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ABSTRACT

The brick-mortar bond or interface is often the weakest link in the masonry
composites. The localization of fracture processes at this bi-material interface plays an
important role in the failure of this assemblage. These micro-level fracture processes
control the nonlinear behavior of the brick-mortar interface which significantly affects
the global behavior of the masonry structure at the continuum macro level. 2D Lattice-
based micro-level fracture simulations which are based on Voronoi tessellation to
discretize the continuum brick and mortar domains are applied to study progressive
debonding of brick-mortar interfaces in unreinforced masonry composites. An energy
method is subsequently employed to obtain the energy release rate of the lattice mesh as
the crack propagates which is determined by considering the variation in the global
stiffness matrix of the mesh with respect to crack length change. This energy release rate
is inserted into the Irwin type fracture relationship for plane strain to calculate the
modulus of complex stress intensity factor and its mode 1 and mode 2 values which are
independent of the distance from the crack tip in the lattice. The lattice results for the
energy release rate and stress intensity factors are then validated by comparing with three
classic fracture mechanics problems analytical solutions of which are available in the
literature. Afterwards, the 2-D plane strain lattice formulation is applied to simulate
interfacial fracture properties of conventional test configurations in masonry. The
computational lattice model is capable of evaluating the fracture toughness of brick-
mortar interface along with other fracture properties from basic strength properties of

lattice struts, which are removed by erosion upon failure. This information is employed to
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upscale the lattice fracture arguments onto the meso-level to quantify the fracture energy
formulation of traction-separation cohesive zone models in the context of continuum
finite element simulations of heterogeneous media such as masonry. The fracture energy
from the lattice is also used in homogenizing a heterogeneous anisotropic masonry unit
cell under direct tension using energy equivalence concept to obtain a scalar damage
parameter which could be utilized to model the nonlinear behavior of a homogenized

isotropic continuum finite element.
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Chapter 1 INTRODUCTION

Masonry is the oldest building material which is still used in building
constructions around the world for its low cost material and broad availability, its sound
insulation properties, energy efficiency, and so on. Other influencing factors include
cultural aspects, long time tradition, local knowledge of materials and tools, architectural
reasons, etc. Construction simplicity is probably the most important characteristic of
masonry structures among others like the aesthetics, solidity, durability and low
maintenance, sound absorption and fire protection.

In addition to the above characteristics, masonry is a sustainable construction
material. As a general definition, sustainability is concerned with promoting the most
efficient use of resources, the protection of the environment and ecosystems, and the
development of a more equitable world society, meeting the need of the present
generation without compromising the ability of future generations to meet their own
needs [1], [2]. Buildings and structures made of stone or brick masonry usually last for
centuries with minimal maintenance. These durability and longevity features introduce
masonries as environmentally and economically sustainable structures. For instance,
there are approximately 40,000 masonry arch bridges in the UK which have been in daily
use on highways, railways and canals for more than 100 years, with some of them over
500 years [1], [3]. Furthermore, around 25% of the 23 million residential properties in
the UK, which are built out of brick or stone or some combination of these materials,
have lasted for more than 160 years with satisfactory performance [1]. These

characteristics are sufficient enough to motivate researchers and engineers to develop



state of the art design rules for masonry structures, competitive to those of concrete and
steel.

There have been important new developments in analyzing masonry structures in
the form of composite material in the last decades. However, due to the lack of in-depth
insight and models for the complex behavior of masonry composite consisting of brick,
mortar, and their bond, its development of design rules has not kept pace with those of
concrete and steel. This might be one main reason to prevent the innovative applications
of structural masonry. Among other reasons are the lack of educational programs for
most graduations of structural engineering and also the ability to transfer the academic

knowledge into field practice.

1.1 Literature and Background

Unreinforced masonry, which is considered in this study, is a heterogeneous,
inelastic, and anisotropic material made of two major components, brick units and mortar
joints exhibiting very different stiffness, strength and ductility properties. The brick-
mortar interface which is the weakest part in the masonry composite plays an important
role in the failure of this assemblage. A number of investigations have been conducted
on different aspects of masonry and the interface behavior between brick and mortar
joints, where an interface element was usually considered with a continuum-based
damage or plasticity formulation to account for the brick-mortar interface degradation
([4], [5], 61, [71. [81. [9], [10], [11], [12], [13]). Goodman et al. [4] were one of the first
researchers who introduced the interface concept for joints in rock mechanics. Their joint

element was designed to feature failure in tension and/or shear, rotation of blocks,



development of arches. Page [5] of his seminal paper analyzed the behavior of clay
masonry walls subjected to in-plane loading using an early version of finite element. The
model considered masonry as a continuum of isotropic elastic bricks acting in concert
with mortar layers as joint linkage elements. However, the ultimate load capacity of the
masonry could not be predicted at that early stage. McNary and Abrams [14] studied
biaxial tension-compression of bricks and triaxial compression of mortar to establish
constitutive relations for each material. They simulated the force-displacement
relationship for a stack-bond prism using a numerical model and a proposed strength
theory. They concluded that mechanics of clay-unit masonry in compression could be
represented by a single failure model and the most significant parameter to consider was
the dilatant behavior of the mortar. Citto et al. [15] employed an innovative approach
using digital image correlation (DIC) techniques to evaluate in-situ properties of the shear
strength of mortar joints in existing masonry. They determined the properties of cohesion
and friction angles in an existing masonry wall, and they used finite elements and the
DIC system to investigate the significant lack of uniformity along the bed joints failing in
shear. Lourenco [7], in his PhD dissertation, studied computational strategies for
masonry structures. He considered micro- and macro-modeling strategies to analyze
masonry composites. For the micro-modeling strategy, all inelastic phenomena were
lumped in the relatively weak joints via a composite interface model, i.e., a zero-
thickness interface element. Carol et al. [9] implemented an elasto-plastic fracture-based
interface model to simulate the mechanical behavior of concrete and bone specimens as
quasi-brittle materials. One of their main conclusions was that zero-thickness interface

elements provide a convenient form of representing fracture as a mixed-mode



generalization of the FCM, Fictitious Crack Model. They observed that, at the same
time, the zero-thickness interface elements avoid some of the problems normally
associated with this type of calculations using continuum elements with softening, such
as mesh objectivity or deformation modes of the elements. Willam et al. [10] examined
the degradation of interface transition zones in heterogeneous materials due to thermal
and mechanical damage. Their study addressed model issues of zero-thickness cohesive—
frictional interfaces which are subjected to thermal and mechanical damage. A
combination of both thermal and mechanical degradation mechanisms was studied.
Caballero, Willam, and Carol [12] developed a constitutive model for fracture
simulations in quasi-brittle media within the framework of zero-thickness interface
elements. An elasto-plastic interface model was presented by extending and improving
the constitutive relations of an earlier 2D formulation to 3D with a consistent tangent
formulation. Sacco, Alfano, and Toti ([11], [13]) evaluated masonry composites as
heterogeneous systems made of brick and mortar joined by means of interfaces,
responsible for the mortar-brick decohesion mechanisms. In their micromechanical
computational strategy, a special interface model combining damage and friction was
adopted. Their results obtained by a numerical model were put in comparison with the
experimental ones, having shown the ability of the proposed model to simulate the
behavior of the unreinforced and reinforced masonry arches in terms of ultimate load,
nonlinear behavior and collapse mechanism. There have been many other studies on
interface elements, cohesive elements, and their behavior in quasi-brittle materials like
concrete and masonry, where efforts were made to better understand the behavior of

masonry composites in material and ultimately in structural level employing experimental



results and numerical simulations using continuum-based damage or plasticity
formulation ([16], [17], [6], [18], [8], [19], [20]).

In the methods based on the theory of plasticity and damage mechanics, the
displacement field is continuous over the domain and special techniques need to be
accounted for embedding discontinuities and cracks on the domain. However, in the
approaches based on fracture mechanics, the displacement field is discontinuous which
accounts for the cracks and strong discontinuities. There have been rare investigations
regarding the interfacial fracture properties and toughness of masonry interfaces. In
many bi-material systems like composites and microelectronic devices, the fracture of
interfaces is a critical phenomenon, which in many circumstances governs the failure
behavior of those systems. The fracture of bi-material interfaces has been studied by
many researchers. Muskhelishvili [21], in his pioneering work, employed the concept of
complex variables and complex functions to represent the displacement and stress fields
of plane problems using complex variables. He used complex functions since the
properties of a complex variable are generally well-known. Williams [22] investigated
the plane problem of dissimilar materials with a semi-infinite crack. He observed for the
first time that stresses at the crack tip have an oscillatory character of type
r~1/2sin(eInr), where r is the radial distance from the crack tip and ¢ is a function of
bi-material elastic mismatch. Rice and Sih [23] developed a method for determining
Goursat functions for dissimilar materials bonded along straight-line interfaces. They
combined an Eigen-function expansion method with the complex equations of
Muskhelishvili to solve the problems of isolated forces on surface of a semi-infinite crack

and an infinite plate with a crack subjected to stresses at infinity. England [24], Erdogan



[25], and Rice [26] also investigated the singular near-tip field of the interface crack
problems. Parks [27] developed the “virtual crack extension” method which is a Finite
Element technique for determining elastic crack tip stress intensity factors. In this
method, the single crack is “advanced” by moving nodal points rather than by removing
nodal tractions at the crack tip and performing a second analysis. Charalambides and his
colleagues [28] devised an interesting test specimen which is capable of measuring the
fracture resistance of bi-material interfaces. The test specimen is a four-point bending
beam made of two dissimilar materials with a notch at the middle of the beam, as shown
in Figure 1-1. In their numerical Finite Element solutions, they obtained graphs for the
energy release rate, stress intensity factor, and loading phase angle considering a pre-
cracked notched symmetric composite beam model. Matos et al. [29] presented a
numerical method for calculating stress intensity factors in bi-material interfaces. Their
method is based on the J-integral using the “virtual crack extension” method, or the
energy method developed by Parks [27][30]. They compared the stress intensities
obtained by the energy method and the “crack surface displacement” method.
Charalambides et al. and Matos et al., in their simulations, considered a pre-cracked
Finite Element mesh with length a and applied the virtual crack extension method by
virtually increasing the crack length and changing the stiffness of a ring of elements
around the crack tip [27]. Their simulation was not based on a progressive crack
propagation along the interface where the crack length a increases during a single
simulation. Evans et al. studied the fracture energy of bi-material interfaces and relative

toughness of some bi-material interfaces with respect to the phase angle of loading [31].



Hutchinson and Suo [32], in their comprehensive paper, reviewed the investigations on

fracture of layered materials including bi-material interfacial fracture mechanics.

Figure 1-1 The pre-notched bi-material four-point bending beam with two symmetrical interfacial
cracks [28]

1.2 Objectives and Scope

The ultimate outcomes of most research on masonry structures in Civil
Engineering might be used to enhance and review current design rules. To do so, the
importance of sophisticated numerical tools, capable of predicting the behavior of the
structure from the linear stage, through cracking and degradation until complete loss of
strength is clear. It is then possible to control the serviceability limit states, fully
understand failure mechanisms, and reliably assess the structural safety. This objective
can be achieved not only by implementing accurate and robust constitutive models, but
also by measuring material parameters of masonry constituents in the linear and
especially post-peak stages through precise and laborious experimental programs.
Depending on the numerical modeling strategy, these constituents include brick units,

mortar joints, and/or cohesive zones between brick and mortar, which are the weakest



part in a masonry structure. If a micro- or meso-level modeling strategy is considered,
then the interface elements may be added to other two constituents, i.e., brick and mortar,
in the numerical model. At this level of modeling, material properties of the constituents
and the interface are needed, which can be measured by small-scale experimental
programs. Nonetheless, the brick-mortar interface data is generally neglected in large-
scale and practice-oriented analyses, where a macro-level modeling strategy is taken into
account. In this case, the masonry structure is regarded as an anisotropic homogenized
material having a constitutive relationship between average masonry strains and average
masonry stresses.

This study focuses on the nonlinear analysis of brick-mortar interface in
unreinforced masonry composites under static monotonic loads at the micro level of
observation. A numerical approach based on the fracture mechanics concepts, where the
displacement field is discontinuous, accounting for the cracks and strong discontinuities,
is employed. The primary aim of this research is the implementation, development, and
evaluation of a numerical tool at the micro-level which is fairly capable of evaluating and
predicting the behavior of any bi-material interface, like brick-mortar bond, in a fracture
mechanics context. The objectives of this study are as follows:

e Conducting some material level tests to measure the required material
properties of brick, mortar, and their interface.

e Simulating the failure modes of the brick-mortar interface to answer the
question whether it is a mode 1 or mode 2 or a mixed mode failure which
could help extract ‘true’ material properties of the interface from small

scale material level test.



e Implementing and developing a numerical tool which simulates
progressive crack propagation through the interface or brick and mortar to
capture debonding in tension and delamination in shear while localization
of fracture processes introduces snap-back instabilities.

e Obtaining brick-mortar interface fracture properties like energy release
rate and stress intensity factors for mode 1 and 2 from the numerical tool.

e Determining the toughness relation of bi-material interfaces by the micro-
level simulation.

e Obtaining the required fracture energy values of continuum-based
cohesive zone models in the form of zero-thickness traction-separation
law in the meso-level from the micro-level modeling outputs.

It is important, however, to note that masonry experimental results typically show
wide scatter numbers, not only in large scale tests but also in small scale specimens, as
observed many times in this study. Thus, a sharp reproduction of the experimental results
in the form of a load-displacement curve, for example, is not the main concern. It should
be mentioned that the developed model and the discussion in this study probably have a
much broader applicability than just masonry structures. It is expected that the micro-
model can also be evaluated in other areas like adhesives, joints in rock and stone works,
contact problems between bodies, microelectronic devices, and, in general, all types of
interface behavior where bonding, cohesion, and friction between constituents form the

basic mechanical actions.



Chapter 2 explains about the material level tests of the masonry composite carried
out in the form of brick, mortar, and brick-mortar interface tests. It mainly focuses on the
failure mode and strength of each test. To this end, a Digital Image Correlation, DIC,
system was used to examine the failure mode, strain concentrations and crack
propagation paths on the surface of specimens and the effect of bond on the overall
behavior of the masonry composite.

Chapter 3 deals with the theoretical framework and the numerical modeling
method used to simulate the behavior of interfaces. The 2D lattice model geometry and
Voronoi diagram to discretize the continuum domain is first explained. The material
structure overlay technique is then discussed which assigns various material properties to
the lattice elements depending on their specific coordinates in the mesh. An existing
constitutive relation capable of modeling the zero-thickness interface elements is adopted
in the lattice model. The chapter ends with the explanation of the fracture criteria for the
brick, mortar, and interface struts followed by a section about a few masonry test
configurations simulated by the lattice.

Chapter 4 explains about the essentials of the interfacial fracture mechanics and
the way it was developed into the existing formulations for the bi-material interface
cracks. It first describes the Dundur’s parameters which characterize mismatches in the
in-plane tensile and bulk moduli across the bi-material interface, introduced by different
elastic properties of abutting dissimilar materials. Muskhelishvili’s equations based on
complex variable function which are used in solving crack problems in homogeneous and

heterogeneous bi-material systems are then elaborated.
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In Chapter 5, an energy method is used in the lattice model to obtain the energy
release rate of an interface crack propagating along the bond. This method is then
employed to validate the lattice’s energy release rate and stress intensity factors by
comparing the lattice results with three classic problems in fracture mechanics for which
analytical solutions are available. Validation of the model was performed by using a
regular square mesh.

Chapter 6 presents the results of the validated lattice model obtained from three
numerical simulations in masonry composites in pure bending, tension, and double-lap
shearing . The energy release rate, the loading phase angle, and stress intensity factors
for mode 1 and mode 2 are the main quantities obtained by the lattice approach. Mesh
sensitivity analyses were also conducted to compare the interfacial fracture results of a
fine mesh with those of a coarse one. The critical energy release rate values by the lattice
are then devoted in obtaining the masonry interface toughness relation and also the
critical fracture energy of a traction-separation zero-thickness interface element in meso-
level continuum finite element formulation. These energy values are also used in
homogenizing a heterogeneous anisotropic masonry unit cell in direct tension to a
homogeneous isotropic continuum finite element using the energy equivalence concept.

Chapter 7 presents the summary and final conclusions which can be derived from

this study.
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Chapter 2 MATERIAL LEVEL LABORATORY EXPERIMENTS

This chapter briefly focuses on experimental observations of fired clay bricks and
mortar specimens along with their interface at the constituent levels, in addition to their
composite behavior when brick and mortar are stacked as a prism and are tested in direct
compression. The experimental observations include Digital Image Correlation, D.I.C.,
data from a 3D system to ascertain the effect of bond on the overall behavior of the
masonry composite. In the following, this D.I.C. system is shortly explained; then the
small scale material level tests are discussed. At the end, the behavior of a masonry

prism in direct compression is evaluated.

2.1 Digital Image Correlation System

For image analysis, the Digital Image Correlation system, and its software named
ARAMIS [33] was used in all experiments. In the DIC technique, the software processes
the images taken during the test to determine the full-field motion of the speckle
geometry, and obtains surface deformations in terms of strain measurements. The DIC
setup used for this study, is a non-contact optical 3D metrology system in which the
ARAMIS software analyzes, calculates and documents deformations at prescribed load
steps. The setup consists of four pairs of 12 Megapixel Gigabit Ethernet cameras
connected to a sensor controller for power supply of the cameras and to record speckle
images in pixel format. The PC-based ARAMIS software assigns square or rectangular
image details in the form of so-called facets, e.g., 15 x 15 pixels, for tracking their motion

over the deformation history of the test article [33].
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There are steps to accomplish a typical measuring procedure, some of which are
related to specimen preparation, calibration of the measuring volume, creating a new
project and defining its parameters like facet size, facet steps, computation size, gauge
length, and so forth [33]. In order to measure a specimen’s deformation using ARAMIS
system, its surface facing towards the cameras must meet some requirements like being
smooth, having a stochastic pattern with good contrast to clearly allocate the pixels in the
camera images called facets, being non-glossy and dull, being free of grease and oil, etc.
In this study, a plain spray paint was used to create stochastic patterns on the specimen
surface. Satin or gloss paints were avoided because of their reflections under lighting.
First, a white and dull base coat was applied on the specimen’s surface followed by
spraying black dots to generate a random speckle pattern. Smaller measuring volumes
require a finer pattern than larger measuring ones. Figure 2-1 shows a standard masonry

prism prepared with a random dot pattern.

