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ABSTRACT

Growth hormone (GH) is secreted by cells in the anterior pituitary on two time scales:

discrete pulses over minutes that occur within a 24-hr pattern. Secretion reflects the balance

of stimulatory and inhibitory inputs from the hypothalamus and is influenced by gonadal

steroids, stress, nutrition, and sleep/wake states. We propose a novel approach for the

analysis of GH data and use this approach to quantify (i) the timing, amplitude and the

number of GH pulses and (ii) GH infusion, clearance and basal secretion (i.e., time invariant)

rates, using serum GH sampled every 10 minutes during an eight-hour sleep study in 18

adolescents. In our method, we approximate hormonal secretory events by deconvolving GH

data via a two-step coordinate descent approach. The first step utilizes a sparse-recovery

approach to estimate the timing and amplitude of GH secretory events. The second step

estimates physiological parameters. Our method identifies the timing and amplitude of GH

pulses and system parameters from experimental and simulated data, with a median R2 of

0.93, among experimental data. Recovering GH pulses and model parameters using this

approach may improve the quantification of GH parameters under different physiological

and pathological conditions and the design and monitoring of interventions.
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1 Introduction

1.1 Growth Hormone Deficiency in Adolescents

Growth hormone deficiency is the most common pituitary hormone deficiency in chil-

dren, estimated at five percent of children in the US [21]. Growth hormone deficiency can

occur in isolation or in conjunction with generalized hypopituitarism, where multiple pitu-

itary hormones are deficient [30]. Growth hormone deficiency is associated with a reduced

self-esteem, diminished emotional well-being and shorter stature [12]. However, growth hor-

mone deficiency is under-diagnosed and under-reported as a result of its vaguely defined

symptoms [31]. Additionally, growth hormone deficiency is usually idiopathic, with only

25% of those diagnosed having some identifiable etiology [5].

1.2 Physiology of Growth Hormone

Growth Hormone (GH) plays a vital role in mammalian growth and metabolism across

the lifespan. GH induces linear growth in children primarily by stimulating the hepatic

secretion of insulin-like growth factor 1 (IGF1), which then acts at the growth plate [15,

17]. GH also promotes protein synthesis and lipolysis and maintains glucose homeostasis

[23] by acting on the liver, adipose tissue, muscles, and kidneys [18]. Circulating GH in

humans has a half-life of roughly 20 to 30 minutes [24] and is cleared by the liver and

kidneys. GH secretion is primarily controlled by two hypothalamic neuropeptides, growth

hormone-releasing hormone (GHRH) and somatostatin (SST). GHRH stimulates GH gene

transcription and hormone release from the somatotrophs in the anterior pituitary, while

SST maintains a tonic inhibitory tone [20, 14]. GH levels are also influenced by age, sex,

diet, exercise, time of day, stress, and sleep/wake states [20, 38, 19, 16, 34]. These factors

modulate GH concentration through effects on both GH pulse amplitude and frequency

[20, 37].
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1.3 Relation Between Sleep and Growth Hormone Secretion

In men, sleep-associated pulses contribute to roughly 70% of daily GH output; the GH

pulse at sleep-onset is generally the largest amplitude pulse observed over a 24-hour (“di-

urnal”) period [33, 6]. While sleep-associated pulses also occur in women, they typically

account for only a small proportion of total daily GH production [33, 6]. A number of ob-

servational and interventional studies in human participants have shown that GH secretion

is temporally associated with, and may be stimulated by, “deep” or slow-wave sleep (SWS,

stage N3 of non-REM sleep) [33, 32]. Therefore, studying growth hormone and its dynamics

during sleep may provide insights into the prevention, diagnosis and treatment of growth

hormone deficiency.

1.4 Current State of the Art for Growth Hormone Analysis and Existing

Challenges

Previous studies of GH data usually used one of two classes of methods to report metrics:

GH concentration peak detection (to identify a pulse) via cluster analysis as in [16, 34] or

a parameter sweep based on initial predictions and subsequent refitting as in [20]. While

methods of peak detection can roughly estimate the number of GH pulses, most of these

methods struggle to identify statistically significant peaks in cases where degradation after

one pulse is incomplete before the subsequent pulse occurs. Van Esdonk et al. [35] proposed

a two-step deconvolution analysis to identify these statistically significant peaks. However,

peak detection methods also suffer in situations where GH amplitudes are so low that

the observed data are susceptible to Gaussian noise. Peak detection methods also lack

physiological insight, as they cannot recover underlying model parameters related to the

infusion, clearance and basal secretion rates of GH. The parameter sweep approach to

model fitting for GH requires initial guessing of secretory event locations from a plot of

the observed data. This method, of guessing and checking until a suitable fit is reached, is

time-consuming and lacks a systematic approach. Therefore, there is a need for a systematic

approach with physiological insight specific to GH secretion dynamics.

2



1.5 Overview of Our Proposed Method

In this thesis, we develop a system-theoretic algorithm with physiological insight that

accurately estimates the timing and amplitude of growth hormone pulses and growth hor-

mone model parameters to investigate the relationship between GH pulses and sleep. To

test this new method, we use GH data collected during overnight frequent blood sampling

studies from 18 adolescent participants. We adopt a model of GH secretion similar to that

proposed by Klerman et al. [20]. We apply a deconvolution algorithm, similar to those

proposed by Faghih et al. [8, 11, 9, 10] for cortisol data and later extended by Amin et al.

[2] for skin conductance signals, to analyze serum GH levels. This deconvolution method

recovers the timing and amplitude of hormonal secretory events using a sparse recovery

method and estimates model parameters with an interior point method. A coordinate de-

scent approach combines the previously described methods to iteratively estimate sparse

secretory events and model parameters. We also implement generalized cross-validation,

as in [9], to recover the accurate number of hormone pulses while maintaining a balance

between the sparsity and residual error of the estimate. We tailor our new method for the

investigation of GH secretion dynamics. We plan to apply our approach to overcome current

challenges with the prevention, diagnosis and treatment of GH dysregulation during sleep

and other physiological events in our future studies.
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2 Methods

2.1 Experimental Details for Growth Hormone Data Collection

In both experiments, serum GH levels were measured in blood samples collected ev-

ery 10 minutes for eight hours through a peripheral intravenous catheter (PIVC) during

scheduled overnight sleep sessions. Each participant therefore contributed 49 data points.

