
AN EFFICENT FAULT TOLERANT

DISTRIBUTED SHORTEST PATH PROGRAM

INADA

A Thesis

Presented to

the Faculty of the Department of Computer Science

University of Houston - University Park

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Camion Malik

December, 1987

ACKNOWLEDGEMENT

I dedicate this thesis to my family, without their love and support none

of this would have been possible. To my father and mother, no one could ask for

better parents. To my wife who has been my rock of Gibraltar. Finally, to my most

precious Ike, for whom this has all been.

I would also like to take this opportunity to thank my committee

members Dr. Stephen Huang and Dr. Tiee-Jian Wu. To Dr. Pen-Nan Lee for his

help, understanding and friendship I am especially grateful. His guidance was

appreciated and his trust in me was a source of pride.

iii

AN EFHCIENT FAULT TOLERANT

DISTRIBUTED SHORTEST PATH PROGRAM

INADA

An Abstract of a Thesis

Presented to

the Faculty of the Department of Computer Science

University of Houston - University Park

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Camron Malik

December, 1987

iv

ABSTRACT

A simple, elegant algorithm upon implementation presents innumerable

problems. This paper provides insight into the difficulties of implementing a

distributed algorithm. This is followed by an efficient, fault tolerant implementation

of the Distributed Shortest Path Algorithm. The provision of fault tolerance has a

large overhead in terms of the number of messages required. A modification of the

algorithm is proposed to reduce the number of messages, using buffering in

conjunction with Ada constructs to achieve this in the implementation.

The unrestricted communication in a distributed system produces

situations conducive to deadlock. This is particularly true if a synchronous form of

message passing is used, as processes will wait indefinitely for each other. To

ensure freedom from deadlock a variant of nondeterministic message sending based

on Ada timed out entry calls is used. Distributed programs are also, by virtue of their

complexity, difficult to verify. Even after extensive testing residual design

inadequacies may be present Thus the concept of Communication Closed Layers is

used to design the program. The Consensus-Global Tester is used to implement

error detection and assist in error recovery. In the event of an error, a Backward

error recovery scheme is used which saves the essential information. Thus,

computation can be reinitiated using the saved values.

v

TABLE OF CONTENTS
LIST OF FIGURES... vii

I. INTRODUCTION... 1
II. BACKGROUND... 4

2.1 Concurrent Ada..5
2.2 Software Fault Tolerance... 7
2.3 Safe Layering... 10

2.3.1 Safe Layers.. 10
2.3.2 Consensus-Global Tester... 12

2.4 Problems and Difficulties.. 14
2.4.1 Deadlock Problem...14
2.4.2 Blocking Problem... 15

2.4.3 Message and Process Overheads....................................16
2.4.4 Language Constraints...17
2.4.5 Reliability Problems... 18
2.4.6 Distributed Implementation... 19

2.5 Distributed Shortest Path Algorithm... 20
III. IMPLEMENTATION.. 23

3.1 Primary Version.. 29
3.2 Alternate Version.. 37
3.3 Tester ... 41

IV. ANALYSIS... 46
4.1 Implementation Issues... 46
4.2 Reliability Issues ...51

V. CONCLUSION .. 557

APPENDIX A...58
APPENDIX B...62
BIBLIOGRAPHY.. 91

vi

LIST OF FIGURES

1.. .A weighted, directed graph with negative cycle..22

2.. .0.erall structure of the implementation (Layer and Tester)........................24

3.. .Layerl Primary modules overall structure...27

4.. .Layer2 Primary modules overall structure... 28

5.. .Layerl Alternate modules overall structure... 28

6.. .Layer2 Alternate modules overall structure... 29

7.. .Relationship pathways for processes...39

vii

L INTRODUCTION

The trend towards distributed processing on computer networks has led

to an increase in the number of distributed algorithms and the development of

programming languages to exploit the concurrency. But two major issues have not

yet been addressed. The first issue concerns the problems associated with the

implementation of the algorithms, within the constraints of the languages. The

second issue concerns the assurance of reliability in such a complex software

system, as the results depend on the unpredictable order in which actions from

different processes are executed. In this paper we consider the problems and

drawbacks of implementing the Distributed Shortest Path Algorithm [CHAN82]

within the constraints placed by a language, specifically Ada*. We then design and

implement a fully distributed, fault tolerant program which meets all correctness

criteria.

*Ada is a registered trademark of the U.S. Govt.,Ada Joint Program Office (AJPO)

The Distributed Shortest Path Algorithm is an elegant distributed solution

to compute the shortest path from a special vertex vj to all other vertices of a

weighted, directed graph. The unrestricted communication in a distributed program

and the unpredictable order of execution of the component processes pose problems.

These are compounded by the constraints placed by a language. Thus to achieve

freedom from deadlock requires either an indirection methodology or the use of

1

2

variant Ada constructs to provide nondeterminism on output. A general method for

overcoming deadlock is proposed and implemented using Communication Processes

(buffers).

Distributed programs are inherently difficult to verify and even after

extensive testing, may have residual design errors. Thus techniques for designing

correct programs have to be utilized. This particular fault tolerant implementation is

based on the concept of Communication Closed Layers [ELRA83], which partitions

programs logically / physically to provide what are called Safe Layers. Such a

design methodology coupled with the concept of Consensus-Global Testers

[LEES 8] provides fault tolerance. Hence, error detection and recovery are possible.

A Recovery Block [RAND75] type scheme is used to implement error

detection and recovery. The premise of a Recovery Block type scheme is that errors

will occur, thus "spare" modules must be provided. Hence, at the conclusion of a

particular computation, if an error is detected the "spare" can be used to recompute

the values. While the erroneous values are discarded. The errors are detected

through the use of a Tester module which assures that the results are either

"acceptable" or erroneous.

The ultimate objective is to maximize concurrency and provide fault

tolerance without incurring overheads in time-space. To begin the discussion a brief

outline of the Distributed Shortest Path Algorithm and the complete backgrounds on

the concepts, techniques and methodologies will be given in section 2. This will be

followed in section 3 by a description of the implementation and its algorithm.

3

Section 4 is devoted to the analysis. Finally, in section 5, some concluding remarks

are made.

BL BACKGROUND

In this section we provide the conceptual background of the techniques

which form the basis for this thesis. These are firstly, the language of

implementation, Ada. Secondly, the concept of fault tolerance followed by the Safe

Layering design methodology. Then a consideration of the problems and difficulties

of implementing a distributed program are provided. Finally, an overview of the

distributed algorithm is given. But before a complete exposition of the theory is

given, a few basic definitions are in order.

To begin with, a concurrent program specifies two or more sequential

programs that may be executed concurrently as parallel processes. These processes

communicate and synchronize, in order to cooperate to achieve a common objective.

But the absolute or relative speeds of execution of the component processes are

unpredictable.

Concurrent programs may be executed in several different environments,

depending basically on the availability of processors and their interconnections. The

first method allows processes to share one or more processors and is referred to as,

multiprogramming. If each process is executed on a single processor, but all

processors share a common memory, it is referred to as multiprocessing. Finally,

the execution of processes on dedicated processors connected by a network is called

distributed processing. Since no memory is shared cooperation is achieved through

message passing or remote procedure calls. Thus a distributed program consists of a

4

5

collection of processes or tasks executed in a distributed processing environment.

In what follows, the terms task and process are interchangable and refer

to self sufficient execution units which communicate via messages.

2.1 Concurrent Ada

Ada, the new general purpose programming language, is based on

definitions proposed by the US Department of Defense for use in embedded

Systems. It is the culmination of a decade of specification and revision of successive

versions of the language and reflects the current trend towards data abstraction,

multitasking, generics, exceptions handling, readability, reliability, etc.

In many circumstances programs have to be written as several parallel

activities which communicate / synchronize in order to cooperate. In Ada this

parallelism is described by means of tasks, which is a unit of concurrency. When

two tasks need to interact they do so through a mechanism known as a rendezvous.

A rendezvous takes place when one task calls an entry declared in another. Each

entry has a corresponding ACCEPT statement. For example,

ACCEPT message(messagetype: IN INTEGER) DO

5

END;

Pl.message(4);

accepts a message and subsequently sends a message to task Pl, which has a

corresponding ACCEPT.

The body of the ACCEPT statement acts as a critical section and no other

communication can take place nor can any values be changed in the calling task until

the conclusion of this rendezvous. The end of the rendezvous coincides with the

END statement of the ACCEPT, in the called task. If the ACCEPT has no body or

parameters it acts as a synchronization primitive only and no information is

exchanged. The use of parameters allows information to be exchanged by reference

or value.

A strength of Ada which is not as apparent, in contrast to its better

known features, is its flexibility. Though the specification of Ada do not explicitly

provide for nondeterministic output, the use of timed out entry calls allow the

mimicking of such nondeterminism. The timed out entry call allows a sequence of

statements to be executed alternatively, if an entry call is not accepted within the

specified duration. Thus

7

SELECT

Pl.messageC’entry call");

OR

DELAY X;

-- Statements

END SELECT;

will execute the statements following DELAY X, if task Pl does not accept the call

within X seconds. This ensures that the calling task will not wait indefinitely, if the

destination task cannot accept the call.

When a task calls another, Ada relies on an asymmetric naming scheme

to implement general entry points. That is, the calling task needs to know the identity

of the called task. But the called task (server) is not required to know who the caller

(user) is. Thus, entry points can be called by any process without the server

requiring prior knowledge of the users identity. If a task needs to know whether

processes are waiting to rendezvous it utilizes the concept of Attributes. The syntax

is P'COUNT, which provides the number of tasks waiting at entry point P.

22 Software Fault Tolerance

The need to provide increased reliability in computer system led to the

approach of achieving this goal through the use of fault prevention. Reliance is

placed on tools and techniques such as verification, documentation, testing, etc.

8

Such techniques assume that all possible causes of unreliability can be removed prior

to delivery and reliance will not be placed on a system until all "bugs" have been

removed. This approach fails to account for faults which were unanticipated and

thus not weeded out during the design and testing of the system. It is reasonable to

assume faults may be present in a system and will have to be tolerated. Thus the

concept of fault tolerance uses redundancy of design as a means to provide error

detection and recovery from residual design inadequacies. This ensures

uninterrupted service even in the event of faults. To achieve this objective, fault

tolerant systems must detect errors, assess the damage, try to recover and provide

continuous service.

Two complementary approaches for providing fault tolerance in software

have evolved. These are forward error recovery and backward error recovery. The

aim of forward error recovery is to identify the error and based on the available

knowledge correct the system state to provide continued service. An example of

such an approach is N-Version Programming. In contrast, backward error recovery

manipulates the system state so as to achieve a "reversal of time". That is, to a state

prior to the erroneous one without regard for the current state. Thus previous states

are saved on a stable medium, to be recalled if the need ever arises.

The recovery block scheme [RAND75] is an example of a backward

error recovery technique and like all fault tolerant schemes relies on redundancy. It

consists of three distinct parts: a recovery point, execution modules and an

acceptance test point The first of these is a point in the execution of a program when

9

the important variables are saved. This occurs prior to entering a recovery block.

The second part consists of a primary module, which is executed first upon entering

a recovery block. Upon completion the process must pass an acceptance test to

ensure the reliability of its results. If the test is passed, then the process proceeds.

But if the test is failed the process state is restored to its original version (saved on

entering the recovery block). Then an alternate module of the program is executed,

in the hopes that the alternate will not have the residual design inadequacies present

in the primary.

The alternate blocks / modules may be of differing design, algorithms,

languages or a combination thereof. The premise is that residual design inadequacies

present in one module will not be present in another. Any number of alternates may

be used as long as they provide a measure of fault tolerance within acceptable costs.

