ(µ > 0) manifold together with

the C1 Riemannian metric g if only if

• For each point ξ ∈M there exists a pair (Vξ, φξ) consisting of an open set Vξ

of M containing ξ and a C2 diffeomorphism φξ : U → Vξ, from open subset

U of Rn−1 containing the origin onto Vξ.

• A Riemannian metric on a differentiable manifold M is an inner product

gξ on the tangent space Tξ(M) at each point ξ that varies smoothly from

point to point in the sense that if X and Y are vector fields on M, then

ξ 7→ gξ(X(ξ), Y (ξ)) is a C1 function for all X, Y ∈ Tξ(M). The family gξ

of inner products is called a Riemannian metric (tensor). gξ is determined

12



CHAPTER 2. NOTATION AND DEFINITIONS

by a positive definite, symmetric (C1) matrix (gij(ξ)) = (gξ(∂xi , ∂xj)), where

{∂xi = ∂
∂xi
}n−1
i=1 is a basis of Tξ(M). See [39], [42] for more information.

Note that the metric g is defined on the entire manifold M, whereas gi,j(ξ) are

defined only in a coordinate chart (Vξ, φξ).

R+ is the set of all non-negative real numbers.

Ω is the closure of Ω, so that Ω = Ω ∪M .

ΩT is the cylinder Ω×(0, T ), which contains points (x, t) with x ∈ Ω and t ∈ (0, T ).

MT is the cylinder M × (0, T ), which contains points (ξ, t) with ξ ∈ M and

t ∈ (0, T ).

η is the outward unit normal to Ω on M , and ηj are direction cosines of the outward

unit normal η.

∇ and ∇· =
∑N

k=1
∂
∂xk

are the gradient and divergence operators, respectively.

Note that ∂
∂η

= η · ∇ and that the Laplacian operator on Ω is given by ∆ = ∇ ·∇.

Throughout, m, k, n, i, and j are positive integers, and D and D̃ are k × k and

m ×m diagonal matrices with positive diagonal entries {di}1≤i≤k and {d̃j}1≤j≤m

respectively. Also, dmin = min{di : 1 ≤ i ≤ k}.

Laplace Beltrami operator: (M, g) is a Riemannian manifold together with

C1 Riemannian metric, with gi,j(ξ) being defined in a coordinate chart (Vξ, φξ) and

gij(ξ) are entries of the inverse matrix, (gi,j(ξ))
−1. The Laplacian of ũ = u ◦ φ on

U ⊆ Rn−1, in local coordinates, is given by

∆Mu =
1√
det g

∂j(g
ij
√
det g ∂iũ)

13



2.1 BASIC FUNCTION SPACES

∆M is known as the Laplace Beltrami operator. For more details, see Rosen-

berg [39] and Taylor [42]. It is worth mentioning that although it seems that the

above expression depends on local coordinates, it does not change with the local

coordinates, and hence it is well defined.

2.1 Basic Function Spaces

Let B be a bounded domain on Rn. We will define all function spaces on B and

BT = B × (0, T ). Lq(B) is the Banach space consisting of all measurable functions

on B that are qth(q ≥ 1) power summable on B. The norm is defined as

‖u‖q,B =

(∫
B
|u(x)|qdx

) 1
q

Also,

‖u‖∞,B = ess sup{|u(x)| : x ∈ Ω}

Measurability and summability are to be understood everywhere in the sense of

Lebesgue. The elements of Lq(B) are equivalence classes of functions on B. Also,

if p, q ∈ [1,∞] with p < q then Lq(B) ⊂ Lp(B) and there exists C > 0 so that

‖u‖p,B ≤ C‖u‖q,B for all u ∈ Lq(B). Indeed, if p ∈ [1,∞), p ≤ q = pr < ∞, and

1
r

+ 1
r′

= 1 then by Hölder’s inequality,

‖u‖p,B ≤

((∫
B
|u|pr

) 1
r
(∫
B

1

) 1
r′
) 1

p

= |B|
q−1
pq ‖u‖q,B

14



2.1 BASIC FUNCTION SPACES

That is C = |B|
q−1
pq . This inequality is obvious in the case where q is infinite. Also

note that with these norms, Hölder’s inequality is expressed as

‖uv‖1,B ≤ ‖u‖p,B‖v‖q,B

for u ∈ Lp(B), v ∈ Lq(B), and 1
p

+ 1
q

= 1.

If p ≥ 1, then W 2
p (B) is the Sobolev space of functions u : B → R with

generalized derivatives, ∂sxu (in the sense of distributions) where s ≤ 2 and each of

the derivatives belongs to Lp(B). The norm in this space is

‖u‖(2)
p,B =

2∑
r=0

‖∂sxu‖p,B

Here s = (s1, s2,...,sn), |s| = s1 + s2 + ..+ sn, and ∂sx = ∂s11 ∂
s2
2 ...∂snn where ∂i = ∂

∂xi
.

Similarly, W 2,1
p (BT ) is the Sobolev space of functions u : BT → R with gener-

alized derivatives, ∂sx∂
r
t u (in the sense of distributions) where 2r + s ≤ 2 and each

of the derivatives belongs to Lp(BT ). The norm in this space is

‖u‖(2)
p,BT =

2∑
2r+s=0

‖∂sx∂rt u‖p,BT

Here s = (s1, s2,...,sn), |s| = s1 + s2 + ..+ sn, and ∂sx = ∂s11 ∂
s2
2 ...∂snn where ∂i = ∂

∂xi
.

In addition to W 2,1
p (BT ), we will encounter two spaces with different ratios of

upper indices. W 1,0
2 (BT ) is the Hilbert space with scalar product

(u, v)W 1,0
2 (BT ) =

∫
BT

(uv + uxkvxk)dx dt

15



2.1 BASIC FUNCTION SPACES

and W 1,1
2 (BT ) is the Hilbert space with scalar product

(u, v)W 1,1
2 (BT ) =

∫
BT

(uv + uxkvxk + utvt)dx dt

V2(BT ) is the Banach space consisting of all elements of W 1,0
2 (BT ) having a finite

norm

|u|V2(BT ) = vrai max
0≤t≤T

‖u(x, t)‖2,B + ‖ux‖2,BT

where here and below

‖ux‖2,BT =

(∫
BT
u2
x dx dt

) 1
2

V 1,0
2 (BT ) is the Banach space consisting of all elements of V2(BT ) that are contin-

uous in t with respect to the L2(B) norm, and having a finite norm

|u|V 1,0
2 (BT ) = max

0≤t≤T
‖u(x, t)‖2,B + ‖ux‖2,BT

The continuity in t of a function u(·, t) in the norm of L2(B) means that

‖u(·, t+ ∆t)− u(·, t)‖2,B → 0

as ∆t −→ 0. The space V 1,0
2 (BT ) is obtained by completing the set W 1,1

2 (BT ) in

the norm of V2(BT ).

V
1, 1

2
2 (BT ) is the subset of those elements u ∈ V 1,0

2 (BT ) for which

∫ T−h

0

∫
B
h−1[u(x, t+ h)− u(x, t)]2 dx dt −→ 0 as h→ 0

16



2.1 BASIC FUNCTION SPACES

We will also introduce W l
p(B), where l is not an integer, because initial data

will be taken from these spaces.

The space W l
p(B) with non-integral l, is a Banach space consisting of elements

of W
[l]
p ([l] is the largest integer less than l) with the finite norm

‖u‖(l)
p,B = 〈u〉(l)p,B + ‖u‖([l])

p,B

where

‖u‖([l])
p,B =

[l]∑
s=0

‖∂sxu‖p,B

and

〈u〉(l)p,B =
∑
s=[l]

(∫
B
dx

∫
B
|∂sxu(x)− ∂syu(y)|p. dy

|x− y|n+p(l−[l])

) 1
p

W
l, l

2
p (∂BT ) spaces with non-integral l also plays an important role in the study

of the boundary value problems with nonhomogeneous boundary conditions, es-

pecially in the proof of exact estimates for there solutions. It is a Banach space

when p ≥ 1, which is defined by means of parametrization of the surface ∂B.

Let ∂B be covered by sets ∂B1, ∂B2, ..., ∂Bk, ... such that ∪k∂Bk = ∂B, and for

each point x ∈ ∂B there exists k such that x ∈ ∂Bk, and the distance from x to

∂B \ ∂Bk exceeds a certain fixed positive number, δ independent of x. Further,

every ∂Bk intersects only a finite number of other ∂Bj, not exceeding some number

mk, and is mapped onto some canonical domain σ of n− 1 dimensional Euclidean

space. In other words, for x ∈ ∂Bk, there exists (Vk, φk) consisting of an open set

Vk of M containing x ∈ ∂Bk and a C2 diffeomorphism φk : U → Vk, from open

subset U of Rn−1 containing the origin onto Vk. Let uk(z, t) = u(φk(z), t) for all

17



2.1 BASIC FUNCTION SPACES

(z, t) ∈ U × (0, T ). The space W
l, l

2
p (∂BT ) is defined as a set of functions with finite

norm

‖u‖(l)
p,∂BT =

(∑
k

(
‖uk(z, t)‖(l)

p,σT

)p) 1
p

where

‖uk(z, t)‖(l)
p,UT

=
∑

0≤2r+s<l

‖∂rt ∂sxuk‖p,UT+
∑

2r+s=[l]

〈∂rt ∂sxuk〉
(l−[l])
p,x,UT

+
∑

0<l−2r−s<2

〈∂rt ∂sxuk〉
( l−2r−s

2
)

p,t,UT

and for 0 < α < 1

〈v〉(α)
p,x,UT

=

(∫ T

0

dt

∫
U

dx

∫
U

|v(x, t)− v(y, t)|p. dy

|x− y|n−1+αp

) 1
p

〈v〉(α)
p,t,UT

=

(∫
U

dx

∫ T

0

dt

∫ T

0

|v(x, t)− v(x, t′)|p. dt′

|t− t′|1+αp

) 1
p

The need of W
l, l

2
p (∂BT ) spaces is connected to the fact that the differential

properties of the boundary values of the function from classes W 2,1
p (BT ) and of

certain of its derivatives, ∂sx∂
r
t , can be exactly described in terms of the spaces

W
l, l

2
p (∂BT ), where l = 2− 2r − s− 1

p
.

Cα,α
2 (BT ) are Hölder spaces, where 0 < α < 1. It is a Banach space of contin-

uous functions u(x, t) with the finite norm

|u|(α)

BT
= sup

(x,t)∈BT
|u(x, t)|+ [u]

(α)
x,BT + [u]

(α
2

)

t,BT

18



2.2 HÖLDER AND SOBOLEV SPACES ON MANIFOLDS

where

[u]
(α)

x,BT
= sup

(x,t),(x′,t)∈BT
x 6=x′

|u(x, t)− u(x′, t)|
|x− x′|α

and

[u]
(α
2

)

t,BT
= sup

(x,t),(x,t′)∈BT
t6=t′

|u(x, t)− u(x, t′)|
|t− t′|α2

Notation: C
α
2 (BT ) stands for C

α
2
,α
2 (BT ).

C(BT ,Rn) is the set of all continuous functions u : BT → Rn.

C1,0(BT ,Rn) is the set of all continuous functions u : BT → Rn having continuous

derivatives ux in BT .

C2,1(BT ,Rn) is the set of all continuous functions u : BT → Rn having continuous

derivatives ux, uxx and ut in BT .

Note that similar definition can be given for BT .

2.2 Hölder and Sobolev Spaces on Manifolds

Let M be a compact Riemannian manifold with metric g. For p ≥ 1, define the

Lebesgue space Lp(M) to be the set of locally integrable funcions u on M for which

the norm

‖u‖Lp =

(∫
M

|u|pdVg
) 1

p

is finite. Here dVg is the volume form of the metric g. Suppose that p, q ≥ 1 and

that 1
p

+ 1
q

= 1. If u ∈ Lp(M) and v ∈ Lq(M), then uv ∈ L1(M), and

‖uv‖L1 ≤ ‖u‖Lp‖v‖Lq
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This is Hölder inequality. One can easily define the Sobolev spaces W k
p (M), fol-

lowing what is done in the more traditional Euclidean context. For instance, when

k > 0 and p > 1, one may define the Sobolev space W k
p (M) as follows: for

u ∈ C∞(M), we let

‖u‖Wk
p (M) =

(
k∑
j=0

∫
M

|∇ju|pdVg

) 1
p

We then define W k
p (M) as the completion of C∞(M) with respect to ‖.‖Wk

p (M).

Also, as for bounded open subsets of the Euclidean space, the Sobolev embedding

theorem (continuous embeddings) and the Rellich-Kondrakov theorem (compact

embeddings) [16],[42] do hold.

In further arguments we need a result stating that when p > n, the order

of differentiability or the order of integrability is so large that the Sobolev space

can be embedded in Hölder spaces, and it will stated later. More developments

on Sobolev spaces, Sobolev inequalities, and the notion of best constants can be

found in Druet-Hebey [8] and [9].

Following standard notation, we let Ck(M) be the space of k times continuously

differentiable functions on M . If u ∈ Ck(M), then

‖u‖Ck(M) =
k∑
i=0

‖∇iu‖∞

is finite. The norm ‖.‖Ck(M) induces a Banach space structure on the space Ck(M).

Let dg(x, y) be the distance between x and y ∈ M calculated using g, and let

α ∈ (0, 1). Then a function u on M is said to be Hölder continuous with exponent
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α if

[u]α = sup
x 6=y∈M

|u(x)− u(y)|
dg(x, y)α

is finite. Any Hölder continuous function u is continuous. The vector space

C0,α(M) is the set of continuous bounded functions on M which are Hölder con-

tinuous with exponent α, and the norm on C0,α(M) is

‖u‖C0,α(M) = ‖u‖∞,M + [u]α

is finite. Concerning the spaces Ck,α(M) and Ck,α
B (M), where k ≥ 1 is an integer

and α ∈ (0, 1), a possible definition is the following: a function u : M → R is in

Ck,α(M) if and only if it is in Ck(M), and given a system of charts on M , the

coordinates of the tensor ∇ku are in C0,α when read via a chart. This definition

is naturally independent of the choice of a C∞ system of charts. See more detail

in the Handbook of Global Analysis [25].
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Chapter 3

The Cauchy Problem on a

Compact Manifold

Let M be a compact Riemannian manifold without boundary with metric g. Con-

sider the system

Ψt = d̃∆MΨ + f (ξ, t) ∈MT

Ψ
∣∣
t=0

= Ψ0 ξ ∈M (3.0.1)

where d̃ > 0, f ∈ Lp(MT ) and Ψ0 ∈ W
(2− 2

p
)

p (M). Searching the literature, we

surprisingly could not find the W 2,1
p estimates for the solution to linear parabolic

problems in this setting. Tracing through the work in this direction, we found

that Polden in his PhD thesis [22] and [35], and J.J Sharples [24] give a result

in the setting where p = 2. Sharples also corrected a minor error in Polden’s

work. Using their W 2,1
2 (MT ) estimate, we obtain W 2,1

p (MT ) apriori estimates for
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solutions of (3.0.1) for all p > 1. For smooth functions f, g : M × [0,∞) → R,

Polden considered weighted inner products:

〈f, g〉LLa =

∫ ∞
0

e−2at〈f(·, t), g(·, t)〉L2(M)dt

〈f, g〉LW 1
a

=

∫ ∞
0

e−2at〈f(·, t), g(·, t)〉W 1
2 (M)dt

〈f, g〉LW 2
a

=

∫ ∞
0

e−2at〈f(·, t), g(·, t)〉W 2
2 (M)dt

〈f, g〉WWa = 〈f(·, t), g(·, t)〉LW 1
a

+ 〈Dtf,Dtg〉LLa

Where LLa, LWa and WWa are the Hilbert spaces formed by the completion

of C∞(M × [0,∞)) in the corresponding norms and WW 0
a is the completion of

C∞c (M × [0,∞)) in WWa. See [24] for the proof of the following result.

Theorem 3.0.1 (Polden, J.J Sharples). Suppose Ψ0 lies in W 1
2 (M) and f ∈

LLa(M × [0,∞))). Then for sufficiently large a, the system (3.0.1) has a unique

weak solution in WW 0
a .

Furthermore using apriori estimates in [24], they showed that the solution be-

longs to W 2,1
2 (M × [0,∞)).

Theorem 3.0.2. Let Ψ ∈ WWa be solution of (3.0.1) with Ψ0 ∈ W 1
2 (M) and

f ∈ Lp(MT ). Then Ψ ∈ LW 2
a , and there exists C > 0 independent of Ψ0 and f

such that

‖Ψ‖2
LW 2

a
≤ C(‖Ψ0‖2

W 1
2 (M) + ‖f‖2

LLa)

Proof. See Lemma 4.3 in [24].
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Corollary 3.0.3. Let 0 < T < ∞. Suppose Ψ0 ∈ W 1
2 (M) and f ∈ L2(MT ). If

a = 0, there exists a unique weak solution to (3.0.1) in W 2,1
2 (MT ), and there exists

C > 0 independent of Ψ0 and f such that

‖Ψ‖2
W 2,1

2 (MT )
≤ C(‖Ψ0‖2

W 1
2 (M) + ‖f‖2

L2(MT ))

Remark 3.0.4. Theorem 1 and Theorem 2 also hold on a C2 manifold.

