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ABSTRACT 

Numerical models are excellent tools for forecasting future weather events or air quality. 

The scientific and computational advancements in numerical models provided us with more 

accurate forecasts while promoting an understanding of various physical and chemical processes 

in the atmosphere. However, due to the simplified implementation of such processes, the 

understanding of modeling uncertainties has been limited. In addition to this, these numerical 

models require significant computational resources and time to have a quality forecast. This thesis 

tries to mitigate the uncertainties which lead to large biases, using advanced deep neural network 

(DNN) models and integrate them into the existing numerical model to have better and faster 

weather and air quality forecasts. 

In this study, a long-term forecasting system based on a deep Convolutional Neural 

Network (CNN) was developed for air pollutants such as ozone, NO2, PM2.5, and PM10 for up to 

two weeks. An optimized deep learning algorithm was used to develop species-specific and 

location-neutral models. These models used the simulation outputs of the Weather Research and 

Forecasting (WRF) model and Community Multiscale Air Quality (CMAQ) model at the first step, 

and then trained a deep neural network (DNN) model for each air pollutant in the second step. 

Once trained, these models forecasted the next 24-hour in advance for all species across the 

geographical domain for up to two weeks. 

In the final task, a deep CNN system was developed to bias-correct and reduce systematic 

uncertainties in the simulation of meteorology, such as wind speed and direction, surface pressure, 

temperature, humidity, etc., in the WRF model.  
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CHAPTER 1 

INTRODUCTION 

The air quality of any region is strongly influenced by the weather conditions of the region. 

The interaction of emitted or residing chemical species or particulates with the prevailing weather 

condition decides the region's air quality. Meteorological processes in chemical transport models 

(CTMs) like Community Multiscale Air Quality (CMAQ) models are derived from the partial 

differential equation of mass and energy conservation. The process also involves parameterization 

of the various process to have simplified physics.  

The main objective of this dissertation was to develop techniques that can mitigate the 

uncertainties in weather and CTM models. In this dissertation, several artificial intelligence models 

based on the deep convolutional neural network (CNN) were developed to forecast and bias-

correct hourly air quality and meteorological parameters. The models developed to bias-correct 

and forecast hourly ozone, NO2, PM2.5, and PM10 for up to two weeks in advance were discussed 

in Chapters 3, 4, and 5. CMAQ air-quality and Weather Research and Forecasting model’s (WRF) 

meteorological parameters were used to develop these CNN-based models. In Chapter 6, the 

models based on CNN to estimate the 24-hour meteorological parameters (such as temperature, 

pressure, precipitation, wind speed and direction, relative humidity, etc.) with better accuracy over 

the spatial domain using the WRF simulations were discussed.  

1.1. Air quality 

The severe implications of high concentrations of air pollutants such as ozone PM2.5, PM10, 

NOx, etc., to human health and the environment; necessitate prior reporting of such concentrations. 

Numerical air quality modeling, also referred to as chemical transport modeling (CTM), was often 

used for this purpose. The most widely used air pollution chemical transport model was the 
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Community Multiscale Air Quality (CMAQ) model, developed by USEPA (Byun and Schere, 

2006). These models cover large spatial domains and have reasonable accuracy for a one-day 

ahead forecast (Chai et al., 2013).  

Numerical models such as CMAQ are excellent tools to forecast the air quality of a region 

with considerable accuracy. CMAQ was a three-dimensional model that provides the estimation 

across the domain with coarse to fine spatial and temporal resolutions.  It has been used as a 

primary dynamical model in regional air pollution studies. However, some concerns remained in 

CMAQ modeling. CMAQ has uncertainties in estimating ozone, leading to large overestimations 

(Li et al., 2016; Liu et al., 2010).  

The process to forecast air quality with numerical modeling requires significant 

computational time - even with simplified physics. The computation time increases in two-way 

modeling (online coupling of WRF and CMAQ) processes. Despite their greater domain coverage 

and reasonable results, the CTM models consume significant computational resources and time  

(Zhang et al., 2012). This necessitates the use of statistical and/or artificial intelligence techniques, 

such as deep neural networks (DNN), which are considerably more efficient and consume fewer 

computational resources and time (Fernando et al., 2012).  

Generally, such a model uses an artificial neural network (ANN) that can be trained from 

historical events that form the input and output set (perceived outcome based on given inputs). 

Figure 1.1 shows the schematic of the general process in a neural network. Since all atmospheric 

phenomena are interrelated, the DNN then predicts a future event(s) based on a given set of new 

inputs (or unseen inputs) (Bengio, 2009; Marr, 1976). Machine learning (ML), on the other hand, 

can be trained to forecast one hourly output using certain inputs. Another computational benefit of 

machine learning was the model only needs to be trained once. While the machine learning model 
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has higher accuracy and faster processing speed, they are very localized (station-specific) and have 

a large under-prediction of the daily maximum ozone concentrations (Eslami et al., 2019a; Sayeed 

et al., 2020b).  