For example, if four algorithms to solve a particular problem are available and their

time complexities are n log n, n^, n^ and n^, then the last version even though it

provides redundancy, may be too expensive to employ, especially in a time

constrained application.

The acceptance test is a last moment check to ensure the reasonableness

of the output and is by no means a test for absolute correctness. This acceptance test

is over and above the usual interface checks provided by the system - which lead to

exceptions, etc. Thus if no exception has been raised and the output of the module

meets the acceptance criteria it is assumed that no fault occurred.

10

23 Safe Layering

Distributed programs, by virtue of their complexity, are very difficult to

verify formally. Even after extensive testing and debugging residual design

inadequacies may be present. This coupled with the unrestricted communication

between concurrent processes could cause the propagation of erroneous values.

Ultimately leading to erroneous results or a crash of the software system. Thus there

is a need for methodologies to design reliable programs and for techniques to detect

and recover from faults. One such design method, based on the concept of

Communication-Closed Layers proposed in [ELRA83], provides a means to design

reliable distributed programs in what are termed Safe Layers. This in conjunction

with the Consensus-Global Tester [LEE88] provides error detection and

recoverability. The provision of fault tolerance based on these techniques does not

give up any degree of concurrency, allowing component processes to execute at their

own pace.

23.1 Safe Layers

Distributed programs can be viewed as having a two dimensional

data-flow. That is, sequential within the process and parallel between processes.

Thus, in order to design a distributed program we must consider the sequential

behaviour within each process and manage synchronization / communication

11

between the processes. The concept of Safe Layering allows such a consideration.

The basic idea is to view distributed programs as a sequential composition of

concurrent Layers. For example, a concurrent program P consisting of interacting

processes pj; P2; ; pn is defined in CSP [HOAR78] syntax as:

P::[p1llp2ll--llpn]

Furthermore, each component process can be subdivided into d logical / physical

segments. Thus each process (pj) may be defined as:

PiHfPi1;--;?^]

Thus, in general, process segments can be defined as:

PjSeg (i = l..n , seg=l..d)

and a LayeA is:

[P1k H p2k IIII Pnk]

The Sequential Composition (denoted by of a concurrent program P

is [Layerl; •••••; Layerd]

This allows a concurrent program to be viewed as a collection of sequential layers.

But gives up some concurrency and requires a global synchronization scheme, as

commands in a following layer are not available until the previous layer has

terminated.

The Distributed Composition (denoted by of a concurrent program P

is:

12

[Layer 1: •••••: Layer^]

and is exactly equivalent to:

(pi1; — ;pid H•••••ii Pn1;.....;pnd]

Thus allowing a process to execute at its own pace without any global

synchronization and ignoring layer boundaries.

The equivalence of the two compositions can be provided by assuming

for all layers, that LayeA is Communication Closed. That is, in any communication

both members must belong to the same layer. Thus if inter-layer communication is

disallowed, across layer boundaries, each of the layers is communication closed and

such layers are called Safe Layers. These Safe Layers can be used as units of

modularity with layer boundaries serving as synchronization points [LEE88],

[ELRA83], [GERT86], [MOIT83].

The Distributed Shortest Path Algorithm (DSPA) is implemented in two

layers corresponding to the two phases of the algorithm, described in section 2.5.

2.3.2 Consensus-Global Tester

The efficacy of fault tolerance depends to a large extent on the ability to

detect errors and consequently have a chance to correct the errors. Thus error

detection is an extremely important phase in computation and relies heavily on the

ability of the tester to "catch" the errors. In sequential programs the errors are

isolated within single programs which are not affected by outside influences. But in

13

a distributed system, where many processes may be running concurrently and

interacting, errors outside the module can affect the outcome. Some errors may be

localized but, through interactions, have tainted parts of the program which appear to

be fine.

A tester for a sequential program is required to ensure that specifications

for a particular program are met In the case of distributed programs, the tester must

ensure the correctness of the results for the entire computation. This is made more

difficult since the order of execution, of the actions of the interacting processes, are

unpredictable. Thus, so are the results.

The Consensus-Global Tester [LEE88] based on the premise that there

are interactions amongst processes provides error detection for all the component

processes. This is achieved by providing a global specification, which can test the

correctness of the results of all the interacting processes. In the event of a global

error all tasks are required to rollback.

If a distributed implementation can be partitioned into regions or layers in

such a way that error detection and recovery can be localized. Then the concept of

Global Testers can be applied to each of the regions to regionalize the error detection

and recovery, without having an adverse effect on the other regions. Thus, errors

can be detected and recovery initiated only in those particular regions. In the event

of an error, rollback and recovery occur within the region. But if no regional errors

are detected the results are sent to the Global Tester for consensus-global testing.

That is, to ensure that all regions meet the specification as a whole.

14

In the program to be implemented the concept of a single

Consensus-global Tester for each phase of the computation is used. This tester

should verify that a global assertion holds in all cases.

2.4 Problems and Difficulties

The concept of distributing processing is a powerful and useful one, but

must be utilized with extreme care. Several problems are faced in the effort to

implement a distributed program, and these issues have to be resolved to profit from

the enormous potential of distributed processing. These issues include the danger of

deadlock, unnecessary blockage, overheads of messages and processes, language

constraints, reliability, debugging of errors and a fully distributed implementation.

When addressing these issues compromises have to be made, which ultimately affect

the implementation and its efficiency.

2.4.1 Deadlock Problem

In distributed solutions, the unrestricted inter-process communication

produces situations conducive to deadlock. For example, some arbitrary process Pj

attempts to communicate with another process Pj; simultaneously Pj may try to send

a message to Pj. This circular wait situation is unresolvable as both processes would

15

wait indefinitely for the other to receive its message. There are two basic solutions to

this problem, either deadlock avoidance or deadlock detection and arbitration. The

latter is much more costlier in terms of the overhead of monitoring and is almost

impossible to achieve, in general, for distributed programs. The avoidance of

deadlock is relatively easier to achieve through careful structuring and design of the

program [LEE87]. But requires some degree of intuition on the part of the

programmer and flexibility in the programming language.

A general method to ensure freedom from deadlock makes use of

indirection during communications. This is achieved through the use of buffer

processes, which buffer and redirect messages, thus circumventing the need for

direct communication. A second technique depends on the flexibility of the language

Ada to provide nondeterminism on output

2.4.2 Blocking Problem

A less serious but equally important issue concerns unnecessary

blockage / waiting. A process blocked for communication / synchronization must not

have to wait too long. This issue gains significance if it is realized that the speeds of

execution of processes are arbitrary and therefore unpredictable. Thus a faster

executing process may have to wait for a slower partner to effect a synchronization

or complete a communication attempt. To alleviate this problem a process must,

upon finding the called process busy, be allowed to continue processing on

16

something else. Thus valuable computing power is not lost waiting for events to

occur. For example, if a process Pi attempts to communicate with a process ?2 and

finds P2 busy. Pi should not be required to wait for P2, instead Pi may delay a

short time and thereafter proceed on its own, subsequently returning to reattempt a

rendezvous.

2.4.3 Message and Process Overheads

Since processes are executed on systems which could be geographically

separated and no sharing of memory occurs, the only means of communications are

remote procedure calls or message passing. In the algorithm and the implementation

language, message passing is assumed and thus only the latter is considered. It is

apparent that communication through messages has a substantial overhead in terms

of the delay, the amount of memory required to buffer message and the number of

messages propagated. Thus any implementation should include the reduction of

messages as an a priori requirement. If such a reduction is possible through the

implementation, by modification to the original algorithm or use of concepts and

constraints, then the necessary steps must be taken to ensure minimality of the

number of messages.

Aside from the number of messages, under certain circumstances, the

number of processes may be quiet high. These processes may be needed for

17

secondary purposes, such as buffering. They should be kept to a minimum, or

eliminated altogether if possible. Since the overhead lies not only in the number of

processes but also for inter-process communication. The inefficiency inherent in a

system using a large number of processes and / or messages is a drain on the

system. This ultimately affects performance and throughput of the system is

reduced.

2.4.4 Language Constraints

Until the recent development of general purpose programming

languages, which incorporate multitasking and constructs for concurrency as

primitives, most languages did not provide for such concepts. But the provision of

such capabilities in the new languages is by no means complete, as they are still not

powerful or expressive enough to allow all types of implementations. In the event

that a construct is not directly available to the programmer, the flexibility of a

language plays an important role in allowing solutions without incurring

unacceptable overheads. An example is the timed out entry call in Ada, without

which nondeterminism for output messages would not be possible.The inventors of

distributed algorithms usually do not consider specific languages to implement their

algorithms. Therefore, these algorithms are not always amenable to implementation

within the constraints of a language. The tools provided by a language, either

directly or indirectly, may be utilized by a programmer in cases where regular

18

constructs are too confining or inadequate.

2.4.5 Reliability Problems

There are two types of correctness properties which all programs must

possess - Safety and Liveness. Safety properties are the static portion of the

specifications and are explicitly stated. An example is mutual exclusion. Liveness

deals with the dynamic properties and ensures that an event will eventually happen.

Deadlock is an example of a breach of liveness. These issues are extremely

important in concurrent programs as the results of the execution of several processes

depends on the order in which actions from different processes are executed. The

complexity of the situation greatly increases the probability that the programmer will

make mistakes and that errors will not be detected during testing. Such design errors

would ultimately lead to the violation of the correctness properties and either

incorrect results or, failure of the software system. Until reliable proofs of

correctness which cover implementation details are available for realistic software,

reliance has to be placed on design methodologies and software fault tolerance.

A secondary issue concerned with reliability is that of debugging. This is

an example of fault prevention and can be useful in finding and removing some

errors, which would cause unnecessary wastage of computing power. For example,

during software testing the ease of readability of a program is essential and enhances

the chances of catching and fixing errors. But most languages seem to consider

19

readability as an afterthought If a language is too terse (such as APL) reading it is

difficult and finding logical errors next to impossible. On the other hand a language

which is too prolix affects the programmer just as badly.

2.4.6 Distributed Implementation

It is obvious that a distributed program must be exactly that distributed.

Since the quality, speed and efficiency all stem from the distributed environment

which allows various parts of a concurrent program to execute at their own pace. It

is possible to implement distributed algorithms using a host or controller process to

restrict communication . But this reduces concurrency and has a detremental effect

on the speed, efficiency and ultimately the quality of the program. A centralized

model using a single controlling process is infeasible, not only for the reasons

above, but it is prone to bottlenecks and intolerant to faults. The loss of the central

node can cause a crash of the entire system. Such an implementation would also

sequentialize a distributed algorithm, making it no better than a sequential program

given time slices on a single processor. Thus all distributed programs must allow

unrestricted communication without any host or controller process and use the

advantages provided by the language, the algorithm and the system.

20

25 Distributed Shortest Path Algorithm

In this section we provide the background and highlights of the

Distributed Shortest Path Algorithm. The complete algorithm can be found in

appendix A.

The algorithm implemented is an elegant, distributed solution to compute

the shortest path from a vertex to all other vertices of a weighted, directed graph in

the presence of negative cycles. A directed graph G = (V,E) consists of 2 sets. V is a

set of vertices and E is a set of edges. If an edge <vj,vj> is incident to vertices vj and

vj, then a path exists from vj to vj. The vertex vj is called the predecessor of yj and

vj is the successor of vj. Each edge has associated with it a length ly corresponding

to the distance from vj to vj. In the event a length ly is negative, a cycle of negative

length may exist. Consequently, all vertices reachable from the negative cycle will

have ly equal to -«>. An example of such a graph is shown in figure 1.

In this algorithm processes communicate through messages and the

presence of message buffers is assumed. The computation is done in two phases.

The first phase computes the minimum distance from vertex vj to all other vertices.

