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ABSTRACT

A simple, elegant algorithm upon implementation presents innumerable
problems. This paper provides insight into the difficulties of implementing a
distributed algorithm. This is followed by an efficient, fault tolerant implementation
of the Distributed Shortest Path Algorithm. The provision of fault tolerance has a
large overhead in terms of the number of messages required. A modification of the
algorithm is proposed to reduce the number of messages, using buffering in
conjunction with Ada constructs to achieve this in the implementation.

The unrestricted communication in a distributed system produces
situations conducive to deadlock. This is particularly true if a synchronous form of
message passing is used, as processes will wait indefinitely for each other. To
ensure freedom from deadlock a variant of nondeterministic message sending based
on Ada timed out entry calls is used. Distributed programs are also, by virtue of their
complexity, difficult to verify. Even after extensive testing residual design
inadequacies may be present. Thus the concept of Communication Closed Layers is
used to design the program. The Consensus-Global Tester is used to implement
error detection and assist in error recovery. In the event of an error, a Backward
error recovery scheme is used which saves the essential information. Thus,

computation can be reinitiated using the saved values.
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L INTRODUCTION

The trend towards distributed processing on computer networks has led
to an increase in the number of distributed algorithms and the development of
programming languages to exploit the concurrency. But two major issues have not
- yet been addressed. The first issue concerns the problems associated with the
implementation of the algorithms, within the constraints of the languages. The
second issue concerns the assurance of reliability in such a complex software
system, as the results depend on the unpredictable order in which actions from
different processes are executed. In this paper we consider the problems and
drawbacks of implementing the Distributed Shortest Path Algorithm [CHANS82]
within the constraints placed by a language, specifically Ada*. We then design and
implement a fully distributed, fault tolerant program which meets all correctness
criteria.
The Distributed Shortest Path Algorithm is an elegant distributed solution

to compute the shortest path from a special vertex vy to all other vertices of a

weighted, directed graph. The unrestricted communication in a distributed program
and the unpredictable order of execution of the component processes pose problems.
These are compounded by the constraints placed by a language. Thus to achieve

freedom from deadlock requires either an indirection methodology or the use of

*Ada is a registered trademark of the U.S. Govt.,Ada Joint Program Office (AJPO)
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variant Ada constructs to provide nondeterminism on output. A general method for
overcoming deadlock is proposed and implemented using Communication Processes
(buffers).

Distributed programs are inherently difficult to verify and even after
extensive testing, may have residual design errors. Thus techniques for designing
correct programs have to be utilized. This particular fault tolerant implementation is
based on the concept of Communication Closed Layers [ELRA83], which partitions
programs logically / physically to provide what are called Safe Layers. Such a
design methodology coupled with the concept of Consensus-Global Testers
[LEES88] provides fault tolerance. Hence, error detection and recovery are possible.

A Recovery Block [RAND75] type scheme is used to implement error
detection and recovery. The premise of a Recovery Block type scheme is that errors
will occur, thus "spare"” modules must be provided. Hence, at the conclusion of a
particular computation, if an error is detected the "spare" can be used to recompute
the values. While the erroneous values are discarded. The errors are detected
through the use of a Tester module which assures that the results are either
“acceptable” or erroneous.

The ultimate objective is to maximize concurrency and provide fault
tolerance without incurring overheads in time-space. To begin the discussion a brief
outline of the Distributed Shortest Path Algorithm and the complete backgrounds on
the concepts, techniques and methodologies will be given in section 2. This will be

followed in section 3 by a description of the implementation and its algorithm.



Section 4 is devoted to the analysis. Finally, in section 5, some concluding remarks

are made.



II. BACKGROUND

In this section we provide the conceptual background of the techniques
which form the basis for this thesis. These are firstly, the language of
implementation, Ada. Secondly, the concept of fault tolerance followed by the Safe
Layering design methodology. Then a consideration of the problems and difficulties
of implementing a distributed program are provided. Finally, an overview of the
distributed algorithm is given. But before a complete exposition of the theory is
given, a few basic definitions are in order.

To begin with, a concurrent program specifies two or more sequential
programs that may be executed concurrently as parallel processes. These processes
communicate and synchronize, in order to cooperate to achieve a common objective.
But the absolute or relative speeds of execution of the component processes are
unpredictable.

Concurrent programs may be executed in several different environments,
depending basically on the availability of processors and their interconnections. The
first method allows processes to share one or more processors and is referred to as,
multiprogramming. If each process is executed on a single processor, but all
processors share a common memory, it is referred to as multiprocessing. Finally,
the execution of processes on dedicated processors connected by a network is called
distributed processing. Since no memory is shared cooperation is achieved through

message passing or remote procedure calls. Thus a distributed program consists of a

4



collection of processes or tasks executed in a distributed processing environment.
In what follows, the terms task and process are interchangable and refer

to self sufficient execution units which communicate via messages.

2.1 Concurrent Ada

Ada, the new general purpose programming language, is based on
definitions proposed by the US Department of Defense for use in embedded
Systems. It is the culmination of a decade of specification and revision of successive
versions of the language and reflects the current trend towards data abstraction,
multitasking, generics, exceptions handling, readability, reliability, etc.

In many circumstances programs have to be written as several parallel
activities which communicate / synchronize in order to cooperate. In Ada this
parallelism is described by means of tasks, which is a unit of concurrency. When
two tasks need to interact they do so through a mechanism known as a rendezvous.
A rendezvous takes place when one task calls an entry declared in another. Each

entry has a corresponding ACCEPT statement. For example,

ACCEPT message(messagetype : IN INTEGER) DO



P1l.message(4);
accepts a message and subsequently sends a message to task P1, which has a
corresponding ACCEPT.

The body of the ACCEPT statement acts as a critical section and no other
communication can take place nor can any values be changed in the calling task until
the conclusion of this rendezvous. The end of the rendezvous coincides with the
END statement of the ACCEPT, in the called task. If the ACCEPT has no body or
parameters it acts as a synchronization primitive only and no information is
exchanged. The use of parameters allows information to be exchanged by reference
or value.

A strength of Ada which is not as apparent, in contrast to its better
known features, is its flexibility. Though the specification of Ada do not explicitly
provide for nondeterministic output, the use of timed out entry calls allow the
mimicking of such nondeterminism. The timed out entry call allows a sequence of
statements to be executed alternatively, if an entry call is not accepted within the

specified duration. Thus



SELECT
P1.message("entry call");
OR
DELAY X;
-- Statements

END SELECT;
will execute the statements following DELAY X, if task P1 does not accept the call
within X seconds. This ensures that the calling task will not wait indefinitely, if the
destination task cannot accept the call.

When a task calls another, Ada relies on an asymmetric naming scheme
to implement general entry points. That is, the calling task needs to know the identity
of the called task. But the called task (server) is not required to know who the caller
(user) is. Thus, entry points can be called by any process without the server
requiring prior knowledge of the users identity. If a task needs tc; know whether
Pprocesses are waiting to rendezvous it utilizes the concept of Attributes. The syntax

is PCOUNT, which provides the number of tasks waiting at entry point P.
22 Software Fault Tolerance

The need to provide increased reliability in computer system led to the
approach of achieving this goal through the use of fault prevention. Reliance is

placed on tools and techniques such as verification, documentation, testing, etc.



Such techniques assume that all possible causes of unreliability can be removed prior
to delivery and reliance will not be placed on a system until all "bugs" have been
removed. This approach fails to account for faults which were unanticipated and
thus not weeded out during the design and testing of the system. It is reasonable to
assume faults may be present in a system and will have to be tolerated. Thus the
concept of fault tolerance uses redundancy of design as a means to provide error
detection and recovery from residual design inadequacies. This ensures
uninterrupted service even in the event of faults. To achieve this objective, fault
tolerant systems must detect errors, assess the damage, try to recover and provide
continuous service.

Two complementary approaches for providing fault tolerance in software
have evolved. These are forward error recovery and backward error recovery. The
aim of forward error recovery is to identify the error and based on the available
knowledge correct the system state to provide continued service. An example of
such an approach is N-Version Programming. In contrast, backward error recovery
manipulates the system state so as to achieve a "reversal of time". That is, to a state
prior to the erroneous one without regard for the current state. Thus previous states
are saved on a stable medium, to be recalled if the need ever arises.

The recovery block scheme [RAND75] is an example of a backward
error recovery technique and like all fault tolerant schemes relies on redundancy. It
consists of three distinct parts: a recovery point, execution modules and an

acceptance test point. The first of these is a point in the execution of a program when



the important variables are saved. This occurs prior to entering a recovery block.
The second part consists of a primary module, which is executed first upon entering
a recovery block. Upon completion the process must pass an acceptance test to
ensure the reliability of its results. If the test is passed, then the process proceeds.
But if the test is failed the process state is restored to its original version (saved on
entering the recovery block). Then an alternate module of the program is executed,
in the hopes that the alternate will not have the residual design inadequacies present
in the primary.

The alternate blocks / modules may be of differing design, algorithms,
languages or a combination thereof. The premise is that residual design inadequacies
present in one module will not be present in another. Any number of alternates may
be used as long as they provide a measure of fault tolerance within acceptable costs.
For example, if four algorithms to solve a particular problem are available and their
time complexities are n log n, n2, n3 and n12, then the last version even though it
provides redundancy, may be too expensive to employ, especially in a time
constrained application.

The acceptance test is a last moment check to ensure the reasonableness
of the output and is by no means a test for absolute correctness. This acceptance test
is over and above the usual interface checks provided by the system - which lead to
exceptions, etc. Thus if no exception has been raised and the output of the module

meets the acceptance criteria it is assumed that no fault occurred.



10

2.3 Safe Layering

Distributed programs, by virtue of their complexity, are very difficult to
verify formally. Even after extensive testing and debugging residual design
inadequacies may be present. This coupled with the unrestricted communication
between concurrent processes could cause the propagation of erroneous values.
Ultimately leading to erroneous results or a crash of the software system. Thus there
is a need for methodologies to design reliable programs and for techniques to detect
and recover from faults. One such design method, based on the concept of
Communication-Closed Layers proposed in [ELRA83], provides a means to design
reliable distributed programs in what are termed Safe Layers. This in conjunction
with the Consensus-Global Tester [LEE88] provides error detection and
recoverability. The provision of fault tolerance based on these techniques does not
give up any degree of concurrency, allowing component processes to execute at their

own pace.

2.3.1 Safe Layers

Distributed programs can be viewed as having a two dimensional
data-flow. That is, sequential within the process and parallel between processes.
Thus, in order to design a distributed program we must consider the sequential

behaviour within each process and manage synchronization / communication
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between the processes. The concept of Safe Layering allows such a consideration.
The basic idea is to view distributed programs as a sequential composition of

concurrent Layers. For example, a concurrent program P consisting of interacting

processes p1 ; P2 s == Pp is defined in CSP [HOAR78] syntax as :

Pulpilipplt-lipg]
Furthermore, each component process can be subdivided into d logical / physical

segments. Thus each process ( p;) may be defined as :

pi [ pil; sease pid]
Thus, in general, process segments can be defined as :
PS¢ {i=1.n , seg=1.d})

and a Layerk is:

[Plk i sz ool ppk ]
The Sequential Composition (denoted by ";") of a concurrent program P
is [Layerl ;.- ;Layerd]
This allows a concurrent program to be viewed as a collection of sequential layers.
But gives up some concurrency and requires a global synchronization scheme, as
commands in a following layer are not available until the previous layer has
terminated.
The Distributed Composition (denoted by ":") of a concurrent program P

is:
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[ Layer! : e : Layt:rd ]

and is exactly equivalent to :

[p1}; = Pld o ll ppl; o s Pnd]
Thus allowing a process to execute at its own pace without any global
synchronization and ignoring layer boundaries.