 
Figure 1.1. Process Flow Diagram of a Machine Learning Model. 

Although the ANN models are fast, they have the following issues:  i) Most predict a single 

value (single hour of the day, the daily mean, the daily maximum, etc.), ii) their predictions are 

sometimes not comparable with numerical models, and/or iii) have an only temporal or spatial 

resolution. Hence, there was a need to develop a fast, stable, and accurate model covering both 

spatial and temporal domains. To develop such a model, the deep architecture of Convolutional 

Neural Network (CNN) (Krizhevsky et al., 2017; Lawrence et al., 1997; Lecun and Bengio, 1995) 

can be used. CNN was suitable for this study because of three qualities: i) it was capable of 

understanding the complex features of input variables by applying a convolution using multiple 

filters and kernels (Lecun and Bengio, 1995); ii) since data (both meteorological and pollutant 

data) exhibit temporal coherence that CNN preserves by convolution on adjacent inputs only 

(Lawrence et al., 1997), it provides the desired accuracy in the results; and iii) it can cover both 

spatial and temporal domain.  

The objective of using this technique was to enhance the CMAQ modeling results by taking 

advantage of ML as a computationally efficient system to recognize the uncertainties in the CMAQ 
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model, as well as computing the measured chemical variables along with fine temporal and spatial 

resolutions. This approach aimed to use the best of both numerical modeling and machine learning 

to design a robust and stable algorithm to forecast air quality with better accuracy in predicting 

concentration and to cover a larger domain, both spatially and temporally. 

1.2. Meteorology 

Many academic studies have been devoted to the problem of forecasting difficult-to-

retrieve weather events and their associated uncertainties. Methods used for weather forecasting 

can be classified into dynamical and statistical groups. Dynamical (physical) models such as WRF 

use meteorological and topological information to determine the weather parameters of a specific 

region. Statistical methods mainly use historical meteorological data to forecast the future state of 

the weather. Despite the major progress of numerical weather prediction (NWP) in the last several 

decades, meteorological models are unable to provide fully reliable weather forecasts, especially 

in topographically complex regions, because of shortcomings in horizontal resolution, physical 

parameterizations, and initial and boundary conditions (Cassola and Burlando, 2012). They are 

also computationally expensive, particularly with regard to fine-resolution forecasting. In addition, 

because of the misrepresentation of unresolved small-scale features or neglected physical 

processes, parts of numerical models have to be represented by empirical sub-models or 

parameterizations. Despite their unreliability for longer-term forecasting, statistical methods are 

popular because they are easily implemented and less computationally intensive than NWPs. 

Owing to the chaotic nature of the weather system, errors in weather forecasting are unavoidable 

but quite often significant regardless of the implemented modeling approach. 

An alternative approach was be applied to estimate meteorology, which was a fully data-

driven framework that combines deep neural networks and physical models that simulate the 
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dynamics of a complex weather system. Weather-AI as a gridded real-time weather forecasting 

model was developed that reduces the model-measurement error of the WRF model. The system 

post-processes WRF simulation output based on an observation network 24 hours ahead in real-

time. It uses a convolutional neural network algorithm (Krizhevsky et al., 2017) that bias-corrects 

the WRF outputs at each grid linked to each station location.   
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CHAPTER 2 

METHODOLOGY 

2.1. Coupled CMAQ and WRF 

To take advantage of numerical modeling, air quality and meteorological parameters were 

obtained by the CMAQ v5.2 (Byun and Schere, 2006) and the Weather Research and Forecasting 

(WRF) v3.8, covering the eastern part of China, the Korean Peninsula, and Japan, with a 27 km 

spatial resolution. The detailed configurations of the CMAQ and WRF models are available in 

Jung et al. (2019). 

WRF v3.8 covers the eastern part of China, the Korean Peninsula, and Japan, with a 27 km 

horizontal grid spacing for the years 2014 to 2018. Detailed configurations of the WRF model are 

available in (Jung et al., 2019).  The WRF simulation used for this study was conducted in hindcast 

mode by using one-degree by one-degree National Centers for Environmental Prediction FNL 

(final) operational global analysis data as initial and boundary condition, as well as 0.5-degree 

real-time global sea surface temperature (RTG SST) for a reasonable sea surface temperature. 

Thus, a four-dimensional data assimilation (FDDA) option every 6 hours for the temperature, the 

water vapor mixing ratio, and wind components was applied in conjunction with the indirect soil 

moisture and temperature nudging technique (Pleim and Gilliam, 2009; Pleim and Xiu, 2003).  

