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ABSTRACT

A simple, elegant algorithm upon implementation presents innumerable 

problems. This paper provides insight into the difficulties of implementing a 

distributed algorithm. This is followed by an efficient, fault tolerant implementation 

of the Distributed Shortest Path Algorithm. The provision of fault tolerance has a 

large overhead in terms of the number of messages required. A modification of the 

algorithm is proposed to reduce the number of messages, using buffering in 

conjunction with Ada constructs to achieve this in the implementation.

The unrestricted communication in a distributed system produces 

situations conducive to deadlock. This is particularly true if a synchronous form of 

message passing is used, as processes will wait indefinitely for each other. To 

ensure freedom from deadlock a variant of nondeterministic message sending based 

on Ada timed out entry calls is used. Distributed programs are also, by virtue of their 

complexity, difficult to verify. Even after extensive testing residual design 

inadequacies may be present Thus the concept of Communication Closed Layers is 

used to design the program. The Consensus-Global Tester is used to implement 

error detection and assist in error recovery. In the event of an error, a Backward 

error recovery scheme is used which saves the essential information. Thus, 

computation can be reinitiated using the saved values.
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L INTRODUCTION

The trend towards distributed processing on computer networks has led 

to an increase in the number of distributed algorithms and the development of 

programming languages to exploit the concurrency. But two major issues have not 

yet been addressed. The first issue concerns the problems associated with the 

implementation of the algorithms, within the constraints of the languages. The 

second issue concerns the assurance of reliability in such a complex software 

system, as the results depend on the unpredictable order in which actions from 

different processes are executed. In this paper we consider the problems and 

drawbacks of implementing the Distributed Shortest Path Algorithm [CHAN82] 

within the constraints placed by a language, specifically Ada*.  We then design and 

implement a fully distributed, fault tolerant program which meets all correctness 

criteria.

*Ada is a registered trademark of the U.S. Govt.,Ada Joint Program Office (AJPO)

The Distributed Shortest Path Algorithm is an elegant distributed solution 

to compute the shortest path from a special vertex vj to all other vertices of a 

weighted, directed graph. The unrestricted communication in a distributed program 

and the unpredictable order of execution of the component processes pose problems. 

These are compounded by the constraints placed by a language. Thus to achieve 

freedom from deadlock requires either an indirection methodology or the use of 
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variant Ada constructs to provide nondeterminism on output. A general method for 

overcoming deadlock is proposed and implemented using Communication Processes 

(buffers).

Distributed programs are inherently difficult to verify and even after 

extensive testing, may have residual design errors. Thus techniques for designing 

correct programs have to be utilized. This particular fault tolerant implementation is 

based on the concept of Communication Closed Layers [ELRA83], which partitions 

programs logically / physically to provide what are called Safe Layers. Such a 

design methodology coupled with the concept of Consensus-Global Testers 

[LEES 8] provides fault tolerance. Hence, error detection and recovery are possible.

A Recovery Block [RAND75] type scheme is used to implement error 

detection and recovery. The premise of a Recovery Block type scheme is that errors 

will occur, thus "spare" modules must be provided. Hence, at the conclusion of a 

particular computation, if an error is detected the "spare" can be used to recompute 

the values. While the erroneous values are discarded. The errors are detected 

through the use of a Tester module which assures that the results are either 

"acceptable" or erroneous.

The ultimate objective is to maximize concurrency and provide fault 

tolerance without incurring overheads in time-space. To begin the discussion a brief 

outline of the Distributed Shortest Path Algorithm and the complete backgrounds on 

the concepts, techniques and methodologies will be given in section 2. This will be 

followed in section 3 by a description of the implementation and its algorithm. 
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Section 4 is devoted to the analysis. Finally, in section 5, some concluding remarks 

are made.



BL BACKGROUND

In this section we provide the conceptual background of the techniques 

which form the basis for this thesis. These are firstly, the language of 

implementation, Ada. Secondly, the concept of fault tolerance followed by the Safe 

Layering design methodology. Then a consideration of the problems and difficulties 

of implementing a distributed program are provided. Finally, an overview of the 

distributed algorithm is given. But before a complete exposition of the theory is 

given, a few basic definitions are in order.

To begin with, a concurrent program specifies two or more sequential 

programs that may be executed concurrently as parallel processes. These processes 

communicate and synchronize, in order to cooperate to achieve a common objective. 

But the absolute or relative speeds of execution of the component processes are 

unpredictable.

Concurrent programs may be executed in several different environments, 

depending basically on the availability of processors and their interconnections. The 

first method allows processes to share one or more processors and is referred to as, 

multiprogramming. If each process is executed on a single processor, but all 

processors share a common memory, it is referred to as multiprocessing. Finally, 

the execution of processes on dedicated processors connected by a network is called 

distributed processing. Since no memory is shared cooperation is achieved through 

message passing or remote procedure calls. Thus a distributed program consists of a 

4
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collection of processes or tasks executed in a distributed processing environment.

In what follows, the terms task and process are interchangable and refer 

to self sufficient execution units which communicate via messages.

2.1 Concurrent Ada

Ada, the new general purpose programming language, is based on 

definitions proposed by the US Department of Defense for use in embedded 

Systems. It is the culmination of a decade of specification and revision of successive 

versions of the language and reflects the current trend towards data abstraction, 

multitasking, generics, exceptions handling, readability, reliability, etc.

In many circumstances programs have to be written as several parallel 

activities which communicate / synchronize in order to cooperate. In Ada this 

parallelism is described by means of tasks, which is a unit of concurrency. When 

two tasks need to interact they do so through a mechanism known as a rendezvous. 

A rendezvous takes place when one task calls an entry declared in another. Each 

entry has a corresponding ACCEPT statement. For example,

ACCEPT message(messagetype: IN INTEGER) DO
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END;

Pl.message(4);

accepts a message and subsequently sends a message to task Pl, which has a 

corresponding ACCEPT.

The body of the ACCEPT statement acts as a critical section and no other 

communication can take place nor can any values be changed in the calling task until 

the conclusion of this rendezvous. The end of the rendezvous coincides with the 

END statement of the ACCEPT, in the called task. If the ACCEPT has no body or 

parameters it acts as a synchronization primitive only and no information is 

exchanged. The use of parameters allows information to be exchanged by reference 

or value.

A strength of Ada which is not as apparent, in contrast to its better 

known features, is its flexibility. Though the specification of Ada do not explicitly 

provide for nondeterministic output, the use of timed out entry calls allow the 

mimicking of such nondeterminism. The timed out entry call allows a sequence of 

statements to be executed alternatively, if an entry call is not accepted within the 

specified duration. Thus
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SELECT

Pl.messageC’entry call");

OR

DELAY X;

-- Statements

END SELECT;

will execute the statements following DELAY X, if task Pl does not accept the call 

within X seconds. This ensures that the calling task will not wait indefinitely, if the 

destination task cannot accept the call.

When a task calls another, Ada relies on an asymmetric naming scheme 

to implement general entry points. That is, the calling task needs to know the identity 

of the called task. But the called task (server) is not required to know who the caller 

(user) is. Thus, entry points can be called by any process without the server 

requiring prior knowledge of the users identity. If a task needs to know whether 

processes are waiting to rendezvous it utilizes the concept of Attributes. The syntax 

is P'COUNT, which provides the number of tasks waiting at entry point P.

22 Software Fault Tolerance

The need to provide increased reliability in computer system led to the 

approach of achieving this goal through the use of fault prevention. Reliance is 

placed on tools and techniques such as verification, documentation, testing, etc. 
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Such techniques assume that all possible causes of unreliability can be removed prior 

to delivery and reliance will not be placed on a system until all "bugs" have been 

removed. This approach fails to account for faults which were unanticipated and 

thus not weeded out during the design and testing of the system. It is reasonable to 

assume faults may be present in a system and will have to be tolerated. Thus the 

concept of fault tolerance uses redundancy of design as a means to provide error 

detection and recovery from residual design inadequacies. This ensures 

uninterrupted service even in the event of faults. To achieve this objective, fault 

tolerant systems must detect errors, assess the damage, try to recover and provide 

continuous service.

Two complementary approaches for providing fault tolerance in software 

have evolved. These are forward error recovery and backward error recovery. The 

aim of forward error recovery is to identify the error and based on the available 

knowledge correct the system state to provide continued service. An example of 

such an approach is N-Version Programming. In contrast, backward error recovery 

manipulates the system state so as to achieve a "reversal of time". That is, to a state 

prior to the erroneous one without regard for the current state. Thus previous states 

are saved on a stable medium, to be recalled if the need ever arises.

The recovery block scheme [RAND75] is an example of a backward 

error recovery technique and like all fault tolerant schemes relies on redundancy. It 

consists of three distinct parts: a recovery point, execution modules and an 

acceptance test point The first of these is a point in the execution of a program when 
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the important variables are saved. This occurs prior to entering a recovery block. 

The second part consists of a primary module, which is executed first upon entering 

a recovery block. Upon completion the process must pass an acceptance test to 

ensure the reliability of its results. If the test is passed, then the process proceeds. 

But if the test is failed the process state is restored to its original version (saved on 

entering the recovery block). Then an alternate module of the program is executed, 

in the hopes that the alternate will not have the residual design inadequacies present 

in the primary.

The alternate blocks / modules may be of differing design, algorithms, 

languages or a combination thereof. The premise is that residual design inadequacies 

present in one module will not be present in another. Any number of alternates may 

be used as long as they provide a measure of fault tolerance within acceptable costs. 

For example, if four algorithms to solve a particular problem are available and their 

time complexities are n log n, n^, n^ and n^, then the last version even though it 

provides redundancy, may be too expensive to employ, especially in a time 

constrained application.

The acceptance test is a last moment check to ensure the reasonableness 

of the output and is by no means a test for absolute correctness. This acceptance test 

is over and above the usual interface checks provided by the system - which lead to 

exceptions, etc. Thus if no exception has been raised and the output of the module 

meets the acceptance criteria it is assumed that no fault occurred.
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23 Safe Layering

Distributed programs, by virtue of their complexity, are very difficult to 

verify formally. Even after extensive testing and debugging residual design 

inadequacies may be present. This coupled with the unrestricted communication 

between concurrent processes could cause the propagation of erroneous values. 

Ultimately leading to erroneous results or a crash of the software system. Thus there 

is a need for methodologies to design reliable programs and for techniques to detect 

and recover from faults. One such design method, based on the concept of 

Communication-Closed Layers proposed in [ELRA83], provides a means to design 

reliable distributed programs in what are termed Safe Layers. This in conjunction 

with the Consensus-Global Tester [LEE88] provides error detection and 

recoverability. The provision of fault tolerance based on these techniques does not 

give up any degree of concurrency, allowing component processes to execute at their 

own pace.

23.1 Safe Layers

Distributed programs can be viewed as having a two dimensional 

data-flow. That is, sequential within the process and parallel between processes. 

Thus, in order to design a distributed program we must consider the sequential 

behaviour within each process and manage synchronization / communication 
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between the processes. The concept of Safe Layering allows such a consideration. 

