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ABSTRACT 

The brick-mortar bond or interface is often the weakest link in the masonry 

composites.  The localization of fracture processes at this bi-material interface plays an 

important role in the failure of this assemblage.  These micro-level fracture processes 

control the nonlinear behavior of the brick-mortar interface which significantly affects 

the global behavior of the masonry structure at the continuum macro level.  2D Lattice-

based micro-level fracture simulations which are based on Voronoi tessellation to 

discretize the continuum brick and mortar domains are applied to study progressive 

debonding of brick-mortar interfaces in unreinforced masonry composites.  An energy 

method is subsequently employed to obtain the energy release rate of the lattice mesh as 

the crack propagates which is determined by considering the variation in the global 

stiffness matrix of the mesh with respect to crack length change. This energy release rate 

is inserted into the Irwin type fracture relationship for plane strain to calculate the 

modulus of complex stress intensity factor and its mode 1 and mode 2 values which are 

independent of the distance from the crack tip in the lattice.  The lattice results for the 

energy release rate and stress intensity factors are then validated by comparing with three 

classic fracture mechanics problems analytical solutions of which are available in the 

literature.  Afterwards, the 2-D plane strain lattice formulation is applied to simulate 

interfacial fracture properties of conventional test configurations in masonry.  The 

computational lattice model is capable of evaluating the fracture toughness of brick-

mortar interface along with other fracture properties from basic strength properties of 

lattice struts, which are removed by erosion upon failure. This information is employed to 
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upscale the lattice fracture arguments onto the meso-level to quantify the fracture energy 

formulation of traction-separation cohesive zone models in the context of continuum 

finite element simulations of heterogeneous media such as masonry.  The fracture energy 

from the lattice is also used in homogenizing a heterogeneous anisotropic masonry unit 

cell under direct tension using energy equivalence concept to obtain a scalar damage 

parameter which could be utilized to model the nonlinear behavior of a homogenized 

isotropic continuum finite element. 
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Chapter 1 INTRODUCTION 

Masonry is the oldest building material which is still used in building 

constructions around the world for its low cost material and broad availability, its sound 

insulation properties, energy efficiency, and so on.  Other influencing factors include 

cultural aspects, long time tradition, local knowledge of materials and tools, architectural 

reasons, etc.  Construction simplicity is probably the most important characteristic of 

masonry structures among others like the aesthetics, solidity, durability and low 

maintenance, sound absorption and fire protection.    

In addition to the above characteristics, masonry is a sustainable construction 

material.  As a general definition, sustainability is concerned with promoting the most 

efficient use of resources, the protection of the environment and ecosystems, and the 

development of a more equitable world society, meeting the need of the present 

generation without compromising the ability of future generations to meet their own 

needs [1], [2].  Buildings and structures made of stone or brick masonry usually last for 

centuries with minimal maintenance.  These durability and longevity features introduce 

masonries as environmentally and economically sustainable structures.  For instance, 

there are approximately 40,000 masonry arch bridges in the UK which have been in daily 

use on highways, railways and canals for more than 100 years, with some of them over 

500 years [1], [3].  Furthermore, around 25% of the 23 million residential properties in 

the UK, which are built out of brick or stone or some combination of these materials, 

have lasted for more than 160 years with satisfactory performance [1].  These 

characteristics are sufficient enough to motivate researchers and engineers to develop 
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state of the art design rules for masonry structures, competitive to those of concrete and 

steel. 

There have been important new developments in analyzing masonry structures in 

the form of composite material in the last decades.  However, due to the lack of in-depth 

insight and models for the complex behavior of masonry composite consisting of brick, 

mortar, and their bond, its development of design rules has not kept pace with those of 

concrete and steel.  This might be one main reason to prevent the innovative applications 

of structural masonry.  Among other reasons are the lack of educational programs for 

most graduations of structural engineering and also the ability to transfer the academic 

knowledge into field practice.   

1.1 Literature and Background 

Unreinforced masonry, which is considered in this study, is a heterogeneous, 

inelastic, and anisotropic material made of two major components, brick units and mortar 

joints exhibiting very different stiffness, strength and ductility properties.  The brick-

mortar interface which is the weakest part in the masonry composite plays an important 

role in the failure of this assemblage.  A number of investigations have been conducted 

on different aspects of masonry and the interface behavior between brick and mortar 

joints, where an interface element was usually considered with a continuum-based 

damage or plasticity formulation to account for the brick-mortar interface degradation 

([4], [5], [6], [7], [8], [9], [10], [11], [12], [13]).  Goodman et al. [4] were one of the first 

researchers who introduced the interface concept for joints in rock mechanics.  Their joint 

element was designed to feature failure in tension and/or shear, rotation of blocks, 
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development of arches.  Page [5] of his seminal paper analyzed the behavior of clay 

masonry walls subjected to in-plane loading using an early version of finite element.  The 

model considered masonry as a continuum of isotropic elastic bricks acting in concert 

with mortar layers as joint linkage elements.  However, the ultimate load capacity of the 

masonry could not be predicted at that early stage.  McNary and Abrams [14] studied 

biaxial tension-compression of bricks and triaxial compression of mortar to establish 

constitutive relations for each material.  They simulated the force-displacement 

relationship for a stack-bond prism using a numerical model and a proposed strength 

theory.  They concluded that mechanics of clay-unit masonry in compression could be 

represented by a single failure model and the most significant parameter to consider was 

the dilatant behavior of the mortar.  Citto et al. [15] employed an innovative approach 

using digital image correlation (DIC) techniques to evaluate in-situ properties of the shear 

strength of mortar joints in existing masonry.  They determined the properties of cohesion 

and friction angles in an existing masonry wall, and they used finite elements and the 

DIC system to investigate the significant lack of uniformity along the bed joints failing in 

shear.  Lourenco [7], in his PhD dissertation, studied computational strategies for 

masonry structures.  He considered micro- and macro-modeling strategies to analyze 

masonry composites.  For the micro-modeling strategy, all inelastic phenomena were 

lumped in the relatively weak joints via a composite interface model, i.e., a zero-

thickness interface element.  Carol et al. [9] implemented an elasto-plastic fracture-based 

interface model to simulate the mechanical behavior of concrete and bone specimens as 

quasi-brittle materials.  One of their main conclusions was that zero-thickness interface 

elements provide a convenient form of representing fracture as a mixed-mode 
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generalization of the FCM, Fictitious Crack Model.  They observed that, at the same 

time, the zero-thickness interface elements avoid some of the problems normally 

associated with this type of calculations using continuum elements with softening, such 

as mesh objectivity or deformation modes of the elements.  Willam et al. [10] examined 

the degradation of interface transition zones in heterogeneous materials due to thermal 

and mechanical damage.  Their study addressed model issues of zero-thickness cohesive–

frictional interfaces which are subjected to thermal and mechanical damage.  A 

combination of both thermal and mechanical degradation mechanisms was studied.  

Caballero, Willam, and Carol [12] developed a constitutive model for fracture 

simulations in quasi-brittle media within the framework of zero-thickness interface 

elements.  An elasto-plastic interface model was presented by extending and improving 

the constitutive relations of an earlier 2D formulation to 3D with a consistent tangent 

formulation.  Sacco, Alfano, and Toti ([11], [13]) evaluated masonry composites as 

heterogeneous systems made of brick and mortar joined by means of interfaces, 

responsible for the mortar-brick decohesion mechanisms.  In their micromechanical 

computational strategy, a special interface model combining damage and friction was 

adopted.  Their results obtained by a numerical model were put in comparison with the 

experimental ones, having shown the ability of the proposed model to simulate the 

behavior of the unreinforced and reinforced masonry arches in terms of ultimate load, 

nonlinear behavior and collapse mechanism.  There have been many other studies on 

interface elements, cohesive elements, and their behavior in quasi-brittle materials like 

concrete and masonry, where efforts were made to better understand the behavior of 

masonry composites in material and ultimately in structural level employing experimental 
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results and numerical simulations using continuum-based damage or plasticity 

formulation ([16], [17], [6], [18], [8], [19], [20]). 

In the methods based on the theory of plasticity and damage mechanics, the 

displacement field is continuous over the domain and special techniques need to be 

accounted for embedding discontinuities and cracks on the domain.  However, in the 

approaches based on fracture mechanics, the displacement field is discontinuous which 

accounts for the cracks and strong discontinuities.  There have been rare investigations 

regarding the interfacial fracture properties and toughness of masonry interfaces.  In 

many bi-material systems like composites and microelectronic devices, the fracture of 

interfaces is a critical phenomenon, which in many circumstances governs the failure 

behavior of those systems.  The fracture of bi-material interfaces has been studied by 

many researchers. Muskhelishvili [21], in his pioneering work, employed the concept of 

complex variables and complex functions to represent the displacement and stress fields 

of plane problems using complex variables.  He used complex functions since the 

properties of a complex variable are generally well-known.  Williams [22] investigated 

the plane problem of dissimilar materials with a semi-infinite crack.  He observed for the 

first time that stresses at the crack tip have an oscillatory character of type 

𝑟−1/2sin (𝜀 ln 𝑟), where 𝑟 is the radial distance from the crack tip and 𝜀 is a function of 

bi-material elastic mismatch.  Rice and Sih [23] developed a method for determining 

Goursat functions for dissimilar materials bonded along straight-line interfaces.  They 

combined an Eigen-function expansion method with the complex equations of 

Muskhelishvili to solve the problems of isolated forces on surface of a semi-infinite crack 

and an infinite plate with a crack subjected to stresses at infinity.  England [24], Erdogan 
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[25], and Rice [26] also investigated the singular near-tip field of the interface crack 

problems.  Parks [27] developed the “virtual crack extension” method which is a Finite 

Element technique for determining elastic crack tip stress intensity factors. In this 

method, the single crack is “advanced” by moving nodal points rather than by removing 

nodal tractions at the crack tip and performing a second analysis.  Charalambides and his 

colleagues [28] devised an interesting test specimen which is capable of measuring the 

fracture resistance of bi-material interfaces.  The test specimen is a four-point bending 

beam made of two dissimilar materials with a notch at the middle of the beam, as shown 

in Figure 1-1.  In their numerical Finite Element solutions, they obtained graphs for the 

energy release rate, stress intensity factor, and loading phase angle considering a pre-

cracked notched symmetric composite beam model.  Matos et al. [29] presented a 

numerical method for calculating stress intensity factors in bi-material interfaces.  Their 

method is based on the 𝐽-integral using the “virtual crack extension” method, or the 

energy method developed by Parks [27][30].  They compared the stress intensities 

obtained by the energy method and the “crack surface displacement” method.  

Charalambides et al. and Matos et al., in their simulations, considered a pre-cracked 

Finite Element mesh with length 𝑎 and applied the virtual crack extension method by 

virtually increasing the crack length and changing the stiffness of a ring of elements 

around the crack tip [27].  Their simulation was not based on a progressive crack 

propagation along the interface where the crack length 𝑎 increases during a single 

simulation.  Evans et al. studied the fracture energy of bi-material interfaces and relative 

toughness of some bi-material interfaces with respect to the phase angle of loading [31].  
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Hutchinson and Suo [32], in their comprehensive paper, reviewed the investigations on 

fracture of layered materials including bi-material interfacial fracture mechanics. 

 

Figure 1-1 The pre-notched bi-material four-point bending beam with two symmetrical interfacial  

      cracks [28]  

1.2 Objectives and Scope 

The ultimate outcomes of most research on masonry structures in Civil 

Engineering might be used to enhance and review current design rules.  To do so, the 

importance of sophisticated numerical tools, capable of predicting the behavior of the 

structure from the linear stage, through cracking and degradation until complete loss of 

strength is clear.  It is then possible to control the serviceability limit states, fully 

understand failure mechanisms, and reliably assess the structural safety.  This objective 

can be achieved not only by implementing accurate and robust constitutive models, but 

also by measuring material parameters of masonry constituents in the linear and 

especially post-peak stages through precise and laborious experimental programs.  

Depending on the numerical modeling strategy, these constituents include brick units, 

mortar joints, and/or cohesive zones between brick and mortar, which are the weakest 
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part in a masonry structure.  If a micro- or meso-level modeling strategy is considered, 

then the interface elements may be added to other two constituents, i.e., brick and mortar, 

in the numerical model.  At this level of modeling, material properties of the constituents 

and the interface are needed, which can be measured by small-scale experimental 

programs.  Nonetheless, the brick-mortar interface data is generally neglected in large-

scale and practice-oriented analyses, where a macro-level modeling strategy is taken into 

account.  In this case, the masonry structure is regarded as an anisotropic homogenized 

material having a constitutive relationship between average masonry strains and average 

masonry stresses. 

This study focuses on the nonlinear analysis of brick-mortar interface in 

unreinforced masonry composites under static monotonic loads at the micro level of 

observation.  A numerical approach based on the fracture mechanics concepts, where the 

displacement field is discontinuous, accounting for the cracks and strong discontinuities, 

is employed.  The primary aim of this research is the implementation, development, and 

evaluation of a numerical tool at the micro-level which is fairly capable of evaluating and 

predicting the behavior of any bi-material interface, like brick-mortar bond, in a fracture 

mechanics context.  The objectives of this study are as follows: 

 Conducting some material level tests to measure the required material 

properties of brick, mortar, and their interface.  

 Simulating the failure modes of the brick-mortar interface to answer the 

question whether it is a mode 1 or mode 2 or a mixed mode failure which 

could help extract ‘true’ material properties of the interface from small 

scale material level test.  
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 Implementing and developing a numerical tool which simulates 

progressive crack propagation through the interface or brick and mortar to 

capture debonding in tension and delamination in shear while localization 

of fracture processes introduces snap-back instabilities. 

 Obtaining brick-mortar interface fracture properties like energy release 

rate and stress intensity factors for mode 1 and 2 from the numerical tool. 

 Determining the toughness relation of bi-material interfaces by the micro-

level simulation. 

 Obtaining the required fracture energy values of continuum-based 

cohesive zone models in the form of zero-thickness traction-separation 

law in the meso-level from the micro-level modeling outputs. 

It is important, however, to note that masonry experimental results typically show 

wide scatter numbers, not only in large scale tests but also in small scale specimens, as 

observed many times in this study.  Thus, a sharp reproduction of the experimental results 

in the form of a load-displacement curve, for example, is not the main concern.  It should 

be mentioned that the developed model and the discussion in this study probably have a 

much broader applicability than just masonry structures.  It is expected that the micro-

model can also be evaluated in other areas like adhesives, joints in rock and stone works, 

contact problems between bodies, microelectronic devices, and, in general, all types of 

interface behavior where bonding, cohesion, and friction between constituents form the 

basic mechanical actions.   
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Chapter 2 explains about the material level tests of the masonry composite carried 

out in the form of brick, mortar, and brick-mortar interface tests. It mainly focuses on the 

failure mode and strength of each test. To this end, a Digital Image Correlation, DIC, 

system was used to examine the failure mode, strain concentrations and crack 

propagation paths on the surface of specimens and the effect of bond on the overall 

behavior of the masonry composite.   

Chapter 3 deals with the theoretical framework and the numerical modeling 

method used to simulate the behavior of interfaces.  The 2D lattice model geometry and 

Voronoi diagram to discretize the continuum domain is first explained.  The material 

structure overlay technique is then discussed which assigns various material properties to 

the lattice elements depending on their specific coordinates in the mesh.  An existing 

constitutive relation capable of modeling the zero-thickness interface elements is adopted 

in the lattice model. The chapter ends with the explanation of the fracture criteria for the 

brick, mortar, and interface struts followed by a section about a few masonry test 

configurations simulated by the lattice.    

Chapter 4 explains about the essentials of the interfacial fracture mechanics and 

the way it was developed into the existing formulations for the bi-material interface 

cracks.  It first describes the Dundur’s parameters which characterize mismatches in the 

in-plane tensile and bulk moduli across the bi-material interface, introduced by different 

elastic properties of abutting dissimilar materials.  Muskhelishvili’s equations based on 

complex variable function which are used in solving crack problems in homogeneous and 

heterogeneous bi-material systems are then elaborated.   
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In Chapter 5, an energy method is used in the lattice model to obtain the energy 

release rate of an interface crack propagating along the bond.  This method is then 

employed to validate the lattice’s energy release rate and stress intensity factors by 

comparing the lattice results with three classic problems in fracture mechanics for which 

analytical solutions are available.  Validation of the model was performed by using a 

regular square mesh. 

Chapter 6 presents the results of the validated lattice model obtained from three 

numerical simulations in masonry composites in pure bending, tension, and double-lap 

shearing .  The energy release rate, the loading phase angle, and stress intensity factors 

for mode 1 and mode 2 are the main quantities obtained by the lattice approach.  Mesh 

sensitivity analyses were also conducted to compare the interfacial fracture results of a 

fine mesh with those of a coarse one.  The critical energy release rate values by the lattice 

are then devoted in obtaining the masonry interface toughness relation and also the 

critical fracture energy of a traction-separation zero-thickness interface element in meso-

level continuum finite element formulation.  These energy values are also used in 

homogenizing a heterogeneous anisotropic masonry unit cell in direct tension to a 

homogeneous isotropic continuum finite element using the energy equivalence concept. 

Chapter 7 presents the summary and final conclusions which can be derived from 

this study. 
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Chapter 2 MATERIAL LEVEL LABORATORY EXPERIMENTS 

This chapter briefly focuses on experimental observations of fired clay bricks and 

mortar specimens along with their interface at the constituent levels, in addition to their 

composite behavior when brick and mortar are stacked as a prism and are tested in direct 

compression.  The experimental observations include Digital Image Correlation, D.I.C., 

data from a 3D system to ascertain the effect of bond on the overall behavior of the 

masonry composite.  In the following, this D.I.C. system is shortly explained; then the 

small scale material level tests are discussed.  At the end, the behavior of a masonry 

prism in direct compression is evaluated. 

2.1 Digital Image Correlation System 

For image analysis, the Digital Image Correlation system, and its software named 

ARAMIS [33] was used in all experiments.  In the DIC technique, the software processes 

the images taken during the test to determine the full-field motion of the speckle 

geometry, and obtains surface deformations in terms of strain measurements.  The DIC 

setup used for this study, is a non-contact optical 3D metrology system in which the 

ARAMIS software analyzes, calculates and documents deformations at prescribed load 

steps.  The setup consists of four pairs of 12 Megapixel Gigabit Ethernet cameras 

connected to a sensor controller for power supply of the cameras and to record speckle 

images in pixel format.  The PC-based ARAMIS software assigns square or rectangular 

image details in the form of so-called facets, e.g., 15 x 15 pixels, for tracking their motion 

over the deformation history of the test article [33].  
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There are steps to accomplish a typical measuring procedure, some of which are 

related to specimen preparation, calibration of the measuring volume, creating a new 

project and defining its parameters like facet size, facet steps, computation size, gauge 

length, and so forth [33].  In order to measure a specimen’s deformation using ARAMIS 

system, its surface facing towards the cameras must meet some requirements like being 

smooth, having a stochastic pattern with good contrast to clearly allocate the pixels in the 

camera images called facets, being non-glossy and dull, being free of grease and oil, etc.  

In this study, a plain spray paint was used to create stochastic patterns on the specimen 

surface.  Satin or gloss paints were avoided because of their reflections under lighting.  

First, a white and dull base coat was applied on the specimen’s surface followed by 

spraying black dots to generate a random speckle pattern.  Smaller measuring volumes 

require a finer pattern than larger measuring ones.  Figure 2-1 shows a standard masonry 

prism prepared with a random dot pattern. 

Figure 2-1 Stochastic patterns sprayed on a masonry prism surface. 

 



14 

 

2.2 Material Level Tests  

Accurate mirco-modeling of masonry structures requires a thorough experimental 

description of the material.  In the present study, three types of material tests were 

considered for the numerical analyses, viz. sintered clay brick units without holes, mortar 

joints, and brick-mortar interface.  When the masonry prism is under axial compression, 

the mortar joints generally experience triaxial compression while the brick units are 

subjected to axial compression and lateral biaxial tension due to the Poisson’s mismatch 

properties of mortar and brick units.  Softer mortar joints generate lateral tension in the 

bricks through their interface bond leading to tensile cracking in the form of axial 

splitting of the brick units.  This failure initiates in the brick units and propagates through 

mortar joints. Since the brick is in biaxial lateral tension and axial compression, its tensile 

and compressive strengths and its failure mode are of particular interest.  The 

compressive strength of the mortar prism was also investigated under axial compression.  

Moreover, to investigate mode 1 and mode 2 failure behavior of the cohesive zone 

between brick and mortar, direct tensile and triplet tests were conducted to elaborate the 

behavior of the bond in tension and shear.  However, a fundamental question is whether 

the failure mode in the triplet test is due to tensile debonding (mode 1) or shear 

delamination (mode 2) or combination of them (mixed mode).  This question will be 

addressed later on.  A Tinius-Olsen axial tension-compression material testing machine 

with maximum capacity of 400 (𝑘𝑖𝑝𝑠) was used for most tests in this experimental 

investigation.  Also, the DIC system was used for all tests to capture the full-field 

deformation of test specimens at different load stages of axial displacement control.   
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2.2.1 Fired clay brick units 

The solid brick units of nominal size of 2 × 4 × 8 (𝑖𝑛) were acquired from a 

well-known local company in Houston, Texas.  Three randomly selected bricks were 

used for compression and three for splitting tension tests, also known as the Brazilian 

test.  The splitting tension test complies with the specifications of ASTM C 1006-84 [34].  

Figure 2-2 shows a typical brick specimen painted and prepared for a compression test 

[35]. 

Figure 2-2 Brick specimen under direct compression at the load level of 180 kips (0.87𝑃𝑚𝑎𝑥).   
     (a) The brick with speckles; (b) The snapshot taken by the DIC software; (c) 𝜀𝑥  

     contours on the surface of the brick. 