We will use this W 2,1
2 (MT ) result to derive W 2,1

p (MT ) a priori estimates for

solutions to (3.0.1) for all p > 1. To obtain these estimates, we transform the

Cauchy problem defined locally on M to a bounded domain on Rn−1 where n−1 is

the dimension of the manifold, and obtain the estimates over this bounded domain.

Then we pull the resulting estimates back to the manifold. Repeating this process

over every neighborhood on the manifold, and using compactness of the manifold,

we get estimates over the entire manifold.

The following results will help us obtain a priori estimates for the Cauchy prob-

lem on M and prove the existence of solutions in W 2,1
p (MT ). Lemmas 3.0.5, 3.0.8

and 3.0.12 can be found on page 341 in [27], page 49 in [26], and [16] respectively.

Let B be a smooth bounded domain in Rn with smooth boundary ∂B be-

longing to the class C2+µ with µ > 0 such that B lies locally on one side of the

boundary, ∂B. Let T > 0 and p > 1. Suppose Θ ∈ Lp(BT ), w0 ∈ W
(2− 2

p
)

p (B)

and γ ∈ Wp
2− 1

p
,1− 1

2p (∂BT ). Also, in further arguments the coefficient functions

ai,j are symmetric, uniformly continuous on BT , and satisfy the uniform ellipticity
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condition, that for some λ > 0

n∑
i,j=1

aij(x, t)ξiξj ≥ λξ2 for all (x, t) ∈ BT and for all ξ ∈ Rn

Consider the problem

∂w

∂t
−

n∑
i,j=1

aij(x, t)
∂2w

∂xi∂xj
+

n∑
i=1

ai(x, t)
∂w

∂xi
= Θ(x, t) (x, t) ∈ BT

w = γ(x, t) (x, t) ∈ ∂BT (3.0.2)

w
∣∣
t=0

= w0(x) x ∈ B

Lemma 3.0.5. Let p > 1. Suppose that the coefficients aij and ai are uniformly

continuous on BT , Θ ∈ Lp(BT ), w0 ∈ W
(2− 2

p
)

p (B) and γ ∈ Wp
2− 1

p
,1− 1

2p (∂BT ) with

p 6= 3
2
. Then (3.0.2) has a unique solution w ∈ Wp

2,1(BT ), satisfying in the case

p > 3
2
, the compatibility condition of zero order, w0|∂B = γ|t=0. Furthermore, there

exists CT > 0 independent of Θ, w0 and γ such that

‖w‖(2)
p,BT ≤ CT (‖Θ‖p,BT + ‖w0‖

(2− 2
p

)

p,B + ‖γ‖
(2− 1

p
,1− 1

2p
)

p,∂BT )

Proof. See Theorem 9.1 in Chapter 4 of Ladyzenskaya [27]

Lemma 3.0.6. Let q ≥ p, 2−2r−s−
(

1
p
− 1

q

)
(n+2) ≥ 0 and 0 < δ ≤ min{d;

√
T}.

Then there exists c3, c4 depending on r, s, n, p and Ω such that

‖Dr
tD

s
xu‖q,BT ≤ c3δ

2−2r−s−( 1
p
− 1
q )(n+2)‖u‖(2)

p,BT + c4δ
−(2r+s+( 1

p
− 1
q )(n+2))‖u‖p,BT

for all u ∈ W 2,1
p (BT ). Moreover, if 2 − 2r − s − (n+2)

p
> 0, Then for 0 ≤ α <
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2 − 2r − s − (n+2)
p

there exists constants c5, c6 depending on r, s, n, p and Ω such

that

|Dr
tD

s
xu|

(α)
BT ≤ c5δ

2−2r−s−n+2
p
−α‖u‖(2)

p,BT + c6δ
−(2r+s+

(n+2)
p

+α)‖u‖p,BT

for all u ∈ W 2,1
p (BT ).

Proof. See Lemma 3.3 in Chapter 2 of [27]

Corollary 3.0.7. Suppose the conditions of Lemma 3.0.5 are fulfilled for p > n+2
2

.

Then there exists ĉ > 0 depending on n, p and Ω such that the solution of a problem

(3.0.2) is a Hölder continuous function in x and t with

|w|
(2−n+2

p
)

BT ≤ ĉ‖w‖(2)
p,BT

Lemma 3.0.8. Let 1 < p < ∞ and ε > 0. If p < n then W 1
p (B) imbeds contin-

uously into Lq(B) for p ≤ q ≤ p∗ = np
n−p . Furthermore, there exists Cε > 0 such

that

‖v‖pLq(B) ≤ ε‖vx‖pLp(B) + Cε‖v‖pL1(B)

for all v ∈ W 1
p (B). The imbedding constants for the imbeddings above depend only

on n, p, q and Ω.

Proof. See page 49 of Ladyzenskaya [26]

The following result seems to be well known, but in the absence of a good

references we include the proof.
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Lemma 3.0.9. Let ε > 0, 1 < p < ∞ and v ∈ W 2
p (B). Then there exists Cε > 0

such that

‖vx‖p,B ≤ ε‖vxx‖p,B + Cε‖v‖p,B

for all v ∈ W 2
p (B).

Proof. By way of contraction, suppose there exist ε > 0, and a sequence vm ∈

W 2,p(B) such that,

‖vmx‖p,B > ε‖vmxx‖p,B +m‖vm‖p,B (3.0.3)

for all m ∈ N. Let km = ‖vmx‖p,B and wm = 1
km
vm. Dividing inequality (3.0.3) by

km and using homogeneity, we have

1 = ‖wmx‖p,B > ε‖wmxx‖p,B +m‖wm‖p,B (3.0.4)

From (3.0.4) ‖wmxx‖p,B <
1
ε
, ‖wmx‖p,B = 1 and ‖wm‖p,B <

1
m

. This implies {wm} is

a bounded sequence in W 2,p(B). Now, W 2,p(B) embedds compactly into W 1,p(B),

so there exists a subsequence {wmk} and w ∈ W 1,p(B) such that, wmk → w. Again,

from (3.0.4), ‖wmk‖p,B <
1
m

so, as m → ∞ wmk → 0 in Lp(B). Therefore, w = 0

with ‖w‖W 1,p = 1, which is not possible. Hence, there exists Cε > 0 such that

‖vx‖p,B ≤ ε‖vxx‖p,B + Cε‖v‖p,B

for all v ∈ W 2
p (B).

Lemma 3.0.10. Suppose f ∈ L2(MT ) and Ψ0 ∈ W 1
2 (M). Then the unique solu-
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tion Ψ of (3.0.1) satisfies the estimate

‖Ψ‖1,M ≤ ‖f‖1,MT
+ ‖Ψ0‖1,M

Proof. Write f = f+ − f− and Ψ0 = Ψ+
0 − Ψ−0 . Since Ψ0 ∈ W 1

2 (M), Ψ+
0 ,Ψ

−
0 ∈

W 1
2 (M). Consider the systems

Ψ1t = d̃∆MΨ1 + f+ (ξ, t) ∈MT

Ψ1

∣∣
t=0

= Ψ+
0 ξ ∈M

and

Ψ2t = d̃∆MΨ2 + f− (ξ, t) ∈MT

Ψ2

∣∣
t=0

= Ψ−0 ξ ∈M

Note that the solutions Ψ1 and Ψ2 are unique from Theorem 3.0.1. Using Theorem

3.0.1 and linearity, Ψ = Ψ1 −Ψ2 solves (3.0.1). Since f+ and f− are non-negative

functions, maximum priniciples imply Ψ1 and Ψ2 are non-negative. Integrating

both the systems over MT , we get

∫
M

Ψ1 ≤
∫
MT

f+ +

∫
M

Ψ+
0

and

∫
M

Ψ2 ≤
∫
MT

f− +

∫
M

Ψ−0
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As a result,

∫
M

|Ψ| ≤
∫
M

Ψ1 +

∫
M

Ψ2 ≤
∫
MT

(f+ + f−) +

∫
M

(Ψ+
0 + Ψ−0 )

= ‖f‖1,MT
+ ‖Ψ0‖1,M

Lemma 3.0.11. Let p > n and α ∈ (0, 1) such that α < 1 − n
p
. Then W 1

p (B)

embedds compactly in C0,α(B).

Proof. See Adams [2]

Lemma 3.0.12. Let (D, g) be a compact Riemannian manifold of dimension

greator than or equal to 1. Let p > n. Then the embedding W 1
p (D) ⊂ C0,α(D)

is compact for all 0 < α < 1− n
p
.

Proof. See Emmanuel [16]
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3.1 W 2,1
p Estimates on Manifolds

Let F be a subset of R+ with following property:

p > 1 belongs to F if and only if there exists Ĉp,T > 0 such that whenever

Ψ0 ∈ W
2− 2

p
p (M) and f ∈ Lp(MT ), then there exists Ψ ∈ W 2,1

p (MT ), such that Ψ

solves (3.0.1) and

‖Ψ‖(2)
p,MT

≤ Ĉp,T (‖f‖p,MT
+ ‖Ψ0‖

(2− 2
p

)

p,M )

Note: From Theorem 3.0.1 and 3.0.2, 2 ∈ F .

Lemma 3.1.1. [2,∞) ⊂ F .

Proof. We will show that if p ∈ F then [p, p + 1
n−1

] ⊂ F . To this end, let p ∈ F

and q ∈ [p, p+ 1
n−1

] such that Ψ0 ∈ W
2− 2

q
q (M) and f ∈ Lq(MT ). Then f ∈ Lp(MT )

and Ψ0 ∈ W
2− 2

p
p (M). Since p ∈ F , there exists Ĉp,T > 0 independent of Ψ0 and f ,

and Ψ ∈ W 2,1
p (MT ) solving (3.0.1) such that

‖Ψ‖(2)
p,MT

≤ Ĉp,T (‖f‖p,MT
+ ‖Ψ0‖

(2− 2
p

)

p,M ) (3.1.5)

Let R > 0 and B(0, R) be an open ball in Rn−1 containing the origin. Now, M

is a C2 manifold. Therefore, for each point ξ ∈ M there exists a pair (Vξ, φξ) of

an open set Vξ containing ξ of M and a C2 diffeomorphism φξ : B(0, R)
onto−→ Vξ.

Let Φ = Ψ ◦ φξ, f̃ = f ◦ φξ, Φ0 = Ψ0 ◦ φξ and using the Laplace Beltrami operator

(defined before), (3.0.1) takes the form

Φt =
d̃√
det g

∂j(g
ij
√
det g ∂iΦ) + f̃(x, t) x ∈ B(0, R), 0 < t < T

30



3.1 W 2,1
P ESTIMATES ON MANIFOLDS

Φ = Φ0 x ∈ B(0, R), t = 0 (3.1.6)

That is, in a bounded region B(0, R)× (0, T ) of the Euclidean space, we have

L(Φ) = Φt −
n−1∑
i,j=1

aij(x, t)Φxixj +
n−1∑
i=1

ai(x, t)Φxi = f̃(x, t) (3.1.7)

Φ
∣∣
t=0

= Φ0(x) (3.1.8)

where,

aij(x, t) = d̃ gij(x, t)

ai(x, t) =
−d̃√
det g

∂j(g
ij
√
det g)

Note Ψ ∈ W 2,1
p (MT ) implies Φ ∈ W 2,1

p (B(0, R) × (0, T )). Take 0 < 2r < R and

define a cut off function ψ ∈ C∞0 (Rn−1, [0, 1]) such that,

ψ(x) =


1 ∀x ∈ B(0, r)

0 ∀x ∈ Rn−1\B(0, 2r)

(3.1.9)

In Q = B(0, 2r), QT = B(0, 2r) × (0, T ) and ST = ∂B(0, r) × (0, T ), w = ψΦ

satisfies the equation

∂w

∂t
−

n−1∑
i,j=1

aij(x, t)
∂2w

∂xi∂xj
+

n−1∑
i=1

ai(x, t)
∂w

∂xi
= θ(x, t) (x, t) ∈ QT

w = 0 (x, t) ∈ ST

w
∣∣
t=0

= ψΦ0(x) t = 0, x ∈ Q
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where,

θ(x, t) = f̃ψ − 2
n−1∑
i=1

aij(x, t)
∂Φ

∂xi

∂ψ

∂xj
− Φ

n−1∑
i,j=1

aij(x, t)
∂2ψ

∂xi∂xj
+ Φ

n−1∑
i=1

ai(x, t)
∂ψ

∂xi

Since ψ ∈ C∞0 (Rn−1, [0, 1]) and Φ ∈ W 2,1
p (B(0, R) × (0, T )), therefore θ − f̃ψ ∈

W 1,1
p (QT ).

Case 1. Suppose p < n. From Lemma 3.0.8, θ ∈ L
min{q, p+ p2

n−p}
(QT ). In

particular since p+ 1
n−1

< p+ p2

n−p , θ ∈ Lq(QT ). As a result

‖θ‖q,QT ≤ ‖f̃ψ‖q,QT + C1‖Φ‖q,QT + C2‖Φx‖q,QT

≤ ‖f̃ψ‖q,QT + C1‖Φ‖q,QT + C2‖Φx‖(1)
p,QT

where C1, C2 > 0 are independent of f . Now in order to estimate ‖Φx‖(1)
p,QT

, apply

the change of variable

‖Φx‖(1)
p,QT

= ‖Ψx| det((φ−1
ξ )

′
)|‖(1)

p,(φξ(Q))
T

and using (3.1.5), we get

‖θ‖q,QT ≤ ‖f̃ψ‖q,QT + C1‖Φ‖q,QT + C2p,T (‖f‖p,MT
+ ‖Ψ0‖

(2− 2
p

)

p,M )

where C2p,T > 0 is independent of f and Ψ0. At this point, we need an estimate

on ‖Φ‖q,QT . Again ‖Φ‖q,QT = ‖Ψ| det((φξ
−1)

′
)|‖q,(φξ(Q))

T
and from Lemma 3.0.8,

‖Ψ| det((φξ
−1)

′
)|‖q,(φξ(Q))

T
≤ ‖Ψ| det((φξ

−1)
′
)|‖(1)

p,(φξ(Q))
T
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Thus

‖θ‖q,QT ≤ Kp,T (‖f‖p,MT
+ ‖Ψ0‖

(2− 2
p

)

p,M ) (3.1.10)

where Kp,T > 0 is independent of f and Ψ0.

Since gi,j are the C1 functions on the compact manifold M , ai,j(x, t) and ai(x, t)

satisfies the hypothesis (bounded continuous function in QT ) of Lemma 3.0.5.

Therefore using Lemma 3.0.5 (for q > 3
2
),

‖w‖(2)
q,QT

≤ Cq,T (‖θ‖q,QT + ‖ψΦ0‖
(2− 2

q
)

q,Q ) (3.1.11)

where Cq,T > 0 is independent of θ and ψΦ0. Combining (3.1.11) and (3.1.10) we

get,

‖w‖(2)
q,QT

≤ C2r,T (‖θ‖q,QT + ‖ψΦ0‖
(2− 2

q
)

q,Q )

≤ K̃p,T (‖f‖p,MT
+ ‖Ψ0‖

(2− 2
p

)

p,M + ‖ψΦ0‖
(2− 2

q
)

q,Q )

where K̃p,T > 0 is independent of f , θ and ψΦ0. Note that w = Φ on WT =

B(0, r)× (0, T ). Thus

‖Φ‖(2)
q,WT

≤ K̃p,T (‖f‖p,MT
+ ‖Ψ0‖

(2− 2
p

)

p,M + ‖ψΦ0‖
(2− 2

q
)

q,Q ) (3.1.12)

Observe (3.1.12) is over B(0, r) × (0, T ) ⊂ Rn−1 × R+. To get the estimate back

on the manifold, apply the change of variable, ‖Φ‖(2)
q,WT

= ‖Ψ| det((φ−1)
′
)|‖(2)

q,φ(WT ).
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Thus

‖Ψ‖(2)
q,φ(WT ) ≤ K̃p,T,ξ(‖f‖p,MT

+ ‖Ψ0‖
(2− 2

p
)

p,M + ‖Ψ0‖
(2− 2

q
)

q,φ(Q)) (3.1.13)

where K̃p,T,ξ = K̃p,T

 max
ξ∈φ(Q)

| det((φ−1)
′
)|

min
ξ∈φ(QT )

| det((φ−1)
′
)|

.

So far, an estimate in one open neighborhood of some point ξ ∈M is obtained.