Figure 2-1 Stochastic patterns sprayed on a masonry prism surface.
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2.2 Material Level Tests

Accurate mirco-modeling of masonry structures requires a thorough experimental
description of the material. In the present study, three types of material tests were
considered for the numerical analyses, viz. sintered clay brick units without holes, mortar
joints, and brick-mortar interface. When the masonry prism is under axial compression,
the mortar joints generally experience triaxial compression while the brick units are
subjected to axial compression and lateral biaxial tension due to the Poisson’s mismatch
properties of mortar and brick units. Softer mortar joints generate lateral tension in the
bricks through their interface bond leading to tensile cracking in the form of axial
splitting of the brick units. This failure initiates in the brick units and propagates through
mortar joints. Since the brick is in biaxial lateral tension and axial compression, its tensile
and compressive strengths and its failure mode are of particular interest. The
compressive strength of the mortar prism was also investigated under axial compression.
Moreover, to investigate mode 1 and mode 2 failure behavior of the cohesive zone
between brick and mortar, direct tensile and triplet tests were conducted to elaborate the
behavior of the bond in tension and shear. However, a fundamental question is whether
the failure mode in the triplet test is due to tensile debonding (mode 1) or shear
delamination (mode 2) or combination of them (mixed mode). This question will be
addressed later on. A Tinius-Olsen axial tension-compression material testing machine
with maximum capacity of 400 (kips) was used for most tests in this experimental
investigation. Also, the DIC system was used for all tests to capture the full-field

deformation of test specimens at different load stages of axial displacement control.
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2.2.1 Fired clay brick units

The solid brick units of nominal size of 2 x 4 x 8 (in) were acquired from a
well-known local company in Houston, Texas. Three randomly selected bricks were
used for compression and three for splitting tension tests, also known as the Brazilian
test. The splitting tension test complies with the specifications of ASTM C 1006-84 [34].
Figure 2-2 shows a typical brick specimen painted and prepared for a compression test

[35].

Figure 2-2 Brick specimen under direct compression at the load level of 180 kips (0.87P,,4x)-
(a) The brick with speckles; (b) The snapshot taken by the DIC software; (c) &,
contours on the surface of the brick.
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Figure 2-2(a) and Figure 2-2(b) illustrate the speckles on the surface of a tested
brick taken by a regular camera and DIC software, respectively. Figure 2-2(c) represents
the distribution of &, contours on the brick’s surface shown in Figure 2-2(a). The dark
green contours correspond to lateral contraction, i.e., negative &, strain values
contradicting the Poisson effect. However, this may be explained by the boundary effects
at the two brick surfaces. Other colors are related to different levels of lateral tensile
strain. An average compressive strength of 6000 (psi) was measured for these three
bricks with a standard deviation of 143 (psi).

Moreover, splitting tension tests were conducted on three brick units. In the test,
two line loads along the bed surfaces of the brick were applied. The compressive load,
imposed by 0.25 (in) in diameter bearing rods, results in a tensile stress distributed over
the height of the brick over the split length of the unit. The splitting tensile strength of

the bricks is calculated according to the traditional expression for split tensile testing as

_— 2P
_T[th ’

(2-1)

where T is splitting tensile strength (psi), P is maximum applied load indicated by the
testing machine (lbf), L is split length (width) of the brick (in), and h;, is height of the
brick (in). The average splitting tensile strength for the three bricks was 400 (psi) with
a standard deviation of 75 (psi), which is close to a typical value of concrete. Figure 2-3
illustrates the splitting tension test performed on one brick. Figure 2-3(a) shows the
painted brick after the test with a vertical mode 1 crack through its height. Figure 2-3(b)

exhibits the photo taken by the DIC system right after the failure, while Figure 2-3(c)
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depicts the distribution of &, and major principal strains’ directions on the surface of the
brick right before the failure. As it can be seen, there are strain concentrations (red
colors) right below and above the bearing rods on the middle top and bottom of the brick.
This coincides with what is expected in the Brazilian test setup. Other parts of the brick

surface are almost free of deformations showing green color.

Figure 2-3 Brick specimen in splitting tension test failed at the load level of 6.1 kips. (a) The brick
with speckles after the test, (b) The snapshot taken by the DIC software right after the
failure, (c) €, contours on the surface of the brick right before the tensile splitting.

2.2.2 Mortar prisms

Mortar mixture for these tests was prepared with a 4:1 sand to cement ratio and a
WI/C ratio of 0.56 for this experimental test program [36]. The mixture was formed as a
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prism surrounded by brick surfaces the dimensions of which were 4 X 4 x 2 (in). The
mortar prisms were cured for 14 and 28 days inside a moisture-tight bag. They were
tested in axial compression under displacement control at the same displacement rate as
the brick units. Figure 2-4 illustrates a mortar prism tested in this study under axial

compression.
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l..
Figure 2-4 Mortar prism specimen cured for 28 days under direct compression at the load level

of 40.9 kips (0.97P,,4)- (@) The mortar after failure, (b) The snapshot taken by the
DIC software at 0.97 B, (€) &, contours on the surface of the mortar at 0.97B,,4, -

Figure 2-4(b) and (c) show the mortar very close to its failure. As can be seen,
the DIC software can capture the strain concentrations on the surface of the specimen. If
Figure 2-4(a) is compared with Figure 2-4(c), it is evident that the fracture trajectory
closely matches with the one for ¢, concentration. Figure 2-5 illustrates the major strain

distribution and its directions along the surface of the same mortar shown in Figure 2-4.
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Viewing Figure 2-4(a) and Figure 2-5, we may conclude that the ARAMIS system can
locate the crack path ‘before failure’ by measuring the increasing rate of localized
deformations. Attention should also be paid to the principal strains. Figure 2-5 depicts
the direction of the major principal strains which are oriented perpendicularly to the
trajectory of the strain concentrations. To explore also whether the failure mode is 1 or 2
type, one might look at the von Mises strain contours as depicted in Figure 2-6. It is
observed that there are also high von Mises strains at the location of cracks. This means
that the fracture mechanisms are a combination of mode 1 and mode 2, or a mixed mode
failure condition. The average compressive strength measured for these mortar

specimens was 2000 (psi) with a standard deviation of 751 (psi).

Figure 2-5 Major strain distribution and its direction on the surface of the mortar prism at
0.97 B, 4, Captured by the DIC system.

3

Figure 2-6 Mises strain distribution on the surface of the mortar prism at 0.97B,,,, captured by
the DIC system.
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2.2.3 Brick-mortar interface

The bond between the brick unit and mortar joint is often the weakest link in the
masonry assemblage. Exploring the mechanical behavior of this link is the key in the
failure analysis of masonry structures. Since two different phenomena occur in the brick-
mortar interface, one associated with tensile failure, mode 1, and the other associated
with shear failure, mode 2, two types of tests were conducted in this study, namely direct

tensile tests of interface, and also triplet tests.
2.2.3.1 Interface direct tension test

The purpose of this test is to measure the tensile strength of the brick-mortar
bond. It was attempted to avoid any eccentricity during the test to only measure the mode

1 behavior of the bond. Figure 2-7 shows the test setup and the specimen for measuring

the mode 1 behavior of the interface.

Figure 2-7 Test setup and the two-brick masonry prism specimen for the direct tensile test.

Brick units were cut according to the maximum opening of grips. As can be seen
in the figure, the DIC system and an extensometer were employed to measure the delicate
deformation of the interface. Four specimens were tested by this 10 — kip machine.

Working with a gear box setup, the machine had not been equipped with a servo-
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controlled system to apply a displacement control test in a consistent manner. Moreover,
the machine’s grips were not properly concentric which imposed an unavoidable
eccentricity to the specimen. However, a tensile strength of about 47 (psi) were

measured for the specimens.
2.2.3.2 Triplet test

In addition to tension experiments, 17 additional tests were performed in order to
explore the shear response of the brick-mortar interface in the form of double-lap
shearing tests. Uniaxial and biaxial loading configurations are needed to test the
specimens under no confinement and confinement lateral loading. To this end, the Tinius
Olsen machine equipped with servo-controlled system and a 10 — kip manual hydraulic
jack were employed. Under no confinement conditions, where a uniaxial loading exists,
the Tinus Olsen frame was only used in displacement control. Under confined loading
cases, it is needed to keep the lateral load constant while shear load increases. Thus, the
lateral constant load was applied by the Tinius machine in load control while applying
shear load with the manual jack keeping the load rate constant. For the unconfined cases,
the loading and support arrangement is similar to a standard conventional double lap

shear test for the determination of the bond shear strength of masonry joints [37].
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Mortar

Brick

Figure 2-8 Unconfined conventional triplet test to evaluate the brick-mortar interface behavior in
mode 2.

Figure 2-8 shows a conventional triplet configuration used in this research. The
DIC system was also used to follow the crack propagation and mode 1/mode 2
deformation field. Figure 2-9 illustrates the deformation field of a triplet specimen
captured by the DIC system. The vertical shear load was applied by the Tinius machine.
Based on the values of &, and &, on the inner interface, which are shown by red
concentrated color, the failure mode is a combination of mode 1/mode 2, namely mixed
mode. The values of shear strain for mode 2 is much larger than that of mode 1,
Figure 2-9(a), (b). The value of &, is negligible compared with two other strains,
Figure 2-9(c), implying that the interface stretch strain could be neglected on the failing
interface. In other words, surface failure dominates volumetric fracture supporting the
idea of using zero-thickness interfaces between brick and mortar in numerical modelings

as opposed to the finite thickness interfaces.
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Figure 2-9 Strain field of an unconfined triplet test specimen captured by the DIC system right
before the failure.

Figure 2-10 depicts the deformation of a confined triplet specimen right before the
failure of the interface. Comparing Figure 2-10(a) and (b), it is seen that the value of
shear strain, i.e., mode 2, is a bit smaller than that of mode 1 signifying a mixed mode
failure. The magnitude of the interface stretch, &,, is again negligible in this case,

compared to &, and &,,, on the inner interface.
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Figure 2-10 Strain field of a confined triplet test specimen captured by the DIC system right
before the failure.

Specimens were tested under no confinement and different confining loads. It is
known that the shear strength of masonry joints increases with increasing the applied
confining load up to a maximum value which is related to the compressive strength of
material. The relationship between the shear strength of brick-mortar interface, z, and the
confining stress, o, can adequately be expressed by the classical Coulomb failure

function of the form

T = UgO + T, (2-2)

where t, is the shear strength at zero confining stress, and p, can be considered as the

coefficient of internal friction. According to the triplet test results, the estimated values of
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T, and u, may be approximated by 179.68 (psi) and 0.662, respectively. Figure 2-11
illustrates Coulomb failure envelope for the triplet specimens under different

confinements.
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Figure 2-11 Coulomb failure envelope for the triplet specimens under different confinements.

2.3 Uniaxial Compressive Behavior of Masonry Prism

The masonry prisms were made of five brick units from the same mentioned
source and four mortar layers from the same cement and aggregates and mix proportions.
They were constructed according to the specifications of ASTM C 1314 — 03b [38].
Figure 2-1 shows a typical masonry prism prepared for this study the height of which is
12 (in). The prisms were tested under a direct compression in displacement control with

the same displacement rate as the brick units’ and mortar prisms’ [35].
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Figure 2-12 Distribution of €, on the surface of the masonry prism during the direct
compression test. (a) €, contours at 0.5P,,,, , (b) &, contours at B,

Figure 2-12(a) and (b) illustrate the distribution of &, contours for one of the
specimens at the load level of 88 and 171 (kips), respectively. In Figure 2-12(a), most
of the lateral strain field (see the strain bar) exhibits positive ¢, -values with some vertical
strain concentrations having been developed, i.e., yellow color. Figure 2-12(b) shows the
development of a vertical crack at failure. The DIC system captures the concentrations of
lateral strain depicting the axial crack location and orientation. If the propagation history
of the crack evolution is considered, it may be observed that the vertical crack propagates
from the bottom to the top of the masonry prism in this case. The crack initiates at a load

level of 35 (kips) at the lowest mortar layer somewhere at the brick-mortar interface,
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about 2.4 (in) from the bottom of the prism, and then propagates upward under
increasing load until the prism splits into two parts.

Moreover, to observe the effect of shear of the mortar joints which is caused by
the deformation mismatch effects explained earlier, the von Mises strain criterion was

considered as

&y = \/%[(31 — &)+ (g —&3)% + (&5 — £1)?], (2-3)

where, &;, &, and &3 are major principal strains and &, is the von Mises strain.
Figure 2-13 illustrates the distribution of &, on the surface of the same masonry prism
captured by the DIC system during the direct compression test. Figure 2-13(a) shows the
prism after failure. A comparison can be made between Figure 2-13(a) and
Figure 2-13(c) or Figure 2-12(b). It is seen that the DIC system measures the
deformations in real-time during the test and at the end it captures the real crack pattern
of axial splitting.

As expected, the softer mortar layers experience higher shear strains than the
stiffer bricks. This is evident in Figure 2-13(b) and (c) where a lighter blue color is seen
at the top mortar layer at 0.5P,,,,. The fact that these Mises strain concentrations are not
observed at the two bottom layers is probably because of the bottom to top order of
construction of the prism where bottom ones experienced higher weight imposed by the
upper bricks and mortar joints than the top layers during the construction of the prism.
This probably induced more load on the bottom mortar layers due to the weight of top
material layers mitigating the shear deformations caused by the mismatch effects. It is

also observed that the brick-mortar interface behavior is not captured in this type of test.
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Figure 2-13 Distribution of &,,, Mises strain, on the surface of the masonry prism during the
direct compression test. (a) The failed masonry prism after the direct
compression test. (b) &), contours at 0.5P,,,, , (C) &, contours at P,

2.4 Summary

The behavior of brick units, mortar prisms, and their interface was evaluated by
conducting some material level tests. The DIC system was employed throughout the
experiments to observe and measure the full-field deformations of the specimens.
Compared to the traditional way of using strain gauges which only measure extensional
deformations at a limited number of discrete locations, the photogrammetry method used
by the DIC system provides field information by measuring a very large number of data

points dependent on the computation size, facet size and facet steps. It also captures in-
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plane and out-of-plane deformations simultaneously. Moreover, one of the main
advantages of using the DIC system is measuring large deformations and strain
concentrations on the surface of a specimen, while strain gauges often debond under large
deformations. Therefore, in some studies which deal with large deformations like in
damage or fracture mechanics, the DIC system is very useful to track deformations up to
failure. Furthermore, the DIC system measures real-time deformations during the test
and provides at the end a crack pattern that closely matches that of the real specimen.
This gives the DIC system an opportunity to provide feedback to the testing machine
through measurement of the deformations in real-time. However, the DIC system shows
some inconsistencies in measuring small deformations in brittle materials like brick and
mortars. For instance, for the three 14-day mortar prisms tested, the average chord
young’s moduli were 4518, 1857, and 7267 (ksi) showing no consistencies. The issue is
much worse for the Poisson’s ratio where the lateral horizontal strain, &,., is much smaller
than the vertical strain, ¢, causing erratic results in the linear stage which is determined
based on the load-deformation curve of each specimen. The problem also persists for the
brick units. Therefore, the values of Young’s modulus and Poisson’s ratio for brick and
mortar were adopted based on the all measured values by the DIC and those reported in
the literature.

Unreinforced masonry is a heterogeneous, inelastic, and anisotropic material
made of two major components, brick units and mortar joints exhibiting very different
stiffness, strength and ductility properties. When these two constituents are assembled in
the form of a masonry prism, axial splitting of the prism is observed under compressive

loading due to the mismatch conditions of the masonry composite. This mismatch results
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from the different response behavior of the stiff brick units and the soft mortar layers
generating triaxial stress and deformation conditions in the brick unit and the mortar
joint. This means that under direct compression of the masonry prism test the softer
mortar joints are restrained by the brick units from lateral expansion and hence
experience triaxial confinement, while the stiffer brick units are subjected to lateral

tension besides far-field axial compression.
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Chapter 3 NUMERICAL LATTICE MODEL

Heterogeneous materials exhibit complicated fracture mechanisms due to their
microstructure. Analytical descriptions of these mechanisms using linear elastic fracture
mechanics is difficult, since the fracture pattern includes a main crack, itself consists of
various branches, secondary cracks, and microcracks. Due to the limitations and
inflexible nature of analytical methods in handling arbitrary complex geometries and
boundary conditions and general crack propagations, fracture processes in heterogeneous
materials are, therefore, often simulated with numerical models. One of the numerical
tools which is well suited for fracture simulations is the lattice model. The following
sections explain the concepts, definitions, assumptions, and methods used in this study to
implement the lattice model in MATLAB R2014a [39] as a tool in computational fracture

mechanics.

3.1 Lattice Geometry and Voronoi Diagram

The main concept of the lattice model was first introduced by Hrennikoff [40] in
1941, where a continuum domain can be discretized by a lattice of truss, beam, or frame
elements. He replaced the continuous elastic panel by a framework of equivalent bar or
strut members with elastic properties based on the properties of the continuum domain.
Voronoi diagrams, based on a random or regular distribution of points, were used in this
study to discretize the continuum domain into an assemblage of convex rigid particles
interconnected along their boundaries through flexible common sides or interfaces [41]

(See Figure 3-1). A planar Voronoi diagram is defined as [42] “Given a set of two or
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more but a finite number of distinct points in the Euclidean plane, all locations in that
space are associated with the closest number(s) of the point set with respect to the
Euclidean distance. The result is a tessellation of the plane into a set of regions
associated with members of the point set. This tessellation is called the planar Voronoi
diagram generated by the point set, and the regions constituting the VVoronoi diagram is

referred to as Voronoi polygons.”
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Figure 3-1 Discretization of a rectangular continuum domain into particles using Voronoi
formulation. (a) a regular discretization, (b) a random discretization.

These Voronoi polygons or convex rigid particles are, for example, regular
hexagons as shown in Figure 3-1(a). Each particle, in the Voronoi diagram, has a point
inside called nucleus or centroid which has a specific geometric definition. A truss or
beam or frame element connects these nuclei inside the particles constructing a
discretized lattice mesh. Figure 3-2 illustrates the generated mesh for a regular and
random nuclei distribution according to the VVoronoi diagram. This diagram is uniquely
defined by the nuclei distribution. The Voronoi region, or cell, assigned to nucleus i is

[41]
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Vi € V(X;) =Nz {X]|d(Xi, X) < d(X;,X)}, (3-1)

where X; are the coordinates of nucleus i; d(X;, X) is the Euclidean distance between X;
and X; and j runs from 1 to n, excluding i. This means that each point X belonging to
Voronoi region i is closer to nucleus i than all other nuclei, creating a set of convex
polygons in the plane as illustrated in Figure 3-2. Similarly, the boundary, or interface,

segment common to two contiguous particles i and j is [41] (See Figure 3-3)
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Figure 3-2 Presentation of rectangular continuum domains in Figure 3-1 by strut bars using
Voronoi diagram, a lattice model. (a) a regular mesh, (b) a random mesh.

Although Equations (3-1) and (3-2) are conceptually simple, the generation of
Voronoi diagram is nontrivial due to computing demands and other issues such as the
modeling of domain boundaries. Thus, special care was exercised to account for domain

boundaries, both in regular and random meshes.
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Figure 3-3 Voronoi particle associated with nucleus i. Line segment i — j establishes a frame or
truss element [41].