(a) 

(b) 

(c) 
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Figure 2-2(a) and Figure 2-2(b) illustrate the speckles on the surface of a tested 

brick taken by a regular camera and DIC software, respectively.  Figure 2-2(c) represents 

the distribution of 𝜀𝑥 contours on the brick’s surface shown in Figure 2-2(a).  The dark 

green contours correspond to lateral contraction, i.e., negative 𝜀𝑥 strain values 

contradicting the Poisson effect.  However, this may be explained by the boundary effects 

at the two brick surfaces.  Other colors are related to different levels of lateral tensile 

strain.  An average compressive strength of 6000 (𝑝𝑠𝑖) was measured for these three 

bricks with a standard deviation of 143 (𝑝𝑠𝑖). 

Moreover, splitting tension tests were conducted on three brick units.  In the test, 

two line loads along the bed surfaces of the brick were applied.  The compressive load, 

imposed by 0.25 (𝑖𝑛) in diameter bearing rods, results in a tensile stress distributed over 

the height of the brick over the split length of the unit.  The splitting tensile strength of 

the bricks is calculated according to the traditional expression for split tensile testing as 

 

𝑇 =
2𝑃

𝜋𝐿ℎ𝑏
  , (2-1) 

where 𝑇 is splitting tensile strength (𝑝𝑠𝑖), 𝑃 is maximum applied load indicated by the 

testing machine (𝑙𝑏𝑓), 𝐿 is split length (width) of the brick (𝑖𝑛), and ℎ𝑏 is height of the 

brick (𝑖𝑛).  The average splitting tensile strength for the three bricks was 400 (𝑝𝑠𝑖) with 

a standard deviation of 75 (𝑝𝑠𝑖), which is close to a typical value of concrete.  Figure 2-3 

illustrates the splitting tension test performed on one brick.  Figure 2-3(a) shows the 

painted brick after the test with a vertical mode 1 crack through its height.  Figure 2-3(b) 

exhibits the photo taken by the DIC system right after the failure, while Figure 2-3(c) 
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depicts the distribution of 𝜀𝑥 and major principal strains’ directions on the surface of the 

brick right before the failure.  As it can be seen, there are strain concentrations (red 

colors) right below and above the bearing rods on the middle top and bottom of the brick.  

This coincides with what is expected in the Brazilian test setup.  Other parts of the brick 

surface are almost free of deformations showing green color. 

Figure 2-3 Brick specimen in splitting tension test failed at the load level of 6.1 kips. (a) The brick  

      with speckles after the test, (b) The snapshot taken by the DIC software right after the  

              failure, (c) 𝜀𝑥 contours on the surface of the brick right before the tensile splitting. 

2.2.2 Mortar prisms 

Mortar mixture for these tests was prepared with a 4:1 sand to cement ratio and a 

W/C ratio of 0.56 for this experimental test program [36].  The mixture was formed as a 

(a) 

(b) 

(c) 
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prism surrounded by brick surfaces the dimensions of which were 4 × 4 ×  2 (𝑖𝑛).  The 

mortar prisms were cured for 14 and 28 days inside a moisture-tight bag.  They were 

tested in axial compression under displacement control at the same displacement rate as 

the brick units.  Figure 2-4 illustrates a mortar prism tested in this study under axial 

compression. 

Figure 2-4 Mortar prism specimen cured for 28 days under direct compression at the load level  

     of 40.9 kips (0.97𝑃𝑚𝑎𝑥).   (a) The mortar after failure, (b) The snapshot taken by the   

     DIC software at 0.97𝑃𝑚𝑎𝑥, (c) 𝜀𝑥 contours on the surface of the mortar at 0.97𝑃𝑚𝑎𝑥 . 

Figure 2-4(b) and (c) show the mortar very close to its failure.  As can be seen, 

the DIC software can capture the strain concentrations on the surface of the specimen.  If 

Figure 2-4(a) is compared with Figure 2-4(c), it is evident that the fracture trajectory 

closely matches with the one for 𝜀𝑥 concentration.  Figure 2-5 illustrates the major strain 

distribution and its directions along the surface of the same mortar shown in Figure 2-4.  

(a) 

(b) 

(c) 
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Viewing Figure 2-4(a) and Figure 2-5, we may conclude that the ARAMIS system can 

locate the crack path ‘before failure’ by measuring the increasing rate of localized 

deformations.  Attention should also be paid to the principal strains.  Figure 2-5 depicts 

the direction of the major principal strains which are oriented perpendicularly to the 

trajectory of the strain concentrations.  To explore also whether the failure mode is 1 or 2 

type, one might look at the von Mises strain contours as depicted in Figure 2-6.  It is 

observed that there are also high von Mises strains at the location of cracks.  This means 

that the fracture mechanisms are a combination of mode 1 and mode 2, or a mixed mode 

failure condition.  The average compressive strength measured for these mortar 

specimens was 2000 (𝑝𝑠𝑖) with a standard deviation of 751 (𝑝𝑠𝑖). 

Figure 2-5 Major strain distribution and its direction on the surface of the mortar prism at  

      0.97𝑃𝑚𝑎𝑥 captured by the DIC system. 

Figure 2-6 Mises strain distribution on the surface of the mortar prism at 0.97𝑃𝑚𝑎𝑥 captured by  

      the DIC system. 
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2.2.3 Brick-mortar interface 

The bond between the brick unit and mortar joint is often the weakest link in the 

masonry assemblage.  Exploring the mechanical behavior of this link is the key in the 

failure analysis of masonry structures.  Since two different phenomena occur in the brick-

mortar interface, one associated with tensile failure, mode 1, and the other associated 

with shear failure, mode 2, two types of tests were conducted in this study, namely direct 

tensile tests of interface, and also triplet tests. 

2.2.3.1 Interface direct tension test 

The purpose of this test is to measure the tensile strength of the brick-mortar 

bond. It was attempted to avoid any eccentricity during the test to only measure the mode 

1 behavior of the bond.  Figure 2-7 shows the test setup and the specimen for measuring 

the mode 1 behavior of the interface.  

Figure 2-7 Test setup and the two-brick masonry prism specimen for the direct tensile test. 

Brick units were cut according to the maximum opening of grips.  As can be seen 

in the figure, the DIC system and an extensometer were employed to measure the delicate 

deformation of the interface.  Four specimens were tested by this 10 − 𝑘𝑖𝑝 machine.  

Working with a gear box setup, the machine had not been equipped with a servo-
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controlled system to apply a displacement control test in a consistent manner.  Moreover, 

the machine’s grips were not properly concentric which imposed an unavoidable 

eccentricity to the specimen. However, a tensile strength of about 47 (𝑝𝑠𝑖) were 

measured for the specimens.  

2.2.3.2 Triplet test 

In addition to tension experiments, 17 additional tests were performed in order to 

explore the shear response of the brick-mortar interface in the form of double-lap 

shearing tests.  Uniaxial and biaxial loading configurations are needed to test the 

specimens under no confinement and confinement lateral loading.  To this end, the Tinius 

Olsen machine equipped with servo-controlled system and a 10 − 𝑘𝑖𝑝 manual hydraulic 

jack were employed.  Under no confinement conditions, where a uniaxial loading exists, 

the Tinus Olsen frame was only used in displacement control.  Under confined loading 

cases, it is needed to keep the lateral load constant while shear load increases.  Thus, the 

lateral constant load was applied by the Tinius machine in load control while applying 

shear load with the manual jack keeping the load rate constant.  For the unconfined cases, 

the loading and support arrangement is similar to a standard conventional double lap 

shear test for the determination of the bond shear strength of masonry joints [37].  
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Figure 2-8 Unconfined conventional triplet test to evaluate the brick-mortar interface behavior in  

      mode 2. 

 Figure 2-8 shows a conventional triplet configuration used in this research.  The 

DIC system was also used to follow the crack propagation and mode 1/mode 2 

deformation field.  Figure 2-9 illustrates the deformation field of a triplet specimen 

captured by the DIC system.  The vertical shear load was applied by the Tinius machine.  

Based on the values of εx and εxy on the inner interface, which are shown by red 

concentrated color, the failure mode is a combination of mode 1/mode 2, namely mixed 

mode. The values of shear strain for mode 2 is much larger than that of mode 1, 

Figure 2-9(a), (b).  The value of εy is negligible compared with two other strains, 

Figure 2-9(c), implying that the interface stretch strain could be neglected on the failing 

interface.  In other words, surface failure dominates volumetric fracture supporting the 

idea of using zero-thickness interfaces between brick and mortar in numerical modelings 

as opposed to the finite thickness interfaces.  

𝑦 

𝑥 
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Figure 2-9 Strain field of an unconfined triplet test specimen captured by the DIC system right  

      before the failure. 

 

Figure 2-10 depicts the deformation of a confined triplet specimen right before the 

failure of the interface.  Comparing Figure 2-10(a) and (b), it is seen that the value of 

shear strain, i.e., mode 2, is a bit smaller than that of mode 1 signifying a mixed mode 

failure.  The magnitude of the interface stretch, 𝜀𝑥, is again negligible in this case, 

compared to  𝜀𝑦 and  𝜀𝑥𝑦 on the inner interface.   

(a) (b) 

(c) 

𝑥 

𝑦 
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Figure 2-10 Strain field of a confined triplet test specimen captured by the DIC system right  

        before the failure. 

Specimens were tested under no confinement and different confining loads.  It is 

known that the shear strength of masonry joints increases with increasing the applied 

confining load up to a maximum value which is related to the compressive strength of 

material.  The relationship between the shear strength of brick-mortar interface, 𝜏, and the 

confining stress, 𝜎, can adequately be expressed by the classical Coulomb failure 

function of the form 

 

𝜏 = 𝜇0𝜎 + 𝜏0 ,   (2-2) 

where 𝜏0 is the shear strength at zero confining stress, and 𝜇0 can be considered as the 

coefficient of internal friction. According to the triplet test results, the estimated values of 

(a) (b) 

(c) 

𝑥 

𝑦 
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𝜏0 and 𝜇0 may be approximated by 179.68 (psi) and 0.662, respectively.  Figure 2-11 

illustrates Coulomb failure envelope for the triplet specimens under different 

confinements. 

Figure 2-11 Coulomb failure envelope for the triplet specimens under different confinements. 

2.3 Uniaxial Compressive Behavior of Masonry Prism 

The masonry prisms were made of five brick units from the same mentioned 

source and four mortar layers from the same cement and aggregates and mix proportions.  

They were constructed according to the specifications of ASTM C 1314 – 03b [38].  

Figure 2-1 shows a typical masonry prism prepared for this study the height of which is 

12 (𝑖𝑛).  The prisms were tested under a direct compression in displacement control with 

the same displacement rate as the brick units’ and mortar prisms’ [35].   
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Figure 2-12 Distribution of 𝜀𝑥 on the surface of the masonry prism during the direct       

        compression test. (a) 𝜀𝑥 contours at 0.5𝑃𝑚𝑎𝑥  , (b) 𝜀𝑥 contours at 𝑃𝑚𝑎𝑥 . 

Figure 2-12(a) and (b) illustrate the distribution of 𝜀𝑥 contours for one of the 

specimens at the load level of 88 and 171 (𝑘𝑖𝑝𝑠), respectively.  In Figure 2-12(a), most 

of the lateral strain field (see the strain bar) exhibits positive 𝜀𝑥-values with some vertical 

strain concentrations having been developed, i.e., yellow color.  Figure 2-12(b) shows the 

development of a vertical crack at failure.  The DIC system captures the concentrations of 

lateral strain depicting the axial crack location and orientation.  If the propagation history 

of the crack evolution is considered, it may be observed that the vertical crack propagates 

from the bottom to the top of the masonry prism in this case.  The crack initiates at a load 

level of 35 (𝑘𝑖𝑝𝑠) at the lowest mortar layer somewhere at the brick-mortar interface, 

(b) 

(a) 
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about 2.4 (𝑖𝑛) from the bottom of the prism, and then propagates upward under 

increasing load until the prism splits into two parts.  

Moreover, to observe the effect of shear of the mortar joints which is caused by 

the deformation mismatch effects explained earlier, the von Mises strain criterion was 

considered as 

 

𝜀𝑀 = √
1

2
[(𝜀1 − 𝜀2)2 + (𝜀2 − 𝜀3)2 + (𝜀3 − 𝜀1)2] , (2-3) 

where, 𝜀1, 𝜀2, and 𝜀3 are major principal strains and 𝜀𝑀 is the von Mises strain.  

Figure 2-13 illustrates the distribution of 𝜀𝑀 on the surface of the same masonry prism 

captured by the DIC system during the direct compression test.   Figure 2-13(a) shows the 

prism after failure.  A comparison can be made between Figure 2-13(a) and 

Figure 2-13(c) or Figure 2-12(b).  It is seen that the DIC system measures the 

deformations in real-time during the test and at the end it captures the real crack pattern 

of axial splitting.   

As expected, the softer mortar layers experience higher shear strains than the 

stiffer bricks.  This is evident in Figure 2-13(b) and (c) where a lighter blue color is seen 

at the top mortar layer at 0.5𝑃𝑚𝑎𝑥.  The fact that these Mises strain concentrations are not 

observed at the two bottom layers is probably because of the bottom to top order of 

construction of the prism where bottom ones experienced higher weight imposed by the 

upper bricks and mortar joints than the top layers during the construction of the prism.  

This probably induced more load on the bottom mortar layers due to the weight of top 

material layers mitigating the shear deformations caused by the mismatch effects.  It is 

also observed that the brick-mortar interface behavior is not captured in this type of test. 
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Figure 2-13 Distribution of 𝜀𝑀, Mises strain, on the surface of the masonry prism during the  

        direct compression test. (a) The failed masonry prism after the direct   

        compression test. (b) 𝜀𝑀 contours at 0.5𝑃𝑚𝑎𝑥 , (c) 𝜀𝑀 contours at 𝑃𝑚𝑎𝑥 . 

2.4 Summary 

The behavior of brick units, mortar prisms, and their interface was evaluated by 

conducting some material level tests.  The DIC system was employed throughout the 

experiments to observe and measure the full-field deformations of the specimens.  

Compared to the traditional way of using strain gauges which only measure extensional 

deformations at a limited number of discrete locations, the photogrammetry method used 

by the DIC system provides field information by measuring a very large number of data 

points dependent on the computation size, facet size and facet steps.  It also captures in-

(a) 

(b) 

(a) 

(c) 
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plane and out-of-plane deformations simultaneously.  Moreover, one of the main 

advantages of using the DIC system is measuring large deformations and strain 

concentrations on the surface of a specimen, while strain gauges often debond under large 

deformations.  Therefore, in some studies which deal with large deformations like in 

damage or fracture mechanics, the DIC system is very useful to track deformations up to 

failure.  Furthermore, the DIC system measures real-time deformations during the test 

and provides at the end a crack pattern that closely matches that of the real specimen. 

This gives the DIC system an opportunity to provide feedback to the testing machine 

through measurement of the deformations in real-time.  However, the DIC system shows 

some inconsistencies in measuring small deformations in brittle materials like brick and 

mortars. For instance, for the three 14-day mortar prisms tested, the average chord 

young’s moduli were 4518, 1857, and 7267 (𝑘𝑠𝑖) showing no consistencies. The issue is 

much worse for the Poisson’s ratio where the lateral horizontal strain, 𝜀𝑥, is much smaller 

than the vertical strain, 𝜀𝑦, causing erratic results in the linear stage which is determined 

based on the load-deformation curve of each specimen.  The problem also persists for the 

brick units.  Therefore, the values of Young’s modulus and Poisson’s ratio for brick and 

mortar were adopted based on the all measured values by the DIC and those reported in 

the literature.  

Unreinforced masonry is a heterogeneous, inelastic, and anisotropic material 

made of two major components, brick units and mortar joints exhibiting very different 

stiffness, strength and ductility properties.  When these two constituents are assembled in 

the form of a masonry prism, axial splitting of the prism is observed under compressive 

loading due to the mismatch conditions of the masonry composite.  This mismatch results 
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from the different response behavior of the stiff brick units and the soft mortar layers 

generating triaxial stress and deformation conditions in the brick unit and the mortar 

joint.  This means that under direct compression of the masonry prism test the softer 

mortar joints are restrained by the brick units from lateral expansion and hence 

experience triaxial confinement, while the stiffer brick units are subjected to lateral 

tension besides far-field axial compression. 
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Chapter 3 NUMERICAL LATTICE MODEL 

Heterogeneous materials exhibit complicated fracture mechanisms due to their 

microstructure.  Analytical descriptions of these mechanisms using linear elastic fracture 

mechanics is difficult, since the fracture pattern includes a main crack, itself consists of 

various branches, secondary cracks, and microcracks.  Due to the limitations and 

inflexible nature of analytical methods in handling arbitrary complex geometries and 

boundary conditions and general crack propagations, fracture processes in heterogeneous 

materials are, therefore, often simulated with numerical models.  One of the numerical 

tools which is well suited for fracture simulations is the lattice model.  The following 

sections explain the concepts, definitions, assumptions, and methods used in this study to 

implement the lattice model in MATLAB R2014a [39] as a tool in computational fracture 

mechanics. 

3.1 Lattice Geometry and Voronoi Diagram 

The main concept of the lattice model was first introduced by Hrennikoff [40] in 

1941, where a continuum domain can be discretized by a lattice of truss, beam, or frame 

elements.  He replaced the continuous elastic panel by a framework of equivalent bar or 

strut members with elastic properties based on the properties of the continuum domain.  

Voronoi diagrams, based on a random or regular distribution of points, were used in this 

study to discretize the continuum domain into an assemblage of convex rigid particles 

interconnected along their boundaries through flexible common sides or interfaces [41] 

(See Figure 3-1).  A planar Voronoi diagram is defined as [42] “Given a set of two or 
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more but a finite number of distinct points in the Euclidean plane, all locations in that 

space are associated with the closest number(s) of the point set with respect to the 

Euclidean distance.  The result is a tessellation of the plane into a set of regions 

associated with members of the point set.  This tessellation is called the planar Voronoi 

diagram generated by the point set, and the regions constituting the Voronoi diagram is 

referred to as Voronoi polygons.”   

Figure 3-1 Discretization of a rectangular continuum domain into particles using Voronoi  

      formulation. (a) a regular discretization, (b) a random discretization.  

These Voronoi polygons or convex rigid particles are, for example, regular 

hexagons as shown in Figure 3-1(a).  Each particle, in the Voronoi diagram, has a point 

inside called nucleus or centroid which has a specific geometric definition.  A truss or 

beam or frame element connects these nuclei inside the particles constructing a 

discretized lattice mesh.  Figure 3-2 illustrates the generated mesh for a regular and 

random nuclei distribution according to the Voronoi diagram.  This diagram is uniquely 

defined by the nuclei distribution.  The Voronoi region, or cell, assigned to nucleus 𝑖 is 

[41] 

      (a)                                                                                                    (b) 
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𝑉𝑖 ≝ 𝑉(𝑿𝒊) =∩𝑗≠𝑖 {𝑿|𝑑(𝑿𝒊, 𝑿) ≤ 𝑑(𝑿𝒋, 𝑿)}, (3-1) 

where 𝑿𝒊 are the coordinates of nucleus 𝑖; 𝑑(𝑿𝒊, 𝑿) is the Euclidean distance between 𝑿𝒊 

and 𝑿; and 𝑗 runs from 1 to 𝑛, excluding 𝑖.  This means that each point 𝑿 belonging to 

Voronoi region 𝑖 is closer to nucleus 𝑖 than all other nuclei, creating a set of convex 

polygons in the plane as illustrated in Figure 3-2.  Similarly, the boundary, or interface, 

segment common to two contiguous particles 𝑖 and 𝑗 is [41] (See Figure 3-3)  

 

𝑆𝑖𝑗 ≝ 𝑆(𝑿𝒊, 𝑿𝒋) =∩𝑘≠𝑖,𝑗 {𝑿|𝑑(𝑿𝒊, 𝑿) = 𝑑(𝑿𝒋, 𝑿) ≤ 𝑑(𝑿𝒌, 𝑿)}.  (3-2) 

Figure 3-2 Presentation of rectangular continuum domains in Figure 3-1 by strut bars using  

     Voronoi diagram, a lattice model. (a) a regular mesh, (b) a random mesh. 

Although Equations (3-1) and (3-2) are conceptually simple, the generation of 

Voronoi diagram is nontrivial due to computing demands and other issues such as the 

modeling of domain boundaries. Thus, special care was exercised to account for domain 

boundaries, both in regular and random meshes.   

      (a)                                                                                                    (b) 
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Figure 3-3 Voronoi particle associated with nucleus 𝑖. Line segment 𝑖 − 𝑗 establishes a frame or  

      truss element [41]. 

The random discretization and random mesh generation technique, Figure 3-1(b) 

and Figure 3-2(b), was adopted from the method firstly proposed by Mourkazel and 

Herrmann [43][44].  In the method, a rectangle domain, for instance, is divided to smaller 

rectangular grids of sizes 𝑠𝑥 and 𝑠𝑦.  Inside each grid cell, a point is randomly selected 

which itself lies inside a smaller rectangular cell of sizes 𝐴𝑥 and 𝐴𝑦 such that 𝐴𝑥 ≤ 𝑠𝑥 

and 𝐴𝑦 ≤ 𝑠𝑦 (Figure 3-4).  The ratios 0 ≤ 𝐴𝑥/𝑠𝑥 ≤ 1 and  0 ≤ 𝐴𝑦/𝑠𝑦 ≤ 1 determine the 

degree of randomness, D.O.R., of the mesh along 𝑥 − 𝑎𝑥𝑖𝑠 and 𝑦 − 𝑎𝑥𝑖𝑠, respectively, 

where 𝐷𝑂𝑅 = 1 when there is full randomness and 𝐷𝑂𝑅 = 0 when there is no 

randomness or the mesh is regular along the specified axis.  After spreading the random 

points or centroids over the continuum domain, the Voronoi tessellation is used to 

discretize the domain according to the random point set and then to connect them.  These 

connecting lines are the struts or frame elements of the lattice mesh as explained earlier.  
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Figure 3-4 Random mesh generation technique based on a regular square grid [43], [44]. 