As one varies the point ξ on M , there exists corresponding open neighborhoods Vξ

and a smooth diffemorphisms φξ : B(0, r)−→Vξ, which results in different K̃p,T,ξ

for every Vξ. Consider an open cover of M such that M =
⋃
ξ∈M Vξ. Since M

is compact, there exists {ξ1, ξ2, ..., ξN} such that M ⊂
⋃

ξj∈M
1≤j≤N

Vξj and K̃p,T,ξj

corrresponding to each Vξj . Let, Ĉp,T =
∑N

j=1 K̃p,T,ξj . Inequality (3.1.13) implies

‖Ψ‖(2)
q,MT

≤ Ĉp,T (‖f‖q,MT
+ ‖Ψ0‖

(2− 2
q

)

q,M )

Thus [p, p+ 1
n−1

] ⊂ F .

Case 2. Suppose p ≥ n. By Lemma 3.0.8 and Theorem 4.12 in [2], θ ∈ Lq(QT ),

for all q ∈ [p,∞), and proceeding similarly to Case 1, we get

‖Ψ‖(2)
q,MT

≤ ĈT (‖f‖q,MT
+ ‖Ψ0‖

(2− 2
q

)

q,M )

where Ĉp,T > 0 is independent of f , θ and ψΦ0. Hence [2,∞) ⊂ F .
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Theorem 3.1.2. F = (1,∞).

Proof. From Lemma 3.1.1, it remains to show that (1, 2) ⊂ F . Let 1 < p < 2 ,

f ∈ Lp(MT ) and Ψ0 ∈ W 2− 2
p (M). Since C∞(MT ) is dense in Lp(MT ), there exists

a sequence of functions {fk} and {Ψ0k} in C∞(MT ) such that fk converges to f

in Lp(MT ) and Ψ0k converges to Ψ0 in W
2− 2

p
p (M). Consider a sequence of Ψk such

that,

Ψkt = d̃∆MΨk + fk ξ ∈M, 0 < t < T

Ψk = Ψ0k ξ ∈M, t = 0 (3.1.14)

Now we transform system (3.1.14) over a bounded region in Rn−1. Similar to

the proof of Lemma 3.1.1. Corresponding to each k, let f̃k = fk ◦φξ, Φ0k = Ψ0k ◦φξ

and using the Laplace Beltrami operator (defined before), (3.1.14) on B(0, R) ⊂ U

takes the form

Φkt =
d̃√
det g

∂j(g
ij
√
det g ∂iΦk) + f̃k(x, t) x ∈ B(0, R), 0 < t < T (3.1.15)

Φk = Φ0k x ∈ B(0, R), t = 0

Consequently, in a bounded region B(0, R)× (0, T ) of the Euclidean space, we

consider (3.1.15) in the nondivergence form, L defined in (3.1.7) for each Φk with

f̃ replace by f̃k and Φ0 by Φ0k. Taking 2r < R and using a cut off function ψ ∈

C∞0 (Rn−1, [0, 1]) defined in (3.1.9), the following Dirichlet homogeneous boundary

value problem is obtained. In Q = B(0, 2r), QT = B(0, 2r) × (0, T ) and ST =
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∂B(0, r)× (0, T ), wk = ψΦk satisfies the equation

∂wk
∂t
−

n−1∑
i,j=1

aij(x, t)
∂2wk
∂xi∂xj

+
n−1∑
i=1

ai(x, t)
∂wk
∂xi

= θk(x, t) (x, t) ∈ QT

wk = 0 (x, t) ∈ ST

wk
∣∣
t=0

= ψΦ0k(x) t = 0,∀x ∈ Q

where,

θk(x, t) = f̃kψ−2
n−1∑
i=1

aij(x, t)
∂Φk

∂xi

∂ψ

∂xj
−Φk

n−1∑
i,j=1

aij(x, t)
∂2ψ

∂xi∂xj
+Φk

n−1∑
i=1

ai(x, t)
∂ψ

∂xi

Note fk and Ψ0k are smooth functions. Therefore from Lemma 3.1.1, there exists

a solution. Φk ∈ W 2,1
q (QT ) for all q ≥ 2. Thus θk ∈ Lq(QT ) for all q ≥ 2. Recall

ψ ∈ C∞0 (Rn−1, [0, 1]). Using Lemma 3.0.9 for ε > 0 there exists cε > 0 such that

‖θk‖p,QT ≤ ‖f̃kψ‖p,QT +M1‖Φk‖p,QT +M2‖Φkx‖p,QT

≤ ‖f̃k‖p,QT +M1‖Φk‖p,QT

+M2(ε‖Φkxx‖p,QT + cε‖Φk‖p,QT ) (3.1.16)

Here M1,M2 > 0 are independent of f and Ψ0. At this point we need an estimate

for ‖Φk‖p,QT . From Lemma 3.0.8 for 1 < p ≤ n < q there exists Cε > 0 such that

‖Φk‖pL pq
q−p

(QT ) ≤ ε(‖Φkx‖pp,QT + ‖Φkt‖pp,QT ) + Cε‖Φk‖p1,QT

Since p < pq
q−p , from Hölder’s inequality, ε and Cε get scaled to ε̃ > 0 and Cε̃ > 0,

36



3.1 W 2,1
P ESTIMATES ON MANIFOLDS

and

‖Φk‖p,QT ≤ ε̃(‖Φkt‖p,QT + ‖Φkx‖p,QT ) (3.1.17)

+ Cε̃‖Φk‖1,QT

From (3.1.16) and (3.1.17),

‖θk‖p,QT ≤ (M1 +M2cε)(ε̃(‖Φkt‖p,QT + ‖Φkx‖p,QT ) + Cε̃‖Φk‖1,QT
)

+ ‖f̃k‖p,QT +M2ε‖Φkxx‖p,QT

Recall gi,j are C1 functions on the compact manifold M . Therefore ai,j(x, t)

and ai(x, t) satisfy the hypothesis (bounded continuous function in QT ) of Lemma

3.0.5. Using Lemma 3.0.5 for p 6= 3
2
,

‖wk‖(2)
p,QT
≤ Cp,T (‖θk‖p,QT + ‖ψΦ0k‖

(2− 2
p

)

p,Q ) (3.1.18)

where Cp,T is independent of θ and ψΦ0. Combining (3.1.16) and (3.1.18), we get

‖wk‖(2)
p,QT
≤ Cp,T (‖θk‖p,QT + ‖ψΦ0k‖

(2− 2
p

)

p,Q )

≤ Cp,T{‖f̃k‖p,QT +M2ε‖Φkxx‖p,QT

+ (M1 +M2cε)(ε̃(‖Φkt‖p,QT + ‖Φkx‖p,QT ) + Cε̃‖Φk‖1,QT
)

+ ‖ψΦ0k‖
(2− 2

p
)

p,Q }

Note that wk = Φk on WT = B(0, r)× (0, T ). Thus
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‖Φk‖(2)
p,WT

≤ Cp,T{‖f̃k‖p,QT +M2ε‖Φkxx‖p,QT

+ (M1 +M2cε)(ε̃(‖Φkt‖p,QT + ‖Φkx‖p,QT ) + Cε̃‖Φk‖1,QT
)

+ ‖ψΦ0k‖
(2− 2

p
)

p,Q } (3.1.19)

Observe (3.1.19) is over B(0, r)× (0, T ) ⊂ Rn−1 × R+. To get an estimate on the

manifold, apply the change of variable, ‖Φk‖(2)
p,WT

= ‖Ψk| det((φ−1)
′
)|‖(2)

p,φ(WT ). This

gives

‖Ψk‖(2)
p,φ(WT ) ≤ C̃p,ξ,T{‖fk‖p,φ(QT ) +M2ε‖Ψkxx‖p,φ(QT )

+ (M1 +M2cε)(ε̃(‖Ψkt‖p,φ(QT ) + ‖Ψkx‖p,φ(QT )) + Cε̃‖Ψk‖1,(φ(QT )))

+ ‖Ψ0k‖
(2− 2

p
)

p,φ(Q)} (3.1.20)

where C̃p,ξ,T = Ĉp,T

 max
ξ∈φ(QT )

| det((φ−1)
′
)|

min
ξ∈φ(QT )

| det((φ−1)
′
)|

.

So far an estimate in one open neighborhood of some point ξ ∈M is obtained.

As one varies the point ξ on M , there exist corresponding open neighborhoods

Vξ and a smooth diffemorphisms φξ : B(0, r) −→ Vξ, which result in different

C̃p,ξ,T for every Vξ. Consider an open cover of M such that M =
⋃
ξ∈M Vξ. Since

M is compact, there exists {ξ1, ξ2, ..., ξN} such that M ⊂
⋃

ξj∈M
1≤j≤N

Vξj and C̃p,ξj ,T

corrresponding to each Vξj . Let Ĉp,T =
∑N

j=1 C̃p,ξj ,T . Inequality (3.1.20) implies

‖Ψk‖(2)
p,MT

≤ Ĉp,T {‖fk‖p,MT
+M2ε‖Ψkxx‖p,MT

+ ‖Ψ0k‖
(2− 2

p
)

p,M (3.1.21)

+(M1 +M2cε)(ε̃(‖Ψkt‖p,MT
+ ‖Ψkx‖p,MT

) + Cε̃‖Ψk‖1,MT
)
}
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Also from Lemma 3.0.10,

‖Ψk‖1,M ≤ ‖fk‖1,MT
+ ‖Ψ0k‖1,M

Implies, ‖Ψk‖1,MT
≤ ‖fk‖1,MT

+ ‖Ψ0k‖1,M . Now, choose ε > 0 such that,

max{Ĉp,TM2ε, Ĉp,T ε̃(M1 +M2cε)} <
1

2

For this choice of ε, (3.1.21) gives us the W 2,1
p estimates of the Cauchy problem on

manifold.

‖Ψk‖(2)
p,MT

≤ Ĉp,T (‖fk‖p,MT
+ Cε(‖fk‖1,MT

+ ‖Ψ0k‖1,M) + ‖Ψ0k‖
(2− 2

p
)

p,M )

‖Ψk‖(2)
p,MT

≤ K̂p,T (‖fk‖p,MT
+ ‖Ψ0k‖

(2− 2
p

)

p,M ) (3.1.22)

where K̂p,T > 0 is independent of fk and Ψ0k. It remains to show that the se-

quence {Ψk} converges to Ψ in W 2,1
p (MT ), and Ψ solves (3.0.1). From linearity

and (3.1.22), if m, l ∈ N then Ψm −Ψl satisfies

(Ψm −Ψl)t = d̃∆M(Ψm −Ψl) + fm − fl ξ ∈M, 0 < t < T

Ψm −Ψl = Ψ0m −Ψ0l ξ ∈M, t = 0

with

‖Ψm −Ψl‖(2)
p,MT

≤ K̂p,T (‖fm − fl‖p,MT
+ ‖Ψ0m −Ψ0l‖

(2− 2
q

)

p,M )
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This implies {Ψk} is a Cauchy sequence inW 2,1
p (MT ). Let k →∞ then fk converges

to f in Lp(MT ), Ψ0k converges to Ψ0 in W
2− 2

p
p (M), and Ψk converges to Ψ ∈

W 2,1
p (MT ) in the W 2,1

p norm. Thus Ψ solves (3.0.1) and (3.1.22) implies

‖Ψ‖(2)
p,MT

≤ K̂p,T (‖f‖p,MT
+ ‖Ψ0‖

(2− 2
p

)

p,M )

Hence F = (1,∞).
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Chapter 4

The Linear Neumann Boundary

Value Problem

In the past, local solvability of nonlinear quasilinear parabolic systems has been

proved using both classical and semigroup theory approaches (see Amann [4], Wei-

demaier [43], and Acquistapace and Terreni [1]). Giaquinta and Modica [14] used

classical techniques based on a priori estimates, without assuming any growth con-

dition on functions to prove local solvability. For more details see Giaquinta and

Modica [14]. We are interested in Hölder estimates of a solution to a linear Neu-

mann boundary value problem, provided Neumann data lies in Lp(M × (0, T )) for

p sufficiently large. These Hölder estimates will be used in the next section to

prove local existence for the coupled reaction diffusion system (1.0.1).

As earlier let Ω be a bounded region with smooth boundary M = ∂Ω (say,

belong to the class of C2+µ(µ > 0) such that Ω lies locally on one side of M).

Here ηj are direction cosines of the outward unit normal to M , d > 0 and ∂ϕ
∂η

=
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∑n
j=1

∂ϕ
∂xj
ηj(x). Consider the linear parabolic system,

ϕt = d∆ϕ+ θ x ∈ Ω, 0 < t < T̂

d
∂ϕ

∂η
= γ x ∈M, 0 < t < T̂ (4.0.1)

ϕ = ϕ0 x ∈ Ω, t = 0

and the subsystem,

ϕt = d∆ϕ x ∈ Ω, 0 < t < T̂

d
∂ϕ

∂η
= γ x ∈M, 0 < t < T̂ (4.0.2)

ϕ = 0 x ∈ Ω, t = 0

If γ ∈ W
1− 1

p
, 1
2
− 1

2p
p (M × (0, T̂ )), then from Theorem 9.1, chapter 4 in [27] there

exists a unique solution to (4.0.1) in W 2,1
p (Ω× (0, T̂ )). More precisely,

Lemma 4.0.3. Let p > 1. Suppose that θ ∈ Lp(Ω× (0, T̂ )), ϕ0 ∈ W
(2− 2

p
)

p (Ω) and

γ ∈ W
1− 1

p
, 1
2
− 1

2p
p (M × (0, T̂ )) with p 6= 3 . In addition, when p > 3 assume

d
∂ϕ0

∂η
= γ(x, 0) on M

Then (4.0.1) has a unique solution ϕ ∈ W 2,1
p (Ω× (0, T̂ )) and there exists C inde-

pendent of θ, ϕ0 and γ such that

‖ϕ‖(2)

p,(Ω×(0,T̂ ))
≤ C(‖θ‖p,(Ω×(0,T̂ )) + ‖ϕ0‖

(2− 2
p

)

p,Ω + ‖γ‖
(1− 1

p
, 1
2
− 1

2p
)

p,(∂Ω×(0,T̂ ))
)

42



CHAPTER 4. THE LINEAR NEUMANN BOUNDARY VALUE PROBLEM

Proof. See Ladyzenskaya [27]

Definition 4.0.4. ϕ is said to be a weak solution of system (4.0.1) from V
1, 1

2
2 (ΩT̂ )

if and only if

−
∫ T̂

0

∫
Ω

ϕνt −
∫ T̂

0

∫
∂Ω

d ν
∂ϕ

∂η
+

∫ T̂

0

∫
Ω

d ∇ν.∇ϕ−
∫ T̂

0

∫
Ω

θν

= −
∫

Ω

ν(x, T̂ )ϕ(x, T̂ ) +

∫
Ω

ν(x, 0)ϕ(x, 0)

for any ν ∈ W 1,1
2 (ΩT̂ ) that is equal to zero for t = T̂ .

We also need a notion of solution of (4.0.2) which was first introduced in the

study of Dirichlet and Neumann problems for the Laplace operator in a bounded

C1 domain by E. B. Fabes, M. Jodeit JR and N. M Rivier [11]. They used Albert

Calderon’s result in [7] on Lp continuity of Cauchy integral operators for C1 curves.

Further in [12], Fabes and Riviere constructed solutions to the initial Neumann

problem for the heat equation in a cylindrical domain, D×(0, T ), with D a bounded

C1 domain of Rn satisfying the zero initial condition in the form of a single layer

heat potential, when densities belong to Lp(∂D × (0, T )), 1 < p < ∞. We will

consider the solution to (4.0.2) in the sense of one which is constructed in [12].

Define

J(g(p, t)) = lim
ε→0

∫ t−ε

0

∫
M

〈p− y, ηp〉
(t− s)n2 +1

exp

(
−|p− y|

2

4(t− s)

)
g(s, y) dy ds

for a.e p ∈M (for a smooth manifold it is true for all p), where

g(p, t) = −2[−cnI + J ]−1γ(p, t)
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and ηp is unit inward normal to M at p. For Q ∈ M , (x, t) ∈ ΩT and t > s,

consider

W (t− s, x,Q) =
exp

(
−|x−Q|2
4(t−s)

)
(t− s)n2

and g(Q, t) = −2[−cnI + J ]−1γ(Q, t)

where cn is given in [12]. In [12], corresponding properties for the integral operator

J which will be associated to the restriction of the normal derivative of the single

layer potential were obtained. For completeness we state the result in the following

proposition.

Proposition 4.0.5. Assume Ω is a C1 domain. For ε > 0 set

Jε(g(p, t)) =

∫ t−ε

0

∫
M

〈p− y, ηp〉
(t− s)n2 +1

exp

(
−|p− y|

2

4(t− s)

)
g(s, y) dy ds

Then

1. For every 1 < p < ∞ there exists Cp > 0 such that supε>0 |Jεf(p, t)| =

J̃(f)(p, t) satisfies

‖J̃f‖Lp(M×(0,T̂ )) ≤ Cp‖f‖Lp(M×(0,T̂ )) for all f ∈ Lp(M × (0, T̂ ))

2. limε→0+ Jεf = Jf exists in Lp(M × (0, T̂ )) and pointwise for almost every

(p, t) ∈ (M × (0, T̂ )) provided f ∈ Lp(M × (0, T̂ )), 1 < p <∞.