Information on participant sex, age, body mass index (BMI) and Apnea-Hypopnea Index

(AHI) is included in Section 2.2. Sleep was recorded by polysomnography using established

techniques [22]. GH was assayed from participant blood samples using the Roche Elecsys

E170 immunoassay platform, with an interassay and total imprecision coefficient of variance

(CV) of 0.6-1.7% and 1.7-4.1%, respectively [36].

Dataset 1: 14 adolescents, ages 11.3 to 14.1 years, 50% male, with no chronic medical

conditions.

Dataset 2: 4 adolescents, ages 11.8 to 14.4 years, 75% male, with very mild obstructive

sleep apnea (OSA). OSA is a condition characterized by the repetitive obstruction of the

upper airway during sleep, causing episodic hypoxemia followed by awakening/arousal, and

is often associated with daytime sleepiness [3]. Mild pediatric OSA is defined as an apnea-

hypopnea index (AHI) greater than 1 and less than or equal to 5 [7]. During scheduled

sleep, the participants used a continuous positive airway pressure (CPAP) machine to treat

their OSA, facilitating an undisturbed sleep session similar to the participants from Dataset

1.

2.2 Participant Information

The sex, age and BMI of each participant from Dataset 1 can be found in Table 1. Table

2 contains the sex, age, BMI and Apnea-Hypopnea Index (AHI) for each participant from

Dataset 2.
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Table 1: Participant sex, age, and BMI for Dataset 1.

Participant Sex Age (years) BMI ( kg
m2 )

1-1 F 12.5 18.6

1-2 F 12.3 19.2

1-3 F 12.3 17.9

1-4 F 11.6 16.5

1-5 F 12.3 19.8

1-6 M 13.4 17.9

1-7 F 13.4 20.5

1-8 F 13.2 25

1-9 M 11.3 26.1

1-10 M 12.0 22.9

1-11 M 12.2 29.3

1-12 M 13.8 18.7

1-13 M 13.4 17.9

1-14 M 14.1 21.6

Table 2: Participant sex, age, BMI and AHI for Dataset 2.

Participant Sex Age (years) BMI ( kg
m2 ) AHI

2-1 F 12.3 25.9 4.1

2-2 M 14.4 40.4 0.2

2-3 M 13.4 18.2 0.0

2-4 M 11.8 14.9 0.0

2.3 Model Formulation for Pulsatile Dynamics of Growth Hormone Se-

cretion

We build a model based on the two-dimensional linear differential equations proposed

by Klerman et al. [20], describing diurnal GH secretion. Originally, this model included

feedback, due to the inhibitory effect of GH on GH release [27]; this effect occurs at the

hypothalamic level through a short loop mechanism, inhibiting GHRH and stimulating the

release of SST into peripheral circulation [20]. However, the model we propose does not

include GH negative feedback, because of (i) feedback’s insignificant and/or erroneous effect

on model fits [20], (ii) feedback decreases the parsimony of the system, and (iii) Klerman

et al. [20] noted that GH secretion model fits were graphically indistinguishable with or

without negative feedback. We model the dynamics of GH secretion with the following

two-dimensional linear differential equations
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dh1(t)

dt
= −βIh1(t) + u(t) (1)

and

dh2(t)

dt
= βIh1(t)− βCh2(t) (2)

where h1(t) represents the releasable GH in the anterior pituitary and h2(t) represents the

GH concentration in the peripheral serum. βI and βC represent the GH infusion rate from

the pituitary and GH clearance rate by the kidneys and liver, respectively. u(t) corresponds

to the hypothalamic pulses that stimulate GH secretion where u(t) =
∑N

i=1 qiσ(t − τi)

[9]. Finally, we assume that pulses occur at integer minute values. In this abstraction of

hormone pulses, qi represents the amplitude of the hormone pulse, τi represents the pulse

timing and N represents the length of the input (N = 481). If qi is zero, then a pulse did

not occur at time τi.

Therefore, beginning at yt0 , we have GH samples at 10-minute intervals for M samples

(M = 49) for each participant. Let yt10, yt20, ... , yt10M

ytk = h2(tk) + ρ+ vtk (3)

where ytk represents the serum GH level, ρ represents the time-invariant basal secretion

rate of GH, and vtk represents measurement error; missing data points are removed listwise,

with a maximum of two samples missing from a participant. A description and discussion of

listwise deletion rationale and method is provided in Section 2.6. We apply a least squares

approach in our estimation algorithm, modelling vtk as a Gaussian random variable. Using

the serum GH level (h2) with a sampling interval of 10 minutes, we estimate βI , βC , ρ,

the number of secretory pulses and their corresponding timing and amplitude, within a 1

minute resolution.

6



2.4 Multi-Rate State-Space Formulation

In order to estimate the model parameters and determine the timing and amplitude of

secretory pulses, we perform our deconvolution in the discrete time domain, as described

by Amin et al. [2]. We reformulate (1,2) by letting h(t) = [ h1(t) h2(t) ]T , AC =
[
−βI 0
βI −βC

]
,

BC = [ 10 ], and CC = [ 0 1 ], Hence the state-space model can be written as

ḣ(t) = ACh(t) +BCu(t) (4)

and

y(t) = CCh(t) + ρ+ v(t) (5)

where y(t)is the observed serum GH level and v(t) is the measurement noise at the time

t. Assuming that the inputs and the states are continuous over Tu, we let Λ = eαTu , and

Γ =
∫ Tu
0 eα(Tu−s)ds, we can write the discrete state-space form as:

h[k + 1] = Λh[k] + Γu[k] (6)

and

y[k] = CCh[k] + ρ+ v[k]. (7)

We let the blood sampling frequency Ty = LTu, where L is an integer (L = 10 in this study).