The random discretization and random mesh generation technique, Figure 3-1(b)
and Figure 3-2(b), was adopted from the method firstly proposed by Mourkazel and
Herrmann [43][44]. In the method, a rectangle domain, for instance, is divided to smaller

rectangular grids of sizes s, and s,. Inside each grid cell, a point is randomly selected

which itself lies inside a smaller rectangular cell of sizes A, and A, such that A, < s,
and A, < s, (Figure 3-4). Theratios 0 < A,/s, <1and 0 < A4,/s, < 1 determine the
degree of randomness, D.O.R., of the mesh along x — axis and y — axis, respectively,
where DOR =1 when there is full randomness and DOR = 0 when there is no
randomness or the mesh is regular along the specified axis. After spreading the random
points or centroids over the continuum domain, the Voronoi tessellation is used to

discretize the domain according to the random point set and then to connect them. These

connecting lines are the struts or frame elements of the lattice mesh as explained earlier.
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Figure 3-4 Random mesh generation technique based on a regular square grid [43], [44].

Figure 3-5 illustrates some lattice meshes generated by the above mentioned
technique.  Figure 3-5(a) to Figure 3-5(d) show meshes with DOR = 0, DOR = 0.2,
DOR = 0.6, and DOR = 1.0 along both x and y axes, respectively. This degree of
randomness may be different along the vertical and horizontal axes, which is suitable for

generating random meshes for layered heterogeneous media like masonry composites.

3.2 Material Structure Overlay

One of the attractions of lattice models is the combination of the mechanics model
and the material structure, called material structure overlay. The lattice is the mechanical
model; the material structure is simply projected on top of the lattice and various
properties are assigned to the lattice elements depending on their specific location in the
projected material structure. In other words, the lattice and material structure are two
independent features of the model. Figure 3-6 illustrates the material properties’

assignment to the mechanical model. ‘Black’, ‘blue’, and ‘pink’ struts in Figure 3-6
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represent elements on which the material properties of brick, mortar and interface are
projected, respectively. The coordinates of each strut’s nodes are firstly considered,
having three phases of material properties. If both nodes of an element fall within a
single phase, then that phase’s material properties are assigned to that of the element.
This is valid for the brick and mortar phases. However, if one node is located on one
phase and the other node sits on another phase, then that element is considered as an

interface receiving material properties of interface element.

SR
ORI

PR

"

P

N
N

S

i

!
N
NV

ZRRNZVNNNZRAZRNNA R

NSNNYWRNAANNA

N
PR

Kl
7
)
7

e

Y

A

v

NS
AN

SR
PRISS!

v
0y

SVNNNNN
NNNNAGAEY

NSNZRNZAVIRD
%
%)

NNV

7

7

VN

N
INNAVVN/NA

AT SV
VNSNS
N
N

N

NZNNNL

NN RNNINNARNANZNNZRR

NANVNZRNNZNN

NZRNN
N

N
VRNNZNNAAZRNNA

RNV

NN VZINNNANAAINNZN
NNV NN

VVNZNNPAVRNNZVNA

VNNV
(K

AR NN RS

%
%
Y

VVINZSZINNNZZAZNNNS

|
%
NN

N VWAV SNV

S

N
N
V)
N/ NN SN VNV NSNSV NASNVNZSNSS

K
Zara)
ZISZSS

VNSSINNNNANAANA
NNNAAZVNNNNNINAZN

%
YN

NNARNAR/NANZN
5

VNSV

NV NSNS
KN

YVIN

NANINNSARNAINANZ
‘

PRIV RN
AN AR RSN AR PRI

VNV INZNAZNZVINNZNAINNA

VNNZNZNZNZZNZNZNAA

74
i

A NSRS
NNV N VNN WY L
NNV VNNV

NS
S
N
N
N
NNAZNNAVINZNAAIN NNV,

V)
NS PPRPKRKSRZRS

%

SNARNSRA A AN
N

RS ARNNNSNARNN

N
N

i

NSV NAV

VNN
SN
Y
77N
N

VNN
RN
%
NANA
VNN

RN AR

NNZNNANNNZZN

%

VNNV

VVINAZAZZNNZNNINNNNNAZNNNRNN

NASKRANANNA
N

VYN
KK

..
PRVRNAN
PORAKKRKY

VAN ANA AR
G

RKKEPVRKIA
VRRSPODRR
NANVVIARNNNN NN

N7V
I

VNNV VNV NN NS VNN

7!
R
NN
RPRRRRD!

NZSNZNZNNNZNNA

NSNS

NN NAH

NSNSV VRIS
o NARVRRRRRRIRRK

'AE"-"A"L‘A"AL‘VAL‘;AE:‘:‘V
%

%
NN
N
)
%

NN R AR RRV PRI
RPN NN L

NNV VNNNANAVN

%)
!
N
!
N
N

N
NSNS NN

SN

N
NV

NNNYNZRNZVRNANZNN

NN

/NN SN R AN AN VRPN AN DRV

PRSI

VORISR
PR ARDRRRRRR

NN

RPN

7

NANNNAZNSN R//INNSNNNNN/N
VNN VSISV VIS AN

NPKPPVRARD)
NSNSV SV NN VN

N
N
N
N
%
%
N

K
SV N

NZNANNSVNAZVRNEN

%%
IV

NNAZNNNNNSZZRSNAVRNN

VUSSP

%
NN

NN ANINNSN NN ZNZNN NZNAANNZVAZRNZVINARIA NNAZNGRD

NNSZNANNZNANAZNNZNAAZZZINNNS NN ZINNN NN

RAKNSSSNAAN
N

A
NNZNZRNAVAZNZRNNN

NAVAVIENAVRNNNN AR AN

ZENNSSAAANNNPRN

%
NSINSNZNNZNZVINSNNZ AN INN 2NN RNRZINANNZZRINNZR

R NS R R A PR AR KRS AR PR R A PR KR AR
NN ANV NNNAZNNSSN AN ANV N

NAANAZNZNAAAN,

NV
D

NS
TR RS R RN NN ARISKRR A
SN
D

NAVINNNZN RN NN

v
N

NSNS AN NZNNN NNV AINSNSS NSNS SAAZR RSN RN
N
NN

VIS

NNV
VIR
N/

%
AR NSNS PR NSN A

KN AT VPPV

SN ANV

NN
VNN
VA

Ny
N/NNNNN

SSSSE
SE2

0
NN AN A A NS PSRN R
7N

NSRS NN A AAINNNA NN RN NNV TN
SNNAANNNNINZRNANANNNAANAAVNAAZNNNNNAZRAA

NN NZAVINSZN NSNS NNSARNN RN

NI
SVRN/NNZINSAZVRNZIZNNN/NAL
/NN ZNNNNNNN R

DORVPRAPVRI

Wl
N/
Y4%%
oy
NN
NS

<

RPPRPROCPRARN

&
d
q

q
g

O S ANTAY A ST A e e
) RO

N AT AR SEST
X2 IARTIIININRTA]

e

SNSRI RIS s AV
T AV S B S U N VW rraTh STAN =
IR RIRICRKE RO S b
ERPK 5 N
SCBIDDOREDEON MSSIADNISE

ISR

SSBRCERY
CRNICNG
SERSRS

AN
KV
RS

N
AKY/

Y|

QY
W1
1%
v
R

4l

ook
N
Ky

\
RN
XD

55 TR
SRR
PXSRKSKD
KRR
.»1"‘1.1:',;‘:5#‘5‘
R R

Vi
NS
i
N

74
ON
ANV
h\:ga:
i
Z
‘;‘w v
Wl
(Y
AN
I
ATA)
A
A

N

ST
N
i;s 4

ACOSISERS

\/
ol
¥y AY

\/

s

v YA KSSRPASRSNSS

N P o AT AW AV vV VAN AN VA VAV P v Pu VA VAT,

SO ARSI
VLT vy ¥ Y

SRR RIS N =2

SRS
KPS PSSPRIZRIIE] S5

AV ATAS AN

S

e
Y,
e
N
A
7

S
]
5
\

NV
S
1\

AR
KNA
7
K

R
v
D
1Y
ST
VS
AN
&
4
\
|
Ve
NV
N
K]
PR

,
o\
A
i
)
24

<D
\V

2
<

s
V4

N
N
v
AN

¥
3
"
D
I
i

Vo,
KAVY
XK1
N
N
RNl
o
/A
%
VI
Xl
/\

‘AW
RRIDKRR

o
S
N

VA
ava%
Vv
K
SAN
UV
N/
\
Y
a
Q
\2

.
VY
SN

K A
<X ; Zmav 3
A e AT AN A SN s et LN ATAV A AN SR
v, vev“_-,:;“:v’:'.ﬁﬁ LK N ROk v Ay AV § \‘_‘5\'%; e
RO SRNSETES SRISSANGS SOV 1.
& S 2 Ay

PAASS
v
NS

A
|
WAVAY
D ;v‘v

LS

é'sl
KA
U

4
N

2
IADRK
AN

,.,.-
W

AN
%
o

x5
vy

v <AV,

RASK)
)
AN,
N/
\

K
NSy
NN
NS

)

\/¥

NN
NS

v AV B Y42V ATAY,
RS APl

NV
N

QSRR BN
RIS S AT,
R RPRNTSRSIRR IR
R ARSI
S AN

R
RN

YN\
A7

N
L1\
KX
>

AN
NN

%
KUK
XN
KDDC
VTS

SESES

)
;1

2
DY

/
KX
X
X
/N
N

KRN

¥ WA N SV

20K, AN SAANNES VAV

AV S ST SN NIARITS

s A DI 2 P

AT, AR A v :i;‘r;ﬂ =R vpsv.;'

FORIRER W\ SR

A e S TS
¥ 2SI ANCENIKIRRIS

KSRGS A X SR NS FRIDNP
RIS ST RISHRICES S e ANVANTAY v,»,ag‘;;‘?;?;;‘-,sﬁ DREX

S

ST SRR

N BN SRS RN 7S]

XX 2 NZRE ¢

DAL XS YA R A RS ARSI AR ST \LRSIZ

DX

A
N
SN

PN
VNS
R
S
KX

A
A
VN
NN
DKY

5
2
N

AV
2

K

74 YAV

SN
!
N
74 AN
WIAVLY
KN

N/

25 A 4
KPR <}

AICREDEREIR KIS

CNISEL

A\ AT

AT VAT OSBISBZOK

SR
SOCRRIPRPASTER

SRR BISAISIORS

ARSI
5 X

]
4

SeAraTaTs":

Y,

SESERNPS
ORISR
S s SIADR ¥ « 23 25 AR S
SRRSO ol QST
DSISSERRS N

W
DS
N

= 06 d)A/s = 1.0

Figure 3-5 Different lattice meshes with four degrees of randomness.
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Figure 3-6 Overlaying material properties onto lattice structure. Black, blue and pink represent
brick, mortar, and interface material properties, respectively.

Figure 3-6(a) and Figure 3-6(b) shows two coarser and finer regular triangular
meshes with the overlaid material properties. In Figure 3-6(c), DOR = 0 in both
directions, resulting in a regular square mesh; while DOR, =1 and DOR, =0 in
Figure 3-6(d) to produce a layered random mesh having three material phases.

The connecting lines between the nodes in the lattice mesh represent the truss or
frame elements which are the mechanical model of the numerical lattice simulation.

Number of degrees of freedom at nodes or computational points determine the type of
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element in the simulation. In this study, 2-D ‘frame’ elements with three degrees of
freedom at nodes were considered. In fact, the number of DOFs determines the type of
continuum that the lattice represents. The lattice of frame elements is a discretization of a
higher order continuum, i.e., a Cosserat (micro polar) elastic continuum [45]. Schlangen
and Garboczi [45] evaluated three types of elements, i.e., trusses with 1, 2, and frames
with 3 degrees of freedom at each node. They concluded that in the simulations with
frame elements, the crack pattern on the mesh was much closer to the experimentally
obtained cracks. de Borst and Muehlhaus [46] also showed that using a Cosserat
continuum will in many cases result in more physically realistic crack patterns in
continuum models. They concluded that the micro polar model is capable of properly
describing discontinuities that arise at a micro level in the material. J. van Mier [44] also
recommended frame elements as they can be fitted over a wider range to match the
elastic constants of uncracked concrete. When using truss elements in fracture
simulations, the lattice may become ‘unstable’ when too many struts are removed. This
was confirmed for the lattice simulations of the triplet test of double lap shear in this
study for regular triangular meshes when the stiffness matrix became singular after

removing a set of diagonal struts at the interface layer.

3.3 Lattice Constitutive Relation

2-D frame elements with three degrees of freedom were considered for the
numerical lattice simulations in this study. As shown in Figure 3-7, each frame strut can
transfer, in general, normal force N, shear force @, and bending moment M, due to their

corresponding degrees of freedom.
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Figure 3-7 (a) Degrees of freedom and external forces acting on a 2D frame element in local
coordinates; (b) Constitutive relation for a single frame element

The relation between these forces and their corresponding displacements at the
endpoints of the frame element, Figure 3-7(a), can be expressed by the well-known 2D

relation [45]

q=S5d (3-3)
or
(2 0 0 -= 0 0
. 0 0 .
(4, O 0 1Bl GBI g __12E1 _ 6EI (511(1)\
g, ® ho® ho® ho®  ho®[ | o (D)
t 0 0 6EI 4EI 0 6EI 2EI f(_)
-7z T T2 - L
3 q¢(j) =] L, oo T o | d)(j) 2 (3-4)
o I e L | R
qt(]) 0 _ 12EI g 0 12EI @ St(])
qub(])J h03 h02 h03 hoz \d)(]) )
6EI 2El 6EI 4EI
O = W Y W
L 0 0 0 0 -

in which E is the Young’s modulus, A is the cross-sectional area, h, is the length, I is the
moment of inertia, §,, and &, are the translational displacements, and ¢ is the rotational

displacement of a frame element. The force vector q in Equation (3-3) is in local
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coordinate system. To establish the system of equations for the whole lattice mesh, the
force vector q in Equations (3-3) and (3-4) must be multiplied by the appropriate

transformation matrix as

fe=Tq, (3-5)

where f, is force vector in the lattice global x — y coordinates for the frame element e, T

is the transformation matrix from the local to the global coordinate system defined by

rcos(f) —sin(8) O 0 0 07
sin(8) cos(f) O 0 0 0
0 0 1 0 0 0
— 3-6
T 0 0 0 cos(f) -—sin(@) OF (3-6)
0 0 0 sin(f8) cos(@) O
0 0 0 0 0 14

in which 6 is the angle measured counterclockwise from the positive direction of the
global x axis to the positive direction of the local x axis.

Equation (3-4) is a well-known force-displacement relationship for 2D frame
elements in the lattice model. However, this equation may not be suitable if a zero-
thickness interface element with a traction-separation constitutive relation needs to be
projected onto the lattice mesh. In this study, an approach introduced by Bolander and
Saito [41] was employed to establish the constitutive relation of brick, mortar, and
interface in a 2D plane strain or plane stress lattice simulation.

Figure 3-8 shows the relationship of two Voronoi particles by putting a flexible
interface between them. The interface or boundary defined in Equation (3-2) is shown in
Figure 3-3. In Figure 3-8, two triangular particles are connected at their interfaces by

translational and rotational stiffnesses, i.e., ky, k¢, and k,, which approximate the elastic

properties of the continuum. Points 1 and 2 in this figure are the nuclei or computational
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points lying at the beginning and end points of the strut or frame element. The relation

between internal forces and local displacements is [41]

q = Dd, (3-7)

where q° = {q,, q+, q4} is the internal force vector between two particles; D is a diagonal
matrix containing the normal, tangential, and rotational spring stiffnesses depicted in
Figure 3-8(a), i.e., D =diaglky, k¢ kyl; d' ={6,,6,¢} is the local relative
displacement vector of two particles in the normal, tangential, and rotational directions,
Figure 3-8(b), and the superscript t denotes the transpose of a vector.

The spring stiffnesses are obtained in terms of elastic properties of the continuum
domain and also the geometry of the connected particles. For brick and mortar frame

elements, the stiffnesses are obtained as follows:

Figure 3-8 Mechanical relationship between two particles. (a) Embedding translational and
rotational stiffness between two particles on the interface, (b) facet local displacement
in t-n coordinates [41].
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o (3-8)

—, and (3-9)

ko = =2 thas’ ) = ) (’4_3) _EF@ (14_3) b’ (3.10)
he  ho \ 12 ho 12 ho 12 12

where, E'=E/(1-v?) and E"=u=E/[2(1+v)] for plane stress; E' =
EQ-v)/[Q1+v)(1—=2v)]and E" = u = E/[2(1 + v)] for plane strain; E and v are
the Young’s modulus and Poisson ratio of the continuum material, respectively; t is the
specimen thickness; hy is the frame element length between points 1 and 2, as shown in
Figure 3-8(a); 1,5 is the frame element width between points 3 and 4 in Figure 3-8(a); and
A = tl,5 is the cross sectional area. For the interface elements, k,, = K, A, k; = K;A,
and kg = 0, similar to truss elements with no rotational stiffnesses. K, and K; are
obtained by homogenizing the composite material surrounding the interface, i.e., brick

and mortar [13] as

EpEm

= and -
n hbhm(Eb/hb+Em/hm) (3 ll)
_ UbHm
Kt - hbhm(#b/hb_,_lim/hm) ! (3-12)

where E,, u, and E,,, u, are the normal and shear moduli of the brick and mortar,
respectively. Equations (3-11) and (3-12) can be obtained by considering a serial

arrangement of brick-interface-mortar where the volume change is negligible.
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The stiffness matrix in global x — y coordinates associated with the two-particle

assemblage follows from matrix analysis of structures as

k, = B'DB, (3-13)

where matrix B relates the displacement vector in local t — n coordinates, i.e., d, to that

in global x — y coordinates, i.e., u,t = {uy, vy, 0,1, uy, v,, 05} as [41]

d = Bu, =
Uy
v
Yaz  —Xaz  (—Xa3Xpy — VazVp1) —Vaz  Xa3 (X43%Xp2 + Ya3Vp2) 91 (3_14)
Tes X43  Ya3 (VazXp1 = X43Yp1)  —X43  —Vaz  (—VazXpz + X43Yp2) u; )
0 0 _l4_3 0 0 l4_3 UZ
Lo,/

where point P is the facet midpoint in Figure 3-8 and x;; = x; — x;, y;; = ¥; — ¥}, i.€.,

Xp; = (X4; + x3;)/2 ;
i=1,2. 3-15
{ym = (Vai T ¥3i)/2 (3-15)
Moreover,
keue = fev (3'16)

in which f, contains the force components in global coordinates for the frame element
associated with each respective entry in displacement vector u,. The frame element
stiffness matrix k. in Equation (3-13) is assembled in a conventional manner to form the
global stiffness matrix of the whole lattice mesh. It should be noted that the particle’s
geometries are used as entries of D and B, as indicated by Equations (3-8) to (3-15).
Also, the constitutive relation and stiffness formulation do not have inter-particle contact

modeling, like the one used in the distinct element method [47].
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3.4 Lattice Fracture Criteria

The simulation of fracture, in this study, was performed with a ‘linear elastic’
analysis of the lattice under loading, Figure 3-7(b), and removing an element from the
mesh which exceeds a certain fracture criterion, for instance a tensile or compressive
stress based on the failure envelope. The ‘gap’ between the remaining elements is
considered as a discontinuity or crack in the lattice mesh. After removing the element,
the lattice mesh contains one less element. The simulation is continued by performing a
linear elastic analysis of the new mesh, where the forces that were carried by the removed
element are now redistributed over the neighboring elements. This procedure continues
until the next element satisfies its ‘fracture criterion’, and so on [45], [44]. Thus at each
step, the external load on the lattice is increased and the critical element at the fracture
threshold is removed. The erosion strategy leads to an ‘instantaneous relaxation’ of the
load, carried by that removed part of the lattice [44]. This was often observed during the
lattice analyses of this study as a sudden drop in form of snap-backs in the load-
displacement diagrams. Figure 3-9 illustrates a test simulation of a masonry prism in
direct tension, the load-displacement curve of which involves snap-back instabilities
which are due to the failure of the lowest interface struts. The saw-tooth pattern observed
at the post-peak part of the curve is because of the failure of each strut in an unzipping
manner, releasing fracture surface energy which exhibits itself in the form of
displacement relaxations of the lattice mesh.