3. cnI + J is invertible on Lp(M × (0, T̂ )) for each cn 6= 0 and 1 < p <∞.

Proof. See [12].
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Definition 4.0.6. ϕ is said to be a (classical) solution of system (4.0.2), with d = 1

if and only if ϕ(x, t) =
∫ t

0

∫
M
W (t − s, x, y)g(s, y) dy ds for all (x, t) ∈ Rn+1 \M

satisfies the properties:

• ∂tϕ−∆ϕ = 0 for all (x, t) ∈ Rn+1 \M

• 〈∇xϕ(x, t), ηp〉 → γ(p, t) pointwise for almost every (p, t) ∈ M × (0, T̂ ) as

x→ p, 〈x− p, ηp〉 > α|x− p|, for some positive constant α.

4.1 Hölder Estimates

Brown made a remark in [6], that if Neumann data lies in Lp(M × (0, T̂ )) for p

sufficiently large then the solution to problem (4.0.2) is Hölder continuous. Here

we will make use of potential theory to give the proof of this remark and then use

this result to get Hölder estimates of (4.0.1).

Lemma 4.1.1. Let p > n + 1. Suppose (x, T ), (y, τ) ∈ ΩT̂ , g ∈ Lp(M × (0, T̂ ))

and Rc = {(Q, s) ∈M × (0, τ) : |x−Q|+ |T − s| 12 < 2(|x− y|+ |T − τ | 12 )}. Then

for 0 < ε < 1, there exists K1 > 0 independent of g such that,

∫
Rc
|(W (T − s, x,Q)−W (τ − s, y,Q))g(s,Q)| dQ ds

≤ K1

(
|x− y|+ |T − τ |

1
2

) ε(p−1)
p ‖ g ‖p,M×[0,τ ] .

Proof.

∫
Rc
|(W (T − s, x,Q)−W (τ − s, y,Q))g(s,Q)| dQ ds
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=

∫
Rc

∣∣∣∣∣∣
exp

(
−|y−Q|2
2C(τ−s)

)
(τ − s)n2

−
exp

(
−|x−Q|2
2C(T−s)

)
(T − s)n2

∣∣∣∣∣∣ |g(Q, s)| dQ ds

Define A = {Q ∈M : |x−Q| < 2|x− y|+ |T − τ |
1
2}. Since |T − τ | < |T − s|,

Rc ⊂ A× (0, τ).

Therefore,

∫
Rc

∣∣∣∣∣∣
exp

(
−|y−Q|2
2C(τ−s)

)
(τ − s)n2

−
exp

(
−|x−Q|2
2C(T−s)

)
(T − s)n2

∣∣∣∣∣∣ |g(Q, s)| dQ ds

≤
∫ τ

0

∫
A

∣∣∣∣∣∣
exp

(
−|y−Q|2
2C(τ−s)

)
(τ − s)n2

−
exp

(
−|x−Q|2
2C(T−s)

)
(T − s)n2

∣∣∣∣∣∣ |g(Q, s)| dQ ds

≤

∫ τ

0

∫
A

exp
(
−p′|y−Q|2
2C(τ−s)

)
(τ − s)np

′
2

dQ ds


1
p′

‖ g ‖p,A×[0,τ ]

+

∫ τ

0

∫
A

exp
(
−p′|x−Q|2
2C(T−s)

)
(T − s)np

′
2

dQ ds


1
p′

‖ g ‖p,A×[0,τ ]

Using the property wN · exp(−w) ≤ c ·N for N=n−1−ε
2

and for some c > 0, gives

∫
Rc

∣∣∣∣∣∣
exp

(
−|y−Q|2
2C(τ−s)

)
(τ − s)n2

−
exp

(
−|x−Q|2
2C(T−s)

)
(T − s)n2

∣∣∣∣∣∣ |g(Q, s)| dQ ds

≤ C1

(∫ τ

0

(τ − s)
n−1−ε−np′

2 ds

∫
A

1

|y −Q|n−1−ε dQ

) 1
p′

. ‖ g ‖p,A×[0,τ ]

+ C2

(∫ τ

0

(T − s)
n−1−ε−np′

2 ds

∫
A

1

|x−Q|n−1−ε dQ

) 1
p′

. ‖ g ‖p,A×[0,τ ]

46
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Let ρy = |y −Q|, ρx = |x−Q|. Notice that in set A, 0 < ρx < 2|x− y|+ |T − τ | 12

and 0 < ρy < |x− y|+ ρx < 3|x− y|+ |T − τ | 12 . Therefore,

C1

(∫ τ

0

(τ − s)
n−1−ε−np′

2 ds

∫
A

1

|y −Q|n−1−εdQ

) 1
p′

. ‖ g ‖p,A×[0,τ ]

+ C2

(∫ τ

0

(T − s)
n−1−ε−np′

2 ds

∫
A

1

|x−Q|n−1−εdQ

) 1
p′

. ‖ g ‖p,A×[0,τ ]

≤ C̃1

∫ τ

0

(τ − s)
n−1−ε−np′

2 ds

∫ 3|x−y|+|T−τ |
1
2

0

ρε−1
y dρy

 1
p′

. ‖ g ‖p,A×[0,τ ]

+ C̃2

∫ τ

0

(T − s)
n−1−ε−np′

2 ds

∫ 2|x−y|+|T−τ |
1
2

0

ρε−1
x dρx

 1
p′

. ‖ g ‖p,A×[0,τ ]

≤ C̃1

ε
1
p′

(τ)
n+1−ε−np′

2p′ .
(

3|x− y|+ |T − τ |
1
2

) ε
p′
. ‖ g ‖p,A×[0,τ ]

+
C̃2

ε
1
p′

(
T
n+1−ε−np′

2 − (T − τ)
n+1−ε−np′

2

) 1
p′
(

2|x− y|+ |T − τ |
1
2

) ε
p′ ‖ g ‖p,A×[0,τ ]

provided p′ < n+1−ε
n

. Thus,

∫
Rc
|(W (T − s, x,Q)−W (τ − s, y,Q))g(s,Q)| dQ ds

≤ K1

(
|x− y|+ |T − τ |

1
2

) ε
p′ ‖ g ‖p,M×[0,τ ].

The proof of the following Lemma makes use of Brown’s corollary of his The-

orem 3.1 in [6], and also gives a detailed explanation of his remark.

Lemma 4.1.2. Let p > n + 1. Suppose (x, T ),(y, τ) ∈ ΩT̂ , g ∈ Lp(M × (0, T̂ ))

and R = {(Q, s) ∈M × (0, τ) : 2(|x− y|+ |T − τ | 12 ) < |x−Q|+ |T − s| 12}. Then
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for a < 1− n+1
p

there exists K2 > 0 independent of g such that,

∫
R
|(W (T − s, x,Q)−W (τ − s, y,Q))g(s,Q)| dQ ds

≤ K2

(
|x− y|+ |T − τ |

1
2

)a
‖ g ‖p,M×[0,τ ] .

Proof.

|
∫
R

(W (T − s, x,Q)−W (τ − s, y,Q))g(s,Q) dQ ds|

≤
∫
R
C

(
|T − τ | 12 + |x− y|
|T − s| 12 + |x−Q|

)
(1 + (T − s)

−n
2 ) exp

(
−|x−Q|2

2C(T − s)

)
|g(Q, s)| dQ ds

≤ D1

(
1

2

)1−a ∫
R

(
|T − τ | 12 + |x− y|
|T − s| 12 + |x−Q|

)a exp
(
−|x−Q|2
2C(T−s)

)
(T − s)n2

|g(Q, s)| dQ ds

≤ D̃1

∫
R

1

|x−Q|a
exp

(
−|x−Q|2
2C(T−s)

)
(T − s)n2

|g(Q, s)| dQ ds

where D1 = C(T
n
2 + 1) and D̃1 = D1

(
1
2

)1−a
(
|T − τ | 12 + |x− y|

)a
. Applying

Hölder’s inequality and wN · exp(−w) ≤ c ·N for N=n−1−ε−ap′
2

and some c > 0,

D̃1

∫
R

1

|x−Q|ap′
exp

(
−p′|x−Q|2
2C(T−s)

)
(T − s)np

′
2

dQ ds


1
p′

‖ g ‖p,R

≤ D̃1

(∫ τ

0

∫
M

(2C(T − s))n−1−ε−ap′
2

(T − s)np
′

2

1

|x−Q|n−1−ε dQ ds

) 1
p′

‖ g(Q, s) ‖p,M×[0,τ ]

≤ D̃1

(∫ τ

0

(C(T − s))
n−1−ε−ap′−np′

2 ds.

∫
M

1

|x−Q|n−1−ε dQ

) 1
p′

‖ g ‖p,M×[0,τ ]
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Now again let ρx = |x−Q|. Then by change of variable,

D̃1

(∫ τ

0

(C(T − s))
n−1−ε−ap′−np′

2 ds.

∫
M

1

|x−Q|n−1−εdQ

) 1
p′

‖ g ‖p,M×[0,τ ]

≤ β1D̃1

(
(C(T ))

n−1−ε−ap′−np′
2

+1.

∫ αM

α

ρn−2
x

ρn−1−ε
x

dρx

) 1
p′

‖ g ‖p,M×[0,τ ]

provided,

n+ 1− ε− ap′ − np′

2p′
> 0; i.e. p′ <

n+ 1− ε
n+ a

.

Notice, if a+ ε < 1, then p > n+1−ε
1−(a+ε)

> n+ 1. Hence, for a < 1− n+1
p
− εp′

∫
R
|(W (T − s, x,Q)−W (τ − s, y,Q))g(s,Q)| dQ ds

≤ K2

(
|x− y|+ |T − τ |

1
2

)a
‖ g ‖p,M×[0,τ ] .

Lemma 4.1.3. Let p > n+1. Suppose (x, T ),(y, τ) ∈ ΩT̂ and g ∈ Lp(M × (0, T̂ )).

Then for ε > 0 there exists K3 > 0, independent of g such that,

∫ T

τ

∫
M

exp
(
−|x−Q|2
2C(T−s)

)
(T − s)n2

|g(Q, s)| dQ ds ≤ K3(T − τ)
n+1−ε−np′

2p′ ‖ g ‖p,M×[τ,T ]

Proof. Again making use of the property, wN · exp(−w) ≤ c ·N for N=n−1−ε
2

and

for some c > 0,

∫ T

τ

∫
M

exp
(
−|x−Q|2
2C(T−s)

)
(T − s)n2

|g(Q, s)| dQ ds
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≤ C3

∫ T

τ

∫
M

C̃(T − s)n−1−ε
2

(T − s)n2
.

1

|x−Q|n−1−ε |g(Q, s)| dQ ds

≤ C3

(∫ T

τ

(C(T − s))
n−1−ε−np′

2 ds.

∫
M

1

|x−Q|n−1−εdQ

) 1
p′

‖ g ‖p,M×[τ,T ]

Similarly, by the change of variable

C3

(∫ T

τ

(C(T − s))
n−1−ε−np′

2 ds.

∫
M

1

|x−Q|n−1−εdQ

) 1
p′

‖ g ‖p,M×[τ,T ]

≤ C̃3

(
|(−C(T − τ))

n−1−ε−np′
2

+1|.
∫ αM

α

ρn−2
x

ρn−1−ε
x

dρx

) 1
p′

‖ g ‖p,M×[τ,T ]

≤ K3(T − τ)
n+1−ε−np′

2p′ ‖ g ‖p,M×[τ,T ]

Proposition 4.1.4. Suppose that γ ∈ Lp(M × (0, T̂ )) for p > n + 1 then the

classical solution of (4.0.2) is Hölder continuous on Ω×(0, T̂ ) with Hölder exponent

0 < a < 1− n+1
p

and there exists K̃p > 0, independent of γ such that

|ϕ(x, T )− ϕ(y, τ)| ≤ K̃p

(
|T − τ |

1
2 + |x− y|

)a
‖ γ ‖p,M×(0,T̂ ) .

Proof. We first prove this proposition for d = 1. Let Ω̂ be a closed and bounded

subset of Ω. Using a “cut off” function, system (4.0.2) can be converted into a

zero boundary value Dirichlet problem and from Ladyzenskaja, Theorem 9.1 in

[27], solution of the later system belongs to W 2,1
p (Ω̂× (0, T ). Now W 2,1

p (Ω̂× (0, T )

embedds continuously into the space of Hölder continuous functions (see [27]). As

a result we have Hölder continuity of the solution to (4.0.2) in the interior of Ω.

We want to extend this behaviour to the boundary.
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Pick points (x, T ), (y, τ) ∈ QT̂ and consider a set R = {(Q, s) ∈ M × (0, τ) :

2(|x− y|+ |T − τ | 12 ) < |x−Q|+ |T − s| 12}. We know from Fabes and Riviere [12]

that the solution of (4.0.2) is given by

ϕ(x, T ) =

∫ T

0

∫
M

W (T − s, x,Q)g(s,Q) dQ ds

where W (T − s, x,Q) =
exp

(
−|x−Q|2
2C(T−s)

)
(T−s)

n
2

, g(p, t) = −2[−cI + J ]−1γ(p, t) and

J(g(p, t)) = limε→0

∫ t−ε

0

∫
M

∂W (t− s, p, y)

∂ηp
g(s, y) dy ds

for a.e p ∈ M (for smooth manifold it is true for all p), ηp being the unit inward

normal at p.

|ϕ(x, T )− ϕ(y, τ)| = |
∫ τ

0

∫
M

(W (T − s, x,Q)−W (τ − s, y,Q))g(s,Q) dQ ds

+

∫ T

τ

∫
M

W (T − s, x,Q)g(s,Q) dQ ds|

≤ |
∫
Rc

(W (T − s, x,Q)−W (τ − s, y,Q))g(s,Q) dQ ds|

+ |
∫
R

(W (T − s, x,Q)−W (τ − s, y,Q))g(s,Q) dQ ds|

+

∫ T

τ

∫
M

C(1 + (T − s)
−n
2 ) exp

(
−|x−Q|2

2C(T − s)

)
|g(Q, s)| dQ ds

Now using Lemma 4.1.1 for ε > 0 such that ε(p−1)
p

< a, where a < 1− n+1
p

(which

is possible because ap
p−1

< 1− n
p−1

< 1 for p > 1), and Lemma 4.1.2 and 4.1.3,

|ϕ(x, T )− ϕ(y, τ)| ≤ K1

(
|x− y|+ |T − τ |

1
2

) ε(p−1)
p ‖ g ‖p,M×(0,τ)
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+K2

(
|T − τ |

1
2 + |x− y|

)a
‖ g ‖p,M×(0,τ)

+K3(T − τ)
n+1−ε−np′

2p′ ‖ g ‖p,M×(τ,T )

So,

|ϕ(x, T )− ϕ(y, τ)| ≤ K̃p

(
|T − τ |

1
2 + |x− y|

)a
‖ g ‖p,M×(0,T̂ )

Thus the proposition is proved for the case d = 1. The general case reduces to this

one, since (4.0.2), as is known , can be written as a heat equation. For this purpose

it is necessary to carry out a simple linear transformation of the coordinates. If

one introduces a new variable

z =
x√
d

then (4.0.2) becomes

ϕt = ∆ϕ z ∈ Ω, 0 < t < T̂

∂ϕ

∂η
=

γ√
d

z ∈M, 0 < t < T̂

ϕ = 0 z ∈ Ω, t = 0

Hence, ϕ satisfying (4.0.2) is Hölder continuous with

‖ϕ‖(a)

p,Ω×(0,T̂ )
≤ C1(T̂ )‖γ‖p,M×(0,T̂ )

Now we combine Hölder estimates and Ladyzenskaja Theorem 9.1(chapter 4)
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in [27] to get the existence of a Hölder continuous solution to system (4.0.1) for

any finite time T > 0.
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Theorem 4.1.5. Let p > 1. Suppose θ ∈ Lp(Ω × (0, T̂ )), γ ∈ Lp(M × (0, T̂ ))

and ϕ0 ∈ W 2− 2
p (Ω) with p 6= 3. Then for p = 2 system (4.0.1) has a unique weak

solution in V
1, 1

2
2 (Ω× (0, T̂ )). In addition, when p > 3 assume

d
∂ϕ0

∂η
= γ(x, 0) on M

Then for p > n + 1 there exists 0 < β < 1 such that β < 1 − n+1
p

, and C(T̂ , p)

independent of θ, γ and ϕ0 such that

|ϕ|(β)

Ω×(0,T̂ )
≤ C(T̂ , p)(‖θ‖p,Ω×(0,T̂ ) + ‖γ‖p,M×(0,T̂ ) + ‖ϕ0‖

(2− 2
p

)

p,Ω )

Proof. Chapter 4, Theorem 5.1 in [27] implies system (4.0.1) has a unique weak

solution. In order to get Hölder estimates, we break (4.0.1) into two sub systems,

ϕ2t = d∆ϕ2 + θ x ∈ Ω, 0 < t < T̂

d
∂ϕ2

∂η
= 0 x ∈M, 0 < t < T̂ (4.1.3)