The equivalence of the two compositions can be provided by assuming
for all layers, that Layerk is Communication Closed. That is, in any communication
both members must belong to the same layer. Thus if inter-layer communication is
disallowed, across layer boundaries, each of the layers is communication closed and
such layers are called Safe Layers. These Safe Layers can be used as units of
modularity with layer boundaries serving as synchronization points [LEES8§],
[ELRAB83], [GERTS86), [MOIT83].

The Distributed Shortest Path Algorithm (DSPA) is implemented in two

layers corresponding to the two phases of the algorithm, described in section 2.5.

2.3.2 Consensus-Global Tester

The efficacy of fault tolerance depends to a large extent on the ability to
detect errors and consequently have a chance to correct the errors. Thus error
detection is an extremely important phase in computation and relies heavily on the
ability of the tester to "catch" the errors. In sequential programs the errors are

isolated within single programs which are not affected by outside influences. But in
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a distributed system, where many processes may be running concurrently and
interacting, errors outside the module can affect the outcome. Some errors may be
localized but, through interactions, have tainted parts of the program which appear to
be fine.

A tester for a sequential program is required to ensure that specifications
for a particular program are met. In the case of distributed programs, the tester must
ensure the correctness of the results for the entire computation. This is made more
difficult since the order of execution, of the actions of the interacting processes, are
unpredictable. Thus, so are the results.

The Consensus-Global Tester [LEE88] based on the premise that there
are interactions amongst processes provides error detection for all the component
processes. This is achieved by providing a global specification, which can test the
correctness of the results of all the interacting processes. In the event of a global
error all tasks are required to rollback.

If a distributed implementation can be partitioned into regions or layers in
such a way that error detection and recovery can be localized. Then the concept of
Global Testers can be applied to each of the regions to regionalize the error detection
and recovery, without having an adverse effect on the other regions. Thus, errors
can be detected and recovery initiated only in those particular regions. In the event
of an error, rollback and recovery occur within the region. But if no regional errors
are detected the results are sent to the Global Tester for consensus-global testing.

That is, to ensure that all regions meet the specification as a whole.
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In the program to be implemented the concept of a single
Consensus-global Tester for each phase of the computation is used. This tester

should verify that a global assertion holds in all cases.

2.4 Problems and Difficulties

The concept of distributing processing is a powerful and useful one, but
must be utilized with extreme care. Several problems are faced in the effort to
implement a distributed program, and these issues have to be resolved to profit from
the enormous potential of distributed processing. These issues include the danger of
deadlock, unnecessary blockage, overheads of messages and processes, language
constraints, reliability, debugging of errors and a fully distributed implementation.
When addressing these issues compromises have to be made, which ultimately affect

the implementation and its efficiency.

24.1 Deadlock Problem

In distributed solutions, the unrestricted inter-process communication

produces situations conducive to deadlock. For example, some arbitrary process P;
attempts to communicate with another process P;; simultaneously Pjmay try to send

a message to Pj. This circular wait situation is unresolvable as both processes would
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wait indefinitely for the other to receive its message. There are two basic solutions to
this problem, either deadlock avoidance or deadlock detection and arbitration. The
latter is much more costlier in terms of the overhead of monitoring and is almost
impossible to achieve, in general, for distributed programs. The avoidance of
deadlock is relatively easier to achieve through careful structuring and design of the
program [LEE87]. But requires some degree of intuition on the part of the
programmer and flexibility in the programming language.

A general method to ensure freedom from deadlock makes use of
indirection during communications. This is achieved through the use of buffer
processes, which buffer and redirect messages, thus circumventing the need for
direct communication. A second technique depends on the flexibility of the language

Ada to provide nondeterminism on output.

2.4.2 Blocking Problem

A less serious but equally important issue concerns unnecessary
blockage / waiting. A process blocked for communication / synchronization must not
have to wait too long. This issue gains significance if it is realized that the speeds of
execution of processes are arbitrary and therefore unpredictable. Thus a faster
executing process may have to wait for a slower partner to effect a synchronization
or complete a communication attempt. To alleviate this problem a process must,

upon finding the called process busy, be allowed to continue processing on
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something else. Thus valuable computing power is not lost waiting for events to

occur. For example, if a process P} attempts to communicate with a process P» and

finds Py busy. Pj should not be required to wait for Py, instead P1 may delay a

short time and thereafter proceed on its own, subsequently returning to reattempt a

rendezvous.

2.4.3 Message and Process Overheads

Since processes are executed on systems which could be geographically
separated and no sharing of memory occurs, the only means of communications are
remote procedure calls or message passing. In the algorithm and the implementation
language, message passing is assumed and thus only the latter is considered. It is
apparent that communication through messages has a substantial overhead in terms
of the delay, the amount of memory required to buffer message and the number of
messages propagated. Thus any implementation should include the reduction of
messages as an a priori requirement. If such a reduction is possible through the
implementation, by modification to the original algorithm or use of concepts and
constraints, then the necessary steps must be taken to ensure minimality of the
number of messages.

Aside from the number of messages, under certain circumstances, the

number of processes may be quiet high. These processes may be needed for
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secondary purposes, such as buffering. They should be kept to a minimum, or
eliminated altogether if possible. Since the overhead lies not only in the number of
processes but also for inter-process communication. The inefficiency inherent in a
system using a large number of processes and / or messages is a drain on the
system. This ultimately affects performance and throughput of the system is

reduced.

244 Language Constraints

Until the recent development of general purpose programming
languages, which incorporate multitasking and constructs for concurrency as
primitives, most languages did not provide for such concepts. But the provision of
such capabilities in the new languages is by no means complete, as they are still not
powerful or expressive enough to allow all types of implementations. In the event
that a construct is not directly available to the programmer, the flexibility of a
language plays an important role in allowing solutions without incurring
unacceptable overheads. An example is the timed out entry call in Ada, without
which nondeterminism for output messages would not be possible.The inventors of
distributed algorithms usually do not consider specific languages to implement their
algorithms. Therefore, these algorithms are not always amenable to implementation
within the constraints of a language. The tools provided by a language, either

directly or indirectly, may be utilized by a programmer in cases where regular
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constructs are too confining or inadequate.

24.5 Reliability Problems

There are two types of correctness properties which all programs must
possess - Safety and Liveness. Safety properties are the static portion of the
specifications and are explicitly stated. An example is mutual exclusion. Liveness
deals with the dynamic properties and ensures that an event will eventually happen.
Deadlock is an example of a breach of liveness. These issues are extremely
important in concurrent programs as the results of the execution of several processes
depends on the order in which actions from different processes are executed. The
complexity of the situation greatly increases the probability that the programmer will
make mistakes and that errors will not be detected during testing. Such design errors
would ultimately lead to the violation of the correctness properties and either
incorrect results or, failure of the software system. Until reliable proofs of
correctness which cover implementation details are available for realistic software,
reliance has to be placed on design methodologies and software fault tolerance.

A secondary issue concerned with reliability is that of debugging. This is
an example of fault prevention and can be useful in finding and removing some
errors, which would cause unnecessary wastage of computing power. For example,
during software testing the ease of readability of a program is essential and enhances

the chances of catching and fixing errors. But most languages seem to consider
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readability as an afterthought. If a language is too terse (such as APL) reading it is
difficult and finding logical errors next to impossible. On the other hand a language
which is too prolix affects the programmer just as badly.

2.4.6 Distributed Implementation

It is obvious that a distributed program must be exactly that, distributed.
Since the quality, speed and efficiency all stem from the distributed environment
which allows various parts of a concurrent program to execute at their own pace. It
is possible to implement distributed algorithms using a host or controller process to
restrict communication . But this reduces concurrency and has a detremental effect
on the speed, efficiency and ultimately the quality of the program. A centralized
model using a single controlling process is infeasible, not only for the reasons
above, but it is prone to bottlenecks and intolerant to faults. The loss of the central
node can cause a crash of the entire system. Such an implementation would also
sequentialize a distributed algorithm, making it no better than a sequential program
given time slices on a single processor. Thus all distributed programs must allow
unrestricted communication without any host or controller process and use the

advantages provided by the language, the algorithm and the system.
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25 Distributed Shortest Path Algorithm

In this section we provide the background and highlights of the
Distributed Shortest Path Algorithm. The complete algorithm can be found in
appendix A.

The algorithm implemented is an elegant, distributed solution to compute
the shortest path from a vertex to all other vertices of a weighted, directed graph in

the presence of negative cycles. A directed graph G = (V,E) consists of 2 sets. Visa

set of vertices and E is a set of edges. If an edge <vj,v;> is incident to vertices vj and
vj» then a path exists from vj to vj. The vertex v; is called the predecessor of v; and
vj is the successor of vj. Each edge has associated with it a length ljj corresponding

to the distance from vj to vj. In the event a length Ijj is negative, a cycle of negative
length may exist. Consequently, all vertices reachable from the negative cycle will
have lj; equal to -eo. An example of such a graph is shown in figure 1.

In this algorithm processes communicate through messages and the
presence of message buffers is assumed. The computation is done in two phases.
The first phase computes the minimum distance from vertex vy to all other vertices.
If there is a negative cycle a vertex will have a distance of -eo . The second phase is
used to inform the vertices that they are at a distance of -eo. In phase I the path

lengths are propagated using a length message and successors reply using an
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acknowledgement message.Where there is no ambiguity the terms vertex and node

will be used interchangably.
Process P} at Node vy initiates Phase I by using length messages to

inform its successors of its distance from them. The successors upon receiving this
value add the distances to their respective successors (to the received value) and pass
on the new value.

This iterates until all successors receive their respective length messages.
Upon the receipt of a length message each process updates its local value for the
shortest path received thus far from a predecessor and propagates the message. An

acknowledgement sent in response to a length message is used to terminate phase 1.
Phase II, again initiated at node v{, employs two types of messages.

Namely the over- and over? messages. An over- message is sent if it is determined
that a negative cycle exists, i.e. shortest path distance is -eo, The receipt of an over-
message requires a successor to set distance to -eo, unless it already has distance
equal to -eo, The over- message is then propagated. The second message type, an
over?, is sent if it has not been determined whether distance is -e<. In the event that
there are no outstanding acknowledgements the successor propagates the over?. But,
if some length messages remain to be acknowledged, an over- is sent.

The algorithm assumes each process has a queue-like input buffer, to
which messages from its neighbors are appended. Since Ada does not support such

a capability, one implementation buffers outgoing messages at the source of the
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communication. The other uses variants of Ada constructs to provide

nondeterminism on output.