2.2. Deep Convolutional Neural Network 

As introduced by Lecun and Bengio (1995), the CNN was generally used for image 

classification. However, since its inception, CNN has improved significantly and has been used in 

various applications, from speech recognition to object detection (LeCun and Bengio, 1995). Deep 

CNN consists of several stacked neuron layers: 1) a convolutional layer, 2) a pooling layer, and 3) 
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fully connected layers (Krizhevsky et al., 2012). These layers build a hierarchal and distributed 

network. The convolutional layer consists of neurons stacked together and responds only to the 

overlapping region instead of the whole signal. Mathematically, convolution was integral 

measuring the extent to which two functions overlap as one passes over the other. The pooling 

layer eliminates features with similar attributes, thus reducing the computational burden. In this 

layer, features are either averaged (i.e., average pooling) or maximum (i.e., MaxPooling) over one 

section of a signal region to increase the system's robustness by decreasing the number of features. 

The fully connected layer translates input features into output predictions. Figure 2.1 shows the 

schematic diagram of the CNN model architecture used in this study. 

 
Figure 2.1: Schematic representation of the architecture of the CNN model. 

Pooling can potentially remove important features sensitive to the output (e.g., a sudden 

change in peak due to the absence of favorable chemistry in the atmosphere) (Eslami et al., 2019a, 

2019b). Also, in contrast to an image or speech signal, the number of features (meteorology and 

air pollution) in this study was limited (Eslami et al., 2019a, 2019b). The representation of each 

feature was essential; therefore, to avoid loss of information, the pooling layer (Hinton, 2014) was 
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not used. This was confirmed during the test runs – where the addition of a pooling layer reduced 

the model's performance. 

The depth of any neural network depends on the type of problem it needs to solve. Ozone 

concentration was highly dependent on the availability of favorable meteorological conditions 

(e.g., sunlight) and the presence of certain chemical species (e.g., concentrations of volatile organic 

compounds and NOx concentrations) in the atmosphere. Additionally, the transport of pollutants 

from the surrounding region can lead to a change in their concentration. These factors add high 

non-linearity in the time-series of pollutants concentrations. Since the problem here was highly 

non-linear and dependent upon the external factors, the architecture was tested with more than one 

layer of CNN with various configurations (e.g., number of layers and kernel size). Then the best 

configuration was selected with the least mean squared error and/or index of agreement (IOA) on 

the cross-validation set and maximum IOA on the test set. Note: the test set throughout the study 

was never used for training to avoid data leakage. 

The CNN model consists of five convolutional layers and one fully connected layer, as 

shown in Figure 2.1. A convolution was applied to the input features and the elements of the kernel. 

The final feature map obtained at the end of the first layer of the CNN acts as input for the second 

layer.  Similarly, the output feature map of the second layer was input for the third layer, and so 

on. In this way, the model has a five-layer CNN, each layer with 32 filters (activation by ReLU), 

each with a size two kernel randomly initialized by some value for the first iteration. After 

determining the last feature maps in the last convolutional layer, the fully connected hidden layer 

with 264 nodes provides the 24-hour output of target pollutant or meteorology. The algorithm was 

implemented in the Keras environment with a TensorFlow backend. (Abadi et al., 2016; Chollet 

and others, 2015)   
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CHAPTER 3  

USING A DEEP CONVOLUTIONAL NEURAL NETWORK TO PREDICT 

2017 OZONE CONCENTRATIONS, 24 HOURS IN ADVANCE1 

3.1. Introduction 

Ozone was a criteria pollutant generated by the photochemical reaction between nitrogen 

oxides (NOx) and volatile organic compounds (VOCs) in the atmosphere (US-EPA, 2006). 

Depending on its concentrations, ozone can have serious health implications. In general, it was 

advisable that hourly ozone concentration limits should not exceed 80 ppbv and/or 50-60 ppbv for 

a maximum daily eight-hour average (MDA-8) (Ayres et al., 2006; Taylan, 2017). In urban areas, 

short-term exposure to ozone can cause headaches, chest pains, sore throats, coughing, and 

decreased lung function, depending on the ozone concentration (usually > 150-300 ppbv). At 

elevated ozone concentrations above 100 ppbv, living beings are more susceptible to bacterial 

infections (Jacobson, 2005). According to Bell et al. (2006), exposure to high concentrations of 

ozone and long-term exposure to low concentrations of ozone adversely affect human health. 

Similarly, Mills et al. (2007) claimed that long-term exposure to more than 40 ppbv of ozone could 

damage crops and ecosystems.  