ϕ2 = ϕ0 x ∈ Ω, t = 0

ϕ1t = d∆ϕ1 x ∈ Ω, 0 < t < T̂

d
∂ϕ1

∂η
= γ x ∈M, 0 < t < T̂ (4.1.4)

ϕ1 = 0 x ∈ Ω, t = 0

Again from Theorem 9.1 in [27], we know there exists a unique solution of (4.1.3)
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in W 2,1
p (Ω× (0, T̂ )), and C1(T̂ , p) > 0 independent of θ and ϕ0 such that

‖ϕ2‖(2)

p,Ω×(0,T̂ )
≤ C1(T̂ , p)(‖θ‖p,Ω×(0,T ) + ‖ϕ0‖

(2− 2
p

)

p,Ω )

Using proposition (4.1.4), there exists ϕ1 ∈ Cβ,β
2 (Ω× (0, T )), satisfying (4.1.4)

with

|ϕ1|(β)
Ω×(0,T ) ≤ C2(T̂ , p)‖γ‖p,M×(0,T̂ )

By linearity, ϕ = ϕ1 + ϕ2 solves (4.0.1). Moreover, since for sufficiently large

p, W 2,1
p (Ω × (0, T̂ )) embedds continuously into the space of Hölder continuous

functions, there exists C̃(T̂ , p) > 0 independent of θ, γ and ϕ0 such that

|ϕ|(β)

Ω×(0,T̂ )
≤ C̃(T̂ , p)(‖θ‖p,Ω×(0,T̂ ) + ‖γ‖p,M×(0,T̂ ) + ‖ϕ0‖

(2− 2
p

)

p,Ω ) (4.1.5)

Remark 4.1.6. Obviously, sup norm estimates follow immediately from the Hölder

estimates, but sup norm estimates can also be obtained by using the weak formu-

lation only. We need Hölder estimates to prove our local existence result.
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Chapter 5

Local Existence, Uniqueness, and

Non-negativity

Recall, m, k, n, i and j are positive integers, D and D̃ are k × k and m × m

diagonal matrices with positive entries {di}1≤i≤k and {d̃j}1≤j≤m respectively. Also,

dmin = min{di : 1 ≤ i ≤ k}. η is the unit outward normal (from Ω) to M at each

of its points;
∂u

∂η
=

n∑
i,j=1

∂u

∂xi
ηj, where ηj is the jth component of η. The primary

concern of this work is the system

ut = D∆u+H(u) x ∈ Ω, 0 < t < T

vt = D̃∆Mv + F (u, v) x ∈M, 0 < t < T

D
∂u

∂η
= G(u, v) x ∈M, 0 < t < T (5.0.1)

u = u0 x ∈ Ω, t = 0

v = v0 x ∈M, t = 0
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NON-NEGATIVITY

where F = (Fi) : Rk × Rm → Rm, G = (Gj) : Rk × Rm → Rk and H = (Hj) :

Rk → Rk, and u0 = (u0j) ∈ W
2− 2

p
p (Ω), v0 = (v0i) ∈ W

2− 2
p

p (M) with p > n. Also,

for p > 3, u0 and v0 satisfy compatibility condition

D
∂u0

∂η
= G(u0, v0) on M.

Remark 5.0.2. For p > n, u0 and v0 are Hölder continuous functions on Ω and M

respectively (See [2], [10]).

Definition 5.0.6. A function (u, v) is a solution of (5.0.1) if and only if

u ∈ C(Ω× [0, T ),Rk) ∩ C1,0(Ω× (0, T ),Rk) ∩ C2,1(Ω× (0, T ),Rk)

and

v ∈ C(M × [0, T ),Rm) ∩ C2,1(M × (0, T ),Rm)

such that (u, v) satisfies (5.0.1). Moreover, if T = ∞, the solution is said to be a

global solution.

Definition 5.0.7. A function (u, v) defined for 0 ≤ t < b is a maximal solution

of (5.0.1) if and only if (u, v) solves (5.0.1) with T = b, and if d > b and (ũ, ṽ)

solves (5.0.1) for T = d then there exists 0 < c < b such that (u(·, c), v(·, c)) 6=

(ũ(·, c), ṽ(·, c)).

Definition 5.0.8. F,G and H are quasi-positive if and only if Fi(ζ, η) ≥ 0 when-

ever η ∈ [0,∞)m and ζ ∈ [0,∞)k with ηi = 0 for i = 1, ...,m, and Gj(ζ, η) ≥ 0,

Hj(ζ) ≥ 0 whenever η ∈ [0,∞)m ζ ∈ [0,∞)k with ζj = 0, for j = 1, ..., k.
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Theorem 5.0.9. Suppose F,G and H are Lipschitz and componentwise uniformly

bounded. Then (5.0.1) has a unique global solution.

Proof. Let T > 0, Set

X = {(u, v) ∈ C(Ω× [0, T ])× C(M × [0, T ]) : u(x, 0) = 0,∀ x ∈ Ω, v(x, 0) = 0,∀ x ∈M}

Note (X, ‖·‖∞) is a Banach space. Also, for simplicity of notations in remainder of

the proof, we assume u0, v0 = 0, and compatibility condition holds. Fix (ũ, ṽ) ∈ X,

and consider

ut = D∆u+H(ũ) x ∈ Ω, 0 < t < T

vt = D̃∆Mv + F (ũ, ṽ) x ∈M, 0 < t < T

D
∂u

∂η
= G(ũ, ṽ) x ∈M, 0 < t < T (5.0.3)

u = u0 x ∈ Ω, t = 0

v = v0 x ∈M, t = 0

From Theorems 3.1.2 and 4.1.5, system (5.0.3) possesses a unique weak solution

(u, v). Furthermore, from embeddings, (u, v) ∈ C(Ω× [0, T ])×C(M× [0, T ]). Now

define a map,

S : X → X

given by S(ũ, ṽ) = (u, v)

We will see that S is continuous and compact, with respect to the natural norm

on X.
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Let (ũ, ṽ) and (Ũ , Ṽ ) ∈ X, and define (u, v) = S(ũ, ṽ) and (U, V ) = S(Ũ , Ṽ ).

Using linearity, (u− U, v − V ) solves

ut − Ut = D∆(u− U) +H(ũ)−H(Ũ) x ∈ Ω, 0 < t < T

vt − Vt = D̃∆M(v − V ) + F (ũ, ṽ)− F (Ũ , Ṽ ) x ∈M, 0 < t < T

D
∂(u− U)

∂η
= G(ũ, ṽ)−G(Ũ , Ṽ ) x ∈M, 0 < t < T

u− U = 0 x ∈ Ω, t = 0

v − V = 0 x ∈M, t = 0

From Theorem 4.1.5, if p > n + 1 there exists K independent of H,G, F, ũ, ṽ, Ũ

and Ṽ such that

‖u− U‖∞,Ω×(0,T ) + ‖v − V ‖∞,M×(0,T ) ≤ K(‖F (ũ, ṽ)− F (Ũ , Ṽ )‖p,M×(0,T )

+ ‖G(ũ, ṽ)−G(Ũ , Ṽ )‖p,M×(0,T )

+ ‖H(ũ)−H(Ũ)‖p,Ω×(0,T ))

Using the boundedness of Ω and M , there exists K̃ > 0 such that

‖u− U‖∞,Ω×(0,T ) + ‖v − V ‖∞,M×(0,T ) ≤ K̃(‖F (ũ, ṽ)− F (Ũ , Ṽ )‖∞,M×(0,T )

+ ‖G(ũ, ṽ)−G(Ũ , Ṽ )‖∞,M×(0,T )

+ ‖H(ũ)−H(Ũ)‖∞,Ω×(0,T ))
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Since, F,G,H are Lipschitz functions there exists M̃ > 0 such that

‖u− U‖∞,Ω×(0,T ) + ‖v − V ‖∞,M×(0,T ) ≤ M̃(‖ũ− Ũ‖∞,Ω×(0,T ) + ‖ṽ − Ṽ )‖∞,M×(0,T ))

Therefore S is continuous. Moreover, for p > n+1, from Theorem 4.1.5, 3.1.2, and

Lemma 3.0.12 there exists Ĉ(T, p) > 0, independent of F (ũ, ṽ), G(ũ, ṽ), H(ũ), u0

and v0 such that for all α < 1− n
p
, β < 1− n+1

p
,

|u|(β)
Ω×(0,T ) + |v|(α)

M×(0,T ) ≤ Ĉ(T, p)(‖H(ũ)‖p,Ω×(0,T ) + ‖G(ũ, ṽ)‖p,M×(0,T )

+ ‖F (ũ, ṽ)‖p,M×(0,T ) + ‖v0‖
(2− 2

p
)

p,M + ‖u0‖
(2− 2

p
)

p,Ω )

Note H,F and G are uniformly bounded which implies S is compact.

Now we show S has a fixed point. To this end, we show that the set A={(u, v) ∈

C(Ω× [0, T ])× C(M × [0, T ]) : (u, v) = λS(u, v) for some 0 < λ ≤ 1} is bounded

in C(Ω× [0, T ])×C(M × [0, T ]). Let (u, v) ∈ A. Then there exists 0 < λ ≤ 1 such

that (u, v) = λS(u, v). That is, (u, v) solves

ut = D∆u+ λH(u) x ∈ Ω, 0 < t < T

vt = D̃∆Mv + λF (u, v) x ∈M, 0 < t < T

D
∂u

∂η
= λG(u, v) x ∈M, 0 < t < T

u = u0 x ∈ Ω, t = 0

v = v0 x ∈M, t = 0

From Theorem 4.1.5 and again using uniform boundedness of H,F and G, there
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exists N > 0 such that ‖(u, v)‖∞ ≤ N , with N independent of λ, u and v. Hence

boundedness of the set is accomplished. Thus, applying Schaefer’s theorem (see

[10]), we conclude S has a fixed point (u, v) which in turn solves (5.0.1). Further

bootstrapping the regularity of (u, v), we obtained a solution in the sense of (5.0.6).

Now we show the solution of (5.0.1) is unique. Suppose (u, v), (û, v̂) solve

(5.0.1). Then, (u− û, v − v̂) satisfies

ut − ût = D∆(u− û) +H(u)−H(û) x ∈ Ω, t > 0

vt − v̂t = D̃∆M(v − v̂) + F (u, v)− F (û, v̂) x ∈M, t > 0

D
∂(u− û)

∂η
= G(u, v)−G(û, v̂) x ∈M, t > 0

u− û = 0 x ∈ Ω, t = 0

v − v̂ = 0 x ∈M, t = 0

Taking the dot product of the vt− v̂t equation with (v− v̂), and the ut− ût equation

with (u− û), and integrating over M and Ω respectively, yields

1

2

d

dt
(‖v − v̂‖2

2,M + ‖u− û‖2
2,Ω) +D‖∇(u− û)‖2

2,Ω

≤ ‖v − v̂‖2,M‖F (u, v)− F (û, v̂)‖2,M + ‖u− û‖2,Ω‖H(u)−H(û)‖2,Ω

+ ‖u− û‖2,M‖G(u, v)−G(û, v̂)‖2,M

≤ K‖v − v̂‖2,M (‖u− û‖2,M + ‖v − v̂‖2,M)

+K‖u− û‖2,M (‖u− û‖2,M + ‖v − v̂‖2,M) + +K‖u− û‖2
2,Ω

≤ K(‖v − v̂‖2
2,M + ‖u− û‖2

2,M)

+ 2K‖u− û‖2,M‖v − v̂‖2,M +K‖u− û‖2
2,Ω
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≤ 2K(‖v − v̂‖2
2,M + ‖u− û‖2

2,M) +K‖u− û‖2
2,Ω

From Lemma 3.0.8 for p = 2 and ε = dmin
2K

, we have

‖u− û‖2
2,M ≤

dmin
2K
‖∇(u− û)‖2

2,Ω + C̃ε‖u− û‖2
2,Ω (5.0.4)

Using (5.0.4)

1

2

d

dt

(
‖v − v̂‖2

2,M + ‖u− û‖2
2,Ω

)
≤ 2K‖v − v̂‖2

2,M +K(1 + 2C̃ε)‖u− û‖2
2,Ω

≤ Cε,k
(
‖v − v̂‖2

2,M + ‖u− û‖2
2,Ω

)
Observe, (u−û), (v−v̂) = 0 at t = 0 and

(
‖u− û‖2

2,Ω + ‖v − v̂‖2
2,M

)
≥ 0. Therefore,

applying Gronwall’s inequality, we get ‖v − v̂‖2,M = 0 and ‖u− û‖2,Ω = 0. Thus,

v = v̂ and u = û. Hence system (5.0.1) has a unique global solution.

Theorem 5.0.10. Suppose F,G, and H are locally Lipschitz. Then there exists

Tmax > 0 such that (5.0.1) has a unique maximal solution (u, v) with T = Tmax.

Moreover, if Tmax <∞ then

lim sup
t→T−max

‖u(·, t)‖∞,Ω + lim sup
t→T−max

‖v(·, t)‖∞,M =∞

Proof. Recall that u0 ∈ W
2− 2

p
p (Ω), v0 ∈ W

2− 2
p

p (M) with p > n and u0, v0 satisfies

the compatibility condition for p > 3. From Sobolev imbedding (see [13], [27]),

u0, v0 are bounded functions. Therefore there exists r̃ > 0 such that ‖u0(·)‖∞,Ω ≤ r̃

and ‖v0(·)‖∞,M ≤ r̃.
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For each r > r̃, we define cut off functions φr ∈ C∞0 (Rk, [0, 1]) and ψr ∈

C∞0 ((Rk × Rm), [0, 1]) such that φr(z) = 1 for all |z| ≤ r, and φr(z) = 0 for all

|z| > 2r. Similarly ψr(z, w) = 1 when |z| ≤ r and |w| ≤ r, and ψr(z, w) = 0 when

|z| > 2r, and |w| > 2r. In addition, we define Hr = Hφr, Fr = Fψr and Gr = Gψr.

From construction, Hr(z) = H(z), Fr(z, w) = F (z, w) and Gr(z, w) = G(z, w)

when |z| ≤ r and |w| ≤ r. Also, there exists Mr > 0 such that Hr, Gr and Fr

are Lipschitz functions with Lipschitz coefficient Mr. Moreover Hr, Fr and Gr are

uniformly bounded functions with bounds depending on r.

Consider the “restricted” system

ut = D∆u+Hr(u) x ∈ Ω, t > 0

vt = D̃∆Mv + Fr(u, v) x ∈M, t > 0

D
∂u

∂η
= Gr(u, v) x ∈M, t > 0 (5.0.5)

u = u0 x ∈ Ω, t = 0

v = v0 x ∈M, t = 0

From Theorem 5.0.9, system (5.0.5) has a unique global solution (ur, vr), and there

exists Tr > 0 (it is possible Tr =∞, in which case we have global existence) such

that

|(ur(x, t), vr(z, t))| ≤ r ∀t ∈ [0, Tr], x ∈ Ω, z ∈M

and for all τ > Tr there exists t such that Tr < t < τ , x ∈ Ω and z ∈M such that

|(ur(t, x), vr(t, z))| > r
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Note that Tr is increasing with respect to r. Let Tmax = limr→∞ Tr. Now we define

(u, v) as follows. Given 0 < t < Tmax, there exists r > 0 such that t < Tr ≤ Tmax.

For all x ∈ Ω, u(x, t) = ur(x, t), and for all x ∈M , v(x, t) = vr(x, t). Furthermore

(u, v) solves (5.0.1) with T = Tmax. Also, uniqueness of (ur, vr) implies uniqueness

of (u, v). It remains to show that the solution of (5.0.1) is maximal and if Tmax <∞

then

lim sup
t→T−max

‖u(·, t)‖∞,Ω + lim sup
t→T−max

‖v(·, t)‖∞,M =∞.

Let Tmax <∞ and set,

lim sup
t→T−max

‖u(·, t)‖∞,Ω + lim sup
t→T−max

‖v(·, t)‖∞,M = R.

If R =∞ then (u, v) is a maximal solution. If R <∞ there exists L > 0 such that

‖u‖∞,Ω×(0,Tmax) + ‖v‖∞,M×(0,Tmax) ≤ L.

As a result, T2L > Tmax, contradicting the construction of T2L.

Now we prove that under some extra assumptions, the solution to (5.0.1) is

componentwise non-negative. Consider the system,

ut = D∆u+H(u+) x ∈ Ω, 0 < t < T

vt = D̃∆Mv + F (u+, v+) x ∈M, 0 < t < T

D
∂u

∂η
= G(u+, v+) x ∈M, 0 < t < T (5.0.6)

u = u0 x ∈ Ω, t = 0
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v = v0 x ∈M, t = 0

where u+ = max(u(x, t), 0) and u− = −min(u(x, t), 0).

Proposition 5.0.11. Suppose F,G and H are locally Lipschitz, quasi-positive

functions, and u0, v0 are componentwise non-negative functions. Then the unique

solution (u, v) of (5.0.6) is componentwise non-negative.