If we let Ad = ΛL, Bd = [ ΛL−1Γ ΛL−2Λ ... Γ ], ud[k] = [ u[Lk] u[Lk+1] ... u[Lk+L−1] ]T , vd[k] =

v[Lk] and hd[k] = h[Lk], then we can represent the multi-rate system as

hd[k + 1] = Adhd[k] +Bdud[k] (8)

and

y[k] = CChd[k] + ρ+ vd[k] (9)
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where Ad and Bd are functions of βI and βC . Using the state transition matrix and consid-

ering the causality of the system, we can write the system equation as

y[k] = F [k]hd[0] +D[k]u+ ρ+ vd[k] (10)

where F [k] = CCA
k
d, D[k] = CC

[
Ak−1
d Bd A

k−2
d Bd ... 0...0︸︷︷︸

N−kL

]
, ρ = [ ρ ρ ... ρ ]TM×1, and u =

[ ud[0] ud[1] ... ud[k−1] ud[M−1] ]
T . u and ρ represent the entire input over the duration of

the study and the basal secretion rate of GH, respectively. Considering the initial con-

dition h1(0) = 0 and y(0) = h2(0) = yt0 , we can let hd[0] = [ 0 yt0 ]T . Then, let y =

[ y[1] y[2] ... y[M ] ]TM×1, where y represents all of the observed data points. Furthermore, we let

Fβ = [ F [0] F [1] ... F [M−1] ]TM×2, Dβ = [D[0] D[1] ... D[M−1] ]TM×N , and v = [ v[1] v[2] ... v[M ] ]TM×1.

Therefore, we can represent this system as

y = Fβhd[0] +Dβu+ ρ+ v. (11)

2.5 Estimation

2.5.1 Optimization Problem Formulation

We cast the system from (11) as the following least-squares optimization problem

minimize
1

2
‖y− Fβhd[0]−Dβu− ρ‖22. (12)

However, a least-squares solution for an under-determined system could yield an incorrect

estimation as any given hormone assay can be erroneous. Moreover, the optimization prob-

lem is nonconvex with respect to the parameters βI , and βC [9]. Some of these potential

solutions may be outside of physiologically bounds, necessitating the implementation of

GH specific constraints. We apply problem constraints based on the observed minimal and

maximal values of model parameters and the timing and amplitude of GH secretory events

from similar GH studies.
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2.5.2 Selecting Physiologically Plausible Constraints

In modeling GH secretion over a 24-hour period, Berg et al. [34] reported an average of

11 secretory events for men and 13 secretory events for women. Previous studies have also

demonstrated that the frequency of secretory events increases at night [6, 34]. However,

Klerman et al. [20] reported a maximum of three secretory events per sleep episode in 12

female participants. These discrepant findings for GH parameters may be due to differ-

ences in GH immunoassay platforms [4], different study populations [39], or other unknown

factors. We use these experimental values from previous studies to guide the application

of constraints, ensuring that the estimated number of secretory pulses is within physio-

logically plausible bounds. We select a constraint of 11 possible secretory events during a

sleep episode, significantly more than the maximum of three secretory events observed by

Klerman et al. [20]. Applying such a generous constraint allows our algorithm to estimate

the number of secretory events within a broad range of values. As a result, we mitigate the

underestimation of secretory events that could arise due to known or unknown differences

between this study and previous GH studies. We assume that u contains at most 11 positive

elements out of 490 possibilities (0 ≤ ‖u‖0 ≤ 11,u ≥ 0). we impose a sparsity constraint on

u, to limit the number of predicted pulses. Additionally, we extend the bounds on βI and

βC , provided by [20], from 8.333 × 10−4 and 0.1333 min−1 to 8.333 × 10−4 and 1 min−1,

because preliminary analyses, bounding βI and βC between 8.333 × 10−4 and 1 min−1,

yielded estimates of βI and βC always within bounds, which are appropriate.

We solve this optimization problem by reformulating (12), with model constraints as

follows:

minimize
β,u

Jλ(β,u) =
1

2
‖y− Fβhd[0]−Dβu− ρ‖22 + λ‖u‖pp

subject to Cβ ≤ b,

u ≥ 0,

0 ≤ ‖u‖0 ≤ 11

(13)
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where β = [ βI βC ρ ], C =
[
1 0 −1 0 0
0 1 0 −1 0
0 0 0 0 −1

]T
, and b = [ 1 1 −8.333×10−4 −8.333×10−4 0 ]T . λ

represents the regularization parameter, facilitating a balance between the sparsity of the

input and the residual error in the model-estimated level of GH, such that significant pulses

are captured, and noise is filtered out. The sparsity of u increases with λ. Furthermore,

the term λ‖u‖pp with 0 < p ≤ 2, from (13), encourages sparsity and curbs over-fitting in the

solution of u. The previously mentioned term from (13) allows us to perform sparse recovery

within a range of sparsity levels. We apply an iterative coordinate descent approach until

the model parameters converge

u(k+1) = arg min
u

Jλ(β(k),u),

subject to u ≥ 0, 0 ≤ ‖u‖0 ≤ 11

(14)

and

β(k+1) = arg min
β

Jλ(β,u(k+1)),

subject to Cβ ≤ b
(15)

2.5.3 FOCUSS+ Algorithm

We solve the optimization problem in (13), using the FOCUSS+ algorithm proposed

by Murray in [25], such that u is nonnegative and has a maximum sparsity of n(n =

11). This algorithm adopts a heuristic approach for updating λ. This algorithm adopts

a heuristic approach for updating λ, which balances the sparsity of u against the residual

error ‖yβ −Dβu‖2, where yβ = y − Fβhd[0] − ρ. The FOCUSS+ algorithm works as

follows, for r = 1, 2, 3, ..., 30 :
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1. P
(r)
u = diag(|u(r)|2−p)

2. λ(r) = (1− ‖yβ−Dβu
(r)

‖yβ‖2 )λmax, λ > 0

3. u(r+1) = P
(r)
u DT

β (DβP
(r)
u DT

β + λ(r)I)−1yβ

4. u
(r+1)
i ≤ 0→ u

(r+1)
i = 0

5. After completing more than half of the total iterations, if ‖u(r+1)‖0 > n, select the

largest n values from u(r+1) and set the rest to zero

6. Iterate

2.5.4 Generalized Cross-Validation for Tuning the Sparsity Level

Independently, FOCUSS+ yields estimated values for u, and we estimate β using the

interior point method, iteratively solving equations (14) and (15). FOCUSS+ estimates u

with 11 secretory events . However, β and u should be updated with a λ that balances the

residual error and sparsity of the model. For this, we implement the Generalized Cross-

Validation (GCV) technique for the selection of a regularization parameter [13]. The GCV

function is defined as the following

G(λ) =
L‖(I −Hλ)yβ‖
(trace(I −Hλ))2

(16)

where L is the number of data points and Hλ is the influence matrix. For the FOCUSS+

algorithm, we define Hλ = P
(r)
u DT

β (DβP
(r)
u DT

β + λ(r)I)−1.