The human health hazards related to ozone exposure lead to the development of several 

models to estimate it. Byun et al. (2007) performed CMAQ simulation for base and HRVOC (a 

highly reactive volatile organic compound) emissions in the Houston-Galveston-Brazoria region 

(HGB), Texas, USA, during a five-day summer period of TexAQS-2000 and found that HRVOC 

produced better results (slope, a = 0.81 ppbv; intercept, b = 5.48 ppbv, r2 = 0.76). Misenis and 

 
1Published: Sayeed, A., Choi, Y., Eslami, E., Lops, Y., Roy, A., Jung, J., 2020b. Using a deep convolutional neural 

network to predict 2017 ozone concentrations, 24 hours in advance. Neural Networks.  
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Zhang (2010) used the WRF/Chem model during the same period and region. They ran simulations 

in various configurations and reported an hourly ozone prediction mean bias range between 3.8 

ppbv and 11.0 ppbv. Using the CMAQ modeling system, the NAQFC (National Air Quality 

Forecast Capability) project (Chai et al., 2013) generated operational and experimental real-time 

ozone predictions for the United States in 2010 and found that the model overestimates by 5.6 

ppbv annually for the contiguous US (CONUS) and that the RMSE was 15.4 ppbv. They also 

found out that among the six regions of the study, the southeastern US had a maximum bias of 

10.5 ppbv, and the lower middle US (Texas, Oklahoma, Arkansas, Louisiana) had a minimum bias 

of 3.7 ppbv. Czader et al. (2015) developed another chemical transport model, STOPS (v1.0), a 

hybrid Eulerian-Lagrangian-based modeling tool, and compared its results with those of the 

CMAQ for August 25, 28, and 30, in the year 2000, for the Houston region. They found that the 

mean bias for surface ozone mixing ratios varied between -0.03 and -0.78 ppbv, and the slope 

varied between 0.99 and 1.01 for several configurations.  Another study by Pan et al. (2017) 

simulated NOx and ozone for the Houston region for September 5-14, 2013, with a spatial 

resolution of 4 km and 1 km and found correlations for ozone concentrations in the range of 0.79 

to 0.87 and an index of agreement (IOA) of 0.74 to 0.86. The model, however, generated stronger 

correlations and IOA mean bias (MB): 10 to 14.9 ppbv and a mean absolute error (MAE) of 10.7 

to 15.2 ppbv. Despite their greater domain coverage and reasonable results, the above models 

consume significant computational resources and time (Zhang et al., 2012). To overcome the 

computational burden and improve the performance, alternative statistical and machine learning 

(ML) approaches were used. 

These ML models are trained on a historical event having certain inputs and outputs. As 

all atmospheric phenomena are interrelated, the ML then predicts a future event(s) based on a 



11 
 

given set of new inputs (or unseen inputs) (Bengio, 2009; Marr, 1976). Hoshyaripour et al. (2016) 

developed an FS-ANN model, compared it with WRF-Chem, and evaluated it in two stations in 

Sao Paulo (Brazil) between August 5 and 20, 2012.  They found that while the daily mean IOA 

ranged from 0.39 to 0.59 (at various locations) from FS-ANN and 0.54 to 0.68 from WRF-Chem, 

the daily peak value was slightly higher (0.53 to 0.78 from FS-ANN and 0.63 to 0.67 from WRF-

Chem). These results also showed a mean daily bias of between -3.49 and 1.60 ppbv from FS-

ANN and between -8.05 and 4.25 ppbv from WRF-Chem. They concluded that WRF/Chem 

produces better results than FS-ANN, but the latter was computationally faster and cheaper.  

Prasad et al. (2016) developed an adaptive neuro-fuzzy inference system (ANFIS) for 

Howrah City, India, for the years 2009 to 2011, reported an IOA of 0.81 and R2 of 0.51 for one-

day advance forecasting of ozone concentrations. Biancofiore et al. (2015) used a recurrent neural 

network (RNN) to predict one-, three-, six-, 12-, 24-, and 48-hour ozone concentrations at an 

observation station in Pescara, Italy, in 2005. Although their model performed reasonably, with 

comparatively stronger correlation coefficients for the one-, three-, 24-, and 48-hour 

concentrations (i.e., 0.97, 0.89, 0.86, and 0.83 respectively), it yielded poor correlation coefficients 

for the six- and 12-hour concentrations (i.e., 0.78 and 0.77, respectively). The main reason for the 

poor six- and 12-hour correlations was that both meteorological and pollutant criteria differ 

significantly (or reverse in the case of 12-hour) from the 0th hour while the stronger 24- and 48-

hour correlation coefficients occur at the same time of day. The other caveat in their model was 

that they predicted one specific hour of the day per iteration.  

Although the above models are fast, they have either one or both of the following issues:  

i) Most predict a single value (single hour of day, daily the mean, the daily maximum, or MDA-8) 

as in Biancofiore et al. (2015), and/or, ii) their predictions are inaccurate, as in Hoshyaripour et al. 
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(2016). A fast, stable, and accurate model can overcome these problems. To develop such a model, 

the deep architecture of CNN (LeCun and Bengio., 1995; Lawrence et al., 1997; Krizhevsky et al., 

2012) was used. CNN was suitable for this study because of two qualities: i) it was capable of 

understanding the complex features of input variables by applying a convolution using multiple 

filters and kernels (LeCun and Bengio, 1995); and ii) since data (both meteorological and pollutant 

data) exhibit temporal coherence that CNN preserves by convolution on adjacent inputs only 

(Lawrence et al., 1997), it provides the desired accuracy in the results. Therefore, in this study,  an 

artificial intelligence model based on a deep convolutional neural network to predict next-day 24-

hour ozone concentrations at a station was developed and then the model was evaluated based on 

daily, weekly, monthly and seasonal values for the year 2017. (Note: The model was trained for 

the years 2014 to 2016). 