Figure 1. A weighted, directed graph with negative cycle [CHANS2].



L IMPLEMENTATION

The fault tolerant version of the DSPA program is implemented in two
layers corresponding to phases I and II of the computation. The first layer consists
of the Primary version and an Alternate for each node of the graph. There is one

Tester which controls the computation, sending the initialization values for each task
and receiving the results. The computation is initiated at nodej, with each node in

the system executing its primary version first. At the conclusion of computation
which corresponds to the end of phase I, each of the nodes send its final result
(obtained by the execution of the primary version) to the Consensus-Global Tester
(Tester). The Tester verifies that the results are in compliance with the specifications.
If no errors are found, the second phase of the computation is started. On the other
hand, if the results are found to be erroneous, rollback occurs and recovery is
initiated. These correspond to discarding the current values and invoking the
alternate version.

When the Alternate at each node completes computation, it sends the final
values to the Tester for validation. Once again compliance with the specifications is
checked and if no errors are detected, the second phase is initiated. Otherwise the
computation is aborted unless more alternate versions are available. A pictorial

representation of the overall structure is shown in figure 2.
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BEGIN Alermate
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Figure 2. Overall structure of the implementation (Layer and Tester).

The second phase corresponding to layer 2 consists of two versions, a
Primary and an Alternate. Computation is initiated at node 1, with each node
executing its primary version for phase II. The primary version at the conclusion of
its execution sends its results to the Tester for verification. If the results comply with
the specifications provided, computation concludes. In the event of an error the
alternate version for phase II is invoked and proceeds with the computation.

The Ada version is a procedure DSPA which consists of a task Tester to
perform error detection. The first phase / layer consists of the procedures
Layer]Primary, corresponding to the primary version and Layer1Second which is

the Alternate. The second phase / layer is provided by procedures Layer2Primary
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and Layer2Second which once again correspond to the Primary and alternate version
for phase II. Each of these procedures consists of a collection of Ada tasks to
perform the actual computation. An outline of the overall structure of procedure

DSPA is as follows :

PROCEDURE DSPA IS

TASK GlobalTester IS
BEGIN

— Tester for layers
END;
PROCEDURE Layer1Primary IS
BEGIN

— layer 1 primary module
END;
PROCEDURE Layer2Primary IS
BEGIN

-- layer 2 primary module
END;

PROCEDURE Layer1Second IS
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BEGIN

-- layer 1 alternate module
END;
PROCEDURE Layer2Second IS
BEGIN

-- layer 2 alternate module
END;

BEGIN

-- GE = Global Error, NR = No Reply

status := NR;

Layer1Primary;

IF status = GE THEN
status := NR;
Layer1Second;

END IF;

IF status = OK THEN
status := NR;
Layer2Primary;
IF status = GE THEN

status := NR;
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Layer2Second;
ENDIF;
ENDIF,
IF status = GE THEN
- Error
ENDIF:
END DSPA;
Figures 3 through 6 provide an overview of each of the layer procedures.
A detailed explanation of the primary and alternate versions is provided in the

following sections.

PROCEDURE Layer1Primary IS
TASK TYPE Primaryl IS
BEGIN
END;
TASK TYPE Primary IS
BEGIN
END;
L1P1 : Primaryl;
L1P : ARRAY(2..N) OF Primary;
BEGIN
LOOP EXIT WHEN status /= NR;
END LOOP;
END;
Figure 3. Layer 1 Primary modules overall structure.
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PROCEDURE Layer2Primary IS
TASK TYPE PrimaryIl_11S
BEGIN
END;
TASK TYPE Primaryll IS
BEGIN
END;

L2P1 : PrimaryIl_1;

L2P : ARRAY(2..N) OF PrimarylI;

BEGIN
LOOP EXIT WHEN status /= NR;
END LOOP;

END;

Figure 4. Layer 2 Primary modules overall structure.

PROCEDURE Layer1Second IS
TASK TYPE CommunicationProcess IS
BEGIN
END;
TASK TYPE Secondl IS
BEGIN
END;
TASK TYPE Second IS
BEGIN
END;
L1S1 : Secondl;
L1S : ARRAY(2..N) OF Second;
CP : ARRAY(1..N) OF CommunicationProcess;
BEGIN
LOOP EXIT WHEN status /= NR; END LOOP;
END;

Figure 5. Layer 1 Alternate modules overall structure.
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PROCEDURE Layer2Second IS
TASK TYPE CommunicationProcess IS
BEGIN
END;
TASK TYPE SecondIl_1 IS
BEGIN
END;
TASK TYPE Secondll IS
BEGIN
END;
L2S1 : SecondIl_1;
L2S : ARRAY(2..N) OF SecondII;
CP : ARRAY(1..N) OF CommunicationProcess;
BEGIN
LOOP EXIT WHEN status /= NR; END LOOP;
END;

Figure 6. Layer 2 Alternate modules overall structure.
3.1 Primary Version

The primary version is implemented in two phases similar to the
algorithm in [CHANS2]. Each phase consists of a procedure with nested tasks for
each node of the graph. These are :

(1) Layer1Primary :: primary version for phase I/ layer 1.

(a) Task L1P] :: computation task for nodel.
(b) Task L1P(i) :: computation task for nodes 2..N
(2) Layer2Primary :: primary version for phase I / layer 2.
(a) Task L2P1 :: computation task for node 1.
(b) Task L2P(i) :: computation tasks for nodes 2..N.
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The task Tester initiates the overall computation by sending the initial values to each
of the tasks. A task L1P; corresponding to node vj implements phase I of the
algorithm and computes the minimum distance. The shortest path computation is
initiated by task L1P1 at node vj which sends length messages to its immediate

successors and then loops, only accepting messages, until the number of
outstanding acknowledgements becomes zero or a length message of less than 0 is
received. At which time it sends a stop message to all its successors. The tasks
L1P({) for all other nodes accept and send messages until they receive the stop
message. Each task upon receiving the stop message propagates it until all nodes
receive such a message from each of its predecessors. Then all tasks send a copy of
their final values for d, pred, num (path, predecessor and outstanding
acknowledgements, respectively) to the Consensus-Global Tester (Tester) and
completes execution.

The Tester accepts the results and performs a validity check based on the
specifications it is provided. If no errors are found, the Tester sends the initialization
values to task L2P1 (corresponding to phase II / layer 2 , node 1) and all other
tasks. Phase Il is then initiated by L2P1, which sends the appropriate over message.
The contents of the initialization messages and the replies are given in the
explanation of the Tester.

All primary tasks for phase I (L1P(i)) use three types of messages for

communicating amongst themselves. The first, a length message, is triplet
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(s,Pi,ack) where s is the path length, Pi the source address and ack the
acknowledgement for previous length messages. The second is an entry call to entry
point STOP, which is used to inform the nodes that phase I has ended. The third is
an acknowledgement message (ack) used only to send acknowledgements to the task
for node 1 (L1P1).

All tasks upon receiving a length message check whether the path length
(s) is shorter than the current shortest path. If so, the tasks compute the values for
propagating the message and then buffer them in the Table. The buffering of the
shortest path continues until no more tasks are waiting for a rendezvous. At which
time the new shortest path is propagated using length messages. If an even shorter
path is subsequently received, it is written over the previous shortest path. The use
of buffers ensures that only the most minimum of the length messages (of that
particular round of messages) will be propagated and requires a buffer size of N - 1
in the worst case. Though a buffer of size N is convenient to declare and use.

During a rendezvous, tasks take the opportunity to return any

acknowledgements which may still be owed to the calling task. This is achieved by
the use of IN OUT parameters to exchange data. Thus while accepting a length
message tasks also return acknowledgements which were buffered along with the
previous length messages.

When the initialization message from the Tester is received, task L2P1
initiates the second phase by sending over- or over? messages to its successors. All

Phase II tasks, L2P(i), use one type of message variable with two input parameters



32

consisting of the message type and the task id for communicating among
themselves. A message value of 3 signifies an over-, whereas an over? is denoted by
a message value of 4. The phase II tasks wait for the initialization message from the
Tester and update the variables. Then each task waits for the initial message from a
predecessor at which point it enters a loop which either accepts an over- or over?
message, or propagates them. Computation fo;' phase II tasks concludes when o;rcr
messages from all successors have been received and propagated. At the end of
phase II the values for d and over, corresponding to the shortest path and over
message, are sent to the Tester for validation. In the event of an error, the Alternate
for phase II is invoked under the assumption that phase 1 is correct. This can be
safely assumed because the Tester (Consensus-Global) "passed” the phase I results.

The algorithm for the implementation follows. The code is in appendix

T pr Prim
Accept Initialization values from tester

{loop}

If successor

Send initial message
{end loop}
{ loop }
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{ Select }
Accept length message
If s <0 then computation done else acknowledge message
Or
Accept Ack message
decrement number of outstanding Acks

If number of Acks outstanding = 0 then computation done

Or
Accept stop
Update values
Or
When computation done
Send STOP to all successors
exit loop when all stops are processed

{ end loop }

Send values to Tester

For process Primmi Phasel :
Accept Initialization values from tester

{ loop }

{ select }
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Accept length message
clear Ack
If distance (s) < current shortest path (d)
If num of Acks > 0 and predecessor = caller
increment Ack count
elsif number of acknowledgements > 0
save Ack in buffer
Update pred
Update shortest path
Save messages in buffer Table and increment Acks
If outstanding Acks =0
add to ack count
elsif distance (s) >= current shortest path (d)
increment ack count
Total all acks owed to calling task and clear buffer
Or
If no task waiting to rendezvous
If any Ack message for process 1 in buffer
Send it
If any length message for processl
Send it and receive acks

Update
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{loop}

If any message for successor

{select}
Send it and receive acks
Update
Or
delay
{end loop}
Or
Accept STOP
Update values
done =true
Or
When done

Send stop messages to successors

exit when all stop messages have been processed

{end loop}
Send values to tester
For process Primary] Phasell

Accept Initialization values from tester
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If distance (s) <0
then message type = Over-
else message type = Over?
{ loop }
{ select }

Send Over message using delayed entry call until all are sent

Or
When tasks waiting to rendezvous
Accept message
Update values
Or
When all messages received and propagated, exit
{ end loop }

Send values to Tester

For process Primagzi Phasell ;

Accept Initialization values from tester

Accept initial Over message and initialize message type
{ loop }

{ select }

‘When some task waiting to rendezvous
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Accept message
Update values
Or
Send messages to all successors using delayed entry call
Or
When all messages received and propagated, exit
{ end loop }

Send values to Tester

32 Alternate Version

The alternate version, invoked in the event of an error by the primary, is

implemented as two procedures corresponding to each Phase / Layer. Each
procedure consists of three concurrently executing tasks for each vertex v; of the

graph. These are:

(1) Layer1Second :: alternate version for Phase I /Layer 1.
(a) Task L1S1 :: alternate for layer 1 node 1
(b) Task L1S() :: alternates for all other nodes in layer 1
(c) CP(i) :: communication / buffer process

(2) Layer2Second :: alternate version for phase II for Phase IT / Layer 2.
(a) Task L2S1 :: alternate for layer 2 node 1
(b) Task L2S(i) :: alternates for all other nodes in layer 2
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(c) CP() :: communication / buffer process

The Tester sends the initial values for each of the tasks, so that

computation may be initiated. In the following, the notation L1S; will be used to
denote all layer 1 alternate tasks and L2S; will correspond to layer 2 alternate tasks.
The task L1S; corresponding to node v; implements phase I of the

algorithm and computes the minimum distance. The tasks L2S; implement the

second phase and ensure that all over messages are propagated. The computation is
initiated by task L1S1 which is invoked when the procedure LayerlSecond is called
from DSPA.