2.5.5 GCV-FOCUSS+ Algorithm

The GCV-FOCUSS+ algorithm works as follows, for r = 1, 2, 3, ... :

1. P
(r)
u = diag(|u(r)|2−p)

2. u(r+1) = P
(r)
u DT

β (DβP
(r)
u DT

β + λ(r)I)−1yβ

3. u
(r+1)
i ≤ 0→ u

(r+1)
i = 0

4. λ(r+1) = minimize
λ

G(λ)

0 ≤ λ ≤ 0.01

5. Iterate until convergence
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2.5.6 Summary of Proposed Deconvolution Algorithm

Using the GCV method in tandem with FOCUSS+, we find λ at each iteration, such

that noise is filtered out in the estimation of u and iterate between solving (14) and (15)

until convergence. We propose the following algorithm for the deconvolution of GH data:

Algorithm 1 Deconvolution Algorithm

1 : Initialize β̃0by sampling two uniform random variables r and s on

[8.333× 10−4, 1] and let β̃0 = [r, s, 0]T

2 : for l = 1, 2, 3, ..., 30 do

3 : Set β̃ equal to β̃l−1; using FOCUSS+, solve for ũl by initializing the optimization

problem in (14) at vector of all ones

4 : Set ũ equal to ũl; using the interior point method, solve for β̃l by initializing the

optimization problem in (15) at β̃l−1

5 : end for

6 : Initialize β̂0 and û0 by setting them equal to the β̃l, ũl, and ρl that minimize Jλ(β,u)

in (13), and let m = 1

7 : while until convergence do

8 : Set β̂ equal to β̂m−1; using GCV-FOCUSS+, solve for ûm by initializing the optimization

problem in (14) at ûm−1

9 : Set û equal to ûm; using the interior point method, solve for β̂m by initializing the

optimization problem in (15) at β̃m−1

10 : end while

11 : Set the estimated model parameters β and input u to the β and u of the 64 potential

solutions that minimize Jλ(β,u) in (13)

We account for the nonconvexity of this optimization problem by performing multi-

ple and different initializations of model parameters at the beginning of the algorithm.

Step 1 initializes β at random values within a physiologically plausible range. Steps 2-5

use FOCUSS+ for sparse recovery and interior point method for finding algorithm ini-

tial conditions. Step 6 finds a good initial condition for the coordinate descent portion
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of the algorithm. Steps 7-10 apply a coordinate descent approach, to estimate the timing

and amplitude of secretory events and model parameters until said unknowns converge.

We incorporate sparse recovery in our coordinate descent approach via GCV–FOCUSS+.

GCV–FOCUSS+ applies generalized cross-validation to find the regularization parameter

that balances between capturing sparsity and noise. Finally, the model parameters that

minimize the cost function in (13), among all initializations, are selected in step 11.

We ran the proposed algorithm, with GH-specific constraints, for 64 initializations for

each eight-hour measurement of serum GH concentration, for both datasets (Tables 3 and

4). In our implementation of GCV-FOCUSS+ we let p = 0.5 as in [9]. Data analysis and

estimation were performed in MATLAB R2020a.

Using the model for GH secretion detailed in equations (1) and (2), we also simulate

18 (i.e., one per participant) eight-hour GH time series with the model parameters from

Tables 3 and 4 and the GH pulses from Figures 1 - 18. Then, we add zero mean Gaussian

noise, using a range of signal to noise ratios (SNR) from 5 to 50 dB, at intervals of 5 dB,

to the simulated GH time series, using the observation model (3). Finally, we evaluate

the performance of our algorithm in estimating model parameters and recovering hormone

pulses at these noise levels. Each of these simulated data are sampled every 10 minutes.

2.6 Handling Missing Data

If there are missing values in the GH time series data, then subsequent analyses must

be designed to be suitable for both our proposed algorithm and the missingness of the data

used. In our estimation algorithm, we apply a least squares approach, modelling vi as a

Gaussian random variable, where vi = yi −Fβihd[0]−Dβiui and i= {1, 2, 3, ...,M}. We can

represent the probability density function of vi as P1(vi|σ2) where P1(vi|σ2) = 1√
2πσ2

e
−(vi)

2

2σ2 .

Assuming the missing GH data are arbitrarily distributed, we then represent the probability

density function of missing values as P2(x) with unknown parameters denoted x. If the

probability density function of a missing response, P2(x), is unrelated to the either the

actual value missing from the data or the set of observed responses, then that response
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is said to be Missing Completely At Random (MCAR) [26]. Furthermore, if the set of

missing responses is MCAR, then the likelihood function of P1 and P2 can be represented

as P1(vi|σ2) • P2(x). We take the negative log of the likelihood function of P1 and P2,

resulting in

−log(P1(vi|σ2))− log(P2(x)) =
1

2σ2
‖yi − Fβihd[0]−Dβiui‖

2
2 − log(P2(x)). (17)

We can see in (17) that the Gaussian distribution of measurement error is independent

from the uniform distribution of missing values. The distribution of missing values does not

depend on observed data and as such the missing data is considered MCAR.

We perform listwise deletion, as opposed to imputation, because (i) the temporal reso-

lution of our GH data does not lend itself to imputation, (ii) listwise deletion will yield an

unbiased estimate of mean response trends, because the missingness of GH data is MCAR

[26], and (iii) our proposed algorithm accounts for missing sample data. Additionally, meth-

ods of imputation like linear interpolation tend to produce biased estimates of parameters

[1].

We perform listwise deletion by reformulating the optimization problem in (12) as

minimize 1
2

∑M
i∈{1,2,...,M}\(S) (yi − Fβihd[0]− dβiui)2 (18)

where S represents the set of indices in which sample data is missing. Listwise deletion

introduces no bias in the approximation of model parameters or of the timing and amplitude

of secretory events. Therefore, maximizing the fit of available data via our estimation

algorithm also improves the estimation of missing data, where yj = Fβjhd[0] + Dβjuj and

j ∈ S.
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3 Results

3.1 Experimental Results

Table 3: Estimated infusion, clearance and basal secretion rates, number of secretory events
and the squares of multiple correlation coefficients (R2) for the fits of the observed
GH data from Dataset 1.