The basic idea is to view distributed programs as a sequential composition of 

concurrent Layers. For example, a concurrent program P consisting of interacting 

processes pj; P2; ; pn is defined in CSP [HOAR78] syntax as:

P::[p1llp2ll--llpn]

Furthermore, each component process can be subdivided into d logical / physical 

segments. Thus each process (pj) may be defined as:

PiHfPi1;--;?^]

Thus, in general, process segments can be defined as:

PjSeg (i = l..n , seg=l..d)

and a LayeA is:

[ P1k H p2k IIII Pnk ]

The Sequential Composition (denoted by of a concurrent program P

is [ Layerl; •••••; Layerd ]

This allows a concurrent program to be viewed as a collection of sequential layers. 

But gives up some concurrency and requires a global synchronization scheme, as 

commands in a following layer are not available until the previous layer has 

terminated.

The Distributed Composition (denoted by of a concurrent program P 

is:
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[ Layer 1: •••••: Layer^ ]

and is exactly equivalent to:

(pi1; — ;pid H•••••ii Pn1;.....;pnd]

Thus allowing a process to execute at its own pace without any global 

synchronization and ignoring layer boundaries.

The equivalence of the two compositions can be provided by assuming 

for all layers, that LayeA is Communication Closed. That is, in any communication 

both members must belong to the same layer. Thus if inter-layer communication is 

disallowed, across layer boundaries, each of the layers is communication closed and 

such layers are called Safe Layers. These Safe Layers can be used as units of 

modularity with layer boundaries serving as synchronization points [LEE88], 

[ELRA83], [GERT86], [MOIT83].

The Distributed Shortest Path Algorithm (DSPA) is implemented in two 

layers corresponding to the two phases of the algorithm, described in section 2.5.

2.3.2 Consensus-Global Tester

The efficacy of fault tolerance depends to a large extent on the ability to 

detect errors and consequently have a chance to correct the errors. Thus error 

detection is an extremely important phase in computation and relies heavily on the 

ability of the tester to "catch" the errors. In sequential programs the errors are 

isolated within single programs which are not affected by outside influences. But in 
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a distributed system, where many processes may be running concurrently and 

interacting, errors outside the module can affect the outcome. Some errors may be 

localized but, through interactions, have tainted parts of the program which appear to 

be fine.

A tester for a sequential program is required to ensure that specifications 

for a particular program are met In the case of distributed programs, the tester must 

ensure the correctness of the results for the entire computation. This is made more 

difficult since the order of execution, of the actions of the interacting processes, are 

unpredictable. Thus, so are the results.

The Consensus-Global Tester [LEE88] based on the premise that there 

are interactions amongst processes provides error detection for all the component 

processes. This is achieved by providing a global specification, which can test the 

correctness of the results of all the interacting processes. In the event of a global 

error all tasks are required to rollback.

If a distributed implementation can be partitioned into regions or layers in 

such a way that error detection and recovery can be localized. Then the concept of 

Global Testers can be applied to each of the regions to regionalize the error detection 

and recovery, without having an adverse effect on the other regions. Thus, errors 

can be detected and recovery initiated only in those particular regions. In the event 

of an error, rollback and recovery occur within the region. But if no regional errors 

are detected the results are sent to the Global Tester for consensus-global testing. 

That is, to ensure that all regions meet the specification as a whole.
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In the program to be implemented the concept of a single 

Consensus-global Tester for each phase of the computation is used. This tester 

should verify that a global assertion holds in all cases.

2.4 Problems and Difficulties

The concept of distributing processing is a powerful and useful one, but 

must be utilized with extreme care. Several problems are faced in the effort to 

implement a distributed program, and these issues have to be resolved to profit from 

the enormous potential of distributed processing. These issues include the danger of 

deadlock, unnecessary blockage, overheads of messages and processes, language 

constraints, reliability, debugging of errors and a fully distributed implementation. 

When addressing these issues compromises have to be made, which ultimately affect 

the implementation and its efficiency.

2.4.1 Deadlock Problem

In distributed solutions, the unrestricted inter-process communication 

produces situations conducive to deadlock. For example, some arbitrary process Pj 

attempts to communicate with another process Pj; simultaneously Pj may try to send 

a message to Pj. This circular wait situation is unresolvable as both processes would 
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wait indefinitely for the other to receive its message. There are two basic solutions to 

this problem, either deadlock avoidance or deadlock detection and arbitration. The 

latter is much more costlier in terms of the overhead of monitoring and is almost 

impossible to achieve, in general, for distributed programs. The avoidance of 

deadlock is relatively easier to achieve through careful structuring and design of the 

program [LEE87]. But requires some degree of intuition on the part of the 

programmer and flexibility in the programming language.

A general method to ensure freedom from deadlock makes use of 

indirection during communications. This is achieved through the use of buffer 

processes, which buffer and redirect messages, thus circumventing the need for 

direct communication. A second technique depends on the flexibility of the language 

Ada to provide nondeterminism on output

2.4.2 Blocking Problem

A less serious but equally important issue concerns unnecessary 

blockage / waiting. A process blocked for communication / synchronization must not 

have to wait too long. This issue gains significance if it is realized that the speeds of 

execution of processes are arbitrary and therefore unpredictable. Thus a faster 

executing process may have to wait for a slower partner to effect a synchronization 

or complete a communication attempt. To alleviate this problem a process must, 

upon finding the called process busy, be allowed to continue processing on 
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something else. Thus valuable computing power is not lost waiting for events to 

occur. For example, if a process Pi attempts to communicate with a process ?2 and 

finds P2 busy. Pi should not be required to wait for P2, instead Pi may delay a 

short time and thereafter proceed on its own, subsequently returning to reattempt a 

rendezvous.

2.4.3 Message and Process Overheads

Since processes are executed on systems which could be geographically 

separated and no sharing of memory occurs, the only means of communications are 

remote procedure calls or message passing. In the algorithm and the implementation 

language, message passing is assumed and thus only the latter is considered. It is 

apparent that communication through messages has a substantial overhead in terms 

of the delay, the amount of memory required to buffer message and the number of 

messages propagated. Thus any implementation should include the reduction of 

messages as an a priori requirement. If such a reduction is possible through the 

implementation, by modification to the original algorithm or use of concepts and 

constraints, then the necessary steps must be taken to ensure minimality of the 

number of messages.

Aside from the number of messages, under certain circumstances, the 

number of processes may be quiet high. These processes may be needed for 
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secondary purposes, such as buffering. They should be kept to a minimum, or 

eliminated altogether if possible. Since the overhead lies not only in the number of 

processes but also for inter-process communication. The inefficiency inherent in a 

system using a large number of processes and / or messages is a drain on the 

system. This ultimately affects performance and throughput of the system is 

reduced.

2.4.4 Language Constraints

Until the recent development of general purpose programming 

languages, which incorporate multitasking and constructs for concurrency as 

primitives, most languages did not provide for such concepts. But the provision of 

such capabilities in the new languages is by no means complete, as they are still not 

powerful or expressive enough to allow all types of implementations. In the event 

that a construct is not directly available to the programmer, the flexibility of a 

language plays an important role in allowing solutions without incurring 

unacceptable overheads. An example is the timed out entry call in Ada, without 

which nondeterminism for output messages would not be possible.The inventors of 

distributed algorithms usually do not consider specific languages to implement their 

algorithms. Therefore, these algorithms are not always amenable to implementation 

within the constraints of a language. The tools provided by a language, either 

directly or indirectly, may be utilized by a programmer in cases where regular 
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constructs are too confining or inadequate.

2.4.5 Reliability Problems

There are two types of correctness properties which all programs must 

possess - Safety and Liveness. Safety properties are the static portion of the 

specifications and are explicitly stated. An example is mutual exclusion. Liveness 

deals with the dynamic properties and ensures that an event will eventually happen. 

Deadlock is an example of a breach of liveness. These issues are extremely 

important in concurrent programs as the results of the execution of several processes 

depends on the order in which actions from different processes are executed. The 

complexity of the situation greatly increases the probability that the programmer will 

make mistakes and that errors will not be detected during testing. Such design errors 

would ultimately lead to the violation of the correctness properties and either 

incorrect results or, failure of the software system. Until reliable proofs of 

correctness which cover implementation details are available for realistic software, 

reliance has to be placed on design methodologies and software fault tolerance.

A secondary issue concerned with reliability is that of debugging. This is 

an example of fault prevention and can be useful in finding and removing some 

errors, which would cause unnecessary wastage of computing power. For example, 

during software testing the ease of readability of a program is essential and enhances 

the chances of catching and fixing errors. But most languages seem to consider 
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readability as an afterthought If a language is too terse (such as APL) reading it is 

difficult and finding logical errors next to impossible. On the other hand a language 

which is too prolix affects the programmer just as badly.

2.4.6 Distributed Implementation

It is obvious that a distributed program must be exactly that distributed. 

Since the quality, speed and efficiency all stem from the distributed environment 

which allows various parts of a concurrent program to execute at their own pace. It 

is possible to implement distributed algorithms using a host or controller process to 

restrict communication . But this reduces concurrency and has a detremental effect 

on the speed, efficiency and ultimately the quality of the program. A centralized 

model using a single controlling process is infeasible, not only for the reasons 

above, but it is prone to bottlenecks and intolerant to faults. The loss of the central 

node can cause a crash of the entire system. Such an implementation would also 

sequentialize a distributed algorithm, making it no better than a sequential program 

given time slices on a single processor. Thus all distributed programs must allow 

unrestricted communication without any host or controller process and use the 

advantages provided by the language, the algorithm and the system.
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25 Distributed Shortest Path Algorithm

In this section we provide the background and highlights of the 

Distributed Shortest Path Algorithm. The complete algorithm can be found in 

appendix A.

The algorithm implemented is an elegant, distributed solution to compute 

the shortest path from a vertex to all other vertices of a weighted, directed graph in 

the presence of negative cycles. A directed graph G = (V,E) consists of 2 sets. V is a 

set of vertices and E is a set of edges. If an edge <vj,vj> is incident to vertices vj and 

vj, then a path exists from vj to vj. The vertex vj is called the predecessor of yj and 

vj is the successor of vj. Each edge has associated with it a length ly corresponding 

to the distance from vj to vj. In the event a length ly is negative, a cycle of negative 

length may exist. Consequently, all vertices reachable from the negative cycle will 

have ly equal to -«>. An example of such a graph is shown in figure 1.

In this algorithm processes communicate through messages and the 

presence of message buffers is assumed. The computation is done in two phases. 

The first phase computes the minimum distance from vertex vj to all other vertices. 

If there is a negative cycle a vertex will have a distance of -o®. The second phase is 

used to inform the vertices that they are at a distance of -<*.  In phase I the path 

lengths are propagated using a length message and successors reply using an 
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acknowledgement message.Where there is no ambiguity the terms vertex and node 

will be used interchangably.

Process Pj at Node vj initiates Phase I by using length messages to 

inform its successors of its distance from them. The successors upon receiving this 

value add the distances to their respective successors (to the received value) and pass 

on the new value.

This iterates until all successors receive their respective length messages. 

Upon the receipt of a length message each process updates its local value for the 

shortest path received thus far from a predecessor and propagates the message. An 

acknowledgement sent in response to a length message is used to terminate phase I.

Phase II, again initiated at node vj, employs two types of messages. 

Namely the over- and over? messages. An over- message is sent if it is determined 

that a negative cycle exists, i.e. shortest path distance is -«*.  The receipt of an over

message requires a successor to set distance to -«», unless it already has distance 

equal to -<*.  The over- message is then propagated. The second message type, an 

over?, is sent if it has not been determined whether distance is -«*>.  In the event that 

there are no outstanding acknowledgements the successor propagates the over?. But, 

if some length messages remain to be acknowledged, an over- is sent.