Upon receiving the initialization values from the Tester, L2S1 sends

length messages destined for its successors to its CP1. The Communication Process

(CP}) in turn redirects them to the destination tasks. Each of the successors acts on

the message accordingly. If the path received is shorter than the previous one, it is
immediately propagated via CP. Otherwise an acknowledgement is sent to the calling
task. The computation proceeds until task L1S1 receives either a path length less
than O or its outstanding acknowledgements are 0. At which point, L1S1
(corresponding to node 1) sends a stop message to all its immediate successors,
which are propagated to all tasks / nodes of the graph. Upon receiving a stop
message each task propagates it. When all stop messages have been propagated,

each task sends its final values for d, num and pred (path, outstanding
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acknowledgements and predecessor) to the Tester. A pictorial representation of the

relationship between processes and their CPs is given in figure 7 and the description

of the initialization values is provided in the following section.

S1

S3

cpt

cp3

Figure 7. Relationship pathways for processes.

A message from any computation task to its corresponding CPis a

3-tuple (to,mtype,w) which provide the destination address, message type and path

length. The CP which is used for phase II tasks also, can differentiate five types of

computation messages depending on the parameter, mtype :

1 :: length message

:: acknowledgement message

2

3 :: over- message
4 :: over? message
5

.2 stop message.
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When a mtype 1 is received the CP redirects it to the destination as a length message
2-tuple (s,Pi) which are the path length and source address, respectively. Upon
receiving a mtype 2, an acknowledgement message is sent to the destination. The
message types 3 and 4 are used during phase II and correspond to an over- and
over?. The final mtype i.e. 5 is sent as a stop message to indicate the termination of
Phase I computation. It must be noted that all tasks communicate directly with the
Tester, to receive the initialization values and send the final results, thus ensuring
reliability.

The layer 2 tasks use one type of message to communicate with each
other, thatis:

over :: consists of two parameters, mtype and id. A value of 3 for mtype

denotes an over- and 4 corresponds to an over?. The id
corresponds to the task id.

Each phase II / layer 2 task receives its initialization message through the start
message (from the Tester) and is then ready to compute, waiting for task L2S1
(phase II node 1) to initiate the computation. Each task propagates messages until all
its successors are notified and then exits the processing loop. Subsequently sending
its final values for d and the over message type to the Tester.

The testing philosophy, messages and interfaces with the Tester are
exactly the same as for the Primary version. That is, upon the conclusion of the first
phase all tasks send their results for verification to the Tester. After the Tester

verifies the results the second phase is initiated. But, in case of an error another
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Alternate may be invoked. Furthermore, messages and interfaces with the Tester are
consistent. Consequently, no interface checks or changes need to be made.

In this particular case there are two versions for each phase, but we are
not restricted to this. For example, a design similar to the alternate (Second;) but

with buffering of messages at the destination can be used as a third version. Another

method to provide useful redundancy of design, is the use of different programmers.

3.3 Tester

The Consensus-Global Tester (Tester) is implemented as an Ada task and
controls the computation by sending the initialization values to each task. It then
receives the results from the computation tasks. When all tasks have responded by
sending their final results, the Tester initiates its testing phase which ensures that all
specifications are met. If an error is detected the Tester informs the procedure DSPA
(using the variable status). Thus, the Alternate for that particular phase can be
invoked. If all specifications are met the next phase is initiated or, if it is the last
phase, computation successfully completes.

The initialization values for Phase I tasks are:

(1) A boolean list of successors.

(2) A list of lengths to the successors.

(3) The id number of each task (except the node 1 task).
(4) The number of predecessors.
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The initialization values for Phase II tasks are:
(1) The shortest path.
(2) The number of outstanding acknowledgements.
(3) A list of successors.
(4) A list of predecessors.
(5) The id number of each task (except the node 1 task).
After ensuring that all the computation tasks have received their
initialization values, the Tester waits at the Accept statement for the final values for
d, pred, num (path length, predecessor and acknowledgements) from all the phase I
computation tasks. It then performs the verification test and sets the variable status
accordingly. A status of OK signifies that all tasks passed the test, whereas if status
= GE (Global Error) the Alternate will have to be invoked. If a Global Error occurs,
the Tester loops back to initialize the Alternates and thereafter waits, for messages
from the alternate tasks.
The second part of the Tester uses a similar strategy to detect errors for
phase II tasks. First initializing the tasks and subsequently waiting to receive the

values, for the path length and the over message.
The inputs Pj for the Tester at end of phase I :

For all node i

receive (dj A num; A pred; A id;)
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The inputs Ppy for the Tester at end of phase I :
For all node i
receive (d; A overj A id;)
At the end of phase 1, the Tester checks whether three assertions are met.
These are: if the computation successfully concluded. Secondly, if any negative

values for the shortest path are present. If so, either the predecessors shortest path

must be negative or the path length must be negative. Finally, whether the shortest

path (d) of a node; is equal to the shortest path of its predecessor plus the length
from the predecessor to node;.

(1) Fornodej :num=0 v s=0.

(2) For node;j (i=1..N) : d; < 0 -----> ( dpred <0v lpred,i <0).

(3) For node; (i=1..N) : dj = dpred + Wpred, i-

At the end of phase II, the Tester checks whether the path length and

over message correspond. That is:
(1) For node; (i=1..N) : d; < 0 -----> over- message.

If the conditions are not met then an error condition is assumed and error recovery is

initiated. The algorithm for the Tester follows.

FEor process Tester
{ loop }



Send Initialization values to all tasks
{ loop }
Accept messagel from all phase I tasks
{ end loop }
If specification met
Update done and status
else if more alternates
Update status
else
Update status, done
exit when done
{ end loop }
If status = OK
{ loop }
Send initialization values to all tasks
{ loop }
Accept message 2 from phase II tasks
{ end loop }
If specification met
Update done and status
else if more altemates

Update status



else
Update status, done
exit when done

{ end loop }
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IV. ANALYSIS

In the following analysis the difficulties and problems alluded to in
section II will be addressed within the context of the construct or methodology used
to overcome them. Thus certain issues may be referred to several times, each will
provide the technique, construct or methodology used to overcome the problem. The

issue of reliability is treated separately.

4.1 Implementation Issues

The bidirectional inter-nodal communication inevitably leads to deadlock
in distributed solutions, whereas centralized implementations are too restrictive and
intolerant to faults. Reliance was placed on two techniques to overcome the problem
of deadlock, these were: the use of an intermediary process (CP) in the alternate
version and the use of Ada timed out entry call to provide nondeterminism on output
in the primary. The intermediate / buffer process technique avoids deadlock by
providing indirection. But poses two major drawbacks, in that, the implementation

requires 2N concurrently executing processes for a graph of N nodes. Secondly,

the number of messages also doubles. One message is required from task T;j to the

corresponding CP; and a second from CP; to the task Tj. Though these drawbacks

are associated with the use of intermediary processes, they stem from the constraints

46
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placed by the language, which would not allow another deadlock free distributed
implementation with such a high degree of parallelism.

Though the specifications of Ada do not explicitly provide for
nondeterministic output, the use of timed out entry calls allow the mimicking of such
nondeterminism. Non-determinism is the capability for a task to execute an alternate
sequence of statements if the called task does not respond to a rendezvous. That is, it
is not predetermined that a task will have to wait for its partner in a communication.
It may execute alternate statements and at a later time, retry. The timed out entry call
allows a sequence of statements to be executed alternatively if an entry call is not
accepted within the specified duration. Thus

SELECT

Pl.message("entry call");

OR

DELAY X
-- statements

END SELECT,;
will execute statements following the DELAY, if P1 does not accept the call within
X seconds. Consequently, tasks do not need to wait indefinitely for each other. It is
worthy to note that the message passing is still synchronous i.e. the called task must
respond. There is no message buffering capability. If a rendezvous is unsuccessful it
can be attempted later. This allows two-way communication between tasks without

resorting to the use of an intermediary process. Thus requiring only N tasks for a
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graph of N nodes and a single message suffices for each communication attempt.
The problem of deadlocking due to a circular wait situation is no longer an issue.
The overhead of such a scheme is the delay incurred in waiting for a task, especially
if the rendezvous is unsuccessful. Aside from the benefit of freedom from deadlock,
a programmer can specify the time interval to wait for another task.

The asymmetric naming scheme in Ada was used to implement general
entry points, which allowed tasks to be called without the server requiring prior
knowledge of the callers identity. This allows greater flexability and generality in the
implementation. But a drawback of this scheme is the lack of security it poses, as
any task which knows the entry name can call and interfere with the server.

In Ada, communication is through an entry call made to the called task,
which has a corresponding ACCEPT statement. The body of the ACCEPT statement
acts as a critical section and no other communications can take place nor can any
values be changed in the calling task until the conclusion of this rendezvous. The
end of the rendezvous coincides with the end statement of the ACCEPT, in the called
task. If the ACCEPT has no body or parameters it acts as a synchronization
primitive only and no information is exchanged. The use of parameters allows
information to be exchanged by reference or value. The benefit of such a two-way
scheme is the ability to exchange length messages and acknowledgements in the
same communication. Thus circumventing the need for a task to explicitly send
acknowledgements to its predecessors. This was effectively shown in the primary

version of the implementation, which buffered acknowledgements until the particular
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task called with another length message. At which time the acknowledgements were
exchanged with the length message. The obvious drawback of this scheme is that
acknowledgements are always delayed until the predecessor attempts to
communicate. Thus predecessor tasks are always a little "behind" in the information
they possess. This is especially true if the task owed the acknowledgements does not
communicate again and when computation concludes, the number of outstanding
acknowledgements may have an effect on the eventual outcome.

The number of messages propagated in the Alternate implementation is
very large. In the worst case N (N - 1 messages + 1 EOT) messages are sent from a
task to its CP and the CP propagates N - 1 of those, thus approximately 2N2
messages are used for N nodes. The number of messages is large not only for the
reason stated above, but also because length messages are propagated even though a
following message may provide a shorter path. In the Primary version the use of
ATTRIBUTES indirectly provides the capability to reduce the number of messages.
The syntax is, PPCOUNT, which provides the number of tasks waiting at entry
point P. It allows the implementation of priorities at a very crude level. Thus tasks
can prioritize messages, with in-coming messages having first preference. Outgoing
messages are buffered until no tasks are waiting to rendezvous. That is, PCOUNT
is equal to 0. This ensures that the shortest path will be propagated after a round of
messages and the others will be discarded. In the primary version use of the
COUNT Attribute coupled with the modification to buffer messages was

instrumental in reducing the number of length messages which are propagated.
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Considering, that in the worst case, the primary propagates N2 messages ( N nodes
each sending N-1 messages) any reduction is a help.