Participant βI(min
−1) βC(min−1) ρ(ngml ) N R2

1-1 0.17 0.03 0.06 7 0.95

1-2 0.12 0.09 0.19 8 0.93

1-3 0.12 0.05 0.04 4 0.96

1-4 0.16 0.11 0.10 11 0.87

1-5 0.19 0.10 0.10 7 0.93

1-6 0.04 0.03 0.00 8 0.99

1-7 0.16 0.11 0.48 10 0.88

1-8 0.05 0.04 0.00 6 0.96

1-9 0.14 0.27 0.48 8 0.96

1-10 0.15 0.14 0.39 5 0.88

1-11 0.06 0.04 0.23 5 0.91

1-12 0.06 0.04 0.00 6 0.93

1-13 0.14 0.03 1.96 7 0.96

1-14 0.05 0.03 0.00 11 0.92

Median 0.13 0.05 0.10 7 0.93

Table 4: Estimated infusion, clearance and basal secretion rates, number of secretory events
and the squares of multiple correlation coefficients (R2) for the fits of the observed
GH data from Dataset 2.

Participant βI(min
−1) βC(min−1) ρ(ngml ) N R2

2-1 0.09 0.05 0.07 5 0.91

2-2 0.05 0.04 0.00 5 0.92

2-3 0.06 0.04 0.07 6 0.96

2-4 0.17 0.06 0.62 11 0.93

Median 0.08 0.04 0.07 5.5 0.93

The observed and model-estimated GH levels and the timing and amplitude of hormonal

secretory events in the participants from Dataset 1 and 2 are shown in Figures 1 - 14 and

Figures 15 - 18; the associated model parameters for each participant, from each data set,

are detailed in Tables 3 and 4, respectively. The median value for the square of the multiple

correlation coefficient (R2) among all experimental datasets is 0.93, with only three datasets
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Figure 1: Estimated deconvolution of experimental eight-hour GH levels of Participant 1
from Dataset 1. The plot shows the observed eight-hour GH time series (red
crosses), the model-estimated GH levels (black curve), and the model-estimated
pulse timing and amplitude (blue vertical lines). The estimated model parameters
are provided in Table 3.

Figure 2: Estimated deconvolution of experimental eight-hour GH levels of Participant 2
from Dataset 1. The plot shows the observed eight-hour GH time series (red
crosses), the model-estimated GH levels (black curve), and the model-estimated
pulse timing and amplitude (blue vertical lines). The estimated model parameters
are provided in Table 3.
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Figure 3: Estimated deconvolution of experimental eight-hour GH levels of Participant 3
from Dataset 1. The plot shows the observed eight-hour GH time series (red
crosses), the model-estimated GH levels (black curve), and the model-estimated
pulse timing and amplitude (blue vertical lines). The estimated model parameters
are provided in Table 3.

Figure 4: Estimated deconvolution of experimental eight-hour GH levels of Participant 4
from Dataset 1. The plot shows the observed eight-hour GH time series (red
crosses), the model-estimated GH levels (black curve), and the model-estimated
pulse timing and amplitude (blue vertical lines). The estimated model parameters
are provided in Table 3.
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Figure 5: Estimated deconvolution of experimental eight-hour GH levels of Participant 5
from Dataset 1. The plot shows the observed eight-hour GH time series (red
crosses), the model-estimated GH levels (black curve), and the model-estimated
pulse timing and amplitude (blue vertical lines). The estimated model parameters
are provided in Table 3.

Figure 6: Estimated deconvolution of experimental eight-hour GH levels of Participant 6
from Dataset 1. The plot shows the observed eight-hour GH time series (red
crosses), the model-estimated GH levels (black curve), and the model-estimated
pulse timing and amplitude (blue vertical lines). The estimated model parameters
are provided in Table 3.
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Figure 7: Estimated deconvolution of experimental eight-hour GH levels of Participant 7
from Dataset 1. The plot shows the observed eight-hour GH time series (red
crosses), the model-estimated GH levels (black curve), and the model-estimated
pulse timing and amplitude (blue vertical lines). The estimated model parameters
are provided in Table 3.

Figure 8: Estimated deconvolution of experimental eight-hour GH levels of Participant 8
from Dataset 1. The plot shows the observed eight-hour GH time series (red
crosses), the model-estimated GH levels (black curve), and the model-estimated
pulse timing and amplitude (blue vertical lines). The estimated model parameters
are provided in Table 3.
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Figure 9: Estimated deconvolution of experimental eight-hour GH levels of Participant 9
from Dataset 1. The plot shows the observed eight-hour GH time series (red
crosses), the model-estimated GH levels (black curve), and the model-estimated
pulse timing and amplitude (blue vertical lines). The estimated model parameters
are provided in Table 3.

Figure 10: Estimated deconvolution of experimental eight-hour GH levels of Participant 10
from Dataset 1. The plot shows the observed eight-hour GH time series (red
crosses), the model-estimated GH levels (black curve), and the model-estimated
pulse timing and amplitude (blue vertical lines). The estimated model parame-
ters are provided in Table 3.

20



Figure 11: Estimated deconvolution of experimental eight-hour GH levels of Participant 11
from Dataset 1. The plot shows the observed eight-hour GH time series (red
crosses), the model-estimated GH levels (black curve), and the model-estimated
pulse timing and amplitude (blue vertical lines). The estimated model parame-
ters are provided in Table 3.

Figure 12: Estimated deconvolution of experimental eight-hour GH levels of Participant 12
from Dataset 1. The plot shows the observed eight-hour GH time series (red
crosses), the model-estimated GH levels (black curve), and the model-estimated
pulse timing and amplitude (blue vertical lines). The estimated model parame-
ters are provided in Table 3.
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Figure 13: Estimated deconvolution of experimental eight-hour GH levels of Participant 13
from Dataset 1. The plot shows the observed eight-hour GH time series (red
crosses), the model-estimated GH levels (black curve), and the model-estimated
pulse timing and amplitude (blue vertical lines). The estimated model parame-
ters are provided in Table 3.

Figure 14: Estimated deconvolution of experimental eight-hour GH levels of Participant 14
from Dataset 1. The plot shows the observed eight-hour GH time series (red
crosses), the model-estimated GH levels (black curve), and the model-estimated
pulse timing and amplitude (blue vertical lines). The estimated model parame-
ters are provided in Table 3.
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Figure 15: Estimated deconvolution of experimental eight-hour GH levels of Participant 1
from Dataset 2. Each panel shows the observed eight-hour GH time series (red
crosses), the model-estimated GH levels (black curve), and the model-estimated
pulse timing and amplitude (blue vertical lines). The estimated model parame-
ters are provided in Table 4.