 Figure 3-5 illustrates some lattice meshes generated by the above mentioned 

technique.    Figure 3-5(a) to  Figure 3-5(d) show meshes with 𝐷𝑂𝑅 = 0, 𝐷𝑂𝑅 = 0.2, 

𝐷𝑂𝑅 = 0.6, and 𝐷𝑂𝑅 = 1.0 along both 𝑥 and 𝑦 axes, respectively.  This degree of 

randomness may be different along the vertical and horizontal axes, which is suitable for 

generating random meshes for layered heterogeneous media like masonry composites. 

3.2 Material Structure Overlay 

One of the attractions of lattice models is the combination of the mechanics model 

and the material structure, called material structure overlay.  The lattice is the mechanical 

model; the material structure is simply projected on top of the lattice and various 

properties are assigned to the lattice elements depending on their specific location in the 

projected material structure.  In other words, the lattice and material structure are two 

independent features of the model.  Figure 3-6 illustrates the material properties’ 

assignment to the mechanical model.  ‘Black’, ‘blue’, and ‘pink’ struts in Figure 3-6 
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represent elements on which the material properties of brick, mortar and interface are 

projected, respectively.  The coordinates of each strut’s nodes are firstly considered, 

having three phases of material properties.  If both nodes of an element fall within a 

single phase, then that phase’s material properties are assigned to that of the element. 

This is valid for the brick and mortar phases.  However, if one node is located on one 

phase and the other node sits on another phase, then that element is considered as an 

interface receiving material properties of interface element. 

 Figure 3-5 Different lattice meshes with four degrees of randomness. 

(a) 𝐴/𝑠 =  0 (b) 𝐴/𝑠 =  0.2 

(c) 𝐴/𝑠 =  0.6 (d) 𝐴/𝑠 =  1.0 
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Figure 3-6 Overlaying material properties onto lattice structure. Black, blue and pink represent  

      brick, mortar, and interface material properties, respectively. 

Figure 3-6(a) and Figure 3-6(b) shows two coarser and finer regular triangular 

meshes with the overlaid material properties.  In Figure 3-6(c), 𝐷𝑂𝑅 = 0 in both 

directions, resulting in a regular square mesh; while 𝐷𝑂𝑅𝑥 = 1 and 𝐷𝑂𝑅𝑦 = 0 in 

Figure 3-6(d) to produce a layered random mesh having three material phases.   

The connecting lines between the nodes in the lattice mesh represent the truss or 

frame elements which are the mechanical model of the numerical lattice simulation.  

Number of degrees of freedom at nodes or computational points determine the type of 

(a)  (b)  

(c)  (d)  
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element in the simulation.  In this study, 2-D ‘frame’ elements with three degrees of 

freedom at nodes were considered.  In fact, the number of DOFs determines the type of 

continuum that the lattice represents.  The lattice of frame elements is a discretization of a 

higher order continuum, i.e., a Cosserat (micro polar) elastic continuum [45].  Schlangen 

and Garboczi [45] evaluated three types of elements, i.e., trusses with 1, 2, and frames 

with 3 degrees of freedom at each node.  They concluded that in the simulations with 

frame elements, the crack pattern on the mesh was much closer to the experimentally 

obtained cracks.  de Borst and Muehlhaus [46] also showed that using a Cosserat 

continuum will in many cases result in more physically realistic crack patterns in 

continuum models.  They concluded that the micro polar model is capable of properly 

describing discontinuities that arise at a micro level in the material.  J. van Mier [44] also 

recommended frame elements as they can be fitted over a wider range to match the 

elastic constants of uncracked concrete.  When using truss elements in fracture 

simulations, the lattice may become ‘unstable’ when too many struts are removed.  This 

was confirmed for the lattice simulations of the triplet test of double lap shear in this 

study for regular triangular meshes when the stiffness matrix became singular after 

removing a set of diagonal struts at the interface layer.  

3.3 Lattice Constitutive Relation 

2-D frame elements with three degrees of freedom were considered for the 

numerical lattice simulations in this study.  As shown in Figure 3-7, each frame strut can 

transfer, in general, normal force 𝑁, shear force 𝑄, and bending moment 𝑀, due to their 

corresponding degrees of freedom.   
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Figure 3-7 (a) Degrees of freedom and external forces acting on a 2D frame element in local  

      coordinates; (b) Constitutive relation for a single frame element  

The relation between these forces and their corresponding displacements at the 

endpoints of the frame element, Figure 3-7(a), can be expressed by the well-known 2D 

relation [45]  

 

𝒒 = 𝑺𝒅 (3-3) 

or 
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in which 𝐸 is the Young’s modulus, 𝐴 is the cross-sectional area, ℎ0 is the length, 𝐼 is the 

moment of inertia, 𝛿𝑛 and 𝛿𝑡 are the translational displacements, and 𝜙 is the rotational 

displacement of a frame element.  The force vector 𝒒 in Equation (3-3) is in local 
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coordinate system.  To establish the system of equations for the whole lattice mesh, the 

force vector 𝒒 in Equations (3-3) and (3-4) must be multiplied by the appropriate 

transformation matrix as 

 

𝒇𝒆 = 𝑻𝒒 , (3-5) 

where 𝒇𝒆 is force vector in the lattice global 𝑥 − 𝑦 coordinates for the frame element 𝑒, 𝑻 

is the transformation matrix from the local to the global coordinate system defined by 

 

𝑻 =

[
 
 
 
 
 
cos (𝜃) −sin (𝜃) 0 0 0 0
sin (𝜃) cos (𝜃) 0 0 0 0
0 0 1 0 0 0
0 0 0 cos (𝜃) −sin (𝜃) 0
0 0 0 sin (𝜃) cos (𝜃) 0
0 0 0 0 0 1]

 
 
 
 
 

, (3-6) 

 in which 𝜃 is the angle measured counterclockwise from the positive direction of the 

global 𝑥 axis to the positive direction of the local 𝑥 axis. 

Equation (3-4) is a well-known force-displacement relationship for 2D frame 

elements in the lattice model.  However, this equation may not be suitable if a zero-

thickness interface element with a traction-separation constitutive relation needs to be 

projected onto the lattice mesh.  In this study, an approach introduced by Bolander and 

Saito [41] was employed to establish the constitutive relation of brick, mortar, and 

interface in a 2D plane strain or plane stress lattice simulation. 

Figure 3-8 shows the relationship of two Voronoi particles by putting a flexible 

interface between them.  The interface or boundary defined in Equation (3-2) is shown in 

Figure 3-3.  In Figure 3-8, two triangular particles are connected at their interfaces by 

translational and rotational stiffnesses, i.e., 𝑘𝑛, 𝑘𝑡, and  𝑘𝜑, which approximate the elastic 

properties of the continuum.  Points 1 and 2 in this figure are the nuclei or computational 
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points lying at the beginning and end points of the strut or frame element.  The relation 

between internal forces and local displacements is [41] 

 

𝒒 = 𝑫𝒅,   (3-7) 

where 𝒒𝒕 = {𝑞𝑛, 𝑞𝑡, 𝑞𝜙} is the internal force vector between two particles; 𝑫 is a diagonal 

matrix containing the normal, tangential, and rotational spring stiffnesses depicted in 

Figure 3-8(a), i.e., 𝑫 = 𝑑𝑖𝑎𝑔[𝑘𝑛, 𝑘𝑡, 𝑘𝜙]; 𝒅
𝑡 = {𝛿𝑛, 𝛿𝑡, 𝜙} is the local relative 

displacement vector of two particles in the normal, tangential, and rotational directions, 

Figure 3-8(b), and the superscript 𝑡 denotes the transpose of a vector.  

The spring stiffnesses are obtained in terms of elastic properties of the continuum 

domain and also the geometry of the connected particles. For brick and mortar frame 

elements, the stiffnesses are obtained as follows: 

Figure 3-8 Mechanical relationship between two particles. (a) Embedding translational and  

      rotational stiffness between two particles on the interface, (b) facet local displacement  

     in t-n coordinates [41]. 
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𝑘𝑛 =
𝐸′𝐴

ℎ0
=
𝐸′𝑡𝑙43

ℎ0
,  (3-8) 

 

𝑘𝑡 =
𝐸′′𝐴

ℎ0
=
𝐸′′𝑡𝑙43

ℎ0
, and  (3-9) 

 

𝑘𝜙 =
𝐸′𝐼

ℎ0
=
𝐸′

ℎ0
( 
𝑡𝑙43

3

12
 ) =

𝐸′(𝑡×𝑙43)

ℎ0
( 
𝑙43

2

12
 ) =

𝐸′(𝐴)

ℎ0
( 
𝑙43

2

12
 ) =

𝑘𝑛𝑙43
2

12
,  (3-10) 

where, 𝐸′ = 𝐸 (1 − 𝜈2)⁄  and 𝐸′′ = 𝜇 = 𝐸 [2(1 + 𝜈)]⁄  for plane stress; 𝐸′ =

𝐸(1 − 𝜈) [(1 + 𝜈)(1 − 2𝜈)]⁄  and 𝐸′′ = 𝜇 = 𝐸 [2(1 + 𝜈)]⁄  for plane strain; 𝐸 and 𝜈 are 

the Young’s modulus and Poisson ratio of the continuum material, respectively; 𝑡 is the 

specimen thickness; ℎ0 is the frame element length between points 1 and 2, as shown in 

Figure 3-8(a); 𝑙43 is the frame element width between points 3 and 4 in Figure 3-8(a); and 

𝐴 = 𝑡𝑙43 is the cross sectional area.  For the interface elements, 𝑘𝑛 = 𝐾𝑛𝐴, 𝑘𝑡 = 𝐾𝑡𝐴, 

and 𝑘𝜙 = 0, similar to truss elements with no rotational stiffnesses.  𝐾𝑛 and 𝐾𝑡 are 

obtained by homogenizing the composite material surrounding the interface, i.e., brick 

and mortar [13] as 

 
𝐾𝑛 =

𝐸𝑏𝐸𝑚

ℎ𝑏ℎ𝑚(
𝐸𝑏
ℎ𝑏
⁄ +

𝐸𝑚
ℎ𝑚
⁄ )

 and (3-11) 

 
𝐾𝑡 =

𝜇𝑏𝜇𝑚

ℎ𝑏ℎ𝑚(
𝜇𝑏
ℎ𝑏
⁄ +

𝜇𝑚
ℎ𝑚
⁄ )

 , (3-12) 

where 𝐸𝑏, 𝜇𝑏 and 𝐸𝑚, 𝜇𝑚 are the normal and shear moduli of the brick and mortar, 

respectively.  Equations (3-11) and (3-12) can be obtained by considering a serial 

arrangement of brick-interface-mortar where the volume change is negligible.  
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The stiffness matrix in global 𝑥 − 𝑦 coordinates associated with the two-particle 

assemblage follows from matrix analysis of structures as 

 

𝒌𝒆 = 𝑩
𝒕𝑫𝑩, (3-13) 

where matrix 𝑩 relates the displacement vector in local 𝑡 − 𝑛 coordinates, i.e., 𝒅, to that 

in global 𝑥 − 𝑦 coordinates, i.e., 𝒖𝒆
𝑡 = {𝑢1, 𝑣1, 𝜃1, 𝑢2, 𝑣2, 𝜃2} as [41] 

 

𝒅 = 𝑩𝒖𝒆 =

1

𝑙43
[

𝑦43 −𝑥43 (−𝑥43𝑥𝑃1 − 𝑦43𝑦𝑃1)

𝑥43 𝑦43 (𝑦43𝑥𝑃1 − 𝑥43𝑦𝑃1)
0 0 −𝑙43

     

−𝑦43 𝑥43 (𝑥43𝑥𝑃2 + 𝑦43𝑦𝑃2)

−𝑥43 −𝑦43 (−𝑦43𝑥𝑃2 + 𝑥43𝑦𝑃2)
0 0 𝑙43

]

{
 
 

 
 
𝑢1
𝑣1
𝜃1
𝑢2
𝑣2
𝜃2}
 
 

 
 

,  
(3-14) 

where point 𝑃 is the  facet midpoint in Figure 3-8 and 𝑥𝑖𝑗 = 𝑥𝑖 − 𝑥𝑗, 𝑦𝑖𝑗 = 𝑦𝑖 − 𝑦𝑗, i.e., 

 

{
𝑥𝑃𝑖 = (𝑥4𝑖 + 𝑥3𝑖)/2
𝑦𝑃𝑖 = (𝑦4𝑖 + 𝑦3𝑖)/2

      𝑖 = 1,2. (3-15) 

Moreover, 

 

𝒌𝒆𝒖𝒆 = 𝒇𝒆, (3-16) 

in which 𝒇𝒆 contains the force components in global coordinates for the frame element 

associated with each respective entry in displacement vector 𝒖𝒆.  The frame element 

stiffness matrix 𝒌𝒆 in Equation (3-13) is assembled in a conventional manner to form the 

global stiffness matrix of the whole lattice mesh.  It should be noted that the particle’s 

geometries are used as entries of 𝑫 and 𝑩, as indicated by Equations (3-8) to (3-15).  

Also, the constitutive relation and stiffness formulation do not have inter-particle contact 

modeling, like the one used in the distinct element method [47]. 
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3.4 Lattice Fracture Criteria 

The simulation of fracture, in this study, was performed with a ‘linear elastic’ 

analysis of the lattice under loading, Figure 3-7(b), and removing an element from the 

mesh which exceeds a certain fracture criterion, for instance a tensile or compressive 

stress based on the failure envelope.  The ‘gap’ between the remaining elements is 

considered as a discontinuity or crack in the lattice mesh.   After removing the element, 

the lattice mesh contains one less element.  The simulation is continued by performing a 

linear elastic analysis of the new mesh, where the forces that were carried by the removed 

element are now redistributed over the neighboring elements.  This procedure continues 

until the next element satisfies its ‘fracture criterion’, and so on [45], [44].  Thus at each 

step, the external load on the lattice is increased and the critical element at the fracture 

threshold is removed.  The erosion strategy leads to an ‘instantaneous relaxation’ of the 

load, carried by that removed part of the lattice [44].  This was often observed during the 

lattice analyses of this study as a sudden drop in form of snap-backs in the load-

displacement diagrams.  Figure 3-9 illustrates a test simulation of a masonry prism in 

direct tension, the load-displacement curve of which involves snap-back instabilities 

which are due to the failure of the lowest interface struts.  The saw-tooth pattern observed 

at the post-peak part of the curve is because of the failure of each strut in an unzipping 

manner, releasing fracture surface energy which exhibits itself in the form of 

displacement relaxations of the lattice mesh. 

Fracture criterion for the failure of brick and mortar frame elements, i.e., “black” 

and “blue” struts in Figure 3-9, was defined as a function of normal force and bending 

moments at computational points of each frame member as 
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𝜎𝑒𝑓𝑓 =
𝑁

𝐴
± 𝛼′

(|𝑀𝑖|,|𝑀𝑗|)𝑚𝑎𝑥

𝑆
≥ 𝑓𝑡  𝑜𝑟 𝑓𝑐, (3-17) 

 

where 𝑁 is the normal force of the lattice element; 𝐴 is its cross sectional area; 𝑀𝑖 and 𝑀𝑗 

are the bending moments at the nodes 𝑖 and 𝑗, respectively; 𝑆 = 𝑙43𝑡
2 6⁄  is the section 

modulus; 𝑓𝑡 and  𝑓𝑐 are the tensile and compressive strengths of the material, respectively; 

and 0 ≤ 𝛼′ ≤ 1 is added to limit the effect of bending in the fracture law.  The value of 

𝛼′ may be determined by parametric studies and comparison with experimental 

measurements [48].   

Figure 3-9 (a) Direct tensile test on a regular triangular lattice with interfaces; (b) Tensile load  

            versus vertical displacement of top nodes 

The fracture criterion for the brick-mortar interface was determined based on a 

combination of experimental measurements and numerical parameter simulations.  

Figure 3-10 shows the fracture condition considered for the interface frame elements in 

the lattice model.  This failure envelope has a compressive cap which was necessary for 

(𝑎) (𝑏) 
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the simulation of triplet test under high normal confinements.  It should be noted that the 

shear failure surfaces were neglected for brick and mortar elements since the main focus 

of this study was to evaluate the brick-mortar interface fracture properties, and with the 

simulations conducted, their shear failure envelopes were not activated.   

 

Figure 3-10 Failure surface for the brick-mortar interface employed in this study. 

In this figure, the failure surface has three major parts, namely a tension cut-off, a 

Coulomb shear envelope, and a compressive cap.  The tension cut-off part was 

determined based on the direct tension test of interface, Section 2.2.3.1, while the 

inclined shear envelope was obtained by the triplet experiments mentioned in 

Section 2.2.3.2.  The horizontal part of the shear envelope in Figure 3-10 and also the 

compressive cap were determined by parametric studies of confined triplet simulations 

under different high confinements in the implemented lattice model.  Strength parameters 

of brick, mortar and interface has been presented in Table 3-1. 
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Table 3-1 Mechanical characteristics of materials adopted for the computations 

 
E (lbf/in2) 

[MPa] 
ν 

ft (lbf/in2) 

[MPa] 

fc (lbf/in2) 

[MPa] 

  

Brick 
4506000 

[31067.78] 
0.1 

400 

[2.76] 

6000 

[41.37] 
  

Mortar 
3022000 

[20835.96] 
0.2 

300 

[2.07] 

2000 

[13.79] 
  

 
Kn (lbf/in3) 

[N/mm3] 

Kt (lbf/in3) 

[N/mm3] 

ft (lbf/in2) 

[MPa] 

fc (lbf/in2) 

[MPa] 

fs (lbf/in2) 

[MPa] 
𝝁𝟎 

Interface 
1504240 

[408.32] 

668618 

[181.49] 

47 

[0.32] 

600 

[4.14] 

180 

[1.24] 
0.662 

3.5 Lattice Simulations of Brick-Mortar Interface Test Configurations 

The numerical implementation of the 2-D lattice model was performed in 

MATLAB R2014a [39] in the form of various developed functions. The main purpose of 

this implementation was to simulate the fracture behavior of brick-mortar interface under 

different loading conditions, as presented in Section 2.2.3. These loading conditions 

involve tension, shear, and combined shear and compression.  In this section, only the 

global behavior of these masonry test specimens in the form of deformed meshes and 

load-displacement curves is evaluated.  The interface fracture properties like the energy 

release rate and stress intensity factors and their simulations will be discussed in the 

following chapters.  

3.5.1 Interface behavior in direct tension simulation 

A direct tension test was simulated using a regular lattice model on a prism made 

of three bricks, two mortar joints, and four interface layers as shown in Figure 3-11.  We 

name the interfaces from bottom side of the specimen as interfaces 1, 2, 3, and 4, 

respectively.  The height, and length of each brick are about 2 and 6 inches, respectively.  
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The height for the mortar joint is almost 0.5 (𝑖𝑛).  The thickness of the specimen is 

4 (𝑖𝑛).  The height of each interface would decrease as the mesh is more refined.   The 

failure should happen through the brick-mortar interface. 

Figure 3-11 Direct tensile test on a regular lattice model with interfaces. 

Figure 3-12 Tensile load versus vertical displacement of top nodes for the masonry prism with  

        regular lattice mesh shown in Figure 3-11. 
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Figure 3-12 shows the load-displacement curve for the direct tensile test shown in 

Figure 3-11.  The simulation was run in displacement control with a constraint that limits 

the number of failed struts at each increment.  This constraint reduces the displacement 

values at the free degrees of freedom where the traction is applied.  This reduction in 

applied displacements introduces snap-backs on the load-displacement diagram.  As it 

can be seen, the post-peak behavior exhibits snap-back instabilities.  Not only does it 

need a precise and delicate experiment program to capture snap-backs during a test in 

laboratory, but also it is challenging enough to trace the equilibrium path through a 

continuum FE model even if an equilibrium solution algorithm like Arc-Length is 

utilized.  This could be considered as one of the advantages of the lattice modeling in 

presenting the load-displacement curve. 

Figure 3-13 illustrates the second interface crack propagation at different load 

increments, i.e., the four points on the load-displacement curve.  The failure starts from 

the lateral sides of the interface layer sweeping to the center of the specimen.  Two top 

deformed meshes in this figure correspond to the two orange points in Figure 3-12, as the 

sudden drop in the load-displacement curve from 748 (𝑙𝑏𝑓) to 609 (𝑙𝑏𝑓) is due to the 

failure of two more frame elements in the top left mesh leading to the top right mesh with 

a total of 12 failed struts.  This indicates the relation between localized fracture processes 

and snap-back instabilities.  The bottom left mesh is related to the square point in 

Figure 3-12 at a load level of 335 (𝑙𝑏𝑓).  The bottom right mesh also corresponds to the 

triangular point in the curve where the load level was dropped to 79 (𝑙𝑏𝑓) and almost all 

the interface struts were already swept away.  Looking at Figure 3-12 and Figure 3-13, it 

is observed that a considerable amount of stain energy is released and dissipated due to 
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the failure of the first 10 interface elements in the lattice mesh.  It should also be 

mentioned that red colored struts at these deformed meshes indicate that the interface 

element is under tension with an internal tensile force greater than 65% of its tensile 

strength capacity and is going to touch the tension cut off line as shown in Figure 3-10.   

Figure 3-13 Interface fracture propagation for the direct tensile test happening at interface 2,  

        from top left to bottom right, corresponding to the four highlighted points in   

       Figure 3-12 (Deformations have been magnified by 300). 