Fracture criterion for the failure of brick and mortar frame elements, i.e., “black”
and “blue” struts in Figure 3-9, was defined as a function of normal force and bending

moments at computational points of each frame member as
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N ’ (|Mi|:|M'|)max
Oepr =7t @' ————=frorf, (3-17)

where N is the normal force of the lattice element; A is its cross sectional area; M; and M;
are the bending moments at the nodes i and j, respectively; S = l,5t2/6 is the section
modulus; f; and f_ are the tensile and compressive strengths of the material, respectively;
and 0 < a’ <1 is added to limit the effect of bending in the fracture law. The value of

a' may be determined by parametric studies and comparison with experimental

measurements [48].
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Figure 3-9 (a) Direct tensile test on a regular triangular lattice with interfaces; (b) Tensile load
versus vertical displacement of top nodes

The fracture criterion for the brick-mortar interface was determined based on a
combination of experimental measurements and numerical parameter simulations.
Figure 3-10 shows the fracture condition considered for the interface frame elements in

the lattice model. This failure envelope has a compressive cap which was necessary for
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the simulation of triplet test under high normal confinements. It should be noted that the
shear failure surfaces were neglected for brick and mortar elements since the main focus
of this study was to evaluate the brick-mortar interface fracture properties, and with the

simulations conducted, their shear failure envelopes were not activated.

Figure 3-10 Failure surface for the brick-mortar interface employed in this study.

In this figure, the failure surface has three major parts, namely a tension cut-off, a
Coulomb shear envelope, and a compressive cap. The tension cut-off part was
determined based on the direct tension test of interface, Section 2.2.3.1, while the
inclined shear envelope was obtained by the triplet experiments mentioned in
Section 2.2.3.2. The horizontal part of the shear envelope in Figure 3-10 and also the
compressive cap were determined by parametric studies of confined triplet simulations
under different high confinements in the implemented lattice model. Strength parameters

of brick, mortar and interface has been presented in Table 3-1.
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Table 3-1 Mechanical characteristics of materials adopted for the computations

E (Ibffin?) i (Ibffin?) . (Ibf/in?)
[MPa] v [MPa] [MPa]
: 4506000 400 6000
Brick [31067.78] 0.1 [2.76] [41.37]
Mortar 3022000 00 300 2000
[20835.96] ' [2.07] [13.79]
K (Ibf/in%) Kq (Ibf/in3) i (Ibffin?) . (Ibf/in?) s (Ibf/in?)
[N/mm?] [N/mm?] [MPa] [MPa] [MPa] Ho
nterface 1504240 668618 47 600 180 0.662
[408.32] [181.49] [0.32] [4.14] [1.24] '

3.5 Lattice Simulations of Brick-Mortar Interface Test Configurations

The numerical implementation of the 2-D lattice model was performed in
MATLAB R2014a [39] in the form of various developed functions. The main purpose of
this implementation was to simulate the fracture behavior of brick-mortar interface under
different loading conditions, as presented in Section 2.2.3. These loading conditions
involve tension, shear, and combined shear and compression. In this section, only the
global behavior of these masonry test specimens in the form of deformed meshes and
load-displacement curves is evaluated. The interface fracture properties like the energy
release rate and stress intensity factors and their simulations will be discussed in the

following chapters.

3.5.1 Interface behavior in direct tension simulation

A direct tension test was simulated using a regular lattice model on a prism made
of three bricks, two mortar joints, and four interface layers as shown in Figure 3-11. We
name the interfaces from bottom side of the specimen as interfaces 1, 2, 3, and 4,

respectively. The height, and length of each brick are about 2 and 6 inches, respectively.
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The height for the mortar joint is almost 0.5 (in). The thickness of the specimen is
4 (in). The height of each interface would decrease as the mesh is more refined. The

failure should happen through the brick-mortar interface.

AAAAAAA AAAAAAAA

Figure 3-11 Direct tensile test on a regular lattice model with interfaces.
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Figure 3-12 Tensile load versus vertical displacement of top nodes for the masonry prism with
regular lattice mesh shown in Figure 3-11.
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Figure 3-12 shows the load-displacement curve for the direct tensile test shown in
Figure 3-11. The simulation was run in displacement control with a constraint that limits
the number of failed struts at each increment. This constraint reduces the displacement
values at the free degrees of freedom where the traction is applied. This reduction in
applied displacements introduces snap-backs on the load-displacement diagram. As it
can be seen, the post-peak behavior exhibits snap-back instabilities. Not only does it
need a precise and delicate experiment program to capture snap-backs during a test in
laboratory, but also it is challenging enough to trace the equilibrium path through a
continuum FE model even if an equilibrium solution algorithm like Arc-Length is
utilized. This could be considered as one of the advantages of the lattice modeling in
presenting the load-displacement curve.

Figure 3-13 illustrates the second interface crack propagation at different load
increments, i.e., the four points on the load-displacement curve. The failure starts from
the lateral sides of the interface layer sweeping to the center of the specimen. Two top
deformed meshes in this figure correspond to the two orange points in Figure 3-12, as the
sudden drop in the load-displacement curve from 748 (lbf) to 609 (Ibf) is due to the
failure of two more frame elements in the top left mesh leading to the top right mesh with
a total of 12 failed struts. This indicates the relation between localized fracture processes
and snap-back instabilities. The bottom left mesh is related to the square point in
Figure 3-12 at a load level of 335 (Ibf). The bottom right mesh also corresponds to the
triangular point in the curve where the load level was dropped to 79 (Ibf) and almost all
the interface struts were already swept away. Looking at Figure 3-12 and Figure 3-13, it

is observed that a considerable amount of stain energy is released and dissipated due to
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the failure of the first 10 interface elements in the lattice mesh. It should also be
mentioned that red colored struts at these deformed meshes indicate that the interface
element is under tension with an internal tensile force greater than 65% of its tensile

strength capacity and is going to touch the tension cut off line as shown in Figure 3-10.

Figure 3-13 Interface fracture propagation for the direct tensile test happening at interface 2,
from top left to bottom right, corresponding to the four highlighted points in
Figure 3-12 (Deformations have been magnified by 300).

Another direct tension test was simulated on the same specimen with a randomly-
generated lattice mesh as depicted in Figure 3-14 and Figure 3-15. The four points in
Figure 3-14 from the load level of 963 (lbf) down to 45 (lbf) correspond to the meshes

in Figure 3-15 from top left to the bottom right, respectively. In this case, failure initiates
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from the left side of the interface 3 due to its random nature of struts geometry. The peak
load in the random lattice is 963 (lbf), or 40.8 (psi), compared to 1107 (lbf), or

46.9 (psi), for the regular lattice.
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Figure 3-14 Tensile load versus vertical displacement of top nodes for the masonry prism with
‘random’ lattice mesh.

These stresses correspond to the tensile strength of the interface element which
was 47 (psi) as an input into the numerical model. Therefore, the regular triangular
lattice model can better predict the peak load than the random lattice mesh. This was
tested even for a finer random lattice mesh and the peak load went down from 963 (lbf)
to 926 (Ibf). This trend is also true for the regular square mesh with D.0.R = 0 which
is actually a random mesh with A/s = 0, as shown in Figure 3-5(a). By reducing the
ratio A/s, the peak load decreases independent of the mesh refinement. One possible
explanation might be that the internal normal forces at vertical interface struts of a regular

square mesh is greater than those at the inclined struts of a triangular regular mesh.
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Figure 3-15 Interface fracture propagation for the direct tensile test happening at interface 3
for a random mesh, from top left to bottom right, corresponding to the four

highlighted points in Figure 3-14(Deformations have been magnified by 300).

3.5.2 Interface behavior in triplet test simulations

Some lattice simulations have been conducted for the triplet test for situations
where there is no normal confinement and also cases in which confined normal load is

applied.
3.5.2.1 Unconfined triplet simulation

The same masonry composite as shown in Figure 3-11 was considered here with a
different loading and boundary conditions shown in Figure 3-16. The shear load is

applied on the middle brick at the right end while two other bricks are supported at the
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left end. Figure 3-17 illustrates the load-displacement curve for the unconfined triplet
lattice model shown in Figure 3-16. Due to the beam removal strategy in the lattice
model, after removing one or two frame elements the load is redistributed over
neighboring struts and at some points a portion of strain energy is ‘released’ leading to

snap-back instabilities in the load-displacement curve.

Figure 3-16 Unconfined triplet test simulation on a regular triangular lattice mesh.

There are four points on the curve at which the deformed mesh and interface
failure progress were evaluated. Figure 3-18 is related to the four highlighted points on
the load-displacement curve. This figure shows the propagation of crack on the
interfaces especially interfaces 2 and 3, namely inner interfaces. There are partial and
full discontinuities on the interfaces. ‘Partial discontinuity’ exists when just one diagonal
strut element is removed at the interface layer and the other diagonal element is still in
the mesh.  “Full discontinuity’ is related to situations where all the struts have been

removed and there is a crack on the mesh.
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Figure 3-17 Shear load versus horizontal shear displacement of the unconfined triplet simulation
for the regular lattice mesh shown in Figure 3-16.

Figure 3-18 Interface fracture propagation for the unconfined triplet test simulation from top left
to bottom right, corresponding to the four highlighted points in Figure 3-17
(Deformations have been magnified by 300).

54



It is seen, in Figure 3-18, that the failure of interface elements starts from the left
end rather than right end which might be due to the boundary conditions on the left end
of the outer bricks and the direction of shear loading. Moreover, since the middle brick
moves along the horizontal direction while two others are supported at the left end, inner
interfaces, i.e., 2 and 3, encounter more fractures than the outer ones. Full discontinuity
or cracking is only observed at the inner interfaces starting at the left end. Outer
interfaces only experience partial discontinuities.

Bottom left and bottom right meshes in Figure 3-18 correspond to the yellow
triangular and blue square points in Figure 3-17, respectively. According to the load-
displacement curve, there is a snap-back for these two points, which means that a
considerable amount of strain energy was released between these two steps. This is
especially conspicuous if the right ends of the bottom meshes are compared, as there are
greater deformations at the right end of the bottom left mesh than those of the bottom

right, which indicate that a portion of shear displacement and strain energy were released.
3.5.2.2 Confined triplet simulation

Another important simulation for the triplet test is related to the situations where
there is a constant normal confinement while applying shear. The implementation of this
confinement for the triplet test was a delicate process where considerable efforts were
made. Figure 3-19 shows the same masonry prism as before with the loading and
boundary conditions for the confined triplet test simulation on a regular triangular mesh.
During each simulation for a specified normal confinement, its value is kept constant
within an acceptable tolerance. The normal confining load is applied at the beginning of

each increment and then the shear displacement is applied at the right end on the middle
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brick. At the next increment, the confinement is applied on the last converged
displacement vector and this process continues until the loss of strength of the lattice
model. Figure 3-20 shows the load-displacement curve for the confinement level of
500 (Ibf). Comparing load-displacement curves for Figure 3-17 and Figure 3-20, it is
obvious that by applying the normal confining load, the maximum shear strength
increases from about 1600 to 5300 (Ibf) confirming Coulomb friction law. In
Figure 3-20, there are again four highlighted points related to the meshes shown in

Figure 3-21.

AAAAAAAAAAAAAAAAAAAA

Figure 3-19 Confined triplet test simulation on a regular triangular lattice mesh.
It should be mentioned that the interface struts’ color in the deformed mesh
changes before failure depending on the type of failure. The failure surface of interface

element with compressive cap was shown in Figure 3-10. If the strut’s failure path in

o — 7 plane is going to touch the tension cut-off line, the color would be red, while if the
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stress path is towards the compressive cap, the color would be green. In cases when the
Coulomb friction line is touched, the color would be light blue. These color changes can
be seen in Figure 3-21. For unconfined triplet simulations where there was no
compressive normal confinement, almost all the struts failed under tension cut-off law,
i.e., red strut, while for the confined situations, as shown in Figure 3-21, compressive
cap, i.e., green, and Coulomb friction line, i.e., light blue, also played role in the failure

mechanism of the interface frame elements.
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Figure 3-20 Shear load versus horizontal shear displacement of the confined triplet simulation
with the confinement level of 500 (Ibf) for the regular lattice mesh shown in
Figure 3-19.

In Figure 3-21, the failure of interfaces does not start from the left end unlike the
unconfined triplet simulation. Inner interfaces experience the partial fracture earlier than
the outer ones. Up to the circular orange point in Figure 3-20, i.e., bottom left mesh, the
full fracture or crack has not occurred along the interface layers. Although there are

some slight strain energy recoveries in the form of snap-backs in Figure 3-20 as opposed
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to the considerable amount of strain energy releases in Figure 3-17, the whole load-
displacement path in Figure 3-20 looks like a parabolic curve with a gradual degradation
of tangent stiffness. The bottom right mesh in Figure 3-21 corresponds to the last point

on the load-displacement curve with the maximum shear load.

™

X

Figure 3-21 Interface fracture propagation for the confined triplet test simulation from top left to
bottom right, corresponding to the four highlighted points in Figure 3-20
(Deformations have been magnified by 300). The confinement level is 500 (1bf).
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The shear strength capacity of the brick-mortar interface increases with increasing
the normal confinement in triplet simulations, see Equation (2-2) and Figure 2-11. The
triplet lattice model in Figure 3-19 was simulated for different normal confining loads.
Figure 3-22 illustrates the variation of maximum shear stress versus normal confining
stress for the experimental results presented in Section 2.2.3.2 and the implemented
lattice model. There is a reasonable trend of increasing shear stress for the lattice. The
lattice formulation exhibits lower failure envelope than the laboratory results, which
might be related to the nature of the lattice model where the continuum domain is

discretized into frame elements.
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Figure 3-22 Coulomb failure envelope of the experimental results and the lattice model illustrated
in Figure 3-19 for the confined triplet tests.

3.6 Summary

The first important step in using a lattice approach is to discretize the continuum

domain to be analyzed. This discretization was performed in this study by using the

59



VVoronoi diagram as was explained in Section 3.1. In this discretization, a special care
should be given to the boundary regions of the lattice mesh. The lattice model is capable
of generating regular square and triangular meshes besides random meshes the degree of
randomness of which can vary as desired. One of the attractive features of lattice models
is the material structure overlay in which the material structure is simply projected on top
of the lattice and various properties are assigned to the lattice elements depending on
their specific coordinates in the projected material structure. This feature was used to
model layered masonry composites consisting of brick units, mortar joints, and their
interface bonds. 2D frame elements with three degrees of freedom at nodes were used in
the simulations of the masonry, though the model is also capable of using truss elements.
As observed in other studies, using frame elements in the lattice model can better capture
the crack patterns observed in experimental specimens. It was also noticed through
triplet simulations that the lattice may become unstable when too many struts are
removed.

In addition, instead of using conventional constitutive relation for the lattice
model, an innovative approach proposed by Bolander and Saito [41] was employed
which embeds flexible interfaces, having normal, tangential, and rotational springs,
among the particles generated by the Voronoi diagram. This approach is especially
suitable when a zero-thickness interface element with a traction-separation constitutive
relation needs to be projected onto the lattice mesh.

Furthermore, the simulation of fracture was performed with a ‘linear elastic’
analysis of the lattice under loading and removing an element from the mesh which

exceeds a certain fracture criterion according to the failure envelope. After removing the
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element, the lattice mesh contains one less element. The simulation is continued by
performing a linear elastic analysis of the new mesh, where the forces that were carried
by the removed element are now redistributed over the neighboring elements. This
procedure continues until the next element satisfies its fracture criterion. The erosion
strategy leads to an ‘instantaneous relaxation’ of the load resulting in a sudden drop in
form of snap-backs in the load-displacement diagrams. A tension cut-off and
compression cap were considered for the fracture law of the brick and mortar; while that
of the interface struts involved a Coulomb shear envelope in addition to the tension-cut
off and compressive cap.

Numerical simulations for direct tension tests, on one hand, and triplet test with
and without normal confinements, on the other hand, were presented for the lattice
model. One of the features of the lattice model is to capture the snap-back instabilities in
load-displacement curves while using a linear elastic analysis with a beam removal
strategy. The implemented lattice model is able to predict the failure of the brick-mortar
interface, and to capture its debonding in tension and its delamination in shear, and also

to record snap-back instabilities caused by the localization of the fracture process.
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Chapter 4 THE MECHANICS OF INTERFACE CRACKS

Interface is the weakest part of composites like masonry the failure of which may
often occur at this weak part by debonding process and separation which form interface
cracks. This has made the interfacial fracture mechanics an important topic of research in
applied mechanics over the past few decades. In general, the failure mechanism of
composites depends on the geometry of the specimen, the applied loading, and the
surrounding materials and interface toughness. The interface debonding may be due to a
lower interface toughness compared to that of the abutting dissimilar elastic materials.
Since in masonry composites an interface is a low-toughness fracture path through joined
solids, i.e., brick units and mortar joints, mode mixity of crack propagation must be
concerned.  Because unlike an isotropic brittle solid, the interface crack in a
heterogeneous masonry is not free to evolve with pure mode 1 stressing at its tip.
Different elastic moduli of the materials surrounding the interface, possible non-
symmetric loading and also geometry may induce a made 2 failure component. Because
of the strut removal strategy, the implemented lattice model is capable of capturing
discontinuities and cracks occurring at the simulated mesh during loading. Mode 1 and
mode 2 displacements of the crack tip can be obtained by the lattice model while the
discontinuity evolves. This feature along with energy method may be used to determine
required fracture quantities of mode 1 and 2. The following sections explain the
essentials of the mechanics of interface cracks before discussing about applying the
concepts of interfacial fracture mechanics in the lattice model which is the subject of the

following chapters.
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4.1 Dundur’s Parameters

Consider two isotropic elastic solids which are in contact through their interface
along x-axis as shown in Figure 4-1. Material 1 is above the interface and the origin is at
the crack tip. Let u;, Ej, and v; (j = 1,2 as material index) be the shear modulus,
Young’s modulus, and Poisson’s ratio of two materials. Dundur’s elastic mismatch

parameters [49] can be employed for a wide class of plane problems of elasticity.

y

Figure 4-1 A small region near crack tip along bi-material interface.