If there is a negative cycle a vertex will have a distance of -o®. The second phase is

used to inform the vertices that they are at a distance of -<*. In phase I the path

lengths are propagated using a length message and successors reply using an

21

acknowledgement message.Where there is no ambiguity the terms vertex and node

will be used interchangably.

Process Pj at Node vj initiates Phase I by using length messages to

inform its successors of its distance from them. The successors upon receiving this

value add the distances to their respective successors (to the received value) and pass

on the new value.

This iterates until all successors receive their respective length messages.

Upon the receipt of a length message each process updates its local value for the

shortest path received thus far from a predecessor and propagates the message. An

acknowledgement sent in response to a length message is used to terminate phase I.

Phase II, again initiated at node vj, employs two types of messages.

Namely the over- and over? messages. An over- message is sent if it is determined

that a negative cycle exists, i.e. shortest path distance is -«*. The receipt of an over

message requires a successor to set distance to -«», unless it already has distance

equal to -<*. The over- message is then propagated. The second message type, an

over?, is sent if it has not been determined whether distance is -«*>. In the event that

there are no outstanding acknowledgements the successor propagates the over?. But,

if some length messages remain to be acknowledged, an over- is sent.

The algorithm assumes each process has a queue-like input buffer, to

which messages from its neighbors are appended. Since Ada does not support such

a capability, one implementation buffers outgoing messages at the source of the

22

communication. The other uses variants of Ada constructs to provide

nondeterminism on output.

Figure 1. A weighted, directed graph with negative cycle [CHAN82].

m. IMPLEMENTAWN

The fault tolerant version of the DSPA program is implemented in two

layers corresponding to phases I and II of the computation. The first layer consists

of the Primary version and an Alternate for each node of the graph. There is one

Tester which controls the computation, sending the initialization values for each task

and receiving the results. The computation is initiated at nodej, with each node in

the system executing its primary version first. At the conclusion of computation

which corresponds to the end of phase I, each of the nodes send its final result

(obtained by the execution of the primary version) to the Consensus-Global Tester

(Tester). The Tester verifies that the results are in compliance with the specifications.

If no errors are found, the second phase of the computation is started. On the other

hand, if the results are found to be erroneous, rollback occurs and recovery is

initiated. These correspond to discarding the current values and invoking the

alternate version.

When the Alternate at each node completes computation, it sends the final

values to the Tester for validation. Once again compliance with the specifications is

checked and if no errors are detected, the second phase is initiated. Otherwise the

computation is aborted unless more alternate versions are available. A pictorial

representation of the overall structure is shown in figure 2.

23

24

BEGIN

Phase I /
Layer 1

Alternate

Phase 11/
Layer 2

Alternate

TESTER

Phase I

Phase II

END

Figure 2. Overall structure of the implementation (Layer and Tester).

The second phase corresponding to layer 2 consists of two versions, a

Primary and an Alternate. Computation is initiated at node 1, with each node

executing its primary version for phase n. The primary version at the conclusion of

its execution sends its results to the Tester for verification. If the results comply with

the specifications provided, computation concludes. In the event of an error the

alternate version for phase II is invoked and proceeds with the computation.

The Ada version is a procedure DSPA which consists of a task Tester to

perform error detection. The first phase / layer consists of the procedures

Lay er 1 Primary, corresponding to the primary version and Layerl Second which is

the Alternate. The second phase / layer is provided by procedures Layer2Primary

25

and LayerlSecond which once again correspond to the Primary and alternate version

for phase H Each of these procedures consists of a collection of Ada tasks to

perform the actual computation. An outline of the overall structure of procedure

DSPA is as follows :

PROCEDURE DSPA IS

TASKGlobalTesterlS

BEGIN

— Tester for layers

END;

PROCEDURE LayerlPrimary IS

BEGIN

- layer 1 primary module

END;

PROCEDURE LayerlPrimary IS

BEGIN

— layer 2 primary module

END;

PROCEDURE LayerlSecond IS

26

BEGIN

- layer 1 alternate module

END;

PROCEDURE Layer2Second IS

BEGIN

— layer 2 alternate module

END;

BEGIN

— GE = Global Error, NR = No Reply

status := NR;

LayerlPrimary;

IF status = GE THEN

status := NR;

Layer 1 Second;

END IF;

IF status = OK THEN

status := NR;

Layer2Primary;

IF status = GE THEN

status := NR;

Z1

Layer2Second;

END IF;

END IF;

IF status = GE THEN

— Error

END IF:

END DSPA;

Figures 3 through 6 provide an overview of each of the layer procedures.

A detailed explanation of the primary and alternate versions is provided in the

following sections.

PROCEDURE LayerlPrimary IS
TASK TYPE Primary] IS
BEGIN
END;
TASK TYPE Primary IS
BEGIN
END;

L1P1: Primary!;
LIP: ARRAY(2..N) OF Primary;
BEGIN

LOOP EXIT WHEN status /= NR;
END LOOP;

END;
Figure 3. Layer 1 Primary modules overall structure.

28

PROCEDURE Layer2Primary IS
TASK TYPE Primaiyn_l IS
BEGIN
END;
TASK TYPE Primary!! IS
BEGIN
END;

L2P1: Primaryll 1;
L2P: ARRAY(2..N) OF Primary!!;
BEGIN

LOOP EXIT WHEN status /= NR;
END LOOP;

END;

Figure 4. Layer 2 Primary modules overall structure.

PROCEDURE Layer! Second IS
TASK TYPE Communicationprocess IS
BEGIN
END;
TASK TYPE Secondl IS
BEGIN
END;
TASK TYPE Second IS
BEGIN
END;

LISI: Secondl;
LIS : ARRAY(2..N) OF Second;
CP : ARRAY(1..N) OF CommunicationProcess;
BEGIN

LOOP EXIT WHEN status /= NR; END LOOP;
END;

Figure 5. Layer 1 Alternate modules overall structure.

29

PROCEDURE Layer2Second IS
TASK TYPE CommunicationProcess IS
BEGIN
END;
TASK TYPE Secon(ffl_l IS
BEGIN
END;
TASK TYPE SecondB IS
BEGIN
END;

L2S1: SecondlLl;
L2S : ARRAY(2..N) OF SecondH;
CP: ARRAY(L.N) OF CommunicationProcess;
BEGIN

LOOP EXIT WHEN status /= NR; END LOOP;
END;

Figure 6. Layer 2 Alternate modules overall structure.

3.1 Primary Verson

The primary version is implemented in two phases similar to the

algorithm in [CHAN82]. Each phase consists of a procedure with nested tasks for

each node of the graph. These are:

(1) LayerlPrimary:: primary version for phase I / layer 1.

(a) Task L1P1:: computation task for nodel.

(b) Task LlP(i):: computation task for nodes 2..N

(2) Layer2Primary:: primary version for phase II / layer 2.

(a) Task L2P1:: computation task for node 1.

(b) Task L2P(i) :: computation tasks for nodes 2..N.

30

The task Tester initiates the overall computation by sending the initial values to each

of the tasks. A task LlPj corresponding to node Vj implements phase I of the

algorithm and computes the minimum distance. The shortest path computation is

initiated by task L1P1 at node vj which sends length messages to its immediate

successors and then loops, only accepting messages, until the number of

outstanding acknowledgements becomes zero or a length message of less than 0 is

received. At which time it sends a stop message to all its successors. The tasks

LlP(i) for all other nodes accept and send messages until they receive the stop

message. Each task upon receiving the stop message propagates it until all nodes

receive such a message from each of its predecessors. Then all tasks send a copy of

their final values for d, pred, num (path, predecessor and outstanding

acknowledgements, respectively) to the Consensus-Global Tester (Tester) and

completes execution.

The Tester accepts the results and performs a validity check based on the

specifications it is provided. If no errors are found, the Tester sends the initialization

values to task L2P1 (corresponding to phase II / layer 2 , node 1) and all other

tasks. Phase II is then initiated by L2P1, which sends the appropriate over message.

The contents of the initialization messages and the replies are given in the

explanation of the Tester.

All primary tasks for phase I (LlP(i)) use three types of messages for

communicating amongst themselves. The first, a length message, is triplet

31

(s,Pi,ack) where s is the path length. Pi the source address and ack the

acknowledgement for previous length messages. The second is an entry call to entry

point STOP, which is used to inform the nodes that phase I has ended. The third is

an acknowledgement message (ack) used only to send acknowledgements to the task

for node 1 (L1P1).

All tasks upon receiving a length message check whether the path length

(s) is shorter than the current shortest path. If so, the tasks compute the values for

propagating the message and then buffer them in the Table. The buffering of the

shortest path continues until no more tasks are waiting for a rendezvous. At which

time the new shortest path is propagated using length messages. If an even shorter

path is subsequently received, it is written over the previous shortest path. The use

of buffers ensures that only the most minimum of the length messages (of that

particular round of messages) will be propagated and requires a buffer size of N -1

in the worst case. Though a buffer of size N is convenient to declare and use.

During a rendezvous, tasks take the opportunity to return any

acknowledgements which may still be owed to the calling task. This is achieved by

the use of IN OUT parameters to exchange data. Thus while accepting a length

message tasks also return acknowledgements which were buffered along with the

previous length messages.

When the initialization message from the Tester is received, task L2P1

initiates the second phase by sending over- or over? messages to its successors. All

Phase II tasks, L2P(i), use one type of message variable with two input parameters

32

consisting of the message type and the task id for communicating among

themselves. A message value of 3 signifies an over-, whereas an over? is denoted by

a message value of 4. The phase II tasks wait for the initialization message from the

Tester and update the variables. Then each task waits for the initial message from a

predecessor at which point it enters a loop which either accepts an over- or over?

message, or propagates them. Computation for phase II tasks concludes when over

messages from all successors have been received and propagated. At the end of

phase II the values for d and over, corresponding to the shortest path and over

message, are sent to the Tester for validation. In the event of an error, the Alternate

for phase II is invoked under the assumption that phase I is correct This can be

safely assumed because the Tester (Consensus-Global) "passed" the phase I results.

The algorithm for the implementation follows. The code is in appendix

B.

For process Primary 1 Phasel:

Accept Initialization values from tester

(loop)

If successor

Send initial message

(end loop)

(loop)

33

{ Select}

Accept length message

If s < 0 then computation done else acknowledge message

Or

Accept Ack message

decrement number of outstanding Acks

If number of Acks outstanding = 0 then computation done

Or

Accept stop

Update values

Or

When computation done

Send STOP to all successors

exit loop when all stops are processed

{end loop }

Send values to Tester

For process Primaryj Phasel:

Accept Initialization values from tester

{loop)

{ select}

34

Accept length message

clear Ack

If distance (s) < current shortest path (d)

If num of Acks > 0 and predecessor = caller

increment Ack count

elsif number of acknowledgements > 0

save Ack in buffer

Update pred

Update shortest path

Save messages in buffer Table and increment Acks

If outstanding Acks =0

add to ack count

elsif distance (s) >= current shortest path (d)

increment ack count

Total all acks owed to calling task and clear buffer

Or

If no task waiting to rendezvous

If any Ack message for process 1 in buffer

Send it

If any length message for processl

Send it and receive acks

Update

35

(loop)

If any message for successor

{select}

Send it and receive acks

Update

Or

delay

(end loop}

Or

Accept STOP

Update values

done =true

Or

When done

Send stop messages to successors

exit when all stop messages have been processed

{end loop}

Send values to tester

For process Primary 1 Phasell:

Accept Initialization values from tester

36

If distance (s) < 0

then message type = Over-

else message type = Over?