Another direct tension test was simulated on the same specimen with a randomly-

generated lattice mesh as depicted in Figure 3-14 and Figure 3-15.  The four points in 

Figure 3-14 from the load level of 963 (𝑙𝑏𝑓) down to 45 (𝑙𝑏𝑓) correspond to the meshes 

in Figure 3-15 from top left to the bottom right, respectively.  In this case, failure initiates 
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from the left side of the interface 3 due to its random nature of struts geometry.  The peak 

load in the random lattice is 963 (𝑙𝑏𝑓), or 40.8 (𝑝𝑠𝑖), compared to 1107 (𝑙𝑏𝑓), or 

46.9 (𝑝𝑠𝑖), for the regular lattice. 

 

Figure 3-14 Tensile load versus vertical displacement of top nodes for the masonry prism with  

        ‘random’ lattice mesh. 

These stresses correspond to the tensile strength of the interface element which 

was 47 (𝑝𝑠𝑖) as an input into the numerical model.  Therefore, the regular triangular 

lattice model can better predict the peak load than the random lattice mesh. This was 

tested even for a finer random lattice mesh and the peak load went down from 963 (𝑙𝑏𝑓) 

to 926 (𝑙𝑏𝑓).  This trend is also true for the regular square mesh with 𝐷.𝑂. 𝑅 = 0 which 

is actually a random mesh with 𝐴/𝑠 = 0, as shown in Figure 3-5(a).  By reducing the 

ratio 𝐴/𝑠, the peak load decreases independent of the mesh refinement.  One possible 

explanation might be that the internal normal forces at vertical interface struts of a regular 

square mesh is greater than those at the inclined struts of a triangular regular mesh. 
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Figure 3-15 Interface fracture propagation for the direct tensile test happening at interface 3  

        for a random mesh, from top left to bottom right, corresponding to the four   

       highlighted points in Figure 3-14(Deformations have been magnified by 300). 

3.5.2 Interface behavior in triplet test simulations 

Some lattice simulations have been conducted for the triplet test for situations 

where there is no normal confinement and also cases in which confined normal load is 

applied.   

3.5.2.1 Unconfined triplet simulation 

The same masonry composite as shown in Figure 3-11 was considered here with a 

different loading and boundary conditions shown in Figure 3-16.  The shear load is 

applied on the middle brick at the right end while two other bricks are supported at the 
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left end.  Figure 3-17 illustrates the load-displacement curve for the unconfined triplet 

lattice model shown in Figure 3-16.  Due to the beam removal strategy in the lattice 

model, after removing one or two frame elements the load is redistributed over 

neighboring struts and at some points a portion of strain energy is ‘released’ leading to 

snap-back instabilities in the load-displacement curve.   

Figure 3-16 Unconfined triplet test simulation on a regular triangular lattice mesh. 

There are four points on the curve at which the deformed mesh and interface 

failure progress were evaluated.  Figure 3-18 is related to the four highlighted points on 

the load-displacement curve.  This figure shows the propagation of crack on the 

interfaces especially interfaces 2 and 3, namely inner interfaces.  There are partial and 

full discontinuities on the interfaces. ‘Partial discontinuity’ exists when just one diagonal 

strut element is removed at the interface layer and the other diagonal element is still in 

the mesh.   ‘Full discontinuity’ is related to situations where all the struts have been 

removed and there is a crack on the mesh.  
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Figure 3-17 Shear load versus horizontal shear displacement of the unconfined triplet simulation  

       for the regular lattice mesh shown in Figure 3-16. 

Figure 3-18 Interface fracture propagation for the unconfined triplet test simulation from top left  

        to bottom right, corresponding to the four highlighted points in Figure 3-17   

       (Deformations have been magnified by 300). 
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It is seen, in Figure 3-18, that the failure of interface elements starts from the left 

end rather than right end which might be due to the boundary conditions on the left end 

of the outer bricks and the direction of shear loading.  Moreover, since the middle brick 

moves along the horizontal direction while two others are supported at the left end, inner 

interfaces, i.e., 2 and 3, encounter more fractures than the outer ones.  Full discontinuity 

or cracking is only observed at the inner interfaces starting at the left end. Outer 

interfaces only experience partial discontinuities.  

Bottom left and bottom right meshes in Figure 3-18 correspond to the yellow 

triangular and blue square points in Figure 3-17, respectively. According to the load-

displacement curve, there is a snap-back for these two points, which means that a 

considerable amount of strain energy was released between these two steps. This is 

especially conspicuous if the right ends of the bottom meshes are compared, as there are 

greater deformations at the right end of the bottom left mesh than those of the bottom 

right, which indicate that a portion of shear displacement and strain energy were released. 

3.5.2.2 Confined triplet simulation 

Another important simulation for the triplet test is related to the situations where 

there is a constant normal confinement while applying shear.  The implementation of this 

confinement for the triplet test was a delicate process where considerable efforts were 

made.  Figure 3-19 shows the same masonry prism as before with the loading and 

boundary conditions for the confined triplet test simulation on a regular triangular mesh.  

During each simulation for a specified normal confinement, its value is kept constant 

within an acceptable tolerance.  The normal confining load is applied at the beginning of 

each increment and then the shear displacement is applied at the right end on the middle 
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brick.  At the next increment, the confinement is applied on the last converged 

displacement vector and this process continues until the loss of strength of the lattice 

model.  Figure 3-20 shows the load-displacement curve for the confinement level of 

500 (𝑙𝑏𝑓).  Comparing load-displacement curves for  Figure 3-17 and Figure 3-20, it is 

obvious that by applying the normal confining load, the maximum shear strength 

increases from about 1600 to 5300 (𝑙𝑏𝑓) confirming Coulomb friction law.  In 

Figure 3-20, there are again four highlighted points related to the meshes shown in 

Figure 3-21. 

Figure 3-19 Confined triplet test simulation on a regular triangular lattice mesh. 

It should be mentioned that the interface struts’ color in the deformed mesh 

changes before failure depending on the type of failure.  The failure surface of interface 

element with compressive cap was shown in Figure 3-10.  If the strut’s failure path in 

𝜎 − 𝜏 plane is going to touch the tension cut-off line, the color would be red, while if the 
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stress path is towards the compressive cap, the color would be green.  In cases when the 

Coulomb friction line is touched, the color would be light blue.  These color changes can 

be seen in Figure 3-21.  For unconfined triplet simulations where there was no 

compressive normal confinement, almost all the struts failed under tension cut-off law, 

i.e., red strut, while for the confined situations, as shown in Figure 3-21, compressive 

cap, i.e., green, and Coulomb friction line, i.e., light blue, also played role in the failure 

mechanism of the interface frame elements. 

Figure 3-20 Shear load versus horizontal shear displacement of the confined triplet simulation  

        with the confinement level of 500 (lbf) for the regular lattice mesh shown in   

        Figure 3-19. 

In Figure 3-21, the failure of interfaces does not start from the left end unlike the 

unconfined triplet simulation.  Inner interfaces experience the partial fracture earlier than 

the outer ones.  Up to the circular orange point in Figure 3-20, i.e., bottom left mesh, the 

full fracture or crack has not occurred along the interface layers.  Although there are 

some slight strain energy recoveries in the form of snap-backs in Figure 3-20 as opposed 
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to the considerable amount of strain energy releases in Figure 3-17, the whole load-

displacement path in Figure 3-20 looks like a parabolic curve with a gradual degradation 

of tangent stiffness.  The bottom right mesh in Figure 3-21 corresponds to the last point 

on the load-displacement curve with the maximum shear load. 

Figure 3-21 Interface fracture propagation for the confined triplet test simulation from top left to  

        bottom right, corresponding to the four highlighted points in Figure 3-20   

        (Deformations have been magnified by 300). The confinement level is 500 (lbf). 
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The shear strength capacity of the brick-mortar interface increases with increasing 

the normal confinement in triplet simulations, see Equation (2-2) and Figure 2-11.  The 

triplet lattice model in Figure 3-19 was simulated for different normal confining loads.  

Figure 3-22 illustrates the variation of maximum shear stress versus normal confining 

stress for the experimental results presented in Section 2.2.3.2 and the implemented 

lattice model.   There is a reasonable trend of increasing shear stress for the lattice.  The 

lattice formulation exhibits lower failure envelope than the laboratory results, which 

might be related to the nature of the lattice model where the continuum domain is 

discretized into frame elements. 

 

Figure 3-22 Coulomb failure envelope of the experimental results and the lattice model illustrated 

        in Figure 3-19 for the confined triplet tests. 

3.6 Summary 

The first important step in using a lattice approach is to discretize the continuum 

domain to be analyzed.  This discretization was performed in this study by using the 
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Voronoi diagram as was explained in Section 3.1.  In this discretization, a special care 

should be given to the boundary regions of the lattice mesh.  The lattice model is capable 

of generating regular square and triangular meshes besides random meshes the degree of 

randomness of which can vary as desired.  One of the attractive features of lattice models 

is the material structure overlay in which the material structure is simply projected on top 

of the lattice and various properties are assigned to the lattice elements depending on 

their specific coordinates in the projected material structure.  This feature was used to 

model layered masonry composites consisting of brick units, mortar joints, and their 

interface bonds. 2D frame elements with three degrees of freedom at nodes were used in 

the simulations of the masonry, though the model is also capable of using truss elements.  

As observed in other studies, using frame elements in the lattice model can better capture 

the crack patterns observed in experimental specimens.  It was also noticed through 

triplet simulations that the lattice may become unstable when too many struts are 

removed. 

In addition, instead of using conventional constitutive relation for the lattice 

model, an innovative approach proposed by Bolander and Saito [41] was employed 

which embeds flexible interfaces, having normal, tangential, and rotational springs, 

among the particles generated by the Voronoi diagram.  This approach is especially 

suitable when a zero-thickness interface element with a traction-separation constitutive 

relation needs to be projected onto the lattice mesh.   

Furthermore, the simulation of fracture was performed with a ‘linear elastic’ 

analysis of the lattice under loading and removing an element from the mesh which 

exceeds a certain fracture criterion according to the failure envelope.  After removing the 



61 

 

element, the lattice mesh contains one less element.  The simulation is continued by 

performing a linear elastic analysis of the new mesh, where the forces that were carried 

by the removed element are now redistributed over the neighboring elements.  This 

procedure continues until the next element satisfies its fracture criterion.  The erosion 

strategy leads to an ‘instantaneous relaxation’ of the load resulting in a sudden drop in 

form of snap-backs in the load-displacement diagrams.  A tension cut-off and 

compression cap were considered for the fracture law of the brick and mortar; while that 

of the interface struts involved a Coulomb shear envelope in addition to the tension-cut 

off and compressive cap. 

Numerical simulations for direct tension tests, on one hand, and triplet test with 

and without normal confinements, on the other hand, were presented for the lattice 

model. One of the features of the lattice model is to capture the snap-back instabilities in 

load-displacement curves while using a linear elastic analysis with a beam removal 

strategy. The implemented lattice model is able to predict the failure of the brick-mortar 

interface, and to capture its debonding in tension and its delamination in shear, and also 

to record snap-back instabilities caused by the localization of the fracture process. 
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Chapter 4 THE MECHANICS OF INTERFACE CRACKS 

Interface is the weakest part of composites like masonry the failure of which may 

often occur at this weak part by debonding process and separation which form interface 

cracks.  This has made the interfacial fracture mechanics an important topic of research in 

applied mechanics over the past few decades.  In general, the failure mechanism of 

composites depends on the geometry of the specimen, the applied loading, and the 

surrounding materials and interface toughness.  The interface debonding may be due to a 

lower interface toughness compared to that of the abutting dissimilar elastic materials.  

Since in masonry composites an interface is a low-toughness fracture path through joined 

solids, i.e., brick units and mortar joints, mode mixity of crack propagation must be 

concerned.  Because unlike an isotropic brittle solid, the interface crack in a 

heterogeneous masonry is not free to evolve with pure mode 1 stressing at its tip.  

Different elastic moduli of the materials surrounding the interface, possible non-

symmetric loading and also geometry may induce a made 2 failure component.  Because 

of the strut removal strategy, the implemented lattice model is capable of capturing 

discontinuities and cracks occurring at the simulated mesh during loading.  Mode 1 and 

mode 2 displacements of the crack tip can be obtained by the lattice model while the 

discontinuity evolves. This feature along with energy method may be used to determine 

required fracture quantities of mode 1 and 2.  The following sections explain the 

essentials of the mechanics of interface cracks before discussing about applying the 

concepts of interfacial fracture mechanics in the lattice model which is the subject of the 

following chapters.   
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4.1 Dundur’s Parameters 

Consider two isotropic elastic solids which are in contact through their interface 

along 𝑥-axis as shown in Figure 4-1.  Material 1 is above the interface and the origin is at 

the crack tip.  Let 𝜇𝑗, 𝐸𝑗, and 𝜈𝑗 (𝑗 = 1,2 as material index) be the shear modulus, 

Young’s modulus, and Poisson’s ratio of two materials. Dundur’s elastic mismatch 

parameters [49] can be employed for a wide class of plane problems of elasticity.  

Figure 4-1 A small region near crack tip along bi-material interface. 

 Since there is displacement continuity along the interface, it follows that 

 

(𝜀𝑥)1 = (𝜀𝑥)2,  (4-1) 

where (∎)1 and (∎)2 belong to material 1 and 2, respectively.  From Equation (4-1) and 

for plane strain, one can obtain 
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(𝜎𝑥)1 =
𝜇1(1−𝜈2)

𝜇2(1−𝜈1)
(𝜎𝑥)2 +

𝜎𝑦

1−𝜈1
(𝜈1 −

𝜇1

𝜇2
𝜈2).  (4-2) 

If a parameter named 𝛼 is defined as below 

 
𝜇1(1−𝜈2)

𝜇2(1−𝜈1)
=
1+𝛼

1−𝛼
 , (4-3) 

then the Dundur’s parameter 𝛼 for plane strain can be expressed in terms of the elastic 

properties of the adherent linear isotropic media as 

 

𝛼 =
𝜇1(1−𝜈2)−𝜇2(1−𝜈1)

𝜇1(1−𝜈2)+𝜇2(1−𝜈1)
 . (4-4) 

Thus, Equation (4-2) can be represented as  

 

(𝜎𝑥)1 =
1+𝛼

1−𝛼
(𝜎𝑥)2 +

2𝜎𝑦

1−𝛼
(2𝛽 − 𝛼), (4-5) 

where 𝛼 and 𝛽 are two Dundur’s elastic mismatch parameters which are generally 

expressed by  

 

𝛼 =
𝜇1(𝜅2+1)−𝜇2(𝜅1+1)

𝜇1(𝜅2+1)+𝜇2(𝜅1+1)
  (4-6) 

and 

 

𝛽 =
𝜇1(𝜅2−1)−𝜇2(𝜅1−1)

𝜇1(𝜅2+1)+𝜇2(𝜅1+1)
 , (4-7) 

where 𝜅𝑗 = 3 − 4𝜈𝑗, Kolosov’s constant, for plane strain and 𝜅𝑗 = (3 − 𝜈𝑗)/(1 + 𝜈𝑗) for 

plane stress.  For plane strain 
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𝛽 =
𝜇1(1−2𝜈2)−𝜇2(1−2𝜈1)

2[𝜇1(1−𝜈2)+𝜇2(1−𝜈1)]
 . (4-8) 

The 𝛼-parameter is a measure of the mismatch in the in-plane tensile modulus 

across the interface [32].  When 𝐸1 ≫ 𝐸2 meaning that material 1 is extremely stiff 

compared to material 2, 𝛼 approaches 1 while it would be −1 when 𝐸1 ≪ 𝐸2 or material 

1 is extremely compliant.  When there is no mismatch like a homogeneous isotropic 

elastic solid, 𝛼 = 𝛽 = 0, and their sign is changed when two materials are switched with 

respect to the interface.  The 𝛽-parameter measures the mismatch in the in-plane bulk 

moduli [32].  As it can be seen in (4-8), when both materials are incompressible, 𝜈1 =

𝜈2 = 1/2, 𝛽 vanishes, and 𝛽 = 𝛼/4 when 𝜈1 = 𝜈2 = 1/3.   

The physical accepted values of 𝛼 and 𝛽 for plane strain bi-material systems lie 

inside a parallelogram enclosed by 𝛼 = ±1 and 𝛼 − 4𝛽 = ±1 in the (𝛼, 𝛽) plane, 

assuming nonnegative Poisson’s ratios, as shown in Figure 4-2.  In plane stress this range 

for 𝛼 and 𝛽 is somewhat more restricted.  In this figure, material 1 is stiffer leading to a 

positive 𝛼.  It may be noticed that most of the points in Figure 4-2 fall between 𝛽 = 0 

and 𝛽 = 𝛼/4.  The point associated with Brick/Mortar interface is related to this study 

while all others except Granite/Mortar corresponds to reference [32].  The Point for 

Granite/Mortar interface was reported by Büyüköztürk and Lee [50] for high strength 

aggregates and mortar interface in concrete composites.  It is seen that the points of 

Brick/Mortar and Granite/Mortar interfaces are in proximity in the (𝛼, 𝛽) plane, as they 

are both related to cementations bi-material systems.  

Crack tip displacement and stress fields oscillate when 𝛽 ≠ 0, which results in 

crack surface interpenetration.  This interpenetration introduces ambiguity into the 
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characteristics of interface fracture [26], [31].  However, since for many bi-material 

systems of interest including masonry and concrete [50], the value of 𝛽 is small [51], it is 

assumed that a zero-𝛽 hypothesis should provide an adequate interface fracture 

characterization in many cases. 

Figure 4-2 Values of Dundur’s parameters for some plane strain bi-material systems (Material 1 / 

      Material 2). 

4.2 Complex Representation of Crack Problems 

Muskhelishvili [21] showed that any problem in the plane theory of elasticity can 

be solved by finding two complex functions, satisfying the boundary conditions of that 

problem.  Assuming plane deformations and no body forces for the equilibrium equations 

of an elastic body, it can be shown that there always exists a stress function or Airy 

function 𝑈(𝑥, 𝑦) satisfying bi-harmonic equation 
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∆∆𝑈 = 0   or   
𝜕4𝑈

𝜕𝑥4
+ 2

𝜕4𝑈

𝜕𝑥2𝜕𝑦2
+ 

𝜕4𝑈

𝜕𝑦4
= 0. (4-9) 

The solution of Equation (4-9) is called bi-harmonic function.  The derivatives of 𝑈(𝑥, 𝑦) 

are continuous up to and including the fourth order and are single-valued, starting from 

the second order, throughout the region under consideration.  Using 𝑈(𝑥, 𝑦), the stresses 

and also displacements may be obtained at every point on the body.   

Muskhelishvili also showed that every stress function or bi-harmonic function 

𝑈(𝑥, 𝑦) of the two variables 𝑥 and 𝑦 may be represented in a very simple manner by 

using two functions of the complex variable 𝑧 = 𝑥 + 𝑖𝑦, 𝑖 = √−1.  This is an important 

characteristic of stress functions for the plane theory of elasticity because the properties 

of functions of a complex variable are generally well known.  𝑈(𝑥, 𝑦) may be expressed 

in terms of two analytic complex functions 𝜙(𝑧) and 𝜒(𝑧), or Φ(𝑧) and Ψ(𝑧) as [21] 

 𝑈(𝑥, 𝑦) = 𝑅𝑒{𝑧̅𝜙(𝑧) + 𝜒(𝑧)} or 

 

𝑈(𝑥, 𝑦) = 𝑅𝑒{𝑧̅ ∫Φ(𝑧)𝑑𝑧 +∬Ψ(𝑧)𝑑𝑧}, 
(4-10) 

where 

 

𝜙(𝑧) = ∫Φ(𝑧)𝑑𝑧 + 𝑐𝑜𝑛𝑠𝑡., and 𝜒(𝑧) = ∬Ψ(𝑧)𝑑𝑧 + +𝑐𝑜𝑛𝑠𝑡.,  (4-11) 

in which 𝑅𝑒{∎} denotes the real part of complex variable ∎, 𝑧̅ is the complex conjugate 

of 𝑧, i.e., 𝑧̅ = 𝑥 − 𝑖𝑦, and 𝜙(𝑧),  𝜒(𝑧) are also called Goursat functions satisfying the 

boundary conditions of the problem under consideration.  These type of functions were 

first used by French mathematician, Édouard Goursat, in 1898 and are therefore 

sometimes referred to as Goursat functions.  A complex function 𝜙(𝑧) is analytic or 

holomorphic in a region lying entirely in the complex plane if it is single valued or 
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unique in that region and its complex derivative 𝜙′(𝑧) = 𝜕𝜙/𝜕𝑧 exists at each point of 

the region [52].  If a complex function is holomorphic or analytic in a region, then all 

derivatives of that complex function exist and are holomorphic in that region.  It follows 

that 

 

∆𝑈 = 4𝑅𝑒{Φ(𝑧)},   and   ∆∆𝑈 = 0.      (4-12) 

Therefore, stresses and displacements of a homogeneous isotropic elastic solid may be 

obtained using these two Goursat functions as [21] 

 

(𝜎𝑥) + (𝜎𝑦) = 2[𝜙′(𝑧) + 𝜙′(𝑧)̅̅ ̅̅ ̅̅ ̅] = 4𝑅𝑒[𝜙′(𝑧)] = 4𝑅𝑒[Φ(𝑧)], (4-13) 

 

(𝜎𝑦) − (𝜎𝑥) + 2𝑖(𝜎𝑥𝑦) = 2[𝑧̅𝜙
′′(𝑧) + 𝜒′′(𝑧)] = 2[𝑧̅Φ′(𝑧) + Ψ(𝑧)], and (4-14) 

 
2𝜇(𝑢 + 𝑖𝑣) = 𝜅𝜙(𝑧) − 𝑧𝜙′(𝑧)̅̅ ̅̅ ̅̅ ̅ − 𝜒′(𝑧)̅̅ ̅̅ ̅̅ ̅ = 𝜅 ∫Φ(𝑧)𝑑𝑧 − 𝑧Φ̅(𝑧̅) −

∫ Ψ̅(𝑧̅)𝑑𝑧̅, 
(4-15) 

where 𝑢, 𝑣 are components of displacement along 𝑥 and 𝑦 axes, 𝜎𝑥, 𝜎𝑦, 𝜎𝑥𝑦 are 

components of stress, 𝜇 denotes the shear moduli, 𝜅 represents the Poisson’s ratios as 

defined earlier, 𝜙′(𝑧) = Φ(𝑧), 𝜒′′(𝑧) = Ψ(𝑧), the prime denotes differentiation with 

respect to 𝑧 and an overbar complex conjugate.  The details have been elaborated by 

Muskhelishvili in the reference [21].  Hence, for any specific homogeneous isotropic 

elastic body, there are two complex functions 𝜙(𝑧) and 𝜒(𝑧) which satisfy the boundary 

conditions of that body by the help of which the stresses and displacements may be 

determined.   
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4.2.1 Homogeneous Cracks 

Equations (4-13) to (4-15) may be employed to obtain stress and displacement 

fields in a homogeneous isotropic elastic solid with a traction free crack like what is 

shown in Figure 4-1 such that materials 1 and 2 are the same and there is no bi-material 

interface.  The following complex eigenvalue Goursat functions may be considered to 

determine the stress and displacement values [53]. 