3.2. Material and Methods 

A five-layer deep CNN architecture model was used to estimate real-time 24-hour 

predictions of ozone concentrations. The main purpose of using a multilayer CNN was to increase 

computational efficiency over traditional numerical models and various deep learning models. 

When compared with multilayer perceptron (MLP), it involves more thorough and complex 

calculations to preserve nonlinear characteristics of the input and output features. Several tests 

were performed to determine the optimal number of layers (in this case, five) and achieve the 

lowest mean squared error (MSE). This technique involved site selection, observations, and model 

definition, training, and prediction. These steps are explained in the following subsection. 
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Figure 3.1. Map of Texas (a) indicating locations of all stations used for the study. Map of Houston (b) shows the 

individual stations used in Houston for the study. 
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3.2.1. Site Selection and Observation 

Anthropogenic precursors, along with meteorological conditions, significantly affect 

regional air quality (Baklanov et al., 2008; Damo and Icka, 2012.; Taylan, 2013). Thus, only those  

stations were selected in Houston with both ozone and NOx data available and at least three 

meteorology measurements monitored for at least four years (i.e., 2014 to 2017). Figure 3.1 shows 

the station location (see Table-T1 in the appendix for station details). In addition, seven stations 

were selected from other cities in Texas to evaluate the model performance outside of Houston. A 

four-year (2014-2017) observational data were obtained from the Texas Commission on 

Environmental Quality (TCEQ) website, which provides a variety of meteorological (e.g., wind 

speed, wind direction, temperature, pressure, precipitation, dew point temperature, relative 

humidity, solar radiation) and air pollutant (i.e., NOx and ozone) data. 

3.2.2. Model Definition 

To build the deep CNN model, five convolutional layers and one fully connected layer 

were used (Figure 3.2). A convolution was applied to the input features and the elements of the 

kernel (Figure 3.3). Since the kernel size (convolution window) here was 2×1, the convolution of 

two successive hours of input features takes place in the first layer. The results of the convolution 

operation were then passed to the activation function. The final features are the activation function 

(ReLU) applied to the output of the convolution (i.e., the three-dimensional tensor). 

For any neural network to achieve efficient optimization within a weight matrix while 

preserving nonlinearity, it needs to have an activation function (Nair and Hinton, 2010). For this 

model, ReLU was used as the activation function, defined by equation 3.1 as follows:   

𝑓 (𝑥) = max(0, 𝑥).     (3.1) 
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Figure 3.2. Model Architecture: Detailed process flow of the deep CNN model. 

The final feature map obtained at the end of the first layer of the CNN acts as input for the second 

layer.  Similarly, the output feature map of the second layer was the input for the third layer, and 

so on. In this way, the model has a five-layer CNN, each layer having 32 filters (activation by 

ReLU), each with two kernels randomly initialized with some value for the first iteration. After 

determining the feature maps in the last convolutional layer, a fully connected hidden layer with 

264 nodes, gives the final output of the model. The algorithm was implemented in the Keras 

environment with a TensorFlow backend (Abadi et al., 2016; Chollet and others, 2015). 
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Figure 3.3. Expanded view of the first CNN layer (the architecture has four more layers with a similar structure): 

Operations performed in a convolutional layer of CNN. (k was the total number of input features, whereas “i" was 

the input feature. m1 and m2 are the elements of each kernel that are randomly initialized). 

3.2.3. Model Training and Prediction 

Once the model architecture was defined, it required a training set consisting of input and 

output features from the previous day. For example: to predict the (n+1)th day, the model was 

trained until the nth day with the input feature of the (n-1)th day and the output target of the nth day. 

Therefore, to predict the (n+1)th day, the model has n training examples (for details, see Section C 

- Experimental set-up in the appendix). The model was then trained by the greedy layer-wise 

algorithm (Bengio et al., 2006). Instead of optimizing the model in a single step, it was divided 

into several stages. The algorithm trains each model layer by layer. Initially, all the layers are 

frozen, and only the first layer was trained. Then the model assigns a weight to each input feature 

and computes the output, which was then compared to the actual observations and the MSE was 

calculated. Depending on the MSE, the model changes the weight of the input feature and 

computes a new output. Again, this output was compared with actual observations and the MSE 
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was calculated. Once the MSE was minimized, the model was said to be trained. Once the first 

layer was trained, the second layer was added, and weights are preserved from the previous layer. 