The use of the Communication / Buffer Process scheme provides an
arbitrarily greater degree of concurrency when compared to the nondeterministic
(Primary version) message sending. Since tasks, using timed out entry calls, need to
delay for a message to get through they are unable to do any thing else. Whereas the
CP (Alternate) version sends its messages and can then continue processing. It
essentially frees up the task to do something else. In the Primary, the task must itself
wait and synchronize with the called task.

The Attribute CALLABLE which returns true if a task is not aborted,
terminated or in an abnormal state, was used to aid in message sending. It essentially
provided the capability to check a tasks ability to accept messages. Though care must
be taken in its use, as a task may infact terminate between the time of the check and
the actual message.

In each case it is clear that the language put constraints on the
programmer to implement the algorithm, but in each case the flexibility of the
language was used to achieve the objective. Though this was achieved by moulding
the language to fit the needs. Examples are, the use of timed out entry calls to
achieve nondeterminism for output messages. Secondly the use of the Attribute to
implement priorities, however crudely. Both these capabilities were major factors in

providing efficiency and deadlock freedom for the implementation.
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4.2 Reliability Issues

Distributed programs as indicated above are difficult to implement and in
contrast to sequential programs require the satisfaction of both the safety and
liveness properties. Therefore requiring care in the implementation. But this still
does not guarantee a correct solution, thus fault tolerant techniques are required to
provide some measure of reliability. This reliability can be achieved through careful
structuring and design of the program and the use of error detection and recovery
techniques. In the implementation of the Distributed Shortest Path Algorithm, the
concept of Communication-Closed Layers was used to provide Safe Layers. This
was then extended by the use of a Consensus-Global Tester to provide error
detection and recovery capabilities.

The unrestricted communication and the interactive nature of distributed
programs make them difficult to verify formally. The use of fault prevention
techniques, such as testing, reduce errors but residual design inadequacies may still
be present. One method to design programs and provide fault tolerance is the
technique of safe layering. As described previously, the objective is to partition
concurrent programs into concurrently executing segments and to allow
communication only within the layers thus created. The Distributed Shortest Path
Algorithm by its nature provided an extremely good opportunity to partition it into
two layers, corresponding to the two phases of the computation. The logical

separation was extended to the physical program, with the provision of two versions
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for each phase. Error detection is provided through the use of Consensus-Global
Testers.

The major strength of he DSPA program is its ability to continue
processing even in the event of faults. The reliability inherent in fault tolerant
software is based on useful redundancy. If the Primary fails then a more inefficient
module, or one which provides degraded results, will be executed. Each successive
alternate version provides continued service but at a degraded level of efficiency or
output. The handling of the faults, rollback and recovery, are transparent to the user.

In the DSPA implementation it should be noted that the Primary requires
N + 1 concurrently exccuting tasks ( N nodes + Tester ) and approximately N2
messages have to be propagated in the worst case. Whereas the Alternate consists of
2N + 1 concurrent processes and requires 2N2 messages to be propagated. Thus
the alternate version would be costlier in terms of the overhead for processes and the
number of messages propagated. But fault tolerant applications themselves, are
inherently more inefficient than non-fault tolerant ones.

In the case of the DSPA program, the overhead comes from the extra
number of messages required to communicate with the Tester. The initialization for
each phase requires N messages and N replies are sent at the conclusion. If an error
is detected the Alternate needs to be initialized, thus N more messages are sent.
Consequently, in the worst case 8N messages would be needed and in the best case
4N. This does not take into account the overhead of N messages (minimal) for the

stop messages during phase I. But the advantages of fault tolerance are far greater
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than the drawbacks. For example, fault tolerant software provides continued service,
even in the event of faults. In the DSPA program continued service can be provided
through the use of the Alternate, which will be invoked in the event that the Primary
fails to meet its specifications.

The reliability provided by fault tolerant software is based on the concept
of useful redundancy. That is the provision of spares with different algorithms,
written in different languages or by different programmers. The premise is that
residual design inadequacies of one will not be present in another. Thus based on the
concept of useful redundancy two modules were provided in the DSPA program. To
f.'urthcr ensure that the programs would be correct, the Safe Layering technique was
used to partition the program in two Communication-Closed Layers. An advantage
of this technique is that, errors caught, lead to a rollback of only that particular layer.
Thus valuable time is not lost reinitiating the entire computation. A second advantage
is that errors are caught as early as possible in the computation. That is, a fine
partitioning allows errors to be detected at the earliest. In the DSPA case, an error
detected in phase 2 need only cause a rollback to the begining of layer 2. Secondly,
if a fault occurs in phase I it is detected prior to the initiation of phase II. Without
Safe Layering the error would be detected at the conclusion of computation, when
~ the test world be performed.

The use of fault tolerant techniques and the provision of fault tolerance in
software provides reliability but at an increased cost, in terms of the messages. But

the overhead is minimal compared to the provision of continued service, reliability
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and the ability to design safe programs, detect errors and correct them. It should be
noted that the analysis concerning message overheads takes the propagation of a

length message into account, not the overall computation.



V. CONCLUSION

It is apparent that distributed algorithms are difficult to implement and are
affected by the constraints inherent in the constructs for concurrency provided by
Ada. Situations leading to deadlock are pervasive as communication is unrestricted.
Whereas, attempts to solve the deadlock problem have tremendous overheads in
terms of the number of messages required and the number of processes running
concurrently. In addition to the deadlock problem, issues such as memory usage,
amount of concurrency and the number of processes executing simultaneously have
to be addressed. The solutions to these problems are not easy to find. This puts the
burden on the programmer who, as the complexity of the algorithm increases, is
more likely to make errors in converting the algorithm to code. His choices will
ultimately affect the overall outcome. Incorrect choices may have adverse effects, not
only decreasing performance but ultimately leading to problems. Such problems are
hard to detect and harder to correct within the confines of the language, especially
when trying to maintain a high level of concurrent activity.

The quality and elegance of a solution depends to a large extent on the
programmer ability to forsee problems and solve them through judicious use of the
language constructs. Though concurrency in the algorithm and concurrent constructs
in the programming language are helpful and effect performance, the choice of the
language is very important in achieving maximal performance. The flexibility of the
language plays an important role in allowing solutions without incurring

-4
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unacceptable overhead, in terms of the number of processes or the number of
messages passed. The ability of the language to provide tools, either directly or
indirectly, is useful. Such an ability may be utilized by a programmer in cases where
regular constructs are too confining or inadequate. But features useful to a
programmer should be easily available. He should not have to resort to the use of
constructs to mold the language into a shape which allows algorithms to be
implemented.

In the case of distributed algorithms where the problem of deadlock
looms large we can either depend on the programmer and the languages flexibility,
or use indirection (as shown by the use of CP in the Alternate implementation). The
drawbacks of both are evident. Two methods which would serve better are the
extension of the language to provide the necessary features, or deadlock detection
followed by arbitration. Since the latter is considerably harder to achieve, a language
must provide either the capability to buffer messages implicitly or the ability to send
messages nondeterministically. In the event of an inability to implement a deadlock
free solution within the constraints of a language, the use of the Indirection
methodology is suggested. That is, the use of CP type tasks to ensure freedom from
deadlock. This technique will be invaluable in providing a quick and easy solution,
while a more elegant one is thought out.

Distributed programs by virtue of their complexity are extremely difficult
to verify formally. This is due to the unrestricted communication between interacting

processes with unpredictable orders of execution. Thus fault prevention methods are
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insufficient and reliance must be placed on software fault tolerance, under the
assumption that residual design inadequacies are present and may mainfest
themselves at some later time.

The distributed program must be designed using a methodology to
decrease the chances of a breach of the correctness property and error detection and
recoverability must be provided. If an error is detected the alternate modules can be
invoked to provide uninterrupted service. The lack of ability to verify programs
should not be used as an excuse, in the event of an error. Since techniques exists
that can provide reliability even in the event of errors.

The use of fault tolerant techniques have certain drawbacks, specifically
the overhead for messages and the maintenance of extra versions. But the benefits,
in terms of the reliability they provide, far outweigh the drawbacks.

The field of distributed computing is still in its infant stages and the study
of the implementation aspects of distributed algorithms within constraints placed by
current languages will prove invaluable in the future. Similarly new techniques and
methodologies are needed in fault tolerance to ensure better error detection and

recovery capabilities.



APPENDIX A

DISTRIBUTED SHORTEST PATH ALGORITHM

Phase I for Process Pj J#1

begin d := eo; pred is Undefined; num := 0 end;
{ Upon receiving a length message (s,Pi) }
If s <d then begin
{ send ack to pred, the prefinal vertex on previous shortest path }
If num > 0 then
send an ack to pred;
{ update pred, d }
pred := Pi;
d:=s;
{ send len message to all successors and increment num accordingly, then
return ack to pred if num =0}
Send a len message (d+w,Pj) to all successors;
num := num + number of successors;
If num =0 then
Send ack to pred

end
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else { s>=d}
Send ack to Pi;

{ Upon receiving an ack }

begin
{decrement number of unacknowledged messages }
num :=num- 1;

{ send acknowledgement to pred if acks have been received for all

messages }
If num =0 then
Send ack to pred
end;
h for pr

d := 0; pred is Undefined;

Send (w,P1) to all successors; num := number of successors;
{upon receipt of a length message }
{ start Phase II if negative cycle detected }
If s <0 then
terminate Phase I and start Phase IT;

else
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return ack to Pi;
{ Upon receiving ack)
{ update num; start phase II if there is no unacknowledged message
remaining }
num :=num- 1;
If num =0 then

terminate Phase I and start Phase I1.