Proof. Note that F (u+, v+), G(u+, v+) and H(u+) are locally Lipschitz functions

of u and v. Therefore from Theorem 5.0.10 there exists a unique maximal solution

to (5.0.6) on (0, Tmax). Consider (5.0.6) componentwise. Multiply the vit equation

by v−i and the ujt equation by u−j ,

v−i
∂vi
∂t

= d̃iv
−
i ∆Mvi + v−i Fi(u

+, v+) (5.0.7)

u−j
∂uj
∂t

= dju
−
j ∆uj + u−j Hj(u

+) (5.0.8)

Since w− dw
dt

= −1
2

d
dt

(w−)2,

1

2

∂

∂t
(v−i )2 +

1

2

∂

∂t
(u−j )2 = −d̃iv−i ∆Mvi − v−i Fi(u+, v+)

− dju−j ∆uj − u−j Hj(u
+)

Integrating (5.0.7) and (5.0.8) over M and Ω respectively, gives

1

2

d

dt
‖v−i (·, t)‖2

2,M +
1

2

d

dt
‖u−j (·, t)‖2

2,Ω = d̃i

∫
M

∇v−i · ∇vi −
∫
M

v−i Fi(u
+, v+)

+ dj

∫
Ω

∇u−j · ∇uj −
∫

Ω

u−j Hj(u
+)

65



CHAPTER 5. LOCAL EXISTENCE, UNIQUENESS, AND
NON-NEGATIVITY

−
∫
M

u−j Gj(u
+, v+)

Consequently,

1

2

d

dt
‖v−i (·, t)‖2

2,M +
1

2

d

dt
‖u−j (·, t)‖2

2,Ω + d̃i

∫
M

|∇v−i |2 + dj

∫
Ω

|∇u−j |2

= −
∫

Ω

u−j Hj(u
+)−

∫
M

u−j Gj(u
+, v+)−

∫
M

v−i Fi(u
+, v+)

Since F,G and H are quasi-positive and d̃i, dj > 0,

1

2

d

dt
‖v−i (·, t)‖2

2,M +
1

2

d

dt
‖ u−j (·, t) ‖2

2,Ω≤ 0

Therefore, the solution (u, v) is componentwise non-negative.

Corollary 5.0.12. Suppose F,G and H are locally Lipschitz, quasi-positive func-

tions, and u0, v0 are componentwise non-negative functions. Then the unique so-

lution (u, v) of (5.0.1) is componentwise non-negative.

Proof. From Theorem 5.0.10 and Proposition 5.0.11, there exists a unique, com-

ponentwise non-negative and maximal solution, (u, v) to (5.0.6) on (0, T̂ ). Infact

(u, v) also solves (5.0.1). The only observation left to make is T̂ = Tmax. If

T̂ < Tmax, then since (u, v) satisfies (5.0.1), it has to be bounded, which contra-

dicts the fact that (0, T̂ ) is the maximal interval of existence of (u, v) to (5.0.6).

Therefore T̂ = Tmax.
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Global Existence of Solutions

In this section we will establish the global existence of solutions of the reaction-

diffusion system

ut = d∆u+H(u) (x, t) ∈ Ω× (0, T )

vt = d̃∆Mv + F (u, v) (x, t) ∈M × (0, T )

d
∂u

∂η
= G(u, v) (x, t) ∈M × (0, T ) (6.0.1)

u = u0 x ∈ Ω, t = 0

v = v0 x ∈M, t = 0

Throughout, we assume F ∈ C1(R × R,R), G ∈ C1(R × R,R), H ∈ C1(R,R),

u0 ∈ W
2− 2

p
p (Ω), v0 ∈ W

2− 2
p

p (M) with p > n and, for p > 3, u0 and v0 satisfy

compatibility condition

d
∂u0

∂η
= G(u0, v0) on M.
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Also, F,G and H are quasi-positive (as in definition 5.0.8) and u0, v0 are non-

negative functions. Then from Theorem 5.0.10 there exists a unique non-negative

solution of system (6.0.1) on (Ω× [0, Tmax),M × [0, Tmax)).

In addition to the assumptions stated above, we assume the following condi-

tions:

(V1) There exists α, β > 0 such that

F (ζ, ν)+G(ζ, ν) ≤ α(ζ+ν+1) and H(ζ) ≤ β(ζ+1) for all ν ≥ 0, ζ ≥ 0

(V2) There exists Kg > 0 such that

G(ζ, ν) ≤ Kg(ζ + ν + 1) for all ν ≥ 0, ζ ≥ 0

(V3) There exists l ∈ N and Kf > 0 such that

F (ζ, ν) ≤ Kf (ζ + ν + 1)l for all ν ≥ 0, ζ ≥ 0

Remark 6.0.13. We refer to (V2) in some sense as a linear “intermediate sums”

condition mentioned by Morgan in [30], [31]. (V1) allows high-order nonlinearities

in F but requires cancellation of high-order positive terms by G. (V3) implies F

is polynomialy bounded above.

Remark 6.0.14. We will show that (V1) provides L1 estimates for u on Ω and v

on M , (V2) helps us obtain get better Lp estimates of u on M × (0, Tmax) from Lp

estimates of v on M × (0, Tmax), and finally (V3) allows us to use Lq bounds to
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obtain sup norm bounds on u and v.

Theorem 6.0.15. If (V 1) − (V 3) are satisfied then the unique solution (u, v) of

system (6.0.1) exists with Tmax =∞. i.e, (6.0.1) has a unique, non-negative global

solution.

Before proceeding to the proof of the Theorem 6.0.15, we obtain some prelim-

inary estimates and set up a bootstrapping framework.

6.1 Bootstrapping Strategy

The following system will play a central role in duality arguments.

Ψt = −d̃∆MΨ− ϑ̃ (x, t) ∈M × (τ, T )

Ψ = 0 x ∈M, t = T (6.1.2 a)

ϕt = −d∆ϕ− ϑ (x, t) ∈ Ω× (τ, T )

κ1d
∂ϕ

∂η
+ κ2ϕ = Ψ (x, t) ∈M × (τ, T ) (6.1.2 b)

ϕ = 0 x ∈ Ω, t = T

Here, 0 < τ < T < Tmax, ϑ̃ ∈ Lp(M × (τ, T )) and ϑ̃ ≥ 0 with ‖ϑ̃ ‖p,(M×(τ,T )) = 1,

and ϑ ∈ Lp(Ω× (τ, T )) and ϑ ≥ 0 with ‖ϑ ‖p,(Ω×(τ,T )) = 1. Also d > 0, d̃ > 0,

κ1 6= 0 and κ2 ∈ R. Lemmas 6.1.1 to 6.1.6 provide helpful estimates.

Lemma 6.1.1. Let p > 1 and suppose ϑ̃ ∈ Lp(M × (τ, T )). Then (6.1.2a) has a

unique solution Ψ ∈ Wp
2,1(M × (τ, T )) and there exists Ĉp,T > 0 independent of ϑ̃
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such that

‖Ψ‖(2)
p,M×(τ,T ) ≤ Ĉp,T‖ϑ̃‖p,M×(τ,T )

Proof. See Theorem 3.1.2.

Lemma 6.1.2. Let p > 1 and suppose ϑ ∈ Lp(Ω× (τ, T )), ϑ̃ ∈ Lp(M × (τ, T ))

and Ψ ∈ W
1− 1

p
, 1
2
− 1

2p
p (M × (τ, T )). Then (6.1.2b) has a unique solution ϕ ∈

W 2,1
p (Ω× (τ, T )). Moreover, there exists Cp,T > 0 independent of ϑ and ϑ̃ and

dependent on d, d̃, κ1 and κ2 such that

‖ϕ‖(2)
p,(Ω×(τ,T )) ≤ Cp,T (‖ϑ‖p,(Ω×(τ,T )) + ‖ϑ̃‖p,M×(τ,T ))

Proof. The result follows from Theorem 9.1, Ladyzenskaya [27] and Lemma 6.1.1.

Remark 6.1.3. If p > n+ 2 and κ1 6= 0, then ∇ϕ is Holder continuous in x and t.

See Corollary after Theorem 9.1, chapter 4 of Ladyzenskaya [27].

Lemma 6.1.4. Suppose l > 0 is a non-integral number, d > 0, ϑ ∈ C l, l
2 (Ω×[τ, T ]),

ϑ̃ ∈ C l, l
2 (M × [τ, T ]), ϕ(x, T ) ∈ C2+l(Ω) and Ψ ∈ C l+1,

(l+1)
2 (M × [τ, T ]). Then

(6.1.2b) has a unique solution in C l+2, l
2

+1(Ω× [τ, T ]). Moreover there exists c > 0

independent of Ψ and ϑ such that

|ϕ|(l+2)
Ω×[τ,T ] ≤ c

(
|ϑ|(l)Ω×[τ,T ] + |Ψ|(l+1)

M×(τ,T )

)

Proof. See Theorem 5.3 in chapter 4 of Ladyzenskaya [27].
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Lemma 6.1.5. Suppose 1 < p < ∞ and ϕ ∈ W 2,1
p (Ω × (τ, T )). If q ≥ p and

2− 2r− s−
(

1
p
− 1

q

)
(n+ 2) ≥ 0 then there exists K̃ > 0 depending on Ω, r, s, n, p

such that

‖Dr
tD

s
xϕ‖q,Ω×(τ,T ) ≤ K̃‖ϕ‖(2)

p,Ω×(τ,T )

Proof. See Lemma 3.3 in chapter 2, Ladyzenskaya [27].

Lemma 6.1.6. Suppose 1 < p < ∞ and ϕ ∈ Wp
2m,m(Ω× (τ, T )). Then for

2r + s < 2m− 2
p
, there exist c > 0 independent of ϕ such that

Dr
tD

s
xϕ|t=τ ∈ Wp

2m−2r−s− 2
p (Ω) and ‖ϕ ‖

(2m−2r−s− 2
p

)

p,Ω ≤ c‖ϕ ‖(2m)
p,Ω×(τ,T )

In addition, for 2r + s < 2m− 1
p

Dr
tD

s
xϕ|M×(τ,T ) ∈ Wp

2m−2r−s− 1
p
, m−r− s

2
− 1

2p (M × (τ, T ))

and ‖ϕ ‖
(2m−2r−s− 1

p
)

p,M×(τ,T ) ≤ c‖ϕ ‖(2m)
p,Ω×(τ,T )

Proof. See Lemma 3.4 in chapter 2, Ladyzenskaya [27].

Now we state some results for (6.1.2b) with κ1 = 0, which are also used in later

arguments.

Lemma 6.1.7. Let p > 1, κ1 = 0 and suppose ϑ ∈ Lp(Ω × (τ, T )) and Ψ ∈

W
2− 1

p
,1− 1

2p
p (M× (τ, T )). Then (6.1.2b) has a unique solution ϕ ∈ W 2,1

p (Ω× (τ, T )).

Furthermore there exists CT > 0 independent of ϑ, ϕ0 and Ψ such that

‖ϕ‖(2)
p,Ω×(τ,T ) ≤ CT (‖ϑ‖p,Ω×(τ,T ) + ‖Ψ‖

(2− 1
p
,1− 1

2p
)

p,M×(τ,T ) )

Proof. See Theorem 9.1 in chapter 4 of Ladyzenskaya [27].
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Remark 6.1.8. If p > n+2
2

, κ1 = 0 and ϕ satisfies system (6.1.2b), then ϕ is a

Holder continuous function in x and t. See Corollary after Theorem 9.1, chapter

4 of Ladyzenskaya [27].

Remark 6.1.9. There is more regularity on Ψ than is required in further arguments.

Remark 6.1.10. By Lemma 6.1.1, Lemma 6.1.2 and Lemma 6.1.6, we have ϕ(·, τ) ∈

W 2− 2
p (Ω), Ψ(·, τ) ∈ W 2− 2

p (M) and there exists c > 0 independent of ϕ, Ψ such

that

‖ϕ(·, τ) ‖
(2− 2

p
)

p,Ω ≤ c‖ϕ ‖(2)
p,Ω×(τ,T ) and ‖Ψ(·, τ) ‖

(2− 2
p

)

p,M ≤ c‖Ψ ‖(2)
p,M×(τ,T )

respectively. Moreover, if p > n there exists c > 0 independent of ϕ, Ψ such that

‖ϕ‖∞,Ω×(τ,T ) ≤ c‖ϕ(·, τ)‖
(2− 2

p
)

p,Ω and ‖Ψ‖∞,M×(τ,T ) ≤ c‖Ψ(·, τ)‖
(2− 2

p
)

p,M

respectively.

Lemma 6.1.11. Let 1 < p < n + 2 and 1 < q ≤ (n+1)p
n+2−p . There exists a constant

Ĉ > 0 depending on p, T,M and n such that if ϕ ∈ W 2,1
p (Ω× (τ, T )), then

∥∥∥∥∂ϕ∂η
∥∥∥∥
q,M×(τ,T )

≤ Ĉ‖ϕ‖(2)
p,Ω×(τ,T )

Proof. It suffices to consider the case when ϕ is smooth in Ω × [τ, T ] as such

functions are dense in W 2,1
p (Ω× [τ, T ]). M is a C2+µ, n− 1 dimensional manifold

(µ > 0). Therefore, for every ξ̂ ∈ M there exists εξ̂ > 0, an open set V ⊂ Rn

containing 0, and a C2+µ diffeomorphism ψ : V → B(ξ̂, εξ̂) such that ψ(0) = ξ̂,
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ψ({x ∈ V : xn > 0}) = B(ξ̂, εξ̂) ∩ Ω and ψ({x ∈ V : xn = 0}) = B(ξ̂, εξ̂) ∩M .

Since ψ is a C2 diffeomorphism, (ψ−1)n, the nth component of ψ−1, is differentiable

in B(ξ̂, εξ̂), and by definition of ψ, (ψ−1)n(ξ) = 0 if and only if ξ ∈ B(ξ̂, εξ̂) ∩M .

Further,∇(ψ−1)n(ξ) is nonzero and orthogonal toB(ξ̂, εξ̂)∩M at each ξ ∈ B(ξ̂, εξ̂)∩

M . Without loss of generality, we assume the outward unit normal is given by

η(ξ) =
∇(ψ−1)n(ξ)

|(∇ψ−1)n(ξ)|
∀ ξ ∈ B(ξ̂, εξ̂) ∩M

We know,

∂ϕ

∂η
(ξ) = ∇ξϕ(ξ) · η(ξ) ∀ ξ ∈ B(ξ̂, εξ̂) ∩M

Now in order to transform ∂ϕ(ξ)
∂η

back to Rn, pick L > 0, such that

E = [−L,L]× [−L,L]× ...× [−L,L]︸ ︷︷ ︸
(n− 1) times

×[0, L] ⊂ V , and define ϕ̃ such that

ϕ̃(x) = −
∫ xn

0

∇xϕ(ψ(x′, z))(ψ−1(x′, z))′ · η(ψ(x′, z))dz ∀ x ∈ E
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We know ϕ ∈ W 2,1
p (Ω× (τ, T )). Therefore from Lemma 6.1.5, there exists 0 < α <

L and Kξ̂ > 0, depending on Ω, n, p such that

∫
Sα

∣∣∣∣∂ϕ̃(x′, α, t)

∂xn

∣∣∣∣q < Kξ̂‖ϕ‖
(2)
p,Ω×(τ,T ) ∀ 1 < q ≤ (n+ 2)p

n+ 2− p
(6.1.2)

where Sα = E|xn=α × (τ, T ) and Sxn = E|0≤xn≤α × (τ, T ). Using the fundamental

theorem of calculus,

∫
E×(τ,T )

∣∣∣∣∂ϕ̃(x′, 0, t)

∂xn

∣∣∣∣q ≤ ∫
Sα

∣∣∣∣∂ϕ̃(x′, α, t)

∂xn

∣∣∣∣q + q

∫
Sxn

∣∣∣∣∂ϕ̃(x′, s, t)

∂xn

∣∣∣∣q−1

.

∣∣∣∣∂2ϕ̃(x′, s, t)

∂x2
n

∣∣∣∣
Using (6.1.2),

∫
E×(τ,T )

∣∣∣∣∂ϕ̃(x′, 0, t)

∂xn

∣∣∣∣q ≤ Kξ̂‖ϕ‖
(2)
p,Ω×(τ,T ) + q

∫
Sxn

∣∣∣∣∂ϕ̃(x′, s, t)

∂xn

∣∣∣∣q−1

.

