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ABSTRACT

Recent advances in computing algorithms and hardware have rekindled interest in developing high

accuracy, low-cost reduced models for simulating complex physical systems. Such data-driven

models allow us to overcome several difficult practical issues, such as (a) extreme computational

requirements of direct numerical simulations of complex partial differential equations exhibiting

multiple temporal and spatial scales; (b) insufficient data or unknown parameters characterizing

sub-processes; and (c) no knowledge of the governing subsystem of equations.

In the case of (a)(b), the form of the dynamics is often at least partially known and it is possible

to parametrically estimate a reasonable expression that describes the time evolution of the dynam-

ical process. In the first part of this dissertation, we present the simulated least absolute shrinkage

and selection operator (SLASSO), a statistical regression method, to select essential parameters

from an assumed efficient stochastic model and obtain corresponding parameter estimations. Our

developed approach is particularly suitable for data generated by large-scale variables in multiscale

systems. The SLASSO estimator overcomes the issue of a large discretization error for data-sets

sub-sampled with a large observational time step. In contrast with traditional Maximum Likelihood

Estimators and LASSO estimators for stochastic differential equations, the SLASSO approach is

able to correctly select the model that fits the data sub-sampled with a large observational time

step. We illustrate this approach on the multiscale additive triad model and the discretized Burgers

model. Statistical properties of the slow/large scale variable are reproduced well for the additive

triad model. However, the SLASSO estimator only produces adequate results when one has good

knowledge for the mathematical expression of the dynamics. In addition, similar to many other

parametric approaches, the SLASSO estimator is prone to overfitting.

In the case of (a)(b)(c), the goal is to find a reduced model that replaces expensive direct

numerical simulations of complex partial differential equations at fine spatial and temporal scales.

In addition, it is often desirable to use observational data to infer a reduced model. To this end, we

construct a reduced model using machine-learned surrogates that efficiently and accurately forecast

trajectories and ensemble properties of the underlying system. In particular, we develop Reservoir

Computing for accurate prediction of dynamical systems. Such models need to be trained on a
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reasonably large dataset generated by “true” dynamics, but later can be used for a fast trajectory

forecast in an initial-value problem. We apply our approach to the one-dimensional shallow water

equations, which is a classical model in fluid dynamics. We assume that we only know a finite set

of samples of this system without knowledge of the mathematical structure of the shallow water

systems.

We introduce a data-driven approach: Echo State Network (ESN). This network can be trained

by a fast, stable and simple training algorithm via regularized linear regression. The ESN is able

to efficiently and accurately forecast future system states of the shallow water equations (SWE).

Moreover, we demonstrate that the ESN outperforms polynomial regression and is robust with

respect to perturbations of the initial data. We illustrate the performance of our algorithms through

extensive experiments. We also introduce the transfer learning method which is a fast and effective

technique for utilizing similarity between different SWE trajectories while also taking into account

their differences.
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1 Introduction

Recent advances in computational algorithms and hardware have rekindled interest in developing

high accuracy, low-cost surrogate models for simulating physical systems. Solving complex partial

differential equations (PDEs) representing multiscale processes is computationally prohibitive for

many practical applications. The idea is to replace expensive direct numerical simulations (DNS) of

complex PDEs with fine-scale space-time resolution with machine-learned surrogates that efficiently

and accurately capture future system coarse states. Many strategies for derivation and of reduced

order models have been developed, but many important questions still remain unanswered. In this

dissertation, we address two questions: estimation of stochastic differential equations from temporal

multiscale data and applicability of machine learning techniques for forecasting trajectories of

partial differential equations.

When the form of the right-hand side of the underlying equations is at least partially known,

such as the functional form of the PDEs or ODEs (up to some unknown parameter values), one can

employ parametric techniques for estimating the right-hand side of the equations. Knowledge of

the functional form of the right-hand side of the equations is a particularly reasonable assumption

for datasets generated by direct numerical simulations of PDEs. In such cases, one might have a

good idea about the functional form of the right-hand side for some coarse variables, but parameter

values remain unknown.

First, we develop an extension of the maximum likelihood estimator for parametric estimation of

right-hand sides of stochastic differential equations from multiscale data. In particular, we develop

the simulated least absolute shrinkage and selection operator (SLASSO), a statistical regression

method, to select essential variables from an assumed model and obtain appropriate parameter

values. We develop our approach in the context of Indirect Observability when the available data

was generated by an approximating process. In our case, we consider multiscale system and assume

that only slow variables are observed. However, since data is generated by a multiscale model,

available data has a reasonably strong signature of fast degrees of freedom at small time steps.
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Thus, we develop the SLASSO estimator, which can overcome the difficulty of using the multiscale

data and correctly estimate the effective model for slow variables.

Another popular approach that emerged recently is completely data-driven: it assumes that

Only observational data are available without knowledge of the mathematical structure of the

dynamical systems. In the past few years, there have been rapid algorithmic advances in machine

learning, particularly in data-driven modeling. Many approaches have been proposed with the

ultimate goal of predicting the trajectories of nonlinear dynamical systems. Popular approaches in

Machine Learning for trajectory prediction are recurrent neural networks (RNNs) (e.g. Reservoir

Computing) and Long Short-Term Memory networks (LSTM). Most machine learning approaches

work as a “blackbox”, where the exact form of the equations is not utilized directly. However, there

is sufficient evidence that these approaches perform very well for many dynamical systems.

1.1 Model Selection under Indirect Observability

In many practical problems, it is desirable to model the dynamical features of an observed dataset

by carefully choosing effective stochastic models. In particular, selecting and estimating parameters

of a system of stochastic differential equations from a discrete dataset of observations has been a

very popular technique in the applied dynamical model analysis. The goal of such approaches is

to estimate an effective model that reproduces key quantities of interest such as mean, variance,

correlation function, etc.

A considerable amount of existing work [80, 87, 100, 88, 20, 52] addresses the issue of estimating

effective stochastic models under Direct Observability when the data used for estimation is assumed

to be generated by the model itself. In this dissertation, we address the question of estimation of

effective stochastic models from stationary time-series under Indirect Observability.

Recently, Indirect Observability [7, 64, 66, 17] and “inexact computing” [63] received increased

attention. Indirect Observability occurs in many practical situations when there is a mismatch

between the available data and the dynamics to be estimated. In particular, the available data can

be generated by a high-dimensional and/or multiscale system, and the estimated effective model
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describes the homogenized dynamics of large-scale variables. Also, available data might correspond

to a slow subset of dynamical variables, and the fast variables may not be available for estimation.

There are many examples where indirect observability can potentially play an important role.

For example, for turbulent dynamical systems with the assumption of scale separation, a reduced

stochastic process can be obtained through homogenization in the limit of large time-scale separa-

tion between slow and fast degrees of freedom [58, 59, 29, 28, 21, 56, 45].

In [48] authors solve the Navier-Stokes equations of moist convection on a high-resolution grid

inside each coarse column in simulations of large-scale atmospheric circulation. Reduced stochastic

models for the triad dynamics and truncated Burgers–Hopf equations are derived in [57] using the

homogenization technique. Effective stochastic models for the time evolution of spatial averages

in finite-difference discretizations of inviscid Burgers-Hopf equation and one-dimensional shallow

water equations are derived in [1, 96, 22]. Typically, reduced equations are considerably lower-

dimensional compared with the full dynamics. In addition, the absence of fast variables in the

reduced models allows taking larger time step in simulations. Therefore, reduced models can be

typically simulated much faster while preserving some essential statistical characteristics of the

large-scale variables in the full system. In the examples above, the main goal is to construct

effective models for large-scale/slow variables. However, reduced models are often known up to

certain constants and parametric estimation is required to determine those constants from data.

In such cases, data would be generated by the full high-dimensional dynamics, but estimation is

carried out for only a subset of dynamic variables.

In [7, 8], the authors formalize the Indirect Observability framework in the context of estimat-

ing reduced equations for slow dynamics using moment estimators and multiscale slow/fast data.

Indirect Observability happens naturally when the nature of the observed process is unknown or

too complex to use in numerical/analytical calculations; instead, it is desirable to approximate

this process by a suitable stochastic process Xt with matching statistical features, such as molec-

ular dynamics and financial mathematics [7, 9, 6, 62, 89, 49]. In finance, market microstructure

noise can introduce discrepancies between the data and the model in volatility estimation from
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financial time series, while the realized volatility is often applied for estimating the theoretically

limiting return’s variance [2, 97]. The climate system is assumed to be in statistical equilibrium

and the large-scaled reduced system is derived using averaging or homogenization with respect

to the equilibrium measure of fast variables [29, 18, 28, 21]. In Indirect Observability framework,

the observable process is denoted as Y ε
t , where ε is the scale-separation parameter in multiscale

systems. The limiting process of interest Xt is not observed directly; instead the parameters of

the stochastic model for Xt are inferred from the data sub-sampled from Y ε
t . In [7], Y ε

t is also

referred to as an approximating process. The Indirect Observability context is defined, when the

data to be fitted by a parameterized stochastic model (SM) is not generated by SM itself, but by

another stochastic model approximating SM. An important task is to develop a practical approach

to select essential parameters and compute parameter estimators, when the data to be fitted by

a parameterized stochastic model Xt is generated by another approximating stochastic model Y ε
t .

Indirect observability studies the behavior of estimators as ε→ 0, but in many practical situations

ε is finite and relatively large.

When the form of the dynamics is at least partially known or a reasonable expression of the

dynamical process is assumed, correct model selection is crucial in the subsequent step of estimation.

The least absolute shrinkage and selection operator (LASSO) [80] is a useful and well-studied

approach to the problem of model selection, which is a shrinkage estimation method by adding

a L1 penalty on parameters to the standard residual sum of squares subject. One of the major

advantages of this approach is the simultaneous execution of both parameter estimation and variable

selection [80, 25]. De Gregorio and Iacus (2012) [20] applied the LASSO estimator to parametric

estimation of SDEs. They point out that the classical LASSO penalty must be modified due to

different convergence rates for the drift and diffusion coefficients. The adaptive LASSO estimator for

SDEs with the tuning parameters suggested in [100] is unbiased with oracle properties. Lindström

and Höök (2018) [52] generalize the method in [20] by imposing weaker restrictions on the data by

numerically computing conditional moments of the Kolmogorov Backward (KB) equation.
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Under Indirect Observability from multiscale data, the time step of estimation should be suf-

ficiently large to avoid the strong influence of small-scale effects. Ideally, one would like to know

the transition density, which could allow one to compute the maximum likelihood estimator and

then the LASSO estimator. When estimation time step is relatively short, a Gaussian approxi-

mation is often used (easily derived from the Euler-Maruyama discretization). However, when the

observational time step is relatively large, more accurate approximations for the transition density

are needed. Several simulation methods for generating diffusion bridges based on the discrete-time

approximation of the diffusion process have been developed [67, 14, 24]. In [12, 51], the authors

proposed a sequential Monte Carlo method for simulating diffusion bridges with a re-sampling

scheme guided by the empirical distribution of backward paths.

In the first part of this dissertation, we combine simulated likelihood techniques with the adap-

tive LASSO type estimator for selecting the correct model under Indirect Observability. Chapter

2 introduces the simulated LASSO-type estimator (SLASSO) for discretely sampled diffusion pro-

cesses. Chapter 3 contains applications of this approach to the additive triad model and Burgers

model.

1.2 Machine Learning for Predicting Nonlinear Dynamics

When the dynamic equations are unknown or too complex to utilize and only observational data

is available, models learned from data offer a viable alternative to analytical or semi-analytical

approximations. Data-driven models can help to overcome extreme computational requirements

such as (a) numerically integrating coupled, high-dimensional, non-linear partial differential equa-

tions exhibiting multiple temporal and spatial scales; (b) insufficient data or unknown parameters

characterizing sub-processes; and, in some cases, (c) no knowledge of the governing subsystem of

equations. In the past decade, there has been an explosion of activity related to machine learn-

ing, including the use of machine learning techniques to address computational challenges outlined

above.

In particular, various machine learning techniques have been proposed to accelerate simulations
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and predictions of nonlinear dynamical systems [50, 34, 82, 23, 91, 72, 16, 86]. Some of the most

popular approaches for time-series analysis and prediction utilize sequential models such as artificial

neural networks (ANNs) [34, 82, 23, 72, 73, 71, 13], recurrent neural networks (RNNs) [60, 85, 95,

99, 32, 54, 53, 65], and gated recurrent units (GRU) [91, 30]. ANNs are computational models that

mimic biological neural networks. They are represented by a network of neuron-like processing

units interconnected via synapse-like weighted links. RNNs are suited for dynamic (temporal) data

processing, as they can embed temporal dependence of the inputs into their dynamical behavior.

In other words, RNNs are capable of representing dynamical systems driven by sequential inputs

owing to their feedback connections. In particular, recent studies demonstrated promising results

in using sequential machine learning models to build data-driven parameterizations for modeling

atmospheric and oceanic processes [71, 30, 13] and dynamical systems [65].

Vlachas (2020) [86] and Chattopadhyay (2020) [16] surprisingly found that the echo state net-

work (ESN) [41], a specialized simple type of RNNs, outperform LSTM and ANNs in prediction

tasks involving chaotic dynamical systems. In particular, ESN is applied in the context of weather

prediction [5, 61]. Hence, we consider ESN as a tool in turbulence predictability studies. ESN

[41, 42] belongs to a family of Reservoir Computing methods where states of the reservoir repre-

sent activations of its constituent neurons (represented as time-dependent dynamic variables). The

methods for obtaining effective reservoirs, which have been summarized in [54], are categorized

into task-independent generic guidelines and task-dependent reservoir adjustments. In the ESN

approach, the reservoir connectivity matrix is generated at random and only output weights are

trained using observational data. These weights can be computed easily using ridge regression

which is considerably faster than back-propagation. In addition, ESN does not suffer from the van-

ishing and exploding gradients problem. The key disadvantage of ESN as compared to other RNNs,

is weaker expressive power, but it could be improved by augmenting reservoir states with ad-hoc

nonlinear combinations [65]. ESN is originally an RNN-based framework and is therefore suitable

for temporal/sequential information processing [43]. In the case of physical implementation, ESN

has been successfully applied for simple function approximation [37], system identification [44], and
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direct adaptive control [92].

ESN has rapidly become popular among more practitioners due to two main advantages. First,

ESN is easy to train since we only adapt linear readouts from this dynamical system for a specific

task rather than tackling the more difficult problem of training the recurrent network itself. Second,

ESN is good at temporal processing. In ESN, the state space can be viewed as a temporal feature

space and the readout mapping from the state space as a kernel machine operating in that feature

space. Hence, ESN is popular for all fields sharing important properties like long-range dependencies

and high performance variances across subjects, for example, human-robot interaction. Human-

robot interaction comprises a broad spectrum of tasks such as, natural language processing [83, 69],

robotic domain including navigation [4, 19, 38] and gestures recognition [31, 81]. In addition, ESN

assisted living applications such as blood pressure estimation [10, 27]. Moreover, ESN can be

combined with other deep learning methods to improve the performance of the original ones, such

as generative adversarial networks [3], convolutional neural networks [84] and reinforcement learning

[15].

In the second part of this dissertation, we present the application of the ESN to the task of

predicting trajectories of complex dynamical systems. In particular, we focus on predicting tra-

jectories of the one-dimensional shallow water equations. Chapter 4 describes the basic concept

and prediction algorithms of Echo State Network. Shallow water equations and some of its prop-

erties are discussed in Chapter 5. Chapters 6 and 7 present the application of the ESN to the

one-dimensional shallow water equations.
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2 Simulated LASSO-type Estimator

2.1 Stochastic Models

Let Xt ∈ Rd be a d-dimensional stochastic process which is the solution of the multivariate stochas-

tic differential equation

dXt = µ(α,Xt)dt+ σ(β,Xt)dWt, X0 = x0. (2.1)

We also assume that the process Xt is a limiting process in the sense that there is a process Y ε
t

such that Y ε
t → Xt as ε → 0. Under indirect observability the data is generated by Y ε

t , but our

goal is to estimate the effective model for Xt.

We also assume that equation (2.1) involves unknown drift and diffusion coefficients which are

defined parametrically, i.e.,

µ : Θp × Rd → Rd is drift function,

σ : Θq × Rd → Rd is diffusion function,

α = (α1, . . . , αp)
′ ∈ Θp ⊂ Rd×p, p ≥ 1 is a parametric matrix in the drift function,

β = (β1, . . . , βq)
′ ∈ Θq ⊂ Rd×q, q ≥ 1 is a parametric matrix in the diffusion function.

Wt ∈ Rd is a standard Brownian motion.

We denote the whole parameters set as θ = (α, β) ∈ Θp × Θq. We also denote the unknown

true value by θ0 = (α0, β0). Please note that true parameters θ0 may have some zero components.

We consider discretely sampled data {Un} = {Y ε
n∆, n = 1, . . . , N}. Here we consider equidistant

sampling with ti+1 − ti = ∆ and under indirect observability ∆ has to be large to avoid influence

of multiscale effects. We proceed by deriving the simulated-LASSO (SLASSO) estimator for the

SDEs (2.1) and treating the data {Un} as if it was generated by (2.1).

2.2 Simulated Maximum Likelihood Estimation

The LASSO method usually consists of adding a L1 regularization term to the cost function. For

parametric estimation of SDEs this means adding L1 penalty terms on the parameters. Thus, in
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our context, LASSO estimation implies combining the maximum likelihood approach plus penalty

terms for parameters.

Let p(Xti |Xti−1 , θ) represent the conditional probability density of Xti given Xti−1 evaluated at

time ti−1 for a given set of parameters θ. Since a continuous time diffusion is a Markov process,

Markov property carries over to any discrete sub-sample from the continuous time path. Next,

assume that there is a discrete sample U = {Xti , i = 0, . . . , n} and the initial condition Xt0 is fixed.

Then the log-likelihood of discrete observations has the following simple form

L(X, θ) =
1

n

n∑
i=1

log p(Xti |Xti−1 , θ). (2.2)

When the transition density p(Xti |Xti−1 , θ) is known, log-likelihood calculation and its maximiza-

tion with respect to θ for a given set of data discretely observed from (2.1) is relatively straightfor-

ward.

Various approximations of the transition density are typically necessary, since the transition

density cannot be computed in a closed-form except for a handful of cases. For example, one

commonly used approximation is based on the discretization of the underlying SDEs (2.1). Euler-

Maruyama is the lowest-order approximation of (2.1) and is commonly used for this purpose. For

instance, the likelihood based on the Euler-Maruyama scheme has been used by [94, 33, 47] to

estimate stochastic differential equations. This method approximates the drift and diffusion terms

by constant functions over the interval [ti−1, ti]. The explicit approximate form of the transition

density is obtained by discretizing the continuous-time stochastic differential equations (2.1) with

Euler-Maruyama scheme

Xti −Xti−1 ≈ µ(α,Xti−1)∆ + σ(β,Xti−1)
√

∆Z (2.3)

where Z ∼ N(0, 1).
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The discrete process in (2.3) leads to the approximate transition density

p(Xti |Xti−1 , θ) ≈ φ
(
Xti ; Xti−1 + µ(α;Xti−1)∆; σ(β,Xti−1)

√
∆
)

(2.4)

where φ(x;m; v2) is the density of a normal random variable with mean m and variance v2 evaluated

at x.

The log-likelihood function L : R(n+1)×d ×Θ→ R, is then

L(X, θ) =
1

2n

n∑
i=1

[
log
(
2π det(Σi−1(β))

)
+

1

∆
(∆Xi − µi−1(α)∆)′Σ−1

i−1(β)(∆Xi − µi−1(α)∆)

]
,

(2.5)

where ∆Xi = Xti − Xti−1 , Σi(β) = σ(β,Xti)σ(β,Xti)
′ and µi(α) = µ(α,Xti). The error of the

Euler-Maruyama method is O(
√

∆) in the sense of strong convergence. Therefore, approximations

in (2.3) and (2.5) are accurate if the time step length ∆ is sufficiently small.

Simulated maximum likelihood estimation (SMLE) is used to approximate the transition

density p(Xti |Xti−1 , θ) at the expense of more computational cost. This is particularly useful when

the sampling time step ∆ is large and the approximation in (2.4) and the resulting likelihood

function (2.5) are no longer accurate. The basic idea is partitioning the interval [ti−1, ti] into

M sub-intervals ti−1 = τ0 < τ1 < . . . < τM = ti, such that the first order approximation (2.5) is

sufficiently accurate on each sub-interval with length
∆

M
. The random variables Xτ1 , . . . , XτM−1 are

unobserved and must be integrated out. Because the process is Markov, the SMLE approximation

is based on the following transition density:

p(M)(Xti |Xti−1 , θ) =

∫ M∏
m=1

p(Xτm |Xτm−1 , θ)dλ(Xτ1 , . . . , XτM−1), (2.6)

where λ denotes the Lebesgue measure on R. In Bally and Talay (1995) [11], p(M)(Xti |Xti−1 , θ)

bias is shown to be of order O(1/M).

Importance sampling can be used to estimate the integral in (2.6). In particular, we can rewrite
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the integral in (2.6)

p(M)(Xti |Xti−1 , θ) =

∫ M∏
m=1

p(Xτm |Xτm−1 , θ)

q(Xτ1 , . . . , XτM−1)
× q(Xτ1 , . . . , XτM−1)dλ(Xτ1 , . . . , XτM−1) (2.7)

= Eq

 M∏
m=1

p(Xτm |Xτm−1 , θ)

q(Xτ1 , . . . , XτM−1)

 ,
where Eq refers to the expectation with respect to the importance sampler q(·) and q(u1, . . . , uM−1)

denotes the probability density on RM−1. In practice, the density q(u1, . . . , uM−1) can be approxi-

mated by a product of conditional Gaussian densities based on the Euler-Maruyama discretization

of the sampler. This approach suffers from the usual problems with non-parametric density esti-

mation: a slower convergence rate (in the number of simulations) and the curse of dimensionality.