Figure 16: Estimated deconvolution of experimental eight-hour GH levels of Participant 2
from Dataset 2. Each panel shows the observed eight-hour GH time series (red
crosses), the model-estimated GH levels (black curve), and the model-estimated
pulse timing and amplitude (blue vertical lines). The estimated model parame-
ters are provided in Table 4.
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Figure 17: Estimated deconvolution of experimental eight-hour GH levels of Participant 3
from Dataset 2. Each panel shows the observed eight-hour GH time series (red
crosses), the model-estimated GH levels (black curve), and the model-estimated
pulse timing and amplitude (blue vertical lines). The estimated model parame-
ters are provided in Table 4.

Figure 18: Estimated deconvolution of experimental eight-hour GH levels of Participant 4
from Dataset 2. Each panel shows the observed eight-hour GH time series (red
crosses), the model-estimated GH levels (black curve), and the model-estimated
pulse timing and amplitude (blue vertical lines). The estimated model parame-
ters are provided in Table 4.
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Figure 19: Quantile-Quantile plot of the measurement error in the estimation of Participant
1-4’s observed GH levels.

having an (R2) below 0.90. The timing and amplitude of the hormonal pulses and model

parameters vary greatly among participants. A straight line in quantile-quantile plots of the

measurement error in the estimation of experimental GH levels demonstrates the Gaussian

nature of the noise present in a participant’s data; this is observed in the quantile-quantile

plot of one of three participants with a low (R2), implying the probable role of Gaussian

noise in producing a low (R2) value (Figure 19). However, slight deviations from a straight

line in the quantile-quantile plots of other participants with low (R2) values, suggest a

margin of improvement in our model. Larger deviations in the quantile-quantile plots of

other participants, including those with satisfactory (R2) values, can be attributed to the

combination of the low sampling rate of the experimental GH data and the small rise time of

a participant’s serum GH level. This small rise time reflects high frequency components in

the GH signal, making the estimation of rise times difficult with a low sampling frequency.
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3.2 Simulation Results

The estimated model parameters, number of recovered pulses, the square of the multiple

correlation coefficient (R2) and the absolute difference and percentage error in the estimation

of model parameters for the fits of the simulated GH data, at a SNR of 20 dB are detailed

in Tables 5 and 6. The percent errors in the estimation of βI and βC range from small

values (0.06% and 0.29%) to high values (379% and 82.4%), at a SNR of 20 dB. In some

cases, the noise added to the simulated data is comparable in amplitude to the small GH

pulses, facilitating a noticeable divergence in pulsatile patterns between experimental and

simulated GH time series. Due to the nonconvexity of this optimization problem, differences

in pulsatile patterns impact the estimation of timing and amplitude of GH pulses and model

parameters. The actual sparse input, the estimated input and the simulated and estimated

GH data, at a SNR of 20 dB for the 14 participants from Datasets 1 and 2 are shown in

Figures 20 - 33 and Figures 34 - 37, respectively. The estimated and simulated inputs are

in good agreement, except at a higher noise level in which a few small amplitude pulses are

ignored or noise is captured as a small pulse. For example, at a SNR of 20 dB there are

ten such cases, but at 35 dB there are only four instances. The estimation of simulated

inputs improves at lower noise levels, as indicated by Figure 38, which illustrates the average

percent error in the estimation of l0−, l1−, and l2− norms of u at different levels of noise.

Similarly, Figure 39 demonstrates the average percent error in the estimation of GH infusion

and clearance rates decreasing from 0 to 25 dB and then flattening out at around 20% error.
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Figure 20: Estimated deconvolution of simulated eight-hour GH levels associated with Par-
ticipant 1 from Dataset 1 at a SNR of 20 dB. Each panel shows the simulated
eight-hour GH time series (red crosses) generated from the “ground truth” pulse
timing and amplitude (forest green vertical lines), the model-estimated GH lev-
els (black curve), and the estimated pulse timing and amplitude (blue vertical
lines). The estimated model parameters are provided in Table 5.

Figure 21: Estimated deconvolution of simulated eight-hour GH levels associated with Par-
ticipant 2 from Dataset 1 at a SNR of 20 dB. Each panel shows the simulated
eight-hour GH time series (red crosses) generated from the “ground truth” pulse
timing and amplitude (forest green vertical lines), the model-estimated GH lev-
els (black curve), and the estimated pulse timing and amplitude (blue vertical
lines). The estimated model parameters are provided in Table 5.
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Figure 22: Estimated deconvolution of simulated eight-hour GH levels associated with Par-
ticipant 3 from Dataset 1 at a SNR of 20 dB. Each panel shows the simulated
eight-hour GH time series (red crosses) generated from the “ground truth” pulse
timing and amplitude (forest green vertical lines), the model-estimated GH lev-
els (black curve), and the estimated pulse timing and amplitude (blue vertical
lines). The estimated model parameters are provided in Table 5.

Figure 23: Estimated deconvolution of simulated eight-hour GH levels associated with Par-
ticipant 4 from Dataset 1 at a SNR of 20 dB. Each panel shows the simulated
eight-hour GH time series (red crosses) generated from the “ground truth” pulse
timing and amplitude (forest green vertical lines), the model-estimated GH lev-
els (black curve), and the estimated pulse timing and amplitude (blue vertical
lines). The estimated model parameters are provided in Table 5.
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Figure 24: Estimated deconvolution of simulated eight-hour GH levels associated with Par-
ticipant 5 from Dataset 1 at a SNR of 20 dB. Each panel shows the simulated
eight-hour GH time series (red crosses) generated from the “ground truth” pulse
timing and amplitude (forest green vertical lines), the model-estimated GH lev-
els (black curve), and the estimated pulse timing and amplitude (blue vertical
lines). The estimated model parameters are provided in Table 5.