The algorithm assumes each process has a queue-like input buffer, to 

which messages from its neighbors are appended. Since Ada does not support such 

a capability, one implementation buffers outgoing messages at the source of the
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communication. The other uses variants of Ada constructs to provide

nondeterminism on output.

Figure 1. A weighted, directed graph with negative cycle [CHAN82].



m. IMPLEMENTAWN

The fault tolerant version of the DSPA program is implemented in two 

layers corresponding to phases I and II of the computation. The first layer consists 

of the Primary version and an Alternate for each node of the graph. There is one 

Tester which controls the computation, sending the initialization values for each task 

and receiving the results. The computation is initiated at nodej, with each node in 

the system executing its primary version first. At the conclusion of computation 

which corresponds to the end of phase I, each of the nodes send its final result 

(obtained by the execution of the primary version) to the Consensus-Global Tester 

(Tester). The Tester verifies that the results are in compliance with the specifications. 

If no errors are found, the second phase of the computation is started. On the other 

hand, if the results are found to be erroneous, rollback occurs and recovery is 

initiated. These correspond to discarding the current values and invoking the 

alternate version.

When the Alternate at each node completes computation, it sends the final 

values to the Tester for validation. Once again compliance with the specifications is 

checked and if no errors are detected, the second phase is initiated. Otherwise the 

computation is aborted unless more alternate versions are available. A pictorial 

representation of the overall structure is shown in figure 2.

23
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BEGIN

Phase I / 
Layer 1

Alternate

Phase 11/ 
Layer 2

Alternate

TESTER

Phase I

Phase II

END

Figure 2. Overall structure of the implementation (Layer and Tester).

The second phase corresponding to layer 2 consists of two versions, a 

Primary and an Alternate. Computation is initiated at node 1, with each node 

executing its primary version for phase n. The primary version at the conclusion of 

its execution sends its results to the Tester for verification. If the results comply with 

the specifications provided, computation concludes. In the event of an error the 

alternate version for phase II is invoked and proceeds with the computation.

The Ada version is a procedure DSPA which consists of a task Tester to 

perform error detection. The first phase / layer consists of the procedures 

Lay er 1 Primary, corresponding to the primary version and Layerl Second which is 

the Alternate. The second phase / layer is provided by procedures Layer2Primary 
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and LayerlSecond which once again correspond to the Primary and alternate version 

for phase H Each of these procedures consists of a collection of Ada tasks to 

perform the actual computation. An outline of the overall structure of procedure 

DSPA is as follows :

PROCEDURE DSPA IS

TASKGlobalTesterlS

BEGIN

— Tester for layers

END;

PROCEDURE LayerlPrimary IS

BEGIN

- layer 1 primary module

END;

PROCEDURE LayerlPrimary IS

BEGIN

— layer 2 primary module

END;

PROCEDURE LayerlSecond IS
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BEGIN

- layer 1 alternate module

END;

PROCEDURE Layer2Second IS

BEGIN

— layer 2 alternate module

END;

BEGIN

— GE = Global Error, NR = No Reply 

status := NR;

LayerlPrimary;

IF status = GE THEN

status := NR;

Layer 1 Second;

END IF;

IF status = OK THEN

status := NR;

Layer2Primary;

IF status = GE THEN

status := NR;
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Layer2Second;

END IF;

END IF;

IF status = GE THEN

— Error

END IF:

END DSPA;

Figures 3 through 6 provide an overview of each of the layer procedures. 

A detailed explanation of the primary and alternate versions is provided in the 

following sections.

PROCEDURE LayerlPrimary IS 
TASK TYPE Primary] IS 
BEGIN 
END; 
TASK TYPE Primary IS 
BEGIN 
END;

L1P1: Primary!;
LIP: ARRAY(2..N) OF Primary;
BEGIN

LOOP EXIT WHEN status /= NR; 
END LOOP;

END;
Figure 3. Layer 1 Primary modules overall structure.
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PROCEDURE Layer2Primary IS
TASK TYPE Primaiyn_l IS
BEGIN
END;
TASK TYPE Primary!! IS
BEGIN
END;

L2P1: Primaryll 1;
L2P: ARRAY(2..N) OF Primary!!;
BEGIN

LOOP EXIT WHEN status /= NR;
END LOOP;

END;

Figure 4. Layer 2 Primary modules overall structure.

PROCEDURE Layer! Second IS
TASK TYPE Communicationprocess IS 
BEGIN
END;
TASK TYPE Secondl IS
BEGIN
END;
TASK TYPE Second IS
BEGIN
END;

LISI: Secondl;
LIS : ARRAY(2..N) OF Second;
CP : ARRAY(1..N) OF CommunicationProcess;
BEGIN

LOOP EXIT WHEN status /= NR; END LOOP;
END;

Figure 5. Layer 1 Alternate modules overall structure.
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PROCEDURE Layer2Second IS
TASK TYPE CommunicationProcess IS
BEGIN
END;
TASK TYPE Secon(ffl_l IS
BEGIN
END;
TASK TYPE SecondB IS
BEGIN
END;

L2S1: SecondlLl;
L2S : ARRAY(2..N) OF SecondH;
CP: ARRAY(L.N) OF CommunicationProcess;
BEGIN

LOOP EXIT WHEN status /= NR; END LOOP;
END;

Figure 6. Layer 2 Alternate modules overall structure.

3.1 Primary Verson

The primary version is implemented in two phases similar to the 

algorithm in [CHAN82]. Each phase consists of a procedure with nested tasks for 

each node of the graph. These are:

(1) LayerlPrimary:: primary version for phase I / layer 1.

(a) Task L1P1:: computation task for nodel.

(b) Task LlP(i):: computation task for nodes 2..N

(2) Layer2Primary:: primary version for phase II / layer 2.

(a) Task L2P1:: computation task for node 1.

(b) Task L2P(i) :: computation tasks for nodes 2..N. 
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The task Tester initiates the overall computation by sending the initial values to each 

of the tasks. A task LlPj corresponding to node Vj implements phase I of the 

algorithm and computes the minimum distance. The shortest path computation is 

initiated by task L1P1 at node vj which sends length messages to its immediate 

successors and then loops, only accepting messages, until the number of 

outstanding acknowledgements becomes zero or a length message of less than 0 is 

received. At which time it sends a stop message to all its successors. The tasks 

LlP(i) for all other nodes accept and send messages until they receive the stop 

message. Each task upon receiving the stop message propagates it until all nodes 

receive such a message from each of its predecessors. Then all tasks send a copy of 

their final values for d, pred, num (path, predecessor and outstanding 

acknowledgements, respectively) to the Consensus-Global Tester (Tester) and 

completes execution.

The Tester accepts the results and performs a validity check based on the 

specifications it is provided. If no errors are found, the Tester sends the initialization 

values to task L2P1 (corresponding to phase II / layer 2 , node 1) and all other 

tasks. Phase II is then initiated by L2P1, which sends the appropriate over message. 

The contents of the initialization messages and the replies are given in the 

explanation of the Tester.

All primary tasks for phase I (LlP(i)) use three types of messages for 

communicating amongst themselves. The first, a length message, is triplet 
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(s,Pi,ack) where s is the path length. Pi the source address and ack the 

acknowledgement for previous length messages. The second is an entry call to entry 

point STOP, which is used to inform the nodes that phase I has ended. The third is 

an acknowledgement message (ack) used only to send acknowledgements to the task 

for node 1 (L1P1).

All tasks upon receiving a length message check whether the path length 

(s) is shorter than the current shortest path. If so, the tasks compute the values for 

propagating the message and then buffer them in the Table. The buffering of the 

shortest path continues until no more tasks are waiting for a rendezvous. At which 

time the new shortest path is propagated using length messages. If an even shorter 

path is subsequently received, it is written over the previous shortest path. The use 

of buffers ensures that only the most minimum of the length messages (of that 

particular round of messages) will be propagated and requires a buffer size of N -1 

in the worst case. Though a buffer of size N is convenient to declare and use.

During a rendezvous, tasks take the opportunity to return any 

acknowledgements which may still be owed to the calling task. This is achieved by 

the use of IN OUT parameters to exchange data. Thus while accepting a length 

message tasks also return acknowledgements which were buffered along with the 

previous length messages.

When the initialization message from the Tester is received, task L2P1 

initiates the second phase by sending over- or over? messages to its successors. All 

Phase II tasks, L2P(i), use one type of message variable with two input parameters 



32

consisting of the message type and the task id for communicating among 

themselves. A message value of 3 signifies an over-, whereas an over? is denoted by 

a message value of 4. The phase II tasks wait for the initialization message from the 

Tester and update the variables. Then each task waits for the initial message from a 

predecessor at which point it enters a loop which either accepts an over- or over? 

message, or propagates them. Computation for phase II tasks concludes when over 

messages from all successors have been received and propagated. At the end of 

phase II the values for d and over, corresponding to the shortest path and over 

message, are sent to the Tester for validation. In the event of an error, the Alternate 

for phase II is invoked under the assumption that phase I is correct This can be 

safely assumed because the Tester (Consensus-Global) "passed" the phase I results.

The algorithm for the implementation follows. The code is in appendix 

B.

For process Primary 1 Phasel:

Accept Initialization values from tester 

(loop)

If successor

Send initial message

(end loop)

(loop )
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{ Select}

Accept length message

If s < 0 then computation done else acknowledge message

Or

Accept Ack message

decrement number of outstanding Acks

If number of Acks outstanding = 0 then computation done

Or

Accept stop

Update values

Or

When computation done

Send STOP to all successors

exit loop when all stops are processed

{end loop }

Send values to Tester

For process Primaryj Phasel:

Accept Initialization values from tester

{loop )

{ select}
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Accept length message

clear Ack

If distance (s) < current shortest path (d)

If num of Acks > 0 and predecessor = caller 

increment Ack count

elsif number of acknowledgements > 0

save Ack in buffer

Update pred

Update shortest path

Save messages in buffer Table and increment Acks

If outstanding Acks =0

add to ack count

elsif distance (s) >= current shortest path (d)

increment ack count

Total all acks owed to calling task and clear buffer

Or

If no task waiting to rendezvous

If any Ack message for process 1 in buffer

Send it

If any length message for processl

Send it and receive acks

Update
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(loop)

If any message for successor

{select}

Send it and receive acks

Update

Or

delay

(end loop}

Or

Accept STOP

Update values

done =true

Or

When done

Send stop messages to successors

exit when all stop messages have been processed

{end loop}

Send values to tester

For process Primary 1 Phasell:

Accept Initialization values from tester
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If distance (s) < 0

then message type = Over-

else message type = Over?

I loop}

{ select}

Send Over message using delayed entry call until all are sent

Or

When tasks waiting to rendezvous

Accept message

Update values

Or

When all messages received and propagated, exit

(end loop }

Send values to Tester

For process Primaryj PhaseTl:

Accept Initialization values from tester

Accept initial Over message and initialize message type

{loop }

{ select }

When some task waiting to rendezvous
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Accept message

Update values

Or

Send messages to all successors using delayed entry call

Or

When all messages received and propagated, exit

{end loop }

Send values to Tester

32 Alternate Versirm

The alternate version, invoked in the event of an error by the primary, is 

implemented as two procedures corresponding to each Phase / Layer. Each 

procedure consists of three concurrently executing tasks for each vertex vj of the 

graph. These are:

(1) LayerlSecond:: alternate version for Phase I / Layer 1.