If the integral in (2.6) were available in closed-form we could choose M large enough to reduce

the discretization error to a sufficiently small level and approximate the log-likelihood accord-

ingly. As the integral is not available in a closed-form, we use a classical Monte-Carlo estimator

for this expectation, calculated based on K independent and identically distributed (IID) draws

(Xτ1 , . . . , XτM−1) ∼ q(·),

p(M,K)(Xti |Xti−1 , θ) =
1

K

K∑
i=1

p(M)(Xti |Xti−1 , θ). (2.8)

The construction of the estimated log-likelihood is a straightforward application of the Markov

property similar to that given in (2.2) as

L(M,K)(X, θ) =
1

n

n∑
i=1

log p(M,K)(Xti |Xti−1 , θ). (2.9)

Selecting a good importance sampling density q(·) is critical. Pederson (1955) [68] suggests sim-

ulating X(·) sequentially using the Euler approximation which is criticized for inefficiency. Durham

and Gallant (2002) [24] propose two more efficient Monte-Carlo samplers, which benefit from sim-

ulating the X(·) values conditionally on both the initial and terminal points, instead of only the
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initial point as the Pederson method. Other simulated Monte-Carlo estimators are mainly based on

these two sampling methods. Here, we choose the modified Brownian bridge sampler from Durham

and Gallant [24].

The modified Brownian bridge sampler is introduced based on recursion

Xτm+1 = Xτm +
XτM −Xτm

τM − τm
δτ +

√
M −m− 1

M −m
σ(β,Xτm)

√
δτ Zm, m = 0, . . . ,M − 1 (2.10)

where τ0 = ti−1, τM = ti, Xτ0 = Xti−1 , XτM = Xti , and Zm
i.i.d.∼ N(0; 1). Here we assume

uniform time step for the sampler δτ = τk − τk−1 = ∆/M . This sampler is analyzed in [24], and

it is demonstrated that the modified diffusion term (multiplication by
√

(M −m− 1)/(M −m))

results in a much better performance. Stramer and Yan (2007) [78] show that when diffusion σ is

constant, the modified Brownian bridge is also exactly a Brownian bridge and they also show that

K = M2 is computationally optimal for a fixed large amount of computer time.

The conditional density q(·) in (2.7) is computed as a product density

q(u1, . . . , uM−1) = φ(XτM−1 |XτM−2)× . . .× φ(Xτk+1
|Xτk)× . . .× φ(Xτ1 |Xτ0),

where φ(Xτk+1
|Xτk) ∼ N(mk, v

2
k) is the density on the normal distribution computed from the

Euler-Maruyama discretization of the Bridge sampler in (2.10), i.e., the mean and variance are

mk = Xτm +
XτM −Xτm

τM − τm
δτ, v2

k =
M −m− 1

M −m
σ2(β,Xτm) δτ.

Finally, we define θ̃ : R(n+1)×d → Θ be the simulated maximum likelihood estimator (SMLE)

of θ ∈ Θ based on (2.9), that is

θ̃ = (α̃, β̃) = argminθ −L(M,K)(X, θ). (2.11)
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2.3 Simulated Monte Carlo LASSO Estimator by Least Squares Approximation

The important property stating that the correct parameters are set to zero by the LASSO method

under the true data generating model is called the oracle property. Also, as argued by Fan and Li

(2001) [25], a good selection procedure should have the so-called oracle properties:

1. consistently estimates null parameters as zero and vice versa;

2. has the optimal estimation rate and converges to a Gaussian random variable N(0,Σ), where

Σ is the covariance matrix of the true subset model.

As shown by Zou (2006) [100], since the classical LASSO estimator uses the same amount

of shrinkage for each parameter, the classical LASSO estimation cannot be as efficient as the

oracle, and the selection results could be inconsistent, whereas its adaptive version has the oracle

properties. Intuitively, if larger amounts of shrinkage are applied to the near-zero coefficients while

smaller amounts are used for the non-zero ones, an estimator with improved efficiency can be

obtained.

The Simulated Monte-Carlo LASSO objective function is given by

F(θ)MLE = −L(M,K)(X, θ) +

p+q∑
j=1

λj |θj |, (2.12)

where L(M,K)(X, θ) is the simulated Monte-Carlo log-likelihood function (2.9) and λj are real

positive values representing an adaptive amount of shrinkage for each element of parameters θ.

The LASSO estimator is the minimizer of the objective function (2.12). Usually, it is a nonlinear

optimization problem under L1 constraints, which might be numerically challenging to solve. In

addition, direct optimization of the cost function (2.12) can be extremely computationally costly

for data sampled with a large time step ∆, since simulated likelihood needs to be computed for

every value of parameters θ.

Least Squares Approximation. Here we introduce a simpler and computationally cheaper

approach based on the approximation of the cost function in (2.12). In particular, using the idea
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of Wang and Leng (2007) [87], we can consider a least squares approximation (LSA) of the likeli-

hood function L(M,K)(X, θ) in (2.12). LSA can transfer many different types of LASSO objective

functions into their asymptotically equivalent least squares problems. Thereafter, the standard

asymptotic theory can be established and the optimization solution can be found at a lower com-

putational cost. A standard argument proceeds as follows. First, compute the simulated maximum

likelihood estimator θ̃ by solving the by solving the optimization problem (2.11). Next, consider

the Taylor series expansion of the likelihood function at the maximum likelihood estimator θ̃

L(θ) ≈ L(θ̃) + L̇(θ̃)(θ − θ̃) +
1

2
(θ − θ̃)′L̈(θ̃)(θ − θ̃), (2.13)

where L̇ and L̈ are the first- and second-order derivatives of the loss function L. Because θ̃ is the

minimizer of L, we know that L̇(θ̃)= 0. Thus the approximation (2.13) can be simplified to

L(θ) ≈ L(θ̃) +
1

2
(θ − θ̃)′L̈(θ̃)(θ − θ̃). (2.14)

The analytical optimization solution of L(θ) above does not change if we ignore the constant

L(θ̃) and the coefficient 1/2. Thus, the objective function (2.14) can be further simplified to

(θ − θ̃)′L̈(θ̃)(θ − θ̃) in the optimization problem. Finally, we define the LASSO-type objective

function given the MLE estimator θ̃

F(θ)QMLE = −(θ − θ̃)′L̈(θ̃)(θ − θ̃) +

p+q∑
j=1

λj |θj |. (2.15)

With least squares approximation, (2.15) leads to a minimum distance criterion plus the penalty

terms. It is much easier to solve numerically than (2.12); nevertheless, the optimization solutions

of the two objective functions are equivalent in some neighborhood of θ̃. It is worth emphasizing

that (2.15) is a convex optimization problem and its global minimizer can be efficiently computed.

In addition, the hessian matrix L̈(θ̃) here is constant, which also accelerates computations.

Selecting Penalty Parameters. The theoretical and practical implications of SLASSO
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method rely on the specification of the penalty parameters λj . Although the asymptotic prop-

erties of the LASSO-type estimator (2.15) have been established in Wang and Leng (2007) [87] in

the context of regression and linear models, the extension to discretely observed diffusion processes

is nontrivial because estimators for the drift and diffusion parameters have two different rates of

convergence [20]. Next, we discuss how different rates of convergence for the drift and diffusion

parameters affect the selection of penalty parameters λj in the objective function (2.15). Many

authors utilize constant penalty parameters which are independent of θ (e.g., [80]). Here we follow

approach suggested in [87, 100, 20] and define penalty parameters which depend on the SMLE

estimator θ̃

λj = λ0|α̃j |−δ1 , γk = γ0|β̃k|−δ2 , (2.16)

where θ̃ = (α̃, β̃) is the SMLE estimator (2.11), and α̃ and β̃ are elements of the parameter vector

for the of drift and diffusion, respectively (recall equation (2.1)). It was determined empirically

[100, 20] that parameters δ1, δ2 ≥ 0 should be taken in the range {0.5, 1, 2}.

De Gregorio and Iacus (2012) [20] analyzed LASSO estimations for discretely sampled diffusion

processes and considered estimation regime ∆→ 0, n∆→∞, n∆2 → 0, n→∞. Their asymptotic

framework is called rapidly increasing design and the condition n∆2 → 0 as n→∞ means that ∆

shrinks to zero slowly. In [20] appropriate conditions were established for estimators to be consistent

and correctly estimate the proposed model (probability that the correct parameters are set to zero

tends to one). These criteria translate to our framework as follows:

C1 :
λ0√
n∆
→ 0; (n∆)

δ1−1
2 λ0 →∞, (2.17)

C2 :
γ0√
n
→ 0; (n)

δ2−1
2 γ0 →∞, (2.18)

as n → ∞. As the sample size grows, the weights for near-zero coefficient predictors get inflated

(to infinity), whereas the weights for nonzero coefficient predictors converge to a finite constant.

Thus, we can simultaneously (asymptotically) estimate large coefficients and small thresholds.
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It was demonstrated that the sub-sampling time step ∆ plays a crucial role for the estimation

under Indirect Observability [7, 46, 17, 66, 6, 7, 8, 9].

Therefore, instead of concentrating on the behavior of estimators for varying size of the data,

n, we pay particular attention to the sub-sampling rate. Penalization terms in (2.17), (2.18) are

defined in terms of ∆, so that

(λ0, γ0) = Cp(
√

∆, 1). (2.19)

We use the following typical values in computations δ1 = δ2 = {0.5, 1} and Cp = {0.01, 0.001}.

Given the SMLE estimator θ̃, the simulated LASSO-type objective function for parameters set

θ = (α, β) is defined with tuning penalty (2.16) in the drift and diffusion coefficients, that is

FQMLE(θ) = (θ − θ̃)′L̈(θ̃)(θ − θ̃) +

p∑
j=1

λj |αj |+
q∑

k=1

γk|βk|, (2.20)

with penalty parameters in (2.16), (2.19). The corresponding adaptive LASSO-type estimator

θ̂ : R(n+1)×d → Θ is defined as the solution of the optimization problem

θ̂ = (α̂, β̂) = argmin
θ
FQMLE(θ). (2.21)

De Gregorio and Iacus (2012) [20] proved that under the rapidly increasing sampling design the

adaptive LASSO-type estimator θ̂ has good behavior in the oracle sense.
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3 SLASSO Application

3.1 SLASSO Application to the Additive Triad Model

In this section, we apply our SLASSO estimator to a particular multiscale example, namely the

additive triad model.

3.1.1 Additive Triad Model

The model we consider is the stochastically forced additive triad. This system is a low-dimensional

model that has nonlinear interactions reminiscent of those occurring between the Fourier modes of

a fluid flow. It is stochastically forced to mimic the 3 interactions with further unresolved modes.

The system has three variables, one slow mode xt and two fast modes yt and zt. The fast dynamics

are dominated by two independent Ornstein-Uhlenbeck processes. The dynamical equations for

this triad are defined as

dx = A1yzdt,

dy = A2xzdt− γ2ydt+ s2dW1(t), (3.1)

dz = A3xydt− γ3zdt+ s3dW2(t),

with A1 +A2 +A3 = 0, so that the energy (x2
t + y2

t + z2
t ) is conserved by the nonlinear interactions.

γi, si are known parameters with γ2, γ3 > 0. W1,W2 are independent Brownian motions, and ε > 0

is the scale separation parameter. In this example Y ε
t ≡ xt, i.e., the data for estimation of the

reduced model is generated by the first component of equation (3.1).

Homogenization for the Additive Triad

For a homogenization technique to the construction of triad model parameterizations, we refer to

[57]. To study the convergence of the triad model in the limit of infinite separation of time-scale,
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we need to introduce ε into the equations (3.1)

dx = A1yzdt,

dy = A2xzdt−
γ2

ε
ydt+

s2√
ε
dW1(t),

dz = A3xydt−
γ3

ε
zdt+

s3√
ε
dW2(t).

On the time-scale t, when increasing the time-scale separation
1

ε
→ ∞, we have trivial dynamics

of the averaged equations

x̄ = A1 < y, z >ρOU= 0, (3.2)

where ρOU is the Gaussian invariant measure of the fast Ornstein-Uhlenbeck process generated by

taking Ai = 0. In the homogenization setting, one looks at the convergence of the distribution of

paths on a longer time-scale. The time is scaled to the diffusive time-scale εt and on this longer

diffusive time-scale deviations from the averaged dynamics develop.

Diffusive scaling corresponds to the additive triad system

dx =
1

ε
A1yzdt,

dy =
1

ε
A2xzdt−

γ2

ε2
ydt+

s2

ε
dW1(t),

dz =
1

ε
A3xydt−

γ3

ε2
zdt+

s3

ε
dW2(t).

By expanding the backward Kolmogorov equation for the slow-fast system in orders of ε, a Kol-

mogorov equation for the slow variables can be derived. In case of the additive triad (3.1), the

dynamical equation corresponding to the Kolmogorov equation for the slow variables is a one-

dimensional Ornstein-Uhlenbeck process [57]

dXt = αXtdt+ βdW (t), (3.3)
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where

α =
A1

2(γ2 + γ3)

(
A2s

2
3

γ3
+
A3s

2
2

γ2

)
, β =

A1s2s3√
2γ2γ3(γ2 + γ3)

. (3.4)

The effective equation (3.3) is then compared to the original model (3.1) on the time-scale t. The

stationary distribution for the triad is a product measure and the stationary marginal distribution

of xt is a Gaussian exactly matching the stationary distribution (also Gaussian) of the limiting

Ornstein-Uhlenbeck process Xt. The convergence of the correlation function and the kurtosis (the

third moment quantifying departures from Gaussian distributions) are confirmed numerically [57].

Auto time-correlation function and kurtosis function are defined as

ACF (τ) =
E[xt+τxt]

E[x2
t ]

(3.5)

and

KUR(τ) =
E[x2

t+τx
2
t ]

(E[x2
t ])

2 + 2(E[xt+τ ]E[xt])2
, (3.6)

respectively.

Under the Indirect Observability we use the data generated by xt in the triad model. Our goal

is to recover the effective equation (3.3). The values of the “true” drift and diffusion parameters

(3.4) in the limiting reduced model are only used to test the performance of the SLASSO estimator.

Numerical Method for the Triad Model

In order to approximate the solution, we assume [0, T ] is divided into equal N intervals of length

∆ =
T

N
. Triad equations (3.1) are integrated numerically with the time step δt and data is sub-

sampled with time step ∆. The third order Runge-Kutta method is applied for the integration of
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drift part µ(α, vt), where v(t) = {xt, yt, zt}, i.e.,

K1 = µ(α, v(t),

K2 = µ(α, v(t) + 0.5K1δt), (3.7)

K3 = µ(α, v(t) + 0.75K2δt),

K(t) =
1

9
(2K1 + 3K2 + 4K3).

Then the data are updated according to the Euler scheme,

v(t+ δt) =v(t) +K(t)δt+
3∑
j=2

σjδWj . (3.8)

We use δt = 0.001 in all simulations.

3.1.2 SLASSO Estimator

In this section, we describe our estimation procedure. We assume that the exact expression of the

effective model is unknown. Therefore, we assume a polynomial form and additive and multiplica-

tive noises and our goal is to use LASSO-type techniques to perform model selection. In particular,

we assume the following form

dut = (θ1ut + θ2u
2
t + θ3u

3
t )dt+ θ4dW1 + θ5utdW2, (3.9)

where W1,W2 are independent Brownian motions.

Compared with the analytical limiting solution (3.3) of the additive triad model, the general

solution (3.9) includes essential non-null parameters (θ1, θ4) and unessential null parameters (θ2 =

θ3 = θ5 = 0). The penalization terms are set in terms of ∆, such that (λ0, γ0) = Cp(
√

∆, 1),

Cp = {0.01, 0.001} and δ1 = δ2 = {0.5, 1}.
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SLASSO Optimization Procedure

Our goal is to perform SLASSO estimator to efficiently classify essential variables which are included

in the expression of the effective model. The simulated LASSO-type estimator is based on the

assumption that the polynomial expression of the effective model is the correct format and includes

the “true” effective model as a subset. Notice that the SLASSO formalism is not limited by

polynomial models, but our choice of effective model is motivated by some recent results on the

derivation of effective models for fluid dynamics [58, 21, 28, 96].

For the effective model in (3.9) and data generated by x(t) in the triad model (3.1), SLASSO is

expected to select an effective model with θ2 = θ3 = θ5 = 0 and estimates the essential parameters.

Correctly estimated values of essential parameters should be close to the analytically derived drift

and diffusion in (3.3). Thus, the true parameters (3.10) in the limiting reduced model can be used

to evaluate the performance of SLASSO estimation.

When there are a large number of redundant parameters, it is computationally infeasible to

perform model selection in one step, since the power (probability) of selecting zero-value variables

may be decentralized. In such cases we can perform LASSO estimation sequentially, eliminating

non-essential parameters in multiple steps. However, in the triad model the number of non-essential

parameters is relatively low (three) and the model selection can be performed in one step. Often

the solution of the optimization procedure can result in some coefficients estimated exactly as zero

when using box constrained optimization with zero lower bound in the optimizer [20, 87]. This

problem occurs because in practice the boundary and sign of coefficients are unknown for most

systems. This results maybe in a lack of generality for box constrained optimization. Therefore,

we use the quasi-newton optimizer without any constraint to solve the SLASSO problem.

Summary of the SLASSO optimization procedure. Our implementation of the SLASSO

model selection and parameter estimation is organized in the following three steps:
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• Step 1: Compute the Simulated Maximum Likelihood Estimation (SMLE) θ̃:

θ̃ = (α̃, β̃) = argminθ −L(M,K)(X, θ)

= argminθ
1

n

n∑
i=1

log p(M,K)(Xti |Xti−1 , θ)

= argminθ
1

n

n∑
i=1

log
1

K

K∑
i=1

Eq

[
p(Xτm |Xτm−1 , θ)

q(Xτ1 , . . . , XτM−1)

]
,

where the modified Brownian bridge (2.10) sampler is defined by Durham and Gallant [24] :

Xτm = Xτm−1 +
XτM −Xτm−1

M −m+ 1
+

√
M −m

M −m+ 1

√
∆t

M
σ(β,Xτm−1)Zm, m = 1, . . . ,M,

with M = ∆/δtbridge. The goal of this step is to obtain a very good quadratic approximation

for the maximum likelihood part and, thus, ensure faster convergence.

• Step 2: Use unconstrained quasi-Newton optimizer to solve the SLASSO problem (2.20).

Given the SMLE estimator θ̃, the simulated LASSO-type objective function for the parameter

set θ = (α, β) is defined with tuning penalty (2.16) in the drift and diffusion coefficients, i.e,

θ̂ = (α̂, β̂) = argmin
θ

(θ − θ̃)′L̈(θ̃)(θ − θ̃) +

p∑
j=1

λj |αj |+
q∑

k=1

γk|βk|,

where the tuning parameters are suggested in Zou (2006) [100]

λj = λ0|α̃j |−δ1 , γk = γ0|β̃k|−δ2 .

Here α̃j and β̃k are the elements of SMLE estimator of drift and diffusion parametric matrix,

respectively. For conscious thinking, we always consider both weak and strong penalty, such

that (λ0, γ0) = Cp(
√

∆t, 1), Cp ∈ {0.01, 0.001}, δ1 = δ2 ∈ {0.5, 1}.

• Step 3: Choose variables with high zero-value percentage to remove from the general expres-

sion of the limiting reduced model (3.3). Repeat steps (1 and 2) until there are no zero-value
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parameters recognized by the SLASSO estimator.

We consider the behavior of SLASSO estimators when discrete data are sub-sampled from trajec-

tories generated by the triad model (3.1). We analyze the behavior of estimators numerically as

the sub-sampling step ∆ is varied. Our goal is to analyze numerically the relationship between the

time-scale of fast variables in the triad and errors in the estimation procedure.

3.1.3 Numerical Results

In this section, we perform a numerical investigation of the performance of our SLASSO estimator

under indirect observability. We consider the triad model with nonlinear interaction coefficients

A1 = −1, A2 = 0.75, A3 = 0.25,

and

γ2 = γ3 = 2r, s2 = s3 = 3r, r = 1, 2, 3, 5.

The corresponding limiting reduced model (3.3) for the slow variable Xt with the above parameter

setting is

dXt = −0.5625 Xt dt+ 1.5910
√
r dWt. (3.10)

We would like to emphasize that the theoretical limiting reduced model (3.10) is only used to test

the performance of SLASSO estimation.

The parameter r influences the time-scale separation between the slow variable xt and fast

variables {yt, zt} in the triad model. We define the time-scale of slow variable xt as the area under

the graph of the correlation function, i.e.,

τx =

∫ ∞
0

ACF (s) ds. (3.11)

For exponential autocorrelation functions ACF (s) = e−γs, the time-scale is equivalent to τx = γ−1.

Figure 1 and Table ?? show time-scale separation for the slow variable xt and fast variables yt
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Table 1: Time-scale for the slow variable xt and fast variables yt and zt in the simulations of the
triad model with r = 1, 2, 3, 5. Last column shows the time-scale separation.

τxt τyt τzt τxt/max(τyt , τzt)

r = 1 2.06 0.44 0.59 3.49

r = 2 1.93 0.28 0.31 6.23

r = 3 1.89 0.21 0.23 8.22

r = 5 1.95 0.15 0.15 13.00

and zt in the triad model with r = 1, 2, 3, 5. As expected, the time-scale separation increases as r

becomes larger. In particular, for r = 1, the xt is about 4 times slower than yt and zt and for r = 5

the xt is about 13 times slower than the fast variables. We simulate 750, 000 trajectories of additive

(a) r=1 (b) r=5

Figure 1: Auto-correlation function for the slow variable xt and fast variables yt, zt in additive
triad model (3.1); Left: r = 1. Right: r = 5.

triad model and reduced model and pick sample trajectories with data size N = 5, 000 and 100

Monte Carlo samples. We use a Monte-Carlo approach to estimate the probability that a certain

parameter is zero. When data is generated by the slow variable in the triad model, the SLASSO

estimator is capable to perform the model selection in one step. We would like to comment that in

some other cases (there are a amount of redundant parameters), it might be necessary to proceed

sequentially.

Figure 2 shows one particular trajectory of the additive triad model and the corresponding

reduced stochastic model (3.10) with r = 1. It is clear that variable xt is relatively slow compared

with variables yt and zt. Under the Indirect Observability framework, only the variable xt in
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Figure 2 is observable. Our goal is select the correct effective parametrized stochastic model for

the observed data; this effective stochastic model should agree with the limiting model in (3.3).

(a) additive triad model (b) Reduced model

Figure 2: Left: sample path of the additive triad model in (3.1) with r = 1; Right: sample path of
the corresponding effective model (3.3).

Table 2 reports the Monte Carlo mean and standard deviations of SMLE and SLASSO es-

timates for the data generated by the slow variable xt in the additive triad model with varied

sub-sampling step ∆ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.7} and 100 Monte Carlo realisation. The SLASSO

estimation with different penalization setting produce consistent results that correctly set unessen-

tial variable(θ2, θ3, θ5) to zero in the general assumed expression (3.9). In this work, the SMLE

discretization time step for the Brownian bridge is always taken as δtbridge = 0.05.

