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Abstract

Despite the undeniable importance of energy in the modern world, the majority of

today’s energy sources are unsustainable which has environmental drawbacks such as

global climate warming. Increasing sustainable energy efficiency through optimization

of resources has become one of the major goals of the century due to the potential

economical and environmental benefits. The analysis, design, implementation, and

use of computer science models for developing energy efficient management plans are

referred to as sustainable energy informatics. In this dissertation, three optimization

and data mining approaches for sustainable energy applications are proposed. These

problems deal with analyzing data under uncertainty to make a robust and reliable

decision.

The first approach presents the multiple instance classification problem with ap-

plication in wind farm site locating. Hard margin loss formulations that minimize

the number of misclassified instances are proposed to model more robust represen-

tations of outliers. Although the problem is NP-hard, medium sized problems can

be solved to optimality in reasonable time using integer programming and constraint

programming formulations. For larger problems a three phase heuristic algorithm is

proposed which is shown to have superior generalization performance compared to

other approaches.

Second, a layout optimization framework for offshore wind farms is proposed under

widely accepted assumptions. Although wind has less environmental impact than

conventional sources, onshore wind farms currently supply only 3% of the nation’s

electricity while reducing carbon emissions by 2.5%. Due to higher wind speeds off

the coast, offshore wind farms’ potential for electricity production is typically higher

than onshore counterparts yet relatively more expensive to construct, operate, and
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maintain. We present a rigorous mathematical model that would minimize the cost

of wind energy by examining the trade-off between the advantages of packing the

turbines closer together and the loss generated by wake effects.

The purpose of the last approach is to analyze historical information on the vari-

ables that potentially have a high impact on a response variable. The goal of this

study is to filter out the noise using the common ground information. Considering

monthly natural gas prices, we highlight the strength of a forecasting scheme through

the simultaneous selection of instances and features.
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Chapter 1 Introduction

In times of environmental catastrophes and increasing energy needs, the calls for

clean, cheap, and sustainable power sources are getting louder and more demanding.

Although sustainable energy can produce a level of pollution to some extent, it has less

environmental drawbacks such as global climate change due to carbon emission, air

pollution, large freshwater usage, acid rain, and radioactive waste than other energy

sources. Motivated by this fact, in 2010, the United States invested nearly $243

billion on developing sustainable energy technologies. In the light of these, it is a fact

that customer demand for sustainable energy is increasing. According to a Natural

Marketing Institute (NMI) survey, 55% of American consumers want companies to

increase their use of sustainable energy.

Increasing sustainable energy efficiency through optimization of resources has be-

come one of the major goals of the century for engineers due to its potential economical

and environmental benefits. To achieve this goal, computer models and simulation

techniques undoubtedly play an important role. Sustainable energy informatics can

be defined as the analysis, design, implementation, and use of computer science mod-

els for developing appropriate management plans that increase the energy efficiency

while protecting the environment. In this dissertation, we propose three data mining

and optimization approaches that can be used for sustainable energy applications.

Each approach introduced in this introduction is explained in detail in Chapters 2, 4

and 3.
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1.1 Robust Support Vector Machines for Multiple

Instance Learning

Multiple Instance Learning (MIL) is a supervised machine learning problem, where

class labels are defined on the sets, referred to as bags, instead of individual data in-

stances. Each instance in a negative bag is negative, whereas positive bags may

contain false positives. This notion of bags makes multiple instance learning par-

ticularly useful for numerous interesting applications. For instance, in drug activity

prediction, unless there is at least one effective ingredient (actual positive instance), a

drug (bag) is ineffective (negative labeled). Similarly, in molecular activity prediction,

in order to observe a particular activity (positive labeled) for a molecule (bag), there

has to be at least one conformation (instance) that exhibits the desired behavior (ac-

tual positive). Text categorization deals with matching a document (bag) with a topic

of interest (positive label) based on a set of keywords that have been frequently used

in the same concept (actual positive instances). In image retrieval, pictures with an

object of interest (positive labeled bags) are not expected to include that object in all

segments, but only in subsets (actual positive instances). Image retrieval has many

usages including image preprocessing in shallow water depth retrieval that can be

used to find potential places for building offshore structures. For example, an image

for deep water can be deceiving if there are shallow parts in the picture. So we can

assume deep is positive class. If there is one segment of the picture that is deep, we

assume it is deep and good for building structures although there are shallow places

(which may even be better). But if it is all shallow, that implies the place is likely to

take less wind.

A robust approach for MIL based on hard margin Support Vector Machine (SVM)

formulations is presented in this dissertation. Our approach uses hard margin loss

function. Several IP and CP formulations are developed and compared in terms of
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time performance and a three-phase heuristic algorithm is developed to be used for

large scale date sets. Cross validation results show that our approach provides more

accurate predictions than a traditional SVM approach to MIL.

We used offshore wind farm site location data to show the implementation of

our method. To find a location to build a wind farm a decision maker will use

different variables like wind speed, wind availability, water temperature, depth of

water, pressure, precipitation, wave speed, wave height, and distance to shore. In

different locations of a site these variables are different and a decision maker may

decide to invest on that site based on the overall output of our model.

1.2 Offshore Wind Farm Layout Optimization

As energy consumption across the globe continues to increase, non-renewable en-

ergy sources attract both economic and environmental concerns. These concerns

create a strong motivation for researchers to improve upon the renewable energy pro-

duction methods currently available. Approximately 82% of the United States’ energy

in 2010 was provided by fossil fuels, while only 8% came from renewable sources [88].

Wind energy represents an important renewable energy resource, as wind turbines do

not produce CO2 emissions, and are entangled with few other environmental or social

concerns. With the relative abundance of wind as an energy resource and a short list

of side effects, wind energy itself is seemingly one of the most important investments

that will be made in renewable energy production in the near future.

Two main forms of wind energy production include onshore and offshore wind

farms. With steadily growing populations in countries such as the United States of

America, there is an ensuing increase in population density near shorelines and major

cities. This inherently limits the locations that can be identified for building onshore

wind farms, and illuminates environmental concerns; birds, bats, noise pollution,
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aesthetics, etc. Offshore wind farms, however, provide for a reduction in the potential

side effects, and increase the feasible locations for future wind farms to be built.

Placing the wind farms offshore also allows for larger turbines to be built that will

utilize the higher wind speeds off the coast for a larger capacity of energy production.

In 2008, the U.S. Offshore Wind Collaborative (USOWC) was launched, drawing

representatives from many agencies and organizations [89]. This collaborative effort

has the potential to accelerate growth in the offshore wind farm industry in the United

States of America.

Offshore wind farms require more protection and support based on the depth of

the water they inhabit and the harshness of conditions at sea. Current methods of

supporting their foundations are extremely expensive, having a cost that increases

proportionally with the depth of the water. There are also environmental impacts to

consider. These farms have the potential to interfere with migration patterns of birds,

and their foundations may also act as artificial reefs, increasing fish populations, which

would likely increase the bird population in the area. Moreover, such wind farms may

interfere with shipping or flight patterns, where corrective measures would be required

to remove or reduce these threats. Desholm and Kahlert [21] perform a study on the

ability of ducks and geese to identify and avoid wind turbines on an offshore wind

farm that resided within their natural migratory pattern. Their study was conducted

in the western part of the Baltic Sea near southern Denmark, and the results showed

that less than 1% of the ducks and geese continued to migrate close enough to the

turbines for there to be a risk of collision. Therefore, Desholm and Kahlert [21] show

that the avian collision risk is relatively low, but should be considered nonetheless.

Among the environmental and social concerns relevant to offshore wind farms, eco-

nomic concerns such as the specifically high operational and maintenance costs must

be studied. The so-called wake effect influence, creates an impact to the short-term

performance and the long-term costs of renewable energy wind farms that requires
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prudence in the optimization of wind farm layouts. Renkema [69] considers the wake

effect in renewable energy wind farms. This effect is created behind the wind turbine,

resulting in a deceleration of wind speed and an increase in turbulence within that

new airflow. Onshore wind farms are claimed to be unsuitable with any confidence

to provide validation datasets for the wake effect, while this is not true for offshore

wind farms [32]. This is mainly due to the lesser variation of wind speeds offshore

compared to onshore. The decrease in wind speed from the wake effect reduces the

performance of the downstream turbines, while the increased turbulence will reduce

the lifetime of the downstream turbines. As a general rule, separating the turbines

by a minimum of 10 rotor diameters will reduce the wake effect to a negligible value

[69]. With initial construction costs being one of the paramount considerations in im-

plementing offshore wind farms, maintaining a balance between the turbine spacing

and the performance losses caused by the wake effect is of particular importance.

As of December 2009, the installed capacity of wind power, currently including

only onshore wind farms, in the U.S. had grown to nearly 35,000 MW, which would

sufficiently power 9.7 million homes. Utilizing this capacity alone reduces the nation’s

production of CO2 an estimated 62 million tons, which can be converted to roughly

10.5 million cars being removed from the roadways [98]. The potential energy pro-

duction of one wind turbine is approximately 1.5 to 3 MW of power [12]. Danielson

[20] states that U.S. wind power capacity grew to 50,000 MW by August 2012, which

could power an estimated 12 million homes each year. Danielson [20] also discloses

that the U.S. wind industry received $14 billion in new investments for U.S. electric

capacity additions in 2011. This shows the considerable growth potential of the wind

industry in the United States. Currently there are no operational offshore wind farms

along the 12,000 miles of coastline in the United States. However, the Cape Wind

project, which is the first offshore wind farm to be permitted for construction off the

coastline of the United States, is scheduled to begin construction in 2013 [13]. Cape
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Wind will provide 130 wind turbines, producing approximately 420 MW of power

using renewable wind energy. This will replace an estimated 113 million gallons of

oil each year in relative nonrenewable energy consumption. With this new addition

to the United States’ energy independence, the research into more cost effective and

efficient wind farm layouts through optimization becomes exceedingly essential to the

economic growth of renewable energy production.

Optimization in wind farm planning is a balance between the maximum perfor-

mance and minimum cost in a wind farm layout. The wake effect plays an important

role in wind farm planning. We present a mathematical model that would minimize

the cost of wind energy by examining the trade-off between the advantages of packing

the turbines close together and the loss generated by wake effects.

1.3 Causal Inference with Simultaneous Denoising

and Feature Selection

Regression is a statistical learning technique that develops a mathematical func-

tion that fits the data. Regression can be used for hypothesis testing, forecasting,

inference, and modeling of relationships. Regression analysis is utilized in various

circumstances and its significance is shown through a wide variety of studies. In its

basic form, the goal of regression is to minimize a loss function that is proportional

to some form of distance between data instances and the regression function. How-

ever, there are ill-posed cases where inevitable outliers affect the regression function

in an undesired way. Our goal in this study is to introduce a novel approach that

can detect outliers and disregard their contribution to the loss function. Using this

approach, we are able to draw causal relations and identify relevant features in cases

where outliers are most abundant such as and multiple-instance and time-series data.

In the framework we consider, data consists of sets of instances that are correlated in
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a way and the number of outliers in each set is bounded above.

One application that fits our framework is learning from images (e.g., image an-

notation) through segmentation. Each picture consists of a set of segments and has

an underlying response (e.g., tumor grade for an MR image). An object to be de-

tected that is relevant to the outcome typically does not appear in the whole image

but in some segments. The goal is to identify segment(s) that is/are correlated with

the response, disregarding the rest of the segments from the same picture. Another

application is molecular activity monitoring, where each molecule has one response

that measures it’s effectiveness on a certain activity/target. However, molecules are

found in different conformations and the desired underlying effect is highlighted by

only certain conformations. Likewise, in drug activity prediction, the aim is to find the

ingredients that are responsible for the desired effect and disregard the rest. Mining

time-series data is another area that can benefit from our framework.

One common problem with time-series data is that it rarely behaves ideally. It

would be surprising to see no deviations from expected time points for certain activ-

ities (e.g., seizure time on EEG data, recession on stock market data) or finding a

data set with no outliers. Time warping methods can solve the former problem to

a certain extent but our approach targets both of these issues. Instead of handling

single readings, multiple readings over a time window is to be considered. Readings

in a small neighborhood are considered as a candidate for the underlying activity (re-

sponse) during this timeframe and the remaining instances are to be disregarded. It

should be noted that, information lost by disregarding some instances is expected to

be minimal if the neighborhood is defined in a way that conforms to the nature of the

data. The frequency of data may not be uniform for all features and/or some features

may be available as averages over a timeframe. In these cases, the neighborhood can

be defined as the greatest common divisor of the frequencies and responsible instances

are to be detected that utilize the most suitable combination of average attributes
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as well as instantaneous readings. For example, suppose we have daily readings for

weather temperature together with weekly number of seizures for an epilepsy patient.

Note that, features in F̄ take the same value for all data instances in the same week.

The response may be available daily or weekly. We propose selecting one daily read-

ing from each week (disregarding the remaining readings of the week), which defines

underlying response through features in both F and F̄. The idea is to eliminate the

effect of sudden changes in F that cannot be supported by F̄ as we would expect in

a setting where features are available in a uniform frequency.

We use natural gas price data for computational results purposes. We want to

analyze historical information on the variables that potentially have a high impact on

the supply and demand for natural gas, as well as the price ($/MMBTU1 at Henry

Hub) since this model for natural gas price (Henry Hub price) is extremely useful

because of its potential economical benefits for industries. Natural gas is the best

fossil fuel source available to reduce greenhouse gas emissions. It emits 45% less CO2

than coal and 27% less CO2 than oil. Despite a 70% increase in number of houses using

natural gas since 1970, greenhouse gas emissions have decreased 40% per household.

Therefore, America’s natural gas customers are helping the environment on carbon

reduction and their leading in energy efficiency. Natural gas is an important ingredient

for production of many other sustainable energy sources. It is used to manufacture

lightweight steel for fuel-efficient cars and trucks, to produce hydrogen for fuel cells,

as a component of windmill blades for wind energy and to grow the corn needed for

ethanol. Natural gas is also a backup fuel source for intermittent solar and wind

energy. We use our optimization algorithm to simultaneously remove noise and select

actual features affecting natural gas price.
1MMBTU: One million British thermal units. One British thermal unit is approximately 1055

joules.
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1.4 Chapter Organization

This dissertation is divided into five chapters. We introduce the brief background

and motivation as well as the problem definition in Chapter 1. In Chapter 2 an

extensive literature review of robust support vector machines and multiple instance

learning are presented. We first formulate the problem using different linear and

nonlinear integer programming and constraint programming approaches. Next, we

develop a three-phase heuristic. The performance of our approach in terms of time

and generalization is shown in the computational result part of this chapter. Offshore

wind farm layout optimization is studied in Chapter 3. Two different formulations are

proposed that consider wake effect model in locating the wind turbines. We show the

cost per energy result for two available public data set and illustrate the best layout

for each of them. In Chapter 4 we first present a literature review for regression and

feature selection approaches. Next, we explain our linear and nonlinear regression

with denoising formulations and develop an algorithm to do feature selection while

denoising the data. Finally, natural gas data have been used to show the performance

of our approach. In Chapter 5, we summarize our research and then, the future work

of this research is explained.
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Chapter 2 Robust Support Vector Machines

for Multiple Instance Learning

2.1 Introduction

As explained, multiple instances learning can be used for image retrieval of energy

related images. To solve this classification problem for MIL data, a number of different

approaches have been proposed. Employed methods include diverse density, decision

trees, nearest neighbor algorithm, and support vector machines. In this dissertation,

we propose a robust approach for MIL based on hard margin Support Vector Machine

(SVM) formulations1. Cross validation results show that our approach provides more

accurate predictions than a traditional SVM approach to MIL. In general, the term

robustness implies a non-drastic change in performance under different settings such

as noisy environment or worst case scenario depending on the context. In the context

of classification, we use robustness to indicate minimal influence of outliers on the

classifier, thus better generalization performance.

This chapter is organized as follows: In Section 2.2, we provide basics of SVM

with different loss functions, MIL, and a brief literature survey. Section 2.3 defines

the problem and presents exact integer programing and constraint programming for-

mulations. In Section 2.4, we propose a three-phase heuristic to be used for larger

problems for both linear and nonlinear classification. Section 2.5 presents the op-

timality performance of our heuristic and cross validation results for the proposed

approach on linear and nonlinear classification of publicly available data sets. In or-

der to show the hard margin loss is of the essence for robustness, we also demonstrate

cross validation results for linear classification using hinge loss, ramp loss, and hard
1An earlier version of this chapter is published in [66]
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margin loss on randomly generated data sets. We used offshore wind farm site loca-

tion data to show the implementation of our method. We provide brief summary in

Section 2.6.

2.2 Background

2.2.1 Support Vector Machines

SVMs are supervised machine learning methods that are originally used to clas-

sify pattern vectors which belong to two linearly separable sets from two different

classes [90]. The classification is achieved by a hyperplane that maximizes the dis-

tance between the convex hulls of both classes. Although extensions are proposed

for regression and multi-class classification, SVMs are particularly useful for binary

(2-class) classification due to strong fundamentals from the statistical learning theory,

implementation advantages (e.g., sparsity), and generalization performance. When

misclassified instances are penalized in the linear form, SVM classifiers are proven

to be universally consistent [79]. A classifier is consistent if the probability of mis-

classification (in expectation) converges to a Bayes’ optimal rule when the number of

data instances increase. A classifier is universally consistent if it is consistent for all

distributions of data. SVMs can also perform nonlinear classification utilizing sepa-

rating curves by implicitly embedding original data in a nonlinear space using kernel

functions. SVMs have a wide range of applications including pattern recognition [11],

text categorization [40], biomedicine [9, 47, 63], brain-computer interface [58, 47], and

financial applications [87, 35].