(a) Task LISI:: alternate for layer 1 node 1

(b) Task LlS(i):: alternates for all other nodes in layer 1

(c) CP(i):: communication / buffer process

(2) LayerlSecond:: alternate version for phase II for Phase II / Layer 2.

(a) Task L2S1:: alternate for layer 2 node 1

(b) Task L2S(i):: alternates for all other nodes in layer 2
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(c) CP(i):: communication / buffer process

The Tester sends the initial values for each of the tasks, so that 

computation may be initiated. In the following, the notation LlSj will be used to 

denote all layer 1 alternate tasks and L2Sj will correspond to layer 2 alternate tasks.

The task LlSj corresponding to node vj implements phase I of the 

algorithm and computes the minimum distance. The tasks L2Sj implement the 

second phase and ensure that all over messages are propagated. The computation is 

initiated by task LISI which is invoked when the procedure Layer 1 Second is called 

from DSPA.

Upon receiving the initialization values from the Tester, L2S1 sends 

length messages destined for its successors to its CP j. The Communication Process 

(CPj) in turn redirects them to the destination tasks. Each of the successors acts on 

the message accordingly. If the path received is shorter than the previous one, it is 

immediately propagated via CP. Otherwise an acknowledgement is sent to the calling 

task. The computation proceeds until task LISI receives either a path length less 

than 0 or its outstanding acknowledgements are 0. At which point, LISI 

(corresponding to node 1) sends a stop message to all its immediate successors, 

which are propagated to all tasks / nodes of the graph. Upon receiving a stop 

message each task propagates it. When all stop messages have been propagated, 

each task sends its final values for d, num and pred (path, outstanding 
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acknowledgements and predecessor) to the Tester. A pictorial representation of the 

relationship between processes and their CPs is given in figure 7 and the description 

of the initialization values is provided in the following section.

Figure 7. Relationship pathways for processes.

A message from any computation task to its corresponding CP is a 

3-tuple (to,mtype,w) which provide the destination address, message type and path 

length. The CP which is used for phase II tasks also, can differentiate five types of 

computation messages depending on the parameter, mtype:

1: : length message

2: : acknowledgement message

3: : over- message

4: : over? message

5: : stop message.
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When a mtype 1 is received the CP redirects it to the destination as a length message 

2-tuple (s,Pi) which are the path length and source address, respectively. Upon 

receiving a mtype 2, an acknowledgement message is sent to the destination. The 

message types 3 and 4 are used during phase II and correspond to an over- and 

over?. The final mtype i.e. 5 is sent as a stop message to indicate the termination of 

Phase I computation. It must be noted that all tasks communicate directly with the 

Tester, to receive the initialization values and send the final results, thus ensuring 

reliability.

The layer 2 tasks use one type of message to communicate with each 

other, that is:

over:: consists of two parameters, mtype and id. A value of 3 for mtype 

denotes an over- and 4 corresponds to an over?. The id 

conesponds to the task id.

Each phase II / layer 2 task receives its initialization message through the start 

message (from the Tester) and is then ready to compute, waiting for task L2S1 

(phase II node 1) to initiate the computation. Each task propagates messages until all 

its successors are notified and then exits the processing loop. Subsequently sending 

its final values for d and the over message type to the Tester.

The testing philosophy, messages and interfaces with the Tester are 

exactly the same as for the Primary version. That is, upon the conclusion of the first 

phase all tasks send their results for verification to the Tester. After the Tester 

verifies the results the second phase is initiated. But, in case of an error another 
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Alternate may be invoked. Furthermore, messages and interfaces with the Tester are 

consistent Consequently, no interface checks or changes need to be made.

In this particular case there are two versions for each phase, but we are 

not restricted to this. For example, a design similar to the alternate (Second^) but 

with buffering of messages at the destination can be used as a third version. Another 

method to provide useful redundancy of design, is the use of different programmers.

33 Tester

The Consensus-Global Tester (Tester) is implemented as an Ada task and 

controls the computation by sending the initialization values to each task. It then 

receives the results from the computation tasks. When all tasks have responded by 

sending their final results, the Tester initiates its testing phase which ensures that all 

specifications are met. If an error is detected the Tester informs the procedure DSP A 

(using the variable status). Thus, the Alternate for that particular phase can be 

invoked. If all specifications are met the next phase is initiated or, if it is the last 

phase, computation successfully completes.

The initialization values for Phase I tasks are:

(1) A boolean list of successors.

(2) A list of lengths to the successors.

(3) The id number of each task (except the node 1 task).

(4) The number of predecessors.
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The initialization values for Phase II tasks are:

(1) The shortest path.

(2) The number of outstanding acknowledgements.

(3) A list of successors.

(4) A list of predecessors.

(5) The id number of each task (except the node 1 task).

After ensuring that all the computation tasks have received their 

initialization values, the Tester waits at the Accept statement for the final values for 

d, pred, num (path length, predecessor and acknowledgements) from all the phase I 

computation tasks. It then performs the verification test and sets the variable status 

accordingly. A status of OK signifies that all tasks passed the test, whereas if status 

= GE (Global Error) the Alternate will have to be invoked. If a Global Error occurs, 

the Tester loops back to initialize the Alternates and thereafter waits, for messages 

from the alternate tasks.

The second part of the Tester uses a similar strategy to detect errors for 

phase II tasks. First initializing the tasks and subsequently waiting to receive the 

values, for the path length and the over message.

The inputs Pj for the Tester at end of phase I:

For all node i

receive (df a numj a predf a idj)
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The inputs Pn for the Tester at end of phase II:

For all node i

receive (dj a oveq a idj)

At the end of phase I, the Tester checks whether three assertions are met 

These are: if the computation successfully concluded. Secondly, if any negative 

values for the shortest path are present. If so, either the predecessors shortest path 

must be negative or the path length must be negative. Finally, whether the shortest 

path (d) of a nodej is equal to the shortest path of its predecessor plus the length 

from the predecessor to nodej.

(1) For nodej: num = 0 v s = 0.

(2) For nodej (i=l..N): dj < 0-----> (dpred < 0 v lpred,i < 0 )•

(3) For nodej (i=l..N): dj = dpre(j + wpredj.

At the end of phase II, the Tester checks whether the path length and 

over message correspond. That is:

(1) For nodej (i=l..N): dj < 0-----> over- message.

If the conditions are not met then an error condition is assumed and error recovery is 

initiated. The algorithm for the Tester follows.

For process Tester

{loop }
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Send Initialization values to all tasks

I loop )

Accept message 1 from all phase I tasks

{end loop }

If specification met

Update done and status

else if more alternates

Update status

else

Update status, done

exit when done

{end loop }

If status = OK

{loop }

Send initialization values to all tasks

{loop }

Accept message 2 from phase II tasks

{ end loop }

If specification met

Update done and status

else if more alternates

Update status
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else

Update status, done

exit when done

{end loop }



IV. ANALYSIS

In the following analysis the difficulties and problems alluded to in 

section II will be addressed within the context of the construct or methodology used 

to overcome them. Thus certain issues may be referred to several times, each will 

provide the technique, construct or methodology used to overcome the problem. The 

issue of reliability is treated separately.

4.1 Implementation Issues

The bidirectional inter-nodal communication inevitably leads to deadlock 

in distributed solutions, whereas centralized implementations are too restrictive and 

intolerant to faults. Reliance was placed on two techniques to overcome the problem 

of deadlock, these were: the use of an intermediary process (CP) in the alternate 

version and the use of Ada timed out entry call to provide nondeterminism on output 

in the primary. The intermediate / buffer process technique avoids deadlock by 

providing indirection. But poses two major drawbacks, in that, the implementation 

requires 2N concurrently executing processes for a graph of N nodes. Secondly, 

the number of messages also doubles. One message is required from task Tj to the 

corresponding CPj and a second from CPj to the task Tj. Though these drawbacks 

are associated with the use of intermediary processes, they stem from the constraints 

46



41

placed by the language, which would not allow another deadlock free distributed 

implementation with such a high degree of parallelism.

Though the specifications of Ada do not explicitly provide for 

nondeterministic output, the use of timed out entry calls allow the mimicking of such 

nondeterminism. Non-determinism is the capability for a task to execute an alternate 

sequence of statements if the called task does not respond to a rendezvous. That is, it 

is not predetermined that a task will have to wait for its partner in a communication. 

It may execute alternate statements and at a later time, retry. The timed out entry call 

allows a sequence of statements to be executed alternatively if an entry call is not 

accepted within the specified duration. Thus

SELECT

Pl.message("entry call");

OR

DELAY X;

— statements

END SELECT;

will execute statements following the DELAY, if Pl does not accept the call within 

X seconds. Consequently, tasks do not need to wait indefinitely for each other. It is 

worthy to note that the message passing is still synchronous i.e. the called task must 

respond. There is no message buffering capability. If a rendezvous is unsuccessful it 

can be attempted later. This allows two-way communication between tasks without 

resorting to the use of an intermediary process. Thus requiring only N tasks for a 
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graph of N nodes and a single message suffices for each communication attempt. 

The problem of deadlocking due to a circular wait situation is no longer an issue. 

The overhead of such a scheme is the delay incurred in waiting for a task, especially 

if the rendezvous is unsuccessful. Aside from the benefit of freedom from deadlock, 

a programmer can specify the time interval to wait for another task.

The asymmetric naming scheme in Ada was used to implement general 

entry points, which allowed tasks to be called without the server requiring prior 

knowledge of the callers identity. This allows greater flexability and generality in the 

implementation. But a drawback of this scheme is the lack of security it poses, as 

any task which knows the entry name can call and interfere with the server.

In Ada, communication is through an entry call made to the called task, 

which has a corresponding ACCEPT statement The body of the ACCEPT statement 

acts as a critical section and no other communications can take place nor can any 

values be changed in the calling task until the conclusion of this rendezvous. The 

end of the rendezvous coincides with the end statement of the ACCEPT, in the called 

task. If the ACCEPT has no body or parameters it acts as a synchronization 

primitive only and no information is exchanged. The use of parameters allows 

information to be exchanged by reference or value. The benefit of such a two-way 

scheme is the ability to exchange length messages and acknowledgements in the 

same communication. Thus circumventing the need for a task to explicitly send 

acknowledgements to its predecessors. This was effectively shown in the primary 

version of the implementation, which buffered acknowledgements until the particular 
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task called with another length message. At which time the acknowledgements were 

exchanged with the length message. The obvious drawback of this scheme is that 

acknowledgements are always delayed until the predecessor attempts to 

communicate. Thus predecessor tasks are always a little "behind" in the information 

they possess. This is especially true if the task owed the acknowledgements does not 

communicate again and when computation concludes, the number of outstanding 

acknowledgements may have an effect on the eventual outcome.

The number of messages propagated in the Alternate implementation is 

very large. In the worst case N (N -1 messages + 1 EOT) messages are sent from a 

task to its CP and the CP propagates N - 1 of those, thus approximately 2N^ 

messages are used for N nodes. The number of messages is large not only for the 

reason stated above, but also because length messages are propagated even though a 

following message may provide a shorter path. In the Primary version the use of 

ATTRIBUTES indirectly provides the capability to reduce the number of messages. 