Performance of the SLASSO estimator depends considerably on the sub-sampling time step

of additive triad model, ∆. This is directly related to the scale-separation between the slow (xt)

and fast (yt, zt) variables and the effect of fast-scale variables on the estimation procedure. Table

2 demonstrates that at ∆ = 0.7 the SLASSO estimator is still affected by the multiscale effects

generated by the fast variables. In particular, the time-scale of fast variables in the simulations

with r = 1 is max{τy, τz} ≈ 0.6. Therefore, it is not surprising that the SLASSO estimation results

in large errors even for ∆ = 0.7. Note that there are two parts of error here, (i) the difference of

the triad model xt and the limiting process Xt, (ii) the simulation error from SMLE. An experience

from [57], the approximation error declines as the time-scale separation becomes large.
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Table 2: SLASSO model selection result for additive triad model experiment with r = 1. We
present parameter values computed by SMLE (see section 3.1.2) after the model selection; standard
deviations from 100 Monte-Carlo trajectories are presented in round brackets below the estimated
value, and relative errors are presented in square brackets next to the estimated value. Relative
errors are computed using the “true” parameter values of the limiting process Xt. There are two
parts of error here, the approximation error between the triad model xt and the limiting process
Xt and the simulation error from SMLE.

θ1 θ2 θ3 θ4 θ5 θi∗(θi∗ = 0)

True -0.5625 0 0 1.5910 0

∆ = 0.1 -0.0963 [83%] - - 0.6633 [58%] - θ2, θ3, θ5

(0.0111) - - (0.0220) -

∆ = 0.2 -0.1739 [69%] - - 0.8828 [45%] - θ2, θ3, θ5

(0.0127) - - (0.0265) -

∆ = 0.3 -0.2336 [58%] - - 1.0144 [36%] - θ2, θ3, θ5

(0.0130) - - (0.0279) -

∆ = 0.4 -0.2848 [49%] - - 1.1209 [30%] - θ2, θ3, θ5

(0.0144) - - (0.0240) -

∆ = 0.5 -0.3203 [43%] - - 1.1983 [25%] - θ2, θ3, θ5

(0.0156) - - (0.0262) -

∆ = 0.7 -0.3703 [34%] - - 1.2841 [19%] - θ2, θ3, θ5

(0.0189) - - (0.0305) -

Comparing with LASSO: By setting M = K = 1 in (2.11), there is no Brownian bridge

sampler in the likelihood function, which is the classical MLE. To present the importance of the

Brownian bridge sampler, we set M = K = 1 and utilize LASSO to select effective model for the

additive triad model experiment with r = 1. Table 3 shows that LASSO cannot select the correct

model for the additive triad model due to large discretization error when ∆ ≥ 0.3. In addition,

there are relatively larger error on both estimated drift and diffusion coefficients, comparing with

SLASSO result in Table 2. The simulation error gets worse when enlarging the time step ∆.

To study the performance of the SLASSO estimator in the regime with larger time-scale separa-

tion, we consider three more experiments for additive triad model with r =2, 3 and 5. In particular,

for r = 5 the time-scale separation is equal to 13, as indicated by Table ??. Table 4 shows results

of SLASSO estimation from the data generated by the triad model with r = 2, 3, 5. We can see

that estimation results with ∆ = 0.7 improve considerably as the time-scale separation increases.

This is an indication that the SLASSO estimator becomes less sensitive to the multiscale effects as
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Table 3: LASSO (no Brownian bridge sampler) model selection result for additive triad model
experiment with r = 1. We present parameter values computed by MLE after the model selection;
standard deviations from 100 Monte-Carlo trajectories are presented in round brackets below the
estimated value, and relative errors are presented in square brackets next to the estimated value.
Relative errors are computed using the “true” parameter values of the limiting process Xt. There
are two parts of error here, the approximation error between the triad model xt and the limiting
process Xt and the simulation error from SMLE.

θ1 θ2 θ3 θ4 θ5 θi∗(θi∗ = 0)

True -0.5625 0 0 1.5910 0

∆ = 0.1 -0.0984[82%] - - 0.6648[58%] - θ2, θ3, θ5

(0.0110) - - (0.0239) -

∆ = 0.2 -0.1718[69%] - - 0.8684[45%] - θ2, θ3, θ5

(0.0135) - - (0.0236) -

∆ = 0.3 -0.2263[60%] - - 0.9589[40%] -0.1675 θ2, θ3

(0.0128) - - (0.0284) (0.0514)

∆ = 0.4 -0.2256[60%] - - 0.9527[40%] -0.1657 θ2, θ3

(0.0126) - - (0.0320) (0.0520)

∆ = 0.5 -0.2958[47%] - - 1.0344[35%] -0.2639 θ2, θ3

(0.0133) - - (0.0215) (0.0372)

∆ = 0.7 -0.3259[42%] - - 1.0439[34%] -0.3123 θ2, θ3

(0.0124) - - (0.0219) (0.0260)

r increases.

Figure 3 presents estimators for the drift and diffusion coefficients as means of the 100 Monte-

Carlo realizations. We also plot error bars from the Monte-Carlo simulations. We can see that

the model selection is consistent with the form of the reduced model (3.3), and only parameters θ1

and θ4 have non-zero values after the model selection. We can see that using larger sub-sampling

time step ∆ clearly reduces the estimation errors, but even for ∆ = 1 and r = 3 relative errors are

not negligible. The relative error of drift and diffusion coefficients further reduce to 6% and 4%

respectively for ∆ = 1 and r = 5.

To check the statistical performance of the model produced by the SLASSO estimation pro-

cedure, time auto-correlation and kurtosis function are plotted in Figure 4. We can see that the

performance of the effective SLASSO model improves as r increases. In particular, we obtain good

agreement between the triad data and the statistical properties of the estimated model with r = 5.

Table 5 presents one-point moments for the numerical simulation of the additive triad and statis-
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Table 4: SLASSO model selection result for additive triad model experiment with r = 2, 3, 5. We
present parameter values computed by SMLE (see section 3.1.2) after the model selection; standard
deviations from 100 Monte-Carlo trajectories are presented in round brackets below the estimated
value, and relative errors are presented in square brackets next to the estimated value. Relative
errors are computed using the “true” parameter values of the limiting process Xt. There are two
parts of error here, that the approximation error between the triad model xt and the limiting
process Xt, and the simulation error from SMLE.

r=2 r=3 r=5

θ1 θ4 θ1 θ4 θ1 θ4

True -0.5625 2.2500 -0.5625 2.7557 -0.5625 3.5576

∆ = 0.1 -0.1733 [69%] 1.2527 [44%] -0.2390 [58%] 1.7690[36%] -0.3150 [44%] 2.6665[25%]
(0.0175) (0.0412) (0.0216) (0.0508) (0.0235) (0.0702)

∆ = 0.3 -0.3493 [38%] 1.7620 [22%] -0.4054 [28%] 2.3338 [15%] -0.4605 [18%] 3.2031[10%]
(0.0193) (0.0377) (0.0258) (0.0441) (0.0248) (0.0425)

∆ = 0.5 -0.4221 [25%] 1.9356 [14%] -0.4614 [18%] 2.4882 [10%] -0.5010 [11%] 3.3216 [7%]
(0.0202) (0.0402) (0.0212) (0.0503) (0.0229) (0.0553)

∆ = 0.7 -0.4582 [19%] 2.0245 [10%] -0.4904 [13%] 2.5458 [8%] -0.5112 [9%] 3.3776 [5%]
(0.0176) (0.0350) (0.0181) (0.0416) (0.0200) (0.0538)

∆ = 1.0 -0.4831 [14%] 2.0676 [8%] -0.5056 [10%] 2.5917 [6%] -0.5298 [6%] 3.4250 [4%]
(0.0181) (0.0351) (0.0201) (0.0432) (0.0211) (0.0435)

tical properties of estimated model with ∆ = 0.7. Overall, there is a very good agreement between

the triad model and the estimated model for all three values r = 1, 2, 3. Therefore, we can conclude

that the estimation procedure results in an effective model which reproduces the one-point statis-

tical properties of the data very well, but the two-point statistics have some discrepancies due to

multiscale effects.

Conclusions

We constructed the new type of estimator by combining the simulated maximum likelihood (SML)

technique for using larger sub-sampling time step ∆, with LASSO approach for model selection.

The SML technique allows using larger sub-sampling time step and, thus, reduce the influence of

multiscale effects on estimation. Since SML is very computationally expensive, we use least squares

approximation (LSA) of the likelihood function in the LASSO step, which considerably reduces the

computational cost of the LASSO step. In addition, different scaling of the penalty terms for the

estimation of the drift and diffusion coefficients produce adequate results.
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(a) θ1 (b) θ4

Figure 3: Estimators θ̂1 and θ̂4 computed using SLASSO estimation and averaged over 100 Monte-
Carlo realizations. We also plot the error bars using the standard deviation for these estimators in
the Monte-Carlo simulations.

These are the main outcomes:

• The simulated LASSO-type estimator (SLASSO) performs model selection very well; this

method is able to select the correct expression for the effective model for the slow variable xt

in the additive triad model.

• Large sub-sampling time step ∆ is required for correct parametric estimation of the effective

model. The estimation procedure can yield large errors (approximately 34%) when the sub-

sampling time step is approximately equal to the time-scale of fast variables (e.g. estimation

with ∆ = 0.7 and r = 1). Estimation errors decay quickly as the time-scale separation in

increases.

• There are two sources of error in the estimation problem - (i) truncation errors due to large ∆,

and (ii) estimation errors due to multiscale effects present in the data. Minimizing truncation

errors requires ∆ → 0, and minimizing influence of multiscale effects requires ∆ → ∞.

Therefore, there should be a balance between these terms.

• Statistical properties of the slow variable are reproduced well for larger values of r. In

particular, one-point statistics are reproduced well for r = 1, 2, 3, 5. Two-point statistics have

some discrepancies for a small value of r = 1. These discrepancies decrease as r increases.
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Table 5: One-point statistics(mean, variance, skewness, kurtosis, correlation time) of slow variable
xt in the additive triad model (3.1), the reduced model (3.3) and estimated SLASSO model (3.9).
Statistics of the additive triad model is computed by numerical solution. The analytical statistics
of the reduced model and estimated SLASSO model are presented. All result are from observation
with ∆ = 0.7.

Mean Variance Skewness Kurtosis Correlation Time

r = 1 Additive Triad 0.00 2.26 -0.01 3.00 2.06
Reduced 0.00 2.25 0.00 3.00 1.78
SLASSO 0.00 2.23 0.00 3.00 2.70

r = 2 Additive Triad -0.01 4.55 0.01 2.98 1.93
Reduced 0.00 4.50 0.00 3.00 1.78
SLASSO 0.00 4.47 0.00 3.00 2.18

r = 3 Additive Triad 0.04 6.78 0.04 3.02 1.89
Reduced 0.00 6.75 0.00 3.00 1.78
SLASSO 0.00 6.60 0.00 3.00 2.03

r = 5 Additive Triad 0.01 11.14 0.04 3.01 1.95
Reduced 0.00 11.25 0.00 3.00 1.78
SLASSO 0.00 11.16 0.00 3.00 1.96

This indicates that these discrepancies are due to multiscale effects and the estimation of the

parameter for the drift is most sensitive to the multiscale effects in the data.
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(a) r = 1

(b) r = 2

(c) r = 3

(d) r = 5

Figure 4: Comparison of the auto-correlation function (ACF) and kurtosis (KUR) in the simulations
of the additive triad model and statistical properties of the estimated SLASSO model. All result
are from observation with ∆ = 0.7. The statistics are computed for numerical solution for the
additive triad model and analytical solution for the reduced model and estimated SLASSO model.
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3.2 SLASSO Application to the Burgers Model

In this section, we apply the SLASSO estimator to a multi-dimensional example, namely, the forced

Burgers model.

3.2.1 Forced Burgers Model

We consider a finite-difference approximation of the forced Burgers model with white-noise forcing

in physical space

∂

∂t
u+

1

2

∂

∂x
u2 = νu+ σẆ ,

where W is a delta-correlated (both in space and time) Gaussian white noise. This system is

a relatively high dimensional model that has interactions on a wide range of spatial scales. In

particular, we consider the finite-difference approximation

d

dt
ui = −

Fi−1/2 − Fi+1/2

∆x
+ νui + σẆi. (3.12)

Here, ui(t) ∈ Rm denotes the value of the function u(x, t) at the center of the discrete cell i,

(i ∈ s = {0, . . . ,m − 1}) of width ∆x = L/m. Wi are independent Brownian motions, snd Fi−1/2

and Fi+1/2 denote fluxes at the boundaries of cell i. These fluxes are defined using values from

neighboring cells,

Fi−1/2 =
1

6

(
u2
i + uiui−1 + u2

i−1

)
, Fi+1/2 =

1

6

(
u2
i+1 + ui+1ui + u2

i

)
. (3.13)

The direct expression of the forced Burgers model is written as

dui = − 1

6∆x
(u2
i−1 + ui−1ui − uiui+1 − u2

i+1)dt+ νuidt+ σdWi, i = 0, . . . ,m− 1. (3.14)

Equation above corresponds to a high-dimensional stochastic differential equation with additive

noise.

32



Numerical Method for the Forced Burgers Model

The forced Burgers equations (3.14) are integrated numerically with the time step δt and data

is sampled with time step ∆. We use an integration scheme similar to the operator splitting

approach, where the deterministic part (drift) is integrated with a higher-order numerical method

to avoid numerical instabilities. In particular, the third-order Runge-Kutta method is applied for

the integration of the drift part. Then the diffusion part is added using the Euler scheme.

The numerical scheme can be represented as follows. If we define the drift part as

µi(u) = − 1

6∆x
(u2
i−1 + ui−1ui − uiui+1 − u2

i+1) + νui,

then the Runger-Kutta scheme is defined as

K1 = µ
(
u(t)

)
,

K2 = µ
(
u(t) + 0.5K1δt

)
, (3.15)

K3 = µ
(
u(t) + 0.75K2δt

)
,

K(t) =
1

9
(2K1 + 3K2 + 4K3),

with u(t), µ ∈ Rm. Then the solution is updated according to the following scheme

u(t+ δt) =u(t) +K(t)δt+ σδW, (3.16)

where δW ∈ RM is a vector of independent Gaussian random variables with mean zero and variance

δt. We use δt = 0.001 in all simulations.

Local Averaged Variables for the Forced Burgers Model

Derivation and estimation of effective models is a well-known problem for many applications, and in

fluid dynamics in particular. Here we follow the approach of Large-Eddy Simulations and define an
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effective model for spatial averages. The goal is to reduce the spacial dimension of the problem and

obtain an effective model which can be integrated on a coarser spatial grid. To this end, following

the volume-balance procedure of [74, 1], we average over n ≡ nx neighboring, fixed in space, “fine”

grid cells of the original width ∆x. We define a coarse grid with a spacing of n∆x and cell index

set S = {0, . . . ,M − 1}, where M = m/n is the total number of coarse cells. Let XI , I ∈ S denote

the averaged values of ui. Then, XI can be computed by applying a ”box” filter in physical space.

This filtering can be written simply as the arithmetic mean over n neighboring grid cells

XI =
1

n

n(I+1)−1∑
k=nI

uk. (3.17)

Next, we split ui into a mean ubI and a deviation yi

ui = XI + yi (3.18)

The index I denotes the coarse cell in which the fine cell i is located. We also refer to XI and yi as

resolved and unresolved modes, respectively. Then equations for averages and fluctuations become

d

dt
XI = −

Fn(I+1)−1/2 − FnI−1/2

n∆x
− νXI +

σ√
n
ẆI , (3.19)

d

dt
yi = −

Fi+1/2 − Fi−1/2

∆x
+
Fn(I+1)−1/2 − FnI−1/2

n∆x
. (3.20)

Since we define resolved modes as averages, a certain scale separation exists between the resolved

and unresolved modes. This scale separation is controlled by the size of the averaging window n.

When the averaging window is small, XI is close to ui. As n becomes larger, the scale separation

between XI and yi increases. Equations (3.19) and (3.20) are equivalent to the full model (3.14).

The goal here is to obtain an effective closed-form equation for the resolved modes XI and eliminate

the unresolved degrees of freedom yi. This is motivated by the fact that in many realistic applica-

tions the unresolved degrees of freedom yi cannot be observed explicitly. Thus, the observational

dataset is generated by the resolved variables XI in the full model (3.19), (3.20) and the goal is
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to use this data to estimate the effective model for XI . Since the effective estimated model for XI

is not known, we refer to this estimation context as Indirect Observability, i.e., the model for XI

is estimated from data generated by an approximate model. However, for n = 1 (no averaging),

data are generated by the full model (3.14), which means the estimation procedure should recover

the model (3.14). In this case, the estimated model is known, we refer to this context as Direct

Observability. Thus, by varying the parameter n we can compare our estimation results under

Direct and Indirect Observability.

3.2.2 Numerical Results

In this experiment, the parameters in the forced Burgers model (3.14) setting is

L = 100, m = 512, ν = −0.1, σ = 0.2. (3.21)

We simulate numerically the full model δt = 0.001 and save observations with sub-sampling time-

step ∆ = 0.1. We compare estimation results with three time-steps ∆t = 0.1, 0.2, 0.3.

Figure 6 shows time-correlation function for the full variable u and slow variable XI with

averaging window nx = 2, 3, 4. When the averaging window is very small, i.e., n = 2, correlation

time of slow variable XI is close to the correlation time of ui in the full model. The gap between

correlation times increases as n becomes larger.

The exact expression of the full Burgers model is known, but the effective model for the resolved

variable XI is unknown. When the averaging window is small, statistical behavior of the resolved

variables XI should be close to the full model. Therefore, we assume that the effective model for

the resolved variables ubI has functional form similar to the full Burgers model. In particular, we

assume a polynomial form with linear and quadratic interactions, and additive and multiplicative

noises. Our goal is to use SLASSO estimator to perform model selection and parameter estimation.
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Figure 5: Auto-correlation function for the full variable u and slow variable XI with averaging
window n = 2, 3, 4.

Thus, we assume the following form for the estimated model

d

dt
vi = θ1v

2
i−1 + θ2vi−1vi + θ3vi−1vi+1 + θ4v

2
i + θ5vivi+1 + θ6v

2
i+1 (3.22)

+ θ7vi−1 + θ8vi + θ9vi+1 + θ10Ẇ1,i + θ11viẆ2,i.

Here W1,i and W2,i are independent Brownian motion. We know that if the data is generated by

variables ui in the full Burgers model 3.14, then estimation should result in 6 essential non-null

parameters (θ1, θ2, θ5, θ6, θ8, θ10) and 5 unessential null parameters (θ3 = θ4 = θ7 = θ9 = θ11 = 0).

The simulated LASSO-type estimator is based on the assumption that the polynomial expression

of the effective model is the correct format and includes the ”true” effective model as a subset. Our

goal is to perform SLASSO estimator to efficiently classify essential variables which are included in

the expression of the effective model. The SLASSO optimization procedure is discussed in section

2. It is computationally infeasible to perform model selection in one step when many redundant pa-

rameters, since the power (probability) of selecting zero-value variables may be decentralized. Thus,

we perform SLASSO estimation sequentially for Burgers experiment, eliminating non-essential pa-

rameters in multiple steps. We consider performance of the estimation procedure with both weak
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and strong penalty, such that (λ0, γ0) = Cp(
√

∆t, 1), Cp ∈ {0.01, 0.001}, δ1 = δ2 ∈ {0.5, 1}.

Table 6: SLASSO model selection result for the Burgers Model. We present parameter values
computed by SMLE (see section 3.1.2) after the model selection; standard deviations computed
from 100 Monte-Carlo trajectories are presented in round brackets below the estimated value.

θ1 θ2 θ5 θ6 θ8 θ10 θ11 θi∗ = 0
Data Burgers model -0.8517 -0.8517 0.8517 0.8517 -0.1 0.2 0

u ∆t = 0.1 -0.8453 -0.8545 0.8404 0.8484 -0.1188 0.2000 - θ3, θ4, θ7, θ9, θ11

(0.0264) (0.0515) (0.0501) (0.0264) (0.0198) (0.0019) -
∆t = 0.2 -0.8484 -0.8442 0.8466 0.8474 -0.1245 0.2007 - θ3, θ4, θ7, θ9, θ11

(0.0198) (0.0380) (0.0338) (0.0191) (0.0153) (0.0020) -
∆t = 0.3 -0.8530 -0.8431 0.8396 0.8544 -0.1236 0.2026 - θ3, θ4, θ7, θ9, θ11

(0.0185) (0.0277) (0.0253) (0.0180) (0.0103) (0.0021) -

XI , n = 2 ∆t = 0.1 -0.4371 -0.4327 0.4351 0.4380 -0.1247 0.1512 0.1748 θ3, θ4, θ7, θ9

(0.0526) (0.1053) (0.1208) (0.0592) (0.0247) (0.0026) (0.0199)
∆t = 0.2 -0.4356 -0.4268 0.4223 0.4399 -0.1443 0.1600 0.2426 θ3, θ4, θ7, θ9

(0.0456) (0.0747) (0.0822) (0.0530) (0.0158) (0.0025) (0.0178)
∆t = 0.3 -0.4354 -0.4139 0.4139 0.4322 -0.1604 0.1696 0.2952 θ3, θ4, θ7, θ9

(0.0404) (0.0604) (0.0643) (0.0386) (0.0146) (0.0027) (0.0161)

XI , n = 3 ∆t = 0.1 -0.2929 -0.2733 0.3040 0.2977 -0.1222 0.1238 0.1199 θ3, θ4, θ7, θ9

(0.0724) (0.1000) (0.1067) (0.0740) (0.0147) (0.0020) (0.0226)
∆t = 0.2 -0.3004 -0.2819 0.2852 0.2864 -0.1400 0.1307 0.1646 θ3, θ4, θ7, θ9

(0.0607) (0.0781) (0.0738) (0.0521) (0.0122) (0.0027) (0.0302)
∆t = 0.3 -0.2913 -0.2777 0.2730 0.2894 -0.1566 0.1397 0.1980 θ3, θ4, θ7, θ9

(0.0419) (0.0570) (0.0596) (0.0429) (0.0121) (0.0031) (0.0216)

XI , n = 4 ∆t = 0.1 -0.2105 -0.2337 0.2186 0.2050 -0.1180 0.1061 0.0861 θ3, θ4, θ7, θ9

(0.0801) (0.1029) (0.1086) (0.0814) (0.0172) (0.0016) (0.0302)
∆t = 0.2 -0.2129 -0.2014 0.2033 0.1987 -0.1343 0.1119 0.1185 θ3, θ4, θ7, θ9

(0.0671) (0.0802) (0.0740) (0.0535) (0.0125) (0.0016) (0.0293)
∆t = 0.3 -0.2179 -0.2156 0.2221 0.2188 -0.1466 0.1180 0.1512 θ3, θ4, θ7, θ9

(0.0470) (0.0615) (0.0703) (0.0528) (0.0104) (0.0020) (0.0237)

Table 6 reports the Monte Carlo mean and standard deviations of SMLE and SLASSO estimates

for the data generated by the full Burgers model and resolved variables XI in the Burgers model

with varied time-step of estimation ∆ = 0.1, 0.2, 0.3 and 100 Monte Carlo realization. SLASSO has

capability to select all essential variables (θ1, θ2, θ5, θ6, θ8, θ10) correctly for the full Burgers model.