I loop}

{ select}

Send Over message using delayed entry call until all are sent

Or

When tasks waiting to rendezvous

Accept message

Update values

Or

When all messages received and propagated, exit

(end loop }

Send values to Tester

For process Primaryj PhaseTl:

Accept Initialization values from tester

Accept initial Over message and initialize message type

{loop }

{ select }

When some task waiting to rendezvous

37

Accept message

Update values

Or

Send messages to all successors using delayed entry call

Or

When all messages received and propagated, exit

{end loop }

Send values to Tester

32 Alternate Versirm

The alternate version, invoked in the event of an error by the primary, is

implemented as two procedures corresponding to each Phase / Layer. Each

procedure consists of three concurrently executing tasks for each vertex vj of the

graph. These are:

(1) LayerlSecond:: alternate version for Phase I / Layer 1.

(a) Task LISI:: alternate for layer 1 node 1

(b) Task LlS(i):: alternates for all other nodes in layer 1

(c) CP(i):: communication / buffer process

(2) LayerlSecond:: alternate version for phase II for Phase II / Layer 2.

(a) Task L2S1:: alternate for layer 2 node 1

(b) Task L2S(i):: alternates for all other nodes in layer 2

38

(c) CP(i):: communication / buffer process

The Tester sends the initial values for each of the tasks, so that

computation may be initiated. In the following, the notation LlSj will be used to

denote all layer 1 alternate tasks and L2Sj will correspond to layer 2 alternate tasks.

The task LlSj corresponding to node vj implements phase I of the

algorithm and computes the minimum distance. The tasks L2Sj implement the

second phase and ensure that all over messages are propagated. The computation is

initiated by task LISI which is invoked when the procedure Layer 1 Second is called

from DSPA.

Upon receiving the initialization values from the Tester, L2S1 sends

length messages destined for its successors to its CP j. The Communication Process

(CPj) in turn redirects them to the destination tasks. Each of the successors acts on

the message accordingly. If the path received is shorter than the previous one, it is

immediately propagated via CP. Otherwise an acknowledgement is sent to the calling

task. The computation proceeds until task LISI receives either a path length less

than 0 or its outstanding acknowledgements are 0. At which point, LISI

(corresponding to node 1) sends a stop message to all its immediate successors,

which are propagated to all tasks / nodes of the graph. Upon receiving a stop

message each task propagates it. When all stop messages have been propagated,

each task sends its final values for d, num and pred (path, outstanding

39

acknowledgements and predecessor) to the Tester. A pictorial representation of the

relationship between processes and their CPs is given in figure 7 and the description

of the initialization values is provided in the following section.

Figure 7. Relationship pathways for processes.

A message from any computation task to its corresponding CP is a

3-tuple (to,mtype,w) which provide the destination address, message type and path

length. The CP which is used for phase II tasks also, can differentiate five types of

computation messages depending on the parameter, mtype:

1: : length message

2: : acknowledgement message

3: : over- message

4: : over? message

5: : stop message.

40

When a mtype 1 is received the CP redirects it to the destination as a length message

2-tuple (s,Pi) which are the path length and source address, respectively. Upon

receiving a mtype 2, an acknowledgement message is sent to the destination. The

message types 3 and 4 are used during phase II and correspond to an over- and

over?. The final mtype i.e. 5 is sent as a stop message to indicate the termination of

Phase I computation. It must be noted that all tasks communicate directly with the

Tester, to receive the initialization values and send the final results, thus ensuring

reliability.

The layer 2 tasks use one type of message to communicate with each

other, that is:

over:: consists of two parameters, mtype and id. A value of 3 for mtype

denotes an over- and 4 corresponds to an over?. The id

conesponds to the task id.

Each phase II / layer 2 task receives its initialization message through the start

message (from the Tester) and is then ready to compute, waiting for task L2S1

(phase II node 1) to initiate the computation. Each task propagates messages until all

its successors are notified and then exits the processing loop. Subsequently sending

its final values for d and the over message type to the Tester.

The testing philosophy, messages and interfaces with the Tester are

exactly the same as for the Primary version. That is, upon the conclusion of the first

phase all tasks send their results for verification to the Tester. After the Tester

verifies the results the second phase is initiated. But, in case of an error another

41

Alternate may be invoked. Furthermore, messages and interfaces with the Tester are

consistent Consequently, no interface checks or changes need to be made.

In this particular case there are two versions for each phase, but we are

not restricted to this. For example, a design similar to the alternate (Second^) but

with buffering of messages at the destination can be used as a third version. Another

method to provide useful redundancy of design, is the use of different programmers.

33 Tester

The Consensus-Global Tester (Tester) is implemented as an Ada task and

controls the computation by sending the initialization values to each task. It then

receives the results from the computation tasks. When all tasks have responded by

sending their final results, the Tester initiates its testing phase which ensures that all

specifications are met. If an error is detected the Tester informs the procedure DSP A

(using the variable status). Thus, the Alternate for that particular phase can be

invoked. If all specifications are met the next phase is initiated or, if it is the last

phase, computation successfully completes.

The initialization values for Phase I tasks are:

(1) A boolean list of successors.

(2) A list of lengths to the successors.

(3) The id number of each task (except the node 1 task).

(4) The number of predecessors.

42

The initialization values for Phase II tasks are:

(1) The shortest path.

(2) The number of outstanding acknowledgements.

(3) A list of successors.

(4) A list of predecessors.

(5) The id number of each task (except the node 1 task).

After ensuring that all the computation tasks have received their

initialization values, the Tester waits at the Accept statement for the final values for

d, pred, num (path length, predecessor and acknowledgements) from all the phase I

computation tasks. It then performs the verification test and sets the variable status

accordingly. A status of OK signifies that all tasks passed the test, whereas if status

= GE (Global Error) the Alternate will have to be invoked. If a Global Error occurs,

the Tester loops back to initialize the Alternates and thereafter waits, for messages

from the alternate tasks.

The second part of the Tester uses a similar strategy to detect errors for

phase II tasks. First initializing the tasks and subsequently waiting to receive the

values, for the path length and the over message.

The inputs Pj for the Tester at end of phase I:

For all node i

receive (df a numj a predf a idj)

43

The inputs Pn for the Tester at end of phase II:

For all node i

receive (dj a oveq a idj)

At the end of phase I, the Tester checks whether three assertions are met

These are: if the computation successfully concluded. Secondly, if any negative

values for the shortest path are present. If so, either the predecessors shortest path

must be negative or the path length must be negative. Finally, whether the shortest

path (d) of a nodej is equal to the shortest path of its predecessor plus the length

from the predecessor to nodej.

(1) For nodej: num = 0 v s = 0.

(2) For nodej (i=l..N): dj < 0-----> (dpred < 0 v lpred,i < 0)•

(3) For nodej (i=l..N): dj = dpre(j + wpredj.

At the end of phase II, the Tester checks whether the path length and

over message correspond. That is:

(1) For nodej (i=l..N): dj < 0-----> over- message.

If the conditions are not met then an error condition is assumed and error recovery is

initiated. The algorithm for the Tester follows.

For process Tester

{loop }

44

Send Initialization values to all tasks

I loop)

Accept message 1 from all phase I tasks

{end loop }

If specification met

Update done and status

else if more alternates

Update status

else

Update status, done

exit when done

{end loop }

If status = OK

{loop }

Send initialization values to all tasks

{loop }

Accept message 2 from phase II tasks

{ end loop }

If specification met

Update done and status

else if more alternates

Update status

45

else

Update status, done

exit when done

{end loop }

IV. ANALYSIS

In the following analysis the difficulties and problems alluded to in

section II will be addressed within the context of the construct or methodology used

to overcome them. Thus certain issues may be referred to several times, each will

provide the technique, construct or methodology used to overcome the problem. The

issue of reliability is treated separately.

4.1 Implementation Issues

The bidirectional inter-nodal communication inevitably leads to deadlock

in distributed solutions, whereas centralized implementations are too restrictive and

intolerant to faults. Reliance was placed on two techniques to overcome the problem

of deadlock, these were: the use of an intermediary process (CP) in the alternate

version and the use of Ada timed out entry call to provide nondeterminism on output

in the primary. The intermediate / buffer process technique avoids deadlock by

providing indirection. But poses two major drawbacks, in that, the implementation

requires 2N concurrently executing processes for a graph of N nodes. Secondly,

the number of messages also doubles. One message is required from task Tj to the

corresponding CPj and a second from CPj to the task Tj. Though these drawbacks

are associated with the use of intermediary processes, they stem from the constraints

46

41

placed by the language, which would not allow another deadlock free distributed

implementation with such a high degree of parallelism.

Though the specifications of Ada do not explicitly provide for

nondeterministic output, the use of timed out entry calls allow the mimicking of such

nondeterminism. Non-determinism is the capability for a task to execute an alternate

sequence of statements if the called task does not respond to a rendezvous. That is, it

is not predetermined that a task will have to wait for its partner in a communication.

It may execute alternate statements and at a later time, retry. The timed out entry call

allows a sequence of statements to be executed alternatively if an entry call is not

accepted within the specified duration. Thus

SELECT

Pl.message("entry call");

OR

DELAY X;

— statements

END SELECT;

will execute statements following the DELAY, if Pl does not accept the call within

X seconds. Consequently, tasks do not need to wait indefinitely for each other. It is

worthy to note that the message passing is still synchronous i.e. the called task must

respond. There is no message buffering capability. If a rendezvous is unsuccessful it

can be attempted later. This allows two-way communication between tasks without

resorting to the use of an intermediary process. Thus requiring only N tasks for a

48

graph of N nodes and a single message suffices for each communication attempt.

The problem of deadlocking due to a circular wait situation is no longer an issue.

The overhead of such a scheme is the delay incurred in waiting for a task, especially

if the rendezvous is unsuccessful. Aside from the benefit of freedom from deadlock,

a programmer can specify the time interval to wait for another task.

The asymmetric naming scheme in Ada was used to implement general

entry points, which allowed tasks to be called without the server requiring prior

knowledge of the callers identity. This allows greater flexability and generality in the

implementation. But a drawback of this scheme is the lack of security it poses, as

any task which knows the entry name can call and interfere with the server.

In Ada, communication is through an entry call made to the called task,

which has a corresponding ACCEPT statement The body of the ACCEPT statement

acts as a critical section and no other communications can take place nor can any

values be changed in the calling task until the conclusion of this rendezvous. The

end of the rendezvous coincides with the end statement of the ACCEPT, in the called

task. If the ACCEPT has no body or parameters it acts as a synchronization

primitive only and no information is exchanged. The use of parameters allows

information to be exchanged by reference or value. The benefit of such a two-way

scheme is the ability to exchange length messages and acknowledgements in the

same communication. Thus circumventing the need for a task to explicitly send

acknowledgements to its predecessors. This was effectively shown in the primary

version of the implementation, which buffered acknowledgements until the particular

49

task called with another length message. At which time the acknowledgements were

exchanged with the length message. The obvious drawback of this scheme is that

acknowledgements are always delayed until the predecessor attempts to

communicate. Thus predecessor tasks are always a little "behind" in the information

they possess. This is especially true if the task owed the acknowledgements does not

communicate again and when computation concludes, the number of outstanding

acknowledgements may have an effect on the eventual outcome.

The number of messages propagated in the Alternate implementation is

very large. In the worst case N (N -1 messages + 1 EOT) messages are sent from a

task to its CP and the CP propagates N - 1 of those, thus approximately 2N^

messages are used for N nodes. The number of messages is large not only for the

reason stated above, but also because length messages are propagated even though a

following message may provide a shorter path. In the Primary version the use of

ATTRIBUTES indirectly provides the capability to reduce the number of messages.

The syntax is, P'COUNT, which provides the number of tasks waiting at entry

point P. It allows the implementation of priorities at a very crude level. Thus tasks

can prioritize messages, with in-coming messages having first preference. Outgoing

messages are buffered until no tasks are waiting to rendezvous. That is, P'COUNT

is equal to 0. This ensures that the shortest path will be propagated after a round of

messages and the others will be discarded. In the primary version use of the

COUNT Attribute coupled with the modification to buffer messages was

instrumental in reducing the number of length messages which are propagated.