 

𝜙(𝑧) = ∑𝐴𝑛𝑧
𝜆𝑛

∞

𝑛=0

, 𝜒(𝑧) = ∑𝐵𝑛𝑧
𝜆𝑛+1

∞

𝑛=0

 , (4-16) 

where the eigenvalues 𝜆𝑛 (𝑛 = 0, 1, 2, … ) are real and 𝐴𝑛 and 𝐵𝑛 are complex constants 

of the form (𝑎𝑛
1 + 𝑖𝑎𝑛

2) and (𝑏𝑛
1 + 𝑖𝑏𝑛

2), respectively. Since the crack surfaces are also 

traction free, one can write 

 

𝜎𝑦 = 𝜎𝑥𝑦 = 0  for 𝜃 = ±𝜋. (4-17) 

Adding Equations (4-13) and (4-14) to obtain 𝜎𝑦 + 𝑖𝜎𝑥𝑦 in terms of the 𝜆𝑛 and constants 

in (4-16) and employing the boundary conditions (4-17), the eigenvalues and constants 

are obtained after some manipulations by 

 

𝜆𝑛 =
𝑛

2
;   𝑛 = 0, 1, 2, … and (4-18) 

 

−𝑏𝑛
1 = (

𝑛

2
+(−1)𝑛

𝑛

2
+1

)𝑎𝑛
1 ,   −𝑏𝑛

2 = (
𝑛

2
−(−1)𝑛

𝑛

2
+1

)𝑎𝑛
2. (4-19) 

Equations (4-13) and (4-14) are again used to obtain 𝜎𝑥 + 𝑖𝜎𝑥𝑦 in terms of 𝑎𝑛
1 , 𝑎𝑛

2 , 𝑏𝑛
1, 

and 𝑏𝑛
2.  Having 𝜎𝑦 + 𝑖𝜎𝑥𝑦  and 𝜎𝑥 + 𝑖𝜎𝑥𝑦 in terms of the complex constants and 

eigenvalues in Equations (4-18) and (4-19), substituting the trigonometric form of 
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complex numbers, and separating into real and imaginary parts, one can determine the 

stresses 𝜎𝑥, 𝜎𝑦, and 𝜎𝑥𝑦 and displacement 𝑢 and 𝑣 as series expansions in terms of 𝑛, 𝑟, 

𝜃, 𝑎𝑛
1 , and 𝑎𝑛

2 , as presented by Equations (1.34) to (1.38) in reference [53].   

It can be seen from stress field equations (1.34), (1.35), and (1.36) in [53] that the 

first term, 𝑛 = 1, of the stress series gives stress as a function of the reciprocal of √𝑟 

providing infinite stress at the crack tip while the higher order  terms, 𝑛 > 1, result in 

zero stress at the crack tip.  Thus, only the first term of the infinite expansion corresponds 

to the crack tip stress singularity.  The famous mixed mode near crack tip stresses and 

displacements are found considering only 𝑛 = 1 as follows: 

 

𝜎𝑥 =
𝑎1
1

√𝑟
(1 − 𝑠𝑖𝑛

𝜃

2
𝑠𝑖𝑛

3𝜃

2
) 𝑐𝑜𝑠

𝜃

2
+
𝑎1
2

√𝑟
(2 + 𝑐𝑜𝑠

𝜃

2
𝑐𝑜𝑠

3𝜃

2
) 𝑠𝑖𝑛

𝜃

2
 , (4-20) 

 

𝜎𝑦 =
𝑎1
1

√𝑟
(1 + 𝑠𝑖𝑛

𝜃

2
𝑠𝑖𝑛

3𝜃

2
) 𝑐𝑜𝑠

𝜃

2
−
𝑎1
2

√𝑟
𝑐𝑜𝑠

𝜃

2
𝑐𝑜𝑠

3𝜃

2
𝑠𝑖𝑛

𝜃

2
 , (4-21) 

 

𝜎𝑥𝑦 =
𝑎1
1

√𝑟
𝑐𝑜𝑠

𝜃

2
𝑐𝑜𝑠

3𝜃

2
𝑠𝑖𝑛

𝜃

2
−
𝑎1
2

√𝑟
(1 − 𝑠𝑖𝑛

𝜃

2
𝑠𝑖𝑛

3𝜃

2
) 𝑐𝑜𝑠

𝜃

2
 , (4-22) 

 

𝑢 =
𝑎1
1√𝑟

4𝜇
{(2𝜅 − 1)𝑐𝑜𝑠

𝜃

2
− 𝑐𝑜𝑠

3𝜃

2
} −

𝑎1
2√𝑟

4𝜇
{(2𝜅 + 3)𝑠𝑖𝑛

𝜃

2
+ 𝑠𝑖𝑛

3𝜃

2
}, and (4-23) 

 

𝑢 =
𝑎1
1√𝑟

4𝜇
{(2𝜅 + 1)𝑠𝑖𝑛

𝜃

2
− 𝑠𝑖𝑛

3𝜃

2
} +

𝑎1
2√𝑟

4𝜇
{(2𝜅 − 3)𝑐𝑜𝑠

𝜃

2
+ 𝑐𝑜𝑠

3𝜃

2
}. (4-24) 

Stress fields directly ahead of the crack tip, 𝜃 = 0, are only in terms of 𝑎1
1/√𝑟 and 𝑎1

2/

√𝑟, which if compared with Irwin’s expressions of stresses in mode 1 and mode 2, it 

follows that 
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𝑎1
1 =

𝐾1

√2𝜋
 , 

𝑎1
2 =

𝐾2

√2𝜋
 , 

 

(4-25) 

showing that the coefficients 𝑎1
1 and 𝑎1

2 are measures of stress intensity factors in mode 1 

and 2, respectively.  

Therefore, employing complex function approach of Muskhelishvili, an infinite 

series solution for a crack in a 2D isotropic homogeneous material was derived and the 

first term of this series has been shown to be related to the near crack tip singular stress 

field as given by Irwin. Solutions given by Equations (4-20) to (4-24) can be split into 

two separate fields associated with the mode 1 and mode 2 displacements.  𝑎1
1 and 𝑎1

2 in 

these equations correspond to mode 1 and mode 2, respectively.   

4.2.2 Bi-material Interface Cracks 

In bi-material systems, the elastic properties are discontinuous across the 

interface, where four complex functions, or Goursat functions, Φ𝑗(𝑧), Ψ𝑗(𝑧), 𝑗 = 1, 2, of 

the complex variable 𝑧 = 𝑥 + 𝑖𝑦 are needed to completely characterize the problem.  

Similarly, the basic equations for displacement and stress fields for two dimensional 

isotropic elasticity as used by Kolosov-Muskhelishvili are [21], [23] as follows: 

  

(𝜎𝑥)𝑗 + (𝜎𝑦)𝑗 = 4𝑅𝑒[𝜙′𝑗(𝑧)] = 4𝑅𝑒[Φ𝑗(𝑧)], (4-26) 

 (𝜎𝑦)𝑗 − (𝜎𝑥)𝑗 + 2𝑖(𝜎𝑥𝑦)𝑗 = 2[𝑧̅𝜙
′′
𝑗
(𝑧) + 𝜒′′

𝑗
(𝑧)] =

2[𝑧̅Φ′𝑗(𝑧)+Ψ𝑗(𝑧)], and 
(4-27) 

 2𝜇𝑗(𝑢𝑗 + 𝑖𝑣𝑗) = 𝜅𝑗𝜙𝑗(𝑧) − 𝑧𝜙′𝑗(𝑧)
̅̅ ̅̅ ̅̅ ̅̅ − 𝜒′

𝑗
(𝑧)̅̅ ̅̅ ̅̅ ̅̅ = 𝜅𝑗 ∫Φ𝑗(𝑧)𝑑𝑧 −

𝑧Φ𝑗̅̅ ̅(𝑧̅) − ∫Ψ𝑗̅̅ ̅(𝑧̅)𝑑𝑧̅,  
(4-28) 
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where 𝑧 belongs to material 1 region for 𝑗 = 1 and material 2 region for 𝑗 = 2, 𝑢𝑗 , 𝑣𝑗  are 

components of displacement along 𝑥 and 𝑦 axes, shown in Figure 4-1, (𝜎𝑥)𝑗, (𝜎𝑦)𝑗, 

(𝜎𝑥𝑦)𝑗  are components of stress, 𝜇𝑗 denotes the shear moduli, and 𝜅𝑗 is the Kolosov’s 

constant representing the Poisson’s ratios for material 𝑗, 𝑗 = 1, 2.   

Erdogan [54] used Equations (4-26) to (4-28) to solve for stress distribution in a 

nonhomogeneous elastic plane with cracks where a bi-material interface has some cracks 

with specified lengths.  As mentioned by Erdogan, the holomorphic functions Φ1(𝑧) and 

Ψ1(𝑧) were defined in region 1, but not in region 2.  By extending the definition of 

Φ1(𝑧) into region 2 and Φ2(𝑧) into region 1 in such a way that they are holomorphic on 

the unloaded parts of the boundary, the following substitution may be made [54]: 

 

Ψ𝑗(𝑧) = −Φ𝑗(𝑧) − Φ̅𝑗(𝑧) − 𝑧Φ′𝑗(𝑧), (4-29) 

where 𝑧 is in region 1 for 𝑗 = 1 and 𝑧 is in region 2 for 𝑗 = 2.  From Equations (4-26) to 

(4-29), one may write [54] 

 
(𝜎𝑦)𝑗 − 𝑖(𝜎𝑥𝑦)𝑗 = Φ𝑗

(𝑧) − Φ𝑗(𝑧̅) + (𝑧 − 𝑧̅)Φ′𝑗(𝑧)̅̅ ̅̅ ̅̅ ̅̅  and (4-30) 

 

2𝜇𝑗(𝑢′𝑗 + 𝑖𝑣′𝑗) = 𝜅𝑗Φ𝑗(𝑧) + Φ𝑗(𝑧̅) − (𝑧 − 𝑧̅)Φ′𝑗(𝑧)̅̅ ̅̅ ̅̅ ̅̅ . (4-31) 

The purpose was to find the stress distributions in region 1 (lower-half plane) and 

in region 2 (upper-half plane) provided that surface tractions vanish along crack surfaces 

(union of cracked segments named 𝐿′) , there are displacement and stress continuities 

along the bonded interface (union of bonded segments named 𝐿), and the 𝑥, 𝑦-

components of resultant force acting along the bonded interface are known.  Using 
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Muskhelishvili’s equations and considering the above three conditions, he showed that 

the problem may be reduced to the solution of a homogeneous Hilbert problem as given 

by [54] 

 Φ1
+(𝑡) + 𝛼∗Φ1

−(𝑡) = 0   on 𝐿, 

Φ1
+(𝑡) − Φ1

−(𝑡) = 0   on 𝐿′ as boundary condition, 
(4-32) 

where 𝑡 is the coordinate on the real 𝑥 − 𝑎𝑥𝑖𝑠 or plane cut along 𝐿, superscripts + and   

− refer to the values of the functions as 𝑧 approaches 𝑡 from the upper and lower half-

planes, respectively, subscript 1 refers to material 1, Φ1(𝑧) is holomorphic in the whole 

plane cut along 𝐿, and 𝛼∗ is a bi-elastic constant defined by  

 

𝛼∗ = (
𝜅1

𝜇1
+

1

𝜇2
)/(

𝜅2

𝜇2
+

1

𝜇1
). (4-33) 

Equation (4-32) is a homogeneous Hilbert problem since its right hand side is zero.  

Muskhelishvili called the problem in (4-32) “the problem of linear relationship of the 

boundary values” because the boundary values are connected or related by a linear 

expression with, in general, variable coefficients.  It should be noted that for the entire 

plane Φ1(𝑧) + Φ2(𝑧) = 0 [54].   

From the general solution of the Hilbert problem, Erdogan [54] obtained the 

complex stress function, Φ1(𝑧), in the vicinity of the crack tip, as shown in Figure 4-1.  

Substituting Φ1(𝑧) into Equations (4-26) and (4-30), one obtains 

 

(𝜎𝑥)1 + (𝜎𝑦)1 = 4𝑅𝑒 [
𝛼0

√𝑟
𝑒𝜀(𝜃−𝜋)𝑒−𝑖(𝜀 ln 𝑟+

𝜃

2
)] + 𝑂(√𝑟) and (4-34) 
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 (𝜎𝑦)1 − 𝑖(𝜎𝑥𝑦)1 =
𝛼0

√𝑟
[𝑒𝜀(𝜃−𝜋)𝑒−𝑖(𝜀 ln 𝑟+

𝜃

2
) + 𝑒−𝜀(𝜃−𝜋)𝑒𝑖(−𝜀 ln 𝑟+

𝜃

2
)]  

−
𝛼0̅̅ ̅̅

√𝑟
[(2𝜀 + 𝑖)𝑒𝜀(𝜃−𝜋) sin(𝜃) 𝑒𝑖(

3𝜃

2
+𝜀 ln𝑟)] + 𝑂(√𝑟), 

(4-35) 

where 𝛼0 = (𝑘1 − 𝑖𝑘2)/2√2 is a complex constant, 𝑘1 = 𝐾1/√𝜋cosh (𝜋𝜀), 𝑘2 =

𝐾2/√𝜋cosh (𝜋𝜀), 𝑟 and 𝜃 are shown in Figure 4-1, and 𝜀 is the bi-elastic constant defined 

as 

 

𝜀 =
1

2𝜋
𝑙𝑛(

1−𝛽

1+𝛽
).  (4-36) 

Displacement values may also be obtained by putting Φ1(𝑧) into Equation (4-31) and 

resolving it into real and imaginary components.  Erdogan [54] obtained the above stress 

components in Cartesian coordinate system while Sih and Rice [55] determined the stress 

components in polar coordinates taking advantage of the bi-harmonic Airy stress function 

developed by Williams [22] besides the complex function approach of Muskhelishvili. 

Using Equation (4-35) with some manipulations, the tractions on the interface 

directly ahead of the tip, i.e., 𝜃 = 0, are given by 

 
(𝜎𝑦)𝑗 + 𝑖(𝜏𝑥𝑦)𝑗 = 𝐾(2𝜋𝑟)

−1/2𝑟𝑖𝜀 (4-37) 

or 

 
(𝜎𝑦)𝑗 = 𝑅𝑒[𝐾𝑟

𝑖𝜀] (2𝜋𝑟)−1/2,   (𝜏𝑥𝑦)𝑗
= 𝐼𝑚[𝐾𝑟𝑖𝜀] (2𝜋𝑟)−1/2, (4-38) 

where 𝐾 = 𝐾1 + 𝑖𝐾2 is the complex stress intensity factor, 𝑟𝑖𝜀 = 𝑒𝑖𝜀𝑙𝑛(𝑟) =

cos(𝜀𝑙𝑛(𝑟)) + 𝑖 𝑠𝑖𝑛(𝜀𝑙𝑛(𝑟)) is a so-called oscillatory singularity, and 𝜀 is the bi-elastic 

constant defined in Equation (4-36).     



75 

 

Employing Erdogan [54] or Sih and Rice [55] approach, the relative crack flank 

displacements of two points on the top and bottom of crack surfaces, ∆𝑢 and ∆𝑣, at a 

distance 𝑟 behind the crack tip are expressed as 

 

∆𝑣 + 𝑖∆𝑢 =
8𝐾√

𝑟

2𝜋

(1+2𝑖𝜀)cosh (𝜋𝜀)𝐸∗
𝑟𝑖𝜀, (4-39) 

where ∆𝑢 = 𝑢(𝑟, 𝜃 = 𝜋) − 𝑢(𝑟, 𝜃 = −𝜋), ∆𝑣 = 𝑣(𝑟, 𝜃 = 𝜋) − 𝑣(𝑟, 𝜃 = −𝜋), 
1

𝐸∗
=

1

2
(
1

𝐸̅1
+

1

𝐸̅2
) and 𝐸̅𝑗 = 𝐸𝑗/(1 − 𝜈𝑗

2) for plane strain and 𝐸̅𝑗 = 𝐸𝑗  for plane stress.  For plane 

strain problems, Equation (4-39) reduces to 

 

∆𝑣 + 𝑖∆𝑢 =
2[
1−𝜈1
𝜇1

+
1−𝜈2
𝜇2

]𝐾√
𝑟

2𝜋

(1+2𝑖𝜀)cosh (𝜋𝜀)
𝑟𝑖𝜀. (4-40) 

The complex stress intensity factor 𝐾 can generally be expressed in terms of its 

modulus|𝐾| = √𝐾1
2 + 𝐾2

2, and the loading phase angle 𝜓 by 

 

𝐾 = |𝐾|𝑒𝑖𝜓. (4-41) 

Since the crack surface displacement is a complex number, ∆𝑣 + 𝑖∆𝑢, it can also 

be written as ∆𝑣 + 𝑖∆𝑢 = [∆𝑢2 + ∆𝑣2]1/2𝑒𝑖𝜑, where 𝜑 = 𝑎𝑟𝑐 tan (
∆𝑢

∆𝑣
). By equating this 

expression with Equation (4-40)  and after some manipulations, |𝐾|can be expressed in 

terms of the crack surface displacements as [28] 

 

|𝐾| = [(1 + 4𝜀2)(∆𝑢2 + ∆𝑣2)]1/2/𝑞, (4-42) 

where 𝑞 = √2 [
1−𝜈1

𝜇1
+
1−𝜈2

𝜇2
] /(√𝜋 cosh(𝜋𝜀)) for plane strain.  The loading phase angle is 

given by 
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𝜓 = 𝜔 + 𝛾, (4-43) 

where 𝛾 = 𝑎𝑟𝑐 tan (2𝜀) is the principal argument of the complex number 1 + 𝑖2𝜀, and 

𝜔 = 𝜑 − 𝜀𝑙𝑛(𝑟).   

G. R. Irwin [56] also used Equations (4-20) and (4-21) to characterize the mode 1 

stress field near the end of a somewhat brittle tensile fracture of a homogeneous solid, 

introducing the coefficient (𝐸𝐺/𝜋)1/2 as the stress intensity factor for plane stress.  The 

energy release rate and the modulus of stress intensity are generally correlated by the 

Irwin-type relation for bi-material interface cracks expressed as 

 

𝐺 =
(1−𝛽2)|𝐾|2

𝐸∗
=

|𝐾|2

𝐸∗cosh2(𝜋𝜀)
 . (4-44) 

For plane strain problem, |𝐾| is related to 𝐺 by 

 

𝐺 =
(
1−𝜈1
𝜇1

+
1−𝜈2
𝜇2

)|𝐾|2

4cosh2(𝜋𝜀)
  (4-45) 

or 

 
|𝐾| = √

4cosh2(𝜋𝜀)𝐺
1−𝜈1
𝜇1

+
1−𝜈2
𝜇2

 . (4-46) 

Equations (4-42) to (4-46) can be used to obtain interfacial fracture quantities 

from numerical solutions.  The energy release rate, 𝐺, can firstly be calculated through an 

energy method like virtual crack extension procedure [27] or other numerical solutions 

such as the lattice model with strut removal strategy where a discontinuity may be 

developed during analysis due to applied loading in form of a crack. This will further be 

explained in detail. Equation (4-46) can then directly be used to obtain |𝐾|, which is 
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independent of the crack flank displacements and the distance 𝑟 behind the crack tip.  As 

an internal consistency check, the relative near tip crack surface displacements obtained 

directly from numerical simulations may be inserted into Equation (4-42) to obtain an 

independent estimate of |𝐾| to be compared with that of Equation (4-46)  [29].  The stress 

intensity factors for mode 1 and mode 2 are then calculated using the phase angle by 

 

𝐾1 = 𝑅𝑒(𝐾) = |𝐾|cos (𝜓) and (4-47) 

 

𝐾2 = 𝐼𝑚(𝐾) = |𝐾|sin (𝜓). (4-48) 

In circumstances when the Dundur’s parameter 𝛽 is nonzero and thus 𝜀 ≠ 0, a 

pure mode 1 crack with zero shear traction along the interface happens at a distance 𝐿̂ 

ahead of the tip and a pure mode 2 crack with zero normal traction on the interface is at 

that point.  Since the ratio of the shear traction to normal traction on the interface varies 

(very slowly) with distance to the tip when 𝛽 ≠ 0, the measure of the proportion of mode 

2 to mode 1 in the vicinity of the crack tip requires the specification of some length 

quantity, 𝐿̂ [32].  The choice of this characteristic length, 𝐿̂, is somewhat arbitrary but 

when chosen it should not change throughout the analysis.  This characteristic length 

establishes a new rotated quantity 𝐾̂1 + 𝑖𝐾̂2 with the same modulus |𝐾| as 𝐾1 + 𝑖𝐾2(note 

that |𝐿̂𝑖𝜀| = 1 and |𝐾𝐿̂𝑖𝜀| = |𝐾|) but an augmented phase angle 𝜓̂ which unlike 𝜓 is 

insensitive to the choice of length unit [29].  From the definition of complex stress 

intensity factor in (4-41), one may write 

𝐾 = |𝐾|𝑒𝑖𝜓
×𝐿̂𝑖𝜀

⇒   
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𝐾𝐿̂𝑖𝜀 = |𝐾|𝑒𝑖𝜓𝐿̂𝑖𝜀
𝐿̂𝑖𝜀=𝑒𝑖𝜀𝑙𝑛𝐿̂

⇒      𝐾𝐿̂𝑖𝜀 = |𝐾|𝑒𝑖𝜓𝑒𝑖𝜀𝑙𝑛𝐿̂ = |𝐾|𝑒𝑖(𝜓+𝜀𝑙𝑛𝐿̂) = |𝐾|𝑒𝑖𝜓̂. 