In a typical binary classification problem, class S+ and S− are composed of pattern

vectors xi ∈ Rd, i = 1, . . . , n. If xi ∈ S+, it is given the label yi = 1; if xi ∈ S−,

then it is given the label yi = −1. The ultimate goal is to determine which class a

new pattern vector xi 6∈ {S+ ∪ S−} belongs to. SVM classifiers solve this problem
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by finding a hyperplane (w, b) that separates instances in classes S+ and S− with

the maximum interclass margin. The original hinge loss 2-class SVM problem is as

follows:

min
w,b,ξ

1
2‖w‖

2 + C
∑
i

ξi ∈ I (2.1a)

subject to yi(〈w,xi〉+ b) ≥ 1− ξi ∀i ∈ I (2.1b)

ξi ≥ 0 ∀i ∈ I. (2.1c)

In this formulation, w is the normal vector and b is the offset parameter for the

separating hyperplane. ξi are slack variables for misclassified pattern vectors and I is

a set of all instances. The goal is to maximize the interclass margin 2 and minimize

misclassification. The role of scalar C in the objective function is to control the trade-

off between margin violation and regularization. It should be noted that parameter

C might differ for positive and negative class (e.g., C1 and C2) to cover unbalanced

classification problems.

Lagrangian dual formulation for (2.1) leads to an optimization problem where in-

put vectors only appear in the form of dot products and a suitable kernel function can

be introduced for nonlinear classification [19]. This dual problem is a concave maxi-

mization problem, which can be solved efficiently. The dual for hinge loss formulation

in (2.1) is given as

max
α,b

∑
i

αi −
1
2
∑
i

∑
j

yiyjαiαj〈xi,xj〉 (2.2a)

subject to
∑
i

yiαi = 0 (2.2b)

0 ≤ αi ≤ C ∀i ∈ I. (2.2c)

2Maximizing interclass margin is identical to minimizing ‖w‖ when functional distance 〈w,xi〉+b
is bounded as in (2.1b). See [90] for details.
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Using a hinge loss function for ξi as in (2.1a) or a quadratic loss function results

in an increased sensitivity to outliers due to penalization of continuous measure of

misclassification [8, 86, 101]. Different loss functions are proposed in the literature

to model a better representation of the outliers that leads to more robust classifiers.

These functions ensure that the distance from the hyperplane has a limited (if any)

effect on the quality of the solution for misclassified instances. For instance, hard

margin loss considers the number of misclassifications instead of their distances to

the hyperplane [8]. Minimizing the number of misclassified points is proven to be

NP-hard [14]. Orsenigo and Vercellis [64] use a similar approach called discrete

SVM (DSVM), and propose a heuristic algorithm to generate local optimum decision

trees. Recently, Brooks [8] formulate the hard margin loss formulation using a set of

binary variables vi, which are equal to one if the instance is misclassified,

min
w,b,v

1
2‖w‖

2 + C
∑
i

vi (2.3a)

subject to yi(〈w,xi〉+ b) ≥ 1, if vi = 0 ∀i ∈ I (2.3b)

vi ∈ {0, 1} ∀i ∈ I. (2.3c)

Constraints (2.3b) can be linearized using a sufficiently large constant M as follows:

min
w,b,v

1
2‖w‖

2 + C
∑
i

vi (2.4a)

subject to yi(〈w,xi〉+ b) ≥ 1−Mvi ∀i ∈ I (2.4b)

vi ∈ {0, 1} ∀i ∈ I. (2.4c)

In SVM classifiers, functional distance (i.e., 〈w,xi〉+b) is expected to be equal to 1

(−1) for correctly classified positive (negative) labeled instances that provide support.

Therefore, a positive and a negative labeled instance can be on the desired sides of

the hyperplane yet incur misclassification penalties when functional distances are in

(0, 1) and (−1, 0), respectively. In order to smooth out this effect, an approach is to
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penalize misclassified instances with a functional distance in (−1, 1) based on their

distance and incur a fixed penalty for those out of (−1, 1) range [8, 56]. This approach

is called ramp loss or robust hinge loss, which can be formulated as

min
w,b,ξ,v

1
2‖w‖

2 + C(
∑
i

ξi + 2
∑
i

vi) (2.5a)

subject to yi(〈w,xi〉+ b) ≥ 1− ξi, if vi = 0 ∀i ∈ I (2.5b)

vi ∈ {0, 1} ∀i ∈ I (2.5c)

0 ≤ ξi ≤ 2 ∀i ∈ I, (2.5d)

where the conditional constraint (2.5b) can be linearized using M as follows:

min
w,b,ξ,v

1
2‖w‖

2 + C(
∑
i

ξi + 2
∑
i

vi) (2.6a)

subject to yi(〈w,xi〉+ b) ≥ 1− ξi −Mvi ∀i ∈ I (2.6b)

vi ∈ {0, 1} ∀i ∈ I (2.6c)

0 ≤ ξi ≤ 2 ∀i ∈ I. (2.6d)

Shen et al. [78] use optimization with ramp loss but the solution method does

not guarantee global optimality. Xu et al. [101] solve the non-convex optimization

problem using semi-definite programming techniques but state that the procedure

works inefficiently. Wang et al. [95] propose a concave-convex procedure (CCCP) to

transform the associated non-convex optimization problem into a convex problem and

use Newton optimization technique in the primal space. Next, we focus on MIL and

present methods that are employed highlighting a set of SVM studies.
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2.2.2 Multiple Instance Learning

The MIL setting is introduced by Dietterich et al. [22] for the task of drug activity

prediction and design. Same setting has also been studied for applications such as

identification of proteins [85], content based image retrieval [106], object detection

[94], prediction of failures in hard drives [60] and text categorization [3]. In contrast

to a typical classification setting where instance labels are known with certainty, MIL

deals with uncertainty in labels. In multiple instance binary classification, a positive

bag label shows that there is at least one actual positive instance in the bag which

is a witness for the label. On the other hand, all instances in a negative bag must

belong to the negative class so there is no uncertainty on negative labeled bags.

Several methods have been applied to solve MIL problems, from expectation max-

imization methods with diverse density (EM-DD) [15, 105], to deterministic annealing

[29], to extensions of k-NN, citation k-NN, and diverse density methods [23], to kernel

based SVM methods [3].

SVM methods have first been employed by Andrews et al. [3] for MIL. In this

study, integer variables are used to indicate witness status of points in positive bags.

Witness point has to be placed on the positive side of the decision boundary, otherwise

a penalty is incurred. Selecting each of these representations leads to a heuristic for

solving the resulting mixed-integer program approximately. In contrast, Mangasarian

and Wild [52] introduce continuous variables to represent the convex combination of

each positive bag, which must be placed on the positive side of the separating plane.

This representation leads to an optimization problem that contains both linear and

bilinear constraints, which is solved to a local optimum solution through a linear

programming algorithm. An integer programming formulation that penalizes negative

labeled instances without a bag notion is proposed in [44]. The setting leads to a

maximum margin hyperplane between a selection of instances from positive bags and
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all instances from negative bags. This problem is proven to be NP-hard and a branch

and bound algorithm is proposed.

Next, we introduce our robust classification approach through different hard mar-

gin loss formulations for MIL.

2.3 Mathematical Modeling

Despite the large number of approaches for MIL, to the best of our knowledge,

our study is the first one that utilizes a robust SVM classifier for MIL. Instead of

a continuous measure for misclassification, we use a hard margin loss formulation

and minimize the number of misclassified instances to overcome the aforementioned

outlier sensitivity issue.

The data consists of pattern vectors (instances) xi ∈ Rd, i = 1, . . . , n and bags

j = 1, . . . ,m. Each data instance belongs to one bag. Bags are labeled positive or

negative and sets of positive and negative bags are represented as J+ = {j : yj = 1}

and J− = {j : yj = −1}, respectively. Note that, labels yj are associated with bags,

rather than instances. Next, we introduce instances in positive and negative bags as

I+ = {i : i ∈ Ij ∧ j ∈ J+}, I− = {i : i ∈ Ij ∧ j ∈ J−}, respectively. The goal in

our robust SVM model is to maximize the interclass margin where a fixed penalty

(independent from the distance) is incurred for a bag if

• the bag is positive labeled and all instances in the bag are misclassified (on the

negative side),

• the bag is negative labeled and at least one instance in the bag is misclassified

(on the positive side).

Here we present three integer programming and two constraint programming formu-

lations for the described model.
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2.3.1 Integer Programming Formulations

In order to use hard margin loss for multiple instance data, we define a set of

variables ηi to indicate actual positive instances from each positive bag. ηi is one when

we select positive instance i (as witness) and zero otherwise. We consider one selected

instance from each positive bag as the witness of all instances in that bag. In order to

incorporate the effect of misclassifying a bag in the objective function, we introduce

two sets of variables v+
j , v

−
j that indicate misclassification of positive and negative

bags, respectively. A positive bag is misclassified (v+
j = 1) if all the instances in that

positive bag is misclassified (vi = 1 ∀i ∈ Ij, j ∈ J+). A negative bag is misclassified

(v−j = 1) if at least one instance in that bag is misclassified (∃i ∈ Ij, j ∈ J−|vi = 1).

Therefore, the multiple instance hard margin SVM (MIHMSVM) can be formulated

as follows:

MIHMSVM min
w,b,η,v,v−

1
2‖w‖

2 + C
∑
j∈J−

v−j + C
∑
i∈I+

vi (2.7a)

subject to − (〈w,xi〉+ b) ≥ 1−Mvi ∀i ∈ I− (2.7b)

〈w,xi〉+ b ≥ 1−Mvi −M(1− ηi) ∀i ∈ I+ (2.7c)∑
i∈Ij

ηi = 1 ∀j ∈ J+ (2.7d)

vi ≤ v−j ∀j ∈ J−, i ∈ Ij (2.7e)

0 ≤ v−j ≤ 1 ∀j ∈ J− (2.7f)

vi ∈ {0, 1} ∀i ∈ I+ ∪ I− (2.7g)

ηi ∈ {0, 1} ∀i ∈ I+. (2.7h)

In this formulation, (2.7c) is always satisfied for all positive instances that are not

witnesses (i.e., ηi = 0), which sets vi = 0 due to nature of the objective function.

Therefore, only the witness of a positive bag with ηi = 1 might deteriorate the

objective function. This ensures that a positive bag does not incur any penalty if at
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least one instance is correctly classified. On the other hand, vi values for negative

instances are calculated as in a typical classification problem. However, (2.7e) ensures

that the maximum of these values are penalized in the objective function and a

negative bag does not incur a penalty if all instances are correctly classified. It should

be noted that MIHMSVM is NP-hard since a special case with a single instance in

each bag is proven to be NP-hard [52].

This formulation utilizes 2|I+| + |I−| binary variables and |J−| continuous vari-

ables. Instead of using constraints (2.7e), we can use the binaries inside separation

constraints directly. This will not only reduce the number of binary variables, but

eliminate the need for continuous variables as well. We obtain a simpler formulation

with 2|I+|+ |J−| binary variables as follows:

IP1 min
w,b,η,v,v−

1
2‖w‖

2 + C
∑
j∈J−

v−j + C
∑
i∈I+

vi (2.8a)

subject to − (〈w,xi〉+ b) ≥ 1−Mv−j ∀j ∈ J−, i ∈ Ij (2.8b)

〈w,xi〉+ b ≥ 1−Mvi −M(1− ηi) ∀i ∈ I+ (2.8c)∑
i∈Ij

ηi = 1 ∀j ∈ J+ (2.8d)

vi, ηi ∈ {0, 1} ∀i ∈ I+ (2.8e)

v−j ∈ {0, 1} ∀j ∈ J−. (2.8f)

Next formulation, influenced by Mangasarian and Wild [52], considers the fact

that it is enough to select the instances with minimum misclassification from positive

bags. Therefore, we utilize variables v+
j , for positive bags that shows the minimum

misclassification associated with that bag. By penalizing this variable in the objective

function, we obtain
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min
w,b,η,v,v+,v−

1
2‖w‖

2 + C
∑
j∈J−

v−j + C
∑
j∈J+

v+
j (2.9a)

subject to − (〈w,xi〉+ b) ≥ 1−Mv−j ∀j ∈ J−, i ∈ Ij (2.9b)

〈w,xi〉+ b ≥ 1−Mvi ∀i ∈ I+ (2.9c)

v+
j =

∑
i∈Ij

ηivi ∀j ∈ J+ (2.9d)

∑
i∈Ij

ηi = 1 ∀j ∈ J+ (2.9e)

v+
j ∈ {0, 1} ∀j ∈ J+ (2.9f)

v−j ∈ {0, 1} ∀j ∈ J− (2.9g)

vi, ηi ∈ {0, 1} ∀i ∈ I+. (2.9h)

In order to linearize (2.9d), we introduce new variables ẑi that should be equal to

ηivi. We relax the integrality of ηi and v+
i and come up with the following formulation

with |I+|+ |J−| binary variables:
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IP2 min
w,b,η,v,v+,v−,ẑ

1
2‖w‖

2 + C
∑
j∈J−

v−j + C
∑
j∈J+

v+
j (2.10a)

subject to − (〈w,xi〉+ b) ≥ 1−Mv−j ∀j ∈ J−, i ∈ Ij (2.10b)

〈w,xi〉+ b ≥ 1−Mvi ∀i ∈ I+ (2.10c)

v+
j =

∑
i∈Ij

ẑi ∀j ∈ J+ (2.10d)

ẑi ≥ −1 + ηi + vi ∀i ∈ I+ (2.10e)

ẑi ≤ vi ∀i ∈ I+ (2.10f)

ẑi ≤ ηi ∀i ∈ I+ (2.10g)∑
i∈Ij

ηi = 1 ∀j ∈ J+ (2.10h)

0 ≤ v+
j ≤ 1 ∀j ∈ J+ (2.10i)

0 ≤ ẑi ≤ 1 ∀i ∈ I+ (2.10j)

0 ≤ ηi ≤ 1 ∀i ∈ I+ (2.10k)

v−j ∈ {0, 1} ∀j ∈ J− (2.10l)

vi ∈ {0, 1} ∀i ∈ I+. (2.10m)

It should be noted that constraints (2.10f) and (2.10g) are redundant since the sum-

mation of ẑi is to be minimized.

Next, we obtain a novel formulation using the number of instances in positive bags

to identify positive bag witnesses. Our experience with the following formulation is

that it is far superior compared to IP1 and IP2. We use the fact that, a positive

bag is misclassified if all instances in that bag are misclassified, i.e., ∑i∈Ij vi = |Ij|.

We also relax the integrality of v+
i and obtain a formulation with |I+| + |J−| binary

variables:
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IP3 min
w,b,v,v+,v−

1
2‖w‖

2 + C
∑
j∈J−

v−j + C
∑
j∈J+

v+
j (2.11a)

subject to − (〈w,xi〉+ b) ≥ 1−Mv−j ∀j ∈ J−, i ∈ Ij (2.11b)

〈w,xi〉+ b ≥ 1−Mvi ∀i ∈ I+ (2.11c)

v+
j ≥

∑
i∈Ij

vi − |Ij |+ 1 ∀j ∈ J+ (2.11d)

0 ≤ v+
j ≤ 1 ∀j ∈ J+ (2.11e)

v−j ∈ {0, 1} ∀j ∈ J− (2.11f)

vi ∈ {0, 1} ∀i ∈ I+. (2.11g)

Suppose j′ is a positive bag with |Ij′| instances. When all of the instances in the

bag are misclassified (i.e., vi = 1, ∀i ∈ Ij′) then
∑
i∈Ij′ vi = |Ij′| and v+

i = 1 is forced.

Otherwise, ∑i∈Ij′ vi ≤ |Ij′| + 1 and v+
i will be free and set to 0 due to the objective

function.

Next, we present two constraint programming formulations for benchmarking pur-

poses. In contrast to integer programming approaches, constraint programming pri-

oritize exploiting special functions and finding a feasible solution during the compu-

tational procedure.

2.3.2 Constraint Programming Formulations

In order to evaluate the performance of IP formulations and take advantage of

the special structure of the problem, we introduce two constraint programming for-

mulations. IBM ILOG CPLEX CP Optimizer [37] is employed that utilize robust

constraint propagation and search algorithms.

Our first constraint programming formulation is as follows:
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CP1 min
w,b,v+,v−

1
2‖w‖

2 + C
∑
j∈J−

v−j + C
∑
j∈J+

v+
j (2.12a)

subject to − (〈w,xi〉+ b) ≥ 1 ∨ v−j ≥ 1 ∀j ∈ J−, i ∈ Ij (2.12b)∨
i∈Ij
〈w,xi〉+ b ≥ 1 ∨ v+

j ≥ 1 ∀j ∈ J+ (2.12c)

0 ≤ v−j ≤ 1 ∀j ∈ J− (2.12d)

0 ≤ v+
j ≤ 1 ∀j ∈ J+. (2.12e)

In CP1, (2.12b) is defined for all negative labeled instances and ensures that each

negative labeled instance is correctly classified OR its corresponding bag is misclas-

sified (i.e., v−j = 1). On the other hand, (2.12c) is defined for all positive bags and

forces either one of the instances in the bag to be correctly classified OR the bag is

misclassified (i.e., v+
j = 1).