50

Considering, that in the worst case, the primary propagates messages (N nodes

each sending N-l messages) any reduction is a help.

The use of the Communication / Buffer Process scheme provides an

arbitrarily greater degree of concurrency when compared to the nondeterministic

(Primary version) message sending. Since tasks, using timed out entry calls, need to

delay for a message to get through they are unable to do any thing else. Whereas the

CP (Alternate) version sends its messages and can then continue processing. It

essentially frees up the task to do something else. In the Primary, the task must itself

wait and synchronize with the called task.

The Attribute CALLABLE which returns true if a task is not aborted,

terminated or in an abnormal state, was used to aid in message sending. It essentially

provided the capability to check a tasks ability to accept messages. Though care must

be taken in its use, as a task may infact terminate between the time of the check and

the actual message.

In each case it is clear that the language put constraints on the

programmer to implement the algorithm, but in each case the flexibility of the

language was used to achieve the objective. Though this was achieved by moulding

the language to fit the needs. Examples are, the use of timed out entry calls to

achieve nondeterminism for output messages. Secondly the use of the Attribute to

implement priorities, however crudely. Both these capabilities were major factors in

providing efficiency and deadlock freedom for the implementation.

51

4J2 Reliability Issues

Distributed programs as indicated above are difficult to implement and in

contrast to sequential programs require the satisfaction of both the safety and

liveness properties. Therefore requiring care in the implementation. But this still

does not guarantee a correct solution, thus fault tolerant techniques are required to

provide some measure of reliability. This reliability can be achieved through careful

structuring and design of the program and the use of error detection and recovery

techniques. In the implementation of the Distributed Shortest Path Algorithm, the

concept of Communication-Closed Layers was used to provide Safe Layers. This

was then extended by the use of a Consensus-Global Tester to provide error

detection and recovery capabilities.

The unrestricted communication and the interactive nature of distributed

programs make them difficult to verify formally. The use of fault prevention

techniques, such as testing, reduce errors but residual design inadequacies may still

be present. One method to design programs and provide fault tolerance is the

technique of safe layering. As described previously, the objective is to partition

concurrent programs into concurrently executing segments and to allow

communication only within the layers thus created. The Distributed Shortest Path

Algorithm by its nature provided an extremely good opportunity to partition it into

two layers, corresponding to the two phases of the computation. The logical

separation was extended to the physical program, with the provision of two versions

52

for each phase. Error detection is provided through the use of Consensus-Global

Testers.

The major strength of he DSPA program is its ability to continue

processing even in the event of faults. The reliability inherent in fault tolerant

software is based on useful redundancy. If the Primary fails then a more inefficient

module, or one which provides degraded results, will be executed. Each successive

alternate version provides continued service but at a degraded level of efficiency or

output The handling of the faults, rollback and recovery, are transparent to the user.

In the DSPA implementation it should be noted that the Primary requires

N + 1 concurrently executing tasks (N nodes + Tester) and approximately

messages have to be propagated in the worst case. Whereas the Alternate consists of

2N + 1 concurrent processes and requires 2N^ messages to be propagated. Thus

the alternate version would be costlier in terms of the overhead for processes and the

number of messages propagated. But fault tolerant applications themselves, are

inherently more inefficient than non-fault tolerant ones.

In the case of the DSPA program, the overhead comes from the extra

number of messages required to communicate with the Tester. The initialization for

each phase requires N messages and N replies are sent at the conclusion. If an error

is detected the Alternate needs to be initialized, thus N more messages are sent.

Consequently, in the worst case 8N messages would be needed and in the best case

4N. This does not take into account the overhead of N messages (minimal) for the

stop messages during phase I. But the advantages of fault tolerance are far greater

53

than the drawbacks. For example, fault tolerant software provides continued service,

even in the event of faults. In the DSPA program continued service can be provided

through the use of the Alternate, which will be invoked in the event that the Primary

fails to meet its specifications.

The reliability provided by fault tolerant software is based on the concept

of useful redundancy. That is the provision of spares with different algorithms,

written in different languages or by different programmers. The premise is that

residual design inadequacies of one will not be present in another. Thus based on the

concept of useful redundancy two modules were provided in the DSPA program. To

further ensure that the programs would be correct, the Safe Layering technique was

used to partition the program in two Communication-Closed Layers. An advantage

of this technique is that, errors caught, lead to a rollback of only that particular layer.

Thus valuable time is not lost reinitiating the entire computation. A second advantage

is that errors are caught as early as possible in the computation. That is, a fine

partitioning allows errors to be detected at the earliest In the DSPA case, an error

detected in phase 2 need only cause a rollback to the begining of layer 2. Secondly,

if a fault occurs in phase I it is detected prior to the initiation of phase IL Without

Safe Layering the error would be detected at the conclusion of computation, when

the test world be performed.

The use of fault tolerant techniques and the provision of fault tolerance in

software provides reliability but at an increased cost, in terms of the messages. But

the overhead is minimal compared to the provision of continued service, reliability

54

and the ability to design safe programs, detect errors and correct them. It should be

noted that the analysis concerning message overheads takes the propagation of a

length message into account, not the overall computation.

V. CONCLUSION

It is apparent that distributed algorithms are difficult to implement and are

affected by the constraints inherent in the constructs for concurrency provided by

Ada. Situations leading to deadlock are pervasive as communication is unrestricted.

Whereas, attempts to solve the deadlock problem have tremendous overheads in

terms of the number of messages required and the number of processes running

concurrently. In addition to the deadlock problem, issues such as memory usage,

amount of concurrency and the number of processes executing simultaneously have

to be addressed. The solutions to these problems are not easy to find. This puts the

burden on the programmer who, as the complexity of the algorithm increases, is

more likely to make errors in converting the algorithm to code. His choices will

ultimately affect the overall outcome. Incorrect choices may have adverse effects, not

only decreasing performance but ultimately leading to problems. Such problems are

hard to detect and harder to correct within the confines of the language, especially

when trying to maintain a high level of concurrent activity.

The quality and elegance of a solution depends to a large extent on the

programmer ability to forsee problems and solve them through judicious use of the

language constructs. Though concurrency in the algorithm and concurrent constructs

in the programming language are helpful and effect performance, the choice of the

language is very important in achieving maximal perfonnance. The flexibility of the

language plays an important role in allowing solutions without incurring

56

unacceptable overhead, in terms of the number of processes or the number of

messages passed. The ability of the language to provide tools, either direcfly or

indirectly, is useful. Such an ability may be utilized by a programmer in cases where

regular constructs are too confining or inadequate. But features useful to a

programmer should be easily available. He should not have to resort to the use of

constructs to mold the language into a shape which allows algorithms to be

implemented.

In the case of distributed algorithms where the problem of deadlock

looms large we can either depend on the programmer and the languages flexibility,

or use indirection (as shown by the use of CP in the Alternate implementation). The

drawbacks of both are evident Two methods which would serve better are the

extension of the language to provide the necessary features, or deadlock detection

followed by arbitration. Since the latter is considerably harder to achieve, a language

must provide either the capability to buffer messages implicitly or the ability to send

messages nondeterministically. In the event of an inability to implement a deadlock

free solution within the constraints of a language, the use of the Indirection

methodology is suggested. That is, the use of CP type tasks to ensure freedom from

deadlock. This technique will be invaluable in providing a quick and easy solution,

while a more elegant one is thought out

Distributed programs by virtue of their complexity are extremely difficult

to verify formally. This is due to the unrestricted communication between interacting

processes with unpredictable orders of execution. Thus fault prevention methods are

57

insufficient and reliance must be placed on software fault tolerance, under the

assumption that residual design inadequacies are present and may mainfest

themselves at some later time.

The distributed program must be designed using a methodology to

decrease the chances of a breach of the correctness property and error detection and

recoverability must be provided. If an error is detected the alternate modules can be

invoked to provide uninterrupted service. The lack of ability to verify programs

should not be used as an excuse, in the event of an error. Since techniques exists

that can provide reliability even in the event of errors.

The use of fault tolerant techniques have certain drawbacks, specifically

the overhead for messages and the maintenance of extra versions. But the benefits,

in terms of the reliability they provide, far outweigh the drawbacks.

The field of distributed computing is still in its infant stages and the study

of the implementation aspects of distributed algorithms within constraints placed by

current languages will prove invaluable in the future. Similarly new techniques and

methodologies are needed in fault tolerance to ensure better error detection and

recovery capabilities.

APPENDIX A

DISTRIBUTED SHORTEST PATH ALGORITHM

Phase I for Process Pj J#1

begin d := «>; pred is Undefined; num := 0 end;

{Upon receiving a length message (s,Pi))

If s < d then begin

{ send ack to pred, the prefinal vertex on previous shortest path }

If num > 0 then

send an ack to pred;

{ update pred, d }

pred := Pi;

d := s;

(send len message to all successors and increment num accordingly, then

return ack to pred if num = 0 }

Send a len message (d+w,Pj) to all successors;

num := num + number of successors;

If num = 0 then

Send ack to pred

end

53

59

else (s >= d }

Send ack to Pi;

{ Upon receiving an ack }

begin

{decrement number of unacknowledged messages }

num := num - 1;

{ send acknowledgement to pred if acks have been received for all

messages)

If num = 0 then

Send ack to pred

end;

Phase I for process Pl

d := 0; pred is Undefined;

Send (w,Pl) to all successors; num := number of successors;

{upon receipt of a length message }

{ start Phase II if negative cycle detected }

If s < 0 then

terminate Phase I and start Phase II;

else

60

return ack to Pi;

{Upon receiving ack)

{ update num; start phase II if there is no unacknowledged message

remaining}

num := num - 1;

If num = 0 then

terminate Phase I and start Phase IL

Phase II for process Pj (j * 1) with num = 0

{ Upon receiving an over- message }

Ifd# -eo then begin

d := -®o;

Send over- to all successors;

end;

{Upon receiving an over? message }

If d * -oo then

Send over? to all successors who have not been sent such a message;

Phase II for process Pj (j*D with num >0

{ Upon receiving a Phase II message (over- or over?))