Figure 25: Estimated deconvolution of simulated eight-hour GH levels associated with Par-
ticipant 6 from Dataset 1 at a SNR of 20 dB. Each panel shows the simulated
eight-hour GH time series (red crosses) generated from the “ground truth” pulse
timing and amplitude (forest green vertical lines), the model-estimated GH lev-
els (black curve), and the estimated pulse timing and amplitude (blue vertical
lines). The estimated model parameters are provided in Table 5.
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Figure 26: Estimated deconvolution of simulated eight-hour GH levels associated with Par-
ticipant 7 from Dataset 1 at a SNR of 20 dB. Each panel shows the simulated
eight-hour GH time series (red crosses) generated from the “ground truth” pulse
timing and amplitude (forest green vertical lines), the model-estimated GH lev-
els (black curve), and the estimated pulse timing and amplitude (blue vertical
lines). The estimated model parameters are provided in Table 5.

Figure 27: Estimated deconvolution of simulated eight-hour GH levels associated with Par-
ticipant 8 from Dataset 1 at a SNR of 20 dB. Each panel shows the simulated
eight-hour GH time series (red crosses) generated from the “ground truth” pulse
timing and amplitude (forest green vertical lines), the model-estimated GH lev-
els (black curve), and the estimated pulse timing and amplitude (blue vertical
lines). The estimated model parameters are provided in Table 5.
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Figure 28: Estimated deconvolution of simulated eight-hour GH levels associated with Par-
ticipant 9 from Dataset 1 at a SNR of 20 dB. Each panel shows the simulated
eight-hour GH time series (red crosses) generated from the “ground truth” pulse
timing and amplitude (forest green vertical lines), the model-estimated GH lev-
els (black curve), and the estimated pulse timing and amplitude (blue vertical
lines). The estimated model parameters are provided in Table 5.

Figure 29: Estimated deconvolution of simulated eight-hour GH levels associated with Par-
ticipant 10 from Dataset 1 at a SNR of 20 dB. Each panel shows the simulated
eight-hour GH time series (red crosses) generated from the “ground truth” pulse
timing and amplitude (forest green vertical lines), the model-estimated GH lev-
els (black curve), and the estimated pulse timing and amplitude (blue vertical
lines). The estimated model parameters are provided in Table 5.
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Figure 30: Estimated deconvolution of simulated eight-hour GH levels associated with Par-
ticipant 11 from Dataset 1 at a SNR of 20 dB. Each panel shows the simulated
eight-hour GH time series (red crosses) generated from the “ground truth” pulse
timing and amplitude (forest green vertical lines), the model-estimated GH lev-
els (black curve), and the estimated pulse timing and amplitude (blue vertical
lines). The estimated model parameters are provided in Table 5.

Figure 31: Estimated deconvolution of simulated eight-hour GH levels associated with Par-
ticipant 12 from Dataset 1 at a SNR of 20 dB. Each panel shows the simulated
eight-hour GH time series (red crosses) generated from the “ground truth” pulse
timing and amplitude (forest green vertical lines), the model-estimated GH lev-
els (black curve), and the estimated pulse timing and amplitude (blue vertical
lines). The estimated model parameters are provided in Table 5.

32



Figure 32: Estimated deconvolution of simulated eight-hour GH levels associated with Par-
ticipant 13 from Dataset 1 at a SNR of 20 dB. Each panel shows the simulated
eight-hour GH time series (red crosses) generated from the “ground truth” pulse
timing and amplitude (forest green vertical lines), the model-estimated GH lev-
els (black curve), and the estimated pulse timing and amplitude (blue vertical
lines). The estimated model parameters are provided in Table 5.

Figure 33: Estimated deconvolution of simulated eight-hour GH levels associated with Par-
ticipant 14 from Dataset 1 at a SNR of 20 dB. Each panel shows the simulated
eight-hour GH time series (red crosses) generated from the “ground truth” pulse
timing and amplitude (forest green vertical lines), the model-estimated GH lev-
els (black curve), and the estimated pulse timing and amplitude (blue vertical
lines). The estimated model parameters are provided in Table 5.
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Figure 34: Estimated deconvolution of simulated eight-hour GH levels associated with Par-
ticipant 1 from Dataset 2 at a SNR of 20 dB. Each panel shows the simulated
eight-hour GH time series (red crosses), generated from the “ground truth” pulse
timing and amplitude (forest green vertical lines), the model-estimated GH lev-
els (black curve), and the model-estimated pulse timing and amplitude (blue
vertical lines) and the ground truth pulse timing and amplitude (forest green
vertical lines). The estimated model parameters are provided in Table 6 in the
main text.

Figure 35: Estimated deconvolution of simulated eight-hour GH levels associated with Par-
ticipant 2 from Dataset 2 at a SNR of 20 dB. Each panel shows the simulated
eight-hour GH time series (red crosses), generated from the “ground truth” pulse
timing and amplitude (forest green vertical lines), the model-estimated GH lev-
els (black curve), and the model-estimated pulse timing and amplitude (blue
vertical lines) and the ground truth pulse timing and amplitude (forest green
vertical lines). The estimated model parameters are provided in Table 6 in the
main text.
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Figure 36: Estimated deconvolution of simulated eight-hour GH levels associated with Par-
ticipant 3 from Dataset 2 at a SNR of 20 dB. Each panel shows the simulated
eight-hour GH time series (red crosses), generated from the “ground truth” pulse
timing and amplitude (forest green vertical lines), the model-estimated GH lev-
els (black curve), and the model-estimated pulse timing and amplitude (blue
vertical lines) and the ground truth pulse timing and amplitude (forest green
vertical lines). The estimated model parameters are provided in Table 6 in the
main text.

Figure 37: Estimated deconvolution of simulated eight-hour GH levels associated with Par-
ticipant 4 from Dataset 2 at a SNR of 20 dB. Each panel shows the simulated
eight-hour GH time series (red crosses), generated from the “ground truth” pulse
timing and amplitude (forest green vertical lines), the model-estimated GH lev-
els (black curve), and the model-estimated pulse timing and amplitude (blue
vertical lines) and the ground truth pulse timing and amplitude (forest green
vertical lines). The estimated model parameters are provided in Table 6 in the
main text.
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Table 5: Estimated infusion, clearance and basal secretion rates, number of secretory events
and the squares of multiple correlation coefficients (R2) for the fits of the simulated
GH data from Dataset 1 at a SNR of 20 dB.