The syntax is, P'COUNT, which provides the number of tasks waiting at entry 

point P. It allows the implementation of priorities at a very crude level. Thus tasks 

can prioritize messages, with in-coming messages having first preference. Outgoing 

messages are buffered until no tasks are waiting to rendezvous. That is, P'COUNT 

is equal to 0. This ensures that the shortest path will be propagated after a round of 

messages and the others will be discarded. In the primary version use of the 

COUNT Attribute coupled with the modification to buffer messages was 

instrumental in reducing the number of length messages which are propagated.
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Considering, that in the worst case, the primary propagates messages (N nodes 

each sending N-l messages) any reduction is a help.

The use of the Communication / Buffer Process scheme provides an 

arbitrarily greater degree of concurrency when compared to the nondeterministic 

(Primary version) message sending. Since tasks, using timed out entry calls, need to 

delay for a message to get through they are unable to do any thing else. Whereas the 

CP (Alternate) version sends its messages and can then continue processing. It 

essentially frees up the task to do something else. In the Primary, the task must itself 

wait and synchronize with the called task.

The Attribute CALLABLE which returns true if a task is not aborted, 

terminated or in an abnormal state, was used to aid in message sending. It essentially 

provided the capability to check a tasks ability to accept messages. Though care must 

be taken in its use, as a task may infact terminate between the time of the check and 

the actual message.

In each case it is clear that the language put constraints on the 

programmer to implement the algorithm, but in each case the flexibility of the 

language was used to achieve the objective. Though this was achieved by moulding 

the language to fit the needs. Examples are, the use of timed out entry calls to 

achieve nondeterminism for output messages. Secondly the use of the Attribute to 

implement priorities, however crudely. Both these capabilities were major factors in 

providing efficiency and deadlock freedom for the implementation.
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4J2 Reliability Issues

Distributed programs as indicated above are difficult to implement and in 

contrast to sequential programs require the satisfaction of both the safety and 

liveness properties. Therefore requiring care in the implementation. But this still 

does not guarantee a correct solution, thus fault tolerant techniques are required to 

provide some measure of reliability. This reliability can be achieved through careful 

structuring and design of the program and the use of error detection and recovery 

techniques. In the implementation of the Distributed Shortest Path Algorithm, the 

concept of Communication-Closed Layers was used to provide Safe Layers. This 

was then extended by the use of a Consensus-Global Tester to provide error 

detection and recovery capabilities.

The unrestricted communication and the interactive nature of distributed 

programs make them difficult to verify formally. The use of fault prevention 

techniques, such as testing, reduce errors but residual design inadequacies may still 

be present. One method to design programs and provide fault tolerance is the 

technique of safe layering. As described previously, the objective is to partition 

concurrent programs into concurrently executing segments and to allow 

communication only within the layers thus created. The Distributed Shortest Path 

Algorithm by its nature provided an extremely good opportunity to partition it into 

two layers, corresponding to the two phases of the computation. The logical 

separation was extended to the physical program, with the provision of two versions 
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for each phase. Error detection is provided through the use of Consensus-Global 

Testers.

The major strength of he DSPA program is its ability to continue 

processing even in the event of faults. The reliability inherent in fault tolerant 

software is based on useful redundancy. If the Primary fails then a more inefficient 

module, or one which provides degraded results, will be executed. Each successive 

alternate version provides continued service but at a degraded level of efficiency or 

output The handling of the faults, rollback and recovery, are transparent to the user.

In the DSPA implementation it should be noted that the Primary requires 

N + 1 concurrently executing tasks ( N nodes + Tester ) and approximately 

messages have to be propagated in the worst case. Whereas the Alternate consists of 

2N + 1 concurrent processes and requires 2N^ messages to be propagated. Thus 

the alternate version would be costlier in terms of the overhead for processes and the 

number of messages propagated. But fault tolerant applications themselves, are 

inherently more inefficient than non-fault tolerant ones.

In the case of the DSPA program, the overhead comes from the extra 

number of messages required to communicate with the Tester. The initialization for 

each phase requires N messages and N replies are sent at the conclusion. If an error 

is detected the Alternate needs to be initialized, thus N more messages are sent. 

Consequently, in the worst case 8N messages would be needed and in the best case 

4N. This does not take into account the overhead of N messages (minimal) for the 

stop messages during phase I. But the advantages of fault tolerance are far greater 
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than the drawbacks. For example, fault tolerant software provides continued service, 

even in the event of faults. In the DSPA program continued service can be provided 

through the use of the Alternate, which will be invoked in the event that the Primary 

fails to meet its specifications.

The reliability provided by fault tolerant software is based on the concept 

of useful redundancy. That is the provision of spares with different algorithms, 

written in different languages or by different programmers. The premise is that 

residual design inadequacies of one will not be present in another. Thus based on the 

concept of useful redundancy two modules were provided in the DSPA program. To 

further ensure that the programs would be correct, the Safe Layering technique was 

used to partition the program in two Communication-Closed Layers. An advantage 

of this technique is that, errors caught, lead to a rollback of only that particular layer. 

Thus valuable time is not lost reinitiating the entire computation. A second advantage 

is that errors are caught as early as possible in the computation. That is, a fine 

partitioning allows errors to be detected at the earliest In the DSPA case, an error 

detected in phase 2 need only cause a rollback to the begining of layer 2. Secondly, 

if a fault occurs in phase I it is detected prior to the initiation of phase IL Without 

Safe Layering the error would be detected at the conclusion of computation, when 

the test world be performed.

The use of fault tolerant techniques and the provision of fault tolerance in 

software provides reliability but at an increased cost, in terms of the messages. But 

the overhead is minimal compared to the provision of continued service, reliability 
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and the ability to design safe programs, detect errors and correct them. It should be 

noted that the analysis concerning message overheads takes the propagation of a 

length message into account, not the overall computation.



V. CONCLUSION

It is apparent that distributed algorithms are difficult to implement and are 

affected by the constraints inherent in the constructs for concurrency provided by 

Ada. Situations leading to deadlock are pervasive as communication is unrestricted. 

Whereas, attempts to solve the deadlock problem have tremendous overheads in 

terms of the number of messages required and the number of processes running 

concurrently. In addition to the deadlock problem, issues such as memory usage, 

amount of concurrency and the number of processes executing simultaneously have 

to be addressed. The solutions to these problems are not easy to find. This puts the 

burden on the programmer who, as the complexity of the algorithm increases, is 

more likely to make errors in converting the algorithm to code. His choices will 

ultimately affect the overall outcome. Incorrect choices may have adverse effects, not 

only decreasing performance but ultimately leading to problems. Such problems are 

hard to detect and harder to correct within the confines of the language, especially 

when trying to maintain a high level of concurrent activity.

The quality and elegance of a solution depends to a large extent on the 

programmer ability to forsee problems and solve them through judicious use of the 

language constructs. Though concurrency in the algorithm and concurrent constructs 

in the programming language are helpful and effect performance, the choice of the 

language is very important in achieving maximal perfonnance. The flexibility of the 

language plays an important role in allowing solutions without incurring 
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unacceptable overhead, in terms of the number of processes or the number of 

messages passed. The ability of the language to provide tools, either direcfly or 

indirectly, is useful. Such an ability may be utilized by a programmer in cases where 

regular constructs are too confining or inadequate. But features useful to a 

programmer should be easily available. He should not have to resort to the use of 

constructs to mold the language into a shape which allows algorithms to be 

implemented.

In the case of distributed algorithms where the problem of deadlock 

looms large we can either depend on the programmer and the languages flexibility, 

or use indirection (as shown by the use of CP in the Alternate implementation). The 

drawbacks of both are evident Two methods which would serve better are the 

extension of the language to provide the necessary features, or deadlock detection 

followed by arbitration. Since the latter is considerably harder to achieve, a language 

must provide either the capability to buffer messages implicitly or the ability to send 

messages nondeterministically. In the event of an inability to implement a deadlock 

free solution within the constraints of a language, the use of the Indirection 

methodology is suggested. That is, the use of CP type tasks to ensure freedom from 

deadlock. This technique will be invaluable in providing a quick and easy solution, 

while a more elegant one is thought out

Distributed programs by virtue of their complexity are extremely difficult 

to verify formally. This is due to the unrestricted communication between interacting 

processes with unpredictable orders of execution. Thus fault prevention methods are 
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insufficient and reliance must be placed on software fault tolerance, under the 

assumption that residual design inadequacies are present and may mainfest 

themselves at some later time.

The distributed program must be designed using a methodology to 

decrease the chances of a breach of the correctness property and error detection and 

recoverability must be provided. If an error is detected the alternate modules can be 

invoked to provide uninterrupted service. The lack of ability to verify programs 

should not be used as an excuse, in the event of an error. Since techniques exists 

that can provide reliability even in the event of errors.

The use of fault tolerant techniques have certain drawbacks, specifically 

the overhead for messages and the maintenance of extra versions. But the benefits, 

in terms of the reliability they provide, far outweigh the drawbacks.

The field of distributed computing is still in its infant stages and the study 

of the implementation aspects of distributed algorithms within constraints placed by 

current languages will prove invaluable in the future. Similarly new techniques and 

methodologies are needed in fault tolerance to ensure better error detection and 

recovery capabilities.



APPENDIX A

DISTRIBUTED SHORTEST PATH ALGORITHM

Phase I for Process Pj J#1

begin d := «>; pred is Undefined; num := 0 end;

{Upon receiving a length message (s,Pi))

If s < d then begin

{ send ack to pred, the prefinal vertex on previous shortest path }

If num > 0 then

send an ack to pred;

{ update pred, d }

pred := Pi;

d := s;

( send len message to all successors and increment num accordingly, then 

return ack to pred if num = 0 }

Send a len message (d+w,Pj) to all successors;

num := num + number of successors;

If num = 0 then

Send ack to pred

end

53
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else ( s >= d }

Send ack to Pi;

{ Upon receiving an ack }

begin

{decrement number of unacknowledged messages }

num := num - 1;

{ send acknowledgement to pred if acks have been received for all 

messages)

If num = 0 then

Send ack to pred

end;

Phase I for process Pl

d := 0; pred is Undefined;

Send (w,Pl) to all successors; num := number of successors;

{upon receipt of a length message }

{ start Phase II if negative cycle detected }

If s < 0 then

terminate Phase I and start Phase II;

else 
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return ack to Pi;

{Upon receiving ack)

{ update num; start phase II if there is no unacknowledged message 

remaining}

num := num - 1;

If num = 0 then

terminate Phase I and start Phase IL

Phase II for process Pj (j * 1) with num = 0

{ Upon receiving an over- message }

Ifd# -eo then begin

d := -®o;

Send over- to all successors;

end;

{Upon receiving an over? message }

If d * -oo then

Send over? to all successors who have not been sent such a message;

Phase II for process Pj (j*D  with num >0

{ Upon receiving a Phase II message (over- or over?))
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Ifd# -oo then begin

d := -«*>;

Send over- to all successors;

end;

Phase IT for process Pl

If Plreceives a message (s,Pi) with s < 0 during Phase I then

( Pl detects a negative cycle )

Send an over- message to all successors

else ( num = 0 for Pl at the end of Phase I}

Send over? message to all successors;