Moreover, the model selection is consistent for three different estimation time-steps considered here.

Simulated Maximum Likelihood Estimator correctly estimates values of parameters for n = 1 for

all three estimation time-steps. For n > 1 we can see that the standard deviations for estimated

parameters become considerably larger compared to n = 1. Nonlinear interaction coefficients

θ1, θ2, θ5, and θ6 decrease as n becomes larger, but the standard deviation remains relatively

large, indicating that there is a lot of uncertainty in the estimation of these coefficients. This is
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an indication that the functional form of the effective model in (3.22) may not be sufficient to

reproduce the behavior of resolved variables XI for larger n.

To check the accuracy of the estimation procedure, we regenerate time-series with the model

(3.22) and coefficients given in Table 6. We then compare the statistical behavior of dynamic

variables in the regenerated dataset and statistical behavior of the same variables in the original

dataset. We set θ1 = θ2 = θ5 = θ6 equal to the mean of these four coefficients to avoid blow-

up of solutions and guarantee stationarity of trajectories for the simulations of (3.22) Similar to

the full Burgers model, we use the third-order Runge-Kutta method for the drift part and Euler

discretization for the diffusion in (3.22).

Table 7: One-point statistics (mean, variance, skewness, kurtosis, correlation time) of resolved
variables Xt in the Burgers model (3.14), and estimated SLASSO model (3.22).

Mean Variance Skewness Kurtosis Correlation Time

n = 1 Burgers 0.00 0.20 0.01 3.02 0.61
SLASSO, ∆ = 0.1 0.00 0.17 0.02 3.00 0.62
SLASSO, ∆ = 0.2 0.00 0.16 0.02 3.00 0.55
SLASSO, ∆ = 0.3 0.00 0.17 -0.01 3.01 0.53

n = 2 Burgers 0.00 0.10 0.01 3.02 0.55
SLASSO, ∆ = 0.1 0.00 0.12 -0.02 2.99 0.33
SLASSO, ∆ = 0.2 0.00 0.20 0.00 3.00 0.39
SLASSO, ∆ = 0.3 0.00 0.27 0.01 3.00 0.41

n = 3 Burgers 0.00 0.07 0.00 3.01 0.43
SLASSO, ∆ = 0.1 0.00 0.06 -0.02 2.96 0.20
SLASSO, ∆ = 0.2 0.00 0.10 0.03 3.01 0.24
SLASSO, ∆ = 0.3 0.00 0.12 0.01 2.97 0.25

n = 4 Burgers 0.00 0.05 -0.01 3.00 0.37
SLASSO, ∆ = 0.1 0.00 0.03 0.00 2.96 0.17
SLASSO, ∆ = 0.2 0.00 0.05 0.00 2.97 0.18
SLASSO, ∆ = 0.3 0.00 0.08 0.07 2.98 0.20

Table 7 presents statistical features (mean, variance, skewness, kurtosis, and correlation time)

for resolved variables XI computed from the full Burgers model and the corresponding estimated

SLASSO effective model. Overall, there is a good agreement between the Burgers model and the

estimated model for four one-point moments, especially for ∆ = 0.1. However, there is a big

discrepancy between the correlation times of resolved variables with n > 1 in the full Burgers and
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estimated SLASSO models. In addition, we also observe that discrepancy for the the variance and

kurtosis of resolved variables with n > 1 increases as ∆ becomes larger.

(a) Full, n = 1 (b) Averaging window n = 2

(c) Averaging window n = 3 (d) Averaging window n = 4

Figure 6: Comparison of the time auto-correlation function (ACF) of resolved variables XI in the
simulations of the estimated effective model and full Burgers model.

To further check the statistical performance of the effective model (3.22) with parameters in

6, the time auto-correlation function (ACF) and kurtosis function (KUR) are presented in Figures

6 and 7, respectively. The black dot-dashed line is auto-correlation of XI computed from the full

Burgers model. The solid lines are the auto-correlation functions computed from the regenerated

trajectories using the effective model (3.22). The agreement is excellent under the Direct Observ-

ability (n = 1). The ACF function of the full Burgers model and SLASSO model are almost

overlapping. However, there is a considerable discrepancy between the correlation function com-

puted from the full Burgers and estimated effective models. In particular, the correlation function

for the estimated effective models exhibits slower decay rate compared to the correlation function
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computed from the full Burgers equation. The kurtosis measures deviations from Gaussianity, since

for a Gaussian process it is exactly equal to one. Similar to the behavior of correlation functions,

kurtosis for the estimated effective model with n = 1 overlaps with the kurtosis computed from

the full Burgers model. However, we observe considerable discrepancies for the kurtosis in the full

Burgers model and estimated model for n > 1.

(a) Full, n = 1 (b) Averaging window n = 2

(c) Averaging window n = 3 (d) Averaging window n = 4

Figure 7: Comparison of the kurtosis function (KUR) of resolved variables XI in the simulations
of the estimated effective model and full Burgers model.

Conclusions

In this section we utilized Simulated LASSO and Simulated Maximum Likelihood Estimators to

compute effective models for resolved variables defined as ”box” averages of fine-scale variables.

The main outcomes are
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• Our results demonstrate that the SLASSO algorithm is able to find null components (param-

eters equal to zero) for a range of observational time-steps when n = 1. This is the case when

the correct effective model is among all possible models given by the general functional form

of the estimated model (3.22).

• SLASSO and SMLE fail to select the correct model and/or correct parameter values for

n > 1. This implies that the estimated effective model (3.22) does not contain an appropriate

effective stochastic model for the resolved variables XI with n > 1.

• We also observe that the agreement between the statistical behavior of resolved variables XI

in the full model and estimated model (3.22) improved for larger ∆. This is consistent with

results for the triad model reported in section 3. This implies that the effect of unresolved

variables is reduced for larger values of ∆.
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4 Reservoir Computing

In this chapter, we describe the basic concept and prediction algorithms for Reservoir Computing,

specifically the Echo State Network. We introduce the background material for the Reservoir

Computing and use the L2 relative error as a measure of prediction performance. We introduce

the main parameters of the reservoir and discuss reservoir construction and also introduce various

other machine learning terminology.

4.1 Background

The Echo State Network (ESN) [41, 42] is a particular case of Recurrent Neural Networks (RNNs),

where the readout is linear. RNNs represent a large and varied class of computational models

that are designed by more or less detailed analogy with biological brain modules. RNNs are

used for a variety of scientific purposes. In particular, they appear as one of the most promising

tools for nonlinear time series processing applications. It can be shown that RNNs are universal

approximators of dynamical systems under fairly mild and general assumptions [75]. However,

RNNs are difficult to train by gradient-descent-based methods. Training RNNs mainly suffers from

expensive computation, vanishing or exploding gradients, and difficult optimization problems.

To remedy the fundamental problems with RNNs (in particular their slow and difficult training

process), a fundamentally new approach to RNNs design and training was proposed independently

by Wolfgang Maass in 2001 under the name of Liquid State Machines [55] and by Herbert Jaeger

under the name of ESN [41]. Generation and training of ESNs is systematically summarized in

[42, 54]. The essential component of the approach proposed in those papers is related to the training

of RNNs using back-propagation [77]. This component is a particular approach for constructing

RNNs and it is currently referred to as Reservoir Computing.

Reservoir Computing avoids the shortcomings of gradient-descent training for complex RNNs

by setting up the structure of RNNs in the following way:

• A RNN is randomly created and remains unchanged during training. This RNN is called the
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reservoir. It is passively excited by the input signal and maintains in its state a nonlinear

transformation of the input history.

• The desired output signal is generated as a linear combination of the neuron’s signals from

the reservoir (excited by input). The weights of this linear combination are obtained by linear

regression, using the training signal as a target.

The reservoir consists of many inter-connected neurons (possibly with connection loops) that

are represented by time dependent variables. Thus, these neurons are triggered by the input

signal and provide a dynamical memory. The information processing capacity of the reservoir is

maximal, if the states are maximally de-correlated for the given input. Then the output layer

can optimally combine these states to readout the desired output. Reservoir Computing is derived

and theoretically justified by regarding learning as a constraint optimization problem [77]. In other

words, the role of the reservoir is to nonlinearly transform sequential inputs into a high-dimensional

space. Therefore, instead of RNNs, other nonlinear dynamical systems can be used as reservoirs. A

motivation for physical implementation of reservoirs is to realize fast information processing devices

with low learning cost.

Reservoir Computing received increasing attention in recent years. An overview of recent ad-

vances of Reservoir Computing is presented in [79], that discusses various details of Reservoir

Computing including the advantage of modeling accuracy, modeling capacity and computational

efficiency. In particular, our work is closely related to the application of Reservoir Computing to

model-free prediction of the evolution of the state of dynamical systems [53, 65, 32, 99, 16, 86]. In

our work we concentrate on a particular model of geophysical fluid dynamics.

4.2 Echo State Network Architecture

In this section, we introduce general formal definition of an ESN [54, 65]. An Echo State Network

is a specialized simple type of RNNs which consists of the input layer, the recurrent hidden layer

(the reservoir), and the output layer. Here we list the basic properties of the ESN
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• Connections in the reservoir are generated randomly and not modified during training.

• Connections are encoded by a adjacency matrix A. A is generated as a sparse random matrix.

• In order to maintain high modeling capability, a relatively high-dimensional reservoir is used

in the hidden layer of the ESN.

• Nonlinear transformation is introduced to update the state of the reservoir in time; this

nonlinear transformation encodes the memory effect of the reservoir.

• Only the linear output layer is modified during training.

The connection of reservoirs represents as the adjacency matrix A ∈ RD×D with “echo state

property” (ESP) [93]. The ESP is a condition of asymptotic state convergence of the reservoir

network, under the influence of driving input. The ESP is connected to algebraic properties of the

reservoir weight matrix A, and to properties of the driving input. It is a rather subtle mathematical

concept. The ESP can be violated if the spectral radius of the adjacency matrix exceeds unity.

Conversely, under rather general conditions, the ESP is obtained most of the time when the spectral

radius of the adjacency matrix is smaller than unity. Neither does a spectral radius below unity

generally ensure the ESP, nor does a spectral radius above unity generally destroy it. In numerous

applications, a spectral radius well above unity serves best, depending on the nature of the driving

input and the nature of the desired readout signal. The wide-spread practice of scaling the spectral

radius below unity, thus, leads to an under-exploitation of the learning and modeling capacities of

reservoirs.

Intuitively, the ESP states that the reservoir will asymptotically wash out any information from

initial conditions. The ESP is guaranteed for tanh neuron reservoirs, if the spectral radius of the

reservoir adjacency matrix A is below unity. The auto-feedback nature of RNN enable the reservoir

states r(t) to reflect traces of the past input history. It is fundamental to impose constraints on

their initialization, to ensure dynamical stability in applications.

The schematic architecture of the ESN is shown in Figure 8. Both A and Win are fixed and do

not change during training. In our notation, Nx and D are used to indicate the input dimension
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Figure 8: The schematic architecture of an ESN. Inputs X(t) ∈ RNx are fed into the reservoir
through input connectivity matrix Win ∈ RNx×D. The reservoir has hidden state r(t) ∈ RD,
and recurrent connections are given by A ∈ RD×D. Output X̂(t + ∆t) is generated by a linear
transformation Wout ∈ RD×Nx of reservoir states r(t). Reservoir states r(t) is updated in time
using a nonlinear update function. In autonomous mode, predictions X̂(t + ∆t) are fed back as
inputs to the next time step in order to predict multiple time steps into the future. Note that Win

and A are fixed matrices. Only Wout is trained.

and the reservoir size, respectively. Win ∈ RNx×D represents random all-to-all connections between

input units and the reservoir. The reservoir is driven by the sequential inputs. Each component

signal r(t + ∆t) is a nonlinear transform of the driving input X(t) and the previous state of the

reservoir r(t). During training, only weights of the output layer Wout ∈ RD×Nx are updated as the

linear regression weights of outputs X(t + ∆t) on the reservoir states r(t + ∆t). There are three

main parts of ESN, that are the input layer, the reservoir, and the output layer. Assume that we

have input dataset X ∈ RNx×T , and each input vector X(t) ∈ RNx at each time step t.

Input-to-Reservoir Matrix Win is usually generated from a particular distribution before

the training. Here we use Win ∼ Uniform[−β1, β1], where β1 is a small parameter. The scaling

of Win and shifting of the input depends on how much nonlinearity of the processing unit the task

needs: if the inputs are close to zero, the tanh neurons tend to operate with activations close to

zero, where they are essentially linear, while inputs far from zero tend to drive them more towards

saturation where they exhibit more nonlinearity. The shift of the input may help to overcome

undesired consequences of the symmetry around zero of the tanh-neurons with respect to the sign

of the signals. In this dissertation, we take β1 = 0.01.
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Adjacency Matrix A of the Reservoir. The adjacency matrix of the reservoir A ∈ RD×D is

initialized randomly before the training and it does not change during the entire training process.

As discussed previously, there are certain conditions on A which increase the possibility of the

reservoirs having the echo state property. In particular, it has been observed empirically that the

echo state property is very likely for any input if the spectral radius of A is smaller than unity. The

connectivity of the reservoir neurons is represented by the adjacency matrix A of size D×D whose

values are drawn from a highly spare uniform distribution with zero mean value. We ensure that

the spectral radius of A is less than unity by first dividing the matrix A by its largest eigenvalue

and further multiplying it by a scalar (β2 ≤ 1).

A = β2
W0

|ωmax|
, (4.1)

where W0 is a sparse matrix (usually less than 10% of connections), ωmax is the largest eigenvalue

of W0, and β2 is a scaling parameter of the adjacency matrix. Thus, the spectral radius of A is

ρ(A) = β2.

The optimal value of ρ(A) should be set depending on the desired amount of memory and

non-linearity for a particular task. As a rule of thumb discussed in [42, 41, 93], ρ(A) should be

close to 1 for tasks that require long memory, and ρ(A)� 1 for tasks where a long memory might

be harmful. Larger ρ(A) also have the effect of driving signals X(t) into more nonlinear regions of

tanh, similarly to larger Win. Thus, scaling of both Win and A have a similar effect on the degree

of non-linearity of the ESN, while their difference determines the length of the memory effect.

Reservoir States r(t). When the training data is input into the ESN, it will also activate

the internal dynamics of the reservoir. The internal dynamical states of the reservoir is updated

according to the equation

r(t+ ∆t) = F (r(t), X(t)) = f
(
Ar(t) +WinX(t)

)
, (4.2)
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where r(t) ∈ RD is the reservoir state, f : RD → RD is the element-wise application of a non-linear

activation function (usually the logistic sigmoid or the tanh function). Before training, the reservoir

state is initialized with zero, i.e., r(0) = ~0.

Nonlinear Transformation of Reservoir States r(t). A nonlinear transformation

r̃(t) = ψ
(
r(t)

)
(4.3)

is often introduced in the prediction step of the ESN to increase the span of nonlinear features of the

reservoir (see e.g. [65, 16]). Here ψ : RD → RD. Usually function ψ is chosen as a simple element-

wise nonlinearity. It was demonstrated in [65, 16] that the nonlinear transformation ψ increases

the expression power of the dynamics reservoir. Thus, the reservoir update and prediction formulas

become

r(t+ ∆t) = f
(
Ar(t) +WinX(t)

)
, (4.4)

X̂(t+ ∆t) = Woutψ(r(t)) ≡Woutr̃(t). (4.5)

A particular example of the nonlinear transformation ψ is

r̃j(t) = ψ(r) =


r2
j (t) if j is odd

rj(t) if j is even.

Additional examples are presented in section 6.3.

Reservoir-to-Output Matrix Wout. Only the weights of the output-to-reservoir layer Wout ∈

RD×Nx are updated during training. The desired output weights Wout are the linear regression

weights of the desired outputs with L2 regularization

Wout = argmin
W

||Wr̃ −X||22 + λ||W ||22, (4.6)
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where W ∈ RD×Nx and λ is the L2 regularization (ridge regression) parameter. This is also known

as Tikhonov regularization [35]. It can be easily shown that Wout can be computed explicitly for

the Tikhonov regularization as

Wout = (r̃r̃′ + λI)−1r̃X. (4.7)

Here, (·)′ is the transpose and (·)−1 is the inverse operation. This implies that training of the ESN

can be done quite fast compared to other Neural Networks.

Reservoir Computing methods differ from other, more “traditional”, ANN designs and learning

techniques since Reservoir Computing approach makes a conceptual and computational separa-

tion between a dynamic reservoir (an RNNs as a nonlinear temporal expansion function) and a

recurrence-free (linear in Echo State Network) readout that produces the desired output from the

expansion. In this context reservoir state r(t) expands the input history X(t), X(t−∆t), . . . into a

rich enough reservoir state space, while readout combines the neuron signals r(t) into the desired

output X(t+∆t). Since only the non-temporal readout part has to be learned, the training process

is relatively simple and fast.

4.3 Prediction Setting

In this section, we describe the prediction setting for the ESN. Such setting arises if a closed form

dynamic equations for predicting future states of a nonlinear system is not available or too costly to

integrate numerically in real time. We also assume that sufficient training data for the evolution of

the state of the system of interest can be observed or generated. Then, we can use Neural Networks

and ESN in particular to predict the future state of the system.

Generating Prediction Trajectory. Given an initial condition Xtrue(T0), our goal is to

use ESN to generate further predictions with a time step ∆t, i.e., we want to generate time-series

Xpred(T0 + ∆t). In practice, initial time T0 = 0 if no observational or numerical dynamic data is

available. On the other hand, if some part of the trajectory Xtrue(t), t ∈ [0, T0] (with T0 > 0)

is already known, then we can consider Xtrue(T0) as an initial condition and generate predicted
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trajectory Xpred(t) for t > T0.

We would like to point out that the internal state of the reservoir, r(T0), may or may not be

known. In particular, if T0 = 0, then we do not have any prior information about the trajectory

and we consider r(0) = ~0. On the other hand, if some prior information is available, then we can

use equation (4.2) to pre-compute the state of the reservoir where we use Xtrue(t), t ∈ [0, T0] as an

input to the ESN in (4.2).

We can use equation (4.5) to generate predictions starting with Xtrue(T0). In particular, we

use Xtrue(T0) and r(T0) as an input into the ESN in (4.2), thus, updating internal states and

computing r(T0 + ∆t). Next, since Wout has been obtained by training, we use equation (4.5) to

generate X̂(T0+∆t) and set Xpred(T0+∆t) = X̂(T0+∆t). Thus, one time-stepping update consists

of both, generating the prediction using (4.5) and reservoir update (4.2) and can be summarized

as follows

Xpred(t+ ∆t) = Woutr̃(t), (4.8)

r(t+ ∆t) = f
(
Ar(t) +WinX

pred(t)
)
. (4.9)

We then proceed recursively by using (4.9) with (Xpred(T0 + k∆t), r(T0 + k∆t)) to generate

(Xpred(T0 + (k + 1)∆t), r(T0 + (k + 1)∆t)).

Prediction Error: The L2 relative error is used here to quantify the performance of the

ESN. In particular, we generate an ensemble of “true” Xtrue
i (t) (with i = 1, . . . , N , where N is

ensemble size) trajectories using a suitable numerical scheme and compare them with predicted

values Xpred
i (t). Then, the L2 relative error for each trajectory [16] is computed as follows

e
(i)
L2(t) =

||Xtrue
i (t)−Xpred

i (t)||L2

< ||Xtrue
i (t)||L2 >

. (4.10)

Here || · ||L2 is the L2 norm and < · > is averaging over the time interval for the prediction. In
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addition, we define the prediction error over N samples as

EL2(t) =
1

N

N∑
i=1

e
(i)
L2(t). (4.11)

In-sample Prediction. We train the ESN network on the time interval [0, T0] using the

training dataset. In-sample prediction starts by continuing a trajectory from the training dataset

further, i.e., using Xtrue(T0) in training dataset as an initial condition for future prediction. Thus,

we generate predicted values Xpred(T0 + k∆t) and compare them with with Xtrue(T0 + k∆t) in

training dataset. Since ESN already has been trained on the same trajectory Xtrue(t) for t ∈ [0, T0],

reservoir states r(t) have been updated using (4.2) and we use reservoir states at time T0 to predict

Xpred(T0 + ∆t). We then continue generating predictions Xpred(T0 + k∆t) as discussed earlier in

this section.

Out-of-sample Prediction. We perform out-of-sample validation to realistically test the

forecasting performance of the ESN. This means that we train the ESN on the training dataset, but

testing the prediction utility on different (testing) data. Thus, we use the initial condition Xtrue(T0)

in training dataset as an initial condition and utilize ESN to generate values Xpred(T0 + k∆t)

describing the trajectory. We also assume that we do not have any prior knowledge of the testing

trajectory, and therefore, the reservoir states are taken as r(T0) = ~0. Similar to the in-state

prediction, we use (4.9) to generate Xpred(T0+k∆t) and compute the L2 error between the predicted

trajectory and Xtrue(T0 + k∆t) in testing dataset.

Out-of-sample Prediction with Reservoir Warm-up. Internal reservoir states r(t) repre-

sent the long-term memory of the reservoir from the previous internal states and input trajectory.

In other words, the reservoir state present the long-term memory from historical inputs. The echo

state property states that the effect of this long-term memory of future predictions should vanish

gradually as time lag increases. In particular, the effect of the reservoir state r(T0) should decay

gradually for future predictions Xpred(T0 + k∆t), r(T0 + k∆t), as lag k∆t increases. However, for

relatively small values of k this effect can be considerable. Thus, we can use the reservoir warm-up
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to improve the prediction utility, especially for small lags k. For T0 > 0 the reservoir warm-up

requires several prior value of the “true” trajectory Xtrue(T0−q∆t) with q = 1, . . . , Q. The param-

eter Q∆t is the warm-up size. Then, we use equation (4.2) with Xtrue(T0 − q∆t), q = Q, . . . , 1 to

warm-up the internal reservoir states and carry out prediction starting at time T0 with r(T0) 6= 0.