The entire process was repeated once again on the two-layer network, which was then applied to 

the third layer, again preserving the weights from the two-layer model, and so on. This process 

optimizes the weights in a computationally efficient manner.   

3.3. Results and Discussion 

 The observed values of the 21 stations were obtained from the TCEQ CAMS stations for 

the year 2014-2017. The model was then trained for 2014-2016 (keeping 20% data for cross-

validation for each deep learning and machine learning model). The model was then used to make 

predictions for the entire year, updating each day (i.e., adding the previous day in the training set). 

For example, initially, the model was trained until December 31, 2016, and predicted ozone 

concentrations for January 1, 2017.  Then the observations from January 1, 2017, were updated to 

the training set and again trained the model and then predicted ozone concentrations for January 

2, 2017, from the model. This process was repeated for 365 days. Once predicted ozone 

concentrations for all days of 2017, each station was evaluated for the hourly and maximum daily 

eight-hour average (MDA-8) values.  

3.3.1. Evaluation Based on Hourly Values 

Figures 3.4 and 3.5 show the daily mean of the ozone concentrations over all stations. The 

results indicate the model slightly under-predicted ozone concentrations for most of the year.  The 

maximum under- and over-prediction of the model were -15.5 ppbv and 12.9 ppbv, respectively. 

The monthly mean biases were in a range of -2.43 to 2.10 ppbv. The model underpredicted monthly 

mean biases in January, February, March, April, May, and September but overpredicted them in 
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the remaining months. The IOA (Willmott et al. 1981) of the ozone concentration was 0.89, and 

the correlation was 0.81 for all stations.  

 
Figure 3.4. Model-measurement comparisons for a daily mean of concentrations averaged over all stations mean for 

the year 2017. Y-axis represents daily mean ozone concentration, and the x-axis was days of the year. Black solid 

lines are observed ozone concentration (in ppb), and red lines are predicted ozone concentration (ppb). 

 

 
Figure 3.5. Box and whisker plot for differences between the daily mean of predicted and observed ozone 

concentrations averages over all stations for 2017. The x-axis represents the month of the year; the y-axis the 

difference between predicted and observed daily mean ozone concentrations in ppb. Upper and lower ends of the box 

indicate 25th and 75th percentiles, respectively; the center of the box represents median and whiskers represents the 

maximum and minimum. Dot circle represents outliers or a single value.  
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The warmer months of the year (June, July, and August) showed minimum prediction bias 

and a median ozone concentration close to zero (Figure 3.5). Figure 3.6 shows the monthly mean 

bias followed a positive trend to the observed ozone concentration, indicating that from January to 

May when the ozone concentration was increasing, the model bias (under-prediction) also 

increased.  In June, July, and August, when the observed ozone concentration showed a decreasing 

trend, the model bias increased (over-predicted). This trend of under- and over- prediction also 

occurred in subsequent months. In winter, the intensity of sunlight (due to clouds and solar zenith 

angle) reaching the troposphere was comparatively lower, which leads to low variability in ozone 

formation. During the warm months, the meteorological conditions are stable, which leads to the 

efficient formation of ozone (Eslami et al., 2019a, 2019b). Due to this reason, the hourly ozone 

concentration had a more uniform daily trend in the summer months compared to the winter 

months. Since the trend was more uniform in summer, the model was more effective at predicting 

ozone concentrations during summer. 

In general, the monthly mean ozone concentration decreased during the summer months 

(June, July, and August), with the lowest in July (after a yearly high in May). Figure F1 in the 

appendix shows this monthly trend. This trend occurred in all stations except CAMS-012 (El Paso) 

and CAMS-013 (Fort Worth). At station CAMS-012, instead of decreasing after May, the ozone 

level peaked in June and then decreased until December. Since the model was station-specific, it 

recognized general trends in ozone concentrations and predicted them with an IOA of 0.89 and a 

correlation of 0.81. (See Tables T2 and T3 in the appendix for monthly IOA and correlation 

values).   
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Figure 3.6. The smooth trend of model and observation: Circles indicate monthly mean with the shaded region 

showing a 95% confidence interval. 
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Table 3.1 lists the annually averaged ozone mean bias and RMSE for 2017 at each station.  

The maximum mean bias, which was greater than 1 ppbv, occurred at stations CAMS-620 and 

CAMS-403. The bias stemmed from large variations in ozone concentrations because of the 

proximity of these stations to petrochemical plants, which increased their sensitivity to NOx (Pan 

et al., 2017). As a result, ozone concentrations varied from day to night as well as from weekday 

to weekday.  The other stations showed a bias of 0.5 and -1 ppbv. The RMSE of stations CAMS-

012, 403, 008, 015, 301, 695, 053, 045, and 013 was between 9-10 ppbv.  