61

Ifd# -oo then begin

d := -«*>;

Send over- to all successors;

end;

Phase IT for process Pl

If Plreceives a message (s,Pi) with s < 0 during Phase I then

(Pl detects a negative cycle)

Send an over- message to all successors

else (num = 0 for Pl at the end of Phase I}

Send over? message to all successors;

APPENDIX B

ADA CODE

PROCEDURE DSPA IS
TYPE statustype IS (OK,NR,GE);
TYPE iteml IS ARRAY(1..N,1..N) OF BOOLEAN;
TYPE item! IS ARRAY(1..N,1..N) OF INTEGER;
TYPE item3 IS ARRAY(L.N) OF BOOLEAN;
TYPE item4 IS ARRAY(L.N) OF INTEGER;

TASK TYPE GlobalTester IS
ENTRY messageO(sl,d,pred,num: IN INTEGER);
ENTRY messagel(d,pred,num J: IN INTEGER);
ENTRY message2(d,over j: IN INTEGER);

END;
TASK BODY GlobalTester IS

more: INTEGER;
done: BOOLEAN;
error: BOOLEAN;
successor: iteml;
predecessor: iteml;
s: IN IEGER;
w: iteml;
j: INTEGER;
pcount: ARRAY(L.N) OF INTEGER;
phaselarray: ARRAY(1..N,1..3) OF INTEGER;
phaselarray: ARRAY(1..N,1..2) OF INTEGER;

FUNCTION assertionl RETURN BOOLEAN IS
i: INTEGERS 2;
error: BOOLEAN := false;
BEGIN

IF s /= 0 AND phaselarray(l,3) /= 0 THEN
error := true;

END IF;
WHILE NOT error AND i <= N LOOP

IF phaselarray(i,l)/= (phaselarray(phaselarray(i,2),l) +
w(phaselarray(i,2),i)) THEN

error := true;
END IF;
IF phase 1 array(i.l) < 0 THEN

IF phaselarray(phase 1 array (i,2), 1) >= 0 AND

62

63

w(phaselairay(i,2),i) >= 0 THEN
error := true;

END IF;
END IF;
i := i + 1;

END LOOP;
RETURN error;

END assertion;

FUNCTION assertion! RETURN BOOLEAN IS
error: BOOLEAN := false;
j: INTEGER :=0;
k: INTEGER := 0;
BEGIN

FOR i IN 1..N LOOP
IF phase2array(i,l) < 0 AND THEN phase2array(i,2) /= 3 THEN

error := true;
END IF;
EXIT WHEN error,

END LOOP;
RETURN error

END assertion!;

BEGIN
— read values for all variables from file
more := 1;
done := false;
error := false;
LOOP

DELAY 3;
IF more =1 THEN

LI Pl .start(successor(1,1 ..N),w(l, 1 ..N),pcount(l));
FORiIN2..NLOOP

j:=i;
LlP(i).start(successor(i,l..N),w(i,l..N)j,pcount(i));

END LOOP,
ELSE

LISI .start(successor(1,1. .N),w(1,1 ..N),pcount(1));
FORiIN2..NLOOP

j:=i;
LIS (i).start(successor(i, 1 „N),w(i, 1 ..N) j,pcount(i));

END LOOP;
END IF;
ACCEPT messageO(sl,d,pred,num: IN INTEGER) DO

64

phaselarray(l,l) := d;
phase 1 array (1,2) := pred;
phaselairay(l,3) := num;
s := si;

END;
F0RiIN2..NL00P

ACCEPT message 1 (d,pred,num j : IN INTEGER) DO
phaselairay(j,l) :=d;
phaselarray(j,2) :=pred;
phaselarray(j,3) := num;

END;
END LOOP;
IF assertion! THEN

done := true;
status := OK;

ELSIF more < 2 THEN
more := more +1;
status := GE;

ELSE
status := GE;
done := true;

END IF;
EXIT WHEN done OR status = OK;

END LOOP;
IF status = OK THEN

done := false;
more := 1;
LOOP

DELAYS;
IF more = 1 THEN

L2P1. start(phase 1 array (1,1), phase 1 array (1,3),
successor(1,1 ..N),predecessor(1, L.N));

FOR i IN 2..N LOOP
j:=i;
L2P(i). start(phase 1 array (i, 1),phase 1 array (i,3),

successor(i,l..N, predecessor(i,l..N) j);
END LOOP;

ELSE
L2S1 .start(phase 1 airay(l, 1),phasel array(l,3),

successor(l,l..N), predecessor(l,L.N));
FORiIN2..NLOOP

j:=i;
L2S(i).start (phase larray(i,l),phaselarray(i,3)j

successor(i,l..N), predecessor(i,l..N));

65

END LOOP;
END IF;
FORiINl„NLOOP

ACCEPT message2(d,over j: IN INTEGER) DO
phase2array(j,l) := d;
phase2array0,2) := over,

END;
END LOOP;
IF assertions THEN

done := true;
status := OK;

ELSIF more < 2 THEN
more := more +1;
status := GE;

ELSE
status := GE;
done := true;

END IF;
EXIT WHEN done OR status = OK;

END LOOP,
END IF;

END GlobalTester,

PROCEDURE Layerl Primary(Tester: IN OUT GlobalTester) IS

-- current shortest path
— unacknowledged messages

— most current predecessor

TASK TYPE Primary IIS
ENTRY len_msg(sl,Pi: IN INTEGER;ack: OUT INTEGER);
ENTRY get_ack(ack: IN INTEGER);
ENTRY start(aryl:item3,ary2: item4;pcount: IN INTEGER);
ENTRY stop;

END;
— Phase I task Primaryi
TASK BODY Primaryi IS

d: INTEGER :=0;
num: INTEGER := 0;
pred: INTEGER := 0;
XXXXX: INTEGER;
count: INTEGER;
successor: item3;
ack: INTEGER;
s: INTEGER :=0;
w: item4; ~ weights to successors
done: BOOLEAN := FALSE; ~ true if computation done
i: INTEGER :=0;

66

FUNCTION moretodo RETURN BOOLEAN IS
done: BOOLEAN := false;
i: integer := 1;
BEGIN

WHILE NOT done AND i <= N LOOP
IF successor^) THEN

done := true;
END IF;
i := i +1;

END LOOP;
RETURN done;

END moretodo;

BEGIN
ACCEPT start (aryl: item3;aiy2: item4;pcount: INTEGER) DO

successor := aryl;
count := pcount;
w := aryl;

END;
— send initial length messages to successors
FOR i IN 2..N LOOP

IF successor(i) THEN
LlP(i).len_msg(w(i),l^ick);
num := num + 1;

END IF;
END LOOP;

LOOP
SELECT

- accept length mesg. If path < 0 then computation done
-- else acknowledge mesg
ACCEPT len_msg(sl,Pi: IN INTEGER;ack : OUT INTEGER)

DO
IFslcOTHEN

done := TRUE;
s := si;

ELSE
ack := 1;

END IF;
END;

OR
— accept ack mesg and decrement outstanding acks.

67

— If no acks remain then done
ACCEPT get_ack(ack: IN INTEGER) DO

num := num - ack;
IF num = 0 THEN done := TRUE; END IF;

END;
OR

ACCEPT stop DO
count := count -1;

END;
OR

WHEN done =>
FORiIN2..NLOOP

IF successor^) THEN
SELECT

LlP(i).stop;
successor(i) := false;

CR
DELAY XXXXX;
NULL;

END SELECT;
END IF;

END LOOP;
IF count = 0 AND NOT moretodo THEN

EXIT
END IF;

END SELECT;
END LOOP;
Tester.messageO(s,d,predjium);

ENDPrimaryl;

TASK TYPE Primary IS
ENTRY len_msg(s,Pi: IN INTEGER;ack: OUT INTEGER);
ENTRY stop;
ENTRYstart(aryl:item3;ary2: item4;id: INTEGER;pcount: INTEGER);

END;
— Phase I task Primaryj (j:2.J4)
TASK BODY Primary IS

d: INTEGER := INTEGERLAST; — current shortest path
num: INTEGER := 0; — unacknowledged messages
pred: INTEGER := 0; -- most current predecessor
self: INTEGER;
count: INTEGER;
numct: INTEGER := 0;

68

ack: INTEGER;
XXXXX : INTEGER; -- time to delay
successor: item3;
w; item4'
Table : ARRAY(1..N,1„3) OF INTEGER;
-- col. 1= weight; col. 2=acks; col. 3=if mesg to be sent

FUNCTION moretodo RETURN BOOLEAN IS
done: BOOLEAN := false;
i: integer := 1;
BEGIN

WHILE NOT done AND i <= N LOOP
IF successor^) THEN

done := true;
END IF;
i:=i + l;

END LOOP;
RETURN done;

END moretodo;

BEGIN
ACCEPT start(aiyl: item3;aiy2:item4;id:INTEGER;pcount :INTEGER)

DO
successor := aryl;
self := id;
count := pcount;
w := ary2;

END;
— initialize self, Table to 0,0 and -1
FOR i IN 1..N LOOP

Table(i,l) := 0; Table(i^) := 0; Table(i,3) := -1;
END LOOP;
LOOP

SELECT
~ accept length message
ACCEPT len_msg(s,Pi: IN INTEGER;ack: OUT INTEGER)

DO
ack := 0;
— if path is shorter than previous and old predecessor is
— same as current caller then acknowledge else save ack in

table.
IFs<dTHEN

IF numct > 0 AND pred = Pi THEN
ack := ack +1;

69

back

ELSIF numct > 0 THEN
Table(pred,2) := Table(pred^) +1;

END IF;
- update predecessor and current shortest path
pred :=Pi;
d:=s;
-- buffer shortest path to successor
FORiINL.N LOOP
IF successor(i) THEN

Table(i,l) := d + w(i);
Table(i,3) :=i;
numct := numct + 1;

END IF;
END LOOP;
— if no outstanding acks then acknowledge

IF numct = 0 THEN ack := ack + 1; END IF;
— if path is longer than previous shortest path
— then acknowledge/save
ELSE IF s>=d THEN

ack := ack +1;
END IF;
ack := ack + Table(pi,2);
Table(pi,2) :=0;

END;
OR

— no one waiting to rendezvous
WHEN len_msg*COUNT = 0 =>

- if there is an ack for Pl then send it
IFTable(l,2)>0THEN

SELECT
LlPl.get_ack(Table(l,2));
Table(l,2):=0;

OR
DELAY XXXXX;
NULL;

END SELECT;
END IF;
— if Pl is successor then send length mesg and get acks

IF successor(l) AND Table(l,3) /= -1 THEN
L1P1 .len_msg(Table(l ,1),self,ack);
num := num + 1 - ack;
Table(l,3) :=-l;

END IF;

70

~ for all other tasks, if they are successors then send length
~ message. But wait xxxxxx seconds only for a rendezvous
FOR i IN 2. JQ LOOP

IF successor(i) AND Table(i,3) /= -1 THEN
SELECT

LI P(i).len_msg(Table(i, 1),self,ack);
num := num + 1 - ack;
Table(i,3) :=-l;

OR
DELAY XXXXX;
NULL;

END SELECT;
END IF;

END LOOP;
numct := num;

OR
ACCEPT stop DO

count := count -1;
done := true;

END;
OR

WHEN done =>
FORiIN2..NLOOP

IF successor(i) THEN
SELECT

LlP(i).stop;
successor(i) := false;

OR
DELAY XXXXX;
NULL;

END SELECT;
END IF;

END LOOP;
IF count = 0 AND NOT moretodo THEN

EXIT;
END IF;

END SELECT;
END LOOP;
Tester.messagel (d,pred,num,self);

END Primary;

L1P1: Primaryl;
LIP: ARRAY (2..N) OF Primaiy;
BEGIN

71
LOOP

EXIT WHEN status /= NR;
END LOOP,

END Lay er 1 Primary;

PROCEDURE Layer2Primary(Tester: IN OUT GlobalTester) IS

TASK TYPE Primaiyn.l IS
ENTRY over(mtype: IN INTEGER;id: INTEGER);
ENTRY start(sl,numl: IN INTEGER;aryl, predecessor: item3);

END;
— phase II task Pi
TASK BODY PrimaiyllJ IS

msg: INTEGER; -- message to be sent
num: INTEGER; — unacknowledged messages
s: INTEGER; — distance received
successor: item3;
predary: item3;
self: INTEGER;
XXXXX: INTEGER; — time to delay
backup: item3;
change: BOOLEAN := true;

FUNCTION moretodo(ary: item3) RETURN BOOLEAN IS
done := BOOLEAN := false;
i: integer := 1;
BEGIN

WHILE NOT done AND i <= N LOOP
IFary(i)THEN

done := true;
END IF;
i:=i+l;

END LOOP,
RETURN done;

END moretodo;

BEGIN
END;
ACCEPT start(sl,numl: IN INTEGER;aryl,predecessor:item3) DO

successor := aryl;
predary := predecessor,

12

backup := successor;
s :=sl;
num := numl;

END;
IFs<0THEN

msg := 3;
ELSE

msg := 4;
END IF;
LOOP

SELECT
IF change THEN

FORiIN2..NLOOP
-- for all successors send over message.
-- But wait only xxxxx seconds for
-- a rendezvous.
IF successor(i) THEN

SELECT
IF L2P(i) * CALLABLE THEN

L2P(i).over(msg,l);
END IF;

successor(i) := FALSE;

OR
DELAY XXXXX;
NULL;