Next, we propose a hybrid approach using constraint programming with the con-

straint set from a fast IP implementation, IP3. The formulation is as follows:

CP2 min
w,b,v,v+,v−

1
2‖w‖

2 + C
∑
j∈J−

v−j + C
∑
j∈J+

v+
j (2.13a)

subject to − (〈w,xi〉+ b) ≥ 1 ∨ v−j ≥ 1 ∀j ∈ J−, i ∈ Ij (2.13b)

〈w,xi〉+ b ≥ 1 ∨ vi ≥ 1 ∀i ∈ I+ (2.13c)

v+
j ≥

∑
i∈Ij

vi − |Ij |+ 1 ∀j ∈ J+ (2.13d)

0 ≤ v−j ≤ 1 ∀j ∈ J− (2.13e)

0 ≤ v+
j ≤ 1 ∀j ∈ J+ (2.13f)

0 ≤ vi ≤ 1 ∀i ∈ I+. (2.13g)

In CP2, constraints on bag misclassification are partially adapted from CP1 and
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IP3. Next, we present the nonlinear hard margin loss formulation for MIL.

2.3.3 Nonlinear Classification

By making the substitution w = ∑n
i=1 yixiαi with nonnegative αi variables for

i = 1, . . . , n in (2.7), we obtain the following nonlinear classification formulation for

multiple instance hard margin SVM:

NLMIHMSVM min
α,b,η,v,v−

1
2

n∑
i=1

n∑
j=1

yiyj〈xi,xj〉αiαj + C
∑
j∈J−

v−j + C
∑
i∈I+

vi (2.14a)

subject to −
n∑
j=1

yj〈xj ,xi〉αj − b ≥ 1−Mvi ∀i ∈ I− (2.14b)

n∑
j=1

yj〈xj ,xi〉αj + b ≥ 1−Mvi −M(1− ηi) ∀i ∈ I+ (2.14c)

αi ≥ 0 ∀i ∈ I+ ∪ I− (2.14d)

αi ≤Mηi ∀i ∈ I+ ∪ I− (2.14e)∑
i∈Ij

ηi = 1 ∀j ∈ J+ (2.14f)

vi ≤ v−j ∀j ∈ J−, i ∈ Ij (2.14g)

vi ∈ {0, 1} ∀i ∈ I+ ∪ I− (2.14h)

0 ≤ v−j ≤ 1 ∀j ∈ J− (2.14i)

ηi ∈ {0, 1} ∀i ∈ I+. (2.14j)

The use of (2.14) is that the original data can be embedded in a nonlinear space

by replacing the dot products with a suitable kernel function K in (2.14a), (2.14b),

and (2.14c). It should be noted that (2.14e) ensures instances that are not selected

do not play a role on the hyperplane. Therefore, for a given set of η values, the

formulation reduces to the hard margin loss formulation in [8].

Note that, both linear and nonlinear formulations presented in this section can
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utilize different penalty terms to solve unbalanced classification problems. Next, we

present formulations for different loss functions for the multiple instance classification

problem.

2.3.4 Multiple Instance Classification with Hinge and Ramp

Loss

In this section, we develop formulations for multiple instance hinge loss support

vector machines and multiple instance ramp loss support vector machines for bench-

marking purposes.

In order to incorporate bags in the objective function of hinge loss SVM, i.e.,

formulation (2.1), two sets of new variables ξ+
j , ξ

−
j are introduced that incorporate

the positive and negative bag misclassification, respectively. ξ+
j should be equal to

minimum ξi in each positive bag to select the actual positive of that bag. For negative

bags, ξ−j should be greater than or equal to each instance’s ξi in that bag. Therefore,

the problem can be formulated as

min
w,b,ξ,ξ+,ξ−,η

1
2‖w‖

2 + C(
∑
j∈J−

ξ−j +
∑
j∈J+

ξ+
j ) (2.15a)

subject to − (〈w,xi〉+ b) ≥ 1− ξi ∀i ∈ I− (2.15b)

〈w,xi〉+ b ≥ 1− ξi ∀i ∈ I+ (2.15c)

ξ+
j =

∑
i∈Ij

ηiξi ∀j ∈ J+ (2.15d)

∑
i∈Ij

ηi = 1 ∀j ∈ J+ (2.15e)

ξi ≤ ξ−j ∀j ∈ J−, i ∈ Ij (2.15f)

ηi ∈ {0, 1} ∀ i ∈ I+ (2.15g)

ξi ≥ 0 ∀i ∈ I+ ∪ I−, (2.15h)
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which can be linearized as

MIHLSVM min
w,b,ξ,ξ+,ξ−,η,z

1
2‖w‖

2 + C(
∑
j∈J−

ξ−j +
∑
j∈J+

ξ+
j ) (2.16a)

subject to − (〈w,xi〉+ b) ≥ 1− ξi ∀i ∈ I− (2.16b)

〈w,xi〉+ b ≥ 1− ξi ∀i ∈ I+ (2.16c)

ξ+
j =

∑
i∈Ij

zi ∀j ∈ J+ (2.16d)

zi ≥ ξi −M(1− ηi) ∀i ∈ I+ (2.16e)

zi ≤ ξi ∀i ∈ I+ (2.16f)

zi ≤Mηi ∀i ∈ I+ (2.16g)∑
i∈Ij

ηi = 1 ∀j ∈ J+ (2.16h)

ξi ≤ ξ−j ∀j ∈ J−, i ∈ Ij (2.16i)

ηi ∈ {0, 1} ∀ i ∈ I+ (2.16j)

zi ≥ 0 ∀i ∈ I+ (2.16k)

ξi ≥ 0 ∀i ∈ I+ ∪ I−. (2.16l)

Next, we formulate ramp loss for MIL. Similar to the previous formulations, vari-

ables ξ+
j , ξ

−
j , v

+
j , v

−
j are defined to incorporate the misclassification of positive and

negative bags with the ramp loss definition discussed in Section (2.2). The resulting

formulation for ramp loss SVM for MIL data is
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min
w,b,ξ,ξ+,ξ−,v+,v−,v,η

1
2‖w‖

2 + C(
∑
j∈J−

ξ−j +
∑
j∈J+

ξ+
j + 2

∑
j∈J−

v−j + 2
∑
j∈J+

v+
j ) (2.17a)

subject to − (〈w,xi〉+ b) ≥ 1− ξi −Mv−j ∀j ∈ J−, i ∈ Ij (2.17b)

〈w,xi〉+ b ≥ 1− ξi −Mvi ∀i ∈ I+ (2.17c)

ξ+
j =

∑
i∈Ij

ηiξi ∀j ∈ J+ (2.17d)

v+
j =

∑
i∈Ij

ηivi ∀j ∈ J+ (2.17e)

∑
i∈Ij

ηi = 1 ∀j ∈ J+ (2.17f)

ξi ≤ ξ−j ∀j ∈ J−, i ∈ Ij (2.17g)

vi, ηi ∈ {0, 1} ∀i ∈ I+ (2.17h)

v+
j ∈ {0, 1} ∀j ∈ J+ (2.17i)

v−j ∈ {0, 1} ∀j ∈ J− (2.17j)

0 ≤ ξi ≤ 2 ∀i ∈ I+ ∪ I−, (2.17k)

which can be linearized using two sets of variables,

γ+
j = ξ+

j + 2v+
j ∀j ∈ J+

γ−j = ξ−j + 2v−j ∀j ∈ J−,

as follows:
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MIRLSVM min
w,b,ξ,γ+,γ−,v−,v,η,z

1
2‖w‖

2 + C(
∑
j∈J−

γ−j +
∑
j∈J+

γ+
j (2.18a)

subject to − (〈w,xi〉+ b) ≥ 1− ξi −Mv−j ∀j ∈ J−, i ∈ Ij (2.18b)

〈w,xi〉+ b ≥ 1− ξi −Mvi ∀i ∈ I+ (2.18c)

γ+
j =

∑
i∈Ij

zi ∀j ∈ J+ (2.18d)

zi ≥ (ξi + 2vi)−M(1− ηi) ∀i ∈ I+ (2.18e)

zi ≤ (ξi + 2vi) ∀i ∈ I+ (2.18f)

zi ≤Mηi ∀i ∈ I+ (2.18g)∑
i∈Ij

ηi = 1 ∀j ∈ J+ (2.18h)

2v−i + ξi ≤ γ−j ∀j ∈ J−, i ∈ Ij (2.18i)

vi, ηi ∈ {0, 1} ∀i ∈ I+ (2.18j)

v−j ∈ {0, 1} ∀j ∈ J− (2.18k)

0 ≤ ξi ≤ 2 ∀i ∈ I+ ∪ I− (2.18l)

zi ≥ 0 ∀i ∈ I+. (2.18m)

Next section presents a heuristic algorithm for larger problems to be solved using

hard margin loss formulation which is NP-hard and exact methods may be compu-

tationally intractable.

2.4 Three-Phase Heuristic Algorithm

In this section, we develop a three-phase heuristic for the proposed MIHMSVM

model. First, we explore the details of the algorithm for linear classification and

present the pseudocode. Next, we highlight the modifications needed to perform

nonlinear classification.
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2.4.1 Linear Classification

The idea of our algorithm is to start with a feasible hyperplane and fine tune the

orientation considering MIL restrictions. Instead of starting with a random hyper-

plane, we take advantage of the efficiency of SVM on a typical classification problem.

Therefore, the first phase of the algorithm consists of applying hinge loss SVM classi-

fier on all instances considering their labels regardless of their bags. We use LIBSVM

[34] since a fast classification of the data set is needed. The optimal separating hyper-

plane in this step (w1, b1) gives a rough idea on positioning of bags. Next, we select

a representative for each bag. Bag representatives may be interpreted as witnesses

for positive bags. Although MIL setting does not entail negative bag witnesses, the

reason we select representatives for negative bags is to keep the number of positive

and negative labeled instances balanced and avoid biased classifications for the next

step. The choice of bag representatives is based on the maximum functional distance

from the hyperplane, which is in line with margin maximization objective considering

MIL setting. This approach provides furthest correctly classified (or least misclassi-

fied) instances in positive bags and closest correctly classified (or most misclassified)

instances in negative bags as representatives. Next, we use hinge loss SVM classifier

for selected instances from all bags. The optimal separating hyperplane of this step is

(w2, b2) that supposedly gives a better representation of data. This classifier will be

used to find the correctly classified negative bags (where all instances are on negative

side) and positive bags (where at least one instance is on positive side) as an initial

solution at the end of the first phase.

In the second phase, a hard separation problem is solved. The instance with

maximum functional distance from (w2, b2) in each correctly classified positive bag

constitute the positive labeled training set. On the other hand, all instances in

correctly classified negative bags are included in the negative labeled training set.
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Note that, a hard separation problem (i.e., formulation (2.3) where vi = 0,∀i) is

polynomially solvable, and the resulting solution from phase one assures there will

be no misclassification at this step. Since there are no misclassification terms for

instances, an imbalance (possibly large number of negative labeled instances) does

not imply a biased classifier. Let (w3, b3) be the optimal separating hyperplane at

the end of this step. Next, we search for fast inclusion of misclassified bags while

maintaining feasibility of the hard separation problem by fixing (w3, b3). Finally, we

compute current objective function value of MIHMSVM using ‖w3‖2 and number of

misclassified bags. This hyperplane also becomes the current best solution.

In the third (improvement) phase, we employ a more rigorous inclusion process.

Misclassified bags are sorted in ascending order of their distance from their corre-

sponding support hyperplane and considered as candidates to be correctly classified

one by one. Distance between a positive bag and the support hyperplane is defined

as the distance between closest instance and the positive support hyperplane (i.e.,

〈w,xi〉 + b = 1). On the other hand, distance between a negative bag and the sup-

port hyperplane is defined as the distance between furthest instance and the negative

support hyperplane (i.e., 〈w,xi〉+ b = −1). This approach is in line with our model

assumptions in Section 2.3. If a positive bag is considered, instance with the smallest

distance will be temporarily added to the training set. If a negative bag is selected,

all instances in the bag will be temporarily added to the training set. Next, training

set is examined for feasibility and if the problem is feasible, hyperplane (w4, b4) is ob-

tained. If hard margin loss objective function is less than the current best objective,

candidate bag will be added to the solution and best hyperplane is updated. The

objective functions are compared based on the fact that by adding a bag, we decrease

the misclassification by one in trade of a change in the norm of the hyperplane. Thus,

in an iteration, if (‖w4‖2 − ‖wbest‖2)/2 is less than C, then we conclude the overall

objective is reduced. The search will continue until no improvement is possible and
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the final best solution is the heuristic solution for the problem. The pseudocode is

presented in Algorithm 1.

Algorithm 1 Three-Phase Heuristic Algorithm (Linear Classification)
INPUT: x1, . . . ,xn, J+, J−, I+, I−, C
OUTPUT: wbest, bbest, Objective

{PHASE I}
P ← I+

N ← I−

w1, b1 ← regular hinge-loss SVM hyperplane that separates P and N
Empty P and N
for all j ∈ J+ do

P ← P ∪ argmaxi∈Ij
〈w1, xi〉+ b1

end for
for all j ∈ J− do

N ← N ∪ argmaxi∈Ij
〈w1, xi〉+ b1

end for
w2, b2 ← regular hinge-loss SVM hyperplane that separates P and N

{PHASE II}
Empty P and N
number of misclassified bags← 0
for all j ∈ J+ do

if maxi∈Ij
〈w2, xi〉+ b2 > 0 then

P ← P ∪ argmaxi∈Ij
〈w2, xi〉+ b2

else
number of misclassified bags← number of misclassified bags+ 1

end if
end for
for all j ∈ J− do

if maxi∈Ij
〈w2, xi〉+ b2 < 0 then

N ← N ∪ Ij
else

number of misclassified bags← number of misclassified bags+ 1
end if

end for
w3, b3 ← hard separation SVM hyperplane that separates P and N
{Fast Inclusion}
for all j ∈ J+ do

if Ij ∩ P = ∅ AND maxi∈Ij
〈w3, xi〉+ b3 > 1 then

P ← P ∪ argmaxi∈Ij
〈w3, xi〉+ b3

number of misclassified bags← number of misclassified bags− 1
end if

end for
for all j ∈ J− do

if Ij ∩N = ∅ AND maxi∈Ij
〈w3, xi〉+ b3 < −1 then

N ← N ∪ Ij
number of misclassified bags← number of misclassified bags− 1

end if
end for
Objective← 1

2‖w3‖2 + C × number of misclassified bags
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{PHASE III}
active_set← ∅
wbest ← w3
bbest ← b3
for all j ∈ (J+ ∪ J−) do

if Ij ∩ (P ∪N) 6= ∅ then
active_set← active_set ∪ j

end if
end for
while active_set 6= ∅ do

if minj∈(active_set∩J+)[−maxi∈Ij
(〈wbest, xi〉+bbest−1)] < minj∈(active_set∩J−)[maxi∈Ij

(〈wbest, xi〉+bbest+
1)] then

candidate← argminj∈(active_set∩J+)[−maxi∈Ij
(〈wbest, xi〉+ bbest − 1)]

P ← P ∪ argmaxi∈Icandidate
(〈wbest, xi〉+ bbest − 1)

else
candidate← argminj∈(active_set∩J−)[maxi∈Ij

(〈wbest, xi〉+ bbest + 1)]
N ← N ∪ Icandidate

end if
active_set← active_set \ candidate
if hard separation for P and N is feasible then

w4, b4 ← hard separation SVM hyperplane that separates P and N
if 1

2‖w4‖2 − 1
2‖wbest‖

2 < C then
wbest ← w4
bbest ← b4
Objective← Objective+ 1

2‖w4‖2 − 1
2‖wbest‖

2 − C
else

P ← P \ Icandidate
N ← N \ Icandidate

end if
else

P ← P \ Icandidate
N ← N \ Icandidate

end if
end while

2.4.2 Nonlinear Classification

Nonlinear extension of Algorithm 1 utilizes a number of modifications. In the

first phase, regular hinge loss SVM is substituted with nonlinear SVM with a kernel

function to obtain (α1, b1). Next, in the construction of P and N , 〈w1, xi〉 are substi-

tuted with ∑n
j=1 yjK(xj,xi)α1j to calculate the distances. At the last step of the first

phase, nonlinear SVM with kernel is employed again to obtain (α2, b2). Likewise, in

the second phase, 〈w2, xi〉 are substituted with ∑n
j=1 yjK(xj,xi)α2j.

In order to obtain a nonlinear hard separation in Phase 2, we used the following

formulation based on [8]:
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min
α,b

1
2
∑

i∈P∪N

∑
j∈P∪N

yiyjK(xi,xj)αiαj (2.19a)

subject to
∑

j∈P∪N
yjK(xj ,xi)αj + b ≥ 1 ∀i ∈ P (2.19b)

−
∑

j∈P∪N
yjK(xj ,xi)αj − b ≥ 1 ∀i ∈ N (2.19c)

αi ≥ 0 ∀i ∈ P ∪N. (2.19d)

Optimal solution to (2.19) provides (α3, b3) that is used for fast inclusion. For

distance calculation and in order to ensure hard separability, 〈w3, xi〉 are substituted

with ∑n
j=1 yjK(xj,xi)α3j. At the last step of Phase 2, ‖w3‖2 is substituted with the

optimal objective function value of (2.19), i.e., 1/2∑i∈P∪N
∑
j∈P∪N yiyjK(xi,xj)α3iα3j.