 Therefore, the effect of characteristic length is considered as 

 

𝐾𝐿̂𝑖𝜀 = |𝐾|𝑒𝑖𝜓̂ and (4-49) 

 

𝜓̂ = 𝜓 + 𝜀𝑙𝑛𝐿̂. (4-50) 

From Equation (4-43), one could obtain 𝜓 by 

𝜓 = 𝜔 + 𝛾 = 𝜑 − 𝜀𝑙𝑛(𝑟) + 𝛾
+𝜀𝑙𝑛𝐿̂
⇒    𝜓 + 𝜀𝑙𝑛𝐿̂ = 𝜑 − (𝜀𝑙𝑛(𝑟) − 𝜀𝑙𝑛𝐿̂) + 𝛾 =

𝜑 − 𝜀𝑙𝑛 (
𝑟

𝐿̂
) + 𝛾. 

Thus, 

 

𝜓̂ = 𝜑 − 𝜀𝑙𝑛 (
𝑟

𝐿̂
) + 𝛾, (4-51) 

which determines that value of augmented phase angle 𝜓̂.  Therefore, the value of 𝜓 is 

replaced by 𝜓̂ in Equations (4-43), (4-47), and (4-48) when the characteristic specimen 

length 𝐿̂ is introduced in the analysis and the modulus of 𝐾 remains the same.  In this 

study, 𝐿̂ is usually considered as specimen height, e.g., ℎ1 + ℎ2 in Figure 1-1. 

4.3 Summary 

Interfacial fracture mechanics is an important topic of research in applied 

mechanics over the past few decades since the interface of two materials in contact is the 

weakest part of composites like masonry along which failure usually occurs.  Different 

elastic properties of abutting dissimilar materials introduce mismatches in the in-plane 
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tensile modulus and bulk modulus across the interface, quantified by the 𝛼-, and 𝛽-

parameters, respectively.  These parameters are obtained by using the displacement 

continuity conditions along the interface in plane theory of elasticity.  For bi-material 

systems, the physical accepted values of 𝛼 and 𝛽 for plane strain bi-material systems lie 

inside a parallelogram in the (𝛼, 𝛽) plane, assuming nonnegative Poisson’s ratios.  This 

range is somewhat more restricted for plane stress.  It was observed that the points of 

Brick/Mortar interface in this study and Granite/Mortar interface reported by 

Büyüköztürk and Lee [50] are in proximity in the (𝛼, 𝛽) plane, as they are both related to 

cementations bi-material systems.  Moreover, 𝛽 has an important property which 

corresponds to so-called oscillatory singularity [32]  bringing some complications that are 

absent in the elastic fracture mechanics of homogeneous solids.  Crack tip displacement 

and stress fields oscillate when 𝛽 ≠ 0, which results in crack surface interpenetration.  

This interpenetration introduces ambiguity into the characteristics of interface fracture 

[26], [31].  Nonetheless, for many bi-material systems of interest including masonry and 

concrete [50], the value of 𝛽 is small [51], and may be regarded as zero.   

Most of the research in developing analytical solutions of the mechanics of 

interface cracks in recent decades is based on the work of Muskhelishvili as he showed 

that any problem in the plane theory of elasticity can be solved by finding two complex 

functions so called Goursat functions, satisfying boundary conditions of that problem.  

Using these two complex functions, stresses and displacements of a homogeneous 

isotropic elastic solid may be determined.  He employed complex functions since the 

properties of functions of a complex variable are generally well known.   
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In bi-material systems, the elastic properties are discontinuous across the 

interface, where four complex functions of the complex variable are needed to 

completely characterize the problem.  The same Muskhelishvili’s equations developed 

for displacement and stress fields of a two dimensional homogeneous isotropic solid are 

also employed in solving bi-material interface cracks.  Erdogan [54] used these relations 

to solve for stress distribution in a nonhomogeneous elastic plane with cracks where a bi-

material interface has some cracks with specified lengths.  Using Muskhelishvili’s 

equations and considering the boundary conditions, he showed that the bi-material 

interface crack problem may be reduced to the solution of a homogeneous Hilbert 

problem which Muskhelishvili called “the problem of linear relationship of the boundary 

values”.  From the general solution of the Hilbert problem, Erdogan [54] obtained the 

stress components in Cartesian coordinate system while Sih and Rice [55] determined the 

stress components in polar coordinates taking advantage of the bi-harmonic Airy stress 

function developed by Williams [22] along with the complex function approach of 

Muskhelishvili.  Employing Erdogan [54] or Sih and Rice [55] approach with some 

further developments, it is possible to correlate the complex stress intensity factor 

modulus with the energy release rate as crack evolves. This may be used in numerical 

simulation techniques to obtain the fracture quantities of the bi-material systems while 

the crack propagates as used in the crack surface displacement method [29].  When the 

Dundur’s parameter 𝛽 is nonzero and thus 𝜀 ≠ 0, there may be a need to specify a length 

quantity, 𝐿̂, to make the loading phase angle insensitive to the choice of length unit.  

Although this length can be chosen arbitrarily, when selected it should not change 
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throughout the analysis.  This characteristic length introduces new values for the complex 

stress intensity factor, not its modulus, and also the loading phase angle. 
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Chapter 5 LATTICE SIMULATIONS OF SOME CLASSIC 

FRACTURE PROBLEMS 

The implemented 2D lattice model explained in chapter 3 is capable of simulating 

crack path evolution in the form of strong discontinuities at a homogeneous or 

heterogeneous solid.   Since the crack propagation is captured by the lattice during an 

analysis, it is postulated that the fracture mechanics quantities like the energy release rate 

or the stress intensity factors associated with the evolving crack may be determined by 

the lattice.   Other numerical techniques like the classic finite element method of virtual 

crack extension ([27], [28], [29], [30]) or the well-known extended finite element method 

(XFEM) ([57], [58], [59]) may also be used for obtaining the fracture quantities of crack 

problems.  In the virtual crack extension procedure, as used by Charalambides et al. [28] 

and Matos et al. [29], a pre-cracked finite element mesh with length 𝑎 was considered 

and the virtual crack extension method was applied by virtually increasing the crack 

length and changing the stiffness of a ring of elements around the crack tip.  This method 

is not based on a progressive crack evolution where the crack length 𝑎 increases during a 

single simulation.  XFEM, which is based on the mathematical foundation of the partition 

of unity finite element method, is also capable of measuring the fracture quantities. 

However, its implementation needs much more effort and considerations than the lattice 

regarding, for instance, modeling the arbitrary crack propagation paths handled by level 

set method, multiple crack configurations, cracks intersecting with other discontinuities, 

and also cracks emanating from holes or other internal interfaces.  Although the goal here 
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is not to compare the capabilities of XFEM and the lattice model, its relative simplicity 

both in theory and implementation along with accepted results make the lattice model an 

interesting approach in solving crack problems in the context of fracture mechanics.   

In this chapter, some well-known classic crack problems for which analytical 

solutions are available are simulated by the implemented lattice model.   The stress 

intensity factors calculated by the analytical solutions are compared with those obtained 

by the lattice to confirm its numerical capabilities in predicting the desired fracture 

quantities.   The energy method, which will be explained in the next section, is employed 

to directly obtain the energy release rate from the lattice mesh as crack evolves.   Three 

benchmark problems have been considered for this purpose, namely the center cracked 

problem in a homogeneous domain, the single edge notch problem in a homogeneous 

solid, and at last, the center interface cracked problem in a bi-material system. 

5.1 Energy Method 

As mentioned before, Equations (4-42) to (4-46) may be used to obtain interfacial 

fracture quantities from numerical solutions.  The main quantity to be calculated is the 

energy release rate of the interface fracture. This value is determined by an energy 

approach using the total potential energy, Π, of the lattice solution.  Assume that a lattice 

analysis has been performed on a given planar linear elastic body of ‘unit thickness’ 

containing a crack.  The total potential energy of the lattice model solution may be 

expressed as [60], [27] 

 

Π =
1

2
{𝑢}𝑇[𝐾]{𝑢} − {𝑢}𝑇{𝑓}, (5-1) 
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where {𝑢} is a vector of displacements associated with lattice computational or nodal  

points or nuclei, [𝐾] is the global stiffness matrix of the lattice mesh, and {𝑓} is the 

vector of prescribed nodal loads.  The energy release rate is obtained by differentiating 

Equation (5-1) with respect to crack length, 𝑎, as [61] 

 𝐺 = −
𝜕Π

𝜕𝑎
= −

𝜕

𝜕𝑎
[{𝑢}𝑇 (

1

2
[𝐾]{𝑢} − {𝑓})] = 

−[
𝜕{𝑢}𝑇

𝜕𝑎
(
1

2
[𝐾]{𝑢} − {𝑓}) + {𝑢}𝑇 (

1

2

𝜕[𝐾]

𝜕𝑎
{𝑢} +

1

2
[𝐾]

𝜕{𝑢}

𝜕𝑎
−
𝜕{𝑓}

𝜕𝑎
)]. 

(5-2) 

Thus, one can write 

 𝐺 = − [
𝜕{𝑢}𝑇

𝜕𝑎
(([𝐾]{𝑢} − {𝑓}) −

1

2
[𝐾]{𝑢}) + (

1

2
{𝑢}𝑇

𝜕[𝐾]

𝜕𝑎
{𝑢} +

1

2
{𝑢}𝑇[𝐾]

𝜕{𝑢}

𝜕𝑎
− {𝑢}𝑇

𝜕{𝑓}

𝜕𝑎
)]. 

(5-3) 

The value of ([𝐾]{𝑢} − {𝑓}) is precisely zero in the finite element and lattice 

equilibrium solutions at each iteration. Thus, 

 
𝐺 = − [(−

1

2

𝜕{𝑢}𝑇

𝜕𝑎
[𝐾]{𝑢} +

1

2
{𝑢}𝑇[𝐾]

𝜕{𝑢}

𝜕𝑎
) + (

1

2
{𝑢}𝑇

𝜕[𝐾]

𝜕𝑎
{𝑢} −

{𝑢}𝑇
𝜕{𝑓}

𝜕𝑎
)]. 

(5-4) 

Since the stiffness matrix [𝐾] is symmetric, it can easily be shown that the scalar 

value on the first parenthesis is zero.  This follows that 

 

𝐺 = − [
1

2
{𝑢}𝑇

𝜕[𝐾]

𝜕𝑎
{𝑢} − {𝑢}𝑇

𝜕{𝑓}

𝜕𝑎
]. (5-5) 

Since the crack surfaces here are traction free, one can conclude that 
𝜕{𝑓}

𝜕𝑎
= 0. Hence, 

 

𝐺 = −
𝜕Π

𝜕𝑎
= −

1

2
{𝑢}𝑇

𝜕[𝐾]

𝜕𝑎
{𝑢}. (5-6) 

Equation (5-6) is the main ingredient to obtain the fracture properties of the 

interface using the numerical lattice model.  
𝜕[𝐾]

𝜕𝑎
 is the change in the global stiffness 
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matrix when the change in crack length is 𝜕𝑎, and {𝑢} denotes the nuclei displacement 

vector ‘before’ the crack length change by 𝜕𝑎.  The approach of choosing {𝑢} ‘before’ 

the crack length change is similar to the ‘Explicit Forward Euler’ approach in, for 

example, the time stepping scheme used in solving 1st order transient finite element 

problems.  In the numerical solution, 
𝜕[𝐾]

𝜕𝑎
 is approximated by the ratio 

∆[𝐾]

∆𝑎
 expressed as 

 𝜕[𝐾]

𝜕𝑎
≅
∆[𝐾]

∆𝑎
=

1

Δ𝑎
[[𝐾]𝑎+Δ𝑎 − [𝐾]𝑎], (5-7) 

where [𝐾]𝑎+Δ𝑎 is the stiffness matrix after the crack growth Δ𝑎.  Therefore, using 

Equation (5-6) the interfacial energy release rate may numerically be determined by the 

lattice analysis as the crack propagates through the interface.  It should be mentioned that 

the value of 𝐺 obtained from Equation (5-6) is for a specimen with unit thickness. If the 

thickness 𝑡 ≠ 1, then 𝐺 should be divided by 𝑡.  

5.2 The Center Cracked Lattice Simulation 

In order to validate the fracture analysis results of the lattice, it is required to 

compare its numerical results with the classic analytical solutions available in the 

literature.  Tada, Paris and Irwin [62] presented a comprehensive review of stress analysis 

of cracks from two dimensional common test specimens to three dimensional cracked 

configurations.  Figure 5-1 illustrates the homogeneous finite width center cracked test 

specimen with constant thickness on which a far field tensile stress is applied.  Mode 1 

crack tip stress intensity factor of this problem is expressed as [62] 
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𝐾1 = 𝜎√𝜋𝑎𝐹(𝑎 𝑏⁄ ), (5-8) 

where 2𝑎 is the center crack length, 𝜎 is the far field tensile stress, 2𝑏 is the width of the 

plate or configuration as illustrated in Figure 5-1, and 𝐹(𝑎 𝑏⁄ ) is an empirical relation.  In 

this study, 𝐹(𝑎 𝑏⁄ ) with 0.3% accuracy of any 𝑎 𝑏⁄  which was obtained with a 

modification of Koiter’s formula was considered as follows [62], [63]:   

 

𝐹(𝑎 𝑏⁄ ) = {1 − 0.025(𝑎 𝑏⁄ )2 + 0.06 (𝑎 𝑏)⁄
4
}√𝑠𝑒𝑐 (

𝜋𝑎

2𝑏
). (5-9) 

In Figure 5-1 when ℎ 𝑏⁄ ≥ 3, the plate is practically regarded as an infinite strip 

as far as the effects of ℎ 𝑏⁄  on the stress intensity factor is concerned [62].  Moreover, the 

values of 𝜎 and 𝑎 need to be updated as the crack propagates during an analysis of a 

progressive simulation like the lattice model. 

Figure 5-1 Homogeneous finite width center cracked configuration with far field tension [62]. 
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Figure 5-2 Homogeneous finite width center cracked lattice mesh to determine the mode 1 stress  

      intensity factor. 

This problem was simulated in the lattice model trying to obtain the stress 

intensity factor of the crack tip by using the energy method explained in Section 5.1 and 

Equations (4-43) to (4-51).  Figure 5-2 shows the lattice mesh employed to simulate the 

problem.  Different simulations were conducted where the height of the configuration, 

2ℎ, is increased at each simulation to account for the far field tension.  If the difference 

between 𝐾1 obtained by Equations (5-8) and that of the lattice model is considered, the 

error percentage may be regarded as 

 
𝐸𝑟𝑟𝑜𝑟 % =

|𝐾1
𝑙−𝐾1

𝑎|

𝐾1
𝑎 × 100, 

(5-10) 

where 𝐾1
𝑎 is the stress intensity factor of the analytical relation, and 𝐾1

𝑙 is that of the 

lattice in (𝑙𝑏𝑓 𝑖𝑛2)√𝑖𝑛⁄ .  Figure 5-3 shows the error percentage of four lattice simulations 

with different ℎ 𝑏⁄  ratios as the crack length, 𝑎, increases.  As illustrated, the error 
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plummets as the height of the specimen, ℎ 𝑏⁄ , goes up.  The error is just under 40% for 

ℎ 𝑏⁄ = 1 while it descends under 1% when ℎ 𝑏⁄ = 4.  This error decreases further with 

higher values of ℎ 𝑏⁄ .  It is confirmed that the implemented lattice model is accurately 

capable of predicting the mode 1 stress intensity factor for the center cracked problem 

with far field tension. 

 

Figure 5-3 Error % of Mode 1 Stress Intensity factor between the analytical solution and the  

      lattice model of the centered crack problem under tension. 

Figure 5-4 compares the values of 𝐾1 between the lattice and the analytical 

solutions for ℎ/𝑏 = 4.  Lattice model can accurately predict the mode 1 stress intensity 

factor values of the analytical solution for 𝑎 𝑏 ≥ 0.25⁄ .  As mentioned, the values of 𝜎 

and 𝑎 in Equation (5-8) have to be updated during the analysis as 𝜎 = 𝑃 𝐴⁄  where 𝑃 is 

obtained from the load-displacement curve of the problem.  Figure 5-5 also shows the 

tensile load-displacement curve of the lattice mesh shown in Figure 5-2 with 𝑎 =

0
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0.8 (𝑖𝑛).  The fracture energy release is illustrated in form of snap-back instabilities for 

the horizontally evolved crack.    

 
Figure 5-4 Comparison of K1 between the lattice and analytical solution for the center cracked  

      problem under tension (ℎ/𝑏 = 4) 

 
Figure 5-5 Load-Displacement of the tensile lattice mesh shown in Figure 5-2 for ℎ/𝑏 = 4.  
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5.3 The Single Edge Notch Lattice Simulation 

A single edge notch problem was also considered to evaluate the lattice model’s 

results.  Figure 5-6 shows the homogeneous finite width single edge notch test specimen 

with constant thickness on which a far field tensile stress is applied.  Mode 1 crack tip 

stress intensity factor of this problem is again expressed as [62] 

 

Figure 5-6 Homogeneous finite width single edge notch configuration with far field tension [62]. 

 
𝐾1 = 𝜎√𝜋𝑎𝐹(𝑎 𝑏⁄ ), (5-11) 

where 𝑎 is the edge crack length, 𝜎 is the tensile far field stress, 𝑏 is the width of the plate 

or configuration as illustrated in Figure 5-6, and 𝐹(𝑎 𝑏⁄ ) may be expressed as [62] 

 
𝐹(𝑎 𝑏⁄ ) = √

2𝑏

𝜋𝑎
tan (

𝜋𝑎

2𝑏
).
0.752+2.02(𝑎 𝑏⁄ )+0.37(1−sin(

𝜋𝑎

2𝑏
))
3

cos(
𝜋𝑎

2𝑏
)

 . 
(5-12) 
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Figure 5-7 shows the lattice mesh of the single edge notch configuration under 

direct tension as in Figure 5-6.  This lattice mesh was simulated for five different ratios of 

2ℎ/𝑏.  It is observed that as this ratio increases, the error percentage, defined in Equation 

(5-10), declines, as illustrated in Figure 5-8.  As expected, the error for 2ℎ/𝑏 = 5 is the 

lowest which better simulates a farther tensile field than smaller ratios.  However, the 

error percentage increases in all cases as the crack propagates through the configuration.  

Figure 5-9 compares the values of 𝐾1 between the lattice and the analytical 

solutions for 2ℎ/𝑏 = 5 for the single edge cracked problem.  As it can be seen, the lattice 

model can accurately predict the mode 1 stress intensity factor values of the analytical 

solution with an error percentage of less than 3.  As 2ℎ/𝑏 increase, this error approaches 

zero for the lattice simulations.  Again, the values of 𝜎 and 𝑎 in Equation (5-11) have to 

be updated during the analysis. 

 
   Figure 5-7 Homogeneous finite width single edge notch lattice mesh to determine the mode 1  

         stress intensity factor. 
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Figure 5-8 Error % of Mode 1 Stress Intensity factor between the analytical solution and the  

      lattice model of the single edge notch problem under tension. 

 

Figure 5-9 Comparison of K1 between the lattice and analytical solution for the single edge notch  

      problem under tension (2ℎ/𝑏 = 5 ). 
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5.4 The Bi-material Interface Center Cracked Lattice Simulation 

To motivate the application of the numerical lattice in characterizing the interface 

fracture properties of bi-material interfaces such as brick-mortar bond, it may be useful to 

simulate the bi-material interface center cracked problem.  The problem of an isolated 

finite crack of length 𝐿 = 2𝑎 along the interface between two dissimilar elastic half-

spaces subject to two remote stresses 𝜎𝑦𝑦
∞  and 𝜎𝑥𝑦

∞  was analytically solved.  Figure 5-10 

illustrates this bi-material interface crack problem. 

  

Figure 5-10 The bi-material interface isolated center cracked problem with remotely applied  

                   stresses [64]. 

The complex stress intensity factor at the right hand tip of the crack is expressed 

as [23], [64] 

 𝐾 = 𝐾1 + 𝑖𝐾2 = (𝜎𝑦𝑦
∞ + 𝑖𝜎𝑥𝑦

∞ )(1 + 2𝑖𝜀)(𝜋𝐿/2)1/2𝐿−𝑖𝜀 ,   
(5-13) 
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where 𝜎𝑦𝑦
∞  and 𝜎𝑥𝑦

∞  are remotely applied stresses shown in Figure 5-10, 𝜀 is the bi-elastic 

constant defined in Equation (4-36), and 𝐿 = 2𝑎 is the crack length.  When the 

configuration is only under direct tension, i.e., 𝜎𝑥𝑦
∞ = 0, (5-13) reduces to 

 𝐾 = 𝐾1 + 𝑖𝐾2 = 𝜎𝑦𝑦
∞ (1 + 2𝑖𝜀)(𝜋𝐿/2)1/2𝐿−𝑖𝜀. 