This allows us to obtain a more realistic internal reservoir state r(T0). The optimal warm-up size

depends on the amount of memory the given task requires. Warm-up size is also related to the

spectral radius. Typically, for models with long memory, the spectral radius of the connectivity

matrix is ρ(A) ≈ 1 and such models require a relatively large warm-up size Q∆t. For models with

weak long-term dependence the spectral radius is typically small, i.e., ρ(A)� 1 and the warm-up

size can be taken also small as Q = 2 or even Q = 1.
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5 Shallow Water Equations

This chapter discusses the decaying turbulence, one-dimensional shallow water equations. The

content is arranged as follows. Shallow-water equations, domain geometry, and numerical method

for generating solutions and training dataset are introduced in section 5.1. First, we consider a

standard test with a hill topography in the middle of the domain. The numerical fluxes are com-

puted with centered discretization by the energy conservative scheme [26], which is well-balanced

and energy-conserved. The computation of Lyapunov exponents is discussed in section 5.2. The

chaotic characterization of the one-dimensional shallow water equation is discussed with respect to

different perturbations of the background solution.

5.1 One-dimensional Shallow Water Equations

The Shallow Water Equations (SWE) are a usual model to describe fluid flow in rivers, channels,

estuaries or coastal areas. The main assumption of the shallow water model is that the horizontal

length scale is much greater than the depth scale. Thus, one can get rid of the vertical dimension

by averaging the mass and momentum conservation equations over the depth.

In one dimension of space, the shallow water equations are defined on the space domain Ω =

(0, L) and the time interval t = (0, T ):

∂th+ ∂x(hu) = 0, (5.1)

∂t(hu) + ∂x(hu2 +
1

2
gh2) + gh∂xz − ν∂xx(hu) = 0, (5.2)

where t and x denote time and space respectively, h(x, t) is the water height, u(x, t) is the fluid

velocity, g is the gravitational constant, ν > 0 is viscosity constant, z(x) is the bottom topography,

which does not depend on time. We use periodic boundary conditions h(x, t) = h(x + L, t),

u(x, t) = u(x+ L, t).

There is no analytical solution to this problem, therefore a reference solution is computed using

a energy conservative scheme [26] on a fine grid. It is a second-order accurate approximation of
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the one-dimensional shallow water system. The scheme is well-balanced, energy-conserving, and

preserves the “lake at rest” equilibrium solution [26].

In our work, numerical solution of the SWE is obtained on an equipartitioned time-space grid.

In particular, the time interval is divided into Nt time steps of length ∆t and for all n = {0, . . . , Nt},

tn := n∆t. The domain is divided into Nx cells of length ∆x. The left end, center, and right end of

the i-th cell are denoted by xi− 1
2
, xi, and xi+ 1

2
, respectively. The water height h and topography z

are discretized at the center of the cells, whereas velocity u is discretized at the interfaces between

the cells.

Let we set M := {1, . . . , Nx}. The mass conservation equation and momentum balance equation

are discretized with an energy conservative (when ν = 0) scheme. For i ∈ M the discrete scheme

reads

d

dt
hi = − 1

∆x

(
h̄i+ 1

2
ūi+ 1

2
− h̄i− 1

2
ūi− 1

2

)
, (5.3)

d

dt
hiui =− 1

∆x

(
h̄i+ 1

2
ū2
i+ 1

2

+
g

2
h̄2
i+ 1

2

− h̄i− 1
2
ū2
i− 1

2

− g

2
h̄2
i− 1

2

)
(5.4)

− g

2∆x

(
h̄i+ 1

2
z̃i+ 1

2
+ h̄i− 1

2
z̃i− 1

2

)
+

ν

(∆x)2

(
h̃i+ 1

2
ũi+ 1

2
− h̃i− 1

2
ũi− 1

2

)
,

where

ãi+ 1
2

= ai+1 − ai, āi+ 1
2

= ai+1 + ai, (5.5)

denote the jump and the average of a quantity a across the interface xi+1/2, respectively.

The Courant–Friedrichs–Lewy (CFL) condition is a condition for the stability of numerical

methods that model convection or wave phenomena. The time step ∆t is determined by a standard

CFL condition. The water height remains non-negative [98] at time tn+1 for a CFL number of

u∆t

∆x
≤ 0.45.

We present a standard numerical experiment considered in many papers, including [36]. The
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Figure 9: Schematic representation for the physical domain and dependent variables for the one-
dimensional shallow water model.

bottom topography is a parabolic “bump” in the middle of the domain Ω := [0, L], with height TH

and width TW .

z(x) =


TH

(
1−

(
x− 0.5L

0.5TW

)2
)

if |x− 0.5L| ≤ 0.5TW

0 otherwise.

(5.6)

Here, we study the creation of water waves starting from a flat surface. In particular, we choose

the initial state with a flat initial water level and constant initial velocity

h(x, t = 0) + z(x) = H0, u(x, t = 0) = U0. (5.7)

We also consider various perturbations of this initial state.

Table 8: Parameters for one-dimensional shallow water equations.

L g ν H0 U0 TH TW ∆x ∆t

40 32 0.50 4.0 2.5 0.48 8.0 0.1 0.0005
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We consider the setup summarized in Table 8. The numerical solution is computed with the

energy conservative scheme on a fine grid with ∆x = 0.1 and ∆t = 0.0005. The domain L = 40,

gravitational constant g = 32 and viscosity constant ν = 0.5. The parameters TH and TW

correspond to the topography height and width, respectively. Figure 10 presents a 3D plot of the

water height h(x, t) + z(x) and snapshots of the water height, momentum and velocity.

Perturbation is a very small disturbance of the background state. One of the goals here is to

study how these disturbances propagate in time. The a% perturbation level of water heights means

the initial water level h+z(t = 0) ranges form (1−a%)×H0 to (1+a%)×H0 with mean value H0,

which is the water level for the background state. For example, h+z(x, t = 0) = 4+0.2×sin(2πx/L)

is a example of 5% perturbation level on initial water heights in the first experiment. We generate

perturbations of the background state (5.7) by considering the following initial conditions

h(x, 0) + z(x) =


H0 ± aH0 sin(2kπ(x− φ1L)/L), x ∈ [φ1L, φ2L],

H0, otherwise,

(5.8)

u(x, 0) = U0.

Here, a is the perturbation level. Typically, we randomly choose 1%- 10% perturbation level, such

that a ∈ [0.01, 0.1]. The frequency of the perturbation is determined by k = {1, 2, . . . , 10}, which

is also chosen at random. Parameters φ1 and φ2 control the shift and position of the perturbation.

In particular, we first generate an integer b ∈ Uniform[1, . . . , k] which controls the fraction of the

domain where the perturbation is non-zero, then φ1 ∼ Uniform[0, 1− b/k] and φ2 − φ1 =
b

k
. The

velocity is taken as constant U0 for all simulations in the chapter 6.

5.2 Lyapunov Exponent

Lyapunov exponents of a dynamical system quantify the rate of separation (or compression) of

trajectories with nearby initial conditions along with various directions in the phase space. Quanti-

tatively, two trajectories in phase space with initial (small) separation vector δX0 diverge at a rate

55



space

0
5
10
15
20
25
30
35
40

time0 2 4 6 8 10

wa
te

r l
ev

el

3.94
3.96
3.98
4.00
4.02
4.04
4.06

3.94

3.96

3.98

4.00

4.02

4.04

4.06

(a) 3D plot

(b) Snapshots

Figure 10: Simulations of the 1D shallow water equation with initial conditions (5.7). Part a -
water height h(x, t) + z(x). Part b - snapshots the water level h(x, t) + z(x) (blue line), momentum
hu(x, t)(red line) and velocity u(x, t)(green line) at time t = {0.01, 0.5, 1.0, 2.0}.
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given by |δX(t)| ≈ eλt|δX0|. This expression is valid if the dynamics of X(t) is well-approximated

by a linear system. If X(t) ∈ Rn, then the rate λ can be different for vectors δX0 oriented along

different directions. The maximal (or largest) Lyapunov exponent is the largest separation rate over

all possible directions. In particular, the maximal Lyapunov exponent plays an important since it

characterizes the overall separation (or compression) rate of nearby trajectories and determines the

notion of predictability for a dynamical system. A strictly positive maximal Lyapunov exponent is

often considered as a definition of deterministic chaos.

For each sample Xi(t), we compute the Lyapunov exponent

λi(t) =
1

t
ln
||Xi(t)−X0(t)||L2

||Xi(0)−X0(0)||L2

, (5.9)

where X0(t) is the background state (5.7). The trajectory Maximal Lyapunov exponent is λmaxi =

max
t
λi(t). Expression (5.9) is easily interpretable for short times when the dynamics of the SWE

is well-approximated by a linear system. For larger times, nonlinear effects become important, but

λi(t) can still be understood as the rate of separation of two trajectories. In addition, to better

understand the separation of trajectories for all dynamic variables in the SWE, we take X(t) as

different combinations of dependent variables. In particular, we compute Lyapunov exponents for

four cases - (i) X(t) ≡ {h(xj , t)}, (ii) X(t) ≡ {hu(xj , t)}, (iii) X(t) ≡ {hu(xj , t), h(xj , t)}, (iv)

X(t) ≡ {u(xj , t)}, where in all four cases j = 1, . . . , Nx.

Lyapunov Exponent for the First Experiment. Next, we examine the behavior of finite-

time Lyapunov exponents for the SWE with parameter settings (Table 8) for the background state

(5.7) and nearby trajectories generated with the following initial conditions

h(x, 0) + z(x) =


4± 4a sin(2kπ(x− φ1L)/L), x ∈ [φ1L, φ2L],

4, otherwise,

(5.10)

u(x, 0) = 2.5.
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Here, a is the perturbation level taken in the range 1% - 10%, k determines the frequency of

the perturbation in the range k = {1, . . . , 10}. Parameters φ1 and φ2 determine the shift of the

perturbation and the domain where the perturbation is non-zero. In particular, these parameters

are computed as follows

b ∼ Uniform[1, . . . , k], φ1 ∈ [0, 1− b

k
], φ2 = φ1 +

b

k
.

The perturbation is non-zero in the whole domain [0, L] when b = k, and perturbation “occupies”

only a fraction b/k of the domain if b < k.

Figures 11, 13, and 15 depict the numerical results of computing λi(t) for some particular initial

conditions given as perturbations of the background state (5.7). In particular, Figure 11 depicts

the influence of the frequency of perturbation, Figure 13 illustrates the influence of the magnitude

of perturbation, and Figure 13 shows the influence of the localized position of perturbation. In

addition, Figures 12, 14, and 16 depict snapshots of the numerical solution for the corresponding

perturbations in Figures 11, 13, and 15, respectively.
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Figure 11: Numerical computation of Lyapunov exponents using (5.9) for initial conditions h(x, 0)+
z(x) = 4 + 0.04 sin(kπx/L), and u(x, 0) = 2.5; Blue line - ICa1 : k = 2, Orange line - ICa2 : k = 4,
green line - ICa3 : k = 8. black line - “flat” IC in (5.7).
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Figure 12: Snapshots of solutions corresponding to computation of Lyapunov exponent in Figure
11. Initial conditions are h(x, 0) + z(x) = 4 + 0.04 sin(kπx/L), and u(x, 0) = 2.5; Blue line -
ICa1 : k = 2, orange line - ICa2 : k = 4, green line - ICa3 : k = 8. black line - “flat” IC in (5.7).
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Figure 13: Numerical computation of Lyapunov exponents using (5.9) for initial conditions h(x, 0)+
z(x) = 4+a sin(4πx/L), and u(x, 0) = 2.5; Blue line - ICb1 : a = 0.04, orange line - ICb2 : a = 0.08,
green line - ICb3 : a = 0.2, black line - “flat” IC in (5.7).
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Figure 14: Snapshots of solutions corresponding to computation of Lyapunov exponent in Figure 13.
Initial conditions are h(x, 0)+z(x) = 4+a sin(4πx/L), and u(x, 0) = 2.5; Blue line - ICb1 : a = 0.04,
orange line - ICb2 : a = 0.08, green line - ICb3 : a = 0.2, black line - “flat” IC in (5.7).
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Figure 15: Numerical computation of Lyapunov exponents using (5.9) for initial conditions with
perturbations in a different part of the domain; Blue line - ICc1 : h(x, 0)+z(x) = {4+0.04 sin(8π(x−
0.1L)/L) if x ∈ [0.1L, 0.6L], 4 otherwise} and u(x, 0) = 2.5, orange line - ICc2 : h(x, 0) + z(x) =
4 + 0.04 sin(8πx/L) and u(x, 0) = 2.5.
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Figure 16: Snapshots of solutions corresponding to computation of Lyapunov exponent in Figure
15. initial conditions with perturbations in a different part of the domain; Blue line - ICc1 :

h(x, 0) + z(x) = {4 + 0.04 sin(8π(x − 0.1L)/L) if x ∈ [0.1L, 0.6L], 4 otherwise} and u(x, 0) = 2.5,
orange line - ICc2 : h(x, 0) + z(x) = 4 + 0.04 sin(8πx/L) and u(x, 0) = 2.5.
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6 ESN Performance and ESN Parameter Setting for the SWE

In this chapter, we analyze numerically various configurations and parameter settings of the ESN

with respect to its prediction skill for the solution of the shallow-water equations. In particular,

we analyze importance of the following features and parameters - (i) reservoir warm-up in section

6.2; (ii) including additional nonlinear transformation in reservoir construction in section 6.3; (iii)

spectral radius of the connectivity matrix in section 6.4; (iv) reservoir size in section 6.4. This

study allows us to select the optimal construction for the ESN which is used for predicting the

solution of the SWE. The main goal is to understand the performance of the ESN and choose the

“best” ESN architecture. We also present some predictions for particular trajectories. We use data

from the first experiment in Table 8 to carry out these tests.

Recall, that the prediction setting for the Reservoir Computing is introduced in section 4.3 and

L2 relative error (4.11) of prediction is used as a measure of ESN performance. Time point T0

is defined as starting time of prediction. We carry out two sets of experiments when T0 = 0 and

T0 = 10. The choice T0 = 10 is to allow nonlinear effects to develop so that the solution looks like

a more realistic solution of the SWE. Only the initial condition Xi(T0) is used as an initial input

data into the ESN, and future time-instances are predicted recursively as discussed in section 4.3.

Therefore, prediction errors accumulate over time. To assess the overall performance of the ESN,

all N = 100 trajectories are predicted and the L2 relative prediction error is averaged over 100

trajectories.

6.1 Training and Testing Dataset

Two datasets are generated for the numerical experiments with Reservoir Computing. These two

datasets are generated in a completely similar manner using initial conditions (5.10). We generate

N = 100 trajectories Xi(x, t) with i = 1, . . . , N for both training and testing data. Each trajectory

includes both, the total water height and momentum, i.e., Xi(x, t) ≡ {h(x, t) + z(x), u(x, t)h(x, t)}

and discretized with Nx = L/∆x spatial points, i.e., Xi(t) = {hi(xj , t) + z(xj), ui(xj , t)hi(xj , t)}
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with j = 1, . . . , Nx. Both datasets are generated on time interval [0, 20] with a discrete time step

∆ = 0.01. However, only training data on the time-interval [0, 10] is used for training. The training

dataset with t ∈ [10, 20] is used for in-sample prediction, as discussed in section 4.3. Testing dataset

is used for out-of-sample testing the predictive utility of the ESN in various regimes. In particular,

we test ESN out-of-sample prediction utility on time-intervals [T0, T0 + 10] with T0 = 0, 5, 10.

“True” solution Xi(T0) is used as an initial input into the reservoir and solution at a later time is

obtained recursively as discussed in section 4.3. For T0 = 5, 10 we also compare the out-of-sample

prediction with and without the reservoir warm-up. We would like to emphasize that there are no

duplicates in the training and test dataset.

Averaged Lyapunov Exponent for Training and Testing Dataset. The averaged Lya-

punov exponent Λ(t) over a dataset with N trajectories is defined as sample mean of individual

Lyapunov exponents

Λ(t) =
1

N

N∑
i=1

λi(t). (6.1)

Similarly, the maximal Lyapunov exponent is Λmax = max
t

Λ(t) and the Lyapunov time is LT =

1/Λmax. Figure 17 depicts averaged Lyapunov exponent Λ(t) in (6.1) computed with respect to

(a) Lyapunov exponent for training dataset (b) Lyapunov exponent for testing dataset

Figure 17: Averaged Lyapunov exponent Λ(t) in (6.1) and upper and lower bounds over all indi-
vidual trajectories for the training data (left) and testing data (right).

water level h+z and momentum hu over 100 samples for training testing datasets. We also present

upper and lower bounds min
i
λi(t) and max

i
λi(t) over all trajectories in the two datasets, i.e., over
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i = 1, . . . , N . For both datasets, there is a short period (t ≤ 0.1) when the averaged Lyapunov

exponent is increasing followed by a long-term downward trend. The largest Λ(t) is approximately

15 for both datasets and the upper bound for both datasets is approximately equal to 30. The

behavior of averaged Lyapunov exponents is very similar for the training and testing datasets.

Therefore, both datasets are comparable with respect to how fast (on average) trajectories diverge

from the background state (5.7).

6.2 Importance of Reservoir Warm-up Before the First Prediction Step

The prediction task begins with the initial condition being used as an input into the ESN and the

goal of the prediction task is to use outputs of the ESN recursively to forecast future values of the

trajectory. A forecast can begin at T0 = 0 (only one snapshot of trajectory is known) or at T0 > 0

(some small initial part of the trajectory is known). If the forecast starts with initial conditions

at T0 = 0, the reservoir states are initialized with zero for out-of-sample prediction, i.e., r(0) = ~0.

If prediction task starts with initial conditions T0 > 0, we can use reservoir states r(T0) obtained

during training for the in-sample prediction. We also discuss how to obtain more practical values

of the reservoir states for out-of-sample predictions starting with T0 > 0.

The echo state property states that the effect of a previous state and a previous input on a

future state should vanish gradually as time passes, and not persist or even get amplified. In

other words, the reservoir states present the long-term memory from the historical inputs and this

memory should decay in time.

We analyze the dependence of the ESN performance on the reservoir state for training and

testing data in Figure 18. The testing dataset is generated out of 100 distinct samples are generated

with small (1%-10%) perturbation of the background state using (5.10). The “in-sample” and

“out-of-sample” in Figure 18 refer to predictions of trajectories from training and testing datasets,

respectively. Figure 18 shows the ESN performance for the in-sample and out-of-sample predictions

at times T0 = 0 and T0 = 10. We also present the in-sample prediction starting at time T = 10

when the memory of reservoir at first prediction time step T0 is ignored (i.e., r(T0) = ~0). We can
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Figure 18: Performance of ESN with/without reservoir. In-sample prediction (red solid line) start
with trained reservoir states, while the rest three dotted lines start with zero-value reservoir states.
In-sample prediction and Out-of-sample prediction are (red, blue) and (orange, green) respectively.
All results averaged over 100 samples (1% - 10% perturbation) with such ESN setting: D = 5000,
f = tanh, 100 training samples with 1% - 10% perturbation, training time t = [0, 10].

see that the initial reservoir state makes a considerable difference during the first few prediction

steps. In particular, prediction errors jump sharply at T0 + ∆t when the reservoir state r(T0) = ~0

(green, blue, orange curves in Figure 18). For the in-sample prediction task, there is an obvious gap

between trained r(T0) (red solid line) and zero-value reservoir state r(T0) = ~0 (blue dashed line).

We also observe that there is no difference between the in-sample and out-of-sample prediction

starting at time T0 = 10 when r(T0) = ~0. Finally, we also can notice that out-of-sample prediction

errors are larger for predictions starting with T0 = 0 (green line) than T0 = 10 (orange line).

This probably implies that the initial conditions considered at T0 = 0 do not represent a generic

solution of the SWE equation. As expected, prediction errors accumulate over time. Overall, we

can conclude that the memory of the reservoir is important, especially for the ongoing SWE.

Predictions with Reservoir Warm-Up. Since the utility of predictions depends on the

reservoir state, we can “warm-up” the reservoir with running several iterations of the reservoir

update (4.2) with inputs prior to T0. This allows us to obtain more realistic reservoir state r(T0).

To warm the reservoir, we use (4.2) with the “true” values of the trajectory {Xtrue(t), t = T0 −

q∆t, . . . T0 − ∆t}. We denote Q = q∆t as the warm-up size. Recall, that the testing dataset is
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sampled with the time step ∆ = 0.01. In practice, if “true” snapshots of the solution are not known

prior to T0, then we would have to run the fully resolved shallow-water numerical solver to warm

up the reservoir. However, such simulations would be very short but provide considerable benefits

by improving the accuracy of predictions.

We compare no warm-up Q = 1, Q = 0.01 warm-up, and Q = 0.05 warm-up size for out-of-

sample predictions in Figure 19. We consider three different prediction intervals. One prediction

interval starts at time T0 = 0 and two other intervals start at times T0 = 5 and T0 = 10. We

would like to point out that sub-sampling time step is ∆ = 0.01, therefore, warm sizes of Q = 0.01

and Q = 0.05 correspond to just one and five iterations of (4.2), respectively. Figure 19 illustrates

that reservoir warm-up improves utility of prediction starting at T0 = 5 and T0 = 10 (subplots (b)

and (c)), but does not improve prediction starting with T0 = 0. Predictions with sizes Q = 0.01

and Q = 0.05 almost overlap on all three plots in Figure 19. Therefore, we can conclude that

warm-up size Q = 0.01 (or q = 1) is sufficient to improve the performance of the ESN and longer

warp-up sizes do not bring further improvements. The sufficiency of a short warm-up size Q = 0.01

indicates that the reservoir has a very weak long-term dependence. Equivalently, the influence of

each new input sample X(t) is amplified quickly within τ = 0.01. In addition, we note that it is

more difficult to predict the dynamics of the SWE with an “artificial” initial conditions starting

at T0 = 0. For later times, a natural dynamics of the SWE develops and the reservoir is more

efficient for predictions starting with T0 > 0. This is not surprising, since the ESN has been trained

primarily on “natural” SWE dynamics. Overall, we can conclude that it is beneficial to warm up

the reservoir for a short warm-up time Q = 0.01.
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(a) out-of-sample prediction, t=[0, 10] (b) out-of-sample prediction, t=[5, 15]

(c) out-of-sample prediction, t=[10, 20]

Figure 19: Out-of-sample prediction with warming up reservoir. In (a), the black dotted line is
prediction start at time t = 0 with zero-value reservoir and colored solid lines are prediction start
at time t =warm-up with warm states by inputting ESN with Xtrue(t), t =[0, warm-up]. In (b)(c),
all prediction start at time t = 5 and t = 10 respectively. The blue and orange lines are overlapped
in (b)(c). All results averaged over 100 samples (1% - 10% perturbation) with such ESN setting:
D = 5000, f = tanh, ψ = ψ1, 100 training samples with 1% - 10% perturbation, training time
t = [0, 10].