APPENDIX B

ADA CODE

PROCEDURE DSPA IS
TYPE statustype IS (OK,NR,GE);
TYPE iteml IS ARRAY(1..N,1..N) OF BOOLEAN;
TYPE item! IS ARRAY(1..N,1..N) OF INTEGER;
TYPE item3 IS ARRAY(L.N) OF BOOLEAN;
TYPE item4 IS ARRAY(L.N) OF INTEGER;

TASK TYPE GlobalTester IS
ENTRY messageO(sl,d,pred,num: IN INTEGER);
ENTRY messagel(d,pred,num J: IN INTEGER);
ENTRY message2(d,over j: IN INTEGER);

END;
TASK BODY GlobalTester IS

more: INTEGER;
done: BOOLEAN;
error: BOOLEAN;
successor: iteml;
predecessor: iteml;
s: IN IEGER;
w: iteml;
j: INTEGER;
pcount: ARRAY(L.N) OF INTEGER;
phaselarray: ARRAY(1..N,1..3) OF INTEGER;
phaselarray: ARRAY(1..N,1..2) OF INTEGER;

FUNCTION assertionl RETURN BOOLEAN IS
i: INTEGERS 2;
error: BOOLEAN := false;
BEGIN

IF s /= 0 AND phaselarray(l,3) /= 0 THEN 
error := true;

END IF;
WHILE NOT error AND i <= N LOOP

IF phaselarray(i,l)/= (phaselarray(phaselarray(i,2),l) + 
w(phaselarray(i,2),i)) THEN 

error := true;
END IF;
IF phase 1 array(i.l) < 0 THEN

IF phaselarray( phase 1 array (i,2), 1) >= 0 AND 
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w( phaselairay(i,2),i) >= 0 THEN 
error := true;

END IF;
END IF;
i := i + 1;

END LOOP;
RETURN error;

END assertion;

FUNCTION assertion! RETURN BOOLEAN IS 
error: BOOLEAN := false;
j: INTEGER :=0;
k: INTEGER := 0;
BEGIN

FOR i IN 1..N LOOP
IF phase2array(i,l) < 0 AND THEN phase2array(i,2) /= 3 THEN 

error := true;
END IF;
EXIT WHEN error,

END LOOP;
RETURN error

END assertion!;

BEGIN
— read values for all variables from file
more := 1;
done := false;
error := false;
LOOP

DELAY 3;
IF more =1 THEN

LI Pl .start(successor( 1,1 ..N),w(l, 1 ..N),pcount(l));
FORiIN2..NLOOP

j:=i;
LlP(i).start(successor(i,l..N),w(i,l..N)j,pcount(i));

END LOOP,
ELSE

LISI .start(successor( 1,1. .N),w( 1,1 ..N),pcount( 1));
FORiIN2..NLOOP

j:=i;
LIS (i).start(successor(i, 1 „N),w(i, 1 ..N) j,pcount(i));

END LOOP;
END IF;
ACCEPT messageO(sl,d,pred,num: IN INTEGER) DO 
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phaselarray(l,l) := d;
phase 1 array  (1,2) := pred;
phaselairay(l,3) := num;
s := si;

END;
F0RiIN2..NL00P

ACCEPT message 1 (d,pred,num j : IN INTEGER) DO 
phaselairay(j,l) :=d;
phaselarray(j,2) :=pred;
phaselarray(j,3) := num;

END;
END LOOP;
IF assertion! THEN

done := true;
status := OK;

ELSIF more < 2 THEN
more := more +1;
status := GE;

ELSE
status := GE;
done := true;

END IF;
EXIT WHEN done OR status = OK;

END LOOP;
IF status = OK THEN

done := false;
more := 1;
LOOP

DELAYS;
IF more = 1 THEN

L2P1. start(phase 1 array (1,1), phase 1 array (1,3),
successor( 1,1 ..N),predecessor( 1, L.N));

FOR i IN 2..N LOOP
j:=i;
L2P(i). start(phase 1 array (i, 1),phase 1 array (i,3), 

successor(i,l..N, predecessor(i,l..N) j);
END LOOP;

ELSE
L2S1 .start(phase 1 airay(l, 1 ),phasel array(l,3), 

successor(l,l..N), predecessor(l,L.N));
FORiIN2..NLOOP

j:=i;
L2S(i).start (phase larray(i,l),phaselarray(i,3)j 

successor(i,l..N), predecessor(i,l..N));
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END LOOP;
END IF;
FORiINl„NLOOP

ACCEPT message2(d,over j: IN INTEGER) DO 
phase2array(j,l) := d;
phase2array0,2) := over, 

END;
END LOOP;
IF assertions THEN 

done := true; 
status := OK;

ELSIF more < 2 THEN 
more := more +1; 
status := GE;

ELSE
status := GE;
done := true;

END IF;
EXIT WHEN done OR status = OK;

END LOOP, 
END IF;

END GlobalTester,

PROCEDURE Layerl Primary(Tester: IN OUT GlobalTester) IS

-- current shortest path
— unacknowledged messages

— most current predecessor

TASK TYPE Primary IIS
ENTRY len_msg(sl,Pi: IN INTEGER;ack: OUT INTEGER);
ENTRY get_ack(ack: IN INTEGER);
ENTRY start(aryl:item3,ary2: item4;pcount: IN INTEGER);
ENTRY stop;

END;
— Phase I task Primaryi
TASK BODY Primaryi IS

d: INTEGER :=0;
num: INTEGER := 0;
pred: INTEGER := 0;
XXXXX: INTEGER;
count: INTEGER;
successor: item3;
ack: INTEGER;
s: INTEGER :=0;
w: item4; ~ weights to successors
done: BOOLEAN := FALSE; ~ true if computation done 
i: INTEGER :=0;
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FUNCTION moretodo RETURN BOOLEAN IS 
done: BOOLEAN := false;
i: integer := 1;
BEGIN

WHILE NOT done AND i <= N LOOP
IF successor^) THEN 

done := true;
END IF;
i := i +1;

END LOOP;
RETURN done;

END moretodo;

BEGIN
ACCEPT start (aryl: item3;aiy2: item4;pcount: INTEGER) DO 

successor := aryl;
count := pcount;
w := aryl;

END;
— send initial length messages to successors
FOR i IN 2..N LOOP

IF successor(i) THEN
LlP(i).len_msg(w(i),l^ick);
num := num + 1;

END IF;
END LOOP;

LOOP
SELECT

- accept length mesg. If path < 0 then computation done
-- else acknowledge mesg
ACCEPT len_msg(sl,Pi: IN INTEGER;ack : OUT INTEGER)

DO
IFslcOTHEN

done := TRUE;
s := si;

ELSE
ack := 1;

END IF;
END;

OR
— accept ack mesg and decrement outstanding acks.
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— If no acks remain then done
ACCEPT get_ack(ack: IN INTEGER) DO 

num := num - ack;
IF num = 0 THEN done := TRUE; END IF; 

END;
OR

ACCEPT stop DO
count := count -1;

END;
OR

WHEN done =>
FORiIN2..NLOOP

IF successor^) THEN
SELECT

LlP(i).stop;
successor(i) := false;

CR
DELAY XXXXX;
NULL;

END SELECT;
END IF;

END LOOP;
IF count = 0 AND NOT moretodo THEN 

EXIT
END IF;

END SELECT;
END LOOP;
Tester.messageO(s,d,predjium);

ENDPrimaryl;

TASK TYPE Primary IS
ENTRY len_msg(s,Pi: IN INTEGER;ack: OUT INTEGER);
ENTRY stop;
ENTRYstart(aryl:item3;ary2: item4;id: INTEGER;pcount: INTEGER); 

END;
— Phase I task Primaryj (j:2.J4)
TASK BODY Primary IS

d: INTEGER := INTEGERLAST; — current shortest path
num: INTEGER := 0; — unacknowledged messages
pred: INTEGER := 0; -- most current predecessor
self: INTEGER;
count: INTEGER;
numct: INTEGER := 0;
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ack: INTEGER;
XXXXX : INTEGER; -- time to delay 
successor: item3;
w; item4'
Table : ARRAY(1..N,1„3) OF INTEGER;
-- col. 1= weight; col. 2=acks; col. 3=if mesg to be sent

FUNCTION moretodo RETURN BOOLEAN IS 
done: BOOLEAN := false;
i: integer := 1;
BEGIN

WHILE NOT done AND i <= N LOOP
IF successor^) THEN 

done := true;
END IF;
i:=i + l;

END LOOP;
RETURN done;

END moretodo;

BEGIN
ACCEPT start(aiyl: item3;aiy2:item4;id:INTEGER;pcount :INTEGER) 

DO
successor := aryl;
self := id;
count := pcount;
w := ary2;

END;
— initialize self, Table to 0,0 and -1
FOR i IN 1..N LOOP

Table(i,l) := 0; Table(i^) := 0; Table(i,3) := -1;
END LOOP;
LOOP

SELECT
~ accept length message
ACCEPT len_msg(s,Pi: IN INTEGER;ack: OUT INTEGER)

DO
ack := 0;
— if path is shorter than previous and old predecessor is
— same as current caller then acknowledge else save ack in 

table.
IFs<dTHEN

IF numct > 0 AND pred = Pi THEN
ack := ack +1;
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back

ELSIF numct > 0 THEN
Table(pred,2) := Table(pred^) +1;

END IF;
- update predecessor and current shortest path 
pred :=Pi;
d:=s;
-- buffer shortest path to successor 
FORiINL.N LOOP
IF successor(i) THEN

Table(i,l) := d + w(i);
Table(i,3) :=i;
numct := numct + 1;

END IF;
END LOOP;
— if no outstanding acks then acknowledge 

IF numct = 0 THEN ack := ack + 1; END IF;
— if path is longer than previous shortest path
— then acknowledge/save 
ELSE IF s>=d THEN

ack := ack +1;
END IF;
ack := ack + Table(pi,2);
Table(pi,2) :=0;

END;
OR

— no one waiting to rendezvous
WHEN len_msg*COUNT  = 0 =>

- if there is an ack for Pl then send it
IFTable(l,2)>0THEN

SELECT
LlPl.get_ack(Table(l,2));
Table(l,2):=0;

OR
DELAY XXXXX;
NULL;

END SELECT;
END IF;
— if Pl is successor then send length mesg and get acks

IF successor(l) AND Table(l,3) /= -1 THEN 
L1P1 .len_msg(Table(l ,1 ),self,ack); 
num := num + 1 - ack;
Table(l,3) :=-l;

END IF;
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~ for all other tasks, if they are successors then send length 
~ message. But wait xxxxxx seconds only for a rendezvous 
FOR i IN 2. JQ LOOP

IF successor(i) AND Table(i,3) /= -1 THEN 
SELECT

LI P(i).len_msg(Table(i, 1),self,ack); 
num := num + 1 - ack;
Table(i,3) :=-l;

OR
DELAY XXXXX;
NULL;

END SELECT;
END IF;

END LOOP;
numct := num;

OR
ACCEPT stop DO 

count := count -1; 
done := true;

END;
OR

WHEN done =>
FORiIN2..NLOOP

IF successor(i) THEN 
SELECT 

LlP(i).stop; 
successor(i) := false;

OR 
DELAY XXXXX; 
NULL;

END SELECT;
END IF;

END LOOP;
IF count = 0 AND NOT moretodo THEN 

EXIT;
END IF;

END SELECT;
END LOOP;
Tester.messagel (d,pred,num,self);

END Primary;

L1P1: Primaryl;
LIP: ARRAY (2..N) OF Primaiy;
BEGIN
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LOOP