{ Upon receiving an over- message }
If d # -co then begin
d := oo}
Send over- to all successors;
end;
{Upon receiving an over? message }
If d # -eo then

Send over? to all successors who have not been sent such a message;

11 for pr i (1= wi >

{ Upon receiving a Phase II message ( over- or over? ) }
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If d # -e» then begin
d:= -c0;
Send over- to all successors;

end;

ha for pr

If Plreceives a message (s,Pi) with s <0 during PhaseI then
{ P1 detects a negative cycle }
Send an over- message to all successors
else { num =0 for P1 at the end of Phase I }

Send over? message to all successors;



APPENDIX B
ADA CODE

PROCEDURE DSPA IS

TYPE statustype IS (OK,NR,GE);

TYPE item1 IS ARRAY(1..N,1..N) OF BOOLEAN;
TYPE item2 IS ARRAY(1..N,1..N) OF INTEGER;
TYPE item3 IS ARRAY(1..N) OF BOOLEAN;
TYPE item4 IS ARRAY(1..N) OF INTEGER;

TASK TYPE GlobalTester IS
ENTRY message0(s1,d,pred,num : IN INTEGER);
ENTRY messagel(d,pred,num ,j: IN INTEGER);
ENTRY message2(d,over,j: IN INTEGER);
END;
TASK BODY GlobalTester IS
more : INTEGER;
done : BOOLEAN;
error : BOOLEAN;
successor : item];
predecessor : item1;
s : INTEGER;
w:item2;
j : INTEGER;
pcount : ARRAY(1..N) OF INTEGER,;
phaselarray : ARRAY(1..N,1..3) OF INTEGER;
phase2array : ARRAY(1..N,1..2) OF INTEGER;

FUNCTION assertionl RETURN BOOLEAN IS
i :INTEGER :=2;
error : BOOLEAN := false;
BEGIN
IF s /=0 AND phaselarray(1,3) /= 0 THEN
€ITOor = true;
ENDIF;
WHILE NOT error AND i <= N LOOP
IF phaselarray(i,1) /= (phaselarray(phaselarray(i,2),1) +
w(phaselarray(i,2),i)) THEN
€ITor = true;
END IF;
IF phaselarray(i,1) < 0 THEN
IF phaselarray( phaselarray(i,2),1) >= 0 AND
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w( phaselarray(i,2),i) >= 0 THEN
erTOr = true;
END IF;
END IF;
i=i+1;
END LOOP;
RETURN error;
END assertion;

FUNCTION assertion2 RETURN BOOLEAN IS
error : BOOLEAN := false;
j : INTEGER :=0;
k : INTEGER :=0;
BEGIN
FORiIN 1.N LOOP
IF phase2array(i,1) < 0 AND THEN phase2array(i,2) /= 3 THEN
€ITOT := true;
END IF;
EXIT WHEN error;
END LOOP;
RETURN error
END assertion2;

BEGIN
-- read values for all variables from file
more = 1;
done := false;
error := false;
LOOP
DELAY 3;
IF more = 1 THEN
L1P1.start(successor(1,1..N),w(1,1..N),pcount(1));
FOR i IN 2.NLOOP

i=
LlP(x).start(successor(i,l..N),w(i,l..N),j ,pcount(i));
END LOOP;
ELSE
L1S1.start(successor(1,1..N),w(1,1..N),pcount(1));
FOR iIN2.NLOOP

J=1
L1S(i).start(successor(i,1..N),w(i, 1..N),j,pcount(i));
END LOOP;
END IF;
ACCEPT message0(s1,d,pred,num : IN INTEGER) DO
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phaselarray(1,1) :=d;
phaselarray(1,2) := pred;
phaselarray(1,3) := num;
s:=sl;
END;
FORiIN 2.NLOOP
ACCEPT messagel(d,pred,num,j : IN INTEGER) DO
phaselarray(j,1) :=d;
phaselarray(j,2) := pred;
phaselarray(j,3) := num;

END LOOP;
IF assertion] THEN
done := true;
status := OK;
ELSIF more < 2 THEN
more :=more + 1;
status := GE;
ELSE
status := GE;
done := true;
END IF;
EXIT WHEN done OR status = OK;
END LOOP,
IF status = OK THEN
done := false;
more = 1;
LOOP
DELAY 3;
IF more =1 THEN
L2P1.start(phaselarray(1,1),phaselarray(1,3),
successor(1,1..N),predecessor(1,1..N));
FOR i IN 2.NLOOP

j=1i
L2P(i).start(phaselarray(i,1),phaselarray(i,3),
successor(i,1..N, predecessor(i,1..N) ,j);
END LOOP;

ELSE
L2S1.start(phaselarray(1,1),phaselarray(1,3),

successor(1,1..N), predecessor(1,1..N));
FOR i IN 2.NLOOP

J=5
L2S(i).start (phaselarray(i,1),phaselarray(i,3),j
successor(i,1..N), predecessor(i,1..N) );
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END LOOP;
END IF;
FORiIN 1.N LOOP
ACCEPT message2(d,over ,j: ININTEGER) DO
phase2array(j,1) :=d;
phase2array(j,2) := over;

END LOOP;

IF assertion2 THEN
done := true;
status := OK;

ELSIF more < 2 THEN
more :=more + 1;
status := GE;

ELSE
status := GE;
done := true;

END IF;

EXIT WHEN done OR status = OK;

END LOOP;
END IF;
END GlobalTester;

PROCEDURE Layer1Primary( Tester : IN OUT GlobalTester) IS

TASK TYPE Primaryl IS
ENTRY len_msg(s1,Pi : IN INTEGER;ack : OUT INTEGER),
ENTRY get_ack(ack : IN INTEGER);
ENTRY start(aryl:item3,ary2 : item4;pcount : IN INTEGER),

ENTRY stop;
END;
--Phase I task Primaryy
TASK BODY Primaryl IS
d : INTEGER :=0; -- current shortest path
num : INTEGER :=0); -- unacknowledged messages
pred : INTEGER :=0; - most current predecessor

XXXXX : INTEGER;
count : INTEGER;

successor : item3;

ack : INTEGER;

s : INTEGER :=0;

w : item4; -- weights to successors

done : BOOLEAN := FALSE; - true if computation done

i: INTEGER :=0;
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FUNCTION moretodo RETURN BOOLEAN IS
done : BOOLEAN :=false;
i:integer:=1;
BEGIN
WHILE NOT done AND i <=N LOOP
IF successor(i) THEN
done := true;
END IF;
i=1+1;
END LOOP;
RETURN done;
END moretodo;

BEGIN
ACCEPT start(ary]1 : item3;ary2 : itemd;pcount : INTEGER) DO
successor := aryl;
count := pcount;
w = ary2;

-- send initial length messages to successors
FOR i IN 2..N LOOP
IF successor(i) THEN
L1P(i).len_msg(w(i),1,ack);
num :=num + 1;

END IF;
END LOOP;
LOOP
SELECT
-- accept length mesg. If path < 0 then computation done
-- else acknowledge mesg
ACCEPT len_msg(s1,Pi : IN INTEGER;ack : OUT INTEGER)
IF s1 <0 THEN
done := TRUE;
s:=sl;
ELSE
ack:=1;
ENDIF;
END;
OR

- accept ack mesg and decrement outstanding acks.
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-- If no acks remain then done
ACCEPT get_ack(ack : IN INTEGER) DO
num := num - ack;
IF num = 0 THEN done := TRUE; END IF;
END;
OR
ACCEPT stop DO
count :=count- 1;
END;
OR

WHEN done =>
FORiIN 2.N LOOP
IF successor(i) THEN
SELECT
L1P(i).stop;
successor(i) := false;

DELAY XXXXX;
NULL;
END SELECT;
END IF;
END LOOP;
IF count = 0 AND NOT moretodo THEN
EXIT
END IF;
END SELECT;
END LOOP;
Tester.message0(s,d,pred,num);

END Primaryl;

TASK TYPE Primary IS
ENTRY len_msg(s,Pi : IN INTEGER;ack : OUT INTEGER);
ENTRY stop;
ENTRYstart(aryl:item3;ary2 : item4;id : INTEGER;pcount : INTEGER);

--PhaseI task Primary; (:2..N)
TASK BODY Primary IS
d : INTEGER := INTEGER'LAST; -- current shortest path
num : INTEGER :=0; -- unacknowledged messages
pred : INTEGER :=0; -- most current predecessor
self : INTEGER;
count : INTEGER;
numct : INTEGER :=0;
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ack : INTEGER;

XXXXX : INTEGER,; -- time to delay

successor : item3;

w ; iternd;

Table : ARRAY(1..N,1..3) OF INTEGER;

-- col. 1=weight ; col. 2=acks ; col. 3=if mesg to be sent

FUNCTION moretodo RETURN BOOLEAN IS
done : BOOLEAN :=false;
i:integer:=1;
BEGIN
WHILE NOT done AND 1 <=N LOOP
IF successor(i) THEN
done := true;
END IF;
i=i+1;
END LOOP;
RETURN done;
END moretodo;

BEGIN
ACCEDPT start(ary] : item3;ary2:item4;id:INTEGER;pcount :INTEGER)

successor := aryl;
self :=id;
count := pcount;
w = ary2;
END;
-- initialize self , Table to 0,0 and -1
FORiIN 1..N LOOP
Table(i,1) := 0; Table(i,2) := 0; Table(i,3) :=-1;
END LOOP;
LOOP
SELECT
-- accept length message
ACCEPT len_msg(s,Pi : IN INTEGER;ack : OUT INTEGER)

ack :=0;
- if path is shorter than previous and old predecessor is
-- same as current caller then acknowledge else save ack in

IF s <d THEN
IF numct > 0 AND pred = Pi THEN
ack :==ack +1;

table
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ELSIF numct > 0 THEN
Table(pred,2) := Table(pred,2) + 1;
- update predecessor and current shortest path
pred := Pi;
d:=s;
-- buffer shortest path to successor
FORiIN 1.N LOOP
IF successor(i) THEN
Table(d,1) :=d + wQ);
Table(i,3) :=1i;
numct := numct + 1;
END IF;
END LOOP;
- if no outstanding acks then acknowledge
IF numct = 0 THEN ack :=ack + 1; END IF;
-- if path is longer than previous shortest path
-- then acknowledge/save
ELSE IF s >=d THEN
ack :=ack + 1;
END IF;
ack := ack + Table(pi,2);
Table(pi,2) :=0;
END;
OR
-- no one waiting to rendezvous
WHEN len_msg'COUNT = 0 =>
- if there is an ack for P1 then send it
IF Table(1,2) >0 THEN
SELECT
L1P1.get_ack(Table(1,2));
Table(1,2) :=0;
OR
DELAY XXXXX;
NULL;
END SELECT;
END IF;
— if P1 is successor then send length mesg and get acks

IF successor(1) AND Table(1,3) /=-1 THEN
L1P1l.len_msg(Table(1,1),self,ack);
num :=num + 1 - ack;

Table(1,3) :=-1;

END IF;
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- for all other tasks, if they are successors then send length
-- message. But wait xxxxxx seconds only for a rendezvous
FORiIN 2.NLOOP
IF successor(i) AND Table(i,3) /= -1 THEN
SELECT

L1P(i).len_msg(Table(i,1),self ack);

num :=num + 1 - ack;

Table(i,3) :=-1;

OR

DELAY XXXXX;
NULL;
END SELECT;
END IF;
END LOOP;
numct := num;
OR
ACCEPT stop DO
count :=count- 1;
done := true;
END;
OR
WHEN done =>
FORiIN 2..NLOOP
IF successor(i) THEN
SELECT
L1P(i).stop;
successor(i) := false;

DELAY XXXXX;
NULL;
END SELECT;
END IF;
END LOOP;
IF count = 0 AND NOT moretodo THEN
EXIT;
END IF;
END SELECT;
END LOOP,
Tester.message1(d,pred,num,self);
END Primary;

L1P1 : Primaryl;
L1P: ARRAY (2..N) OF Primary;
BEGIN
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LOQOP
EXIT WHEN status /= NR;
END LOOP;
END Layer1Primary;

PROCEDURE Layer2Primary(Tester : IN OUT GlobalTester) IS

TASK TYPE PrimaryIl_1IS
ENTRY over(mtype : IN INTEGER;id : INTEGER);
ENTRY start(s1,num1 : IN INTEGER;aryl , predecessor : item3);
END;
--phaselI task P
TASK BODY Primaryll_1 IS
msg : INTEGER; -- message to be sent
num : INTEGER; -- unacknowledged messages
s : INTEGER; - distance received
successor : item3;
predary : item3;
self : INTEGER;
XXXXX : INTEGER; - time to delay
backup : item3;
change : BOOLEAN := true;

FUNCTION moretodo(ary : item3) RETURN BOOLEAN IS
done := BOOLEAN :=false;
i:integer:=1;
BEGIN
WHILE NOT done AND i <= NLOOP
IF ary(i)) THEN
done = true;
END IF;
i=i+1;
END LOOP;
RETURN done;
END moretodo;

BEGIN
END;
ACCEPT start(s1,numl : IN INTEGER;aryl,predecessor:item3) DO
successor := aryl;
predary := predecessor;
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backup := successor;
s:=sl;
num := numl;
END;
IF s <0 THEN
msg = 3;
ELSE
msg :=4;
ENDIF;
LOOP
SELECT
IF change THEN
FORiIN 2.N LOOP
-- for all successors send over message.
-- But wait only xxxxx seconds for
-- arendezvous.
IF successor(i) THEN
SELECT
IF L2P(i)' CALLABLE THEN
L2P(i).over(msg,1);
IF.