As expected, in the third phase, instead of working with w, we keep considering

α vectors. Decision of candidate instance for inclusion is performed by substituting

dot products 〈wbest, xi〉 with
∑n
j=1 yjK(xj,xi)αbestj. Hard separation with (w4, b4) is

also substituted with (α4, b4) which gets the optimal solution for formulation (2.19).

Next, we report computational performance for the proposed algorithm. We also

show hard margin loss is virtually more robust and better in terms of generalization

performance compared to other loss functions.

2.5 Computational Results

In this section, we first present the superior performance of hard margin loss

in practice compared to ramp and hinge loss functions using randomly generated

data sets. Next, we evaluate the performance of our heuristic in terms of time and

proximity to the optimal solution. Then, we show the cross validation performance of

the proposed heuristic on the publicly available data sets. Finally, we implement our

method to wind farm site locating problem. All computations are performed on a 2.93
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GHz Intel Core 2 Duo computer with 4.0 GB RAM. The algorithms are implemented

in C++ and used in conjunction with MATLAB 7.11.0 (2010b) [57] environment in

which the data resides.

We use MUSK1 and MUSK2 data set from UCI Machine Learning Repository

[27]. MUSK1 data set consists of descriptions of 92 molecules (bags) with different

shapes or conformations. Among them 47 of molecules judged by human experts are

labeled as musks (positive bags) and remaining 45 molecules are labeled as non-musks

(negative bags). The total number of conformations (instances) are 476 that gives

an average of 5.2 conformations for each molecule (bag). MUSK2 data set consists

of descriptions of 102 molecules in which 39 of molecules are labeled as musks and

remaining 63 molecules are labeled as non-musks. Total number of conformations is

6,598 which gives an average of 64.7 conformations for each molecule. Each confor-

mation in data sets is represented with a vector of 166 features extracted from surface

properties.

Leave One Bag Out Cross Validation

Traditional cross validation methods (e.g., leave one out, n-fold) cannot reflect a fair

assessment of multiple instance approaches due to ambiguity with actual instance

labels. Therefore, we employ an extension that we refer to as leave one bag out cross

validation (LOBOCV), which uses one bag from the original data set for validation

(test data) and remaining instances as training data. After the separating hyperplane

is obtained, label of the test bag is predicted and compared with its actual label. This

routine is repeated until each bag in the sample is validated once and the percentage

of correctly classified bags is reported.
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2.5.1 Robustness of MIHMSVM

The robustness of the objectives will be discussed based on randomly generated

data and the results obtained using IBM ILOG CPLEX Optimization Studio 12.2

[37]. Table 2.1 shows the cross validation results for three loss functions presented,

namely hard margin loss (MIHMSVM) in (2.7), ramp loss (MIRLSVM) in (2.18),

and hinge loss (MIHLSVM) in (2.16). In our computational studies, we consider a

number of different C values. Small values result in a larger number of misclassified

bags, which is not desired. On the other hand, values greater than 1 do not lead to a

drastic decrease in the number of misclassifications (see [8]). Therefore, we set C = 1

for our experiments in this section. This penalty parameter also provides the best

generalization performance for larger data sets, as shown in Section 2.5.3. Problem

instances are generated using predetermined number of bags and features and the

following pattern vector distributions:

TB1 Normal distribution: Features for instances in negative bags are normally dis-

tributed with mean 0, standard deviation 1. The mean of features for a positive

bag are normally distributed with mean 1, standard deviation 5, and instances

within each positive bag are offset using a normal distribution with mean 0,

standard deviation 1. There are 4 instances in each positive and negative bag.

TB2 Uniform distribution: Features for instances in negative bags are uniformly

distributed between -1 and 2. The mean of features for a positive bag are

uniformly distributed between -2 and 4, and instances within each positive bag

are offset uniformly between -1 and 1. There are 4 instances in each positive

and negative bag.

TB3 Randomly selected features and bags from MUSK1 data set.
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Table 2.1: Leave-one-bag-out cross validation results for randomly generated multiple
instance learning problems using different loss functions.

Testbed # of Bags # of Features Hard Margin Loss Ramp Loss Hinge Loss
(MIHMSVM) (MIRLSVM) (MIHLSVM)

TB1 15 60 60.00% 60.00% 60.00%
TB2 15 60 80.00% 80.00% 80.00%
TB3 15 60 46.67% 53.33% 53.33%
TB3 15 60 80.00% 80.00% 80.00%
TB3 15 60 66.67% 66.67% 66.67%
TB1 20 80 50.00% 50.00% 50.00%
TB2 20 80 55.00% 55.00% 55.00%
TB3 20 80 65.00% 50.00% 50.00%
TB3 20 80 45.00% 40.00% 40.00%
TB3 20 80 40.00% 35.00% 35.00%
TB1 25 80 80.00% 80.00% 80.00%
TB2 25 80 88.00% 88.00% 88.00%
TB3 25 80 56.00% 36.00% 40.00%
TB3 25 80 64.00% 44.00% 40.00%
TB3 25 80 56.00% 36.00% 40.00%

The results shows hard margin loss is usually superior in practice compared to

other loss functions. Loss functions would have minimal effect on classifiers for easy

problems where a clean separation is possible. This can be observed in Table 2.1

when the ratio of number of instances to number of features is relatively low. In fact,

for all cases created using TB1 and TB2, we observe the same accuracy for all three

loss functions, which are not presented due to space considerations. This behavior

changes for (i) odd distributions with outliers, (ii) when there are bags with small

number of instances, and (iii) when the ratio of number of instances to number of

features is higher. This directly points to MUSK1 data set with larger number of

instances as can be seen in the last few rows of Table 2.1. In order to show this

effect on relatively smaller instances, we generate the following instances by injecting

outliers:

TB1o Normal distribution: Features for instances in negative bags are normally dis-

tributed with mean 0, standard deviation 4. The mean of features for a positive

bag are normally distributed with mean 5, standard deviation 4. There are 4

instances in each positive and negative bag. One out of five negative bags are

35



injected one noisy instance that is normally distributed with mean ±90 and

standard deviation 2.

TB2o Uniform distribution: Features for instances in negative bags are uniformly

distributed between -10 and 10. The mean of features for a positive bag are

uniformly distributed between -5 and 15. There are 4 instances in each positive

and negative bag. One out of five negative bags are injected one noisy instance

that is uniformly distributed between ±(80,100).

Table 2.2: Leave-one-bag-out cross validation results for randomly generated multiple
instance learning problems with outliers using different loss functions.

Testbed # of Bags # of Features Hard Margin Loss Ramp Loss Hinge Loss
(MIHMSVM) (MIRLSVM) (MIHLSVM)

TB1o 15 5 86.67% 86.67% 13.33%
TB1o 15 5 80.00% 80.00% 60.00%
TB1o 15 5 93.33% 93.33% 33.33%
TB2o 15 5 53.33% 46.67% 66.67%
TB2o 15 5 53.33% 53.33% 40.00%
TB2o 15 5 86.67% 86.67% 33.33%
TB1o 20 10 65.00% 65.00% 65.00%
TB1o 20 10 45.00% 45.00% 45.00%
TB1o 20 10 30.00% 30.00% 30.00%
TB2o 20 10 40.00% 40.00% 40.00%
TB2o 20 10 40.00% 40.00% 40.00%
TB2o 20 10 35.00% 35.00% 35.00%
TB1o 25 10 84.00% 84.00% 40.00%
TB1o 25 10 96.00% 96.00% 36.00%
TB1o 25 10 64.00% 64.00% 60.00%
TB2o 25 10 72.00% 68.00% 56.00%
TB2o 25 10 76.00% 76.00% 36.00%
TB2o 25 10 76.00% 76.00% 76.00%

Table 2.2 highlights accuracy differences for the three loss functions. Although

separating hyperplanes are different, accuracies are the same in cases with 20 bags

and 10 features. When the number of bags increase or the number of features de-

crease, accuracies tend to change, hard margin usually performing the best among

the three. This is more apparent for larger and fuzzier data sets that are presented

in Section 2.5.3. It should be noted ramp loss formulation takes significantly more

time that hinge and hard margin loss in all test cases, thus it is omitted from further
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benchmark problems. The complexity of ramp loss SVM for conventional data is an

open problem but we conjecture that multiple instance learning with ramp loss is

NP-hard.

2.5.2 Heuristic Performance: Optimal Solution and Time

In order to assess the capabilities of different formulations, we employ principal

component analysis (PCA) on the MUSK1 data set so variability of data can be con-

trolled by choosing a subset of features. When controlling the size of the problems,

features with larger (smaller) weights in the first few principal components can be

selected to create data sets with more (less) variability. This is a naive process that

sheds a light on the analysis since data with less variability is typically harder to sep-

arate with a separating hyperplane. We use IBM ILOG CPLEX Optimization Studio

12.2 [37] for all exact formulations and set the time limit to 30 minutes. As values

greater than 1 do not lead to a significant decrease in the number of misclassifications

but an artificial increase in the optimality gap for our heuristic, we set C = 1 for our

experiments in this section as well.

Tables 2.3, 2.4, and 2.5 show that formulations IP3 and CP2 perform the best.

In fact, IP3 is superior to other formulations in a majority of test instances but CP2

is particularly successful when number of features increase, which makes separation

relatively easier. Our results show that, although we consider a harder generalization

of an NP-hard problem in MIL context, medium sized problems can be solved in

reasonable time using effective formulations.

Our heuristic also performs well compared to the optimal solution in terms of

objective function value. It can be observed that the largest difference in objective

function value between the heuristic and optimal solution in harder data sets is close

to 9, when the total number of instances are 320 and the number of features was

10, which is a difficult separation problem. Although the optimality gap seems to
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Table 2.3: Computational results for harder data sets (i.e., subset of MUSK1 with less
variability).

CPU Time (sec.) Objective Value

# of # of IP1 IP2 IP3 CP1 CP2 3-Phase 3-Phase OPTInst. Feat. Heuristic Heuristic

40 10 1.08 0.41 0.28 2.65 1.48 0.01 3.86 3.58
40 20 0.11 0.22 0.11 0.26 0.10 0.01 2.00 1.41
40 40 0.11 0.17 0.10 0.07 0.05 0.01 0.26 0.24
40 80 0.21 0.21 0.19 0.21 0.19 0.01 0.13 0.12

80 10 0.09 0.08 0.06 0.48 0.11 0.01 1.00 1.00
80 20 2.12 1.18 1.17 5.01 3.15 0.02 3.86 2.12
80 40 8.81 3.54 3.44 6.31 5.02 0.03 1.97 1.66
80 80 6.12 4.67 20.07 3.35 3.27 0.02 0.32 0.26

120 10 156.59 3.17 3.27 N/A 475.74 0.03 7.13 7.10
120 20 3.91 3.27 2.21 N/A 16.30 0.02 4.68 3.25
120 40 1218.48 30.51 21.95 N/A N/A 0.07 6.83 4.72
120 80 4.01 5.71 3.94 8.56 3.38 0.06 1.37 0.79

160 10 N/A 15.58 13.10 N/A N/A 0.10 11.25 9.75
160 20 N/A 444.97 295.91 N/A N/A 0.05 14.39 10.58
160 40 N/A 47.55 52.09 N/A N/A 0.06 5.04 4.26
160 80 N/A 29.01 21.06 72.51 54.76 0.12 2.38 1.59

200 10 N/A 47.39 43.43 N/A N/A 0.08 12.85 11.75
200 20 N/A 49.63 38.06 N/A N/A 0.05 9.21 7.70
200 40 N/A 123.63 132.15 N/A N/A 0.07 4.83 3.79
200 80 N/A 15.83 17.11 301.97 47.35 0.15 1.48 1.26

240 10 142.76 6.12 4.10 N/A N/A 0.13 9.16 9.01
240 20 N/A 464.55 291.64 N/A N/A 0.08 11.07 10.49
240 40 N/A 173.80 205.40 N/A N/A 0.14 6.74 5.25
240 80 N/A 1768.32 N/A N/A N/A 0.21 5.14 3.60

280 10 N/A 20.90 8.76 N/A N/A 0.13 11.95 11.00
280 20 N/A N/A N/A N/A N/A 0.13 20.65 N/A
280 40 N/A N/A N/A N/A N/A 0.20 11.92 N/A
280 80 N/A 1510.73 899.54 N/A N/A 0.41 5.28 3.49

320 10 N/A 885.57 559.06 N/A N/A 0.22 25.57 16.88
320 20 N/A N/A N/A N/A N/A 0.22 46.24 N/A
320 40 N/A N/A N/A N/A N/A 0.24 14.51 N/A
320 80 N/A 1602.74 N/A N/A N/A 0.56 6.62 3.71

360 10 N/A N/A N/A N/A N/A 0.33 32.99 N/A
360 20 N/A N/A N/A N/A N/A 0.20 23.22 N/A
360 40 N/A N/A N/A N/A N/A 0.29 12.77 N/A
360 80 N/A 1529.58 1116.26 N/A N/A 0.68 9.23 3.93

400 10 N/A N/A N/A N/A N/A 0.37 25.41 N/A
400 20 N/A N/A N/A N/A N/A 0.19 34.42 N/A
400 40 N/A N/A N/A N/A N/A 0.38 14.98 N/A
400 80 N/A N/A N/A N/A N/A 0.39 6.24 N/A

be large, it should be noted that 8 or less additional bags are misclassified (among

more than 60 bags) compared to the optimal solution with significant time savings.
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Table 2.4: Computational results for easier data sets (i.e., subset of MUSK1 with more
variability).

CPU Time (sec.) Objective Value

# of # of IP1 IP2 IP3 CP1 CP2 3-Phase 3-Phase OPTInst. Feat. Heuristic Heuristic

40 10 0.33 0.12 0.07 0.45 0.40 0.02 4.20 4.00
40 20 0.06 0.05 0.05 0.11 0.05 0.01 1.00 1.00
40 40 0.06 0.08 0.10 0.26 0.30 0.01 1.00 1.00
40 80 0.36 0.43 0.29 0.55 0.38 0.02 0.75 0.49

80 10 0.11 0.16 0.07 1.66 4.63 0.03 3.24 3.21
80 20 97.21 2.08 1.07 78.36 18.54 0.04 7.36 5.87
80 40 1.76 1.71 1.12 3.91 1.13 0.03 2.72 1.94
80 80 4.44 6.34 4.86 9.51 6.74 0.02 1.31 1.19

120 10 N/A 2.82 1.57 139.29 79.87 0.04 11.11 9.05
120 20 N/A 7.23 4.12 N/A 639.66 0.04 11.02 9.13
120 40 N/A 47.67 31.89 N/A N/A 0.05 11.90 6.71
120 80 8.11 3.51 9.58 6.21 5.75 0.06 0.85 0.85

160 10 N/A 2.75 1.38 N/A 997.12 0.09 11.34 10.38
160 20 N/A 67.07 35.90 N/A N/A 0.06 15.94 12.05
160 40 N/A 90.21 91.23 N/A N/A 0.07 8.76 6.37
160 80 1666.50 23.87 29.74 N/A N/A 0.09 4.29 3.54

200 10 N/A 9.11 5.59 N/A 347.75 0.12 14.25 14.22
200 20 N/A 19.19 14.87 N/A N/A 0.06 10.12 9.73
200 40 N/A 103.92 134.32 N/A N/A 0.08 15.16 9.70
200 80 N/A 185.59 194.51 N/A N/A 0.20 7.82 3.93

240 10 55.55 2.87 1.35 N/A N/A 0.13 8.77 8.77
240 20 N/A 449.23 413.07 N/A N/A 0.12 18.67 15.95
240 40 N/A 787.16 1034.43 N/A N/A 0.09 15.50 11.75
240 80 464.77 420.30 203.53 N/A N/A 0.11 5.33 4.37

280 10 N/A 11.63 7.09 N/A N/A 0.21 14.27 14.25
280 20 N/A 217.74 218.41 N/A N/A 0.13 16.67 16.19
280 40 N/A 482.76 397.70 N/A N/A 0.19 13.51 10.90
280 80 N/A 249.66 434.33 N/A N/A 0.21 7.54 4.30

320 10 N/A 1257.40 790.38 N/A N/A 0.29 31.59 30.38
320 20 N/A 372.36 207.43 N/A N/A 0.24 17.75 17.49
320 40 N/A N/A N/A N/A N/A 0.24 30.91 N/A
320 80 N/A N/A N/A N/A N/A 0.39 11.77 N/A

360 10 N/A 94.62 68.36 N/A N/A 0.30 21.43 21.38
360 20 N/A 744.08 562.85 N/A N/A 0.31 20.13 18.96
360 40 N/A N/A N/A N/A N/A 0.40 30.69 N/A
360 80 N/A N/A N/A N/A N/A 0.31 8.52 N/A

400 10 N/A 301.65 205.37 N/A N/A 0.41 26.29 26.25
400 20 N/A 949.36 1155.72 N/A N/A 0.20 25.67 22.00
400 40 N/A N/A N/A N/A N/A 0.24 19.56 N/A
400 80 N/A N/A N/A N/A N/A 0.71 13.79 N/A

Furthermore, we expect proximity of heuristic hyperplane to the optimal hyperplane,

thus a subtle difference in cross validation results.
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Table 2.5: Computational results for a subset of instances in MUSK1 data set with all
features.