EXIT WHEN status /= NR;
END LOOP, 

END Lay er 1 Primary;

PROCEDURE Layer2Primary(Tester: IN OUT GlobalTester) IS

TASK TYPE Primaiyn.l IS
ENTRY over(mtype: IN INTEGER;id: INTEGER);
ENTRY start(sl,numl: IN INTEGER;aryl, predecessor: item3); 

END;
— phase II task Pi
TASK BODY PrimaiyllJ IS

msg: INTEGER; -- message to be sent
num: INTEGER; — unacknowledged messages
s: INTEGER; — distance received
successor: item3;
predary: item3;
self: INTEGER;
XXXXX: INTEGER; — time to delay
backup: item3;
change: BOOLEAN := true;

FUNCTION moretodo(ary: item3) RETURN BOOLEAN IS 
done := BOOLEAN := false;
i: integer := 1;
BEGIN

WHILE NOT done AND i <= N LOOP
IFary(i)THEN

done := true;
END IF;
i:=i+l;

END LOOP,
RETURN done;

END moretodo;

BEGIN
END;
ACCEPT start(sl,numl: IN INTEGER;aryl,predecessor:item3) DO 

successor := aryl;
predary := predecessor,
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backup := successor;
s :=sl;
num := numl;

END;
IFs<0THEN

msg := 3;
ELSE

msg := 4;
END IF;
LOOP

SELECT
IF change THEN

FORiIN2..NLOOP
-- for all successors send over message.
-- But wait only xxxxx seconds for
-- a rendezvous.
IF successor(i) THEN

SELECT
IF L2P(i) * CALLABLE THEN 

L2P(i).over(msg,l);
END IF;

successor(i) := FALSE;

OR
DELAY XXXXX;
NULL;

END SELECT;
END IF;

END LOOP;
IF NOT moretodo(successor) THEN change := false; END

END IF;
OR

WHEN over’COUNT > 0 =>
ACCEPT over(mtype, id: IN INTEGER) DO 

predary(id) := false;
IF msg = 4 AND mtype = 3 THEN 

msg := 3; d := INTEGER'FIRST; 
change := true;
successor := backup;

END IF;
msg := mtype;

END;
OR
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IF NOT change AND NOT moretodo(predecessor) THEN 
EXIT;

END IF;
END SELECT;

END LOOP,
Tester.message2(sjnsg,l);

END PrimaryII_l;

TASK TYPE PrimaryH IS
ENTRY over(mtype, id : IN INTEGER);
ENTRY stan(dl,numl: IN INTEGER;aryl,predecessor: item3; id: 

INTEGER);
END;
— Phase II task Pj (j:2..N)
TASK BODY Primaiyll IS

num: INTEGER; ~ unacknowledged messages
d : INTEGER; - current shortest path
msg: INTEGER; — message received and sent later 
successor: item3;
backup: item3;
predary: item3;
self: INTEGER;
XXXXX : INTEGER; — time to delay 
change: BOOLEAN := true;

FUNCTION moretodo(ary: item3) RETURN BOOLEAN IS 
done: BOOLEAN := false;
i: integer := 1;
BEGIN

WHILE NOT done AND i <= N LOOP
IF ary(i) THEN 

done := true;
END IF;
i:=i + l;

END LOOP,
RETURN done;

END moretodo;

BEGIN
ACCEPT start(dl,numl: IN INTEGERjaryl,predecessor: item3;id: 

INTEGER) DO
d:=dl;
self := id;



74

predary := predecessor, 
successor := aryl;
backup := successor, 
num :=numl;

END;
— accept over message from predecessor
ACCEPT over(mtype, id: IN INTEGER) DO

msg := mtype;
IF num > 0 AND msg /= 3 THEN 

msg:= 3;
END IF;
predary(id) := false;
IF msg = 3 THEN d := INTEGER'FIRST; END IF;

END;
LOOP

SELECT
- if some task is waiting to rendezvous then accept its attempt 
WHEN over'COUNT > 0 =>

ACCEPT over(mtype, id: IN INTEGER) DO 
IF msg = 4 AND mtype = 3 THEN 

msg := 3; d := INTEGER'FIRST; 
change := true;
successor := backup;

END IF;
predary(id) := false;

END,
OR

IF change THEN
FORiIN2..NLOOP

— for all successors, send over message.
— But wait only xxxxx seconds
— for a rendezvous
IF successor(i) THEN

SELECT
IF L2P(i)' CALLABLE THEN 

L2P(i).over(msg,self);
END IF;
successor(i) := FALSE;

OR
DELAY XXXXX; 
NULL;

END SELECT;
END IF;

END LOOP;
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IF NOT moretodo(successor) THEN 

change := false;
END IF;

END IF;
OR

IF NOT moretodo(successor) AND NOT moretodo(predary) 
THEN EXIT END IF;

END SELECT;
END LOOP;
Tester.message2(d,msg,self);

END Primary!!;

L2P1: PrimaryII_l;
L2P: ARRAY (2..N) OF Primaiyll;
BEGIN

LOOP
EXIT WHEN status /= NR;

END LOOP;
END Layer2Primary;

PROCEDURE LayerlSecond(Tester: IN OUT GlobalTester) IS

TASK CommunicationProcess IS
ENTRY msg(tol,mtypel,wl: IN INTEGER);
ENTRY idself(id: IN INTEGER);

END;
TASK BODY CommunicationProcess IS

self: INTEGER;
tetr: INTEGER;
to: INTEGER;
i: INTEGER;
Table: ARRAY(1..N,1..3) OF INTEGER;

PROCEDURE compact IS
i: INTEGER;
j: INTEGER;
swap : ARRAY(1..N,1..3) OF INTEGER; 

BEGIN
j:=l;
FORiINL.NLOOP
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IFTable(i,l)/=-lTHEN 
swap(j,l) := Table(i,l); 
swapQ,2) := Table(i^); 
swap(j,3) := Table(i,3); 
j := j +1;

END IF;
END LOOP;
swap(j,l) := -1; 
i:=l;j:=l;
WHILE swap(j,l) /= -1 LOOP 

Table(i,l) := swapQ,!); 
Table(i,2) := swap(j^); 
Table(i,3) := swap(j,3); 
i:=i+ l;j :=j+ 1;

END LOOP;
Table(i,l):=-1; 
tetr :=i;

END compact;

BEGIN
— initialize Table to -1 and self
LOOP FOR i IN 1..N LOOP

Table(i,l) := -1; Table(U) := -1;
Table(i,3) :=-l;

END LOOP;
ACCEPT idself(id: INTEGER) DO

self := id;
END;
tetr := 1;
LOOP

SELECT
ACCEPT msg(tol,mtypel,wl: IN INTEGER) DO 

to:=tol;
Table(tctr,l) := tol;
Table(tctr,2) := mtypel;
Table(tctr,3) := wl;
tetr := tetr + 1;

END;
LOOP

EXIT WHEN to = -l;
ACCEPT msg(tol,mtypel,wl: IN INTEGER) DO 

to :=tol;
Table(tctr,l) := tol;
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Table(tctr^) := mtypel;
Table(tctr,3) := wl; 
tetr := tetr*  1;

END;
END LOOP;

OR
i>l;
WHILE Table(i,l) /= -1 LOOP

IF Table(i,l) = 1 AND Table(i^) = 1 THEN 
SELECT

LISI .Ien_msg(Table(i,3)»self);
Table(i,l) :=-1;

OR
DELAY XXXXX; 
NULL;

END SELECT*
ELSIF Table(i,l) = 1 AND Table(i,2) = 2 THEN 

SELECT
LlSl.ack_msg;
Table(i,l):=-1;

OR
DELAY XXXXX; 
NULL;

END SELECT*
ELSIF Table(i,l) = 1 AND (Table(i,2) = 3 OR

Table(i,2) = 4) THEN
SELECT

IF L2S I’ CALLABLE THEN
L2S1 .over(Table(i,2),Table(i,3));

END IF;
Table(i,l):=-1; 

cit
DELAY XXXXX; 
NULL;

END RFI PCT-
ELSIF Table(i,l) = 1 AND Table(i,2) = 5 THEN 

SELECT
LlSLstop;
TableCi,l):=-l;

C®
DELAY XXXXX; 
NULL;

END SELECT;
ELSIF Table(U) = 1 THEN
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SELECT
LI S(i).len_msg(Table(i,3),sclf); 
Table(i,l) :=-l;

OR
DELAY XXXXX;
NULL;

END SELECT;
ELSIE Tabled^) = 2 THEN 

SELECT
LlS(i).ack_msg;
Table(i,l):=-1;

OR
DELAY XXXXX;
NULL;

END SET .F-CT*
ELSIE Table(i,2) = 3 OR Tabled^) = 4 THEN 

SELECT
IF L2Sd)' CALLABLE THEN 

L2Sd).overCrabled,2),Tabled,3));
END IF;
Tabled,!) ^-1; 

at
DELAY XXXXX;
NULL;

END SELECT;
ELSIE Tabled^) = 5 THEN 

SELECT
LlSd).stop;
Tabled,!) :=-!;

OR
DELAY XXXXX;
NULL;

END SELECT;
END IF;
i := i +1;

END LOOP;
conpact;

OR
TERMINATE;

END SELECT;
END CommunicationProcess;

TASK TYPE Secondl IS
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ENTRY lcn_msg(sl : IN INTEGER);
ENTRY ack_msg;
ENTRY stop;
ENTRYstart(aiyl:item3;aiy2:item4;pcount: INTEGER);

END;
TASK BODY Secondl IS

d: INTEGER := INTEGERTAST; — current shortest path 
num: INTEGER := 0; ~ unacknowledged messages 
pred: INTEGER; ~ most current predecessor 
self: INTEGER;
ack: INTEGER := 0;
s: INTEGER :=0;
w: item4;
count: INTEGER;
XXXXX: INTEGER; — time to delay 
successor: item3;
done: BOOLEAN := false;

BEGIN
ACCEPT start(aryl: item3;aiy2: item4;pcount: INTEGER) DO 

successor :«= aryl;
count := pcount;
w := ary 2;

END;
CP(l).idself(l);
FORiIN2..NLOOP

IF successor(i) THEN 
CP(l).msg(i,l,wCi)); 
num := num +1;

END IF;
END LOOP;
CP(l).msg(-l,-l,-l);
LOOP

SELECT
ACCEPT len_msg(sl,Pi: INTEGER) DO 

pred := Pi;
IF si <0 THEN

done := true;
s := si;

ELSE
ack := 1;

END IF;
END,
IF ack = 1 THEN
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CP(1 ).msg(pred,2,0);
CP(l).msg(-l,.l,-l); 
ack := 0;

END IF;
OR

ACCEPT ack_msg DO 
num := num -1;
IF num = 0 THEN done := true; END IF; 

END;
OR

ACCEPT stop DO 
count := count -1;

END;
OR

WHEN done =>
FOR i IN 2. JQ LOOP 

IF successor^) THEN 
CP(l).msg(i,5,0); 
successor^) := false;

END IF;
END LOOP;
CP(l).msg(-l,-l,-l);
IF count = 0 THEN EXIT; END IF;

END SELECT;
END LOOP;
Tester.messageO(s,d,predjium);

END Secondl;

TASK TYPE Second IS
ENTRY len_msg(s,Pi: IN INTEGER);
ENTRY ack_msg;
ENTRY stop;
ENTRY Start(aryl:item3;aiy2:item4;id: INTEGER;pcount: INTEGER); 