END SELECT;
END IF;

END LOOP;
IF NOT moretodo(successor) THEN change := false; END

END IF;
OR

WHEN over’COUNT > 0 =>
ACCEPT over(mtype, id: IN INTEGER) DO

predary(id) := false;
IF msg = 4 AND mtype = 3 THEN

msg := 3; d := INTEGER'FIRST;
change := true;
successor := backup;

END IF;
msg := mtype;

END;
OR

73

IF NOT change AND NOT moretodo(predecessor) THEN
EXIT;

END IF;
END SELECT;

END LOOP,
Tester.message2(sjnsg,l);

END PrimaryII_l;

TASK TYPE PrimaryH IS
ENTRY over(mtype, id : IN INTEGER);
ENTRY stan(dl,numl: IN INTEGER;aryl,predecessor: item3; id:

INTEGER);
END;
— Phase II task Pj (j:2..N)
TASK BODY Primaiyll IS

num: INTEGER; ~ unacknowledged messages
d : INTEGER; - current shortest path
msg: INTEGER; — message received and sent later
successor: item3;
backup: item3;
predary: item3;
self: INTEGER;
XXXXX : INTEGER; — time to delay
change: BOOLEAN := true;

FUNCTION moretodo(ary: item3) RETURN BOOLEAN IS
done: BOOLEAN := false;
i: integer := 1;
BEGIN

WHILE NOT done AND i <= N LOOP
IF ary(i) THEN

done := true;
END IF;
i:=i + l;

END LOOP,
RETURN done;

END moretodo;

BEGIN
ACCEPT start(dl,numl: IN INTEGERjaryl,predecessor: item3;id:

INTEGER) DO
d:=dl;
self := id;

74

predary := predecessor,
successor := aryl;
backup := successor,
num :=numl;

END;
— accept over message from predecessor
ACCEPT over(mtype, id: IN INTEGER) DO

msg := mtype;
IF num > 0 AND msg /= 3 THEN

msg:= 3;
END IF;
predary(id) := false;
IF msg = 3 THEN d := INTEGER'FIRST; END IF;

END;
LOOP

SELECT
- if some task is waiting to rendezvous then accept its attempt
WHEN over'COUNT > 0 =>

ACCEPT over(mtype, id: IN INTEGER) DO
IF msg = 4 AND mtype = 3 THEN

msg := 3; d := INTEGER'FIRST;
change := true;
successor := backup;

END IF;
predary(id) := false;

END,
OR

IF change THEN
FORiIN2..NLOOP

— for all successors, send over message.
— But wait only xxxxx seconds
— for a rendezvous
IF successor(i) THEN

SELECT
IF L2P(i)' CALLABLE THEN

L2P(i).over(msg,self);
END IF;
successor(i) := FALSE;

OR
DELAY XXXXX;
NULL;

END SELECT;
END IF;

END LOOP;

75
IF NOT moretodo(successor) THEN

change := false;
END IF;

END IF;
OR

IF NOT moretodo(successor) AND NOT moretodo(predary)
THEN EXIT END IF;

END SELECT;
END LOOP;
Tester.message2(d,msg,self);

END Primary!!;

L2P1: PrimaryII_l;
L2P: ARRAY (2..N) OF Primaiyll;
BEGIN

LOOP
EXIT WHEN status /= NR;

END LOOP;
END Layer2Primary;

PROCEDURE LayerlSecond(Tester: IN OUT GlobalTester) IS

TASK CommunicationProcess IS
ENTRY msg(tol,mtypel,wl: IN INTEGER);
ENTRY idself(id: IN INTEGER);

END;
TASK BODY CommunicationProcess IS

self: INTEGER;
tetr: INTEGER;
to: INTEGER;
i: INTEGER;
Table: ARRAY(1..N,1..3) OF INTEGER;

PROCEDURE compact IS
i: INTEGER;
j: INTEGER;
swap : ARRAY(1..N,1..3) OF INTEGER;

BEGIN
j:=l;
FORiINL.NLOOP

76

IFTable(i,l)/=-lTHEN
swap(j,l) := Table(i,l);
swapQ,2) := Table(i^);
swap(j,3) := Table(i,3);
j := j +1;

END IF;
END LOOP;
swap(j,l) := -1;
i:=l;j:=l;
WHILE swap(j,l) /= -1 LOOP

Table(i,l) := swapQ,!);
Table(i,2) := swap(j^);
Table(i,3) := swap(j,3);
i:=i+ l;j :=j+ 1;

END LOOP;
Table(i,l):=-1;
tetr :=i;

END compact;

BEGIN
— initialize Table to -1 and self
LOOP FOR i IN 1..N LOOP

Table(i,l) := -1; Table(U) := -1;
Table(i,3) :=-l;

END LOOP;
ACCEPT idself(id: INTEGER) DO

self := id;
END;
tetr := 1;
LOOP

SELECT
ACCEPT msg(tol,mtypel,wl: IN INTEGER) DO

to:=tol;
Table(tctr,l) := tol;
Table(tctr,2) := mtypel;
Table(tctr,3) := wl;
tetr := tetr + 1;

END;
LOOP

EXIT WHEN to = -l;
ACCEPT msg(tol,mtypel,wl: IN INTEGER) DO

to :=tol;
Table(tctr,l) := tol;

77

Table(tctr^) := mtypel;
Table(tctr,3) := wl;
tetr := tetr* 1;

END;
END LOOP;

OR
i>l;
WHILE Table(i,l) /= -1 LOOP

IF Table(i,l) = 1 AND Table(i^) = 1 THEN
SELECT

LISI .Ien_msg(Table(i,3)»self);
Table(i,l) :=-1;

OR
DELAY XXXXX;
NULL;

END SELECT*
ELSIF Table(i,l) = 1 AND Table(i,2) = 2 THEN

SELECT
LlSl.ack_msg;
Table(i,l):=-1;

OR
DELAY XXXXX;
NULL;

END SELECT*
ELSIF Table(i,l) = 1 AND (Table(i,2) = 3 OR

Table(i,2) = 4) THEN
SELECT

IF L2S I’ CALLABLE THEN
L2S1 .over(Table(i,2),Table(i,3));

END IF;
Table(i,l):=-1;

cit
DELAY XXXXX;
NULL;

END RFI PCT-
ELSIF Table(i,l) = 1 AND Table(i,2) = 5 THEN

SELECT
LlSLstop;
TableCi,l):=-l;

C®
DELAY XXXXX;
NULL;

END SELECT;
ELSIF Table(U) = 1 THEN

78

SELECT
LI S(i).len_msg(Table(i,3),sclf);
Table(i,l) :=-l;

OR
DELAY XXXXX;
NULL;

END SELECT;
ELSIE Tabled^) = 2 THEN

SELECT
LlS(i).ack_msg;
Table(i,l):=-1;

OR
DELAY XXXXX;
NULL;

END SET .F-CT*
ELSIE Table(i,2) = 3 OR Tabled^) = 4 THEN

SELECT
IF L2Sd)' CALLABLE THEN

L2Sd).overCrabled,2),Tabled,3));
END IF;
Tabled,!) ^-1;

at
DELAY XXXXX;
NULL;

END SELECT;
ELSIE Tabled^) = 5 THEN

SELECT
LlSd).stop;
Tabled,!) :=-!;

OR
DELAY XXXXX;
NULL;

END SELECT;
END IF;
i := i +1;

END LOOP;
conpact;

OR
TERMINATE;

END SELECT;
END CommunicationProcess;

TASK TYPE Secondl IS

79

ENTRY lcn_msg(sl : IN INTEGER);
ENTRY ack_msg;
ENTRY stop;
ENTRYstart(aiyl:item3;aiy2:item4;pcount: INTEGER);

END;
TASK BODY Secondl IS

d: INTEGER := INTEGERTAST; — current shortest path
num: INTEGER := 0; ~ unacknowledged messages
pred: INTEGER; ~ most current predecessor
self: INTEGER;
ack: INTEGER := 0;
s: INTEGER :=0;
w: item4;
count: INTEGER;
XXXXX: INTEGER; — time to delay
successor: item3;
done: BOOLEAN := false;

BEGIN
ACCEPT start(aryl: item3;aiy2: item4;pcount: INTEGER) DO

successor :«= aryl;
count := pcount;
w := ary 2;

END;
CP(l).idself(l);
FORiIN2..NLOOP

IF successor(i) THEN
CP(l).msg(i,l,wCi));
num := num +1;

END IF;
END LOOP;
CP(l).msg(-l,-l,-l);
LOOP

SELECT
ACCEPT len_msg(sl,Pi: INTEGER) DO

pred := Pi;
IF si <0 THEN

done := true;
s := si;

ELSE
ack := 1;

END IF;
END,
IF ack = 1 THEN

80

CP(1).msg(pred,2,0);
CP(l).msg(-l,.l,-l);
ack := 0;

END IF;
OR

ACCEPT ack_msg DO
num := num -1;
IF num = 0 THEN done := true; END IF;

END;
OR

ACCEPT stop DO
count := count -1;

END;
OR

WHEN done =>
FOR i IN 2. JQ LOOP

IF successor^) THEN
CP(l).msg(i,5,0);
successor^) := false;

END IF;
END LOOP;
CP(l).msg(-l,-l,-l);
IF count = 0 THEN EXIT; END IF;

END SELECT;
END LOOP;
Tester.messageO(s,d,predjium);

END Secondl;

TASK TYPE Second IS
ENTRY len_msg(s,Pi: IN INTEGER);
ENTRY ack_msg;
ENTRY stop;
ENTRY Start(aryl:item3;aiy2:item4;id: INTEGER;pcount: INTEGER);

END;
TASK BODY Second IS

d: INTEGER := INTEGERLAST; — current shortest path
num: INTEGER := 0; -- unacknowledged messages
pred: INTEGER; ~ most current predecessor
self: INTEGER;
ack: INTEGER;
count: INTEGER;
w: item4;
successor: item3;

81

done: BOOLEAN := false;
saves, savepi: INTEGER;

BEGIN
ACCEPT start (aryl: item3;ary2: item4;id, pcount: INTEGER) DO

count := pcount;
successor := aryl;
w := ary2;
self := id;

END;
CP(self).idself(self);
LOOP

$FT .F-CT
ACCEPT len_msg(s,Pi: IN INTEGER) DO

ack := 0;
saves := s;
savepi := Pi;

END;
IF saves < d THEN

IF num > 0 THEN
CP(self).msg(pred,2,0);
CP(self).msg(-111);

END IF;
pred := savepi;
d := saves;
FORiINl..NLOOP

IF successor(i) THEN
CP(selD.msg(i,l ,d+w(i));
num := num + 1;

END IF;
END LOOP:
IF num = 0 THEN

CP(self).msg(pred,2,0);
END IF;

ELSIF saves >= d THEN
CP(self)-msg(pred,2,0);

END IF;
CP(self).msg(-l,-l,-l);

OR
ACCEPT ack_msg DO

num := num - 1;
END;
IF num = 0 THEN

CP(self).msg(pred,2,0); CP(self).msg(-111);
END IF;

82

OR
ACCEPT stop DO

count := count -1;
done := true;

END;
OR

WHEN done =>
FORiIN2..NLOOP

IF successor(i) THEN
CP(self).msg(i,5,0);
successor(i) := false;

END IF;
END LOOP;
CP(self).msg(-111);
IF count = 0 THEN EXIT; END IF;

END SELECT;
END LOOP;
Tester.messagel (d,pred,num,self);

END Second;

LISI: Secondl;
LIS : ARRAY (2..N) OF Second;
CP: ARRAY (1..N) OF CommunicationProcess;
BEGIN

LOOP
EXIT WHEN status /= NR;

END LOOP;
END Layer 1 Second;