ND IF;
successor(i) := FALSE;

OR
DELAY XXXXX;
NULL;
END SELECT;
END IF;
END LOOP;
IF NOT moretodo(successor) THEN change := false; END

END IF;
OR
WHEN over'COUNT > 0 =>
ACCEPT over(mtype, id: IN INTEGER) DO
predary(id) := false;

IF msg =4 AND mtype = 3 THEN
msg := 3; d := INTEGER'FIRST;
change := true;
successor := backup;

END IF;

msg := mtype;

’

OR
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IF NOT change AND NOT moretodo(predecessor) THEN
ENDIF;
END SELECT;

END LOOP,

Tester.message2(s,msg,1);

END PrimaryIl_1;

TASK TYPE PrimarylIl IS
ENTRY over(mtype , id : IN INTEGER);
ENTRY start(d1,num]l : IN INTEGER;ary1,predecessor : item3; id :

INTEGERY);
END;
--PhaseIl taskPj (:2.N)
TASK BODY PrimaryIl IS

num : INTEGER; -- unacknowledged messages

d : INTEGER; - current shortest path

msg : INTEGER; - message received and sent later
successor : item3;

backup : item3;

predary : item3;

self : INTEGER;

XXXXX : INTEGER; -- time to delay

change : BOOLEAN := true;

FUNCTION moretodo(ary : item3) RETURN BOOLEAN IS
done : BOOLEAN :=false;
i:integer:=1;
BEGIN
WHILE NOT done AND i <= N LOOP
IF ary(i) THEN
done := true;
END IF;
i=i+l;
END LOOP;
RETURN done;
END moretodo;

BEGIN
ACCEPT start(d1,num1l : IN INTEGER;ary1,predecessor : item3;id :
INTEGER ) DO
d:=dil;
self :=id;
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predary := predecessor;
successor := aryl;
backup := successor;
num := numl;
END;
- accept over message from predecessor
ACCEPT over(mtype , id: IN INTEGER) DO
msg = mtype,
IF num > 0 AND msg /= 3 THEN
msg := 3;
END IF;
predary(id) := false;
IF msg = 3 THEN d := INTEGER'FIRST; END IF;
END;
LOOP
SELECT
-- if some task is waiting to rendezvous then accept its attempt
WHEN over'COUNT >0 =>
ACCEPT over(mtype , id: IN INTEGER) DO
IF msg =4 AND mtype = 3 THEN
msg := 3; d := INTEGER'FIRST;
change := true;
successor := backup;
END IF;
predary(id) := false;

OR
IF change THEN
FORiIN 2.NLOOP
-- for all successors, send over message.
-- But wait only xxxxx seconds
-- for a rendezvous
IF successor(i) THEN
SELECT
IF L2P@)'CALLABLE THEN
L2P(i).over(msg,self);

IF;
successor(i) := FALSE;
OR
DELAY XXXXX;
NULL;
END SELECT;
END IF;
END LOOP;
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IF NOT moretodo(successor) THEN
change := false;
END IF;
END IF;
OR
IF NOT moretodo(successor) AND NOT moretodo(predary)
THEN EXIT END IF;
END SELECT;
END LOOP;
Tester.message2(d,msg,self);

END Primaryll;

L2P1 : Primaryll_1;
L2P : ARRAY (2..N) OF PrimarylI;
BEGIN
LOOP
EXIT WHEN status /= NR;
END LOOP;

END Layer2Primary;

PROCEDURE Layer1Second(Tester : IN OUT GlobalTester) IS

TASK CommunicationProcess IS
ENTRY msg(tol,mtypel,wl : IN INTEGER);
ENTRY idself(id : IN INTEGER);
END;
TASK BODY CommunicationProcess IS
self : INTEGER;
tctr : INTEGER;
to : INTEGER;
i: INTEGER;
Table : ARRAY(1..N,1..3) OF INTEGER;

PROCEDURE compact IS

i : INTEGER;

j : INTEGER;

swap : ARRAY(1..N,1..3) OF INTEGER;
BEGIN

i=L

FORiIN 1.N LOOP
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IF Table(i,1) /=-1 THEN
swap(j,1) := Table(i,1);
swap(j,2) := Table(i,2);
swap(j,3) := Table(i,3);
ji=j+ 1

END IF;

END LOOP;

swap(j,1) :=-1;

i=lj=1,

WHILE swap(j,1) /=-1 LOOP
Table(i,1) := swap(j,1);
Table(i,2) := swap(j,2);
Table(i,3) := swap(j,3);
i=i+l;ji=j+1;

END LOOP;

Table(i,1) :==-1;

tetr :=1;

END compact;

BEGIN
--initialize Table to -1 and self
LOOPFORiIN 1.N LOOP
Table(i,1) := -1; Table(i,2) :=-1;
Table(i,3) :=-1;

END LOOP;
ACCEPT idself(id : INTEGER) DO
self :=id;
END;
totr :=1;
LOOP
SELECT
ACCEPT msg(tol,mtypel,wl: IN INTEGER) DO
to :=tol;
Table(tctr,1) :=tol;
Table(tctr,2) := mtypel;
Table(tctr,3) := wl;
tetr :=tetr + 1;
END;
LOOP

EXIT WHEN to =-1;

ACCEPT msg(tol,mtypel,wl: IN INTEGER) DO
to :=tol;
Table(tctr,1) :=tol;
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Table(tctr,2) := mtypel;
Table(tctr,3) := wl;
tcr=wtr+ 1;
END;
END LOOP;
OR
i=1;
WHILE Table(i,1) /= -1 LOOP
IF Table(i,1) = 1 AND Table(i,2) = 1 THEN
SELECT
L1S1.len_msg(Table(i,3),self);
Table(,1) :=-1;

DELAY XXXXX;

NULL;
END SELECT;
ELSIF Table(i,1) = 1 AND Table(i,2) = 2 THEN
SELECT

L1S1l.ack_msg;
Table(,1) :=-1;

DELAY XXXXX;
NULL;
END SELECT;
ELSIF Table(i,1) =1 AND (Table(i,2) =3 OR

SELECT
IFL2S1 ' CALLABLE THEN
L2S1.over(Table(i,2),Table(i,3));
END IF;
Table(i,1) :=-1;

DELAY XXXXX;

NULL;
END SELECT;
ELSIF Table(i,1) = 1 AND Table(i,2) = 5§ THEN
SELECT
L1S1.stop;
Table(i,1) :=-1;

DELAY X3XXX;
NULL;
END SELECT:
ELSIF Table(i,2) = 1 THEN

Table(i,2) =4 ) THEN
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SELECT
L1S(i).len_msg(Table(i,3),self);
Table(i,1) :=-1;

DELAY XXXXX;
NULL;
END SELECT;
ELSIF Table(i,2) = 2 THEN
SELECT
L1S(i).ack_msg;
Table(i,1) :=-1;
OR
DELAY XXXXX;
NULL;
END SELECT;
ELSIF Table(i,2) =3 OR Table(i,2) = 4 THEN
SELECT
IF L2S() ' CALLABLE THEN
L2S(i).over(Table(i,2),Table(i,3));
IF.

Table(i,1) :=-1;

DELAY XXXXX;
NULL;
END SELECT;
ELSIF Table(i,2) = 5§ THEN
SELECT
L1S().stop;
Table(i,1) :=-1;
OR
DELAY XXXXX;
NULL;
END SELECT;
ENDIF;
i=i+l;
END LOOP;
compact;

OR
TERMINATE;
END SELECT;
END CommunicationProcess;

TASK TYPE Secondl IS
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ENTRY len_msg(s1,Pi : IN INTEGER);

ENTRY ack_msg;

ENTRY stop;
ENTRYstart(aryl:item3;ary2:item4;pcount : INTEGERY),

END;
TASK BODY Secondl IS
d : INTEGER := INTEGER'LAST; -- current shortest path
num : INTEGER :=0; -- unacknowledged messages
pred : INTEGER; - most current predecessor
self : INTEGER;
ack : INTEGER :=0;
s : INTEGER :=0;
w : itemd;
count : INTEGER;
XXXXX : INTEGER; - time to delay
successor : item3;
done : BOOLEAN :=false;

BEGIN
ACCERPT start(aryl : item3;ary2 : itemd4;pcount : INTEGER) DO
successor := aryl;
count := pcount;
w = ary2,
END;
CP(1).idself(1);
FOR i IN 2..N LOOP
IF successor(i) THEN
CP(1).msg(i,1,w(@i));
num :=num + 1;
END IF;
END LOOP,
CP(1).msg(-1,-1,-1);
LOOP

SELECT
ACCEPT len_msg(s1,Pi : INTEGER) DO

pred .= 11,

IF s1 <0 THEN
done := true;
s:=5sl;

ELSE
ack:=1;

END IF;

END;
IF ack =1 THEN
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CP(1).msg(pred,2,0);
CP(1).msg(-1,-1,-1);
ack :=
END IF;
OR
ACCEPT ack_msg DO
num :=num- 1;
IF num = 0 THEN done := true; END IF;
END; :
OR
ACCEPT stop DO
count :=count- 1;
END;
OR
WHEN done =>
FORiIN 2.N LOOP
IF successor(i) THEN
CP(1).msg(,s,0);
successor(i) := false;
END IF;
END LOOP;
CP(1).msg(-1,-1,-1);
IF count = 0 THEN EXIT; END IF;
END SELECT;
END LOOP;
Tester.message(0(s,d,pred,num);
END Secondl;

TASK TYPE Second IS

ENTRY len_msg(s,Pi : IN INTEGER);

ENTRY ack_msg;

ENTRY stop;

ENTRY start(aryl:item3;ary2:item4;id : INTEGER;pcount : INTEGER);
END;
TASK BODY Second IS

d : INTEGER := INTEGERLAST; -- current shortest path

num : INTEGER :=0; -- unacknowledged messages

pred : INTEGER; - most current predecessor

self : INTEGER;

ack : INTEGER;

count : INTEGER;

w : item4;

successor : item3;
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done : BOOLEAN :=false;
saves , savepi : INTEGER;
BEGIN
ACCEPT start(ary1 : item3;ary2 : item4;id , pcount : INTEGER) DO
count := pcount;
successor := aryl;
w = ary2;
self :=1id;
END;
CP(self).idself(self);
LOOP

SELECT
ACCEPT len_msg(s,Pi : ININTEGER) DO
ack :=0;
saves :=S§;
savepi := Pi;
END;
IF saves <d THEN
IF num > 0 THEN
CP(self).msg(pred,2,0);
CP(self).msg(-1,-1,-1);
END IF;
pred := savepi;
d := saves;
FORiIN 1.N LOOP
IF successor(i) THEN
CP(self).msg(i,1,d+w());
num:=num+1;
ENDIF;
END LOOP:
IF num = 0 THEN
CP(self).msg(pred,2,0);
m.