Table 3.1. Discreet Statistics of AI Model: MB-Mean Bias, NMB- Normalized Mean Bias, RMSE- Root Mean Square 

Error and NME- Normalized Mean Bias of the average of ozone concentration of all 21 stations 

Station Name Region 
Discreet 

MB (ppbv) NMB (%) RMSE (ppbv) NME (%) 

CAMS-003 Austin-Round Rock -0.146 -0.49 7.831 20.02 

CAMS-008 Houston-Galveston-Brazoria -0.028 -0.12 9.428 29.17 

CAMS-012 El Paso-Juarez -0.769 -2.38 9.647 23.19 

CAMS-013 Dallas-Fort Worth -0.131 -0.47 9.082 25.05 

CAMS-015 Houston-Galveston-Brazoria -0.355 -1.51 9.411 30.22 

CAMS-019 Tyler-Longview-Marshall -0.554 -2.04 8.468 24.22 

CAMS-026 Houston-Galveston-Brazoria -0.719 -2.76 8.605 24.62 

CAMS-035 Houston-Galveston-Brazoria -0.358 -1.45 8.531 26.10 

CAMS-045 Houston-Galveston-Brazoria -0.945 -3.42 9.152 24.85 

CAMS-053 Houston-Galveston-Brazoria -0.651 -2.62 9.303 28.02 

CAMS-059 San Antonio 0.052 0.20 7.996 22.41 

CAMS-078 Houston-Galveston-Brazoria 0.159 0.57 8.504 23.48 

CAMS-401 Dallas-Fort Worth 0.002 0.01 9.372 26.68 

CAMS-403 Houston-Galveston-Brazoria -1.143 -4.78 9.524 29.64 

CAMS-416 Houston-Galveston-Brazoria -0.385 -1.68 8.684 27.99 

CAMS-617 Houston-Galveston-Brazoria 0.523 2.01 8.501 24.57 

CAMS-618 Houston-Galveston-Brazoria -0.430 -1.87 8.111 26.23 

CAMS-620 Houston-Galveston-Brazoria -1.188 -3.58 8.822 19.98 

CAMS-695 Houston-Galveston-Brazoria 0.005 0.02 9.350 25.62 

CAMS-1034 Houston-Galveston-Brazoria -0.837 -2.50 8.751 19.22 

CAMS-1035 Beaumont-Port Arthur -0.213 -0.80 7.877 22.38 

Average - -0.39 -1.14 8.81 27.94 
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Figure 3.7. Mean Bias (Monthly MB of each Station): Each dot shows location-wise MB for each month of the Year 

2017. 

A detailed analysis of each station suggests under-predictions for January to May and 

September at most of the stations (Figure 3.7). As ozone concentrations steadily increased from 

January to May, the model tried to follow it and thus lagged, leading to under-predictions during 

these months. In June, July, and August, ozone concentrations steadily decreased, and the delay in 
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Figure 3.8. Model-measurement comparisons for daily maximum ozone concentrations for 2017. Black lines represent 

observations and red model predictions. 

 
Figure 3.9. Box and whisker difference plot for a daily maximum of model-predicted and measured ozone 

concentrations. 

model response to the decreasing trend led to over predictions. In September and August, observed 

ozone concentrations again increased, and the model again lagged, thus under-predicting. This 

behavior could be attributed to a lack of examples that could explain these variations for an  
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Figure 3.10. Monthly Index of Agreement for all stations in Texas for the year 2017. Each circle represents the 

location and corresponding value. 

efficient training process. In addition, the input variables for ozone prediction were inadequate; 

that is, the measurements for several important ozone predictors such as the cloud fraction and 

PBL height were not available for the study area, causing the unexplained bias in ozone prediction 

on some days, which weakened the overall performance of the model.  Figure 3.7 shows that the 



25 
 

bias in the Houston area varied more than it did in other regions in Texas. In Houston, the formation 

of ozone, a secondary pollutant, was triggered by reactions between primary pollutants emitted by 

the oil and gas industry, automobiles, and biogenic sources at various locations in and around the 

city (Pan et al., 2017). In addition, the influence of the Gulf of Mexico on the meteorological 

condition of Houston results in large hourly and monthly variations of these input variables of the 

model. Figures 3.8 and 3.9 plot variations in daily maxima of predictions and observations. The 

trends were similar to daily mean bias. The maximum range of the bias for daily maximum ozone 

was ~ ±10 ppbv (barring a few outliers), while the IOA and correlation for a daily maximum ozone 

concentration (averaged over all stations) were 0.87 and 0.81, respectively.  