PROCEDURE Layer2Second(Tester: IN OUT GlobalTester) IS

TASK CommunicationProcess IS
ENTRY msg(tol,mtypel,wl: IN INTEGER);
ENTRY idself(id: INTEGER);

END;
TASK BODY CommunicationProcess IS

self: INTEGER;
tetr: INTEGER;
to: INTEGER;

83

i: INTEGER;
Table: ARRAY(1..N,L.3) OF INTEGER;

PROCEDURE compact IS
i: INTEGER;
j: INTEGER;
swap: ARRAY(1..N,L,3) OF INTEGER;

BEGIN
j:=l;
FORiINl..NLOOP

IFTable(i,l)/=-lTHEN
swap(j,l) :=Table(i,l);
swap(j,2) := Table(i^);
swap(j,3) := Table(i,3);
j := j +1;

END IF;
END LOOP;
swap(j,l) :=-l;
i:=l;j:=l;
WHILE swapG.l) /= -1 LOOP

Table(i,l) := swapG.l);
Table(i,2) := swap(j^);
Table(i,3) := swap(j,3);
i:=i + 1; j :=j + 1;

END LOOP;
Table(i,l):=-1;
tetr :=i;

END compact;

BEGIN
-- initialize Table to -1 and self
LOOP FOR i IN 1..N LOOP

Table(i.l) := -1; Table(U) := -1;
Table(i,3) :=-1;

END LOOP;
ACCEPT idself(id: INTEGER) DO

self := id;
END;
tetr := 1;
LOOP

SELECT
ACCEPT msg(tol,mtypel,wl: IN INTEGER) DO

to:=tol;
Table(tctr,l) := tol;

84

Table(tctr^) := mtypel;
Table(tctr,3) := wl;
tetr := tetr 4-1;

END;
LOOP

EXIT WHEN to = -l;
ACCEPT msg(tol,mtypel,wl: IN INTEGER) DO

to := tol;
Table(tctr,l) := tol;
Table(tctr^2) := mtypel;
Table(tctr3) := wl;
tetr := tetr +1;

END;
END LOOP;

OR
i:=l;
WHILE Table(i,l) A= -1 LOOP

IF Table(i,l) = 1 AND Table(i3) = 1 THEN
SELECT

LIS l.len_msg(Table(i,3).self);
Table(i,l) :=-1;

CR
DELAY XXXXX;
NULL;

END SELECT*
ELSIF Table(i,l) = 1 AND Table(i,2) = 2 THEN

SELECT
LlSl.ack_msg;
Table(i,l) :=-l;

OR
DELAY XXXXX;
NULL;

END SELECT"
ELSIF Table(i,l) = 1 AND (fTable(i,2) = 3) OR

(Table(i,2) = 4)) THEN
SELECT

IF L2S1* CALLABLE THEN
L2S1 .over(Table(i3),Table(i,3));

END IF;
Table(i,l):=-1;

CR
DELAY XXXXX;
NULL;

END SELECT;

85

ELSIF Table(i,l) = 1 AND Table(i,2) = 5 THEN
SELECT

LISLstop;
Table(i,l) := -1;

OR
DELAY XXXXX;
NULL;

END SELECT;
ELSIF Table(i,2) = 1 THEN

SELECT
LI S(i).len_msg(Table(i,3),seIf);
Table(i,l) := -1;

CR
DELAY XXXXX;
NULL;

END SELECT;
ELSIF Table(i,2) = 2 THEN

SELECT
LlS(i).ack_msg;
Table(i,l) := -1;

at
DELAY XXXXX;
NULL;

END SELECT;
ELSIF (Tablc(i^) = 3) OR (Table(i^) = 4) THEN

SELEC1
IF L2S(i) * CALLABLE THEN
ENL2S(i).over(Table(i^),Tab1e(i,3));

TableCi,i):=-l;
OR

DELAY XXXXX;
NULL;

END SELECT;
ELSIF Table(i^) = 5 THEN

SELECT
LlS(i).stop;
Table(itl):=-1;

at
DELAY XXXXX;
NULL;

END SELECT;
END IF;

86

END LOOP;
compact;

OR
TERMINATE;

END SELECT;
END CommunicationProcess;

TASK TYPE SecondHJ IS
ENTRY over(mtype, id: IN INTEGER);
ENTRY start(sl jiuml: IN INTEGER;aryl, predecessor. item3);

END;
TASK BODY SecondHJ IS

msg: INTEGER; ~ message to be sent
num: INTEGER; — unacknowledged messages
s: INTEGER; — distance received
self: INTEGER;
backup: item3;
predary: itemS;
change: BOOLEAN := true;
successor: item3;

FUNCTION moretodo(ary: item3) RETURN BOOLEAN IS
done: BOOLEAN := false;
i: integer := 1;
BEGIN

WHILE NOT done AND i <= N LOOP
IFary(i)THEN

done := true;
END IF;
i:=i + l;

END LOOP;
RETURN done;

END moretodo;

BEGIN
ACCEPT start(sl,numl: IN INTEGER;aryl,predecessor: item3) DO

s := si;
num:=numl;
predary := predecessor,
successor := aryl;
backup := successor,

END;

87

self := 1;
CP(l).idself(l);
IFs<OTHEN

msg := 3;
ELSE

msgs=4;
END IF;
LOOP

SELECT
IF change THEN

FORiIN2..NLOOP
-- for all successors send over message.
-- But wait only xxxxx seconds for
— a rendezvous.
IF successor^) THEN

CP(l).msg(ijnsg,l);
successor(i) := FALSE;

END IF;
END LOOP;
CP(l).msg(-l,-l,-l);
IF NOT moretodo(successor) THEN

change := false;
END IF;

END IF;
OR

WHEN over’COUNT > 0 =>
ACCEPT over(mtype 3d: IN INTEGER) DO

IF msg = 4 AND mtype = 3 THEN
msg := 3; d := INTEGER'FIRST;
change := true;
successor := backup;

END IF;
predary(id) := false;

END;
OR

IF NOT moretodo(successor) AND NOT moretodo(predaiy)
THEN

EXIT;
END IF;
END SELECT;

END LOOP;
Tester.message2(s,msg,self);

END SecondH_l;

88

TASK TYPE SecondH IS
ENTRY over(mtype ,id: IN INTEGER);
ENTRY start(dl jiuml: IN INTEGERjid: INTEGER;aryl,predecessor

: item3);
END;
TASK BODY SecondH IS

num: INTEGER; — unacknowledged messages
d: INTEGER; — current shortest path
msg: INTEGER; - message received and sent later
successor: item3;
backup: itemS;
predary: item3;
change: BOOLEAN := true;
self: INTEGER;

FUNCTION moretodo(ary: item3) RETURN BOOLEAN IS
done: BOOLEAN := false;
i: integer := 1;
BEGIN

WHH.E NOT done AND i <= N LOOP
IF ary(i) THEN

done := true;
END IF;
i := i +1;

END LOOP;
RETURN done;

END moretodo;

BEGIN
ACCEPT start(dl,numl: IN INTEGER;id: INTEGER;aryl

,predecesor: item3) DO
d:=dl;
num := numl;
self := id;
predary := predecessor,
successor := aryl;

END;
CP(self).idself(self);
— accept over message from predecessor
ACCEPT over(mtype, id: IN INTEGER) DO

predary(id) := false;
msg := mtype;
IF num > 0 AND msg /= 3 THEN

89

msg :=3;
END IF;
IF msg = 3 THEN d := INTEGERTIRST; END IF;

END;
LOOP

SELECT
-- if some task is waiting to rendezvous then accept its attempt
WHEN over'COUNT > 0 «>

ACCEPT over(mtype, id: IN INTEGER) DO
IF msg = 4 AND mtype = 1 THEN

msg := 3; d := INTEGER'FIRST;
change := true;

END IF;
predary(id) := false;

END,
OR

IF change THEN
FORiIN2..NLOOP

— for all successors, send over message.
IF successor^) THEN

CP(self).msg(i,msg,self);
successor(i) := FALSE;

END IF;
END LOOP;
CP(self).msg(-111);
IF NOT moretodo(successor) THEN

change := false;
END IF;

END IF;
OR

IF NOT moretodo(successor) AND NOT moretodo(predary)
THEN EXIT END IF;

END SELECT;
END LOOP;
Tester.message2(d,msg,self);

END Second!!;

L2S1: Second!;
L2S : ARRAY (2..N) OF Second;
CP: ARRAY (1..N) OF CommunicationProcess;
BEGIN

LOOP
EXIT WHEN status /= NR;

END LOOP,
END LayerlSecond;

90

Tester: GlobalTester;
Status: statustype;
BEGIN

status := NR;
Layer 1 Primary(Tester);
IF status = GE THEN

status := NR;
Layer 1 Second(Tester);

END IF;
IF status = OK THEN

status := NR;
Layer2Primary(Tester);
IF status = GE THEN

status := NR;
Layer2Second(Tester);

END IF;
END IF;
IF status = GE THEN

~ Error
END IF;

ENDDSPA;

BIBLIOGRAPHY

ANDES 1 Anderson, T. and P.A. Lee, "Fault-Tolerance, Principles and Practice,"

Prentice-Hall International, Englewood Cliffs NJ, 1981.

BARN84 Barnes, J. G. P.,"Programming in Ada," Addison-Wesley Publishers

Ltd., London, U.K., 1984.

BENA82 Ben-Ari, M., "Principles of Concurrent Programming," Prentice-Hall

International, Englewood Cliffs NJ, 1982.

CHAN82 Chandy, K.M. and J. Misra, "Distributed Computations on Graphs:

Shortest Path Algorithms," Comm, of ACM,Nov. 1982,vol.25,No.ll,

pp. 833-837.

ELRA83 Elrad, T. and N. Francez, "Decomposition of Distributed Programs into

Communication-Cosed Layers," The Science of Computer

Programming, No. 2,1983, pp. 155-173.

91

92

ELRA84 Elrad, T.,"A Practical Software Development for Dynamic Testing of

Distributed Programs," IEEE Proceedings of the International Conf,

on Parallel Processing, Bellaire, MI, Aug. 1984, pp. 388-392.

FRAN80 Francez, Nissim, "Distributed Termination,"ACM TOPLAS, Jan.1980,

Vol. 2, No. l,pp. 42-55.

GERM84 German, Steven M.,"Monitoring for Deadlock and Blocking in Ada

Tasking,"IEEE Trans, on Soft Engin.,Nov. 1984,Vol. SE-10, No.6,

pp. 764-777.

GERT86 Gerth, R. and L. Shrira,"Proving Noninteraction: An Optimized

Approach," submitted to ICACP, 1986.

HOAR78 Hoare, C. A. R.,"Communicating Sequential Processes/'CACM,

August 1978, Vol. 21, No. 8, pp.666-677.

93

LEE87 Lee, P. and C. Malik, "Distributed Shortest Path Algorithm:

Constraints and Efficiency Issues in CSP and Ada," To appear ACM

South Central Regional Conference, Lafayette, La., November 19-21,

1987.

LEES 8 Lee, Pen-Nan," Violation Detection and Recovery of Distributed

Programs* Safety Properties," To appear 7th Annual IEEE Phoenix

Conf, on Computers and Communications, March 16-18, 1988.

MOIT83 Moitra, A.,"Synthesis of Communicating Processes," Proceedings of

the Second Annual ACM Symp. on Principles of Dist Comp.,

Montreal, Canada, Aug. 1983, pp. 123-130.

RAND75 Randell, Brian, "System Structure for Software Fault Tolerance,"

IEEE Trans, on Software Engin., June 1975, Vol. SE-1, No. 2,

pp.220-232.

94

Manual," Vol 106, Lecture Notes in Computer Science,

Springer-Verlag, New York, 1981.

USDD81 U.S. Department of Defense, "Programming Language Ada: Reference