CPU Time (sec.) Objective Value

# of # of IP1 IP2 IP3 CP1 CP2 3-Phase 3-Phase OPTInst. Feat. Heuristic Heuristic

80 166 10.92 9.32 10.28 4.37 2.37 0.03 0.34 0.30
120 166 222.70 37.73 306.04 67.37 19.84 0.09 0.34 0.29
160 166 63.78 49.33 173.77 25.59 17.98 0.14 0.51 0.45
200 166 N/A 138.59 105.19 798.40 195.55 0.31 1.42 0.99
240 166 N/A 945.99 464.65 N/A 838.98 0.71 1.45 1.20
280 166 N/A 659.91 373.44 N/A 353.75 0.36 0.91 0.79
320 166 N/A 655.65 414.72 N/A 478.25 0.61 1.72 1.04
360 166 N/A N/A N/A N/A N/A 1.36 3.06 N/A
400 166 N/A N/A N/A N/A N/A 1.37 3.53 N/A

2.5.3 Robust Classification Performance for Larger Data Sets:

Cross Validation Results

2.5.3.1 Linear Classification

In this section, we present leave one bag out cross validation results for linear

classification using the three-phase heuristic. All instances and features of MUSK1

data are used in computing these results. We also use a set of C values to observe

the effect on the performance of our algorithm. As Table 2.6 shows, highest cross

validation accuracy of 79.35% is achieved for C = 1.

Table 2.6: Leave-one-bag-out cross validation results for MUSK1 data with 476 instances
in 92 bags and 166 features.

C
Hard Margin Loss (Heuristic) Hinge Loss (CPLEX)

LOBOCV CPU Time (sec.) LOBOCV CPU Time (sec.)

0.1 75.00% 147.30 51.09% 16.34
1 79.35% 217.43 76.09% 1,818,460.63
10 73.91% 321.21 63.04% 1,816,458.85
100 77.17% 312.66 70.65% 1,819,085.86

Table 2.6 also shows the performance of our algorithm against hinge loss for-

mulation (i.e., MIHLSVM) that is solved using CPLEX. Accuracy of our heuristic
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algorithm for MIHMSVM is consistently higher than MIHLSVM. It should be noted

that the time reported in the table is for validation of 92 bags. For a given C value,

it usually takes more than 20 days to perform cross validation using hinge loss for-

mulation on CPLEX, whereas our heuristic takes less than 6 minutes.

2.5.3.2 Nonlinear Classification

In order to assess the performance of our heuristic for nonlinear classification,

MUSK2 data is considered with a Gaussian radial basis function. Formally, the

Gaussian kernel is represented as

K(xj,xi) = e−
‖xj−xi‖

2

2σ2 . (2.20)

Table 2.7: Leave-one-bag-out cross validation and CPU time (in seconds) results for
MUSK2 data with 6,598 instances in 102 bags and 166 features.

2σ2 C = 0.5 C = 1 C = 10 C = 100

LOBOCV CPU Time LOBOCV CPU Time LOBOCV CPU Time LOBOCV CPU Time

10 60.78% 22,639.80 63.73% 25,304.07 63.73% 23,736.96 63.73% 23,696.82
25 72.55% 25,804.41 79.41% 12,254.31 81.37% 11,228.20 81.37% 11,834.13
50 57.84% 18,956.22 84.31% 3,913.35 80.39% 3,461.50 81.37% 3,397.65
100 56.86% 13,245.11 79.41% 2,180.79 82.35% 1,926.41 81.37% 1,956.40
166 52.94% 13,083.71 76.47% 1,899.21 80.39% 1,559.36 79.41% 1,540.54
200 51.96% 12,998.93 79.41% 1,924.97 78.43% 1,507.11 79.41% 1,409.86
500 49.02% 12,837.94 75.49% 2,138.56 77.45% 1,416.91 79.41% 1,199.26
1000 49.02% 12,831.96 44.12% 9,764.32 47.06% 9,287.45 47.06% 9,221.11

Different C and σ values are compared and the results are presented in Table 2.7.

The default selection in [34] is also considered that sets 2σ2 equal to the number of

features. The best accuracy achieved is 84.31% for C = 1 and σ = 5. It should

be noted that C = 0.1 is not presented in Table 2.7 because the regularization term

outweighs the misclassification term in the objective function and the same cross

validation accuracy of 38.24% is obtained for all values of σ. Our results show that the

accuracy tends to decrease when σ increases as this converges to a linear separation.

The total time spent for cross validation of 102 bags for our heuristic rarely exceeds
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an hour for nonextreme values of parameters. It is also noteworthy to mention that

the time spent usually reduces with increased C since the misclassification penalty

outweighs the quadratic regularization term in the objective function, providing a

relatively more tractable problem.

2.5.4 Wind Farm Site Locating

Wind farm site locating is the first phase in the process of building a wind farm.

In order to construct a wind farm, specific conditions need to be satisfied. Therefore,

a decision maker should choose a site for a wind farm based on a number of factors

such as wind speed, wind availability, water temperature, depth of water, pressure,

precipitation, wave speed, wave height, and distance to the shore. Each of these

factors can be measured in different potential locations for a site. After that, an

expert is to decide whether a location is a good candidate for a wind farm or not.

To implement our method, we use a data set from Irish sea which has been pro-

vided by 4C Offshore Co. [1]. The data set consists of 74 sensors (instances) spread

into 10 site locations. The features we utilize are the location (i.e., latitude and lon-

gitude) of the sensor, wind speed, depth of water, and distance to shore. Each bag

consists of a set of instances that are in the same neighborhood. For each bag, we

know whether it is an ideal location or not through the current status of a future

wind farm. We use LOBOCV technique to check the performance of our method.

The LOBOCV provides 80% accuracy, which is reasonable considering the limited

amount of data we had to train our classifier.

The benefits of this approach is two-fold: (i) it provides a set of rules to determine

if a specific location is suitable for a wind farm or not, and (ii) less data is to be

collected for future decisions. First benefit helps with a qualitative analysis shedding

a light on which of the aforementioned factors are more critical through an analysis of

weights for each feature. Second benefit helps in significantly reducing the costs and
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time it takes for data collection before a decision is to be made regarding a potential

location.

2.6 Summary

In this chapter, we propose a robust support vector machine classifier for multiple

instance learning. We show that hard margin loss classifiers provide remarkably

better generalization performance for multiple instance data in practice, which is in

line with theory. We develop three integer programs and two constraint programs

and compare their time performance in achieving optimal solutions. Furthermore,

we develop a heuristic that can handle even large problem instances within seconds.

Our heuristic provides higher cross validation accuracy for MIL data compared to

conventional hinge loss based SVMs in significantly less time. We use wind farm site

location data to show the implementation of our approach.
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Chapter 3 Offshore Wind Farm Layout

Optimization

3.1 Introduction

Wind energy is becoming quite important in many different venues around the

world. Its use as an alternative source of clean, reliable, and sustainable energy is

making it a seriously considered natural source for production of electricity by many

countries. No other alternative energy source has been more successfully implemented

than wind energy. There are a number of reasons for those success stories. Wind

is abundantly available and never depleted (e.g., day and night). It is clean and

the harnessing of wind has only minor side effects on the environment. Those side

effects, such as noise, disturbance of the natural view, and the so-called stroboscope

effect, are even less considerable in the case of offshore wind farms. Offshore wind

turbines are a commonly used power source in European countries that are more

densely settled. European Union has recognized the importance of the commitment

to renewable energy and subsidizes wind farm companies through the Renewable

Energy Law created in 2000.

Even in the United States, where mainly energy comes from fossil fuels and nuclear

power, the advantages of wind generated energy have been thoroughly investigated.

The goal of producing 20% of the nation’s energy demand from wind energy by 2030

is technically feasible, not cost-prohibitive, and provides numerous benefits. Some

of these benefits are carbon emission reductions, natural gas fuel savings, and water

savings according to the National Renewable Energy Laboratory (NREL).

The increase in global energy demand, especially considering the rapid industrial

development of the so-called third world countries, calls for alternative sources of

44



energy, other than fossil fuels. According to the U.S. Energy Information Adminis-

tration, the prospective growth of global energy consumption will be 49% from 2007

to 2035, which is equivalent to an increase in energy use from 495 quadrillion British

thermal units (BTU) to 590 quadrillion BTU in 2020 and 739 BTU in 2035. To

obtain this goal, the cost of wind energy should be reduced to become economically

interesting for the use of customers. The optimization framework presented here aims

to reduce the cost of energy by optimizing the location of the wind turbines in the

offshore wind farm.

Next, in Section 3.2, we briefly review the previous work on wind farm opti-

mization. Section 3.3 defines the problem and describes important elements of our

problem such as power curve, wake model, and wind speed model used. In Section 3.4,

we present the mathematical formulation of our problem. Section 3.5 presents the

computational results. We provide a brief summary in Section 3.6.

3.2 Background

This section explores the previous researches conducted in this line of study. There

are many different strategies that have been established in the optimization of onshore

wind farms. However, the optimization of offshore wind farms is a developing study,

which will produce innovative and improved methods.

Some studies focus on the minimization of wake losses, under the assumption that

this will produce the optimal profits for the wind farm through maximum perfor-

mance. Samorani [75] identifies the wind farm layout optimization problem (WFLOP)

as an important aspect in the design of a wind farm. Their stance is congruent with

the idea mentioned above. Szafron [83] considers the distribution in a wind farm us-

ing only turbine spacing to seek similar results by minimizing the wake effect. Rašuo

and Bengin [67] introduce a model that focuses on the same idea, but uses a modified
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version of the genetic algorithm to overcome the limitation of binary results, which

normally accompany the genetic algorithm. This should enable a team to adjust

the turbine positions freely and minimize the wake effect even further. The wake

effect must be taken into consideration in any model that attempts to optimize the

layout of an offshore wind farm, though this should not stand alone without other

considerations.

The cost of energy (COE) is addressed in other studies utilizing some of the

conditions that are not addressed in the previously mentioned research. Nandigam

and Dhali [62] go into more detail with the factors that impact the optimization of an

offshore wind farm layout; electrical system type, farm-topology, transmission voltage,

wind turbine type, rated power, wind speed, and transmission length. However, the

topography of the land does not influence offshore wind farms as much as onshore.

Elkinton et al. [24] include factors such as wind and wave climates, soil conditions,

and water depths in their study of the COE relating to offshore wind farms. As the

number of factors increases, separating the model’s components becomes plausible.

Their model is divided into major costs, energy production, and energy losses before

implementing heuristic optimization algorithms.

Levelized cost of energy (LCOE) minimization is another strategy used in off-

shore wind farm optimization. Lackner and Elkinton [46] develop a LCOE function

that allows the annual energy production to be modeled as a function of turbine

position only. As with most optimization models, the wind speed probability dis-

tribution function is approximated by a Weibull distribution. Kusiak and Song [45]

take a similar stance by utilizing the LCOE with a slight adjustment. Their objective

function includes an added parameter, the levelized replacement cost. Mahat et al.

[51] consider the minimization of the real power loss as their objective function. This

methodology enables them to relate the transmission loss to the reactive power, which

is consumed by the turbine. The group combines this minimization equation with the
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hereford ranch algorithm to obtain the optimal distribution generation. Minimizing

this function yields the amount of real power that the wind turbine has to produce at

various locations minimizing the real loss. There are many external conditions that

affect the optimal layout for an offshore wind farm; primarily, floating ice, wind, and

waves are primary external conditions [53]. These external conditions, among others

such as water depths and soil conditions [46], can be countered through design or data

estimation to minimize their affect on the performance and cost of an offshore wind

farm [53]. The relative cost of production moving from an offshore wind farm to an

onshore wind farm is estimated to increase 30-60% [62]. Fuglsang and Thomsen [28]

show a 28% increase in the annual production of energy when comparing an offshore

wind farm to an onshore wind farm, which is caused by the increase in wind climate

from onshore to offshore. This illuminates the importance of exploiting the higher

wind speeds available for offshore wind farms.

Optimization in wind farm planning is a balance between the maximum perfor-

mance and minimum cost in a wind farm layout. The wake effect plays an important

role in wind farm planning, as was previously discussed, which is represented in [75]

and [83] among others. Samorani [75] also accounts for construction and logistics

factors in the solution to the WFLOP. Nandigam and Dhali [62] apply geometric

programming as a tool to configure optimal layouts based on cost, loss, and reli-

ability models. Optimization methods have been widely used to find the optimal

layout solution for a wind farm. Especially for onshore farms, there are different soft-

ware packages available to specify the most profitable layout. The most commonly

used algorithms are the genetic algorithm and the greedy heuristic algorithm. Ser-

rano Gonzalez et al. [77] define a mixed integer problem to optimize the profits of an

offshore wind farm. The problem is developed with net cash flow and initial capital

investment, and an evolutionary algorithm is used to solve the mixed integer problem.

Other researchers expanded the genetic algorithm by adding mobility (add, remove,
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move) options or performing other meta-heuristic approaches, like the simulated an-

nealing procedure to overcome some of the limitations of the search algorithm[70].

Through all of these studies, there are not many constraints that have been con-

sidered for offshore wind farm optimization models. Minimum distance constraints

forbid turbines to be installed too close to each other. Constraints on the number of

turbines and boundaries for power generated have also been considered. It appears

that a total comprehensive model, which includes every important constraint, has

not yet been established. There are some studies on onshore wind farm layout opti-

mization (see e.g., [75, 24, 46, 67, 51, 45, 70]), but it should be noted that there are

major differences in objectives and limitations of offshore and onshore wind farms.

Samorani [75] presents a complete review based on wind farm layout optimization

both onshore and offshore. Another study on offshore wind farm layout optimization

is [70] but, it doesn’t define the complete mathematical model for the layout opti-

mization problem. It should also be noted that these studies consider discrete space

for wind turbine locations that may lead to suboptimal solutions although, it can be

argued that the optimality gap would not be significant. The literature review shows

there is potential for improvement on offshore wind farm layout optimization based

upon mathematical formulation of the problem and the solution methods. Next, we

define problem and explain the important elements of it.

3.3 Problem Description

There are two main questions with respect to wind farm turbine positioning prob-

lem. The first one is how many turbines should be placed on the farm and the second

one is where these turbines should be located. A natural objective may be to max-

imize the profit for the farm, considering the cost of construction and the revenue

stream from future energy production. We consider the cost function defined by
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Mosetti et al. [59] for installation, which is proportional to the number of turbines

installed. We therefore, consider the problem of placing a fixed number of turbines

and maximizing the power production. Next, this problem is solved by changing the

number of turbines to find a suitable number of them to place within the site.

There is a wide range of additional considerations that may have to be taken into

account at a given site for a wind farm. These considerations may include design of

the electrical connection system, impact on wildlife and other environmental effects.

We do not consider such site-specific considerations in our model; however, we show

how a set of possible turbine positions can be excluded if such considerations render

them infeasible.

Next, we review the operating characteristics of a wind turbine and the relation-

ship between power output and wind speed. We then discuss how wind turbines

reduce the power output of turbines placed downwind (i.e., wake effect).

3.3.1 Power and Thrust Curve

The power generated by a wind turbine is directly related to the wind speed and

its direction distributions at hub height. Since the wind does not blow uniformly and

from one direction, different wind directions will have different wake effects. Those

wind turbines that are placed upwind result in lower wind speeds at the downwind

turbines. Furthermore, wind speed varies with distance to shore, so each turbine in

a farm typically experiences a different wind speed.

A wind turbine needs a minimum wind speed to start operating (cut-in). The

power output then increases with the wind speed until the nominal or rated power of

the turbine is reached. The blades on the turbine are then regulated (pitch control),

such that the power output remains the same with increasing wind speed until a

maximum wind speed is reached. When this wind speed is reached, the turbines are

stopped (cut-out) to prevent damage to the blades and the support structure. The
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power curve is provided as a function of speed, either continuously or for a set of

speed values, in the manufacturers’ technical sheets. In the latter case, it is necessary

to use an interpolation technique so that the power curve is defined for every speed.

Total power generation for all the turbines in the wind farm can be obtained as the

summation of the power generation of each turbine.

Another important characteristic of a wind turbine generator is the thrust coeffi-

cient curve, which depicts the relationship between the power produced and the value

of the thrust coefficient at any wind speed between the cut-in and cut-out. The thrust

coefficient measures the proportion of energy captured when the wind passes through

the blades of the turbine [2]. It reaches its maximum when the turbine first reaches

its nominal power and then decreases with increased wind speed when the blades are

pitched.

3.3.2 Wake Effect Model

Turbine wakes describe the area behind the rotating wind turbine blades, where

the wind speed is influenced by the motion of the rotor blades. Usually, the wind

speed within a wake is decreased, which effects the energy production of the affected

turbine considerably. Also, the wind in the wake is more turbulent and can therefore,

speed up the process of material fatigue or increase the stress on the material. The

issue of turbine wake needs to be considered in a large wind farm, since more turbines

generate more power; but when they are placed too closely to each other, the wake

effect can outweigh the higher energy generation. Multiple models have been created

to deal with the wake effect for calculating an appropriate penalty for placing turbines

inside a wake. Usually, some assumptions are being made, such as uniform incoming

wind speed and a linear expanding cone behind the turbine. Then, the commonly

used equation computes the velocity deficit created by the rotor blades. However,

this only addresses the wind speed and so far, the wind turbulences have not been
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considered in any model. One of the most commonly used wake model in literature

is the Jenson model [39]. Although this model does not perfectly model the wake

behind a turbine and the interaction of multiple wakes, recent studies have shown

that the model gives reasonable approximations of wind speed reductions in small

and medium wind farms for distances more than three turbine diameters downwind

[6]. More accurate models based on computational fluid dynamic (CFD) codes also

exist but, the computational effort required makes them ill-suited for optimizing the

layout of wind farms. As a result, all previous works on the optimization of wind

farm layouts have used the models described in [39, 41]. Figure 3.1 shows the basic

concept of wake behind a wind turbine.