70



6.3 Nonlinearity ψ and f in the Reservoir

In [65, 16], the authors demonstrated that a nonlinear transformation ψ between r and r̃ (the

columns of the matrix r̃ should be chosen as nonlinear combinations of the columns of the reservoir

state matrix r),

r̃(t) = ψ
(
r(t)

)
,

is essential for skillful predictions, because this nonlinear transformation increases the expression

power reservoir dynamics. Both [65] and [16] suggest a simple “odd squared” transformation, where

every odd element is squared while even elements remain unchanged.

In order to check the degree of the polynomial transformation for the odd elements, we consider

quadratic, cubic, and quartic of the odd elements, while keeping the original even elements in the

reservoir, i.e., we consider the transformation

ψ1(r) =


rnj if j is odd,

rj if j is even ,

(6.2)

with n = 1, 2, and 3. Figure 20 shows that the nonlinear transformation in reservoir status

improves the ESN prediction. Figure 20 also demonstrates that the quadratic function has the best

performance in both in-sample and out-of-sample tests. We also checked fractional powers, such

as power=
1

2
, as well as tanh function, but ESN with these nonlinear transformations have worse

forecasting skills than basic reservoir without any nonlinear transformation. Thus, we can conclude

that the quadratic transformation improves the skill of predictions in our case.

We perform additional test of quadratic transformations where we compare the following three

transformations

ψ1(r) =


r2
j , j odd,

rj , j even ;

ψ2(r) =


rj ,×rt,j+1 j odd,

rj , j even;

ψ3(r) =


rj−1,×rt,j+1 j odd,

rj , j even.
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(a) in-sample prediction (b) out-of-sample prediction

Figure 20: ESN performance with various power of polynomial transformation algorithms
(quadratic, cubic and quartic) in the odd elements (black, orange and green lines, respectively)
and no transformation (blue dotted line). All results averaged over 100 samples (1% - 10% per-
turbation) with such ESN setting: D = 5000, f = tanh, 100 training samples with 1% - 10%
perturbation, training time t = [0, 10].

ψ1 is n = 2 case in Figure 20. Figure 21 depicts a comparison of ESN prediction with the three

nonlinear transformations above. The nonlinearity ψ1 has the best performance in both in-sample

and out-of-sample tests, while ψ2 and ψ3 moderately degraded performance. Hence, we choose ψ1

as a nonlinear transformation in reservoir status before readout.

(a) in-sample prediction (b) out-of-sample prediction

Figure 21: ESN performance with three kinds of “odd squared” transformation in reservoirs. All
results averaged over 100 samples (1% - 10% perturbation) with such ESN setting: D = 5000,
f = tanh, 100 training samples with 1% - 10% perturbation, training time t = [0, 10].

After we fixed ψ1 with n = 2 as the nonlinear transformation of reservoir states, we also

examine the effect of changing the unit activation function f = tanh, which is applied to units at
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every update (4.9), in Figure 22. The nonlinear activation function (compounded throughout each

time step) is supposed to provide a critical nonlinearity to most machine learning architecture,

including ESN. However, we discovered that substituting the nonlinear f = tanh with the identity

function f(x) = x (i.e., removing the activation function f = tanh) has a minor effect on overall

in-sample performance. However, since the nonlinearity f = tanh slightly improves ESN prediction

ability, we keep the nonlinear activation

r(t+ ∆t) = f
(
Ar(t) +WinX(t)

)
.

(a) in-sample prediction (b) out-of-sample prediction

Figure 22: ESN performance with/without unit activation function f = tanh. Errors are averaged
over 100 in-sample predictions (1%-10% perturbation) with ESN setting: D = 5000, ψ = ψ1, 100
training samples with (1%-10%) perturbation, training time t = [0, 10].

In summary, ψ1 with n = 2 transformation of reservoir states and activation function f = tanh

improve the ESN predictions. In particular, ψ1 seems to be more important for improving the

utility of predictions. Thus, the nonlinear transformation ψ1 and the activation function f = tanh

are used in the implementation of the ESN for the rest of the dissertation.
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6.4 Connectivity Matrix A and Size of the Reservoir D

Spectral Radius of the Connectivity Matrix. The connectivity of the neurons in the reservoir

is represented by the adjacency matrix A of size D×D whose values are drawn from a highly spare

uniform distribution. Figure 23 depicts the performance of the ESN with connectivity matrices

with different spectral radius. We can see that the performance difference is rather small, but ESN

with ρ(A) = 0.1 has the best performance. The spectral radius condition ρ(A) ≤ 0.1 corresponds

to a low spectral radius, which intuitively implies that the dependence of the reservoir state r(t)

on past inputs Xt−τ decays exponentially quickly in lag time τ . ESN for SWE must have a low

spectral radius condition, which is confirmed in Figure 23. β2 = ρ(A) = 0.01 is too small for SWE

and any ρ(A) ≥ 0.1 downgrades the ESN performance. Therefore, we take ρ(A) = 0.1 in formula

(4.1) when constructing the connectivity matrix A.

(a) in-sample prediction (b) out-of-sample prediction

Figure 23: ESN performance with various spectral radius condition ρ(A) . All results averaged over
100 samples (1% - 10% perturbation) with ESN setting: D = 5000, f = tanh, ψ = ψ1, 100 training
samples with 1% - 10% perturbation, training time t = [0, 10].

Reservoir Size. In the sense of statistical learning theory, increasing the reservoir size D is

the most direct way of increasing the model capacity. However, increasing D also leads to a higher

computational load. The unifying theme throughout all applications is to use a fixed RNNs as

a random nonlinear excitable medium, whose high-dimensional dynamical “echo” response to a

driving input is used as a non-orthogonal signal basis to reconstruct the desired output by a linear

combination, minimizing some error criteria.
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Figure 24 shows that the scaled prediction error E slightly declines as D is increased from

800 to 5000, and then barely changes as D is doubled in size to 10000. Training the ESN with

D = 10000 versus D = 5000 comes with a higher computational cost, while barely any improvement

in accuracy is gained. Thus, concepts from inexact computing can be used to choose D such that

precision is traded for large savings in computational resources, which can be then reinvested into

more simulations, higher resolutions for critical processes, etc.

Figure 24: The scaling of average prediction error for in-sample at t = [10, 20] (red squared),
out-of-sample at t = [10, 20] (green triangle) and out-of-sample at t = [0, 10] (blue circle), as the
reservoirs size D is changed from D = 800 to 10000. All results averaged over 100 samples (1%
- 10% perturbation) with ESN setting: f = tanh, ψ = ψ1, 100 training samples with 1% - 10%
perturbation, training time t = [0, 10].

Conclusion. We can see that the performance of the ESN is not very sensitive to the changes

in the spectral radius of the adjacency matrix A and reservoir size D. The reservoir adjacency

matrix A with a low spectral radius condition ρ(A) ≈ 0.1 works best for the SWE. The reservoir

size D is fairly inconsequential once it exceeds a critical number of neurons, endowing the model

with sufficient capacity.

The experiments of this chapter suggest ESN settings for predicting SWE trajectories. ESN

has D = 5000 reservoir neurons, where the nonlinear transformation ψ = ψ1 with n = 2 and unit

activation function f = tanh are used to enhance expression power. The connectivity matrix of

reservoir A is chosen sparsely and then re-scaled by (4.1) with β2 = 0.1. The input-to-reservoir
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matrix Win is scaled with β1 = 0.01. Only the weights Wout is trained with L2 regularization

strength λ = 10−5. Numerical tests in this chapter show that such ESN is able to predict SWE

trajectories with high accuracy (averaged L2 relative error less than 0.4%) until 10 Model Time

Unit (MTU), given the true value Xtrue(T0) of the initial condition for the SWE trajectory or the

first two values, Xtrue(T0) and Xtrue(T0 + ∆), to carry out the reservoir warm-up. ESN settings

are preserved for the rest of the dissertation unless noted otherwise.
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7 SWE Experiment Results

In this chapter, the ESN is used for out-of-sample prediction. We utilize exactly the same ESN to

predict solutions with different initial conditions. We would like to emphasize that Wout is fixed

after training and not retrained. The ESN settings are (see chapter 5)

D = 5000, ρ(A) = 0.1, f = tanh, ψ = ψ1.

The dataset for training ESN consists of 100 trajectories generated with initial conditions as small

perturbation (see equation (5.10)) of the background state. Perturbation is only added to the total

water height. The perturbation level for the initial condition is in the range 1% - 5% with wave

numbers k = 1, . . . , 7. The initial velocity is not perturbed. Numerical solution is saved with ∆x =

0.1, ∆ = 0.1 and t = [0, 30]. Weights Win and A are generated at random as discussed previously

in chapters 4 and 6. The weights Wout are saved after training and not modified afterwards.

Recall the prediction setting for the ESN introduced in section 4.3. Thus, the “true” initial

condition Xtrue(x, 0) in testing dataset is used as an initial input into the ESN, and consecutive

predictions are generated without relying on the “true” trajectory. Similar to other experiments

L2 relative error (4.11) is used to measure the utility of prediction.

The maximal Lyapunov exponent (MLE) λmaxi quantifies the rate of exponential growth (or

compression) for small initial perturbations. Larger λmaxi means that near-by trajectories separate

faster, which implies that it should be more difficult to predict individual trajectories for larger

λmaxi . However, for the SWE equation considered here, the viscosity term ν(hu)xx plays a stabilizing

role and might “kill” high-frequency perturbations fast. Recall, that the averaged Lyapunov time

for the training and testing datasets is approximately 0.06 (see section 6.1 and Figure 17), but

there are also trajectories with very small Lyapunov exponents λ = O(1).
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7.1 Prediction of Trajectories with Different Initial Perturbations

Here we describe our numerical results for predicting individual trajectories with different initial

conditions. Most initial conditions are generated as small perturbations of the background state

(5.10) and, thus are consistent with the training dataset.

Initial Perturbation with Different Frequency

In this set of experimental results we fix perturbation at 5% and consider initial conditions for

SWE with different frequencies of perturbation

ICd1 : h(x, 0) + z(x) = 4 + 0.2 sin(2πx/L), u(x, 0) = 2.5,

ICd2 : h(x, 0) + z(x) = 4 + 0.2 sin(4πx/L), u(x, 0) = 2.5, (7.1)

ICd3 : h(x, 0) + z(x) = 4 + 0.2 sin(8πx/L), u(x, 0) = 2.5.

The corresponding maximal Lyapunov exponents (5.9) are computed with respect to the full state

vector {hu(xj , t), h(xj , t)}. The maximal Lyapunov exponents are λmaxi = 1.38 (ICd1), 2.67 (ICd2)

and 5.64 (ICd3). Prediction errors for initial conditions (7.1) are depicted in Figure 25. Figure

25 demonstrates that ESN has slightly better performance for predicting the initial conditions

with bigger MLE. We observe that numerical errors for higher-frequency initial perturbations are

larger on the time interval [0, 10], but after time t = 10 the L2 errors for the high-frequency initial

perturbation ICd3 decays sharply. It is possible that viscosity has a stronger effect on the trajectory

with a higher-frequency initial perturbation ICd3 and, thus, solution decays faster after t = 10.

Figures 26 and 27 depict predictions of the ESN for the initial conditions in (7.1). Overall, the

ESN predicts solutions with initial conditions in (7.1) very well. Therefore, we can conclude that

ESN has a high utility of predictions for initial conditions of the form (7.1).
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(a) water level (b) momentum

Figure 25: L2 relative errors (4.11) in ESN predictions of the total water height h(x, t) + z(t) (left)
and momentum h(x, t)u(x, t) (right) with initial conditions ICd1 (blue), ICd2 (orange) and ICd3

(green) in (7.1).

Initial Perturbation with Different Amplitude

In this section, we investigate how the perturbation level affects the utility of predictions. In this

experiment, the p% perturbation level is defined as the extreme value of perturbation compared

with the background state. We change the perturbation level from 1% to 10% by considering the

following initial conditions

ICe1 : h(x, 0) + z(x) = 4 + 0.04 sin(2πx/L), u(x, 0) = 2.5,

ICe2 : h(x, 0) + z(x) = 4 + 0.2 sin(2πx/L), u(x, 0) = 2.5, (7.2)

ICe3 : h(x, 0) + z(x) = 4 + 0.4 sin(2πx/L), u(x, 0) = 2.5.

The maximal Lyapunov exponent is approximately 1.38 for all perturbation levels. As shown in

Figure 28, it is clear that perturbation level affects the utility of the ESN prediction. Initially, for

t ∈ [0, 20], prediction errors are roughly proportional to the initial perturbation level. However, for

t > 20 prediction errors saturate. Also, prediction errors are relatively small reaching 1.5% for the

initial perturbation ICe3 with 10%. Figure 29 and 30 present the snapshots and a trajectory of

predicted water level and momentum.
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(a) Snapshots of the water level h(x, t) + z(x) for t = 0.1, 20, 40, 60 with initial conditions ICd1

(top), ICd2 (middle) and ICd3 (bottom) in (7.1).

(b) Time-series of the water level h(x, t) + z(x) for x = 0.1 with initial conditions ICd1 (top),
ICd2 (middle) and ICd3 (bottom) in (7.1).

Figure 26: ESN prediction of the SWE solutions with initial conditions (7.1). Comparison of the
water level in direct numerical simulations of the SWE (black line) and predictions of the ESN (red
line).
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(a) Snapshots of the momentum u(x, t)h(x, t) for t = 0.1, 20, 40, 60 with initial conditions ICd1

(top), ICd2 (middle) and ICd3 (bottom) in (7.1).

(b) Time-series of the momentum u(x, t)h(x, t) for x = 0.1 with initial conditions ICd1 (top),
ICd2 (middle) and ICd3 (bottom) in (7.1).

Figure 27: ESN prediction of the SWE solutions with initial conditions (7.1). Comparison of the
momentum in direct numerical simulations of the SWE (black line) and predictions of the ESN
(red line).
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(a) water level (b) momentum

Figure 28: L2 relative errors (4.11) in ESN predictions of the total water height h(x, t) + z(t) (left)
and momentum h(x, t)u(x, t) (right) with initial conditions ICe1 (blue), ICe2 (orange) and ICe3
(green) in (7.2).

Initial Perturbation with Multiple Frequencies

Here we study how initial conditions with multiple frequencies affect the ESN prediction of SWE

solutions. We consider mixed-frequency perturbations

u(x, 0) = 2.5,

ICf1 : h(x, 0) + z(x) = 4 + 0.2 sin(2πx/L),

ICf2 : h(x, 0) + z(x) = 4 + 0.2 sin(2πx/L)− 0.08× sin(6πx/L), (7.3)

ICf3 : h(x, 0) + z(x) = 4 + 0.4 sin(2πx/L)− 0.08× sin(6πx/L) + 0.04× sin(12πx/L).

Here ICf2 is a 2-level (5% and 2%) mixed perturbation example and ICf3 is a 3-level (5%, 2% and

1%) mixed perturbation example.

Figure 31 shows that adding higher-frequency perturbations to the initial conditions has a minor

effect on the ESN performance.

7.1.1 Conclusion

In summary, ESN has the high utility of prediction for initial conditions close to the background

state (5.7) with perturbation on the water height level. We would like to point out that, since
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(a) Snapshots of the water level h(x, t) + z(x) for t = 0.1, 20, 40, 60 with initial conditions ICe1

(top), ICe2 (middle) and ICe3 (bottom) in (7.2).

(b) Time-series of the water level h(x, t) + z(x) for x = 0.1 with initial conditions ICe1 (top),
ICe2 (middle) and ICe3 (bottom) in (7.2).

Figure 29: ESN prediction of the SWE solutions with initial conditions (7.2). Comparison of the
water level in direct numerical simulations of the SWE (black line) and predictions of the ESN (red
line).
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(a) Snapshots of the momentum u(x, t)h(x, t) for t = 0.1, 20, 40, 60 with initial conditions ICe1

(top), ICe2 (middle) and ICe3 (bottom) in (7.2).

(b) Time-series of the momentum u(x, t)h(x, t) for x = 0.1 with initial conditions ICe1 (top),
ICe2 (middle) and ICe3 (bottom) in (7.2).

Figure 30: ESN prediction of the SWE solutions with initial conditions (7.2). Comparison of the
momentum in direct numerical simulations of the SWE (black line) and predictions of the ESN
(red line).

84



(a) water level (b) momentum

Figure 31: L2 relative errors (4.11) in ESN predictions of the total water height h(x, t) + z(t) (left)
and momentum h(x, t)u(x, t) (right) with initial conditions ICf1 (blue), ICf2 (orange) and ICf3

(green) in (7.3).

perturbations are constructed as trigonometric functions, the averaged water level is preserved by

perturbations and is identical for all initial conditions considered in this section. The water level

at rest is always equal to H0.
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(a) Snapshots of the water level h(x, t) + z(x) for t = 0.1, 20, 40, 60 with initial conditions ICf1

(top), ICf2 (middle) and ICf3 (bottom) in (7.3).

(b) Time-series of the water level h(x, t) + z(x) for x = 0.1 with initial conditions ICf1 (top),
ICf2 (middle) and ICf3 (bottom) in (7.3).

Figure 32: ESN prediction of the SWE solutions with initial conditions (7.3). Comparison of the
water level in direct numerical simulations of the SWE (black line) and predictions of the ESN (red
line).
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(a) Snapshots of the momentum u(x, t)h(x, t) for t = 0.1, 20, 40, 60 with initial conditions ICf1

(top), ICf2 (middle) and ICf3 (bottom) in (7.3).

(b) Time-series of the momentum u(x, t)h(x, t) for x = 0.1 with initial conditions ICf1 (top),
ICf2 (middle) and ICf3 (bottom) in (7.3).

Figure 33: ESN prediction of the SWE solutions with initial conditions (7.3). Comparison of the
momentum in direct numerical simulations of the SWE (black line) and predictions of the ESN
(red line).
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7.2 Predictions with Perturbation on the Velocity and Different Initial Water

Level and Velocity

In this section, we consider more severe testing datasets. In particular, we consider initial conditions

with perturbations of the velocity and initial conditions which correspond to a different mean water

level and mean velocity. We generate 5 datasets, but TEST 1 is identical to the examples from

section 7.1 and is included here only for reference. Regimes for generating initial conditions for

each dataset are summarized in Table 9. All datasets consist of 20 trajectories (solutions of the

SWE).

Table 9: Parameters of testing datasets for ESN with different mean water height H0, mean velocity
U0, and different perturbation levels around the base state (5.7).

H0 pert. for water level U0 pert. for velocity

TEST 1 4.0 1%-5% 2.5 0

TEST 2 4.0 1%-5% 2.5 1%-5%

TEST 3 4.0 1%-5% 2.5 5%-10%

TEST 4 4.0 1%-5% 2.375 1%-5%

TEST 5 3.8 1%-5% 2.5 1%-5%

TEST 1: This is the dataset similar to the testing dataset in section 7.1. Therefore, we have

very high confidence the ESN has a high utility of prediction for this dataset. We include TEST1

for reference.

TEST 2: We also consider perturbations of the velocity, but the averaged velocity is preserved

and is equal to U0 = 2.5. In particular, we consider solutions of the SWE with the following initial

conditions

h(x, 0) + z(x) =


H0 ± aH0 sin(2kπ(x− φ1L)/L), x ∈ [φ1L, φ2L],

H0, otherwise,

(7.4)

u(x, 0) = U0 ± U0d sin(2pπx/L+ w) x ∈ [0, L].

Here a and d are perturbation levels for the water level and velocity, respectively. Both a and d are
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uniform random variables within 1%-5%. Frequency for the perturbation to the water level is in the

range k = {1, . . . , 10}. Frequency for the perturbation to the velocity is in the range p = {1, . . . , 4}

and shift is w ∈ [0, 2π]. Both k and p are generated as uniform discrete random variables.

TEST 3: This dataset is similar to the dataset generated for TEST 2, except the perturbation

level d of velocity is larger and ranges from 5% to 10% in (7.4).

TEST 4 and TEST 5 consider trajectories with the following initial conditions

h(x, 0) + z(x) =


H0(1 + sH)± aH0 sin(2kπ(x− φ1L)/L), x ∈ [φ1L, φ2L],

H0, otherwise,

(7.5)

u(x, 0) = U0(1 + sU )± U0d sin(2pπx/L+ w) x ∈ [0, L].

Here, sH , sU ∈ [−1, 1] correspond to changing the mean of initial water level and velocity, respec-

tively. Parameters sH and sU are fixed for all trajectories in each dataset. All other parameters

are identical to the TEST 3 dataset and initial conditions in (7.4).

TEST 4: Velocity is shifted down by 5%, i.e., sU = −5% and U0 = 2.5 × (1 − 5%) = 2.375.

Initial water level is generated with sH = 0 as in (7.5).

TEST 5: Water level is shifted down, i.e., sH = −5% and H0 = 4.0× (1− 5%) = 3.8. Initial

velocity is generated with sU = 0 as in (7.5).

Numerical Results

Figure 34 shows the averaged prediction error for the five testing datasets. The initial conditions

for TEST 1 only have perturbation on initial water level and initial conditions for TEST 2 have

both 1%-5% perturbation on the water level and velocity. ESN predicts trajectories from both

datasets with high accuracy. We would like to remind, that the ESN was trained on a dataset

with a “flat” initial condition for the velocity (5.10). Nevertheless, ESN is able to predict very

well SWE trajectories with initial conditions with extra perturbation on velocity. In TEST 3 the

velocity perturbation level is increased up to 10%. As shown in Figure 34 (c), ESN still has good
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(a) TEST 1 (b) TEST 2

(c) TEST 3 (d) TEST 4

(e) TEST 5

Figure 34: Averaged L2 relative errors in ESN predictions of TEST 1-5. The total water height
h(x, t) + z(t) (blue) and momentum h(x, t)u(x, t) (orange) for five test dataset. All results are
predicted by same ESN: D = 5000, ρ(A) = 0.1, f = tanh, ψ = ψ1, 100 training samples with 1% -
5% perturbation at t=[0,30].
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prediction performance, even though prediction is slightly larger compared with TEST 1 and TEST

2 (depicted in Figure 34 (a) and (b)).