(5-14) 

Knowing that |𝐿𝑖𝜀| = 1 and |𝐾𝐿𝑖𝜀| = |𝐾|, the modulus of the complex 𝐾 is obtained by  

 |𝐾| = 𝜎𝑦𝑦
∞√𝜋𝑎(1 + 4𝜀2), 

(5-15) 

which reduces to the well-known relation 𝜎𝑦𝑦
∞√𝜋𝑎 in the absence of mismatch for an 

infinite plate.    Figure 5-11 exhibits the lattice mesh with a center crack along the 

interface to simulate the modulus of 𝐾.  The lattice has three phases of mortar, interface 

and brick which are illustrated by different colors of blue, pink, and black, respectively.  

Let 𝐿𝑥 and 𝐿𝑦 be the width and height of this domain, respectively. 

  Figure 5-11 Heterogeneous bi-material interface center cracked lattice mesh under direct 

          remote tension to determine the modulus of complex stress intensity factor at crack  

          tip. 
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To simulate an infinite domain with an isolated crack along its interface, 𝐿𝑥 and 

𝐿𝑦 have to be sufficiently large to account for the remotely applied stresses.  The analysis 

was conducted for four different values of 𝐿𝑥 = 𝐿𝑦.  It was observed that by increasing 

these parameters in the lattice simulation of the problem the error percentage of |𝐾| drops 

down, indicating that the lattice model can fairly predict the energy release rate and stress 

intensity factors of bi-material interfaces (Figure 5-12).  It is clear that by further 

increasing the values of 𝐿𝑥 = 𝐿𝑦, this error much more decreases.  It is seen in 

Figure 5-12 that the values of error oscillate for each set of 𝐿𝑥 = 𝐿𝑦 ≥ 20 (𝑖𝑛) when 

2𝑎/𝐿𝑥 is greater than a certain value.   

Figure 5-12 Error % of Stress Intensity factor moduli between the analytical solution and the  

        lattice model of the bi-material interface center cracked problem under direct  

        tension. 
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Figure 5-13 Comparison of |𝐾| between the lattice and analytical solution for the bi-material  

        interface center cracked problem under tension (𝐿𝑥 = 𝐿𝑦 = 60 (𝑖𝑛)). 

Moreover, Figure 5-13 compares the lattice simulation results with the analytical 

values determined by Equation (5-15) under direct tension, 𝜎𝑥𝑦
∞ = 0, as the crack 

propagates.  The values of 𝜎𝑦𝑦
∞  and 𝑎 in this equation are determined by the lattice model 

at each increment.  As a possible explanation, the oscillatory characters observed in 

Figure 5-12 and Figure 5-13 are probably due to the fact that when the length of the 

central crack is larger than a specific value for the finite width lattice mesh, shown in   

Figure 5-11, that crack is no longer considered a small crack in the lattice mesh compared 

to its dimensions, which is a required assumption in obtaining |𝐾| in (5-14).  Figure 5-13 

illustrates that the lattice can fairly predict |𝐾| of the bi-material interface center cracked 

problem with mostly an error of less than 3% for 𝐿𝑥 = 𝐿𝑦 = 60 (𝑖𝑛).  This error reduces 

for larger values of 𝐿𝑥 and 𝐿𝑦. 
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5.5 Summary   

The implemented 2D lattice model simulates crack path evolution in the form of 

strong discontinuities at a homogeneous or heterogeneous solid.  Unlike the pre-cracked 

approach of the virtual crack extension procedure or the complicated XFEM, the lattice’s 

relative simple theory and implementation makes it a promising method in solving crack 

problems in fracture mechanics.  Three classic fracture mechanics problems were 

addressed in this chapter to validate the lattice fracture results.  The center cracked 

problem in a homogeneous domain, the single edge notch problem in a homogeneous 

solid, and the center interface cracked problem in a bi-material system were solved by the 

numerical lattice.     

The energy method was employed to obtain the energy release rate of the lattice 

mesh as the crack propagates.  In the method, the energy released during the crack 

growth is mainly determined by considering the change in the global stiffness matrix of 

the mesh with respect to crack length change.  Comparison of the analytical results of the 

three benchmark problems with the numerical solutions of the lattice for those problems 

validates the capability of the lattice in predicting the energy release rate and stress 

intensity factor of crack problems in homogeneous and heterogeneous solids.  In all three 

cases, the lattice gives better results once the dimensions of the mesh are large enough to 

assure that the stresses are remotely applied.   

Finally, it should be mentioned that the lattice square mesh was considered for 

fracture analyses of the crack problems rather than using random or regular triangular 

meshes. Unlike the random and regular triangular meshes which provide intrinsic angled 

or zigzag crack surfaces producing irregular oscillations in the values of energy release 
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rate and stress intensity factor, the regular square mesh can generate straight crack 

surfaces along the interface which is itself an almost direct straight surface between brick 

and mortar.  The irregular oscillations observed in the values of 𝐺 and |𝐾| with the 

regular triangular mesh were discarded by using the square mesh.  These oscillations 

have not been illustrated here for brevity.  
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Chapter 6 LATTICE SIMULATIONS OF INTERFACE FRACTURE IN 

MASONRY 

In the previous chapter, some classic fracture mechanics problems were solved by 

the numerical lattice model to obtain the energy release rate and crack tip stress intensity 

factor.  The lattice numerical results were validated by comparing with those of the 

analytical relations.  In this chapter, some common masonry test specimens are simulated 

to determine their interface fracture quantities.  Three types of lattice simulations were 

performed to obtain the energy release rate and fracture properties of brick-mortar 

interface. They include (i) a symmetric pre-notched bi-material four-point bending 

simulation as shown in Figure 6-1, (ii) a direct tension test for mode 1 behavior of the 

interface, and (iii) an unconfined triplet test to evaluate the interfacial behavior in mode 

2.  Taking advantage of these simulations’ results, one may obtain the interface toughness 

relation which is interface resistance against failure.  It is believed that defining a 

measurable and usable material property, i.e., toughness, to parameterize fracture 

resistance of interfaces may be the purpose of the interfacial fracture mechanics [65].  

This goal is achieved by using the lattice to solve for bi-material systems where a crack is 

driven along their interface.  Not only is this approach applicable to masonry interfaces, 

but also any bi-material interface problem may be solved using the implemented lattice. 

This numerical tool can also be employed to characterize the post-peak fracture 

energy of cohesive zone models in the form of bi-linear traction-separation laws in meso 

scale of continuum finite element.  It is very challenging to experimentally measure this 

fracture energy of cohesive zones where a sudden rupture usually happens once the 



100 

 

driving force suppresses the toughness of the bi-material interface.  Moreover, the lattice 

may serve to homogenize a masonry unit cell comprising brick, mortar, and interface into 

a homogeneous isotropic finite element with an equivalent Young’s modulus, load 

capacity, and dissipated strain energy for the post-peak behavior.   

6.1 Four-Point Bending Simulation 

This test specimen which is capable of measuring the fracture resistance of bi-

material interfaces was first introduced by Charalambides et al [28].  Figure 6-1 

illustrates the test configuration with a notch through the upper layer at the center.  A pre-

crack of length 2𝑎 is also introduced before applying the load.  

   

Figure 6-1 The pre-notched bi-material four-point bending beam with two symmetrical   

                   interfacial cracks [28] 

 This test configuration was simulated by the lattice model to evaluate the 

interface fracture properties during the progressive crack evolution.  Because of the 

symmetry, only one half of the four-point bending beam was accepted in the lattice 

simulation.  For the interface to experience enough length of debonding and 

delamination, a beam length of 16 (𝑖𝑛) with 𝑙 = 1 (𝑖𝑛) and loading points’ distance of 
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15 (𝑖𝑛) was considered for the simulations.  These parameters are shown in Figure 6-1.  

A mortar layer of 1.5 (𝑖𝑛) was overlaid on a brick layer of 1 (𝑖𝑛) thick. Since the crack 

propagates into the brick layer at early stages of the simulation when the thickness of 

brick is greater than that of mortar, a thicker mortar layer was considered in this study for 

the four-point bending simulation as it results in an interface crack propagation during the 

analysis which was the main purpose of the simulation to get the interface fracture 

properties.   

An analysis was conducted to select the type of mesh and a regular square mesh 

gave more consistent results than regular triangular and random meshes.  This is probably 

due to the fact that in a regular square mesh, the crack flanks behind the tip in the 

continuum mesh are straight surfaces while in a regular triangular mesh with the 

hexagonal configuration of the continuum mesh, Figure 3-1, the crack surfaces have a 

zigzag pattern affecting the results of interfacial energy release rate and other fracture 

quantities.   

Figure 6-2 illustrates the lattice mesh and the boundary conditions of the notched 

symmetric composite beam under the four-point bending used in the lattice analysis.  

Since the top layer above the crack includes a notch, it is essentially stress free 

experiencing rigid body motion behind the crack tip.  Moreover, because of both opening 

and sliding of the upper mortar layer relative to the lower brick layer, there is a mixed 

mode failure in the interface.  As it is seen in this figure, the interface struts are failed in 

an unzipping manner all the way to a region close to the support.  Figure 6-3 exhibits the 

global load-displacement curve of the lattice beam shown in Figure 6-2 under four-point 

bending boundary conditions as the crack propagates along the interface.  The curve 
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experiences a ductile deformation due to the unzipping failure of the interface followed 

by a hardening part when the crack approaches along the interface to the region close to 

the roller support. 

Figure 6-2 The lattice mesh and the boundary conditions of a notched symmetric composite beam  

      used in the lattice analysis under the four-point bending. This figure belongs to an  

      increment with a propagated crack during the analysis. 

Figure 6-3 Load-displacement curve of the four-point bending lattice simulation shown in  

      Figure 6-2. 
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Figure 6-4 to Figure 6-7 show the fracture results of the lattice configuration 

shown in Figure 6-2.  The energy release rate, 𝐺, and the augmented loading phase angle, 

𝜓̂, were calculated in the lattice according to Equations (5-6) and (4-51), respectively.  It 

is interesting to note that the loading phase angle, 𝜓̂, is insensitive to the distance from 

the crack tip, 𝑟, as shown in Figure 6-5, which makes the fracture quantities of mode 1 

and mode 2, e.g., the stress intensity factor and the fracture energy, independent of 

distance 𝑟.  Also, 𝑏𝑡 = 2𝑆𝑥 in the legend of Figure 6-5 where 𝑆𝑥 was defined in 

Figure 3-4.  In Figure 6-4, some points on the graph of 𝐺 and consequently 𝐾1 and 𝐾2 

have lower values especially for 2.3 ≤ 𝑎 ≤ 4.7 (𝑖𝑛), resulting in stepwise oscillations.  

These points are related to those interface elements which fail ‘immediately’ after the 

failure of the previous neighboring interface strut, resulting in a lower load value in the 

load-displacement diagram.   

Figure 6-4 The energy release rate, 𝐺, with respect to crack length for the four-point bending  

      simulation results from lattice analysis. 
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Figure 6-5 The loading phase angle, 𝜓̂, of the four-point bending at different distances from the  

      tip with respect to crack length. 

As shown in Figure 6-5, the distribution of the phase angle, 𝜓̂, varies between 45° 

and 55°, meaning that the fracture is a mixed mode, as 𝜓̂ = 0° and 𝜓̂ = 90° indicate pure 

mode 1 and pure mode 2, respectively.  𝜓̂ tends to slightly go up for 𝑎 > 5 (𝑖𝑛) implying 

that the interface mode 2 failure is more prominent since the crack tip along the interface 

is approaching to the region in the proximity of the roller support.  It should be 

mentioned that the deformations in the deformed mesh of Figure 6-2 have been 

magnified by a factor of 300.  It is obvious that the interface struts at the center of the 

beam have smaller horizontal component of deformation than those which are close to 

the roller support.  Figure 6-6 and Figure 6-7 also show the variations of stress intensity 

factors for mode 1 and mode 2.  Consistent with the loading phase angle values, 𝐾1 and 

𝐾2 represent that the interface struts at the center of the beam experience a mixed mode 
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failure with almost the same contribution of mode 1 and 2 while the influence of mode 2 

failure increases as the crack grows. 

 

Figure 6-6 Mode 1 stress intensity factor for the four-point bending lattice simulation. 

Figure 6-7 Mode 1 stress intensity factor for the four-point bending lattice simulation. 
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6.2 Tension Simulation 

The global behavior of this simulation was discussed in Section 3.5.1 where the 

load-displacement curve of the regular triangular mesh was only evaluated.  In this 

section, the fracture properties of the crack tip is considered.  As mentioned before, the 

regular square mesh gives better results in terms of fracture quantities. Thus, similar to 

Section 6.1, a numerical lattice simulation was conducted on the tensile behavior of the 

brick-mortar interface.  The boundary condition and configuration of the tensile 

simulation is shown in Figure 6-8 with a propagated crack at one interface.  The fracture 

properties of this simulation are illustrated in Figure 6-9 to Figure 6-12.  This analysis 

provides steady state values for the energy release rates of the interface as the crack 

propagates.   

Figure 6-8 The lattice mesh and boundary conditions of a masonry configuration used in the  

      lattice analysis of the direct tensile simulation.  This figure belongs to an increment    

          with a propagated crack during the analysis. 
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Figure 6-9 The energy release rate, 𝐺, with respect to crack length for the tension simulation  

      results from lattice analysis. 

Figure 6-10 The loading phase angle, 𝜓̂, of the tension simulation at different distances from the  

        tip with respect to crack length. 
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Figure 6-11 Mode 1 stress intensity factor for the tension lattice simulation. 

 

Figure 6-12 Mode 2 stress intensity factor for the tension lattice simulation. 
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the major contributing mode in the interface failure is mode 1, as expected.  The loading 

phase angle, 𝜓̂, is again fairly insensitive to the distance from the crack tip as exhibited in 

Figure 6-10.  The values of 𝜓̂ also confirms that the interface failure is dominated by the 

mode 1.  The uniform constant values of 𝐺 as crack length increases makes it possible to 

extract an average value of energy release rate or dissipated strain energy which could be 

employed in cohesive zone models which will be explained in Section 6.6. 

6.3 Unconfined Triplet Simulation 

The unconfined triplet test which is a double lap shear test in masonry studies was 

considered for the lattice simulations.  Figure 6-13 shows the triplet boundary conditions 

with the propagated crack length of delamination from the lattice analysis. 

Figure 6-13 The lattice mesh and the boundary conditions of a triplet configuration used in the  

        lattice analysis of the unconfined triplet simulation. This figure belongs to an  

        increment with a propagated crack during the analysis. 
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Figure 6-14 to Figure 6-17 show the fracture results of the lattice configuration 

shown in Figure 6-13. Figure 6-14 illustrates the variation of 𝐺 with respect to the crack 

length for one interface, which exhibits a constant steady-state trend.  Again, each point 

on this graph is related to the failure of one strut at the cohesive zone.  In Figure 6-15, the 

variation of ψ̂ at different distances from the crack tip, 𝑟, is shown, which is insensitive 

to this distance.  This feature is promising in decomposing the energy release rate and the 

modulus of stress intensity factor into mode 1 and mode 2.  Figure 6-16 and Figure 6-17 

compare the stress intensity factors for mode 1 and 2, respectively. As shown, the 

unconfined triplet simulation indicates that this is not a pure shear process since there are 

some values on Figure 6-16 for mode 1 separation. However, the shear failure is 

dominant as compared to the tension.   

 

Figure 6-14 The energy release rate, 𝐺, with respect to crack length for the triplet simulation  

        results from lattice analysis. 
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Figure 6-15 The loading phase angle, 𝜓̂, of the tension simulation at different distances from the  

        tip with respect to crack length. 

Figure 6-16 Mode 1 stress intensity factor for the triplet lattice simulation. 
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Figure 6-17 Mode 2 stress intensity factor for the triplet lattice simulation. 

6.4 Mesh Sensitivity 

In order to investigate the effect of mesh refinement on the fracture properties of 
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tension and triplet simulations this number is approximately four.  Figure 6-2, Figure 6-8, 

and Figure 6-13 illustrate the fine meshes mentioned in Table 6-1 for the four-point 

bending, tension, and unconfined triplet simulations, respectively.  The mesh sensitivity 

analysis was conducted for the four-point bending simulation for the fine and coarse 

mesh in Table 6-1.  Figure 6-18 and Figure 6-19 illustrate the change in the energy 

release rate and the loading phase angle in terms of crack length.    
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Table 6-1 Mesh refinement properties of the three simulations conducted by the lattice 

Simulation Configuration 

Type 

Fine Mesh Coarse Mesh 

Nele1 NEqns2 Nele NEqns 

Four-Point Bending 12466 18419 2596 3773 

Tension  9890 14730 2540 3760 

Unconfined Triplet 9890 14775 2540 3781 

 

 

 

 

Figure 6-18 Variation of the energy release rate with respect to crack length for the fine and  

        coarse mesh of the four-point bending simulation. 

 

 

                                                 
1 Number of elements in the lattice mesh. 
2 Number of equations in the lattice mesh. 
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As shown in Figure 6-18, the mesh refinement has slight influence on the values 

of  G as crack propagates while 𝜓̂ experiences a small reduction from the coarser to the 

finer mesh for the pre-notched four-point bending beam.  This difference increases with 

the growth of the crack length, 𝑎. 

Figure 6-19 Variation of the loading phase angle, 𝜓̂, with respect to crack length for the fine and  

        coarse mesh of the four-point bending simulation. 

The mesh sensitivity of the lattice simulation was also examined for the case of 
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mesh with that of the coarse mesh for the direct tension simulation.  It is seen that the 

lattice results for 𝐺 are insensitive to the mesh refinement for the tension specimen.  The 

value of 𝐺 is also steady constant during the crack evolution indicating a stable crack 

propagation for the brick-mortar interface.  Furthermore, Figure 6-21 exhibits the 

variation of the loading phase angle, 𝜓̂, for the fine and coarse mesh with the crack 

growth for the direct tension simulation.  The refinement of the lattice mesh does not 
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considerably affect the values of 𝜓̂ which is a remarkable feature of the lattice model.  

There is an increase in 𝜓̂ for 𝑎 > 3 (𝑖𝑛) which may be due to the deformation of the top 

brick in Figure 6-8, imposing larger horizontal displacements to the interface struts which 

is then translated into higher mode 2 failure.     

 

Figure 6-20 Variation of the energy release rate with respect to crack length for the fine and  

        coarse mesh of the direct tension simulation. 

Figure 6-22 and Figure 6-23 compare the fine mesh energy release rate and the 

loading phase angle with those of the coarse mesh for the unconfined triplet simulation. 

The values of energy release rate are fairly insensitive to the mesh refinement, while the 

loading phase angle of the fine mesh is slightly different from that of the coarse mesh. 

However, this small difference may be neglected. In sum, it may be concluded that the 

lattice model’s interfacial fracture quantities are fairly insensitive to the mesh size which 

may be considered as a useful feature of the implemented lattice. 
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Figure 6-21 Variation of the loading phase angle, 𝜓̂, with respect to crack length for the fine and  

        coarse mesh of the direct tension simulation. 

 

Figure 6-22 Variation of the energy release rate with respect to crack length for the fine and  

        coarse mesh of the unconfined triplet simulation. 
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Figure 6-23 Variation of the loading phase angle, 𝜓̂, with respect to crack length for the fine and  

        coarse mesh of the unconfined triplet simulation. 

6.5 Masonry Interface Toughness 
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and a rise in the interface toughness as the phase angle value increases was observed.  

Liechti and Chai ([67], [68]) also conducted a series of experiments focusing on the 

interface between epoxy and glasses.  Their toughness curve had an increasing almost 

linear trend with respect to the phase angle for 0 < 𝜓̂ < 80° with asymptotic values of 

toughness as 𝜓̂ → 90°.  In all these bi-material interface studies, the interface toughness 

is a function of the relative amount of mode 2 to mode 1 acting on the interface, not just a 

single material parameter [32].   

At a prescribed phase angle, 𝜓̂, the maximum loading amplitude or the critical 

energy release rate, 𝐺, that an interface can sustain without decohesion is the toughness 

of that interface at ψ̂ which is expressed as [65] 

 
𝐺 = Γ(ψ̂), 

(6-1) 

where 𝐺 is the energy release rate as a force driving the interfacial crack propagation, and 

Γ is the interface toughness as a material resistance to the interfacial crack growth.  

 According to the Griffith energy balance, the equilibrium conditions of a solid of 

unit thickness with no net change in total energy for an incremental increase in the crack 

length 𝜕𝑎 may be expressed as [61] 

 𝜕𝐸𝑇

𝜕𝑎
=
𝜕Π

𝜕𝑎
+
𝜕W𝑠

𝜕𝑎
= 0  

(6-2) 

or 

 
−
𝜕Π

𝜕𝑎
=
𝜕W𝑠

𝜕𝑎
, 

(6-3) 
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where 𝐸𝑇 is the total energy, Π is the total potential energy supplied by the internal strain 

energy and external forces, and W𝑠 is the work required to create new surfaces.  W𝑠 

depends on the surface energy (energy per unit area) of the material which is a material 

property.  According to Griffith theory, the interface toughness, Γ, is actually a surface 

energy of the material equivalent to the right side of Equation (6-3).  When the strain 

energy change which is due to an increment in crack length is sufficient to overcome the 

surface energy of material, the fracture occurs.   

In the Griffith model, it is assumed that the work of fracture comes exclusively 

from the surface energy of the material which is valid for ideally brittle solids.  In 

general, not only may the material resistance include the surface energy, but also it may 

involve plastic work, or shielding due to the initial roughness of the interface, or other 

types of energy dissipation associated with a propagating crack.  The plastic or 

viscoelastic dissipation may be neglected in the quasi-brittle failure of the brick-mortar 

interface at micro-level analysis.  In the lattice simulations of this study, the surface 

energy of the brick-mortar interface was considered as the only material resistance.  The 

strength of interface struts against mode 1 and/or mode 2 deformations may be regarded 

as the surface energy of the interface material at the micro level. 