Since there is displacement continuity along the interface, it follows that

(&x)1 = (&x)2, (4-1)

where (m); and (m), belong to material 1 and 2, respectively. From Equation (4-1) and

for plane strain, one can obtain
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u1(1-vz) g u
(0x)1 = #:(1_1/?) (0x)2 + 1_11 (vi — H_zvz)- (4-2)

If a parameter named « is defined as below

u1(1-vy) _ 1+a
u2(1-vy) 1-a

, (4-3)

then the Dundur’s parameter a for plane strain can be expressed in terms of the elastic

properties of the adherent linear isotropic media as

_ #a(Q-vy)—pa(1-vq) _
*= p1(1=va)+uz(1-vq) (4-4)

Thus, Equation (4-2) can be represented as

1+a

(001 = T (02)2 + ~2 (28 — ), (4-5)

where a and f are two Dundur’s elastic mismatch parameters which are generally

expressed by

U (e +1)—pp (g +1) ]
- pq (Ko +1)+py (kg +1) (4 6)
and
_ M (e =1)—pp(Kky—1) ]
p= py (e + D +pp (e +1) (4-7)

where k; = 3 — 4v;, Kolosov’s constant, for plane strain and «; = (3 —v;)/(1 + v;) for

plane stress. For plane strain

64



_ u1(1=2v3)—pp(1-2v4) _
B = 2[u1 (1-va)+u(1-v)] (4-8)

The a-parameter is a measure of the mismatch in the in-plane tensile modulus
across the interface [32]. When E; >» E, meaning that material 1 is extremely stiff
compared to material 2, a approaches 1 while it would be —1 when E; « E, or material
1 is extremely compliant. When there is no mismatch like a homogeneous isotropic
elastic solid, « = 8 = 0, and their sign is changed when two materials are switched with
respect to the interface. The [-parameter measures the mismatch in the in-plane bulk
moduli [32]. As it can be seen in (4-8), when both materials are incompressible, v; =
v, = 1/2, § vanishes, and § = a/4 whenv; = v, = 1/3.

The physical accepted values of a and g for plane strain bi-material systems lie
inside a parallelogram enclosed by @ = +1 and a —48 = +1 in the (a,B) plane,
assuming nonnegative Poisson’s ratios, as shown in Figure 4-2. In plane stress this range
for a and B is somewhat more restricted. In this figure, material 1 is stiffer leading to a
positive a. It may be noticed that most of the points in Figure 4-2 fall between g = 0
and f = a/4. The point associated with Brick/Mortar interface is related to this study
while all others except Granite/Mortar corresponds to reference [32]. The Point for
Granite/Mortar interface was reported by Buyukoztirk and Lee [50] for high strength
aggregates and mortar interface in concrete composites. It is seen that the points of
Brick/Mortar and Granite/Mortar interfaces are in proximity in the (a, 8) plane, as they
are both related to cementations bi-material systems.

Crack tip displacement and stress fields oscillate when g # 0, which results in

crack surface interpenetration. This interpenetration introduces ambiguity into the

65



characteristics of interface fracture [26], [31]. However, since for many bi-material
systems of interest including masonry and concrete [50], the value of g is small [51], it is
assumed that a zero-f hypothesis should provide an adequate interface fracture

characterization in many cases.
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Figure 4-2 Values of Dundur’s parameters for some plane strain bi-material systems (Material 1/
Material 2).

4.2 Complex Representation of Crack Problems

Muskhelishvili [21] showed that any problem in the plane theory of elasticity can
be solved by finding two complex functions, satisfying the boundary conditions of that
problem. Assuming plane deformations and no body forces for the equilibrium equations
of an elastic body, it can be shown that there always exists a stress function or Airy

function U (x, y) satisfying bi-harmonic equation
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04U 04U 04U
AAU =0 or W+Zaxzay2+ 6_3/4_0' (4-9)

The solution of Equation (4-9) is called bi-harmonic function. The derivatives of U(x, y)
are continuous up to and including the fourth order and are single-valued, starting from
the second order, throughout the region under consideration. Using U(x, y), the stresses
and also displacements may be obtained at every point on the body.

Muskhelishvili also showed that every stress function or bi-harmonic function
U(x,y) of the two variables x and y may be represented in a very simple manner by
using two functions of the complex variable z = x + iy, i =+/—1. This is an important
characteristic of stress functions for the plane theory of elasticity because the properties
of functions of a complex variable are generally well known. U(x,y) may be expressed

in terms of two analytic complex functions ¢ (z) and y(z), or ®(z) and W(z) as [21]

U(x,y) = Re{z¢(z) + x(2)} or
(4-10)
U(x,y) = Re{z [ ®(2)dz + [[ ¥(2)dz},

where

¢(2) = [ ®(z)dz + const., and y(2) = [[ Y(z)dz + +const., (4-11)

in which Re{m} denotes the real part of complex variable m, z is the complex conjugate
of z, i.e,, Z=x— iy, and ¢(z), x(z) are also called Goursat functions satisfying the
boundary conditions of the problem under consideration. These type of functions were
first used by French mathematician, Edouard Goursat, in 1898 and are therefore
sometimes referred to as Goursat functions. A complex function ¢(z) is analytic or

holomorphic in a region lying entirely in the complex plane if it is single valued or
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unique in that region and its complex derivative ¢'(z) = d¢/dz exists at each point of
the region [52]. If a complex function is holomorphic or analytic in a region, then all
derivatives of that complex function exist and are holomorphic in that region. It follows

that

AU = 4Re{d(2)}, and AAU = 0. (4-12)

Therefore, stresses and displacements of a homogeneous isotropic elastic solid may be

obtained using these two Goursat functions as [21]

(0) + (0) = 2[¢'(2) + ¢'(2)] = 4Re[¢'(2)] = 4Re[D(2)], (4-13)

(0y) — (o) + 2i(0yy) = 2[2¢" (2) + x"(2)] = 2[z®'(2) + ¥(2)], and  (4-14)

2uu +iv) = kp(2) — 2¢"(2) — X' (2) = k [ D(2)dz — z8(2) — (4-15)
[ B(2)az,

where u, v are components of displacement along x and y axes, oy, 0y, 0y, are
components of stress, u denotes the shear moduli, x represents the Poisson’s ratios as
defined earlier, ¢'(z) = ®(z), x"(z) = ¥Y(z), the prime denotes differentiation with
respect to z and an overbar complex conjugate. The details have been elaborated by
Muskhelishvili in the reference [21]. Hence, for any specific homogeneous isotropic
elastic body, there are two complex functions ¢(z) and y(z) which satisfy the boundary
conditions of that body by the help of which the stresses and displacements may be

determined.
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4.2.1 Homogeneous Cracks

Equations (4-13) to (4-15) may be employed to obtain stress and displacement
fields in a homogeneous isotropic elastic solid with a traction free crack like what is
shown in Figure 4-1 such that materials 1 and 2 are the same and there is no bi-material
interface. The following complex eigenvalue Goursat functions may be considered to

determine the stress and displacement values [53].

@) = D Azt x(2) = ) Bzt (4-16)
n=0 n=0

where the eigenvalues 4,, (n = 0,1, 2, ...) are real and A4,, and B,, are complex constants
of the form (a} + ia2) and (bl + ib2), respectively. Since the crack surfaces are also

traction free, one can write

0y, =0y, =0 for6 = +m. 4-17
y y

Adding Equations (4-13) and (4-14) to obtain o, + ioy, in terms of the 4,, and constants
in (4-16) and employing the boundary conditions (4-17), the eigenvalues and constants

are obtained after some manipulations by

In=% n=0,12,..and (4-18)
ZHED" 7— (D"
—by = C=an, —by = C=7)an. (4-19)
2 2

Equations (4-13) and (4-14) are again used to obtain o, + ioy,, in terms of ay, az, by,
and b;. Having o, +igy, and o, +ioy, in terms of the complex constants and

eigenvalues in Equations (4-18) and (4-19), substituting the trigonometric form of
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complex numbers, and separating into real and imaginary parts, one can determine the
stresses oy, 0,,, and ay,, and displacement u and v as series expansions in terms of n, r,
0, al, and a2, as presented by Equations (1.34) to (1.38) in reference [53].

It can be seen from stress field equations (1.34), (1.35), and (1.36) in [53] that the
first term, n = 1, of the stress series gives stress as a function of the reciprocal of /r
providing infinite stress at the crack tip while the higher order terms, n > 1, result in
zero stress at the crack tip. Thus, only the first term of the infinite expansion corresponds
to the crack tip stress singularity. The famous mixed mode near crack tip stresses and

displacements are found considering only n = 1 as follows:

Oy = \/—i (1 — sm o sin 9) cos > + N (2 +cos > % cos —9) smg (4-20)

oy = \/—i(l + smgsm 9) cos%—j—icos%cos?sing, (4-21)

Oxy = \/—icosgcos BSlng—\/—i(l - Smgsm 6) cosg, (4-22)

u= aiZ_ {(ZK - 1)cos2 — cos —9} - al\/—{(ZK + 3)sm + sin } and (4-23)
u= a“/_{(ZK + 1)Sln— —sin } + aiZ— {(ZK - 3)cos + cos —9} (4-24)

Stress fields directly ahead of the crack tip, 8 = 0, are only in terms of ai /+/r and a?/

\r, which if compared with Irwin’s expressions of stresses in mode 1 and mode 2, it

follows that
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2 — 2 4-25
@@=t (4-25)

showing that the coefficients al and a? are measures of stress intensity factors in mode 1
and 2, respectively.

Therefore, employing complex function approach of Muskhelishvili, an infinite
series solution for a crack in a 2D isotropic homogeneous material was derived and the
first term of this series has been shown to be related to the near crack tip singular stress
field as given by Irwin. Solutions given by Equations (4-20) to (4-24) can be split into
two separate fields associated with the mode 1 and mode 2 displacements. al and a? in

these equations correspond to mode 1 and mode 2, respectively.

4.2.2 Bi-material Interface Cracks

In bi-material systems, the elastic properties are discontinuous across the
interface, where four complex functions, or Goursat functions, ®;(z), ¥;(z), j = 1,2, of
the complex variable z = x + iy are needed to completely characterize the problem.
Similarly, the basic equations for displacement and stress fields for two dimensional

isotropic elasticity as used by Kolosov-Muskhelishvili are [21], [23] as follows:
(0x); + (0y); = 4Re|d';(2)] = 4Re[®;(2)], (4-26)

(o)) — (o) + Zi(axy)j = 2[z_¢”j (2) + )("j(z)] =

- (4-27)
2[z®;(2)+¥;(2)], and

Zy](u] + lU]) = K]¢](Z) - Z(p,](Z) - X’](Z) = Kj f (DJ(Z)dZ -

2®,(2) — [ F,(2)dz, (4-28)
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where z belongs to material 1 region for j = 1 and material 2 region for j = 2, u;, v; are

components of displacement along x and y axes, shown in Figure 4-1, (gy);, (ay);,

(0yy) . are components of stress, u; denotes the shear moduli, and ; is the Kolosov’s
J

constant representing the Poisson’s ratios for material j, j = 1, 2.

Erdogan [54] used Equations (4-26) to (4-28) to solve for stress distribution in a
nonhomogeneous elastic plane with cracks where a bi-material interface has some cracks
with specified lengths. As mentioned by Erdogan, the holomorphic functions &, (z) and
Y, (z) were defined in region 1, but not in region 2. By extending the definition of
@, (2) into region 2 and ®,(z) into region 1 in such a way that they are holomorphic on

the unloaded parts of the boundary, the following substitution may be made [54]:

Y(2) = —®(2) — ®j(2) — zd';(2), (4-29)

where z is in region 1 for j = 1 and z is in region 2 for j = 2. From Equations (4-26) to

(4-29), one may write [54]

(0y); = i(0xy), = B;(2) = ¥;(2) + (z = D)@', () and (4-30)

Z,uj(u’j +iv}) = kjP;(2) + 9;(2) — (z — P, (2). (4-31)

The purpose was to find the stress distributions in region 1 (lower-half plane) and
in region 2 (upper-half plane) provided that surface tractions vanish along crack surfaces
(union of cracked segments named L') , there are displacement and stress continuities
along the bonded interface (union of bonded segments named L), and the x, y-

components of resultant force acting along the bonded interface are known. Using
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Muskhelishvili’s equations and considering the above three conditions, he showed that
the problem may be reduced to the solution of a homogeneous Hilbert problem as given
by [54]

&, )+ a*®, () =0 onl,
&, " (t) — ®,7(t) =0 on L' as boundary condition,

(4-32)
where t is the coordinate on the real x — axis or plane cut along L, superscripts + and
— refer to the values of the functions as z approaches t from the upper and lower half-

planes, respectively, subscript 1 refers to material 1, ®;(z) is holomorphic in the whole

plane cut along L, and ™ is a bi-elastic constant defined by

sy Ty ke 1 -
@ = (#1 + Hz)/(ﬂz + #1). (4 33)

Equation (4-32) is a homogeneous Hilbert problem since its right hand side is zero.
Muskhelishvili called the problem in (4-32) “the problem of linear relationship of the
boundary values” because the boundary values are connected or related by a linear
expression with, in general, variable coefficients. It should be noted that for the entire
plane ®@,(z) + ®,(z) = 0 [54].

From the general solution of the Hilbert problem, Erdogan [54] obtained the
complex stress function, ®,(z), in the vicinity of the crack tip, as shown in Figure 4-1.

Substituting @, (z) into Equations (4-26) and (4-30), one obtains

(0x)1 + (0y)1 = 4Re [%BS(B—H)e—i(slnr+g)] + 0(J7) and (4-34)
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(931 = (o) = 2[es@me(E107+5) 4 gmeto-mgi(-emrec)] s
_ (30 B
— % [(28 + i)ef®-m sin(9) el(7+£1nr)] +0@W),

where @, = (k; —ik,)/2V2 is a complex constant, k; = K, /v/mcosh(me), k, =
K, /Nmcosh(me), r and 8 are shown in Figure 4-1, and ¢ is the bi-elastic constant defined

as

e = —=In(=5. (4-36)

2m 148
Displacement values may also be obtained by putting ®,(z) into Equation (4-31) and
resolving it into real and imaginary components. Erdogan [54] obtained the above stress
components in Cartesian coordinate system while Sih and Rice [55] determined the stress
components in polar coordinates taking advantage of the bi-harmonic Airy stress function
developed by Williams [22] besides the complex function approach of Muskhelishvili.
Using Equation (4-35) with some manipulations, the tractions on the interface

directly ahead of the tip, i.e., 8 = 0, are given by

(0y); + i(rxy)j = K(2nr)~Y/?rie (4-37)

or

(9y); = Re[Kr™] (21r)~"/2, (rxy)j = Im[Kr] (2nr)~Y/2, (4-38)

where K =K, +iK, is the complex stress intensity factor, ri = eln( =
cos(eln(r)) + i sin(eln(r)) is a so-called oscillatory singularity, and ¢ is the bi-elastic

constant defined in Equation (4-36).
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Employing Erdogan [54] or Sih and Rice [55] approach, the relative crack flank
displacements of two points on the top and bottom of crack surfaces, Au and Av, at a

distance r behind the crack tip are expressed as

e i (4-39)

(1+2ig)cosh(me)E, !

Av 4+ iAu =

where Au=u(r,0 =n)—u(r,0 = —-n), Av=v(r,0 =n)—v(r,0 =—n), 1

%(Eil + Eiz) and E; = E;/(1 — v;*) for plane strain and E; = E; for plane stress. For plane

strain problems, Equation (4-39) reduces to

[1—v1+1—v2] r

H1 H2 2m ‘r'ig. (4'40)

(1+2ie)cosh(me)

Av 4+ iAu =

The complex stress intensity factor K can generally be expressed in terms of its

modulus|K| = v/ K;* + K,?, and the loading phase angle i by

K = |K|e™. (4-41)

Since the crack surface displacement is a complex number, Av + iAu, it can also
be written as Av + iAu = [Au® + Av?]*/2e?, where ¢ = arc tan(i—:). By equating this

expression with Equation (4-40) and after some manipulations, |K|can be expressed in

terms of the crack surface displacements as [28]

K| = [(1 + 4€2)(Au? + Av?)]Y?/q, (4-42)

where g =2 [% + 1_v2] /(N7 cosh(me)) for plane strain. The loading phase angle is

M
given by
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Yy=w+ty, (4-43)

where y = arc tan(2¢) is the principal argument of the complex number 1 + i2¢, and
w = @ — eln(r).

G. R. Irwin [56] also used Equations (4-20) and (4-21) to characterize the mode 1
stress field near the end of a somewhat brittle tensile fracture of a homogeneous solid,
introducing the coefficient (EG/m)'/? as the stress intensity factor for plane stress. The
energy release rate and the modulus of stress intensity are generally correlated by the

Irwin-type relation for bi-material interface cracks expressed as

_ (a-BHIk1* _ |K|? )
G= E. "~ E,cosh2(me) (4-44)

For plane strain problem, |K| is related to G by

1— 1—
( V1+ V2)|K|2
H1 H2

4cosh2(me)

4cosh? G
K| = [ (4-46)
M1 M2

Equations (4-42) to (4-46) can be used to obtain interfacial fracture quantities

G = (4-45)

or

from numerical solutions. The energy release rate, G, can firstly be calculated through an
energy method like virtual crack extension procedure [27] or other numerical solutions
such as the lattice model with strut removal strategy where a discontinuity may be
developed during analysis due to applied loading in form of a crack. This will further be

explained in detail. Equation (4-46) can then directly be used to obtain |K|, which is
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independent of the crack flank displacements and the distance r behind the crack tip. As
an internal consistency check, the relative near tip crack surface displacements obtained
directly from numerical simulations may be inserted into Equation (4-42) to obtain an
independent estimate of | K| to be compared with that of Equation (4-46) [29]. The stress

intensity factors for mode 1 and mode 2 are then calculated using the phase angle by

K; = Re(K) = |K|cos(y) and (4-47)

K, = Im(K) = |K|sin(y). (4-48)

In circumstances when the Dundur’s parameter § is nonzero and thus € # 0, a
pure mode 1 crack with zero shear traction along the interface happens at a distance L
ahead of the tip and a pure mode 2 crack with zero normal traction on the interface is at
that point. Since the ratio of the shear traction to normal traction on the interface varies
(very slowly) with distance to the tip when g # 0, the measure of the proportion of mode
2 to mode 1 in the vicinity of the crack tip requires the specification of some length
quantity, L [32]. The choice of this characteristic length, L, is somewhat arbitrary but
when chosen it should not change throughout the analysis. This characteristic length
establishes a new rotated quantity K, + iK, with the same modulus |K| as K; + iK,(note
that |L| = 1 and |KL| = |K]) but an augmented phase angle i) which unlike ¥ is
insensitive to the choice of length unit [29]. From the definition of complex stress

intensity factor in (4-41), one may write

jie

., XL
K=|K|leW =
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Fie_ pielnl

K = |K|ei1/)Zis — Kl = |K|eilpei£lni — |K|ei(1,b+£lnl:) — IKIe“Y’.