END;
TASK BODY Second IS

d: INTEGER := INTEGERLAST; — current shortest path
num: INTEGER := 0; -- unacknowledged messages
pred: INTEGER; ~ most current predecessor 
self: INTEGER;
ack: INTEGER;
count: INTEGER;
w: item4;
successor: item3;
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done: BOOLEAN := false;
saves, savepi: INTEGER;

BEGIN
ACCEPT start (aryl: item3;ary2: item4;id, pcount: INTEGER) DO 

count := pcount;
successor := aryl;
w := ary2;
self := id;

END;
CP(self).idself(self);
LOOP

$FT .F-CT
ACCEPT len_msg(s,Pi: IN INTEGER) DO 

ack := 0;
saves := s;
savepi := Pi;

END;
IF saves < d THEN

IF num > 0 THEN
CP(self).msg(pred,2,0);
CP(self).msg(-111);

END IF; 
pred := savepi;
d := saves;
FORiINl..NLOOP

IF successor(i) THEN 
CP(selD.msg(i,l ,d+w(i)); 
num := num + 1;

END IF;
END LOOP:
IF num = 0 THEN

CP(self).msg(pred,2,0);
END IF;

ELSIF saves >= d THEN
CP(self)-msg(pred,2,0);

END IF;
CP(self).msg(-l,-l,-l);

OR
ACCEPT ack_msg DO 

num := num - 1;
END;
IF num = 0 THEN

CP(self).msg(pred,2,0); CP(self).msg(-111); 
END IF;
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OR
ACCEPT stop DO 

count := count -1; 
done := true;

END;
OR

WHEN done =>
FORiIN2..NLOOP

IF successor(i) THEN
CP(self).msg(i,5,0); 
successor(i) := false;

END IF;
END LOOP;
CP(self).msg(-111);
IF count = 0 THEN EXIT; END IF;

END SELECT;
END LOOP;
Tester.messagel (d,pred,num,self);

END Second;

LISI: Secondl;
LIS : ARRAY (2..N) OF Second;
CP: ARRAY (1..N) OF CommunicationProcess;
BEGIN

LOOP
EXIT WHEN status /= NR;

END LOOP;
END Layer 1 Second;

PROCEDURE Layer2Second(Tester: IN OUT GlobalTester) IS

TASK CommunicationProcess IS
ENTRY msg(tol,mtypel,wl: IN INTEGER);
ENTRY idself(id: INTEGER);

END;
TASK BODY CommunicationProcess IS

self: INTEGER;
tetr: INTEGER;
to: INTEGER;
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i: INTEGER;
Table: ARRAY(1..N,L.3) OF INTEGER;

PROCEDURE compact IS
i: INTEGER;
j: INTEGER;
swap: ARRAY(1..N,L,3) OF INTEGER;

BEGIN
j:=l;
FORiINl..NLOOP

IFTable(i,l)/=-lTHEN 
swap(j,l) :=Table(i,l); 
swap(j,2) := Table(i^); 
swap(j,3) := Table(i,3); 
j := j +1;

END IF;
END LOOP;
swap(j,l) :=-l;
i:=l;j:=l;
WHILE swapG.l) /= -1 LOOP 

Table(i,l) := swapG.l); 
Table(i,2) := swap(j^); 
Table(i,3) := swap(j,3); 
i:=i + 1; j :=j + 1;

END LOOP;
Table(i,l):=-1;
tetr :=i;

END compact;

BEGIN
-- initialize Table to -1 and self
LOOP FOR i IN 1..N LOOP

Table(i.l) := -1; Table(U) := -1;
Table(i,3) :=-1;

END LOOP;
ACCEPT idself(id: INTEGER) DO

self := id;
END;
tetr := 1;
LOOP

SELECT
ACCEPT msg(tol,mtypel,wl: IN INTEGER) DO 

to:=tol;
Table(tctr,l) := tol;
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Table(tctr^) := mtypel;
Table(tctr,3) := wl;
tetr := tetr 4-1;

END;
LOOP

EXIT WHEN to = -l;
ACCEPT msg(tol,mtypel,wl: IN INTEGER) DO 

to := tol;
Table(tctr,l) := tol;
Table(tctr^2) := mtypel;
Table(tctr3) := wl;
tetr := tetr +1;

END;
END LOOP;

OR
i:=l;
WHILE Table(i,l) A= -1 LOOP

IF Table(i,l) = 1 AND Table(i3) = 1 THEN 
SELECT

LIS l.len_msg(Table(i,3).self);
Table(i,l) :=-1;

CR
DELAY XXXXX;
NULL;

END SELECT*
ELSIF Table(i,l) = 1 AND Table(i,2) = 2 THEN 

SELECT
LlSl.ack_msg;
Table(i,l) :=-l;

OR
DELAY XXXXX;
NULL;

END SELECT"
ELSIF Table(i,l) = 1 AND (fTable(i,2) = 3) OR

(Table(i,2) = 4)) THEN
SELECT

IF L2S1*  CALLABLE THEN
L2S1 .over(Table(i3),Table(i,3));

END IF;
Table(i,l):=-1;

CR
DELAY XXXXX;
NULL;

END SELECT;
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ELSIF Table(i,l) = 1 AND Table(i,2) = 5 THEN 
SELECT

LISLstop;
Table(i,l) := -1;

OR
DELAY XXXXX;
NULL;

END SELECT;
ELSIF Table(i,2) = 1 THEN

SELECT
LI S(i).len_msg(Table(i,3),seIf);
Table(i,l) := -1;

CR
DELAY XXXXX;
NULL;

END SELECT;
ELSIF Table(i,2) = 2 THEN

SELECT
LlS(i).ack_msg;
Table(i,l) := -1;

at
DELAY XXXXX;
NULL;

END SELECT;
ELSIF (Tablc(i^) = 3) OR (Table(i^) = 4) THEN 

SELEC1
IF L2S(i) * CALLABLE THEN
ENL2S(i).over(Table(i^),Tab1e(i,3));

TableCi,i):=-l;
OR

DELAY XXXXX;
NULL;

END SELECT;
ELSIF Table(i^) = 5 THEN

SELECT
LlS(i).stop;
Table(itl):=-1;

at
DELAY XXXXX;
NULL;

END SELECT;
END IF;
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END LOOP;
compact;

OR
TERMINATE;

END SELECT;
END CommunicationProcess;

TASK TYPE SecondHJ IS
ENTRY over(mtype, id: IN INTEGER);
ENTRY start(sl jiuml: IN INTEGER;aryl, predecessor. item3); 

END;
TASK BODY SecondHJ IS

msg: INTEGER; ~ message to be sent
num: INTEGER; — unacknowledged messages
s: INTEGER; — distance received
self: INTEGER;
backup: item3;
predary: itemS;
change: BOOLEAN := true;
successor: item3;

FUNCTION moretodo(ary: item3) RETURN BOOLEAN IS 
done: BOOLEAN := false;
i: integer := 1;
BEGIN

WHILE NOT done AND i <= N LOOP
IFary(i)THEN

done := true;
END IF;
i:=i + l;

END LOOP;
RETURN done;

END moretodo;

BEGIN
ACCEPT start(sl,numl: IN INTEGER;aryl,predecessor: item3) DO 

s := si;
num:=numl;
predary := predecessor,
successor := aryl;
backup := successor,

END;
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self := 1;
CP(l).idself(l);
IFs<OTHEN

msg := 3;
ELSE

msgs=4;
END IF;
LOOP

SELECT
IF change THEN

FORiIN2..NLOOP
-- for all successors send over message.
-- But wait only xxxxx seconds for
— a rendezvous.
IF successor^) THEN 

CP(l).msg(ijnsg,l); 
successor(i) := FALSE;

END IF;
END LOOP;
CP(l).msg(-l,-l,-l);
IF NOT moretodo(successor) THEN 

change := false;
END IF;

END IF;
OR

WHEN over’COUNT > 0 =>
ACCEPT over(mtype 3d: IN INTEGER) DO 

IF msg = 4 AND mtype = 3 THEN 
msg := 3; d := INTEGER'FIRST; 
change := true; 
successor := backup;

END IF;
predary(id) := false;

END;
OR

IF NOT moretodo(successor) AND NOT moretodo(predaiy) 
THEN

EXIT;
END IF;
END SELECT;

END LOOP;
Tester.message2(s,msg,self);

END SecondH_l;
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TASK TYPE SecondH IS
ENTRY over(mtype ,id: IN INTEGER);
ENTRY start(dl jiuml: IN INTEGERjid: INTEGER;aryl,predecessor 

: item3);
END;
TASK BODY SecondH IS

num: INTEGER; — unacknowledged messages
d: INTEGER; — current shortest path
msg: INTEGER; - message received and sent later 
successor: item3;
backup: itemS;
predary: item3;
change: BOOLEAN := true;
self: INTEGER;

FUNCTION moretodo(ary: item3) RETURN BOOLEAN IS 
done: BOOLEAN := false;
i: integer := 1;
BEGIN

WHH.E NOT done AND i <= N LOOP
IF ary(i) THEN 

done := true;
END IF;
i := i +1;

END LOOP;
RETURN done;

END moretodo;

BEGIN
ACCEPT start(dl,numl: IN INTEGER;id: INTEGER;aryl 

,predecesor: item3) DO 
d:=dl;
num := numl;
self := id;
predary := predecessor, 
successor := aryl;

END;
CP(self).idself(self);
— accept over message from predecessor
ACCEPT over(mtype, id: IN INTEGER) DO 

predary(id) := false;
msg := mtype;
IF num > 0 AND msg /= 3 THEN
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msg :=3;
END IF;
IF msg = 3 THEN d := INTEGERTIRST; END IF;

END;
LOOP

SELECT
-- if some task is waiting to rendezvous then accept its attempt 
WHEN over'COUNT > 0 «>

ACCEPT over(mtype, id: IN INTEGER) DO 
IF msg = 4 AND mtype = 1 THEN 

msg := 3; d := INTEGER'FIRST; 
change := true;

END IF;
predary(id) := false;

END,
OR

IF change THEN
FORiIN2..NLOOP

— for all successors, send over message. 
IF successor^) THEN

CP(self).msg(i,msg,self); 
successor(i) := FALSE; 

END IF;
END LOOP;
CP(self).msg(-111);
IF NOT moretodo(successor) THEN 

change := false;
END IF;

END IF;
OR

IF NOT moretodo(successor) AND NOT moretodo(predary) 
THEN EXIT END IF;

END SELECT;
END LOOP;
Tester.message2(d,msg,self);

END Second!!;

L2S1: Second!;
L2S : ARRAY (2..N) OF Second;
CP: ARRAY (1..N) OF CommunicationProcess;
BEGIN

LOOP
EXIT WHEN status /= NR;



END LOOP, 
END LayerlSecond;
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Tester: GlobalTester;
Status: statustype;
BEGIN

status := NR;
Layer 1 Primary(Tester);
IF status = GE THEN 

status := NR; 
Layer 1 Second(Tester);

END IF;
IF status = OK THEN 

status := NR; 
Layer2Primary(Tester); 
IF status = GE THEN 

status := NR; 
Layer2Second(Tester);

END IF;
END IF;
IF status = GE THEN 

~ Error
END IF; 

ENDDSPA;
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