∣∣∣∣∂2ϕ̃(x′, s, t)

∂x2
n

∣∣∣∣
Applying Hölder inequality,

∫
E×(τ,T )

∣∣∣∣∂ϕ̃(x′, 0, t)

∂xn

∣∣∣∣q ≤ q

(∫
Sxn

∣∣∣∣∂ϕ̃(x′, s, t)

∂xn

∣∣∣∣
(q−1)p
p−1

) p−1
p (∫

Sxn

∣∣∣∣∂2ϕ̃(x′, s, t)

∂x2
n

∣∣∣∣p) 1
p

+Kξ̂‖ϕ‖
(2)
p,Ω×(τ,T )

Recall ∂2ϕ̃
∂x2n
∈ Lp(Sxn). So using Lemma 6.1.5 we have

∫
E×(τ,T )

∣∣∣∣∂ϕ̃(x′, 0, t)

∂xn

∣∣∣∣q ≤ K̂‖ϕ‖(2)
p,Ω×(τ,T ) (6.1.3)

Now, M is a compact manifold. Therefore there exists set A = {P1, ..., PN} ⊂

M such that M ⊂ ∪1≤i≤NB(Pi, εPi). Let Vi, K̂i and αi be the open sets and
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constants respectively obtained above when ξ̂ = Pi. Then,

∫ T

τ

∫
M

∣∣∣∣∂ϕ∂η
∣∣∣∣q EΣ ≤

∑
Pi∈A

∫ T

τ

∫
B(Pi,ε)

∣∣∣∣∂ϕ∂η
∣∣∣∣q EΣ

≤ C
∑
Pi∈A

∫ T

τ

∫
Vi|xn=0

∣∣∣∣ ∂ϕ̃∂xn
∣∣∣∣q

≤ C
∑
Pi∈A

K̃i‖ϕ‖(2)
p,Ω×(τ,T )

Therefore, for some Ĉ > 0, depending only upon p, τ, T,M and n, we get

∥∥∥∥∂ϕ∂η
∥∥∥∥
q,M×(τ,T )

≤ Ĉ‖ϕ‖(2)
p,Ω×(τ,T )

The following Lemma plays a key role in bootstrapping Lp estimates of solutions

to (6.0.1).

Lemma 6.1.12. Suppose (V 1) holds and 0 < Tmax < ∞. Then u ∈ L1(M ×

(0, Tmax)), u ∈ L1(Ω× (0, Tmax)) and v ∈ L1(M × (0, Tmax)).

Proof. Consider the system

ϕt = −d∆ϕ (x, t) ∈ Ω× (0, T )

d
∂ϕ

∂η
= αϕ+ 1 (x, t) ∈M × (0, T ) (6.1.4)

ϕ = 0 x ∈ Ω, t = T

where α is given in (V1), d > 0, 0 < µ < 1, M is a C2+µ manifold, and non-negative

ϕT ∈ C2+Υ (Ω) for some 0 < Υ < 1. From Lemma 6.1.4, ϕ ∈ C2+Υ,Υ
2

+1(Ω× [0, T ])
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and therefore by standard sequential argument ϕ ∈ CΥ+2,Υ
2

+1(M × [0, T ]). Now

having enough regularity for ϕ on M × [0, T ], consider

∆Mϕ = − 1√
det g

∂j(g
ij
√
det g ∂iϕ)

and further let ϑ̃ = −ϕt − d̃∆Mϕ. Note that although ∆M (Laplace Beltrami

operator) is defined in local coordinates, infact this expression is independent of

the choice of local coordinates (see Rosenberg [39], Ex 19), and as a result we

obtain the following system on M × (0, T ).

ϕt = −d̃∆Mϕ− ϑ̃ (x, t) ∈M × (0, T )

ϕ = ϕ̃ x ∈M, t = T

Now, multiplying v with ϑ̃ and integrating over M × (0, T ),

∫ T

0

∫
M

vϑ̃ =

∫ T

0

∫
Ω

u(−ϕt − d∆ϕ) +

∫ T

0

∫
M

v(−ϕt − d̃∆Mϕ)

=

∫ T

0

∫
Ω

ϕ(ut − d∆u) +

∫ T

0

∫
M

ϕ(vt − d̃∆Mv)− d
∫ T

0

∫
M

u
∂ϕ

∂η

+ d

∫ T

0

∫
M

∂u

∂η
ϕ+

∫
Ω

u(x, 0)ϕ(x, 0) +

∫
M

v(x, 0)ϕ(x, 0)

Using d∂ϕ
∂η

= αϕ+ 1

∫ T

0

∫
M

u ≤
∫ T

0

∫
Ω

ϕH(u) +

∫ T

0

∫
M

(F (u, v) +G(u, v))ϕ

+

∫
Ω

u(x, 0)ϕ(x, 0) +

∫
M

v(x, 0)ϕ(x, 0)−
∫ T

0

∫
M

vϑ̃
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Using (V1),

∫ T

0

∫
M

u ≤
∫ T

0

∫
Ω

βϕ(u+ 1) +

∫ T

0

∫
M

α(v + 1)ϕ (6.1.5)

+

∫
Ω

u(x, 0)ϕ(x, 0) +

∫
M

v(x, 0)ϕ(x, 0)−
∫ T

0

∫
M

vϑ̃

Now, integrating the u equation over Ω and the v equation over M ,

d

dt

(∫
Ω

u+

∫
M

v

)
= d

∫
Ω

∆u+

∫
Ω

H(u) + d̃

∫
M

∆v +

∫
M

F (u, v)

≤ β

∫
Ω

(u+ 1) +

∫
M

(G(u, v) + F (u, v))

≤ β

∫
Ω

(u+ 1) + α

∫
M

(u+ v + 1) (6.1.6)

Note from Remarks 6.1.3 and 6.1.10, ϕ is Hölder continuous on Ω × [0, T ], and

using the regularity of the initial data u0 and v0, all the integrands of each term

are integrable. Integrating (6.1.6) over (0, T ) and using (6.1.5), gives

∫
Ω

u(x, T ) +

∫
M

v(x, T ) ≤ β̃

∫ T

0

∫
Ω

u+ α̃

∫ T

0

∫
M

v + L̃(T ) (6.1.7)

where

L̃(T ) = α|M |T + β|Ω|T + αβ‖ϕ‖1,Ω×(0,T ) + α2‖ϕ‖1,M×(0,T ) + α‖u(x, 0)‖1,Ω · ‖ϕ(x, 0)‖∞,Ω

+ ‖v(x, 0)‖1,M + α‖v(x, 0)‖1,M · ‖ϕ(x, 0)‖∞,M + ‖u(x, 0)‖1,Ω

α̃ = α2‖ϕ‖∞,M×(0,T ) + α + α‖θ̃‖M×(0,T ) and β̃ = β + αβ‖ϕ‖∞,Ω×(0,T )
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Now using Gronwall’s inequality, for all 0 ≤ t < T < Tmax

∫
Ω

u(x, t) +

∫
M

v(ζ, t) ≤ L̃(T ) + (α̃(T ) + β̃(T ))

∫ T

0

L̃(s) exp

(∫ T

s

α̃(r) + β̃(r)dr

)
ds

≤ CT

Therefore, (u, v) being nonnegative implies
∫

Ω
u < CT and

∫
M
v ≤ CT . Substitut-

ing the L1 estimate of u on Ω and v on M in (6.1.5), yields

∫ T

0

∫
M

u ≤ β
(
‖ϕ‖∞,Ω×(0,T )‖u‖1,Ω×(0,T ) + |Ω|T‖ϕ‖∞,Ω×(0,T )

)
+ α

(
‖ϕ‖∞,M×(0,T )‖v‖1,M×(0,T ) + |M |T‖ϕ‖∞,M×(0,T )

)
+ ‖u(·, 0)‖1,Ω‖ϕ(·, 0)‖∞,Ω + ‖v(·, 0)‖1,M‖ϕ(·, 0)‖∞,M + ‖v‖1,M×(0,T )‖ϑ̃‖∞,M

Hence u ∈ L1(M × (0, T )).

Lemma 6.1.13. Suppose (V 1) and (V 2) hold and if q > 1 such that v ∈ Lq(M ×

(0, T )). Then u ∈ Lq(M × (0, T )) and u ∈ Lq(Ω× (0, T )).

Proof. Multiplying the ut equation by uq−1, we get

∫ t

0

∫
Ω

uq−1ut = d

∫ t

0

∫
Ω

uq−1∆u+

∫ t

0

∫
Ω

uq−1H(u)

= d

∫ t

0

∫
M

uq−1∂u

∂η
− d

∫ t

0

∫
Ω

(q − 1)uq−2|∇u|2 +

∫ t

0

∫
Ω

uq−1H(u)

Using (V 2)

∫
Ω

uq

q
+ d

∫ t

0

∫
Ω

4(q − 1)

q2
|∇u

q
2 |2 ≤ Kg

∫ t

0

∫
M

uq−1(u+ v + 1) + β

∫ t

0

∫
Ω

(u+ 1)uq−1
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+

∫
Ω

uq0
q

(6.1.8)

Also for 1 < q ≤ ∞, for all ε > 0 there exists Cε > 0 such that,

∫ t

0

∫
M

uq ≤ Cε

∫ t

0

∫
Ω

uq + ε

∫ t

0

∫
Ω

|∇u
q
2 |2 (6.1.9)

Applying Young’s inequality in (6.1.8) and using (6.1.9) for some ε > 0, gives

1

q

d

dt

∫ t

0

∫
Ω

uq ≤ K̃1

∫ t

0

∫
Ω

uq + K̃2 (6.1.10)

for some K̃1, K̃2 > 0 depending on t. Therefore, from Gronwall’s Inequailty

u ∈ Lq(Ω× (0, t))

and there exists L1 > 0 such that

∫ t

0

∫
Ω

uq ≤ L1

(
ek̃1qt+1

)

From (6.1.8),

ε

∫ t

0

∫
Ω

|∇u
q
2 |2 ≤ 2ε

∫ t

0

∫
M

uq + ε

∫ t

0

∫
M

vq + ε

(∫ t

0

∫
M

uq
) q−1

q

(t|M |)
1
q +

ε

∫
Ω

uq0
q

+ βε

∫ t

0

∫
Ω

(uq + uq−1) (6.1.11)
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Using (6.1.9) and (6.1.11) we have,

∫ t

0

∫
M

uq ≤ Cε

∫ t

0

∫
Ω

uq + ε

∫
Ω

uq0
q

+ βε

∫ t

0

∫
Ω

(uq + uq−1)

2ε

∫ t

0

∫
M

uq + ε

∫ t

0

∫
M

vq + ε

(∫ t

0

∫
M

uq
) q−1

q

(t|M |)
1
q

Now choosing ε such that 1− 2ε− ε(t|M |)
1
q > 0 and using the estimate above for

u on (Ω× (0, t)), we have u ∈ Lq(M × (0, T )).

Lemma 6.1.14. Suppose (V 1) and (V 2) hold. If q ≥ 1 such that u ∈ Lq(Ω×(τ, T ))

and u, v ∈ Lq(M × (τ, T )). Then u ∈ Lp(Ω× (τ, T )) and u, v ∈ Lp(M × (τ, T )) for

all p > 1, and there exists Cp,T > 0 such that

‖u‖p,Ω×(τ,T ) + ‖v‖p,M×(τ,T ) ≤ Cp,T
(
‖u‖q,M×(τ,T ) + ‖u‖q,Ω×(τ,T ) + ‖v‖q,M×(τ,T )

)
Proof. First we show there exists r > 1 such that u ∈ Lrq(Ω × (τ, T )) and v ∈

Lrq(M × (τ, T )). Consider the system (6.1.2a) and (6.1.2b) with κ1 = 0, κ2 = 1,

and ϑ̃ ≥ 0 and ϑ̃ ∈ Lp(M × (τ, T )) with ‖ϑ̃ ‖p,(M×(τ,T )) = 1, and ϑ ≥ 0 and

ϑ ∈ Lp(Ω× (τ, T )) with ‖ϑ ‖p,(Ω×(τ,T )) = 1. Multiplying u with ϑ and v with ϑ̃

and integrating over Ω× (τ, T ) and M × (τ, T ) respectively, gives

∫ T

τ

∫
Ω

uϑ+

∫ T

τ

∫
M

vϑ̃ =

∫ T

τ

∫
Ω

u(−ϕt − d∆ϕ) +

∫ T

τ

∫
M

v(−Ψt − d̃∆MΨ)

=

∫ T

τ

∫
Ω

ϕ(ut − d∆u) +

∫ T

τ

∫
M

Ψ(vt − d̃∆Mv)

− d
∫ T

τ

∫
M

u
∂ϕ

∂η
+ d

∫ T

τ

∫
M

∂u

∂η
ϕ+

∫
Ω

u(x, τ)ϕ(x, τ)

+

∫
M

v(x, τ)Ψ(x, τ)−
∫
M

v(x, T )Ψ(x, T )−
∫

Ω

u(x, T )ϕ(x, T )
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Since Ψ(x, T ) = 0 and ϕ(x, T ) = 0,

∫ T

τ

∫
Ω

uϑ+

∫ T

τ

∫
M

vϑ̃ ≤
∫ T

τ

∫
Ω

ϕH(u) +

∫ T

τ

∫
M

(F (u, v) +G(u, v))Ψ

− d
∫ T

τ

∫
M

u
∂ϕ

∂η
+

∫
Ω

u(x, τ)ϕ(x, τ)

+

∫
M

v(x, τ)Ψ(x, τ)

Using (V 1),

∫ T

τ

∫
Ω

uϑ+

∫ T

τ

∫
M

vϑ̃ ≤
∫ T

τ

∫
Ω

βϕ(u+ 1) +

∫ T

τ

∫
M

α(u+ v + 1)Ψ

− d
∫ T

τ

∫
M

u
∂ϕ

∂η
+

∫
Ω

u(x, τ)ϕ(x, τ)

+

∫
M

v(x, τ)Ψ(x, τ) (6.1.12)

Now we break the argument in two cases.

Case 1: Suppose q = 1. Then u ∈ L1(Ω × (τ, T )) and u, v ∈ L1(M × (τ, T )).

Let ε > 0 and set p = n + 2 + ε. Set p′ = n+2+ε
n+1+ε

(conjugate of p). Remarks

6.1.3 and 6.1.10, and Lemma 6.1.12 imply all of the integrals on the right hand

side of (6.1.12) are finite. Application of Hölder’s inequality in (6.1.12), yields

v ∈ Lp′(M × (0, T )), and there exists Cp,T > 0 such that

‖u‖p′,Ω×(τ,T ) + ‖v‖p′,M×(τ,T ) ≤ Cp,T (‖u‖1,Ω×(τ,T ) + ‖v‖1,M×(τ,T ) + ‖u‖1,M×(τ,T ))

Therefore, Lemma 6.1.13 implies u ∈ Lp′(M × (0, T )). So for this case r = n+2+ε
n+1+ε

.

Case 2: Suppose q > 1 such that u ∈ Lq(Ω× (τ, T )) and u, v ∈ Lq(M × (τ, T )).

Recall p > 1, 0 ≤ ϑ̃ ∈ Lp(M × (τ, T )) with ‖ϑ̃ ‖p,(M×(τ,T )) = 1 and 0 ≤ ϑ ∈
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Lp(Ω× (τ, T )) with ‖ϑ ‖p,(Ω×(τ,T )) = 1. Also p′ = p
p−1

, q′ = q
q−1

. Applying

Hölder inequality in 6.1.12 and further using Remark 6.1, Lemma 6.1.11, yields

v ∈ Lp′(M × (τ, T )), u ∈ Lp′(Ω× (τ, T )) that is there exists C̃p,T such that

‖u‖p′,Ω×(τ,T ) + ‖v‖p′,M×(τ,T ) ≤ Cp,T (‖u‖q,Ω×(τ,T ) + ‖v‖q,M×(τ,T ) + ‖u‖q,M×(τ,T ))

provided p′ ≤ (n+2)q
n+1

. So, in this case r = (n+2)q
n+1

.

Now, by repeating the above argument for rq instead of q, we get v ∈ Lr2q(M×

(τ, T )), u ∈ Lr2q(Ω× (τ, T )), and continuing in this manner, we get v ∈ Lrmq(M ×

(τ, T )), u ∈ Lr2q(Ω × (τ, T )), for all m > 1. As r > 1, lim
m→∞

rmq → ∞, and

as a result, v ∈ Lp(M × (τ, T )) for all p > 1. Hence from Lemma 6.1.13, u ∈

Lp(M × (τ, T )) and u ∈ Lp(Ω× (τ, T )) for all p > 1, and there exists Cp,T > 0 such

that

‖u‖p,Ω×(τ,T ) + ‖v‖p,M×(τ,T ) ≤ Cp,T
(
‖u‖q,M×(τ,T ) + ‖u‖q,Ω×(τ,T ) + ‖v‖q,M×(τ,T )

)

Theorem 6.1.15. Suppose conditions (V 1)− (V 3) are satisfied. Then (6.0.1) has

a componentwise non-negative global solution.