Figure 3.1: Jensen’s wake effect model.

It is important to keep in mind that here, the aim is not to accurately predicting

the power output of a wind farm, but rather finding suitable layouts. Thus, as long

as the models used provide appropriate penalties for placing turbines inside a wake,

they preserve ranking of the solutions and can, therefore, be used to optimize the

layouts. To get more accurate predictions of the power output from our layouts, we

evaluate the solutions using a more comprehensive and computationally demanding
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model for the wakes. For a detailed review of different types of wake models, we refer

to [18, 92].

The equation for the velocity deficit of this model is as follows:

defij = 1−
√

1− Ct
(1 + 2κdij

D
)2

= 1− V

U
, (3.1)

where V is wind speed in the wake of the turbine, U is free stream wind speed, Ct

is thrust coefficient of the turbine and depends on incoming wind speed, κ is wake

spreading constant, dij is the distance between turbine j and i projected on the wind

direction θ, and D is turbine rotor diameter.

It may be the case that only a part of a turbine is affected by a wake from another

turbine while the rest of the turbine sits in the free stream wind speed. We make

the simplifying assumption that if the turbine is at least partially inside a wake, the

power production of the turbine is equivalent to the power produced at the wind

speed in the wake (i.e., the wake covers the whole turbine).

Usually, when multiple turbines create a wake, the root-sum-square of each of the

individual velocity deficits is the total velocity deficit on the one turbine affected.

Therefore, the velocity deficit resulted from each upstream turbine can be obtained

separately via (3.1), then (3.2) will be utilized to compute the total velocity deficit

seen by the downstream turbine i [59],

Total V elocity Deficiti =

√√√√√ T∑
j=1,j 6=i

def 2
ij. (3.2)

It should be mentioned that not all the turbines generate wake effect at turbine i

for a given direction θ. Figure 3.2 shows a wind farm consisting of 4 turbines. Given a

wind direction, turbine B is not affected by wake effect of turbine A, but turbine C is

affected by wake effects of both turbine A and B. Turbine D is affected only by wake

effect of turbine A. Kusiak and Song [45] suggest a method to find wake effects of the
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turbines affecting turbine i. In this method, total velocity deficit will be calculated

from the following equation:

Total V elocity Deficiti =

√√√√√ T∑
j=1,j 6=i,βij<α

def 2
ij (3.3)

where α is calculated as arctan(κ) and βij, which is the angle between two vortex of

turbine i and j, is calculated as follows:

βij = arccos[
(xi − xj) cos θ + (yi − yj) sin θ + D

2κ√
(xi − xj + D

2κ cos θ)2 + (yi − yj + D
2κ sin θ)2

] (3.4)

Finally, if wind turbine i is inside the wake of turbine j, dij is calculated as |(xi −

xj) cos θ + (yi − yj) sin θ|.

Figure 3.2: Turbine affected by other turbines’ wake effect.

3.3.3 Wind Speed and Direction

The wind resource is the single, most important consideration in choosing a site

for a wind farm [4]. The prediction of wind resources at a site is often based on a

combination of measurements on-site over a time period, such as a year and longer
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time series of wind measurements from nearby meteorological stations. The predic-

tion of wind resources, both speed and direction, is a complex task with significant

uncertainty. The wind characteristics may change during the 20-year design life of

wind farms due to long-term weather changes or changes in the surrounding area.

In this work, we assume a representative set of measurements of wind speed and

direction is available for the wind farm site we consider.

3.4 Mathematical Model

In this section, we first explain the cost function and continue with formulating

the problem with power maximization objective as we discussed in previous sections.

Based on [59], the wind farm total turbine cost per year (costtot) function that we use

is

costtot = costty × T (2
3 + 1

3e
−0.00174T 2), (3.5)

where T represents the total number of turbines placed in the wind farm and costty

represents the cost of each turbine per year. In this model, the total cost is only

dependent on number of turbines installed in the farm and considers some discount

when a large number of wind turbines is purchased.

The power generation from wind farm depends on wind distribution and turbine

characteristics. The wind distribution is the set of pairs (scenario, probability) that

describe the characteristics of the wind in the site under consideration. A scenario

s is composed of a direction Ds, i.e., the direction from which the wind blows, and

an undisturbed wind speed Us, i.e., the speed of the wind before reaching the wind

farm. Throughout this chapter, the wind speed is always expressed in m/s and the

direction as a number in the interval [0, 360), which indicates the angle formed by

the direction of the wind and the x-axis (e.g., 0o is wind from East, 90o is wind from
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North, etc.). The probability rs associated with a scenario s is the probability of

realization of s, where the wind blows from direction Ds at a speed of Us m/s.

The turbine characteristics include its physical characteristics that are needed

for the computation of the wake effect generated by that turbine (hub height, rotor

diameter, and the thrust coefficient curve) and its power curve, i.e., the function Pv

that computes the power generated given the wind speed at the turbine. Given this

information, it is possible to estimate the expected power produced by averaging the

power generated under every scenario by weighting each term by the probability of

realization of the corresponding scenario:

P =
∑
s∈S

rsPs =
∑
s∈S

rs
∑
i∈P

Pv(vsi ) =
∑
s∈S

rs
∑
i∈P

Pv(Us · [1−
√∑
j∈wsi

(defjis)2]). (3.6)

The power Ps generated under scenario s is equal to the sum of the power generated

by the individual turbines under scenario s. The power generated by a turbine i under

scenario s is the power corresponding to speed vsi in the power curve, where vsi is the

wind speed at the turbine position under scenario s. As seen in the previous section,

vsi depends on which turbines create a wake that affects i (these turbines form set

W s
i ). In our implementation, a turbine j induces a positive velocity deficit on a

turbine in position i if the wake created by turbine j intersects the rotor of turbine i.

Furthermore, the value of the velocity deficit suffered by turbine i does not depend

on the portion of the area swept by its blades that is affected by the wake. In other

words, the value of the velocity deficit is the same regardless of whether the rotor

of a turbine is fully or partially covered by a wake. We use this conservative wake

modeling because previous studies showed that Jensen’s model tends to underestimate

the velocity deficits within large wind farms. As seen in the previous section, the value

of defjis depends also on the wind speed at turbine j, which determines the value of
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parameter Ct. From an implementation point of view, it is necessary to compute the

wind speeds at turbine positions following the same order in which the wake effects

are applied, i.e., first compute the speed at the turbines that are not affected by any

wake, then the speed at those turbines affected only by wakes generated by the former

set of turbines.

Let us assume that the available area is a rectangle of size g1
max × g2

max. Each

turbine is associated with 2 continuous variables (g1
i and g2

i ) representing its coordi-

nates. A set of binary variables yjis is needed to indicate if turbine j creates a wake

effect on turbine i under scenario s. yjis = 1 if turbine j, creates a wake effect on

turbine i under scenario s, and yjis = 0 otherwise. A set of continuous variables defjis

are set equal to the velocity deficit induced by turbine j on turbine i under scenario

s and under the assumption that the wake generated by j actually affects i. This

assumption is implemented by multiplying the terms def 2
jis to the binary variables

yjis in the objective function. In light of these assumptions, the model that maximizes
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the expected power generation is the following:

max
∑
s∈S

rs
∑
i∈P

Pv(Us · [1−
√∑
j∈wsi

(defjis)2 · yjis]) (3.7a)

subject to (g1
i − g1

j )2 + (g2
i − g2

j )2 ≥ (3D)2 ∀i, j ∈ P, j 6= i (3.7b)

yjis =


1 if j ∈ wsi

0 otherwise
∀i, j ∈ P, j 6= i, s ∈ S (3.7c)

defjis = 1−
√

1− Ct
1 + 2κ(

√
(g1
i−g

1
j )2+(g2

i−g
2
j )2

D
)

∀i, j ∈ P, j 6= i, s ∈ S (3.7d)

0 ≤ g1
i ≤ g1

max ∀i ∈ P (3.7e)

0 ≤ g2
i ≤ g2

max ∀i ∈ P (3.7f)

yjis ∈ {0, 1} ∀i, j ∈ P, j 6= i, s ∈ S (3.7g)

defjis ≥ 0 ∀i, j ∈ P, j 6= i, s ∈ S. (3.7h)

In this model, constraint (3.7b) enforces the proximity constraint discussed in the

previous section. Constraint (3.7c) represents the set of constraints needed to verify if

turbine j creates a wake effect on turbine i under scenario s, and therefore, it should

express the operations needed to perform this task. This is possible, for example,

by (i) applying a roto-translation of the axis so that the wind blows from East and

turbine j is in (0,0) and (ii) comparing the position of the rotor of i to the point

where the wake generated by j intersects the line x = g1
i . Since this is not the model

we use, we prefer keeping a compact view of the constraints represented by (3.7c).

Constraint (3.7d) computes the value of defjis according to Jensen’s model. Note

that the model is impractical because it is highly nonlinear.

Alternatively, we can consider a finite set of candidate positions, each one associ-

ated with a binary variable xi whose value is 1 if a turbine is present in position i,
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and 0 otherwise. This model has the advantage of computing the velocity deficit for

every pair of turbines and every scenario s during the preprocessing phase. In this

case, we introduce continuous variables associated with the wind speed (vsi ) and the

power generated (psi ) at each position for each scenario. The model that maximizes

the expected power generation for a finite set of candidate positions is as follows:

max
∑
s∈S

rs ·
∑
i∈P

Pv(vsi ) · xi (3.8a)

subject to 1− xi ≥ xj ∀i ∈ P, j ∈ N(i), j 6= i (3.8b)

vsi = Us · [1−
√∑
j∈wsi

(defjis)2 · xj] ∀i, j ∈ P, j 6= i, s ∈ S (3.8c)

∑
i∈P

xi = T (3.8d)

xi ∈ {0, 1} ∀i ∈ P (3.8e)

vsi ≥ 0 ∀i ∈ P, s ∈ S. (3.8f)

Constraint (3.8b) forbids to place a turbine in position j if a turbine is present in

a neighboring position i. The neighborhood of a position i, which we call N(i), is the

set of all positions whose distance to i is less than 3 rotor diameters. Constraint (3.8c)

computes the values of the variables vsi . Note that the set W s
i , as well as the values of

the velocity deficits, are known a-priori because the number of positions considered

is finite. We need to include constraint (3.8d) to install exactly T turbines.

There are two reasons this model cannot be solved very efficiently: (i) Nonlinear-

ity of typical power functions that is to be used in the objective function, and (ii)

Nonlinearity of constraint (3.8c). Even though it may be possible to find a suitable

Pv, or approximate it with a piecewise linear function, the widely used wake model in

the literature that is presented is quadratic. Therefore, we first attempt to linearize

constraint (3.8c) using Newton’s square root method, which estimates the square root
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of a positive number N as

√
N ≈ 1

2(N
E

+ E), (3.9)

where E is an educated guess. Since ∑j∈wsi (defj,i,s)
2 · xj never exceeds 1, we consider

separating [0, 1] into n intervals to make better educated guesses. Furthermore, we

observe that guesses become even more important for smaller values of N . Therefore,

we define intervals in an exponentially increasing fashion. Assuming b0, . . . , bn with

b0 = 0 and bn = 1 are the break points in [0, 1], we ensure bk+1 − bk = 2(bk − bk−1)

and educated guess Ek =
√

(bk + bk−1)/2.

To use Newton’s square root approximation, a new set of binary variables (zsik)

has been introduced to find the appropriate educated guess that should be used to
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approximate ∑j∈wsi (defjis)
2 · xj. The new formulation is as follows:

max
∑
s∈S

rs ·
∑
i∈P

pv(vsi ) · xi (3.10a)

subject to 1− xi ≥ xj ∀i ∈ P, j ∈ N(i), j 6= i (3.10b)

bk−1 − (1− zsik) ≤
∑
j∈wsi

(defjis)2 · xj ∀i ∈ P, s ∈ S, k ∈ K (3.10c)

∑
j∈wsi

(defjis)2 · xj ≤ bk + (1− zsik) ∀i ∈ P, s ∈ S, k ∈ K (3.10d)

∑
k∈K

zsik = 1 ∀i ∈ P, s ∈ S (3.10e)

∑
i∈P

xi = T (3.10f)

vsi ≤ Us · [1−
1
2(
∑
j∈wsi (defjis)

2 · xj∑
k∈K z

s
ik · Ek

+
∑
k∈K

zsik · Ek)] ∀i ∈ P, s ∈ S (3.10g)

xi ∈ {0, 1} ∀i ∈ P (3.10h)

zsik ∈ {0, 1} ∀i ∈ P, s ∈ S, k ∈ K (3.10i)

vsi ≥ 0 ∀i ∈ P, s ∈ S. (3.10j)

The non-linearity of constraint (3.10g) is eliminated by multiplication of∑k∈K z
s
ik ·

Ek to both sides of the constraint, introducing a new set of continues variables (vzsik)

instead of (vsi · zsik) and constraints (3.11h), (3.11i), and (3.11j). It should be noted

that [(∑k∈K z
s
ik · Ek) · (

∑
k∈K z

s
ik · Ek)] is equal to (∑k∈K z

s
ik · E2

k) since (i) for each i

and s only one of the zsiks are equal to one (zsik1 · zsik2 = 0, k1 6= k2,∀i, s), and (ii) the

square of one or zero is equal to one or zero respectively (zsik · zsik = zsik, ∀i, k, s). The
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formulation with linearized constraints is as follows:

max
∑
s∈S

rs ·
∑
i∈P

pv(vsi ) · xi (3.11a)

subject to 1− xi ≥ xj ∀i ∈ P, j ∈ N(i), j 6= i (3.11b)

bk−1 − (1− zsik) ≤
∑
j∈wsi

(defjis)2 · xj ∀i ∈ P, s ∈ S, k ∈ K (3.11c)

∑
j∈wsi

(defjis)2 · xj ≤ bk + (1− zsik) ∀i ∈ P, s ∈ S, k ∈ K (3.11d)

∑
k∈K

zsik = 1 ∀i ∈ P, s ∈ S (3.11e)

∑
i∈P

xi = T (3.11f)

∑
k∈K

vzsik · Ek ≤ Us · [
∑
k∈K

zsik · Ek

− 1
2(
∑
j∈wsi

(defjis)2 · xj +
∑
k∈K

zsik · E2
k)] ∀i ∈ P, s ∈ S (3.11g)

vzsik ≥ vsi − Us(1− zsik) ∀i ∈ P, s ∈ S, k ∈ K (3.11h)

vzsik ≤ vsi ∀i ∈ P, s ∈ S, k ∈ K (3.11i)

vzsik ≤ Us · zsik ∀i ∈ P, s ∈ S, k ∈ K (3.11j)

xi ∈ {0, 1} ∀i ∈ P (3.11k)

zsik ∈ {0, 1} ∀i ∈ P, s ∈ S, k ∈ K (3.11l)

vsi ≥ 0 ∀i ∈ P, s ∈ S (3.11m)

vzsik ≥ 0 ∀i ∈ P, s ∈ S, k ∈ K. (3.11n)

This formulation has linear constraints and nonlinear objective function that can

be solved using commercially available solvers. A very important feature of this

formulation is that any suitable power curve function can be used. Next, we use

available datasets that are used in the literature to show the validity of our model
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and derive practical conclusions.

3.5 Computational Experiments

Introduced by Mosetti et al. [59], the data we use feature one type of turbine

having hub height h = 60m, diameter D = 40m, and constant thrust coefficient

Ct = 0.88. The power curve is expressed as follows:

P (U) =



0, U < 2

0.3U3, 2 ≤ U < 12.8

629.1, 12.8 ≤ U < 18

0, 18 ≤ U

(3.12)

where the wind speed U is expressed in m/s and the power in KW. We linearized this

power curve as a piecewise linear function using additional binary variables. Results

are obtained using IBM ILOG CPLEX Optimization Studio 12.4 [37].

We use two problem instances from Mosetti et al. [59] for this study, both of which

consist of finding the optimal layout in a 10×10 square-grid. Each cell is 5D wide

and may or may not have a turbine installed at its center. The instances differ in

their wind characteristics. In instance ‘A’, the wind constantly blows from North

at 12 m/s, whereas in ‘B’, the wind speed is 12 m/s, but the direction is uniformly

distributed across 36 directions of 10o each. The wake spreading constant κ is site

dependent, and we use a value of 0.0944.

For each problem instance, we run our formulation repetitively increasing the

number of turbines (T ) and find the cost and maximum power generated. The cost

associated with T turbines is calculated using equation 3.5. Next, we find cost per

power generated and illustrate the layout for the best ratio. It should be noted that

for smaller T values, there might be alternative optimal solutions but we use the one
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that is provided by [37]. Next, we find cost per power generated ratio and illustrate

the layout for the best ratio. As discussed in Section 3.4, this will result in the best

wind farm layout under aforementioned assumptions, which would be very useful for

further sensitivity analysis shedding a light on practical questions.