Therefore, the effect of characteristic length is considered as

KT = |K|e® and (4-49)

P =1 + elnl. (4-50)
From Equation (4-43), one could obtain i by
+elnk -~ -~
V=w+y=¢p—cln@r)+y=— Y +elnl =¢ — (eln(r) —elnl) +y =
@ —é&ln (%) +7y.

Thus,

P =¢—cln (%) +7v, (4-51)

which determines that value of augmented phase angle ib. Therefore, the value of v is
replaced by ¥ in Equations (4-43), (4-47), and (4-48) when the characteristic specimen
length L is introduced in the analysis and the modulus of K remains the same. In this

study, L is usually considered as specimen height, e.g., h; + h, in Figure 1-1.

4.3 Summary

Interfacial fracture mechanics is an important topic of research in applied
mechanics over the past few decades since the interface of two materials in contact is the
weakest part of composites like masonry along which failure usually occurs. Different

elastic properties of abutting dissimilar materials introduce mismatches in the in-plane
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tensile modulus and bulk modulus across the interface, quantified by the a-, and g-
parameters, respectively. These parameters are obtained by using the displacement
continuity conditions along the interface in plane theory of elasticity. For bi-material
systems, the physical accepted values of @ and £ for plane strain bi-material systems lie
inside a parallelogram in the («, 8) plane, assuming nonnegative Poisson’s ratios. This
range is somewhat more restricted for plane stress. It was observed that the points of
Brick/Mortar interface in this study and Granite/Mortar interface reported by
Buyukoztirk and Lee [50] are in proximity in the (a, 8) plane, as they are both related to
cementations bi-material systems. Moreover,  has an important property which
corresponds to so-called oscillatory singularity [32] bringing some complications that are
absent in the elastic fracture mechanics of homogeneous solids. Crack tip displacement
and stress fields oscillate when B # 0, which results in crack surface interpenetration.
This interpenetration introduces ambiguity into the characteristics of interface fracture
[26], [31]. Nonetheless, for many bi-material systems of interest including masonry and
concrete [50], the value of 8 is small [51], and may be regarded as zero.

Most of the research in developing analytical solutions of the mechanics of
interface cracks in recent decades is based on the work of Muskhelishvili as he showed
that any problem in the plane theory of elasticity can be solved by finding two complex
functions so called Goursat functions, satisfying boundary conditions of that problem.
Using these two complex functions, stresses and displacements of a homogeneous
isotropic elastic solid may be determined. He employed complex functions since the

properties of functions of a complex variable are generally well known.
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In bi-material systems, the elastic properties are discontinuous across the
interface, where four complex functions of the complex variable are needed to
completely characterize the problem. The same Muskhelishvili’s equations developed
for displacement and stress fields of a two dimensional homogeneous isotropic solid are
also employed in solving bi-material interface cracks. Erdogan [54] used these relations
to solve for stress distribution in a nonhomogeneous elastic plane with cracks where a bi-
material interface has some cracks with specified lengths. Using Muskhelishvili’s
equations and considering the boundary conditions, he showed that the bi-material
interface crack problem may be reduced to the solution of a homogeneous Hilbert
problem which Muskhelishvili called “the problem of linear relationship of the boundary
values”. From the general solution of the Hilbert problem, Erdogan [54] obtained the
stress components in Cartesian coordinate system while Sih and Rice [55] determined the
stress components in polar coordinates taking advantage of the bi-harmonic Airy stress
function developed by Williams [22] along with the complex function approach of
Muskhelishvili. Employing Erdogan [54] or Sih and Rice [55] approach with some
further developments, it is possible to correlate the complex stress intensity factor
modulus with the energy release rate as crack evolves. This may be used in numerical
simulation techniques to obtain the fracture quantities of the bi-material systems while
the crack propagates as used in the crack surface displacement method [29]. When the
Dundur’s parameter 8 is nonzero and thus € # 0, there may be a need to specify a length
quantity, L, to make the loading phase angle insensitive to the choice of length unit.

Although this length can be chosen arbitrarily, when selected it should not change
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throughout the analysis. This characteristic length introduces new values for the complex

stress intensity factor, not its modulus, and also the loading phase angle.
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Chapter 5 LATTICE SIMULATIONS OF SOME CLASSIC

FRACTURE PROBLEMS

The implemented 2D lattice model explained in chapter 3 is capable of simulating
crack path evolution in the form of strong discontinuities at a homogeneous or
heterogeneous solid.  Since the crack propagation is captured by the lattice during an
analysis, it is postulated that the fracture mechanics quantities like the energy release rate
or the stress intensity factors associated with the evolving crack may be determined by
the lattice. Other numerical techniques like the classic finite element method of virtual
crack extension ([27], [28], [29], [30]) or the well-known extended finite element method
(XFEM) ([57], [58], [59]) may also be used for obtaining the fracture quantities of crack
problems. In the virtual crack extension procedure, as used by Charalambides et al. [28]
and Matos et al. [29], a pre-cracked finite element mesh with length a was considered
and the virtual crack extension method was applied by virtually increasing the crack
length and changing the stiffness of a ring of elements around the crack tip. This method
is not based on a progressive crack evolution where the crack length a increases during a
single simulation. XFEM, which is based on the mathematical foundation of the partition
of unity finite element method, is also capable of measuring the fracture quantities.
However, its implementation needs much more effort and considerations than the lattice
regarding, for instance, modeling the arbitrary crack propagation paths handled by level
set method, multiple crack configurations, cracks intersecting with other discontinuities,

and also cracks emanating from holes or other internal interfaces. Although the goal here
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IS not to compare the capabilities of XFEM and the lattice model, its relative simplicity
both in theory and implementation along with accepted results make the lattice model an
interesting approach in solving crack problems in the context of fracture mechanics.

In this chapter, some well-known classic crack problems for which analytical
solutions are available are simulated by the implemented lattice model. The stress
intensity factors calculated by the analytical solutions are compared with those obtained
by the lattice to confirm its numerical capabilities in predicting the desired fracture
quantities. The energy method, which will be explained in the next section, is employed
to directly obtain the energy release rate from the lattice mesh as crack evolves. Three
benchmark problems have been considered for this purpose, namely the center cracked
problem in a homogeneous domain, the single edge notch problem in a homogeneous

solid, and at last, the center interface cracked problem in a bi-material system.

5.1 Energy Method

As mentioned before, Equations (4-42) to (4-46) may be used to obtain interfacial
fracture quantities from numerical solutions. The main quantity to be calculated is the
energy release rate of the interface fracture. This value is determined by an energy
approach using the total potential energy, II, of the lattice solution. Assume that a lattice
analysis has been performed on a given planar linear elastic body of ‘unit thickness’
containing a crack. The total potential energy of the lattice model solution may be

expressed as [60], [27]
I = - ()" [K{u} — (" {f}, (5-1)
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where {u} is a vector of displacements associated with lattice computational or nodal
points or nuclei, [K] is the global stiffness matrix of the lattice mesh, and {f} is the
vector of prescribed nodal loads. The energy release rate is obtained by differentiating

Equation (5-1) with respect to crack length, a, as [61]

6 =2 = [y (K1) - {f})] - 5
[ i ) o €20 + 222
Thus, one can write
6 == [ (e -1 -Kw) + G Far

T a{u} T 9{f}
K122 - " 2.
The value of ([K[{u}—{f}) is precisely zero in the finite element and lattice

equilibrium solutions at each iteration. Thus,

6 =~ (3% k1w + S 1K1 ) + (S L gy -
|

Since the stiffness matrix [K] is symmetric, it can easily be shown that the scalar

(5-4)

value on the first parenthesis is zero. This follows that

— _[Ltear oKl y T3S i
G =~ [0 G — )™ 5. (55)
Since the crack surfaces here are traction free, one can conclude that — a{f} = 0. Hence,
= _1laardKl ;
G =—5 =3 20w (5-6)

Equation (5-6) is the main ingredient to obtain the fracture properties of the

interface using the numerical lattice model. % is the change in the global stiffness
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matrix when the change in crack length is da, and {u} denotes the nuclei displacement
vector ‘before’ the crack length change by da. The approach of choosing {u} ‘before’
the crack length change is similar to the ‘Explicit Forward Euler’ approach in, for

example, the time stepping scheme used in solving 1% order transient finite element

problems. In the numerical solution, % is approximated by the ratio % expressed as
alKl _ AlK] 1
_a = E - E [[K]a+Aa - [K]a]v (5_7)

where [K],1aq IS the stiffness matrix after the crack growth Aa. Therefore, using
Equation (5-6) the interfacial energy release rate may numerically be determined by the
lattice analysis as the crack propagates through the interface. It should be mentioned that
the value of G obtained from Equation (5-6) is for a specimen with unit thickness. If the

thickness t # 1, then G should be divided by t.

5.2 The Center Cracked Lattice Simulation

In order to validate the fracture analysis results of the lattice, it is required to
compare its numerical results with the classic analytical solutions available in the
literature. Tada, Paris and Irwin [62] presented a comprehensive review of stress analysis
of cracks from two dimensional common test specimens to three dimensional cracked
configurations. Figure 5-1 illustrates the homogeneous finite width center cracked test
specimen with constant thickness on which a far field tensile stress is applied. Mode 1

crack tip stress intensity factor of this problem is expressed as [62]

85



K, = ovraF(a/b), (5-8)

where 2a is the center crack length, o is the far field tensile stress, 2b is the width of the
plate or configuration as illustrated in Figure 5-1, and F(a/b) is an empirical relation. In
this study, F(a/b) with 0.3% accuracy of any a/b which was obtained with a

modification of Koiter’s formula was considered as follows [62], [63]:

F(a/b) = {1-0.025(a/b)* +0.06 (a/b)*} |sec(.). (5-9)

In Figure 5-1 when h/b > 3, the plate is practically regarded as an infinite strip
as far as the effects of h/b on the stress intensity factor is concerned [62]. Moreover, the
values of ¢ and a need to be updated as the crack propagates during an analysis of a

progressive simulation like the lattice model.
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Figure 5-1 Homogeneous finite width center cracked configuration with far field tension [62].
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Figure 5-2 Homogeneous finite width center cracked lattice mesh to determine the mode 1 stress
intensity factor.

This problem was simulated in the lattice model trying to obtain the stress
intensity factor of the crack tip by using the energy method explained in Section 5.1 and
Equations (4-43) to (4-51). Figure 5-2 shows the lattice mesh employed to simulate the
problem. Different simulations were conducted where the height of the configuration,
2h, is increased at each simulation to account for the far field tension. If the difference
between K; obtained by Equations (5-8) and that of the lattice model is considered, the

error percentage may be regarded as

ofy =L~ "1
Error % = @ x 100, (5-10)

where K2 is the stress intensity factor of the analytical relation, and K! is that of the
lattice in (Ibf/in®)\/in. Figure 5-3 shows the error percentage of four lattice simulations

with different h/b ratios as the crack length, a, increases. As illustrated, the error
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plummets as the height of the specimen, h/b, goes up. The error is just under 40% for
h/b = 1 while it descends under 1% when h/b = 4. This error decreases further with
higher values of h/b. It is confirmed that the implemented lattice model is accurately
capable of predicting the mode 1 stress intensity factor for the center cracked problem

with far field tension.

45
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h/b=3
h/b=4

Error %

15

10

0 0.1 0.2 0.3 0.4 0.5 0.6
a/b

Figure 5-3 Error % of Mode 1 Stress Intensity factor between the analytical solution and the
lattice model of the centered crack problem under tension.

Figure 5-4 compares the values of K; between the lattice and the analytical
solutions for h/b = 4. Lattice model can accurately predict the mode 1 stress intensity
factor values of the analytical solution for a/b > 0.25. As mentioned, the values of o
and a in Equation (5-8) have to be updated during the analysis as ¢ = P/A where P is
obtained from the load-displacement curve of the problem. Figure 5-5 also shows the

tensile load-displacement curve of the lattice mesh shown in Figure 5-2 with a =
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0.8 (in). The fracture energy release is illustrated in form of snap-back instabilities for

the horizontally evolved crack.
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Figure 5-4 Comparison of K; between the lattice and analytical solution for the center cracked
problem under tension (h/b = 4)
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Figure 5-5 Load-Displacement of the tensile lattice mesh shown in Figure 5-2 for h/b = 4.
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5.3 The Single Edge Notch Lattice Simulation

A single edge notch problem was also considered to evaluate the lattice model’s
results. Figure 5-6 shows the homogeneous finite width single edge notch test specimen
with constant thickness on which a far field tensile stress is applied. Mode 1 crack tip

stress intensity factor of this problem is again expressed as [62]

‘-a—-—I .
|

- ——

|

|
P i |

Figure 5-6 Homogeneous finite width single edge notch configuration with far field tension [62].

i
|
|
|

K, = amaF (a/b), (5-11)

where a is the edge crack length, o is the tensile far field stress, b is the width of the plate

or configuration as illustrated in Figure 5-6, and F (a/b) may be expressed as [62]

N EY) na 0.752+2.02(a/b)+0_37(1—sin(ﬂ))3
F(a/b) B %. cos(%) N . (5-12)
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Figure 5-7 shows the lattice mesh of the single edge notch configuration under
direct tension as in Figure 5-6. This lattice mesh was simulated for five different ratios of
2h/b. It is observed that as this ratio increases, the error percentage, defined in Equation
(5-10), declines, as illustrated in Figure 5-8. As expected, the error for 2h/b = 5 is the
lowest which better simulates a farther tensile field than smaller ratios. However, the
error percentage increases in all cases as the crack propagates through the configuration.

Figure 5-9 compares the values of K; between the lattice and the analytical
solutions for 2h/b = 5 for the single edge cracked problem. As it can be seen, the lattice
model can accurately predict the mode 1 stress intensity factor values of the analytical
solution with an error percentage of less than 3. As 2h/b increase, this error approaches
zero for the lattice simulations. Again, the values of o and a in Equation (5-11) have to

be updated during the analysis.

Figure 5-7 Homogeneous finite width single edge notch lattice mesh to determine the mode 1
stress intensity factor.
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Figure 5-8 Error % of Mode 1 Stress Intensity factor between the analytical solution and the
lattice model of the single edge notch problem under tension.
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Figure 5-9 Comparison of K; between the lattice and analytical solution for the single edge notch
problem under tension (2h/b = 5).
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5.4 The Bi-material Interface Center Cracked Lattice Simulation

To motivate the application of the numerical lattice in characterizing the interface
fracture properties of bi-material interfaces such as brick-mortar bond, it may be useful to
simulate the bi-material interface center cracked problem. The problem of an isolated
finite crack of length L = 2a along the interface between two dissimilar elastic half-
spaces subject to two remote stresses o5, and oy, was analytically solved. Figure 5-10

illustrates this bi-material interface crack problem.

(09) a
I‘Taz T2

Ll L L L L

Figure 5-10 The bi-material interface isolated center cracked problem with remotely applied
stresses [64].

The complex stress intensity factor at the right hand tip of the crack is expressed

as [23], [64]

K = Ky + ik, = (053 +i05) (1 + 2ie)(nl /Y275 o
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where a5, and oy, are remotely applied stresses shown in Figure 5-10, ¢ is the bi-elastic
constant defined in Equation (4-36), and L = 2a is the crack length. When the

configuration is only under direct tension, i.e., oy, = 0, (5-13) reduces to

— ; — 4 ; 1/27-ie
K = K; + iK; = ay5,(1 + 2ie)(mL/2)* /L7, (5-14)

Knowing that |L| = 1 and |KL*| = |K]|, the modulus of the complex K is obtained by

|K| = ay5y/ma(l + 4€2), (5-15)

which reduces to the well-known relation oy3+/ma in the absence of mismatch for an
infinite plate. Figure 5-11 exhibits the lattice mesh with a center crack along the
interface to simulate the modulus of K. The lattice has three phases of mortar, interface
and brick which are illustrated by different colors of blue, pink, and black, respectively.

Let L, and L,, be the width and height of this domain, respectively.

Figure 5-11 Heterogeneous bi-material interface center cracked lattice mesh under direct
remote tension to determine the modulus of complex stress intensity factor at crack

tip.
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To simulate an infinite domain with an isolated crack along its interface, L, and
L,, have to be sufficiently large to account for the remotely applied stresses. The analysis
was conducted for four different values of L, = L,. It was observed that by increasing
these parameters in the lattice simulation of the problem the error percentage of |K| drops
down, indicating that the lattice model can fairly predict the energy release rate and stress
intensity factors of bi-material interfaces (Figure 5-12). It is clear that by further
increasing the values of L, =L,, this error much more decreases. It is seen in
Figure 5-12 that the values of error oscillate for each set of L, = L, = 20 (in) when

2a/L, is greater than a certain value.
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Figure 5-12 Error % of Stress Intensity factor moduli between the analytical solution and the

lattice model of the bi-material interface center cracked problem under direct
tension.
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Figure 5-13 Comparison of |K| between the lattice and analytical solution for the bi-material
interface center cracked problem under tension (L, = L, = 60 (in)).

Moreover, Figure 5-13 compares the lattice simulation results with the analytical
values determined by Equation (5-15) under direct tension, oy, =0, as the crack
propagates. The values of o5, and a in this equation are determined by the lattice model
at each increment. As a possible explanation, the oscillatory characters observed in
Figure 5-12 and Figure 5-13 are probably due to the fact that when the length of the
central crack is larger than a specific value for the finite width lattice mesh, shown in
Figure 5-11, that crack is no longer considered a small crack in the lattice mesh compared
to its dimensions, which is a required assumption in obtaining |K| in (5-14). Figure 5-13
illustrates that the lattice can fairly predict |K| of the bi-material interface center cracked

problem with mostly an error of less than 3% for L, = L,, = 60 (in). This error reduces

for larger values of L, and L,,.
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5.5 Summary

The implemented 2D lattice model simulates crack path evolution in the form of
strong discontinuities at a homogeneous or heterogeneous solid. Unlike the pre-cracked
approach of the virtual crack extension procedure or the complicated XFEM, the lattice’s
relative simple theory and implementation makes it a promising method in solving crack
problems in fracture mechanics. Three classic fracture mechanics problems were
addressed in this chapter to validate the lattice fracture results. The center cracked
problem in a homogeneous domain, the single edge notch problem in a homogeneous
solid, and the center interface cracked problem in a bi-material system were solved by the
numerical lattice.