Participant βI(min
−1) βC(min−1) ρ(ngml ) N R2 |βI−β̂I |

βI
(%) |βC−β̂C |

βC
(%) |ρ− ρ̂|(ngml )

1-1 0.17 0.03 0.00 7 0.996 0.29 12.3 0.06

1-2 0.22 0.06 0.12 8 0.995 74.8 35.6 0.06

1-3 0.12 0.05 0.06 5 0.991 6.98 2.61 0.02

1-4 0.16 0.09 0.07 10 0.896 2.72 15.8 0.03

1-5 0.19 0.09 0.07 11 0.980 0.30 5.88 0.02

1-6 0.04 0.03 0.08 8 0.999 2.81 0.06 0.08

1-7 0.15 0.11 0.46 9 0.987 8.00 4.16 0.02

1-8 0.05 0.03 0.00 6 0.998 1.56 9.15 0.00

1-9 0.26 0.15 0.46 10 0.994 82.4 44.3 0.02

1-10 0.20 0.11 0.28 9 0.999 32.0 24.8 0.11

1-11 0.11 0.03 0.08 6 0.986 72.8 28.6 0.14

1-12 0.05 0.04 0.00 6 0.993 5.71 8.36 0.00

1-13 0.12 0.03 1.24 10 0.997 13.9 2.85 0.71

1-14 0.05 0.03 0.00 11 0.999 1.97 2.21 0.00

Median 0.11 0.04 0.05 7.5 0.997 6.59 10.8 0.02

Table 6: Estimated infusion, clearance and basal secretion rates, number of secretory events
and the squares of multiple correlation coefficients (R2) for the fits of the simulated
GH data from Dataset 2 at a SNR of 20 dB.

Participant βI(min
−1) βC(min−1) ρ(ngml ) N R2 |βI−β̂I |

βI
(%) |βC−β̂C |

βC
(%) |ρ− ρ̂|(ngml )

2-1 0.12 0.04 0.07 5 0.995 24.8 13.0 0.00

2-2 0.23 0.03 0.02 8 0.987 379 36.9 0.02

2-3 0.05 0.04 0.00 6 0.994 14.5 4.46 0.07

2-4 0.15 0.05 0.47 9 0.992 10.0 21.9 0.15

Median 0.08 0.04 0.01 7 0.998 13.4 12.4 0.06

4 Discussion

4.1 Reporting GH Metrics

Our method successfully fit experimental and simulated GH data from 18 participants:

14 healthy adolescents and four adolescents with mild OSA who used a CPAP machine

during sleep. From our analysis of these 18 experimental sleep episodes, we identified an

average of seven hormonal secretory events per episode. This is greater than twice the

average number of secretory events observed by Klerman et al. [20] and by Nindl et al. [28]
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Figure 38: Average percent error in the estimation of GH infusion (βI) and clearance (βC)
rates vs. SNR (dB)

Figure 39: Average Percent Error in the l0−, l1− and l2-Norms of u vs. SNR (dB). The red
circles correspond to the average percent error in the l0-norms of u, the green
squares correspond to the average percent error in the l1-norms of u and the
blue triangles correspond to the average percent error in the l2-norms of u.
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and nearly half the number observed by Ho et al. [16] and Berg et al. [34] using data from

healthy adults. Additionally, we found the average estimated GH infusion and clearance

rates are 0.11 min−1 and 0.07 min−1, respectively; Klerman et al. [20] observed average

GH infusion and clearance rates of 0.02 min−1 for both parameters. The variations of the

model parameters and number of secretory events between studies is most likely due to the

different ages of the study populations [39].

4.2 Study Limitations

We hypothesize that the R2 < 0.90 in at least one of four participant’s experimen-

tal datasets is due to the Gaussian noise present in those particular blood samples. The

quantile-quantile plot displayed Figure 19 demonstrate the Gaussian nature of the noise

present in the observed GH signal, making the estimation of model parameters and hormone

pulses difficult for our sparse recovery algorithm. The CVs of the Elecsys GH immunoassay

indicate that the GH data collected are likely both reproducible and robust. However, we do

not have the standard deviations of noise related to the GH assay used in this experiment.

As a result, we simulated GH data at ten different noise levels to evaluate the performance

of our algorithm. If we had the noise levels for each GH assay performed, then we could

simulate GH data with comparable noise levels to the experimental one.

4.3 Potential Areas of Improvement

The algorithm produces accurate estimations of model parameters for noise levels less

than 20 dB (Figure 39). At a SNR greater than or equal to 20 dB, our algorithm performed

well on most simulated GH data, with less than 20% error on average in the estimation

of model parameters. Nevertheless, the nonconvexity of the optimization problem and the

existence of many local minima can cause our algorithm to converge to a solution other

than the ground-truth and produce a large error in the estimation of model parameters. At

a SNR of 20 dB, there is a single outlier of 379% error in the estimation of the GH infusion

rate. While the GH infusion and clearance rates are constrained to physiologically plausible
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values, the lower bound is close to zero, yielding model-estimated parameters close to zero

in some cases. Therefore, a small absolute error can lead to a large percentage error. For

example, the absolute error, in this instance, is 0.19 min−1, producing a percentage error of

379%, as the ground-truth GH infusion rate is 0.05 min−1. There are several potential ways

to improve the estimation of model parameters and the timing and amplitude of hormone

pulses: (i) reducing the error introduced by the GH assay procedure itself and (ii) increasing

the sampling rate of GH data, since the rise time of a GH pulse is shorter than its decay,

meaning that our estimation algorithm has less data to estimate the GH infusion rate than

the clearance rate. If a system for noninvasive and continuous sampling (such as exists for

cortisol [29]) were available for GH, then GH detection with a higher sampling frequency

might improve estimation.
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5 Conclusion and Future Work

5.1 Conclusion

In this study, we have demonstrated a robust method for the deconvolution of serum GH

data to obtain physiologically important metrics by formulating an optimization problem

to recover model parameters and GH pulses with physiologically plausible constraints.

We proposed a two-step coordinate descent approach, incorporating sparse recovery for

GH secretory events and the interior point method for model parameters. We also imple-

mented GCV to obtain regularization parameters, balancing the residual error against the

sparsity of GH secretory events. Finally, we demonstrated the effectiveness of a previously

used (on other pulsatile hormone data sets) sparse recovery framework for GH.

5.2 Future Work

Using these methods, we can, in future studies, examine the relationship between GH

pulse onset and/or pulse amplitude with sleep stage or other physiological events and the

effect of sleep disruption, other physiological events, or clinical or other interventions on GH

secretory parameters in different ages and populations and in normal and pathophysiological

states.
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