Figure 34 demonstrates that the utility of prediction deteriorates considerably when initial

conditions are not consistent with the training dataset - either when the mean velocity U0 or the

mean water level H0 are shifted, which corresponds to (d) and (e), respectively. Prediction errors

increase significantly compared to TEST 2.

7.2.1 Conclusion

ESN is robust in predicting out-of-sample SWE trajectories which have the same mean water level

and velocity. Perturbations can be quite large and can reach up to 10%, as shown in TEST 1,

TEST 2, and TEST 3. However, ESN doesn’t have the capability to predict SWE trajectories

when the initial velocity or water level is shifted from the trained mean level. Figures 35 - 39

depict one particular trajectory from each testing dataset and corresponding prediction of the

ESN. These figures confirm our conclusion. Moreover, ESN does not have the conservation of mass

and conservation of momentum properties, as shown in Figures 38 and 39. In simulations depicted

in Figures 38 and 39 the initial mean water level is H0 = 4 and H0 = 3.8, respectively. We can see

that predictions of the ESN for the water height are considerably lower by time t = 20 for TEST

4 (Figure 38) and time t = 40 for TEST 5 (Figure 39).
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(a) Snapshots for t = 0.1, 20, 40, 60

(b) Time-series for x = 10

Figure 35: Simulations for one sample in TEST 1. Comparison of direct numerical simulations of
the SWE (black line) and predictions of the ESN (red line).
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(a) Snapshots for t = 0.1, 20, 40, 60

(b) Time-series for x = 10

Figure 36: Simulations for one sample in TEST 2. Comparison of direct numerical simulations of
the SWE (black line) and predictions of the ESN (red line).
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(a) Snapshots for t = 0.1, 20, 40, 60

(b) Time-series for x = 10

Figure 37: Simulations for one sample in TEST 3. Comparison of direct numerical simulations of
the SWE (black line) and predictions of the ESN (red line).
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(a) Snapshots for t = 0.1, 20, 40, 60

(b) Time-series for x = 10

Figure 38: Simulations for one sample in TEST 4 (sH = 0, sU = −5%). Comparison of direct
numerical simulations of the SWE (black line) and predictions of the ESN (red line).
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(a) Snapshots for t = 0.1, 20, 40, 60

(b) Time-series for x = 10

Figure 39: Simulations for one sample in TEST 5 (sH = −5%, sU = 0). Comparison of direct
numerical simulations of the SWE (black line) and predictions of the ESN (red line).
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7.3 Transfer Learning

Transfer learning is a machine learning method to tackle “the problem of retaining and applying the

knowledge learned in one or more tasks to efficiently develop an effective hypodissertation for a new

task” [76]. The idea of transfer learning is to utilize similarity between different tasks. Modeling

fluid dynamics, in particular turbulence, is of great importance for a wide variety of engineering

applications. We saw in the previous section that SWE has a high utility of prediction for initial

conditions which are consistent with training data (same mean velocity U0 and mean water level

H0), but does not predict trajectories that are inconsistent with the training data (different U0

or H0). One approach for predicting trajectories with different U0 or H0 would be to train a

new ESN and generate a new Wout. However, such training needs a long time turbulence data

with high resolution and high accuracy. In most applications, the generation of such turbulence

data is computationally very costly. To overcome this problem, we employ transferring Reservoir

Computing [39].

Conventional Method. Results in the previous section are generated using the Conventional

Prediction Method. In this approach, the prediction of SWE trajectories by ESN is obtained

without transfer learning. In this setup, there exists a well-trained ESN to predict SWE trajectories.

The essential matrices Win, A and Wout of ESN are not modified and are used for predicting

SWE trajectories. We demonstrated that conventional method has high prediction accuracy for

trajectories with initial conditions consistent with the training dataset, i.e., initial conditions that

having the same initial mean water level and momentum as the training dataset.

Transfer Learning Formula for ESN [39]. We also demonstrated that the conventional

method fails for trajectories with initial conditions not consistent with the training dataset. How-

ever, it might be possible to utilize transfer learning to “reuse” this ESN to predict similar SWE,

where the initial mean water level and/or velocity are different from the original training dataset.

Assume that there are two training data D and D∗, commonly referred to in the literature as

source and target domain data, respectively. Also, assume that we already trained ESN on the

previously existing source data D, i.e., we obtained weights Wout by minimizing the mean squared
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error with L2 regularization, given source training data D. Next, there is a new (usually relatively

small size) target training data D∗, that is similar to data D, but also different in some sense.

We “reuse” the trained weights Wout and modify them with a correction δW , such that the

new weights Wout + δW are more suitable to represent the new data, D∗. The correction is

determined solely by using the original weights, Wout, and the target training data D∗. Similar to

the conventional method, the correct weights δW are determined by an optimization procedure

δW = argmin
δW

||(Wout + δW )r̃∗ −X∗||22 + α||δW ||22. (7.6)

Here δW ∈ RD×N and r̃∗(t) is the reservoir states of ESN driven by the input signal X∗(t) ∈ D∗.

The parameter α ≥ 0 is similar to L2 regularization and defines as the transfer rate.

The corresponding analytical solution for the correction is

δW = (r∗(r∗)′ + αI)−1(r∗X∗ − r∗(r∗)′Wout), (7.7)

where (·)′ is the transpose and (·)−1 is the inverse operation.

When the transfer rate is zero, α = 0, the above formula reduces to the conventional training

method, which is just supervised learning by using the target training data D∗ only. There is no

knowledge transfer from source domain for α = 0. On the other hand, in the limit of large transfer

rate, α → ∞, we obtain δW → 0, since there is a strong penalty on δW . Thus, for α → ∞ the

above formula implies reusing weights Wout without any correction, i.e., δW = 0. Thus, there is no

knowledge transfer from target domain for α� 1.

In the paper [40], the authors take the Lorenz equations as an example to demonstrate that

optimizing the transfer rate is essential, which leads to more accurate inference than the conven-

tional method by an order of magnitude. The optimal transfer rate is in the range of [0.01, 1] for

the inference problem of the Lorenz chaos. The experience to find the optimal transfer rate is by

parameter tuning. We observe the performance significantly improves with the transfer learning in

a optimal range, by trying various α ∈ (0,∞).
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In conclusion, the transfer learning constitutes a one-parameter family of learning method which

connect the conventional ESN (α = 0) and the transfer method (α� 1).

7.3.1 Velocity Shift

In this section, we apply the transfer learning method to predicting SWE trajectories with initial

conditions in TEST 4. We would like to point out that the straightforward conventional method

failed for this testing dataset (section 7.2). To apply transfer learning approach, we use the SWE

model to generate one short simulation trajectory on time interval [0, 2]. This short trajectory is

the target training data D∗ for computing correction δW . We use transfer rate α = 0.01. In fact,

weight correction δW is updated by using one of the trajectories in TEST 4 testing dataset. Wout

is previously trained (same as in sections 7.1 and 7.2). Then the corrected weights Wout + δW

is fixed and is used for predicting other trajectories in TEST 4 starting from initial conditions at

T0 = 0. To fairly compare results with transfer learning, we adopt this approach for all numerical

results in this section, i.e., given a testing dataset with a particular mean velocity U0, only one short

SWE trajectory corresponding to this value of U0 is used to compute weights correction δW . All

other trajectories in this testing dataset are predicted using the ESN model with updated weights

Wout + δW .

We generate four additional testing datasets which are summarized in Table 10. The mean

water height for all datasets is H0 = 4. Initial conditions are generated using (7.5) with sH = 0.

TEST 4: mean velocity is U0 = 2.375 corresponds to a shift of -5%.

TEST 6: mean velocity is U0 = 2.25 corresponds to a shift of -10%.

TEST 7: mean velocity is U0 = 2.75 corresponds to a shift of +10%.

TEST 8: mean velocity is U0 = 2 corresponds to a shift of -20%.

TEST 9: mean velocity is U0 = 3 corresponds to a shift of +20%.

Averaged errors of prediction are depicted in Figure 40. The performance of the transferring

ESN is good in all five tests. Although correction δW is only computed using a small dataset
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Table 10: Parameters of testing datasets for ESN with fixed mean water height H0 = 4 and different
mean velocity U0.

size H0 pert. on water level U0 pert. on velocity

TEST 4 20 4.0 1%-5% 2.375 1%-5%

TEST 6 20 4.0 1%-5% 2.25 1%-5%

TEST 7 20 4.0 1%-5% 2.75 1%-5%

TEST 8 20 4.0 1%-5% 2 1%-5%

TEST 9 20 4.0 1%-5% 3 1%-5%

target D∗ which consists of 20 snapshots of one solution of the SWE generated on time-interval

[0, 2] with sampling time step ∆ = 0.1. Overall, the transfer learning performs very well. When

the available training data size is highly limited (i.e., D∗ is a single short trajectory), the transfer

learning is the most effective method for the inference task for sU 6= 0. Figure 40 (b)(c) show that

the prediction error of the inference task sU ≤ 10% are less than 2% for the water level. This

is comparable (c.f. with Figure 34(a)(b)(c)) with the conventional method given a large training

dataset D with H0 = 4, U0 = 2.5 (no mean velocity shift). When the similarity between the training

domain and inference task becomes weaker, such as |sU | = 20% in Figure 40(d)(e), the ESN with

transfer learning performs worse and where prediction errors almost double. Nevertheless, even in

cases of large mean velocity shift |sU | = 20%, the ESN performs much better compared with the

conventional method trained on inconsistent data without the velocity shift or the conventional

method trained on the small size of velocity shift (c.f. Figure 41).

Figures 42 - 45 depict prediction result with transfer learning method for some randomly chosen

trajectories from test datasets. In particular, Figure 42 is for TEST 4, where the inference task is

with 5% smaller initial mean velocity. Figures 43 and 44 depict trajectories for the inference task

is with 10% smaller (TEST 6) and larger (TEST 7) initial mean velocity, respectively. Figures 45

and 46 depict trajectories for the inference task is with 20% smaller (TEST 8) and larger (TEST 9)

initial mean velocity, respectively. Since ESN without transfer learning performs very poorly and

trajectories diverge for the ESN predictions with a positive shift of the mean velocity, Figures 45

and 46 only show the numerical simulation of SWE and ESN prediction with transfer learning. For

SWE trajectories with increased initial mean velocity (Figures 45 and 46) the dynamics of the SWE
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appear to be “more chaotic” and at time t = 60 the profile of the water level is highly non-trivial.

We observe that the ESN prediction does not obey the mass conservation and predictions of the

ESN for the water level are consistently lower than the DNS of the SWE.

Summary. The transfer learning method is extremely effective for predicting trajectories with

initial conditions generated with a “shifted” mean velocity. The accuracy is considerably improved

using a small target dataset D∗.
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(a) Transfer Learning, TEST 4 (sU = −5%) (b) Transfer Learning, TEST 6 (sU = −10%)

(c) Transfer Learning, TEST 7 (sU = 10%) (d) Transfer Learning, TEST 8 (sU = −20%)

(e) Transfer Learning, TEST 9 (sU = 20%)

Figure 40: Averaged L2 relative errors in ESN predictions of TEST 4 - TEST 9 using Transfer
Learning. The total water height h(x, t) + z(t) (blue) and momentum h(x, t)u(x, t) (orange).
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(a) water level (b) momentum

Figure 41: Comparison of averaged L2 relative errors in ESN predictions of TEST 8 with/without
Transfer Learning for the the total water height h(x, t) + z(t) (Left) and momentum h(x, t)u(x, t)
(Right). blue - ESN with transfer learning α = 0.01, Red - α = 0, same as conventional method
with the target dataset D∗, Orange - α = 106, same as conventional method with the source domain
D.
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(a) Snapshots for t = 0.1, 20, 40, 60

(b) Time-series for x = 10

Figure 42: Simulations for same TEST 4 (sU = −5%) sample in Figure 38. Comparison of direct
numerical simulations of the SWE (black line), predictions of the ESN with conventional method
(red line) and with Transfer Learning (blue line).
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(a) Snapshots for t = 0.1, 20, 40, 60

(b) Time-series for x = 10

Figure 43: Simulations for one sample in TEST 6 (sU = −10%) with transfer learning method.
Comparison of direct numerical simulations of the SWE (black line), predictions of the ESN with
conventional method (red line) and with Transfer Learning (blue line).
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(a) Snapshots for t = 0.1, 20, 40, 60

(b) Time-series for x = 10

Figure 44: Simulations for one sample in TEST 7 (sU = 10%) with transfer learning method.
Comparison of direct numerical simulations of the SWE (black line), predictions of the ESN with
Transfer Learning (blue line).
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(a) Snapshots for t = 0.1, 20, 40, 60

(b) Time-series for x = 10

Figure 45: Simulations for one sample in TEST 8 (sU = −20%) with transfer learning method.
Comparison of direct numerical simulations of the SWE (black line), predictions of the ESN with
conventional method (red line) and with Transfer Learning (blue line).
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(a) Snapshots for t = 0.1, 20, 40, 60

(b) Time-series for x = 10

Figure 46: Simulations for one sample in TEST 9 (sU = 20%) with transfer learning method.
Comparison of direct numerical simulations of the SWE (black line), predictions of the ESN with
Transfer Learning (blue line).
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7.3.2 Water Height Shift

In this section, we apply the transfer learning method to SWE testing dataset TEST 5 where the

initial mean water level is shifted down 5%. Conventional ESN predictions failed for this testing

dataset (section 7.2). We use the same transfer learning, as in section 7.3.1, i.e., α = 0.01. For

each “shifted” initial mean water level we generate target dataset D∗ as a single SWE trajectory on

[0, 2] sampled with time step ∆ = 0.1. Wout is still same trained weights as the sections 7.1 and 7.2.

Corrected weights Wout+δW are used to test all other trajectories in TEST 5 dataset. In addition,

we generate 3 testing datasets with different initial mean water levels with parameters summarized

in Table 11. Initial conditions in these datasets are generated using (7.5) with sU = 0 and different

values of sH , that are summarized in Table 11. The testing datasets used in this section are

TEST 5: mean water level is H0 = 3.8 corresponds to a shift of -5%.

TEST 10: mean water level is H0 = 4.2 corresponds to a shift of +5%.

TEST 11: mean water level is H0 = 3.92 corresponds to a shift of -2%.

TEST 12: mean water level is H0 = 4.08 corresponds to a shift of +2%.

Table 11: Parameters of testing datasets for ESN with fixed mean water height U0 = 2.5 and
different mean velocity H0.

size H0 pert. on water level U0 pert. on velocity

TEST 5 20 3.8 1%-5% 2.5 1%-5%

TEST 10 20 4.2 1%-5% 2.5 1%-5%

TEST 11 20 3.92 1%-5% 2.5 1%-5%

TEST 12 20 4.08 1%-5% 2.5 1%-5%

Averaged L2 errors for all the four datasets are presented in Figure 47. In particular, compare

Figures 39(e) (ESN prediction without transfer learning) and 47(a) (ESN prediction with transfer

learning). We can see that transfer learning results in a considerable improvement of the ESN

prediction. However, the performance of the ESN with transfer learning is still not ideal for

|sH | = 5%, especially for t ≥ 20 since errors for the water level prediction can reach 2.5% -

3% (Figures 47(a)(b)). It is difficult to improve performance of the ESN. We tried to use longer
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time-intervals in the target dataset D∗ for computing correction. In particular, we tried to generate

D∗ by using a longer SWE trajectories on [0, 10] and [0, 30], but larger target data D∗ did not

lead to a considerable improvement (as shown in Figure 48). Our results indicate that predicting

the SWE trajectories with “shifts” in the mean initial water level is more challenging compared to

the prediction of trajectories with different mean velocity. Figures 49 and 50 depict snapshots for

|sH | = 5%.

(a) Transfer Learning, TEST 5 (sH = −5%) (b) Transfer Learning, TEST 10 (sH = 5%)

(c) Transfer Learning, TEST 11 (sH = −2%) (d) Transfer Learning, TEST 12 (sH = 2%)

Figure 47: Averaged L2 relative errors (4.11) in ESN predictions of TEST 5 and TEST 10-12.
The total water height h(x, t) + z(t) (blue) and momentum h(x, t)u(x, t) (orange) using Transfer
Learning.

Performance of the ESN prediction with transfer learning improves considerably for smaller

“shifts” of the initial mean water level. In particular, averaged errors are approximately 1.5% for

longer times for |sH | = 2% (Figures 47(c)(d)). Corresponding time-series are depicted in Figures

51 and 52.

110



(a) water level (b) momentum

Figure 48: Comparison of averaged L2 relative errors in ESN predictions of TEST 5 using different
time-intervals for generating the target dataset D∗. The bigger size of the target dataset D∗ only
slightly improves the performance. The total water height h(x, t) + z(t) (Left) and momentum
h(x, t)u(x, t) (Right).

If we consider trajectories in TEST 2 dataset, then the maximum water level difference (highest

water level - lowest water level) is 0.4116 and the maximum velocity difference (largest velocity

- smallest velocity ) is 1.3334. This corresponds to approximately 10% of the mean water level

H0 = 4, and more than 50% of initial mean velocity mean U0 = 2.5. Therefore, it is likely that

larger “shifts” of the initial mean water level are stronger perturbations of the background state (5.7)

since the source dataset does not contain many time-instances with |sH | = 5% increase/decrease

of the water level.

7.3.3 Conclusion

ESN with transfer learning has much better performance for predicting SWE trajectories with

“shifted” initial mean water level or mean initial velocity compared with the conventional ESN. In

addition, we can also conclude that transfer learning is essential for reproducing ensemble proper-

ties with such “shifted” initial conditions. Although the target dataset D∗ is rather small, transfer

learning makes a considerable difference in predicting individual trajectories and ensemble proper-

ties.

The dynamics of the SWE seem to be more sensitive to the changes in the magnitude of the
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water level than the magnitude of the velocity. Therefore, ESN with transfer learning does better

predicting trajectories with “shifted” initial mean velocity than trajectories with “shifted” initial

mean water level. Thus, ESN with transfer learning can predict with high accuracy properties of

an ensemble of solution with “shifted” mean water level and mean velocity up to ±2% and ±5%,

respectively. The corresponding errors for the “shifted” initial mean water height and velocity are

3%-4% and about 2%, respectively.
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(a) Snapshots for t = 0.1, 20, 40, 60

(b) Time-series for x = 10

Figure 49: Simulations for TEST 5 (sH = −5%) (see Figure 39) with transfer learning method.
Comparison of direct numerical simulations of the SWE (black line), predictions of the ESN with
conventional method (red line) and with Transfer Learning (blue line).
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(a) Snapshots for t = 0.1, 20, 40, 60

(b) Time-series for x = 10

Figure 50: Simulations for TEST 10 (sH = 5%) with transfer learning method. Comparison of
direct numerical simulations of the SWE (black line), predictions of the ESN with Transfer Learning
(blue line).
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(a) Snapshots for t = 0.1, 20, 40, 60

(b) Time-series for x = 10

Figure 51: Simulations for TEST 11 (sH = −2%) with transfer learning method. Comparison of
direct numerical simulations of the SWE (black line), predictions of the ESN with conventional
method (red line) and with Transfer Learning (blue line).
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(a) Snapshots for t = 0.1, 20, 40, 60

(b) Time-series for x = 10

Figure 52: Simulations for TEST 12 (sH = 2%) with transfer learning method. Comparison of
direct numerical simulations of the SWE (black line), predictions of the ESN with Transfer Learning
(blue line).
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7.4 Ensemble Simulations

There are many ensembles-based numerical methods, such as data-assimilation, uncertainty quan-

tification, inverse problems. Direct numerical implementation of such methods is often extremely

costly, since in order to generate ensembles of a reasonable size, it is necessary to solve the initial-

value problem many times. Thus, there is always a balance between the sampling error (number of

ensemble members) and model error (accuracy of the numerical solver). However, the accuracy of

individual solutions is not the main emphasis in such methods. Instead, it is important to repro-

duce ensemble properties such as ensemble mean, variance, and covariance, higher moments, etc.

Thus, reduced-order models can play a particularly important role in such applications, since they

sacrifice the accuracy of individual solutions in favor of faster computations and, thus, producing

more ensemble members and reducing the sampling error.

In this section, we investigate how well the ESN methodology reproduces properties of an

ensemble of SWE solutions. To this end, we generate many trajectories with different initial

conditions using (5.8) and compare the mean and variance of the ensemble of “true” solution

with ensemble generated using predictions of the ESN. In particular, we perform two numerical

experiments. In the first experiment we generate an ensemble of solutions with initial conditions

in (5.10) and test how well ESN is able to reproduce statistical properties of this ensemble. In the

second experiment, we generate an ensemble of solutions with initial conditions with “shifted” mean

water level and mean initial velocity and utilize ESN with transfer learning to predict ensemble

properties.

In each ensemble experiment we generate N = 100 trajectories Xi(x, t) with i = 1, . . . , N .

Each ensemble member, Xi(x, t), consists of two vectors, the water height and the momentum, i.e.,

Xi(x, t) = {hi(x, t) + z(x), hi(x, t)ui(x, t)}. If we denote vi(x, t) = hi(x, t) + z(x), then we define

the mean and standard deviation/ variance of the ensemble for water height as

M(x, t) =
1

N

N∑
i=1

vi(x, t), STD(x, t) =

√√√√ 1

N

N∑
i=1

(
M(x, t)− vi(x, t)

)2
.
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We use similar formulas for computing ensemble mean and standard variance for the momentum

with vi(x, t) = hi(x, t)ui(x, t). In this section we compare ensemble mean and variance computed

by performing direct numerical simulations of the SWE and computed by using the predictions of

the ESN.

7.4.1 First Experiment

This experiment generates an ensemble of solutions of the SWE with the same mean initial water

level, H0 and initial mean velocity U0. In particular, we generate the following ensemble of solutions:

1. Generate N = 100 trajectories with initial conditions (5.10) for ensemble simulation. The

perturbations level a is set to 1%; the initial velocity is constant U0 = 2.5.

h(x, 0) + z(x) =


4± 4a sin(2kπ(x− φ1L)/L), x ∈ [φ1L, φ2L],

4, otherwise,

u(x, 0) = 2.5.

2. Use previously trained ESN from chapter 6 (same as in sections 7.1 and 7.2) to predict these

100 out-of-sample solutions starting with T0 = 0; no transfer learning is used here.