The energy method was employed to obtain the energy release rate of the lattice
mesh as the crack propagates. In the method, the energy released during the crack
growth is mainly determined by considering the change in the global stiffness matrix of
the mesh with respect to crack length change. Comparison of the analytical results of the
three benchmark problems with the numerical solutions of the lattice for those problems
validates the capability of the lattice in predicting the energy release rate and stress
intensity factor of crack problems in homogeneous and heterogeneous solids. In all three
cases, the lattice gives better results once the dimensions of the mesh are large enough to
assure that the stresses are remotely applied.

Finally, it should be mentioned that the lattice square mesh was considered for
fracture analyses of the crack problems rather than using random or regular triangular
meshes. Unlike the random and regular triangular meshes which provide intrinsic angled

or zigzag crack surfaces producing irregular oscillations in the values of energy release
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rate and stress intensity factor, the regular square mesh can generate straight crack
surfaces along the interface which is itself an almost direct straight surface between brick
and mortar. The irregular oscillations observed in the values of G and |K| with the
regular triangular mesh were discarded by using the square mesh. These oscillations

have not been illustrated here for brevity.
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Chapter 6 LATTICE SIMULATIONS OF INTERFACE FRACTURE IN

MASONRY

In the previous chapter, some classic fracture mechanics problems were solved by
the numerical lattice model to obtain the energy release rate and crack tip stress intensity
factor. The lattice numerical results were validated by comparing with those of the
analytical relations. In this chapter, some common masonry test specimens are simulated
to determine their interface fracture quantities. Three types of lattice simulations were
performed to obtain the energy release rate and fracture properties of brick-mortar
interface. They include (i) a symmetric pre-notched bi-material four-point bending
simulation as shown in Figure 6-1, (ii) a direct tension test for mode 1 behavior of the
interface, and (iii) an unconfined triplet test to evaluate the interfacial behavior in mode
2. Taking advantage of these simulations’ results, one may obtain the interface toughness
relation which is interface resistance against failure. It is believed that defining a
measurable and usable material property, i.e., toughness, to parameterize fracture
resistance of interfaces may be the purpose of the interfacial fracture mechanics [65].
This goal is achieved by using the lattice to solve for bi-material systems where a crack is
driven along their interface. Not only is this approach applicable to masonry interfaces,
but also any bi-material interface problem may be solved using the implemented lattice.

This numerical tool can also be employed to characterize the post-peak fracture
energy of cohesive zone models in the form of bi-linear traction-separation laws in meso
scale of continuum finite element. It is very challenging to experimentally measure this

fracture energy of cohesive zones where a sudden rupture usually happens once the
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driving force suppresses the toughness of the bi-material interface. Moreover, the lattice
may serve to homogenize a masonry unit cell comprising brick, mortar, and interface into
a homogeneous isotropic finite element with an equivalent Young’s modulus, load

capacity, and dissipated strain energy for the post-peak behavior.

6.1 Four-Point Bending Simulation

This test specimen which is capable of measuring the fracture resistance of bi-
material interfaces was first introduced by Charalambides et al [28]. Figure 6-1
illustrates the test configuration with a notch through the upper layer at the center. A pre-

crack of length 2a is also introduced before applying the load.

P/2b P/2b
Notch
rd \ -
A' ¢ 1
. :«2a+"T_Th'2 ______
@
|r -é// \Crack = !

Figure 6-1 The pre-notched bi-material four-point bending beam with two symmetrical
interfacial cracks [28]

This test configuration was simulated by the lattice model to evaluate the
interface fracture properties during the progressive crack evolution. Because of the
symmetry, only one half of the four-point bending beam was accepted in the lattice
simulation.  For the interface to experience enough length of debonding and

delamination, a beam length of 16 (in) with [ = 1 (in) and loading points’ distance of
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15 (in) was considered for the simulations. These parameters are shown in Figure 6-1.
A mortar layer of 1.5 (in) was overlaid on a brick layer of 1 (in) thick. Since the crack
propagates into the brick layer at early stages of the simulation when the thickness of
brick is greater than that of mortar, a thicker mortar layer was considered in this study for
the four-point bending simulation as it results in an interface crack propagation during the
analysis which was the main purpose of the simulation to get the interface fracture
properties.

An analysis was conducted to select the type of mesh and a regular square mesh
gave more consistent results than regular triangular and random meshes. This is probably
due to the fact that in a regular square mesh, the crack flanks behind the tip in the
continuum mesh are straight surfaces while in a regular triangular mesh with the
hexagonal configuration of the continuum mesh, Figure 3-1, the crack surfaces have a
zigzag pattern affecting the results of interfacial energy release rate and other fracture
quantities.

Figure 6-2 illustrates the lattice mesh and the boundary conditions of the notched
symmetric composite beam under the four-point bending used in the lattice analysis.
Since the top layer above the crack includes a notch, it is essentially stress free
experiencing rigid body motion behind the crack tip. Moreover, because of both opening
and sliding of the upper mortar layer relative to the lower brick layer, there is a mixed
mode failure in the interface. As it is seen in this figure, the interface struts are failed in
an unzipping manner all the way to a region close to the support. Figure 6-3 exhibits the
global load-displacement curve of the lattice beam shown in Figure 6-2 under four-point

bending boundary conditions as the crack propagates along the interface. The curve
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experiences a ductile deformation due to the unzipping failure of the interface followed
by a hardening part when the crack approaches along the interface to the region close to

the roller support.

Notch
P/2b

Interfacial

.

Plane of
Symmetry

7777

Figure 6-2 The lattice mesh and the boundary conditions of a notched symmetric composite beam
used in the lattice analysis under the four-point bending. This figure belongs to an
increment with a propagated crack during the analysis.
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Figure 6-3 Load-displacement curve of the four-point bending lattice simulation shown in
Figure 6-2.
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Figure 6-4 to Figure 6-7 show the fracture results of the lattice configuration
shown in Figure 6-2. The energy release rate, G, and the augmented loading phase angle,
P, were calculated in the lattice according to Equations (5-6) and (4-51), respectively. It
is interesting to note that the loading phase angle, 1, is insensitive to the distance from
the crack tip, r, as shown in Figure 6-5, which makes the fracture quantities of mode 1
and mode 2, e.g., the stress intensity factor and the fracture energy, independent of
distance r. Also, b, = 2S, in the legend of Figure 6-5 where S, was defined in
Figure 3-4. In Figure 6-4, some points on the graph of G and consequently K; and K,
have lower values especially for 2.3 < a < 4.7 (in), resulting in stepwise oscillations.
These points are related to those interface elements which fail ‘immediately’ after the

failure of the previous neighboring interface strut, resulting in a lower load value in the

load-displacement diagram.

0.005

o

o

o

S
T

0.003

0.002 | ¢

.
*
*
00060000000 000% 0000 000 20 40 4 4 2% ¢ 0 oo PR 2222424
.

>
Raa4 222 -

Energy Release Rate, G (Ibf/in)

o
o
o
_

¢ * tes tee o

O 1 1 1

0 1 2 3

4

(6]

Crack Length, a (in)

Figure 6-4 The energy release rate, G, with respect to crack length for the four-point bending
simulation results from lattice analysis.
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Figure 6-5 The loading phase angle, ), of the four-point bending at different distances from the
tip with respect to crack length.

As shown in Figure 6-5, the distribution of the phase angle, ), varies between 45°
and 55°, meaning that the fracture is a mixed mode, as 1) = 0" and 1) = 90" indicate pure
mode 1 and pure mode 2, respectively. 1 tends to slightly go up for a > 5 (in) implying
that the interface mode 2 failure is more prominent since the crack tip along the interface
is approaching to the region in the proximity of the roller support. It should be
mentioned that the deformations in the deformed mesh of Figure 6-2 have been
magnified by a factor of 300. It is obvious that the interface struts at the center of the
beam have smaller horizontal component of deformation than those which are close to
the roller support. Figure 6-6 and Figure 6-7 also show the variations of stress intensity
factors for mode 1 and mode 2. Consistent with the loading phase angle values, K; and

K, represent that the interface struts at the center of the beam experience a mixed mode
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failure with almost the same contribution of mode 1 and 2 while the influence of mode 2

failure increases as the crack grows.
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Figure 6-6 Mode 1 stress intensity factor for the four-point bending lattice simulation.
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Figure 6-7 Mode 1 stress intensity factor for the four-point bending lattice simulation.
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6.2 Tension Simulation

The global behavior of this simulation was discussed in Section 3.5.1 where the
load-displacement curve of the regular triangular mesh was only evaluated. In this
section, the fracture properties of the crack tip is considered. As mentioned before, the
regular square mesh gives better results in terms of fracture quantities. Thus, similar to
Section 6.1, a numerical lattice simulation was conducted on the tensile behavior of the
brick-mortar interface. The boundary condition and configuration of the tensile
simulation is shown in Figure 6-8 with a propagated crack at one interface. The fracture
properties of this simulation are illustrated in Figure 6-9 to Figure 6-12. This analysis
provides steady state values for the energy release rates of the interface as the crack

propagates.

A A A A s A # A A

Figure 6-8 The lattice mesh and boundary conditions of a masonry configuration used in the
lattice analysis of the direct tensile simulation. This figure belongs to an increment
with a propagated crack during the analysis.
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Figure 6-9 The energy release rate, G, with respect to crack length for the tension simulation
results from lattice analysis.
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Figure 6-10 The loading phase angle, ), of the tension simulation at different distances from the
tip with respect to crack length.
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Figure 6-11 Mode 1 stress intensity factor for the tension lattice simulation.
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Figure 6-12 Mode 2 stress intensity factor for the tension lattice simulation.

The energy release rate is fairly constant as the tensile crack evolves through the
interface, as shown in Figure 6-9. Comparing Figure 6-11 and Figure 6-12 indicates that
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the major contributing mode in the interface failure is mode 1, as expected. The loading
phase angle, v, is again fairly insensitive to the distance from the crack tip as exhibited in
Figure 6-10. The values of i also confirms that the interface failure is dominated by the
mode 1. The uniform constant values of G as crack length increases makes it possible to
extract an average value of energy release rate or dissipated strain energy which could be

employed in cohesive zone models which will be explained in Section 6.6.

6.3 Unconfined Triplet Simulation

The unconfined triplet test which is a double lap shear test in masonry studies was
considered for the lattice simulations. Figure 6-13 shows the triplet boundary conditions

with the propagated crack length of delamination from the lattice analysis.

E>-esiciiic

Figure 6-13 The lattice mesh and the boundary conditions of a triplet configuration used in the
lattice analysis of the unconfined triplet simulation. This figure belongs to an
increment with a propagated crack during the analysis.
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Figure 6-14 to Figure 6-17 show the fracture results of the lattice configuration
shown in Figure 6-13. Figure 6-14 illustrates the variation of G with respect to the crack
length for one interface, which exhibits a constant steady-state trend. Again, each point
on this graph is related to the failure of one strut at the cohesive zone. In Figure 6-15, the
variation of { at different distances from the crack tip, r, is shown, which is insensitive
to this distance. This feature is promising in decomposing the energy release rate and the
modulus of stress intensity factor into mode 1 and mode 2. Figure 6-16 and Figure 6-17
compare the stress intensity factors for mode 1 and 2, respectively. As shown, the
unconfined triplet simulation indicates that this is not a pure shear process since there are
some values on Figure 6-16 for mode 1 separation. However, the shear failure is

dominant as compared to the tension.
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Figure 6-14 The energy release rate, G, with respect to crack length for the triplet simulation
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Figure 6-16 Mode 1 stress intensity factor for the triplet lattice simulation.
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Figure 6-17 Mode 2 stress intensity factor for the triplet lattice simulation.

6.4 Mesh Sensitivity

In order to investigate the effect of mesh refinement on the fracture properties of
the interface crack tip, two different meshes were analyzed for each of the three test
configurations explained in Sections 6.1 to 6.3. Table 6-1 presents the total number of
frame elements and equations for the fine and coarse meshes considered for the three
simulation specimens. For the four-point bending mesh, the total number of elements in
the fine mesh is about five times as great as the numbers in the coarse mesh while for the
tension and triplet simulations this number is approximately four. Figure 6-2, Figure 6-8,
and Figure 6-13 illustrate the fine meshes mentioned in Table 6-1 for the four-point
bending, tension, and unconfined triplet simulations, respectively. The mesh sensitivity
analysis was conducted for the four-point bending simulation for the fine and coarse
mesh in Table 6-1. Figure 6-18 and Figure 6-19 illustrate the change in the energy

release rate and the loading phase angle in terms of crack length.

112



Table 6-1 Mesh refinement properties of the three simulations conducted by the lattice

Simulation Configuration Fine Mesh Coarse Mesh
Type Nele? NEqns? Nele NEqgns
Four-Point Bending 12466 18419 2596 3773
Tension 9890 14730 2540 3760
Unconfined Triplet 9890 14775 2540 3781
0.005
S 0004 |
5
o
& 0.003 |
]
@
[<5] .
@ * Finer Mesh
% 0.002 | * Coarser Mesh
o *
> o
g . W)w.'mc-HOvc,oowm’“’“’.
S o001 [T MRS L RPN .
0 1 1 1 1 1 1
0 1 2 3 4 5 6 7

Crack Length, a (in)

Figure 6-18 Variation of the energy release rate with respect to crack length for the fine and
coarse mesh of the four-point bending simulation.

! Number of elements in the lattice mesh.
2 Number of equations in the lattice mesh.
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As shown in Figure 6-18, the mesh refinement has slight influence on the values

of G as crack propagates while 1 experiences a small reduction from the coarser to the
finer mesh for the pre-notched four-point bending beam. This difference increases with

the growth of the crack length, a.
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Figure 6-19 Variation of the loading phase angle, ¥, with respect to crack length for the fine and
coarse mesh of the four-point bending simulation.

The mesh sensitivity of the lattice simulation was also examined for the case of
direct tension. Figure 6-20 compares the variation of the energy release rate of the fine
mesh with that of the coarse mesh for the direct tension simulation. It is seen that the
lattice results for G are insensitive to the mesh refinement for the tension specimen. The
value of G is also steady constant during the crack evolution indicating a stable crack
propagation for the brick-mortar interface. Furthermore, Figure 6-21 exhibits the
variation of the loading phase angle, v, for the fine and coarse mesh with the crack

growth for the direct tension simulation. The refinement of the lattice mesh does not
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considerably affect the values of 1) which is a remarkable feature of the lattice model.
There is an increase in ¥ for a > 3 (in) which may be due to the deformation of the top

brick in Figure 6-8, imposing larger horizontal displacements to the interface struts which

is then translated into higher mode 2 failure.
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Figure 6-20 Variation of the energy release rate with respect to crack length for the fine and
coarse mesh of the direct tension simulation.

Figure 6-22 and Figure 6-23 compare the fine mesh energy release rate and the
loading phase angle with those of the coarse mesh for the unconfined triplet simulation.
The values of energy release rate are fairly insensitive to the mesh refinement, while the
loading phase angle of the fine mesh is slightly different from that of the coarse mesh.
However, this small difference may be neglected. In sum, it may be concluded that the
lattice model’s interfacial fracture quantities are fairly insensitive to the mesh size which

may be considered as a useful feature of the implemented lattice.
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Figure 6-23 Variation of the loading phase angle, 1, with respect to crack length for the fine and
coarse mesh of the unconfined triplet simulation.

6.5 Masonry Interface Toughness

As mentioned by Wang and Suo [65], defining a measurable and usable material
property to parametrize fracture resistance of interfaces is the purpose of the interfacial
fracture mechanics. This material property is called the interface toughness which needs
to be extracted from mechanical testing raw data. Cao and Evans [66] performed
experiments on glass/adhesive and aluminum/adhesive interfaces to measure the fracture
resistance of their interfaces. Their experiments revealed that the critical strain energy
release rate, toughness, increases with increase in phase angle, especially when the crack
opening becomes small. Wang and Suo [65] developed a Brazil-nut sandwich specimen
configuration with a crack on a substrate/interlayer interface to measure the interfacial
fracture resistance at different loading phase angles, which can be controlled by the angle

of diametral compression. Plexiglass/epoxy and metal/epoxy interfaces were examined
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and a rise in the interface toughness as the phase angle value increases was observed.
Liechti and Chai ([67], [68]) also conducted a series of experiments focusing on the
interface between epoxy and glasses. Their toughness curve had an increasing almost
linear trend with respect to the phase angle for 0 < ¢ < 80° with asymptotic values of
toughness as ¥ — 90°. In all these bi-material interface studies, the interface toughness
is a function of the relative amount of mode 2 to mode 1 acting on the interface, not just a
single material parameter [32].

At a prescribed phase angle, 1, the maximum loading amplitude or the critical
energy release rate, G, that an interface can sustain without decohesion is the toughness

of that interface at (r which is expressed as [65]

G = F(‘TJ)’ (6-1)

where G is the energy release rate as a force driving the interfacial crack propagation, and

I is the interface toughness as a material resistance to the interfacial crack growth.
According to the Griffith energy balance, the equilibrium conditions of a solid of

unit thickness with no net change in total energy for an incremental increase in the crack

length da may be expressed as [61]

QEr _ Ol | dW; _

da  da da 0 (6-2)
or
_an _ aw;
da  da’ (6-3)
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where E; is the total energy, II is the total potential energy supplied by the internal strain
energy and external forces, and W is the work required to create new surfaces. W;
depends on the surface energy (energy per unit area) of the material which is a material
property. According to Griffith theory, the interface toughness, T, is actually a surface
energy of the material equivalent to the right side of Equation (6-3). When the strain
energy change which is due to an increment in crack length is sufficient to overcome the
surface energy of material, the fracture occurs.

In the Griffith model, it is assumed that the work of fracture comes exclusively
from the surface energy of the material which is valid for ideally brittle solids. In
general, not only may the material resistance include the surface energy, but also it may
involve plastic work, or shielding due to the initial roughness of the interface, or other
types of energy dissipation associated with a propagating crack. The plastic or
viscoelastic dissipation may be neglected in the quasi-brittle failure of the brick-mortar
interface at micro-level analysis. In the lattice simulations of this study, the surface
energy of the brick-mortar interface was considered as the only material resistance. The
strength of interface struts against mode 1 and/or mode 2 deformations may be regarded
as the surface energy of the interface material at the micro level.