It is possible to extract the interface toughness curve from the three categories of 

lattice simulations, i.e., the pre-notched four-point bending beam, the direct tension test, 

and the unconfined triplet simulation mentioned in Sections 6.1 to 6.3.  Figure 6-24 

illustrates the toughness curve for the masonry interface obtained by the lattice model. It 

indicates that the interface toughness is approximately a linear function for the interface 

behavior of the aforementioned simulations for 7.8° ≤ 𝜓̂ ≤ 78.8°. 
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Figure 6-24 Interface toughness curve, 𝛤(𝜓̂), for a brick-mortar interface obtained from the three 

        lattice simulations. 

6.6 Fracture Energy of Cohesive Zone Models 

As discussed in Section 4.1, the value of Dundur’s parameter 𝛽 for concrete and 

masonry is sufficiently small such that a zero 𝛽 hypothesis can be assumed.  For 𝛽 = 0, 

the components of the energy release rate, G, can be related to the stress intensity factor 

for mode 1 and mode 2 as [32] 

 
𝐺1 =

𝐾1
2

𝐸∗
, and 𝐺2 =

𝐾2
2

𝐸∗
, 

(6-4) 

where G = 𝐺1 + 𝐺2.  𝐺1 and 𝐺2 can be regarded as the work performed by normal and 

shear tractions on the interface moving through the crack surface displacements of mode 

1 opening and mode 2 slip, respectively [32].  When 𝛽 ≠ 0, this decomposition does no 

longer exist.  Figure 6-25 and Figure 6-26 show the variations of energy release rate for 

mode 1 and mode 2 for the lattice analysis of the four point bending in Figure 6-2.  It can 
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be seen that as the crack length increases, mode 2 slightly increases with crack extension, 

which is also evident in Figure 6-5 for the phase angle.   

Figure 6-25 The mode 1 energy release rate for the lattice four-point bending beam. 

 

Figure 6-26 The mode 2 energy release rate for the lattice four-point bending beam. 
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Furthermore, Figure 6-27 to Figure 6-30 illustrate the variation of 𝐺1 and 𝐺2 in 

terms of crack length for the tension and triplet tests, respectively. 

Figure 6-27 The mode 1 energy release rate for the lattice tension simulation. 

Figure 6-28 The mode 2 energy release rate for the lattice tension simulation. 
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Figure 6-29 The mode 1 energy release rate for the lattice triplet simulation. 

 

Figure 6-30 The mode 2 energy release rate for the lattice triplet simulation. 
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instance).  These critical values are equivalent to the area under the traction-separation 

curve of a cohesive zone interface model.  The pink interface struts in Figure 6-2 fail one 

by one in an unzipping manner.  If it is assumed that the cohesive zone, between the 

fully-damaged and undamaged part of the interface, always contains one interface strut at 

the micro-level, then each point in Figure 6-4, for example, which is due to the energy 

released by removing that single interface strut in the cohesive zone, is equivalent to the 

area beneath the traction-separation law after initiation of damage.  Determining the 

parameters of a bilinear traction-separation law, which is the simplest cohesive zone 

model, is nontrivial and conducting an experimental program to measure them is very 

difficult, if not impossible.  This is an interesting capability of the implemented micro-

level lattice model, the simulation results of which can be used at a meso-level continuum 

traction-separation interface model.  Constant steady-state variation of 𝐺 in Figure 6-4 is 

a useful characteristic of the simulation in Figure 6-2 which can give a consistent result 

for the required fracture energy parameter of the traction-separation cohesive zone model.   

Figure 6-31 The critical energy release rate of a single interface strut used as the critical fracture  

        energy of a continuum cohesive zone model in the traction-separation plane. 
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Figure 6-31 illustrates the critical energy release rate associated with the failure of 

a single interface strut in the lattice which can be used as the critical fracture energy for a 

continuum cohesive zone model. The shaded triangular area in the bilinear traction-

separation law is equivalent to the 𝐺 value obtained by the lattice model. The area of the 

left triangle, which belongs to the linear behavior of the cohesive zone, can directly be 

determined by the linear properties and the maximum traction value.     

6.7 Homogenization of a Masonry Unit Cell: Uniaxial Tension Case 

This section provides a brief explanation on how the lattice model might be 

employed in homogenizing a heterogeneous anisotropic masonry unit cell made of brick, 

mortar and their interface using energy equivalence concepts.  The direct tension test was 

only considered here for the sake of simplicity.  Other loading scenarios like shear and 

compression may also be included using the same approach presented in this section.  

The purpose is to obtain a post-peak scalar damage parameter of a homogenized isotropic 

finite element from the fracture energy results of a lattice masonry unit cell.  Elastic 

properties of the homogenized finite element, i.e., equivalent Young’s modulus and 

Poisson’s ratio, can easily be obtained from the linear elastic behavior of the lattice unit 

cell in 𝜎𝑦 − 𝜀𝑦 and 𝜎𝑦 − 𝜀𝑥 planes, respectively.  Figure 6-32 shows the lattice masonry 

unit cell under vertical direct tension. 

 

 

 

 



126 

 

Figure 6-32 The lattice masonry unit cell in direct tension. 

It is assumed that the total strain energy released in the lattice masonry unit cell, 

𝜕𝑈𝑐𝑒𝑙𝑙, in direct tension as the crack propagates equals the total strain energy dissipated 

in the equivalent homogenized isotropic continuum finite element, 𝜕𝑈𝑐𝑜𝑛𝑡,  under the 

same loading as 

 𝜕𝑈𝑐𝑒𝑙𝑙 = 𝜕𝑈𝑐𝑜𝑛𝑡. (6-5) 

According to Equation (5-6), the strain energy released or the change in the strain 

energy stored in a solid of unit thickness for a crack length growth of 𝜕𝑎 can be expressed 

as 

 𝜕𝑈 = −𝜕Π = 𝐺𝜕𝑎, or 𝜕𝑈𝑖𝑛𝑐 ≅ Δ𝑈𝑖𝑛𝑐 = 𝐺𝑖𝑛𝑐 × Δ𝑎𝑖𝑛𝑐, (6-6) 



127 

 

where subscript 𝑖𝑛𝑐 denotes the increment number in the lattice simulation, Δ𝑈𝑖𝑛𝑐 is the 

strain energy dissipated for a crack length growth of Δ𝑎𝑖𝑛𝑐, and 𝐺𝑖𝑛𝑐 is the energy release 

rate obtained from the lattice.  For solids of thickness 𝑡, the value of Δ𝑈𝑖𝑛𝑐 in (6-6) must 

be multiplied by 𝑡.  It should be noted that for increments where there is no increase in 

the crack length, i.e., Δ𝑎𝑖𝑛𝑐 = 0, there is then no strain energy dissipation and Δ𝑈𝑖𝑛𝑐 = 0.   

Since these dissipated energy values correspond to the crack propagation and the 

damage incurred in the masonry unit cell, a scalar damage parameter can be defined 

based on the dissipated strain energy and energy release rate values during the analysis.  

Let 𝐷𝐼𝑁𝐶 and Δ𝑈𝑡𝑜𝑡𝑎𝑙 be the scalar damage parameter at increment 𝐼𝑁𝐶 and the total 

dissipated strain energy for the all increments, respectively.  𝐷𝐼𝑁𝐶 may be expressed as 

 𝐷𝐼𝑁𝐶 =
∑ Δ𝑈𝑖𝑛𝑐
𝐼𝑁𝐶
𝑖𝑛𝑐=1

Δ𝑈𝑡𝑜𝑡𝑎𝑙
=

∑ Δ𝑈𝑖𝑛𝑐
𝐼𝑁𝐶
𝑖𝑛𝑐=1

∑ Δ𝑈𝑖𝑛𝑐
𝐼𝑁𝐶_𝑢𝑙𝑡
𝑖𝑛𝑐=1

; 0 ≤ 𝐷𝐼𝑁𝐶 ≤ 1, 
(6-7) 

where 𝐼𝑁𝐶_𝑢𝑙𝑡 is the ultimate increment number when the analysis is terminated.  The 

numerator of (6-7) is the accumulated strain energy released up to the increment 𝐼𝑁𝐶.   

Since the mesh and its boundary conditions in Figure 6-32 are all symmetric, it is 

possible to analyze one half of the mesh to reduce computational cost.  Figure 6-33 

illustrates the lattice mesh and boundary conditions of a one half symmetric masonry unit 

cell under direct tension. The mesh belongs to the last increment of the analysis when 

𝐷𝐼𝑁𝐶 = 1.  It is seen in Figure 6-33 that the failure mostly occurred through the interface 

struts with penetrations into the mortar joints in the last increments.  Figure 6-34 and 

Figure 6-35 depict the load-displacement curve and the variation of 𝐺 against crack 

length for this simulation.  Data obtained from Figure 6-35 can be used to determine the 

scalar damage parameter, 𝐷𝐼𝑁𝐶.    
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Figure 6-33 One half of the symmetric masonry unit cell mesh and its boundary conditions under  

        direct tension at the last increment. 

Figure 6-34 Load-displacement curve of the masonry unit cell in Figure 6-33. 
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Figure 6-35 Variation of the energy release rate with respect to crack length for the masonry unit  

        cell in Figure 6-33. 

Using the fracture energy release rate values from Figure 6-35 and Equation (6-7), 

one can determine the scalar damage parameter, 𝐷𝐼𝑁𝐶, of the unit cell in Figure 6-33.  

Figure 6-36 illustrates the variation of 𝐷𝐼𝑁𝐶 against the crack length propagation.  𝐷𝐼𝑁𝐶 

firstly increases in a constant rate followed by a decreasing rate of change.  The major 

linear part of the curve in Figure 6-36 corresponds to the unzipping failure of the lower 

interface struts in Figure 6-33. In other words, the masonry unit cell experiences more 

degradation and damage due to the complete failure of the lower interface where 𝐷𝐼𝑁𝐶 =

0.703 and the load level drops to about 100 (𝑙𝑏𝑓).  Furthermore, Figure 6-37 shows the 

change of 𝐷𝐼𝑁𝐶 with respect to the average displacement of the top nodes in Figure 6-33 

where the tension traction is applied.  Considering the assumption in (6-5), it is possible 

to use the damage data in Figure 6-37 to model the nonlinear behavior of the 
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homogenized isotropic continuum finite element, equivalent to the anisotropic masonry 

unit cell in Figure 6-32, under direct tension based on damage formulations.   

Figure 6-36 Variation of the scalar isotropic damage parameter with respect to crack length. 

Figure 6-37 Variation of the scalar isotropic damage parameter with respect to the average  

        displacement of the top nodes in Figure 6-33 where the tension traction is applied. 
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6.8 Summary 

After validating the capability of the lattice in calculating the fracture energy 

release rate and stress intensity factors of some classic fracture problems in Chapter 5, 

some well-known test configurations in masonry context were simulated as explained in 

Sections 6.1 to 6.3.  In all these simulations, a fairly uniform constant variation of energy 

release rate for an interval of crack length was observed, which could help determine a 

single value for the critical fracture energy dissipation on cohesive zone models.  It was 

also seen that the value of loading phase angle, 𝜓̂, is insensitive to the distance 𝑟 from the 

crack tip which is a promising feature of the lattice indicating that decomposing the 

modulus of stress intensity factor, |𝐾| into  mode 1 and 2 stress intensity factors, 𝐾1 and 

𝐾2, is not sensitive to 𝑟 or the mesh size.  Moreover, the values of 𝜓̂ with respect to the 

crack length for these simulations signify that the fracture failure of the interface in the 

four-point bending simulation is a mixed mode while it is predominantly mode 1 and 

mode 2 for the tension and triplet simulations, respectively.   

In order to investigate the effect of mesh refinement on the fracture properties of 

the interface crack tip, two different meshes were analyzed for each of the three test 

configurations explained in Sections 6.1 to 6.3.  The values of the energy release rate and 

loading phase angle were examined for these two different meshes.  It was observed that 

the values of energy release rate and phase angle for the three simulations are fairly 

insensitive to the mesh size.  This is more pronounced for the tension and triplet 

simulations which are specific test configurations for the masonry interface studies.  

Looking at the variations of 𝐺 for the tension and triplet configurations, i.e., Figure 6-20 
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and Figure 6-22, one could conclude that the lattice results for predicting the fracture 

energy dissipated during the failure of interface struts are utterly mesh independent.  

The implemented lattice can also predict the interfacial toughness of any bi-

material interface which is actually the critical energy release rate values obtained from 

the change in the lattice stiffness matrix as expressed in Equation (5-6).  In the lattice 

simulations of this study, the surface energy of the brick-mortar interface was considered 

as the only material resistance and other types of energy dissipation due to a crack growth 

like plastic work or shielding were neglected for the quasi-brittle failure of the brick-

mortar interface.  The interface toughness curve from the three types of lattice 

simulations was obtained from the basic strength material properties of the interface 

frame elements.  The interface toughness is approximately a linear function for the 

interface behavior in direct tension, in four-point bending, and in double lap shear 

conditions for 7.8° ≤ 𝜓̂ ≤ 78.8°. 

In addition, the uniform variation of the energy release rate parameter makes it 

feasible to extract the critical dissipated energy values for the cohesive zone models.  

These critical values are equivalent to the area under the traction-separation curve of a 

cohesive zone interface model after damage initiation.  If it is assumed that the cohesive 

zone, between the fully-damaged and undamaged part of the interface, always contains 

one interface strut, then each point in 𝐺 − 𝑎 graph, which is due to the energy released by 

removing that single interface strut in the cohesive zone, is equivalent to the area beneath 

the traction-separation law after initiation of damage.  This is an interesting capability of 

the implemented micro-level lattice model, the simulation results of which can be utilized 

at a meso-level continuum traction-separation interface model. 
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Furthermore, the fracture energy outputs of the lattice may be employed in 

homogenizing a heterogeneous anisotropic masonry unit cell made of brick, mortar and 

their interface using energy equivalence concepts.  For simplicity, the direct tensile 

loading scenario was only regarded for this purpose.  The post-peak scalar damage 

parameter of a homogenized isotropic finite element was determined from the fracture 

energy release rate values of a lattice masonry unit cell under tension.  The scalar damage 

parameter at each increment was calculated from the accumulated dissipated strain 

energy values up to that increment divided by the total strain energy dissipated 

throughout the analysis.  These damage data in terms of displacements could be used to 

model the nonlinear behavior of a homogenized isotropic continuum finite element which 

is equivalent to the anisotropic masonry unit cell under direct tension based on damage 

formulations. 
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Chapter 7 CONCLUDING REMARKS 

In this thesis, an existing 2D lattice model was developed and implemented based 

on a strut-removal strategy to simulate the progressive crack evolution in a homogeneous 

or heterogeneous solid.  This crack propagation capability was used to determine the 

interfacial fracture properties of any bi-material system, especially the brick-mortar, from 

the basic strength properties of interface struts.  Some material level laboratory tests 

along with some numerical sensitivity analyses were conducted to determine those 

material properties needed for the lattice simulations.   

The Voronoi diagram was used to discretize a continuum domain into polygons, 

or particles.  Plane frame elements with three degrees of freedom at each node were 

chosen because of their capability to better capture the crack pattern in continuum 

domains than truss elements, and also due to their added computational stability.  The 

strength properties of brick, mortar, and interface were then projected on top of the lattice 

struts based on their coordinates on the domain to simulate a three-phase boundary value 

problem.  The simulation of fracture was performed with a ‘linear elastic’ analysis of the 

lattice under loading and removing one element at a time from the mesh which exceeds a 

certain failure criterion in tension, compression, and shear. Failure of brick and mortar 

were expressed in terms of a tension cut-off and compression-cap.  Shear failure criteria 

were neglected for brick and mortar elements since the main focus of this study was to 

evaluate the brick-mortar interface fracture properties, and with the simulations 

conducted, their shear failure envelopes were not activated.  The failure criterion for the 

brick-mortar interface was also determined based on a combination of experimental 
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measurements and numerical parametric calculations. This failure function has a 

compressive cap which lets diagonal interface struts in a regular triangular lattice fail for 

triplet tests under high normal confinements.   

Interfacial fracture mechanics is an important topic of research in applied 

mechanics over the past few decades since the interface of two materials in contact is the 

weakest part of composites like masonry along which failure usually occurs. Different 

elastic properties of abutting dissimilar materials introduce mismatches in the in-plane 

tensile modulus and bulk modulus across the interface, quantified by the 𝛼-, and 𝛽-

parameters, respectively.  The influence of Muskhelishvili’s work in solving any problem 

in the plane theory of elasticity by finding two complex functions which satisfy boundary 

conditions of that problem was elaborated.  In bi-material systems, the same 

Muskhelishvili’s equations, which were developed for displacement and stress fields of a 

two dimensional homogeneous isotropic solid, were also employed in solving bi-material 

interface cracks.  The effect of a nonzero 𝛽 in solving interfacial crack problems was also 

discussed.  

Furthermore, the concepts of interfacial fracture mechanics along with the 

implementation of the lattice model were used to determine the fracture properties of the 

brick-mortar interface.  The implemented 2D lattice model simulates crack path evolution 

in the form of strong discontinuities at a homogeneous or heterogeneous solid.  Unlike 

the pre-cracked approach of the virtual crack extension procedure or the complicated 

XFEM, the lattice’s relative simple theory and implementation makes it a promising tool 

in solving crack problems in fracture mechanics. Three classic fracture mechanics 

problems were addressed to validate the lattice fracture results. The center cracked 
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problem in a homogeneous domain, the single edge notch problem in a homogeneous 

solid, and the center interface cracked problem in a bi-material system were solved by the 

numerical lattice.  The energy method was employed to obtain the energy release rate of 

the lattice mesh as the crack evolves. In this method, the energy released or dissipated 

during the crack growth is mainly determined by considering the change in the global 

stiffness matrix of the mesh with respect to crack length change. Comparison of the 

analytical results of the three benchmark problems with the numerical solutions of the 

lattice for those problems validates the capability of the lattice in predicting the energy 

release rate and stress intensity factor of crack problems in homogeneous and 

heterogeneous solids. In all three cases, the lattice gives better results once the 

dimensions of the mesh are large enough to assure that the stresses are remotely applied. 

After validating the capability of the lattice in calculating the fracture energy 

release rate and stress intensity factors of some classic fracture problems, some well-

known test configurations in masonry context were simulated.  The concept of total 

potential energy of the lattice model was used to determine the energy release rate of an 

interface strut failure while the crack develops.  Three types of lattice simulations were 

performed to obtain the energy release rate and fracture properties of brick-mortar 

interface.  Each of these simulations exhibit different failure mode mixity. In the pre-

notched bi-material four-point bending simulation, the interface experiences a mixed 

mode failure with almost the same contribution of mode 1 and mode 2, as indicated by 

the phase angle variations.  As expected, the dominant interfacial failure mode in the 

unconfined triplet test is mode 2, while mode 1 has the major contribution in interface 

failure for the direct tension simulation.  The values of 𝐺, 𝐺1, and 𝐺2 rendered by the 
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lattice simulations are the critical energy release rates when a crack extension happens.  

These critical values are equivalent to the area under the traction-separation curve of a 

cohesive zone interface model after the damage initiates.  Determining the parameters of 

a bilinear traction-separation law is nontrivial and it is very difficult to conduct an 

experimental program to measure them.  The implemented micro-level lattice model is a 

promising tool to determine energy release quantities that can readily be used at a meso-

level continuum traction-separation interface model.  Knowing that the values of 𝐺 are 

the critical ones, it is possible to determine the interface toughness curve based on these 

three types of simulations.  The present approach can also be used to obtain the fracture 

energy for a variety of interfaces of other bi-materials, relating the discretized 

microstructure to the continuum meso-structure.   

Finally, the fracture energy outputs of the lattice was employed in homogenizing 

a heterogeneous anisotropic masonry unit cell made of brick, mortar and their interface 

using energy equivalence concepts into a homogenized isotropic continuum finite 

element. For simplicity, the direct tensile loading scenario was only considered for this 

purpose. The post-peak scalar damage parameter of a homogenized isotropic finite 

element was determined from the fracture energy release rate values of a lattice masonry 

unit cell. An scalar damage parameter at each increment was calculated from the 

accumulated dissipated strain energy values up to that increment divided by the total 

strain energy dissipated during the completion of the analysis. These damage data in 

terms of displacements could be used to model the nonlinear behavior of a homogenized 

isotropic continuum finite element which is equivalent to the anisotropic masonry unit 

cell under direct tension based on damage formulations.  The same methodology, used 



138 

 

for the direct tensile loading, may be extended to other load scenarios like bi-axial 

tension, or compression, or shear to account for different failure modes.   

The heterogeneous anisotropic masonry unit cell’s homogenization technique 

mentioned above may be regarded as a bridge between the micro-scale lattice analysis 

and macro-scale masonry wall.  The homogenized continuum finite element with the post 

peak damage data obtained from the lattice approach can be employed in a homogenized 

macro-scale masonry wall which has an equivalent Young’s modulus and Poisson’s ratio 

with the same damage data as the heterogeneous masonry unit cell.  In this study, only 

the direct tension loading case was simulated while other loading scenarios like 

compression and shear in the form of bi-axial loading may be considered for the future 

work.  This may give an orthotropic damage data for the homogenized continuum finite 

element to be used in the masonry wall under different loading cases.  Furthermore, the 

lattice model can provide the displacements and rotation of all particles’ nuclei or 

computational points. These kinematic data may be utilized in calculating the strain and 

stress distributions on the Voronoi representation of a given continuum, using the 

gradient of the global displacement vector.  Having the strain and stress distributions 

obtained by the lattice model, one could compare the lattice results with or without 

rotational degrees of freedom with those of classic or micro-polar continuum mechanics 

to investigate how the rotations influence the numerical results of the lattice approach.  
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