3. Use predictions of the ESN for individual trajectories to compute the ensemble mean and

variance for water level h(x, t) + z(x) and momentum hu(x, t).

4. Generate another ensemble (both direct numerical simulations and predictions of the ESN)

by repeating steps 1-3 with a = 5% perturbation level in initial conditions (5.10).

Figure 53 shows the averaged prediction error of ensemble simulations. Clearly, the initial

perturbation level has an impact on the magnitude of the prediction error. We would like to point

out that the averaged L2 error is computed for individual trajectories. We can see that prediction

errors are small (less than 1%). Thus, we can see that ESN has a very good utility of prediction

and we expect that ESN reproduces the statistical properties of the ensemble very well.
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(a) water level (b) momentum

Figure 53: Averaged L2 relative errors of individual solutions in the first ensemble simulation with
initial conditions (5.10) with a = 1% and a = 5%. Left - total water height h(x, t) + z(x). Right -
momentum h(x, t)u(x, t).

Figures 54 and 55 show results of predicting ensemble mean and standard deviation for water

level and momentum for the ensemble with a = 1% initial perturbation. Figures 56 and 57 show

results of predicting ensemble mean and standard deviation for water level and momentum for

the ensemble with a = 5% initial perturbation. First, we observe that standard variance of the

ensemble becomes very small for larger times. This is known as “ensemble collapse”. This is a direct

consequence of including the dissipative term (hu)xx in the equations. Since there is dissipation,

energy decays in time and all solutions converge to a flat steady state.
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(a) Snapshots of the mean (top) and standard variance (bottom) for t = 0.1, 20, 40, 60

(b) Time-series for the mean (top) and standard variance (bottom) at x = 10

(c) Ensemble Mean M(x, t)− 4.0; Top - ESN, Middle - DNS SWE, Bottom - Abs. Error

Figure 54: First ensemble experiment with a = 1%. Comparison of statistical properties of the
ensemble for the total water level h(x, t) + z(x) using direct numerical simulations of the SWE
(black line) and predictions of the ESN (red line).
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(a) Snapshots of the mean (top) and standard variance (bottom) for t = 0.1, 20, 40, 60

(b) Time-series for the mean (top) and standard variance (bottom) at x = 10

(c) Ensemble Mean M(x, t)− 9.75; Top - ESN, Middle - DNS SWE, Bottom - Abs. Error

Figure 55: First ensemble experiment with a = 1%. Comparison of statistical properties of the
ensemble for the momentum h(x, t)u(x, t) using direct numerical simulations of the SWE (black
line) and predictions of the ESN (red line).
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(a) Snapshots of the mean (top) and standard variance (bottom) for t = 0.1, 20, 40, 60

(b) Time-series for the mean (top) and standard variance (bottom) at x = 10

(c) Ensemble Mean M(x, t)− 4.0; Top - ESN, Middle - DNS SWE, Bottom - Abs. Error

Figure 56: First ensemble experiment with a = 5%. Comparison of statistical properties of the
ensemble for the total water level h(x, t) + z(x) using direct numerical simulations of the SWE
(black line) and predictions of the ESN (red line).

122



(a) Snapshots of the mean (top) and standard variance (bottom) for t = 0.1, 20, 40, 60

(b) Time-series for the mean (top) and standard variance (bottom) at x = 10

(c) Ensemble Mean M(x, t)− 9.75; Top - ESN, Middle - DNS SWE, Bottom - Abs. Error

Figure 57: First ensemble experiment with a = 5%. Comparison of statistical properties of the
ensemble for the momentum h(x, t)u(x, t) using direct numerical simulations of the SWE (black
line) and predictions of the ESN (red line).
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7.4.2 Second Experiment

In this ensemble experiment, we consider initial conditions with “shifted” mean initial water level

and mean initial velocity. We demonstrated in section 7.3 that in this case transfer learning is

essential for accurate prediction of trajectories. Thus, we include incorporate transfer learning

into ESN ensemble predictions. We perform numerical integration of the SWE equations with

parameters in Table 8 and sample the solution with sampling time step ∆ = 0.1. Other parameters

of the second ensemble experiment are as follows:

1. We generate N = 100 trajectories Xi(x, t) with i = 1, . . . , N using initial conditions:

h(x, 0) + z(x) = H0(1± sH)± aH0 sin(2kπx/L+ ω1) x ∈ [0, L], (7.8)

u(x, 0) = U0(1± sU )± dU0 sin(2pπx/L+ ω2) x ∈ [0, L],

where shifts for water level and velocity are sH ∼ Uniform[0.01, 0.02] and sU ∼ Uniform[0.01, 0.05],

respectively. Parameters a and d are perturbation levels for the water level and velocity, re-

spectively. Both a, d ∼ Uniform[0.01, 0.05]. Frequency for the perturbation are discrete

uniform random variables with k, p ∼ Uniform(1, 2, 3) and ω1, ω2 ∼ Uniform[0, 2π].

2. We use the previously trained ESN with the settings from chapter 6 (same as in sections 7.1

and 7.2) to perform prediction of trajectories on time interval [2, 60], i.e., prediction starts

with time T0 = 2. Prediction time T0 = 2 is chosen to be consistent with the transfer learning

approach discussed below.

3. We use the previously trained ESN from sections 7.1 and 7.2 and apply transfer learning ap-

proach (same parameters as in section 7.3; transfer rate α = 0.01) on time interval [0, 2]. Then

we use ESN with transfer learning method to predict trajectories and ensemble properties on

time interval [2, 60].

Figure 58 shows the averaged prediction error of ensemble simulations. Similar to results pre-

sented in section 7.3 transfer learning leads to a considerable improvement of trajectory prediction
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for the water height by the ESN. Figure 58 also demonstrates that ESN predictions for the momen-

tum are less affected by the application of transfer learning, especially for shorter times. This figure

provides a strong indication that ESN with transfer learning should be able to predict ensemble

properties quite well.

(a) water level (b) momentum

Figure 58: Averaged L2 relative errors of individual solutions in the second ensemble simulation
with initial conditions (7.8) without (conventional) and with transfer learning. Left - total water
height h(x, t) + z(x). Right - momentum h(x, t)u(x, t).

Figures 59 and 60 depict comparison of the ensemble mean and std. deviation prediction for

the water height between the direct numerical simulations of the SWE and simulations of the

ESN without transfer learning and with transfer learning, respectively. We can see that transfer

learning leads to a significant improvement for both, the mean and the standard deviation in

the ensemble simulations of the water height. Standard deviation in the ensemble predictions of

the ESN without transfer learning increases (almost) linearly in time (Figure 59(b) bottom plot),

leading to a completely incorrect predictions for the ensemble spread by the time t = 20 (about 75%

relative errors). Relative errors for the standard deviation are even larger at time t = 40 (about

120% relative errors) and t = 60 (more than 200% relative errors). Therefore, we can conclude that

transfer learning is essential in reproducing the ensemble properties using ESN predictions.

Figures 61 and 62 depict comparison of the ensemble mean and std. deviation prediction for the

momentum. Similar to the previous Figure, we compare ensemble properties in direct numerical

simulations of the SWE and simulations of the ESN without (Figure 61) and with (Figure 62)
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transfer learning. Comparison of Figures 61 and 62 indicates that momentum is less sensitive to

the transfer learning. However, using transfer learning leads to significant improvement for the

ensemble prediction for the momentum. Similar to the ensemble predictions for the water level,

variance of the ensemble for the momentum (c.f. Figures 61(a) and 62(a) bottom snapshots for

std.deviation at times t = 40 and t = 60) is affected strongly. Without transfer learning errors in

the variance can reach up 25% at time t = 60 (Figure 61(a)). Therefore, transfer learning leads to

a significant improvement to the ensemble predictions for the momentum as well.

7.4.3 Conclusion

The results in this section indicate that

• Transfer learning is essential for predicting ensemble properties correctly; ESN with transfer

learning is capable of predicting ensemble properties within a few percent,

• Predictions for ensemble properties of the water height are more challenging; errors for the

ensemble properties of the water height can be larger than for the ensemble properties of the

momentum,

• Even a short transfer learning on the interval [0, 2] with sampling rate ∆ = 0.1 can significantly

improve prediction properties of the ESN,

• ESN with transfer learning can significantly accelerate ensemble computations - generating

a single trajectory with direct numerical simulations of the SWE takes approximately 21

minutes, and generating one trajectory using ESN with transfer learning takes approximately

1.2 minutes.
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(a) Snapshots of the mean (top) and standard variance (bottom) for t = 2.1, 20, 40, 60

(b) Time-series for the mean (top) and standard variance (bottom) at x = 10

(c) Ensemble Mean M(x, t)− 4.0; Top - ESN, Middle - DNS SWE, Bottom - Abs. Error

Figure 59: Second ensemble experiment using conventional ESN. Comparison of statistical prop-
erties of the ensemble for the total water level h(x, t) + z(x) using direct numerical simulations of
the SWE (black line) and predictions of the conventional ESN (red line).
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(a) Snapshots of the mean (top) and standard variance (bottom) for t = 2.1, 20, 40, 60

(b) Time-series for the mean (top) and standard variance (bottom) at x = 10

(c) Ensemble Mean M(x, t)− 4.0; Top - ESN, Middle - DNS SWE, Bottom - Abs. Error

Figure 60: Second ensemble experiment using transferring ESN. Comparison of statistical properties
of the ensemble for the total water level h(x, t) + z(x) using direct numerical simulations of the
SWE (black line) and predictions of the ESN with transfer learning (blue line).
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(a) Snapshots of the mean (top) and standard variance (bottom) for t = 2.1, 20, 40, 60

(b) Time-series for the mean (top) and standard variance (bottom) at x = 10

(c) Ensemble Mean M(x, t)− 9.75; Top - ESN, Middle - DNS SWE, Bottom - Abs. Error

Figure 61: Second ensemble experiment using conventional ESN. Comparison of statistical prop-
erties of the ensemble for the momentum h(x, t)u(x, t) using direct numerical simulations of the
SWE (black line) and predictions of the conventional ESN (red line).
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(a) Snapshots of the mean (top) and standard variance (bottom) for t = 2.1, 20, 40, 60

(b) Time-series for the mean (top) and standard variance (bottom) at x = 10

(c) Ensemble Mean M(x, t)− 9.75; Top - ESN, Middle - DNS SWE, Bottom - Abs. Error

Figure 62: Second ensemble experiment using transferring ESN. Comparison of statistical properties
of the ensemble for the momentum h(x, t)u(x, t) using direct numerical simulations of the SWE
(black line) and predictions of the ESN with transfer learning (blue line).
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7.5 Comparison with Polynomial Regression

In this section, we compare ESN predictions with results from nonlinear polynomial regression.

The advantage of ESN is that the reservoir automatically incorporates nonlinear feedback of his-

torical inputs. It has been demonstrated that neural networks can automatically select correct

nonlinear features of the input signal. In contrast with the ESN, the nonlinearity has to be spec-

ified explicitly in regression methods, including polynomial regression [90, 70]. Recent research

[70] suggest that polynomial regression model outperforms ESN in predicting classical Lorenz 63

and Lorenz 96 systems. Although Lorenz systems are chaotic and capture some properties of fluid

dynamics, they are far simpler than shallow water models. In addition, Lorenz 63 and Lorenz

96 systems are quadratic, making it relatively simple to guess the form of the nonlinearity. In

contrast with the Lorenz systems, SWE have a more complex nonlinearity, since SWE are typi-

cally integrated numerically in terms of conservative variables which are water height h(x, t) and

momentum m(x, t) ≡ u(x, t)h(x, t) (5.1). Therefore, since one needs to explicitly compute veloc-

ity u(x, t) = m(x, t)/h(x, t) to make a forward time step of the SWE equations written in these

conservative variables, SWE equations have a nonlinearity h−1 in addition to polynomial terms.

Thus, SWE equations present a nontrivial test for the performance of polynomial regression. We

use training dataset discussed in chapter 6 and predict solutions on [0, 10] with sub-sampling time

step ∆ = 0.01.

Ridge Regression. Polynomial regression with regularization is a statistical nonlinear regres-

sion with either L1 (LASSO) or L2 (Ridge) regularization. Here we consider L2 norm regularization

and polynomial features of inputs. Assume that the polynomial expansion of inputs up to p degree,

the Ridge Regularized Regression is defined as

Wreg = argmin
Wreg

||Wregg
(p)
(
X(t− 1)

)
−X(t)||22 + λ||Wreg||22, (7.9)

X(t) = Wregg
(p)
(
X(t− 1)

)
. (7.10)

Here || · ||2 is the L2-norm of a vector and λ is the L2 regularization parameter. The function
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g(p)
(
X(t− 1)

)
is a function that performs polynomial expansion of X(t − 1) up to a specified

order p, such as g(1){x, y} = {1, x, y} and g(2){x, y} = {1, x, y, x2, y2, xy}, etc. One can reduce the

computational cost of polynomial regression by taking physics into account and considering only

various cross-products of neighboring mesh points in the discretization (5.3), (5.4).

The main difference between the polynomial regression and ESN is that polynomial regres-

sion Wreg only uses an explicitly pre-defined polynomial feature of inputs g(p), instead of highly

in-homogeneous reservoir r in ESN. If we consider all polynomial features up to order p, the num-

ber of features of g(p) is

p∑
i=0

(2Nx + i− 1)!

i!(2Nx − 1)!
. Therefore, the final computational inference cost is

O
(
2Nx(1 + 2Nx + . . .+ (2Nx)p)

)
= O

(
(2Nx)p+1

)
, where Nx is the number of points in the space

discretization of the SWE. The inference cost of ESN is O(D2), where D is the reservoir size.

The polynomial regression is computationally expensive for high-dimensional data since the

nonlinearity is completely dense with respect to polynomial features, i.e., one has to consider all

possible cross-products. In [70], the authors demonstrated that polynomial regression model with

degree p = 4 outperforms ESN in predicting classical Lorenz 63 and Lorenz 96 systems. We would

like to point out that the dimension of the Lorenz 63 model is 3, and the dimension of the Lorenz

96 model is 8 large-scale variables for regression.

Fully Dense Nonlinear Regression. Comparison between the polynomial regression with

p = 1, p = 2 and the ESN is depicted in Figure Figure 63. The direct numerical simulation of the

SWE yields solution with Nx = 400,∆x = 0.1. The numerical cost of the first order polynomial

regression is O(8002) and the numerical cost of the second order polynomial regression is already up

to O(8003). ESN with D = 800 reservoir (black dashed line) and linear regression (blue solid line)

have the same inference cost O(8002). Increasing the degree of polynomial regression to 2 (orange

solid line) results in the computational cost of O(8003). However, quadratic regression has difficultly

in achieving accurate estimation of trajectories even with strong regularization λ ∈ {0.01, 0.1, 1}.

Figure 63 demonstrates that ESN has a much better performance achieving much smaller errors.

In addition, it is computationally less expensive to train ESN.

Sparse Nonlinear Regression with 5-point stencil. Here we take additional knowledge of

132



Figure 63: Averaged L2 relative errors of individual solutions. Comparison between polynomial
regression with fully dense nonlinear features with p = 1 (orange) and p = 2 (blue) and ESN
(dashed black). Sampling of SWE solutions with Nx = 400, ∆x = 0.1, ∆t = 0.01. Penalty for
polynomial regression λ = 10−1. ESN setting: D = 800, f = tanh, ψ = ψ1, 100 training samples
with 1% - 10% perturbation at time t = [0, 10]. All results averaged over the training dataset (100
samples).

shallow water equation into consideration to reduce the computational complexity of nonlinear re-

gression. Also, reducing the number of parameters for nonlinear regression helps to avoid overfitting

when the number of parameters is larger than the amount of data. In particular, since numerical

solution of the SWE is obtained on an equipartitioned time-space grid, few neighboring variables at

cells i±1, i±2, etc. are most relevant for predicting the time-evolution of variables in cell i. Thus,

for each cell we consider a 5-point stencil for predicting the time-evolution of the water height and

momentum, i.e., we use polynomial features of 10 most closet neighbors {h(x±2∆x, t), h(x±∆x, t),

h(x, t), hu(x± 2∆x, t), hu(x±∆x, t), hu(x, t)} for predicting {h(x, t+ ∆t), hu(x, t+ ∆t)}. Results

of the comparison between the sparse polynomial regression and ESN are depicted in Figure 64.

The first order (p = 1) and second order (p = 2) of polynomial regression numerical cost is O(8002)

and O(6× 8002), respectively. There is overfitting for cubic regression with p = 2; therefore we do

not pursue p > 2. It is clear that ESN considerably outperforms polynomial regression.

Sparse Nonlinear Regression with 3-point stencil. Next, we use a 3-point stencil for

predicting the time-evolution of the water height and momentum, i.e., we use polynomial features
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Figure 64: Averaged L2 relative errors of individual solutions. Comparison between polynomial
regression with sparse nonlinear features on 5-point stencil with p = 1 (blue), p = 2 (orange) and
ESN (dashed black). Sampling of SWE solutions with Nx = 400, ∆x = 0.1, ∆t = 0.01. Penalty for
polynomial regression λ = 10−2. ESN setting: D = 800, f = tanh, ψ = ψ1, 100 training samples
with 1% - 10% perturbation at time t = [0, 10]. All results averaged over the training dataset (100
samples).

of 6 most closet neighbors {h(x±∆x, t), h(x, t), hu(x±∆x, t), hu(x, t)} for predicting {h(x, t+∆t),

hu(x, t + ∆t)}. Results of the comparison between the sparse polynomial regression with 3-point

stencil and ESN are depicted in Figure 65. It is clear that ESN considerably outperforms polynomial

regression in this case as well.

7.5.1 Conclusion

ESN considerably outperforms low-degree polynomial regression for predicting the time-evolution

of solutions. As we pointed out early, the SWE has an unusual nonlinearity with h(x, t) in the

denominator, and it is possible that polynomial regression is unable to capture this form of nonlin-

earity. The advantage of the ESN is a quite rich internal dynamics of reservoir, because neurons in

the reservoir are only loosely coupled by different activation signals. Overall, ESN seems to appear

far superior compared to the traditional polynomial regression.
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Figure 65: Averaged L2 relative errors of individual solutions. Comparison between polynomial
regression with sparse nonlinear features on 3-point stencil with p = 1 (blue), p = 2 (orange)
p = 3 (green), knowledge about SWE(red) and ESN (dashed black). The regression with p = 2
(orange) and p = 3 (green) are overlapping. The knowledge (red) means regression with polynomial
feature {h, hu, h2, hu2} which are chosen from the SWE expression. Sampling of SWE solutions
with Nx = 400, ∆x = 0.1, ∆t = 0.01. Penalty for polynomial regression λ = 10−2. ESN setting:
D = 800, f = tanh, ψ = ψ1, 100 training samples with 1% - 10% perturbation at time t = [0, 10].
All results averaged over the training dataset (100 samples).
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7.6 Discussion

In this chapter, we discussed the application of the Echo State Network (ESN) to learning and

predicting the dynamics of the shallow water equations (SWE). Although shallow water equations

have a rather simple attractor in the regime considered here (everything converges to a “flat”

solution), SWE has a complex transient regime with interacting nonlinear waves. This regime

can probably be classified as decaying turbulence, since energy in high wave numbers decays to

zero as time becomes large. However, the transient regime exhibits complex nonlinear behavior.

Finite-time Lyapunov exponents can have positive values for short times, but as time goes towards

infinity, all Lyapunov exponents become negative.

We apply the ESN formalism to learn the dynamics of the SWE. Our approach can also be in-

terpreted as “equation learning”, since ESN leans the appropriate dynamics which can approximate

the dynamics of the SWE for a long time.

There are several conserved quantities for the SWE in the absence of the diffusive (hu)xx term -

energy and momentum. In addition, SWE with or without the diffusive term also conserve the total

mass. It turns out that these conserved quantities play a crucial role for predicting the dynamics

of the SWE.

Our training dataset consists of solution trajectories with initial conditions generated as per-

turbations of the background state. All solutions at the initial time have the same total water

height and momentum. We demonstrated in this chapter that the vanilla ESN has a high utility

of prediction for solutions consistent with the training data, i.e., for solutions with the same initial

water height and momentum. We would like to point out that as time goes towards infinity, the

momentum decays to zero, but this is well-captured by the ESN dynamics. Therefore, we can con-

clude that ESN is able to learn the dynamics of the SWE very well in this particular regime. We

also demonstrated that reservoir warm-up can be an efficient and computationally cheap approach

for improving accuracy of predictions.

Next, we tried to utilize the same (vanilla) ESN for predicting trajectories which are not consis-

tent with the training data, i.e., trajectories which initially have “shifted” total water height and/or
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momentum. Vanilla ESN does a quite poor job predicting such trajectories. Therefore, we can also

conclude that the dynamics of the SWE depends on the large-scale conserved quantities at the

initial time. This might be an obvious observation in the context of analysis of partial differential

equations, but here we also observe a confirmation of this fact in the context of machine learning.

We also observed that ESN performs worse when the mean water height is “shifted”, compared

to the “shift” in the mean velocity. This is consistent with the dynamics, since the mean water

height is a “true” conserved quantity and the final form of the attractor (fixed point) is determined

by the initial mean water level. Therefore, the mean water level is very important for the overall

short-time and long-time dynamics.

We successfully applied transfer learning to remedy the situation and predict trajectories with

initial conditions which are inconsistent with the training dataset. This implies that the “learned

dynamics” is probably sufficiently smooth (continuous and maybe even differentiable) with respect

to conserved large-scale quantities of initial conditions. Therefore, ESN can quickly “discover” a

slightly “shifted” dynamic equations which corresponds to a different mean total water level. It

would be interesting if this conclusion can be tackled analytically. Recently, Dr. Patel developed an

approach where he treat neural networks as an over-complete basis [70]. Thus, one can think of ESN

as a high-dimensional function providing a smooth (with respect to parameters) approximation of

the SWE dynamics.

Transfer learning provides an efficient approach for quickly adjusting the ESN to represent an

appropriate model which is consistent with large-scale (conserved) quantities of the solution. We

demonstrated that trajectories can be generated considerably faster (approximately 20 times) with

the transfer learning approach, while retaining the accuracy of ESN predictions.

Finally, we also demonstrated that our transfer learning approach can be very efficient in simu-

lating ensembles of trajectories. Thus, ML methodology developed here can significantly accelerate

various ensemble-based methods. Such methods are highly relevant for several important practical

problems, such as uncertainty quantification, Bayesian data assimilation, and inverse problems.
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