Table 3.1: Result for problem instance A.

T Power (KW) Cost Cost per power (×$10−3/KW )

21 12042.6 1.724972426 1.43239203
22 12598.1 1.782571292 1.414952487
23 13153.6 1.838724086 1.397886576
24 13709.1 1.893645051 1.381305156
25 14264.6 1.947548405 1.3653018
26 14820.1 2.000644777 1.349953629
27 15375.6 2.053137992 1.335322194
28 15931 2.105222267 1.321462725
29 16486.5 2.157079836 1.308391615
30 17042 2.20887903 1.296138381
31 17562.9 2.260772803 1.287243452
32 18083.8 2.312897712 1.27898877
33 18604.7 2.365373319 1.271384822
34 19125.6 2.418301986 1.264431958
35 19646.5 2.471769033 1.25812182
36 20167.4 2.525843219 1.252438697
37 20688.3 2.580577481 1.247360818
38 21209.2 2.636009914 1.242861548
39 21730.1 2.692164917 1.238910505
40 22250.9 2.749054465 1.235480122
41 22723.1 2.80667948 1.235165747
42 23195.4 2.865031223 1.235172156
43 23654.5 2.924092716 1.236167628
44 24139.1 2.983840111 1.236102469
45 24598.9 3.044244027 1.23755291
46 25084.2 3.105270798 1.237938941
47 25556.4 3.166883623 1.239174384
48 26015.5 3.229043622 1.241199909
49 26500.8 3.291710765 1.242117508
50 26973 3.354844688 1.243778848

Table 3.1 shows the result for problem instance ‘A’. As we increased the number

of turbines, the best ratio comes up at 41 turbines for the wind farm. Table 3.2 shows
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Figure 3.3: Position of turbines for problem instance A.

the result for problem instance ‘B’. The best ratio is for 44 turbines in this case. The

layouts associated with each problem are illustrated in Figure 3.3 and 3.4. In each

layout the turbines are located at the middle of black cells.

Figure 3.4: Position of turbines for problem instance B.
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3.6 Summary

This chapter presents a mathematical model that would efficiently find the op-

timal layout of turbines in an offshore wind farm. We consider maximizing energy

production for formulation purposes but eventually we minimize the cost of energy.

We utilize linearization tools that are not only useful under the selected set of as-

sumptions, but for a wide-variety of wind scenarios discussed in the literature. We

examine the trade-off between advantages of packing the turbines close together and

the loss generated by wake effects. We validate our formulation using Mosetti’s prob-

lem instances and find the cost per generated power with increasing the number of

turbines located.
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Table 3.2: Result for problem instance B.

T Power (KW) Cost Cost per power (×$10−3/KW )

21 11793 1.724972426 1.462708747
22 12280.1 1.782571292 1.451593466
23 12936 1.838724086 1.421400809
24 13316.6 1.893645051 1.422018421
25 13957.8 1.947548405 1.395311873
26 14341.4 2.000644777 1.395013581
27 14919.6 2.053137992 1.376134744
28 15553 2.105222267 1.353579545
29 16052.7 2.157079836 1.343748925
30 16678.5 2.20887903 1.324387103
31 17166.9 2.260772803 1.316937131
32 17685.8 2.312897712 1.307771044
33 18049.8 2.365373319 1.310470653
34 18618.1 2.418301986 1.298898376
35 19136.4 2.471769033 1.291658323
36 19649.5 2.525843219 1.285449105
37 20405.1 2.580577481 1.264672793
38 20852.6 2.636009914 1.264115705
39 21312.3 2.692164917 1.263197739
40 21846.1 2.749054465 1.258373103
41 22256.9 2.80667948 1.261037916
42 22713.7 2.865031223 1.261367027
43 23296.5 2.924092716 1.255163958
44 23965.3 2.983840111 1.245066872
45 24369.9 3.044244027 1.249181994
46 24884.5 3.105270798 1.247873495
47 25139.9 3.166883623 1.259704145
48 25671.3 3.229043622 1.257841879
49 26371.5 3.291710765 1.248207635
50 26750.1 3.354844688 1.254142858
51 27406.9 3.41840539 1.247279112
52 27848.7 3.482353812 1.250454711
53 28428.2 3.54665231 1.247582439
54 28687.8 3.611265015 1.258815599
55 29287 3.676158114 1.255218395
56 29593.4 3.741300027 1.264234602
57 30206.3 3.80666153 1.260221056
58 30555.9 3.872215795 1.267256338
59 31164.7 3.937938392 1.263589379
60 31467 4.003807232 1.272382888
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Chapter 4 Causal Inference for Time-series

Analysis: Simultaneous Denois-

ing and Feature Selection

4.1 Introduction

In this chapter we present the new algorithm that is capable of simultaneously

removing the noises while doing the regression. We use this algorithm to find the

features contributing most on a response variable. This chapter is organized as follows:

In Section 4.2, we investigate the previous works have been done in denoising, feature

selection, and regression. In Section 4.3 we first provide the basics of traditional ε-

insensitive regression problems and then present our linear and nonlinear formulation

for the problem. Next, in Section 4.4 we present our solution algorithm for feature

selection. A two-phase heuristic algorithm has been developed for large-scale problems

in this section. Section 4.5 demonstrates the computational results for our algorithm

performance on natural gas pricing data. We provide a brief summary in Section 4.6.

4.2 Literature Review

This section explores the previous research conducted in this line of study. There

are many regression techniques that have been established for the filtering of noise

in data and feature selection. Regression is a statistical learning technique which

develops a mathematical formula that fits the data. Regression can be used for

hypothesis testing, forecasting, inference, and modeling of relationships.

ε-insensitive regression is an optimization based framework for solving regression
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problems. It utilizes statistical learning theory and obtains a good generalization from

limited size data sets (see [91]). The objective is to optimize a certain boundary to

the optimal regression line, therefore, errors within a certain distance (ε) of predicted

value are disregarded.

This form of regression is called ε-insensitive because any point in the ε of the

anticipated regression function does not contribute to error. An important advantage

for considering the ε-insensitive loss function is the sparseness of the dual variables.

Representing the solution by a small subset of training points exhibits computational

advantages. Furthermore, ε-insensitive regression ensures the existence of a global

minimum and minimization of a reliable generalization error bound (see [19]).

ε-insensitive regression has various applications in numerous technology (see e.g.,

[74], [7]), analytical (see e.g., [49], [36]), and scientific fields (see e.g., [81], [102]). Wu

et al. [99] perform location estimation using the Global System for Mobile commu-

nication (GSM) based on an ε-insensitive approach which demonstrates promising

performances, especially in terrains with local variations in environmental factors.

ε-insensitive regression method is also used in agricultural schemes in order to en-

hance output production and reduce losses (see e.g., [100], [50], [65], [16]). Based on

statistical learning theory, ε-insensitive regression has been used to deal with forecast-

ing problems. Performing structural risk minimization rather than minimizing the

training errors, the algorithm has better generalization ability than the conventional

artificial neural networks (see [33]).

Feature Selection (FS) techniques separate the relevant and non-relevant features

in a given model. With the inherent dimensional growth of problems today due to the

rapid development of research and technology, the feature selection methods currently

developed are proving extremely useful [26]. There are many different techniques in

use, but the most commonly implemented techniques are the filter (univariate and

multivariate), wrapper (deterministic and randomized), and embedded technique [72].

68



Grandvalet and Canu [30] introduce an adaptive scaling technique of FS used in

face pattern recognition. FS is especially useful in models with datasets containing

large numbers of variables [31, 43]. Yang and Pedersen [103] and Ferri et al. [25]

evaluate different FS methods. Saeys et al. [73] provide evidence that ensemble feature

selection techniques, unification of multiple FS techniques together, generates more

robust outcomes than employing only one such technique. Fodor [26] explores linear

and non-linear methods to reducing the dimensions in a dataset through feature

selection.

Denoising helps to reduce the amount of outliers in optimization as shown in [80].

There are many applicable methods to denoising that are currently in use. Kohler

and Lorenz [42] test such methods as the moving average, exponential smoothing,

linear fourier smoothing, nonlinear wavelet shrinkage, and the simple nonlinear noise

reduction method. Buades et al. [10] introduce a non-local means algorithm and

compare it to local smoothing filters. The Kalman filter is an earlier method of

denoising that provides a recursive solution to discrete-data linear filtering [97]. Lalley

and Nobel [48] also consider denoising in deterministic systems. Stephanedes and

Chassiakos [80] illustrate the use of denoising techniques on traffic incident detection.

Robertson et al. [71] introduce a least-squares estimation based on the moving horizon

approach. The approach is similar to that of the moving control horizon in Model

Predictive Control (MPC) [61, 68]. Zavala et al. [104] propose a fast moving horizon

estimation algorithm that is based on Nonlinear Model Predictive Control (NLP)

sensitivity concepts as well as background optimization. All of these studies utilize

different variations on denoising to reduce the number of outliers and relatively clean

up the data sets.

Jade et al. [38] combine feature selection with denoising in a kernel PCA method.

They demonstrate this method on a chaotic time series and an input-output model

for polymer nanocomposites. The kernel PCA method proves capable of extracting a
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large number of principle components, thus allowing for the successful combining of

feature selection and denoising within one approach.

Takeda et al. [84] provide an approach that incorporates regression with denoising.

It provides evidence that the adaptive kernel regression performs better than state

of the art methods. Baecher [5] shows that kernel regression framework allows for

successful denoising. Chuang et al. [17] create a Robust Support Vector Regression

(RSVR) to suppress over-fitting due to the possible presence of outliers in the SVR.

The proper individual use of regression, denoising, and feature selection methods,

helps to find solutions with improved computing efficiently. We also find that the

collaboration of two or more of these methods can reduce problem areas, such as

outliers, while increasing the efficiency of the combinatorial methodology.

The main approach in this study is to find the contribute features on a dependent

variable, using regression facts, meant for bags of data sets. Examples of such studies

include protein family modeling (see [85]), stock prediction (see [54]), content-based

image retrieval (see [55]), and text classification (see [3]).

Next, we describe mathematically ε-insensitive regression method and then present

our formulation for regression with denoising.

4.3 Mathematical Modeling

In this section we present the base mathematical core of our method which is called

regression with denoising. This method is based on ε-insensitive regression method

which has been introduced by Vapnik [90]. First, we briefly introduce the traditional

ε-insensitive regression methods then we continue explaining our formulation.

Suppose X as a set of given pattern vectors xi ∈ Rd, with dependent variable val-

ues (i.e., real-valued response) yi ∈ R. The linear ε-insensitive loss function Lε(x, y, f)
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can be defined as

Lε(x, y, f) = |y − f(x)|ε = max(0, |y − f(x)| − ε). (4.1)

To achieve the ε-insensitive regression loss function, a regression function f(·) with

at most ε deviation from yi shall be defined in a way that, if the distance between

the regression hyperplane and our real-valued response is more than ε an associated

penalty of C will incur, otherwise this error will be neglected. It is desirable that the

data would be in ε band of regression hyperplane which is defined by ψ and b, where

ψ is the norm of the regression hyperplane (also called the weight vector) and b is

the constant term called the regression independent term.

If x∗ would be equal to |(〈ψ,x∗〉)+b| which is the distance between the regression

hyperplane and the closest pattern vector, the solution of following quadratic pro-

gramming problem is the regression hyperplane with the minimum sum of quadratic

ε-insensitive losses:

min
ψ,b,ξ,ξ̂

1
2‖ψ‖

2 + C
n∑
i=1

(
ξi + ξ̂i

)
(4.2a)

subject to (〈ψ,xi〉+ b)− yi ≤ ε+ ξi ∀i ∈ I (4.2b)

yi − (〈ψ,xi〉+ b) ≤ ε+ ξ̂i ∀i ∈ I (4.2c)

ξi, ξ̂i ≥ 0 ∀i ∈ I, (4.2d)

where ξi and ξ̂i are slack variables which represent errors associated with instances

outside the ε boundaries and will be zero for all instances inside the insensitive band.

This convex optimization problem minimizes the penalty cost to reveal the best re-

gression fit to the model, constrained with (4.2b-4.2c) which imply that the pattern
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vectors are allowed to be ε below or above the target value without penalty respec-

tively. All pattern vectors outside the ε range are still allowed, however they incur a

cost of C (see [76]).

Differentiating the Lagrangian function for (4.2) with respect to the primal vari-

ables, the dual formulation for the mentioned optimization problem can be written

as

min
α,α̂

1
2

n∑
i=1

n∑
j=1

(αi − α̂i)(αj − α̂j)〈xi,xj〉

+ ε
n∑
i=1

(αi + α̂i) +
n∑
i=1

yi(αi − α̂i) (4.3a)

subject to
n∑
i=1

(αi − α̂i) = 0 (4.3b)

0 ≤ αi, α̂i ≤ C ∀i ∈ I. (4.3c)

From the solution α∗ and α̂∗, the regression function can be written as f(x) =∑n
i=1(α̂∗i −α∗i )〈xi,x〉+ b∗, where b∗ is chosen such that f(xi)− yi = −ε for any i with

0 < α̂∗i < C.

The dual formulation has the significant advantage of using nonlinear maps to

embed the pattern vectors in a higher dimensional space in such a way that a hyper-

plane can perform regression for the mapped pattern vectors in the embedded space.

This embedding is done via the kernel trick. Kernels enhance similarity measures

between pattern vectors. The mapping is defined over dot product Hilbert spaces.

This transformation is done by replacing the dot product 〈xi · xj〉, with a nonlinear

kernel K(xi,xj).

The fundamental ε-insensitive technique for denoising can be formulated in general

form by defining the input data incorporating the notion of bags. Let x1, . . .xn be

a set of patterns that are grouped into bags X1, . . .Xm with Xj = {xi : i ∈ Ij},
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Ij ⊆ {1, . . . , n}, each instance xi is associated with a dependent variable value yi ∈ R.

Therefore, each bag can have multiple responses. Bags create a notion of selection of

the most significant instance regarding the output contribution. Exemplary (primary)

instances issue the following statement: “One pattern in each bag is an example of

its associated response”.

Using the bag notion as explained above, regression with denoising problem re-

duces to selecting exactly one pattern vector (primary instance) from each bag such

that the weighted sum of the ε-insensitive errors for the selected pattern vectors and

regularization term is going to be minimized as follows:

min
ψ,b,ξ,ξ̂,η

1
2‖ψ‖

2 + C
n∑
i=1

(ξi + ξ̂i) (4.4a)

subject to: (〈ψ,xi〉+ b)− yi ≤ ε+ ξi, if ηi = 1 ∀i ∈ I (4.4b)

yi − (〈ψ,xi〉+ b) ≤ ε+ ξ̂i, if ηi = 1 ∀i ∈ I (4.4c)∑
i∈Ij

ηi = 1 ∀j ∈ J (4.4d)

ηi ∈ {0, 1} ∀i ∈ I, (4.4e)

where ηi is a binary variable denotes the selection status of an instance. M is a

sufficiently large number, such that when ηi = 0, both (4.5b) and (4.5c) are always

satisfied, hence the associated instance does not have any influence on the problem

which yields removing this pattern vector (that can be considered noise) from the

problem. Constraints (4.5b,4.5c) ensure a pattern vector is penalized if it is outside

the ε-insensitive band. Finally, the constraint (4.5d) guaranties that only one pattern

vector from each bag will be selected. The regression with denoising problem can be

formulated as the following quadratic mixed 0–1 programming problem considering

M as an arbitrarily large number:
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min
w,b,ξ,ξ̂,η

1
2‖ψ‖

2 + C
n∑
i=1

(ξi + ξ̂i) (4.5a)

subject to: (〈ψ,xi〉+ b)− yi ≤ ε+ ξi +M(1− ηi) ∀i ∈ I (4.5b)

yi − (〈ψ,xi〉+ b) ≤ ε+ ξ̂i +M(1− ηi) ∀i ∈ I (4.5c)∑
i∈Ij

ηi = 1 ∀j ∈ J (4.5d)

ηi ∈ {0, 1} ∀i ∈ I. (4.5e)

In order to apply the kernel trick for regression with denoising, we used the method

in 4.4 to achieve the dual problem which can be explained as follows:

min
α,α̂,η

1
2

n∑
i=1

n∑
i=1

(ηiαi − ηiα̂i)(ηiαi − ηiα̂i)K(xi,xj)

+ ε
n∑
i=1

(ηiαi + ηiα̂i) +
n∑
i=1

yi(ηiαi − ηiα̂i) (4.6a)

subject to:
n∑
i=1

(ηiαi − ηiα̂i) = 0 (4.6b)

0 ≤ αi, α̂i ≤ C ∀i ∈ I (4.6c)∑
i∈Ij

ηi = 1 ∀j ∈ J (4.6d)

ηi ∈ {0, 1} ∀i ∈ I, (4.6e)

where αi and α̂i represent Lagrangian multipliers and inner products are replaced

by kernel function K(xi,xj) = 〈Φ(xi),Φ(xj)〉 to perform nonlinear regression for

selecting problem. New binary variables (zi and ẑi) have been used to linearize the

constraint (4.7b). After considering this linearization, the nonlinear regression with

denoising formulation is as follows:
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min
α,α̂,η,z,ẑ

1
2

n∑
i=1

n∑
i=1

(zi − ẑi)(zi − ẑi)K(xi,xj)

+ ε
n∑
i=1

(zi + ẑi) +
n∑
i=1

yi(zi − ẑi) (4.7a)

subject to:
n∑
i=1

(zi − ẑi) = 0 (4.7b)

0 ≤ zi, ẑi ≤ Cηi ∀i ∈ I (4.7c)

zi ≤ αi ∀i ∈ I (4.7d)

ẑi ≤ α̂i ∀i ∈ I (4.7e)

zi ≥ αi − C(1− ηi) ∀i ∈ I (4.7f)

ẑi ≥ α̂i − C(1− ηi) ∀i ∈ I (4.7g)

0 ≤ αi, α̂i ≤ C ∀i ∈ I (4.7h)∑
i∈Ij

ηi = 1 ∀j ∈ J (4.7i)

ηi ∈ {0, 1} ∀i ∈ I. (4.7j)

It should be noted that this problem is NP-hard since a special case with ambiguous

labels (where bags share a common label) is proven to be NP-hard for bag sizes of

at least 3 (see [93]). Next, we will explain our solution approach for this problem.