Proof. From Theorem 5.0.10, we already have local existence and uniqueness for

(6.0.1). If Tmax = ∞, then we are done. So, by way of contradiction assume

Tmax <∞. From Lemma 6.2.1, we have Lp estimates for our solution for all p ≥ 1,

on Ω× (0, Tmax) and M × (0, Tmax). We know from (V 2) and (V 3) that F and G
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are polynomially bounded above. So, consider the system

Ut = d∆U + β(u+ 1) (x, t) ∈ Ω× (0, Tmax)

Vt = d̃∆MV +Kf (u+ v + 1)l (x, t) ∈M × (0, Tmax)

d
∂U

∂η
= Kg(u+ v + 1) (x, t) ∈M × (0, Tmax) (6.1.13)

U = u0 x ∈ Ω, t = 0

V = v0 x ∈M, t = 0

Note that u ≤ U and v ≤ V for all t ≥ 0. For all q ≥ 1, Kf (u + v + 1)l and

Kg(u+ v+ 1) lie in the Lq(M × (0, Tmax)). Now using Theorem 4.1.5, the solution

of (6.2.16) is bounded for finite time. Therefore, by the Maximum Principle [37],

the solution of (6.0.1) is bounded for finite time. This contradicts the Theorem

5.0.10. Therefore, Tmax =∞.

6.2 Uniform Estimates

Lemma 6.2.1. Suppose there exists τ ≥ 0, q ≥ 1 such that u ∈ Lq(Ω× (τ, τ + 2))

and u, v ∈ Lq(M × (τ, τ + 2)). If p′ = (n+3)q
n+2

, there exists C > 0 independent of τ

such that

‖u‖p′,Ω×(τ+1,τ+2) + ‖v‖p′,M×(τ+1,τ+2)

≤ C
(
‖u‖q,M×(τ,τ+2) + ‖u‖q,Ω×(τ,τ+2) + ‖v‖q,M×(τ,τ+2)

)
Proof. In order to show that there exists r > 1 such that u ∈ Lrq(Ω × (τ, τ +
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2)) and v ∈ Lrq(M × (τ, τ + 2)), consider the system (6.1.2a) with T = τ + 2,

κ1 = 0 and κ2 = 1. 0 ≤ ϑ̃ ∈ Lp(M × (τ, τ + 2)) with ‖ϑ̃ ‖p,(M×(τ,τ+2)) = 1 and

0 ≤ ϑ ∈ Lp(Ω× (τ, τ + 2)) with ‖ϑ ‖p,(Ω×(τ,τ+2)) = 1. Define a cut off function

ψ ∈ C0
∞(R, [0, 1]) such that ψ(t) = 1 for all t ≥ τ + 1 and ψ(t) = 0 for all

t ≤ τ . In addition, we define w(x, t) = ψ(t)Ψ(x, t) and z(x, t) = ψ(t)ϕ(x, t). From

construction, w(x, t) = Ψ(x, t) and z(x, t) = ϕ(x, t) for all (x, t) ∈M×(τ+1, τ+2)

and (x, t) ∈ Ω× (τ + 1, τ + 2) respectively . Also w, z satisfies the following system

zt = −d∆z − ψ(t)ϑ+ ψ′(t)ϕ(x, t) (x, t) ∈ Ω× (τ, τ + 2)

wt = −d̃∆Mw − ψ(t)ϑ̃+ ψ′(t)Ψ(t) (x, t) ∈M × (τ, τ + 2)

w = z (x, t) ∈M × (τ, τ + 2) (6.2.14)

z = 0 x ∈ Ω, t = τ + 2

w = 0 x ∈M, t = τ + 2

Multiplying u with ψ(t)ϑ and v with ψ(t)ϑ̃ and integrating over Ω× (τ, τ + 2) and

M × (τ, τ + 2),

∫ τ+2

τ

∫
Ω

uψϑ+

∫ τ+2

τ

∫
M

vψϑ̃

=

∫ τ+2

τ

∫
Ω

u(− zt − d∆z + ψ′ϕ) +

∫ τ+2

τ

∫
M

v(−wt − d̃∆Mw + ψ′Ψ)

=

∫ τ+2

τ

∫
Ω

z(ut − d∆u) + uψ′ϕ+

∫ τ+2

τ

∫
M

w(vt − d̃∆Mv) + vψ′Ψ

−d
∫ τ+2

τ

∫
M

u
∂z

∂η
+ d

∫ τ+2

τ

∫
M

∂u

∂η
z +

∫
Ω

u(x, τ)z(x, τ)−
∫

Ω

u(x, τ + 2)z(x, τ + 2)

+

∫
M

v(x, τ)w(x, τ)−
∫
M

v(x, τ + 2)w(x, τ + 2)
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Since w(x, τ + 2) = 0, z(x, τ + 2) = 0, w(x, τ) = 0 and z(x, τ) = 0.

∫ τ+2

τ+1

∫
Ω

uϑ+

∫ τ+2

τ+1

∫
M

vϑ̃ ≤
∫ τ+2

τ

∫
M

(F (u, v) +G(u, v))w +

∫ τ+2

τ

∫
Ω

zH(u)

+

∫ τ+2

τ

∫
M

vψ′Ψ +

∫ τ+2

τ

∫
Ω

uψ′ϕ

− d
∫ τ+2

τ

∫
M

u
∂z

∂η

Using (V 1),

∫ τ+2

τ+1

∫
Ω

uϑ+

∫ τ+2

τ+1

∫
M

vϑ̃ ≤
∫ τ+2

τ

∫
M

α(u+ v + 1)w +

∫ τ+2

τ

∫
Ω

β(u+ 1)z

+

∫ τ+2

τ

∫
M

vψ′Ψ +

∫ τ+2

τ

∫
Ω

uψ′ϕ

− d
∫ τ+2

τ

∫
M

u
∂z

∂η
(6.2.15)

Now we break the argument in two cases.

Case 1: Suppose q = 1. u ∈ L1(Ω× (τ, τ + 2)) and u, v ∈ L1(M × (τ, τ + 2))

Set p = n + 3 then p′ = n+3
n+2

(conjugate of p). Remark 6.1.3, 6.1.10 and Lemma

6.1.12 implies all the integrals are finite. Application of Hölder inequality in 6.2.15,

yields v ∈ Lp′(M × (τ + 1, τ + 2)) that is, there exists C such that

‖u‖p′,Ω×(τ+1,τ+2) + ‖v‖p′,M×(τ+1,τ+2)

≤ C(‖u‖1,Ω×(τ,τ+2) + ‖v‖1,M×(τ,τ+2) + ‖u‖1,M×(τ,τ+1))

and therefore, Lemma 6.1.13 implies u ∈ Lp′(M × (τ + 1, τ + 2)). So, for this

case r = n+3
n+2

.
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Case 2: Suppose q > 1. u ∈ Lq(Ω× (τ, τ + 2)) and u, v ∈ Lq(M × (τ, τ + 2))

Let p′ = p
p−1

, ϑ̃ ≥ 0 ∈ Lp(M × (τ, τ + 2)) with ‖ϑ̃ ‖p,(M×(τ,τ+2)) = 1 and ϑ ≥ 0 ∈

Lp(Ω× (τ, τ + 2)) with ‖ϑ ‖p,(Ω×(τ,τ+2)) = 1. Applying Hölder inequality in 6.2.15

and further using Remark 6.1, Lemma 6.1.11, yields v ∈ Lp′(M×(τ+1, τ+2)), u ∈

Lp′(Ω× (τ + 1, τ + 2)) that is there exists C̃ such that

‖u‖p′,Ω×(τ+1,τ+2) + ‖v‖p′,M×(τ+1,τ+2)

≤ C̃(‖u‖q,Ω×(τ,τ+2) + ‖v‖q,M×(τ,τ+2) + ‖u‖q,M×(τ,τ+2))

since p′ ≤ (n+2)q
n+1

. The result follows.

Theorem 6.2.2. Suppose F , G, and H are C1, and satisfy (V 1) − (V 3). If u0,

v0 are component-wise bounded and nonnegative then Tmax = ∞. Furthermore, if

there exists K1 > 0 independent of τ ≥ 0 such that

∫ τ+1

τ

∫
Ω

u+

∫ τ+1

τ

∫
M

v +

∫ τ+1

τ

∫
M

u ≤ K1

Then the solution is uniformly bounded in sup-norm.

Proof. From Theorem 6.1.15, we already have global existence of the solution to

(6.0.1). Since our solution is uniformly bounded for 0 < t < 1, repeated application

of Lemma 6.2.1 and our hypothesis implies that if p > 1 and τ ≥ 0 then there

exists Cp ≥ 0 independent of τ such that

‖u‖p,Ω×(τ+1,τ+2), ‖u‖p,M×(τ+1,τ+2), ‖v‖p,M×(τ+1,τ+2) ≤ Cp
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are bounded. We know from (V 2) and (V 3), F and G are polynomially bounded.

So, consider the system

ũt = d∆ũ+ β(u+ 1) (x, t) ∈ Ω× (τ, τ + 2)

ṽt = d̃∆M ṽ +Kf (u+ v + 1)l (x, t) ∈M × (τ, τ + 2)

d
∂ũ

∂η
= Kg(u+ v + 1) (x, t) ∈M × (τ, τ + 2) (6.2.16)

ũ = u0 x ∈ Ω, t = τ

ṽ = v0 x ∈M, t = τ

For some p sufficiently large depending on l, Kf (u + v + 1)l and Kg(u + v + 1)

has a uniform (independent of time) Lp bounds. Now we define a cut off function

ψ ∈ C0
∞(R, [0, 1]) such that ψ(t) = 1 for all t ≥ τ + 1 and ψ(t) = 0 for all

t ≤ τ . In addition, we define v̂(x, t) = ψ(t)ṽ(x, t) and û(x, t) = ψ(t)ũ(x, t). From

construction, v̂(x, t) = ṽ(x, t) and û(x, t) = ũ(x, t) for all (x, t) ∈M× (τ +1, τ +2)

and (x, t) ∈ Ω× (τ + 1, τ + 2) respectively . Also û, v̂ satisfies the system

ût = d∆û+ ψ′(t)ũ(x, t) + ψβ(u+ 1) (x, t) ∈ Ω× (τ, τ + 2)

v̂t = d̃∆M v̂ + ψ(t)Kf (u+ v + 1)l + ψ′(t)ṽ(x, t) (x, t) ∈M × (τ, τ + 2)

d
∂û

∂η
= ψKg(u+ v + 1) (x, t) ∈M × (τ, τ + 2)

û = 0 x ∈ Ω, t = τ

v̂ = 0 x ∈M, t = τ

Note that u ≤ û and v ≤ v̂ for all t ≥ 0. Now using Theorem 4.1.5, solution of
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system (6.2.16) is bounded. Therefore, by the Maximum Principle [37] solution of

(6.0.1) is uniformly bounded (see [17]).

Corollary 6.2.3. Suppose F +G ≤ 0. Then there exists K1 > 0 such that

∫ τ+1

τ

∫
Ω

u+

∫ τ+1

τ

∫
M

v +

∫ τ+1

τ

∫
M

u ≤ K1

for all τ ≥ 0, and the solution to (6.0.1) is sup norm bounded.
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Chapter 7

Examples

During bacterial cytokinesis, a proteinaceous contractile, called the Z ring assem-

bles in the cell middle. The Z ring tethers to the membrane and contracts, when

triggered, to form two identical daughter cells. Positioning the Z ring at mid-

cell involves two independent processes, referred to as Min system inhibition and

nucleoid occlusion ([40], [41] Sun and Margolin 2001). The Min system involves

proteins MinC, MinD, and MinE ([38] Raskin and de Boer 1999). MinC inhibits Z

ring assembly while the action of MinD and MinE serve to exclude MinC from the

midcell region. This promotes the assembly of the Z ring at the midcell. Thomas

Pollard in [36] gives an overview of progress in understanding the mechanism of

cytokinesis in fission yeast using fluorescence microscopy of proteins tagged with

fluorescent proteins to establish the temporal and spatial pathway for the assem-

bly and constriction of the contractile ring. Zhang, Morgan, and Lindahl [44]

considered the Min subsystem involving 6 chemical reactions and 5 components,

under specific rates and parameters and performed a numerical investigation using
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a finite volume method on a one dimensional mathematical model.

Note this Z ring is also referred to as the FtsZ ring. Table 7.1 shows the

assumed chemical reactions. In the multidimensional setting, the concentration

Table 7.1: Reactions and Reaction Rates
Chemicals Reactions Reaction Rates

Min D DADP
cyt

kexc−−→ DATP
cyt Rexc = kexc[D

ADP
cyc ]

Min D DATP
cyt

kDcytD
ATP
mem−−−−−−−→ RDcyt = kDcyt[D

ATP
cyc ]

DATP
cyt

kDmem [DATPmem]−−−−−−−−→ DATP
mem RDmem = kDmem[DATP

mem][DATP
cyc ]

Min E E +DATP
mem

kEcyt−−−→ E : DATP
mem REcyt = kEcyt[E[DATP

mem]

E +DATP
mem

kEmem[E:DATPmem]2−−−−−−−−−−→ E : DATP
mem REmem = kEmem[DATP

mem][E][E : DATP
mem]2

Min E E : DATP
mem

kexp−−→ E +DADP
cyt Rexp = kexp[E : DATP

mem]

density satisfy the reaction-diffusion system given by

∂[DATP
cyt ]

∂t
= σDcyt∆[DATP

cyt ] +Rexc x ∈ Ω, t > 0

∂[DATP
cyt ]

∂η
= −RDmem −RDcyt x ∈M, t > 0

∂[DADP
cyt ]

∂t
= σADcyt∆[DATP

cyt ]−Rexc x ∈ Ω, t > 0

∂[DADP
cyt ]

∂η
= Rexp x ∈M, t > 0

∂[Ecyt]

∂t
= σEcyt∆[Ecyt] x ∈ Ω, t > 0

∂[Ecyt]

∂η
= Rexp −REcyt −REmem x ∈M, t > 0

∂[DATP
mem]

∂t
= σDmem∆M [DATP

mem]

+RDcyt +RDmem −REcyt −REmem x ∈M, t > 0
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∂[E : DATP
mem]

∂t
= σE:Dmem∆M [E : DATP

mem]

−Rexp +REcyt +REmem x ∈M, t > 0

The system is special case of (1.0.1), with

D =

σDmem 0

0 σEDmem

 and D̃ =


σDcyt 0 0

0 σADyct 0

0 0 σEcyt

,

~u =


DATP
cyt

DADP
cyt

Ecyt

, ~v =

 DATP
mem

E : DATP
mem

, ~F =

RDcyt +RDmem −REcyt −REmem

−Rexp +REcyt +REmem

,

~G =


−RDcyt −RDmem

Rexp

Rexp −REcyt −REmem

 and ~H =


Rexc

−Rexc

0

.

Here

Rexc = kexc[D
ADP
cyt ]

RDcyt = kDcyt[D
ATP
cyt ]

RDmem = kDmem[DATP
mem][DATP

cyt ]

Rexp = kexp[E : DATP
mem]

REcyt = kEcyt[Ecyt][D
ATP
mem]

REmem = kEmem[DATP
mem][Ecyt][E : DATP

mem]2

represent reaction rates. This is a five component model with (u, v) =(u1, u2, u3, v1, v2),

where u1 = DATP
cyt , u2 = DADP

cyt and u3 = Ecyt, and v1 = DATP
mem and v2 = E : DATP

mem.
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Our local existence result holds for any number of finite components, therefore

this system has a unique maximal solution. Regarding global existence, we have

in general analyzed the two component model. It is interesting to note in this

example, that if we take two specific component at a time, we are able to obtain

global existence. For that purpose we apply our results to (u1, v1), (u3, v2), and

(u2, v2).

Notice that reaction vector fields associated to (u1, v1), (u3, v2), and (u2, v2)

on M are (G1, F1), (G3, F2) and (G2, F2) respectively. Where G1 = −RDcyt −

RDmem, G2 = Rexp and G3 = Rexp − REcyt − REmem, and F1 = RDcyt + RDmem −

REcyt − REmem, F2 = −Rexp + REcyt + REmem. And H is a reaction vector field

associated to u on Ω. Where H1 = Rexc, H2 = −Rexc and H3 = 0. It is easy

to see G1 + F1 ≤ 0, G3 + F2 ≤ 0 and Gi are linearly bounded for all i = 1, 2, 3,

and H1 ≤ kexcu2, H2, H3 ≤ 0. So, for each of the pair (u1, v1) and (u3, v2),

conditions (V1), (V2), and (V3), (hypothesis of global existence, Theorem 6.1.15)

are satisfied. As a result
∫

Ω
u1 +

∫
M
v1 and

∫
Ω
u3 +

∫
M
v2 is conserved and u1, v1, u3

and v2 exists for all time t > 0. Now, since H2 ≤ 0 and
∫
M
v2 <∞, therefore from

[19],
∫

Ω
u2 <∞.

We also discussed another example briefly in chapter 1. Consider the system

ut = ∆u x ∈ Ω, 0 < t < T

vt = ∆Mv + uavb x ∈M, 0 < t < T

∂u

∂η
= −uavb x ∈M, 0 < t < T

u = u0 x ∈ Ω, t = 0
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v = v0 x ∈M, t = 0

Here G(u, v) ≤ 0, F + G ≤ 0, and (V1), (V2), and (V3) are clearly satisfied.

Therefore, conditions for global existence are satisfied.

Remark 7.0.4. If we consider the similar system with G(u, v) = uavb and F (u, v) =

−uavb, then the results [19] apply in the non-manifold setting, but in our setting

it is still an open question.
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