ELSIF saves >=d THEN
CP(self).msg(pred,2,0);
END IF;
CP(self).msg(-1,-1,-1);
OR

ACCEPT ack_msg DO
num :=num- 1;
END;
IF num = 0 THEN
CP(self).msg(pred,2,0); CP(self).msg(-1,-1,-1);
IF.

’
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OR
ACCEPT stop DO
count :=count -1;
done := true;
END;
OR
WHEN done =>
FORiIN 2.NLOOP
IF successor(i) THEN
CP(self).msg(i,5,0);
successor(i) := false;
END IF;
END LOOP;
CP(self).msg(-1,-1,-1);
IF count = 0 THEN EXIT; END IF;
END SELECT;
END LOOP;
Tester.message1(d,pred,num,self);
END Second;

L1S1 : Secondl;
L1S : ARRAY (2..N) OF Second;
CP : ARRAY (1..N) OF CommunicationProcess;
BEGIN

LOOP

EXIT WHEN status /= NR;

END LOOP;

END Layer1Second;

PROCEDURE Layer2Second(Tester : IN OUT GlobalTester) IS

TASK CommunicationProcess IS
ENTRY msg(tol,mtypel,wl : IN INTEGER),
ENTRY idself(id : INTEGER);
END;
TASK BODY CommunicationProcess IS
self : INTEGER;
tctr : INTEGER;
to : INTEGER;
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i : INTEGER;
Table : ARRAY(1..N,1..3) OF INTEGER;

PROCEDURE compact IS
i:INTEGER;

j : INTEGER;

swap : ARRAY(1..N,1..3) OF INTEGER;

BEGIN
j=1
FORiIN 1.NLOOP
IF Table(i,1) /=-1 THEN
swap(j,1) := Table(i,1);
swap(j,2) := Table(i,2);
swap(j,3) := Table(i,3);
ji=j+1;

END IF;

END LOOP;

swap(j,1) :=-1;

i=lj=1,

WHILE swap(j,1) /= -1 LOOP
Table(i,1) := swap(j,1);
Table(i,2) := swap(j,2);
Table(i,3) := swap(j,3);
i=i+l;j=j+1;

END LOOP;

Table(i,1) :==-1;

tetr :=1;

END compact;

BEGIN
-- initialize Table to -1 and self
LOOP FORiIN 1.N LOOP
Table(i,1) :=-1; Table(i,2) :=-1;
Table(i,3) :==-1;
END LOOP;
ACCEPT idself(id : INTEGER) DO
self :=id;
END;
tctr:=1;
LOOP
SELECT
ACCEPT msg(tol,mtypel,wl: IN INTEGER) DO
to:=tol;
Table(tctr,1) :=tol;
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Table(tctr,2) := mtypel;
Table(tctr,3) := wi;
tetr:=tctr+ 1;
END;
LOOP
EXIT WHEN to =-1;
ACCEPT nlxsg(tol,mtypcl,wlz IN INTEGER) DO
to:=tol;
Table(tctr,1) :=tol;
Table(tctr,2) := mtypel;
Table(tctr,3) :=wl;
tetr:=totr+ 1;
END;
END LOOP;
OR
i=1;
WHILE Table(i,1) /= -1 LOOP
IF Table(i,1) = 1 AND Table(i,2) = 1 THEN
SELECT
L1SLlen_msg(Table(i,3),self);
Table(,1) :=-1;

DELAY XXXXX;

NULL;
END SELECT;
ELSIF Table(i,1) = 1 AND Table(i,2) = 2 THEN
SELECT
L1S1l.ack_msg;
Table(i,1) :=-1;

DELAY XXXXX,;
NULL;
END SELECT;
ELSIF Table(i,1) = 1 AND ((Table(i,2) = 3) OR
(Table(i,2) =4 )) THEN
SELECT

IF L2S1' CALLABLE THEN
L2S1.over(Table(i,2),Table(i,3));

END IF;
Table(,1) :=-1;
DELAY XXXXX;

NULL;
END SELECT;
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ELSIF Table(i,1) = 1 AND Table(i,2) = 5 THEN
SELECT

L1S1.stop;
Table(j,1) :=-
R

DELAY XXXXX;

NULL;
END SELECT;
ELSIF Table(i,2) = 1 THEN
SELECT

L1S().len msg(’I‘able(l,3),sclf)
R Table(i,1) :=-1

DELAY XXXXX;

NULL;
END SELECT;
ELSIF Table(j,2) = 2 THEN
SELECT

L1S(i).ack_msg;
Table(i,1) :=-1;
OR
DELAY XXOXXX:
NULL;
END SELECT;
ELSIF (Tablc(x,2) =3) OR (Table(i,2) = 4) THEN
SELE

IF L2S(i) ' CALLABLE THEN
L2S(i).over(T able(i,2),Table(i,3));
ND IF;

Table(i,1) :=-1;
DELAY XXXXX:

NULL;
END SELECT,;
ELSIF Table(i,2) = 5 THEN
SELECT

L1S().stop;
Tablc(x,l) =-1;

DELAY XXXXX;
NULL;
END SELECT;

ENDIF
i -1+l
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END LOOP;
compact;

OR
TERMINATE;
END SELECT;
END CommunicationProcess;

TASK TYPE SecondII_11S
ENTRY over(mtype , id: IN INTEGER);
ENTRY start(s1,numl : IN INTEGER;aryl, predecessor: item3);
END;
TASK BODY SecondIl_1 IS
msg : INTEGER; -- message to be sent
num : INTEGER; -- unacknowledged messages
s:INTEGER; - distance received
self : INTEGER;
backup : item3;
predary : item3;
change : BOOLEAN :=true;
successor : item3;

FUNCTION moretodo(ary : item3) RETURN BOOLEAN IS
done : BOOLEAN := false;
i:integer:=1;
BEGIN
WHILE NOT done AND i <=N LOOP
IF ary(i) THEN
done := true;
END IF;
i=i+];
END LOOP;
RETURN done;
END moretodo;

BEGIN
ACCEPT start(s1,num1 : IN INTEGER;ary1,predecessor: item3) DO
s:=sl;
num := numl;
predary := predecessor;
successor := aryl;
backup := successor;

’
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self :=1;
CP(1).idself(1);
IF s <0 THEN
msg := 3;
ELSE
msg :=4;
ENDIF;
LOOP
SELECT
IF change THEN
FORiIN 2..N LOOP
-- for all successors send over message.
-- But wait only xxxxx seconds for

-- arendezvous.

IF successor(i) THEN
CP(1).msg(i,msg,1);
successor(i) := FALSE;

END IF;

END LOOP;
CP(1).msg(-1,-1,-1);
IF NOT moretodo(successor) THEN
change := false;
END IF;
END IF;
OR
WHEN over'COUNT > 0 =>
ACCEPT over(mtype ,id: IN INTEGER) DO
IF msg = 4 AND mtype = 3 THEN
msg := 3; d := INTEGER'FIRST;
change :=true;
successor := backup;
ENDIF,
predary(id) := false;
OR
IF NOT moretodo(successor) AND NOT moretodo(predary)

EXIT;
END IF;
END SELECT;
END LOOP;
Tester.message2(s,msg,self);
END SecondIl_1;

THEN
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TASK TYPE SecondIl IS
ENTRY over(mtype ,id: IN INTEGER);
3 ENTRY start(d1,numl : IN INTEGER;id : INTEGER;ary1,predecessor
: item3);

END;
TASK BODY SecondIl IS
num : INTEGER; -- unacknowledged messages
d: INTEGER; - current shortest path
msg : INTEGER; - message received and sent later
successor : item3;
backup : item3;
predary : item3;
change : BOOLEAN := true;
self : INTEGER;

FUNCTION moretodo(ary : item3) RETURN BOOLEAN IS
done : BOOLEAN := false;
i:integer:=1;
BEGIN
WHILE NOT done AND i <= N LOOP
IF ary(i) THEN
done := true;
END IF;
i=i+1;
END LOOP;
RETURN done;
END moretodo;

BEGIN
ACCEPT start(d1,numl : IN INTEGER;id : INTEGER;ary1
Jpredecesor: item3) DO
d:=dl;
num := numl;
self :=id;
predary := predecessor;
successor := aryl;
END;
CP(self).idself(self);
-- accept over message from predecessor
ACCEPT over(mtype , id: IN INTEGER) DO
predary(id) := false;
msg = mtype,
IF num > 0 AND msg /= 3 THEN
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msg = 3;
END IF;
IF msg = 3 THEN d := INTEGER'FIRST; END IF;

LOOP
SELECT
-- if some task is waiting to rendezvous then accept its attempt
WHEN over'COUNT > 0 =>
ACCEPT over(mtype , id: IN INTEGER) DO
IF msg =4 AND mtype = 1 THEN
msg := 3; d := INTEGER'FIRST;
change := true;
ENDIF;
pxedaxy(id) = false;

OR
IF change THEN
FORiIN 2.N LOOP
-- for all successors, send over message.
IF successor(i) THEN
CP(self).msg(i msg,seli),
successor(l) =
END IF;
END LOOP;
CP(self).msg(-1,-1,-1);
IF NOT moretodo(successor) THEN
change := false;
END IF;
END IF;
OR
IF NOT moretodo(successor) AND NOT moretodo(predary)
THEN EXIT END IF;
END SELECT;
END LOOP;
Tester.message2(d,msg,self);
END Secondll;

L2S1 : Secondl;
L2S : ARRAY (2..N) OF Second;
CP : ARRAY (1..N) OF CommunicationProcess;
BEGIN
LOOP
EXIT WHEN status /=NR;



END LOOP;
END Layer2Second;
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Tester : GlobalTester;
Status : statustype;
BEGIN

status := NR;

Layer1Primary(Tester);

IF status = GE THEN
status := NR;
Layer1Second(Tester);

END IF;

IF status = OK THEN
status := NR;
Layer2Primary(Tester);
IF status = GE THEN

status := NR;
Layer2Second(Tester);
ENDIF;

END IF;

IF status = GE THEN
-- Error

END IF;

END DSPA;
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