It is possible to extract the interface toughness curve from the three categories of
lattice simulations, i.e., the pre-notched four-point bending beam, the direct tension test,
and the unconfined triplet simulation mentioned in Sections 6.1 to 6.3. Figure 6-24
illustrates the toughness curve for the masonry interface obtained by the lattice model. It

indicates that the interface toughness is approximately a linear function for the interface

behavior of the aforementioned simulations for 7.8° < ¢ < 78.8".
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Figure 6-24 Interface toughness curve, I'(y)), for a brick-mortar interface obtained from the three
lattice simulations.

6.6 Fracture Energy of Cohesive Zone Models

As discussed in Section 4.1, the value of Dundur’s parameter § for concrete and
masonry is sufficiently small such that a zero § hypothesis can be assumed. For § = 0,
the components of the energy release rate, G, can be related to the stress intensity factor

for mode 1 and mode 2 as [32]

Ky?

E.’ (6-4)

K 2
L , and GZ =
E,

Gl=

where G = G, + G,. G, and G, can be regarded as the work performed by normal and
shear tractions on the interface moving through the crack surface displacements of mode
1 opening and mode 2 slip, respectively [32]. When g # 0, this decomposition does no
longer exist. Figure 6-25 and Figure 6-26 show the variations of energy release rate for
mode 1 and mode 2 for the lattice analysis of the four point bending in Figure 6-2. It can
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be seen that as the crack length increases, mode 2 slightly increases with crack extension,

which is also evident in Figure 6-5 for the phase angle.
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Figure 6-25 The mode 1 energy release rate for the lattice four-point bending beam.
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Figure 6-26 The mode 2 energy release rate for the lattice four-point bending beam.
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Furthermore, Figure 6-27 to Figure 6-30 illustrate the variation of G, and G, in

terms of crack length for the tension and triplet tests, respectively.
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Figure 6-27 The mode 1 energy release rate for the lattice tension simulation.
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Figure 6-28 The mode 2 energy release rate for the lattice tension simulation.
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Figure 6-30 The mode 2 energy release rate for the lattice triplet simulation.

The values of G, G;, and G, shown in the aforementioned figures, are the critical

energy release rates when a crack extension happens on the lattice mesh (Figure 6-2 for
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instance). These critical values are equivalent to the area under the traction-separation
curve of a cohesive zone interface model. The pink interface struts in Figure 6-2 fail one
by one in an unzipping manner. If it is assumed that the cohesive zone, between the
fully-damaged and undamaged part of the interface, always contains one interface strut at
the micro-level, then each point in Figure 6-4, for example, which is due to the energy
released by removing that single interface strut in the cohesive zone, is equivalent to the
area beneath the traction-separation law after initiation of damage. Determining the
parameters of a bilinear traction-separation law, which is the simplest cohesive zone
model, is nontrivial and conducting an experimental program to measure them is very
difficult, if not impossible. This is an interesting capability of the implemented micro-
level lattice model, the simulation results of which can be used at a meso-level continuum
traction-separation interface model. Constant steady-state variation of G in Figure 6-4 is
a useful characteristic of the simulation in Figure 6-2 which can give a consistent result

for the required fracture energy parameter of the traction-separation cohesive zone model.

trA

—>
)

Figure 6-31 The critical energy release rate of a single interface strut used as the critical fracture
energy of a continuum cohesive zone model in the traction-separation plane.
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Figure 6-31 illustrates the critical energy release rate associated with the failure of
a single interface strut in the lattice which can be used as the critical fracture energy for a
continuum cohesive zone model. The shaded triangular area in the bilinear traction-
separation law is equivalent to the G value obtained by the lattice model. The area of the
left triangle, which belongs to the linear behavior of the cohesive zone, can directly be

determined by the linear properties and the maximum traction value.

6.7 Homogenization of a Masonry Unit Cell: Uniaxial Tension Case

This section provides a brief explanation on how the lattice model might be
employed in homogenizing a heterogeneous anisotropic masonry unit cell made of brick,
mortar and their interface using energy equivalence concepts. The direct tension test was
only considered here for the sake of simplicity. Other loading scenarios like shear and
compression may also be included using the same approach presented in this section.
The purpose is to obtain a post-peak scalar damage parameter of a homogenized isotropic
finite element from the fracture energy results of a lattice masonry unit cell. Elastic
properties of the homogenized finite element, i.e., equivalent Young’s modulus and
Poisson’s ratio, can easily be obtained from the linear elastic behavior of the lattice unit
cell in o, — &, and o, — &, planes, respectively. Figure 6-32 shows the lattice masonry

unit cell under vertical direct tension.
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Figure 6-32 The lattice masonry unit cell in direct tension.

It is assumed that the total strain energy released in the lattice masonry unit cell,
dU..;;, in direct tension as the crack propagates equals the total strain energy dissipated
in the equivalent homogenized isotropic continuum finite element, dU.,,:, under the

same loading as

OUcer = OUcone. (6_5)

According to Equation (5-6), the strain energy released or the change in the strain
energy stored in a solid of unit thickness for a crack length growth of da can be expressed

as

oUu = —0Il = Gaa, or aUl'TlC = AUinC = GiTlC X Aainc, (6'6)
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where subscript inc denotes the increment number in the lattice simulation, AUj;,,. is the
strain energy dissipated for a crack length growth of Aa;,., and G, is the energy release
rate obtained from the lattice. For solids of thickness t, the value of AU, in (6-6) must
be multiplied by t. It should be noted that for increments where there is no increase in
the crack length, i.e., Aa;,. = 0, there is then no strain energy dissipation and AU;,,. = 0.

Since these dissipated energy values correspond to the crack propagation and the
damage incurred in the masonry unit cell, a scalar damage parameter can be defined
based on the dissipated strain energy and energy release rate values during the analysis.
Let D;yc and AU;,:q; be the scalar damage parameter at increment INC and the total

dissipated strain energy for the all increments, respectively. D;y. may be expressed as

YINC Av; YINC AU,
—_ inc=1 mnc __ inc=1 inc ;0 S DINC S 1,

Dinc = =
INC IN
AUtotai Zinccélldt AUinc (6'7)

where INC_ult is the ultimate increment number when the analysis is terminated. The
numerator of (6-7) is the accumulated strain energy released up to the increment INC.
Since the mesh and its boundary conditions in Figure 6-32 are all symmetric, it is
possible to analyze one half of the mesh to reduce computational cost. Figure 6-33
illustrates the lattice mesh and boundary conditions of a one half symmetric masonry unit
cell under direct tension. The mesh belongs to the last increment of the analysis when
D;nc = 1. ltis seen in Figure 6-33 that the failure mostly occurred through the interface
struts with penetrations into the mortar joints in the last increments. Figure 6-34 and
Figure 6-35 depict the load-displacement curve and the variation of G against crack
length for this simulation. Data obtained from Figure 6-35 can be used to determine the

scalar damage parameter, D;y.
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Figure 6-33 One half of the symmetric masonry unit cell mesh and its boundary conditions under
direct tension at the last increment.
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Figure 6-34 Load-displacement curve of the masonry unit cell in Figure 6-33.
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Figure 6-35 Variation of the energy release rate with respect to crack length for the masonry unit
cell in Figure 6-33.

Using the fracture energy release rate values from Figure 6-35 and Equation (6-7),
one can determine the scalar damage parameter, D;y., of the unit cell in Figure 6-33.
Figure 6-36 illustrates the variation of D,y against the crack length propagation. D;yc
firstly increases in a constant rate followed by a decreasing rate of change. The major
linear part of the curve in Figure 6-36 corresponds to the unzipping failure of the lower
interface struts in Figure 6-33. In other words, the masonry unit cell experiences more
degradation and damage due to the complete failure of the lower interface where D,y =
0.703 and the load level drops to about 100 (Ibf). Furthermore, Figure 6-37 shows the
change of D,y with respect to the average displacement of the top nodes in Figure 6-33
where the tension traction is applied. Considering the assumption in (6-5), it is possible

to use the damage data in Figure 6-37 to model the nonlinear behavior of the
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homogenized isotropic continuum finite element, equivalent to the anisotropic masonry

unit cell in Figure 6-32, under direct tension based on damage formulations.
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Figure 6-36 Variation of the scalar isotropic damage parameter with respect to crack length.
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Figure 6-37 Variation of the scalar isotropic damage parameter with respect to the average
displacement of the top nodes in Figure 6-33 where the tension traction is applied.
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6.8 Summary

After validating the capability of the lattice in calculating the fracture energy
release rate and stress intensity factors of some classic fracture problems in Chapter 5,
some well-known test configurations in masonry context were simulated as explained in
Sections 6.1 to 6.3. In all these simulations, a fairly uniform constant variation of energy
release rate for an interval of crack length was observed, which could help determine a
single value for the critical fracture energy dissipation on cohesive zone models. It was
also seen that the value of loading phase angle, 1, is insensitive to the distance r from the
crack tip which is a promising feature of the lattice indicating that decomposing the
modulus of stress intensity factor, |K| into mode 1 and 2 stress intensity factors, K; and
K,, is not sensitive to r or the mesh size. Moreover, the values of ¥ with respect to the
crack length for these simulations signify that the fracture failure of the interface in the
four-point bending simulation is a mixed mode while it is predominantly mode 1 and
mode 2 for the tension and triplet simulations, respectively.

In order to investigate the effect of mesh refinement on the fracture properties of
the interface crack tip, two different meshes were analyzed for each of the three test
configurations explained in Sections 6.1 to 6.3. The values of the energy release rate and
loading phase angle were examined for these two different meshes. It was observed that
the values of energy release rate and phase angle for the three simulations are fairly
insensitive to the mesh size. This is more pronounced for the tension and triplet
simulations which are specific test configurations for the masonry interface studies.

Looking at the variations of G for the tension and triplet configurations, i.e., Figure 6-20
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and Figure 6-22, one could conclude that the lattice results for predicting the fracture
energy dissipated during the failure of interface struts are utterly mesh independent.

The implemented lattice can also predict the interfacial toughness of any bi-
material interface which is actually the critical energy release rate values obtained from
the change in the lattice stiffness matrix as expressed in Equation (5-6). In the lattice
simulations of this study, the surface energy of the brick-mortar interface was considered
as the only material resistance and other types of energy dissipation due to a crack growth
like plastic work or shielding were neglected for the quasi-brittle failure of the brick-
mortar interface. The interface toughness curve from the three types of lattice
simulations was obtained from the basic strength material properties of the interface
frame elements. The interface toughness is approximately a linear function for the
interface behavior in direct tension, in four-point bending, and in double lap shear
conditions for 7.8° < 1) < 78.8".

In addition, the uniform variation of the energy release rate parameter makes it
feasible to extract the critical dissipated energy values for the cohesive zone models.
These critical values are equivalent to the area under the traction-separation curve of a
cohesive zone interface model after damage initiation. If it is assumed that the cohesive
zone, between the fully-damaged and undamaged part of the interface, always contains
one interface strut, then each point in G — a graph, which is due to the energy released by
removing that single interface strut in the cohesive zone, is equivalent to the area beneath
the traction-separation law after initiation of damage. This is an interesting capability of
the implemented micro-level lattice model, the simulation results of which can be utilized

at a meso-level continuum traction-separation interface model.
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Furthermore, the fracture energy outputs of the lattice may be employed in
homogenizing a heterogeneous anisotropic masonry unit cell made of brick, mortar and
their interface using energy equivalence concepts. For simplicity, the direct tensile
loading scenario was only regarded for this purpose. The post-peak scalar damage
parameter of a homogenized isotropic finite element was determined from the fracture
energy release rate values of a lattice masonry unit cell under tension. The scalar damage
parameter at each increment was calculated from the accumulated dissipated strain
energy values up to that increment divided by the total strain energy dissipated
throughout the analysis. These damage data in terms of displacements could be used to
model the nonlinear behavior of a homogenized isotropic continuum finite element which
is equivalent to the anisotropic masonry unit cell under direct tension based on damage

formulations.
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Chapter 7 CONCLUDING REMARKS

In this thesis, an existing 2D lattice model was developed and implemented based
on a strut-removal strategy to simulate the progressive crack evolution in a homogeneous
or heterogeneous solid. This crack propagation capability was used to determine the
interfacial fracture properties of any bi-material system, especially the brick-mortar, from
the basic strength properties of interface struts. Some material level laboratory tests
along with some numerical sensitivity analyses were conducted to determine those
material properties needed for the lattice simulations.

The Voronoi diagram was used to discretize a continuum domain into polygons,
or particles. Plane frame elements with three degrees of freedom at each node were
chosen because of their capability to better capture the crack pattern in continuum
domains than truss elements, and also due to their added computational stability. The
strength properties of brick, mortar, and interface were then projected on top of the lattice
struts based on their coordinates on the domain to simulate a three-phase boundary value
problem. The simulation of fracture was performed with a ‘linear elastic’ analysis of the
lattice under loading and removing one element at a time from the mesh which exceeds a
certain failure criterion in tension, compression, and shear. Failure of brick and mortar
were expressed in terms of a tension cut-off and compression-cap. Shear failure criteria
were neglected for brick and mortar elements since the main focus of this study was to
evaluate the brick-mortar interface fracture properties, and with the simulations
conducted, their shear failure envelopes were not activated. The failure criterion for the

brick-mortar interface was also determined based on a combination of experimental
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measurements and numerical parametric calculations. This failure function has a
compressive cap which lets diagonal interface struts in a regular triangular lattice fail for
triplet tests under high normal confinements.

Interfacial fracture mechanics is an important topic of research in applied
mechanics over the past few decades since the interface of two materials in contact is the
weakest part of composites like masonry along which failure usually occurs. Different
elastic properties of abutting dissimilar materials introduce mismatches in the in-plane
tensile modulus and bulk modulus across the interface, quantified by the a-, and S-
parameters, respectively. The influence of Muskhelishvili’s work in solving any problem
in the plane theory of elasticity by finding two complex functions which satisfy boundary
conditions of that problem was elaborated. In bi-material systems, the same
Muskhelishvili’s equations, which were developed for displacement and stress fields of a
two dimensional homogeneous isotropic solid, were also employed in solving bi-material
interface cracks. The effect of a nonzero S in solving interfacial crack problems was also
discussed.

Furthermore, the concepts of interfacial fracture mechanics along with the
implementation of the lattice model were used to determine the fracture properties of the
brick-mortar interface. The implemented 2D lattice model simulates crack path evolution
in the form of strong discontinuities at a homogeneous or heterogeneous solid. Unlike
the pre-cracked approach of the virtual crack extension procedure or the complicated
XFEM, the lattice’s relative simple theory and implementation makes it a promising tool
in solving crack problems in fracture mechanics. Three classic fracture mechanics

problems were addressed to validate the lattice fracture results. The center cracked
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problem in a homogeneous domain, the single edge notch problem in a homogeneous
solid, and the center interface cracked problem in a bi-material system were solved by the
numerical lattice. The energy method was employed to obtain the energy release rate of
the lattice mesh as the crack evolves. In this method, the energy released or dissipated
during the crack growth is mainly determined by considering the change in the global
stiffness matrix of the mesh with respect to crack length change. Comparison of the
analytical results of the three benchmark problems with the numerical solutions of the
lattice for those problems validates the capability of the lattice in predicting the energy
release rate and stress intensity factor of crack problems in homogeneous and
heterogeneous solids. In all three cases, the lattice gives better results once the
dimensions of the mesh are large enough to assure that the stresses are remotely applied.
After validating the capability of the lattice in calculating the fracture energy
release rate and stress intensity factors of some classic fracture problems, some well-
known test configurations in masonry context were simulated. The concept of total
potential energy of the lattice model was used to determine the energy release rate of an
interface strut failure while the crack develops. Three types of lattice simulations were
performed to obtain the energy release rate and fracture properties of brick-mortar
interface. Each of these simulations exhibit different failure mode mixity. In the pre-
notched bi-material four-point bending simulation, the interface experiences a mixed
mode failure with almost the same contribution of mode 1 and mode 2, as indicated by
the phase angle variations. As expected, the dominant interfacial failure mode in the
unconfined triplet test is mode 2, while mode 1 has the major contribution in interface

failure for the direct tension simulation. The values of G, G, and G, rendered by the
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lattice simulations are the critical energy release rates when a crack extension happens.
These critical values are equivalent to the area under the traction-separation curve of a
cohesive zone interface model after the damage initiates. Determining the parameters of
a bilinear traction-separation law is nontrivial and it is very difficult to conduct an
experimental program to measure them. The implemented micro-level lattice model is a
promising tool to determine energy release quantities that can readily be used at a meso-
level continuum traction-separation interface model. Knowing that the values of G are
the critical ones, it is possible to determine the interface toughness curve based on these
three types of simulations. The present approach can also be used to obtain the fracture
energy for a variety of interfaces of other bi-materials, relating the discretized
microstructure to the continuum meso-structure.

Finally, the fracture energy outputs of the lattice was employed in homogenizing
a heterogeneous anisotropic masonry unit cell made of brick, mortar and their interface
using energy equivalence concepts into a homogenized isotropic continuum finite
element. For simplicity, the direct tensile loading scenario was only considered for this
purpose. The post-peak scalar damage parameter of a homogenized isotropic finite
element was determined from the fracture energy release rate values of a lattice masonry
unit cell. An scalar damage parameter at each increment was calculated from the
accumulated dissipated strain energy values up to that increment divided by the total
strain energy dissipated during the completion of the analysis. These damage data in
terms of displacements could be used to model the nonlinear behavior of a homogenized
isotropic continuum finite element which is equivalent to the anisotropic masonry unit

cell under direct tension based on damage formulations. The same methodology, used
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for the direct tensile loading, may be extended to other load scenarios like bi-axial
tension, or compression, or shear to account for different failure modes.

The heterogeneous anisotropic masonry unit cell’s homogenization technique
mentioned above may be regarded as a bridge between the micro-scale lattice analysis
and macro-scale masonry wall. The homogenized continuum finite element with the post
peak damage data obtained from the lattice approach can be employed in a homogenized
macro-scale masonry wall which has an equivalent Young’s modulus and Poisson’s ratio
with the same damage data as the heterogeneous masonry unit cell. In this study, only
the direct tension loading case was simulated while other loading scenarios like
compression and shear in the form of bi-axial loading may be considered for the future
work. This may give an orthotropic damage data for the homogenized continuum finite
element to be used in the masonry wall under different loading cases. Furthermore, the
lattice model can provide the displacements and rotation of all particles’ nuclei or
computational points. These kinematic data may be utilized in calculating the strain and
stress distributions on the Voronoi representation of a given continuum, using the
gradient of the global displacement vector. Having the strain and stress distributions
obtained by the lattice model, one could compare the lattice results with or without
rotational degrees of freedom with those of classic or micro-polar continuum mechanics

to investigate how the rotations influence the numerical results of the lattice approach.
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