4.4 Solution Approach

In this section, we propose an algorithm for the problem in hand. First, we

explain feature selection algorithm which is used with regression and denoising model

and then we describe our heuristic algorithm that is useful for large scale problems.
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4.4.1 Feature Selection Algorithm

The objective of feature selection algorithm is to find the features that have a

significant contribution to the response variable. The algorithm uses the proposed re-

gression formulation as the underlying mathematical model to simultaneously remove

the noise, while finding the most important features. First, we start with applying

regression with denoising for all bags to have a rough idea about the potential fea-

tures that are significant. Then we sort the features that do not contribute more

than a pre-defined threshold in ascending order of their coefficient’s1 absolute value

and choose the smallest one. We then examine to see whether this feature can be

removed from our data. For this purpose we temporarily remove that feature and

apply regression with denoising and check the R2 of the model. If it is not changed

significantly, we remove the selected feature from our data set and start over to find

the next feature. If R2 has changed significantly, we suspect that feature is important

despite the small coefficient value. Thus we keep that feature and select another one

from our sorted feature list. We continue this process until all features contribute

more than the pre-defined threshold.

4.4.2 Heuristic Algorithm for Regression with Denoising

The idea of our heuristic algorithm for regression with denoising is to start with

a feasible hyperplane and fine tune the orientation considering MIL restrictions. In-

stead of starting with a random hyperplane, we take advantage of the efficiency of

ε- insensitive regressors on our problem. Therefore, the first phase of the algorithm

consists of applying ε- insensitive regressors on all instances regardless of their bags.

We use LIBSVM [34] since a fast regression of the data set is needed. The optimal

regression hyperplane in this step (ψ1, b1) gives a rough idea on positioning of bags.
1The coefficient here refers to the weight of the orthonormal vector of the regression hyperplane.
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Next, we continuously update the solution by removing instances from bags. For

this purpose, we choose an instance (xi) which has the most error (difference of its

response from its estimated value by regressor (|〈ψ1,xi〉 + b1 − yi|)) and remove it

from our data. We apply ε- insensitive regression to change the orientation of our

regression hyperplane. We continue this process until one instance from each bag

remains. The optimal regression hyperplane of this step is (ψ2, b2) that supposedly

gives a better representation of data. Finally, we compute current objective function

value using ‖ψ2‖2 and errors associated with instances outside the ε boundaries. This

hyperplane also becomes the current best solution.

The goal of the second phase is to improve the objective function. For this purpose

we seek for instances that can be substituted with the currently selected instances

in each bag. We calculate the errors (|〈ψ2,xi〉 + b2 − yi|) and choose the one which

has the least error in each bag. If the new set of instances are not the same as

previously selected instances, we apply ε- insensitive regression to come up with

the new orientation. If the objective value is less than the current best objective,

candidate hyperplane will be updated. The search will continue until no improvement

is possible and the final best solution is the heuristic solution of the problem (ψ3, b3).

The pseudocode is presented in Algorithm 2.

For traditional ε-insensitive regressor, we use an open source software IBSVM [34].

Therefore, the nonlinear extension of Algorithm 2 only requires calling LIBSVM soft-

ware using nonlinear regression option. Next, we report computational performance

for the proposed algorithm.

4.5 Computational Results

Natural gas, a mixture of hydrocarbon and non-hydrocarbon gases, is one of the

abundant sources of energy in United States. In United States, because of recent
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Algorithm 2 Two-Phase Heuristic Algorithm (Linear Regression)
INPUT: (x1, y1), . . . , (xn, yn), J, I, C
OUTPUT: ψbest, bbest, Objectivebest

{PHASE I}
Iactive ← I
Jactive ← J
Nj ← |Ij |
ψ1, b1 ← traditional ε-insensitive regressors for Iactive
while

∑
j
Nj > |J | do

iselected ← argmaxi∈Ij ,j∈Jactive
|〈ψ1, xi〉+ b1 − yi|

jselected = j : iselected ∈ Ij
Iactive ← Iactive \ iselected
Njselected

← Njselected
− 1

if Nj = 1 then
Jactive \ jselected

end if
end while
ψ2, b2 ← traditional ε-insensitive regressor for Iactive
Objectivebest ← 1

2‖ψ2‖2

for all i ∈ I do
Objectivebest ← Objectivebest + C × (〈ψ2, xi〉+ b2 − yi|)

end for

{PHASE II}
Imin ← ∅
ψbest ← ψ2
bbest ← b2
status←false
while status=false do

Empty Imin
for all j ∈ J do

Imin ∪ arcmini∈Ij
(|〈ψbest, xi〉+ bbest − yi|)

end for
if Imin 6= Iactive then

Iactive ← Imin
ψ3, b3 ← traditional ε-insensitive regressors for Iactive
Objectivenew ← 1

2‖ψ3‖2

for all i ∈ I do
Objectivenew ← Objectivenew + C × (〈ψ3, xi〉+ b3 − yi|)

end for
if Objectivenew < Objectivebest then
ψbest ← ψ3
bbest ← b3
status← true

end if
end if

end while

technological advances and plentiful reservoirs, shale gas usage is soaring. As a result,

finding the features affecting gas prices has great significance to industries and produce

potential economic benefits. For identifying variables that potentially affect Henry

Hub natural gas prices, we conducted a comprehensive literature review and a survey

from technical experts in the fields of energy, scheduling, and planning. As a result,

following variables are recognized: electricity price, storage, Dow Jones index, NYSE

index, Dow Jones coal index, U.S. natural gas pipeline imports, U.S. LNG imports,
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U.S. natural gas consumption, U.S. natural gas gross withdrawals, U.S. natural gas

marketed production, renewable energy production, renewable energy consumption,

shale gas production, weather (temperature), and WTI oil spot price. The historical

data for all of these variables is available concurrently for 2003 to 2009 period and is

gathered from different resources, including U.S. Energy Information Administration

(EIA) [88] and [96]. The shale gas production (MMcf/d) information is generated

through the implementation of a digitizer software on the data published in [82].

The data gathered from these various resources is not in the same time format

and uniform. Some of these data are available in days, and some in weeks and

months; therefore, considering the low variance within each weak, we calculate the

weekly average for daily data, including Dow Jones index data, NYSE index, Dow

Jones Coal index and natural gas Henry Hub historical prices. Next, we consider

taking the monthly averages but for certain weeks some artificial rapid changes are

observed in a number of variables including the Henry Hub historical price. These

changes is considered as noises and should be removed for more accurate forecast

model. In order to satisfy uniformity, weekly data is assumed to constitute each

data instance. The variables whose data was available monthly and are assumed

to be constant through the weeks of the month are: electricity price, U.S. natural

gas pipeline imports, U.S. LNG imports, U.S. natural gas total consumption, U.S.

natural gas gross withdrawals, U.S. natural gas marketed production, total renewable

energy production, total renewable energy consumption and WTI oil spot price. Our

goal is to simultaneously identify and omit artificial changes in independent variables

(potential features affecting price) and response (Henry Hub natural gas price) and

diminish the impact of monthly to weekly conversion.
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For validation purposes, we use the Root Mean Squared Logarithmic Error (RM-

SLE) to measure the accuracy of our algorithm given as

RMSLE =
√√√√ 1
n

n∑
i=1

(log(pi + 1)− log(ai + 1))2, (4.8)

where the natural logarithms are considered. In this equation, pi and ai are the

predicted and actual values for data instance i, respectively.

The independent variable values to be plugged in for prediction can be forecasted

using time series forecasting (e.g., moving average) or an expert opinion in cases

such as weather. At this point, in order to assess the performance of regression with

denoising, we keep prediction of independent variables as a secondary objective and

assume future values are known for these variables.

Figure 4.1 shows the 3-month-ahead forecasts obtained using simple regression,

regression with denoising, and 12 months weighted moving average since it provides

best forecasts among time series methods.

Figure 4.1: 3-month-ahead Henry Hub price forecasting with ε-insensitive regression,
regression with denoising and 12 months weighted moving average.

To assess the consistency of these results, each method is applied to forecast
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different time periods ahead: 2 months, 3 months, 4 months, 5 months, 6 months, 7

months, and 12 months. The final predictions are assessed by their RMSLE value.

Those values are plotted in Figure 4.2.

Figure 4.2: Weekly RMSLE for each method when predicting different time periods.

Regression with denoising consistently provides lower RMSLE than traditional

regression. Even though weighted moving average has the lowest RMSLE for 2

months ahead to 6 months ahead, it shows a constant increasing trend that is evident

when predicting for a period of 12 months. In fact, this is due to MA’s infamous

lagging from behind weakness in forecasts. Next, we analyze the performance of

the same methods using their minimum errors within each month and present the

RMSLE based on these exemplary weeks in Figure 4.3. As expected, this boosts

the performance of regression with denoising further as this evaluation process also

assumes potential existence of outlier observations.

Finally, we compare our 3-month-ahead regression with denoising forecasts with

the U.S. Energy Information Administration (EIA) Short Term Energy Outlook

(STEO) forecast for the Henry Hub prices. The information with the STEO his-

torical forecast is public and available in [88]. The STEO projections are updated

every month and include forecast for the next 12 months. The outlooks are available
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Figure 4.3: Monthly minimum RMSLE for each method when predicting different time
periods.

in excel data file since 2004 and in full PDF report since 1983. Note that there are no

technical details in how the projections are calculated. The STEO Henry Hub price

forecast is available per month. Comparisons with regression with denoising results

using actual and forecasted independent variables and the STEO forecast are con-

ducted. Figure 4.4 shows the STEO performance for a 3-month-ahead forecast along

with the outputs of the aforementioned methods assuming the independent variables

are known 3 months in advance.

Having shown the success of regression with denoising especially in a longer fore-

casting horizon, next we present results for traditional regression and regression with

denoising using the predictions of independent variables. Clearly, this is a more realis-

tic setting for forecasting natural gas prices. Figure 4.5 shows the STEO performance,

12 months weighted moving average on natural gas prices and the performances of

the traditional regression and the regression with denoising using forecasted indepen-

dent variable data. The RMSLE values obtained by four methods are summarized in

Table 4.1.

Regression with denoising (RMSLE 0.0990) has a slightly more accurate forecast
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Figure 4.4: 3-month-ahead forecasts: traditional regression, regression with denoising,
STEO, and 12 months weighted moving average assuming independent variables data is
known.

Figure 4.5: 3-month-ahead forecasts: traditional regression, regression with denoising,
STEO, and 12 months weighted moving average using MA forecasted independent variable
data.

than the STEO method (RMSLE of 0.0994) for a 3 months forecast. When the

independent variables are assumed known, error measure for regression with denoising

is decreased further. Aside from a small difference in accuracy, note that one of the

greatest advantages of a causal model is the ability to clearly highlight factors that

affect natural gas price. Having validated our approach with natural gas price data,
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Table 4.1: Comparison of RMSLE values for traditional regression, regression with de-
noising, STEO, and 12 months weighted moving average 3-month-ahead forecasts.

Independent ε− insensitive Regression 12 months STEOVariables Regression with Denoising Weighted MA

Known 11.88% 9.54% 10.98% 9.94%Forecasted 12.19% 9.91%

next we present our feature selection results.

Feature selection procedure consists of iterative applications of presented regres-

sion methods on the data. During this procedure, we ensure that R2 values do not

decrease drastically for the training set and we try to minimize the number of selected

features. Significance of features on natural gas prices are observed after applying

regression with denoising with this feature selection routine and results are shown in

Figures 4.6 and 4.7. These results also show the expected recent disparity between

the price of oil (WTI) and natural gas, yet there still exists some correlation especially

in the years of 2005 and 2008 which are known to be ill-posed in terms of oil prices.

Aside from the fuzzy behaviors in 2005 and 2008, Figure 4.7 clearly shows the correla-

tion between independent variables and natural gas price. For instance, before 2005,

U.S. LNG imports, U.S. natural gas consumption, U.S. natural gas gross withdrawals,

U.S. natural gas marketed production, and weather seem to affect natural gas price

consistently. Likewise, between 2005 and 2008 we can observe the consistent effect

of electricity price, U.S. natural gas pipeline imports, weather as well as renewable

energy production and renewable energy consumption using Figure 4.7. On the other

hand, a similar consistent insight cannot be derived from Figure 4.6.

4.6 Summary

In this chapter we present a novel method to improve feature selection with si-

multaneously removing the noise while performing the learning process. Linear and
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Figure 4.6: Heatmap of features’ coefficients (absolute values) in the regression with
traditional regressor.

Figure 4.7: Heatmap of features’ coefficients (absolute values) in the regression with
denoising regressor.

nonlinear formulations are developed to formulate our regression with denoising prob-

lem. In order to validate our method we analyze the relationship between potential

variables that have an impact on the Henry Hub natural gas price and the historical

natural gas price behavior. We compared our method with moving average and tradi-

tional regression approaches. The results show our approach has better performance

in terms of accuracy of predictions.
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Chapter 5 Conclusions and Future Work

In this dissertation, we studied three data mining and optimization approaches

that can be used for sustainable energy applications. In this chapter we summarize

the research that has been completed for each of these studies. Next, we discuss

problems and solution methods that can be explored in the future.

5.1 Concluding Remarks

In Chapter 2, we proposed a robust approach for Multiple Instance Learning based

on Support Vector Machines. We used three different loss functions and showed that

hard margin loss classifiers provide better generalization performance for multiple

instance data. Three nonlinear integer programs, two constraint programs, and a

nonlinear classifier are developed in this study. The results show that these formu-

lations can solve medium size problems to optimality in reasonable time. Since the

problem is NP-hard, we developed a three-phase heuristic algorithm that can handle

large problem instances within seconds. We extended traditional cross validation ap-

proaches to consider bags for multiple instance data and compared our heuristic with

conventional hinge loss based Support Vector Machines (SVMs). The leave one bag

out cross validation (LOBOCV) result shows our heuristic provides higher accuracy

for multiple instance data in significantly less time. We implemented our method on

wind farm site locating problem and showed promising results.

Offshore wind farm layout optimization framework has been studied in Chapter

3. We presented a mathematical model that would minimize the cost of wind energy

by increasing the number of turbines to generate more power while considering loss

generated by wake effects. By using two linearization techniques we came up with

a general formulation that is useful for a wide-variety of wind scenarios and power
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curves discussed in the literature. Mosseti’s problem instances have been used to

validate our method. We find the best layout in each problem instance by increasing

the number of turbines located and maximizing the generated power.

In Chapter 4, we developed a novel optimization algorithm that is capable of

simultaneously removing noise and performing regression. We used this algorithm

to analyze historical information on variables that potentially have an impact on the

response variable. We considered a framework that consists of sets of instances that

are tied in some way and the number of outliers in each set is bounded from above.

Two linear and nonlinear regressors are developed to address this problem. We used

natural gas pricing data to validate our approach and developed an efficient price

prediction tool. Traditional ε-insensitive regression and Weighted Moving Average

(WMA) methods are used for benchmarking purposes. The Root Mean Squared

Logarithmic Error (RMSLE) results show our method outperforms both WMA and

traditional regression in terms of accuracy of predictions.

5.2 Future Work

This section includes the overview of future research and possible progressions in

our problems. Each chapter in this dissertation can be considered as a starting point

for further investigation. We introduce several topics that can be chosen for further

advanced research.

In Chapter 2, we observed that ramp loss classifiers are slow in practice. Al-

ternative formulations can be developed and problem complexity can be studied for

ramp loss SVM for conventional and multiple instance data. Another important fu-

ture study may be a comparison of approaches highlighted in Section 2.2.2 using a

fair cross validation scheme (e.g., leave one bag out), instead of random validation

schemes that generate varying results in different runs.
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In Chapter 3, we recommend considering different wake effect models and power

curves. Jensen’s model is claimed to have imperfections in modeling the wake behind

the turbines, therefore this study may help understand the sensitivity of our model

to the functions employed.

In Chapter 4, results indicate the prediction of the independent variables can be

further enhanced that would ultimately improve the prediction of the response vari-

able (natural gas price). Although the performance of the regression with denoising is

not severely affected using forecasted data, some of the independent variables we con-

sider can be forecasted more accurately for a better overall performance. The periods

of peaks and valleys that are not artificial, cause a serious decrease in performance of

our method. When isolated periods of no particular trend are considered, regression

with denoising achieves less than 3% RMSLE. Therefore, these trend changes and

peaks can be further analyzed to understand and identify conditions and contribute

to the learning procedure.
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