  Model accuracy, represented by the IOA, was shown in Figure 3.10 (refer to Table T2 in 

the appendix for values). The IOAs of 19 stations were in the range of 0.85-0.90. Station CAMS-

078 had the highest IOA of 0.90. Only two stations (CAMS-045 and CAMS-620) had an IOA 

below 0.85. Both stations are in the Galveston Bay area and positioned downwind of petrochemical 

refineries in Houston. One explanation for the low IOA at these stations can be attributed to 

frequent changes in hourly observed ozone concentrations resulting from the combined effect of 

the land-sea breeze and the presence of petrochemical refineries (NOx sensitive region) (Pan et al., 

2017). The month-wise analysis suggests summer months (June, July, August, and September) 

had maximum IOAs, and winter (DJF) months had the lowest at almost every station. This trend 

was similar to the mean monthly trend, suggesting less overprediction and more underprediction 

of ozone concentrations. 

3.3.2. Based on MDA-8 (Categorical Statistics) 

Categorical statistics, which are based on a threshold, determine the likelihood of 

occurrence of an event (Zhang et al., 2012). Therefore, they are more applicable to the evaluation 
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of a forecasting model. To evaluate the model, the following categorical statistics were used: HIT 

(the Hit Rate), CSI (the Critical Success Index), FAR (False Alarm Rate), ETS (Equitable Threat 

Score), and POC (the Proportion of Correct) (Chai et al., 2013; Eder et al., 2006). Based on the 

threshold value, four different cases arise: 

a) Na = Number of times a prediction was above, and observation was below the threshold. 

b) Nb = Number of times a prediction and an observation are above the threshold. 

c) Nc = Number of times a prediction and an observation are below the threshold. 

d) Nd = Number of times a prediction was below, and observation was above the threshold. 

From these cases, the following quantities were defined to evaluate the model: 

HIT represents the fraction of instances in which the model predicts an extreme event 

(events above the threshold) from all actual occurrences of extreme events. 

𝐻𝐼𝑇 =
𝑁𝑏

𝑁𝑏+𝑁𝑑
         (3.2) 

CSI was the fraction of instances in which correct prediction of an extreme event out of all 

events after removing correctly predicted below the threshold instances. 

𝐶𝑆𝐼 =
𝑁𝑏

𝑁𝑎+𝑁𝑏+𝑁𝑑
        (3.3) 

FAR was the fraction of instances in which the wrong prediction of an extreme event of 

all predictions of an extreme event. 

𝐹𝐴𝑅 =
𝑁𝑎

𝑁𝑎+𝑁𝑏
         (3.4) 

ETS was similar to CSI but was more accurate for measuring the performance skill of a 

model. It ranges from -1 (poor model) to 1 (perfect model) (Schaefer, 1990). A positive value of 

ETS means a skillful model. 

𝐸𝑇𝑆 =
𝑁𝑏− 𝑁𝑟

𝑁𝑎+𝑁𝑏+𝑁𝑑−𝑁𝑟
        (3.5) 



27 
 

where, 𝑁𝑟 =
(𝑁𝑎+𝑁𝑏) ×(𝑁𝑏+ 𝑁𝑑) 

𝑁𝑎+𝑁𝑏+𝑁𝑐+𝑁𝑑
        (3.6) 

POC was the fraction of instances in which accurate prediction an exceedance or a non-

exceedance. 

𝑃𝑂𝐶 =
𝑁𝑏+𝑁𝑐

𝑁𝑎+𝑁𝑏+𝑁𝑐+𝑁𝑑
        (3.7) 

To set the threshold, two parameters were selected, i) effects on human health; ii) the 

fraction of observations above the threshold that make sense of the categorical statistics. 

Considering the severe health repercussions of ozone, the Environmental Protection Agency 

(EPA), on October 1, 2015, strengthened the ground-level maximum 8-hour averaged ozone 

standard from 75 ppbv to 70 ppbv (National Ambient Air Quality Standards for Ozone-2015). US-

EPA guideline for ambient air quality states that an ozone concentration of 70 ppbv was unhealthy 

for individuals who are sensitive to ozone 

(https://cfpub.epa.gov/airnow/index.cfm?action=pubs.aqiguideozone). For all 21 stations in this 

study, the number of occurrences above the 70 ppbv thresholds was 95/7,665 (i.e., only 1.23%). 

Thus, using the 70 ppbv thresholds will not produce meaningful value for the parameters of 

categorical statistics. The next level, 55 ppbv, was unhealthy for individuals who are exceptionally 

sensitive to ozone. The number of occurrences above this threshold was 734 (i.e., 9.57%). 

Therefore, the threshold was set at 55 ppbv for the evaluation of the categorical statistics. 

Table 3.2 lists the categorical statistics obtained from a comparison between MDA-8 

observations and predictions (Table T4 in the appendix represents categorical statistics from Chai 

et al. (2013) for comparison). The model has an overall ETS of 0.26, a HIT of 0.34, and a FAR of 

only 0.32. The accuracy, or POC, of the model was also adequate, with a score of 0.92.  Except 

for CAMS-019, all stations have an ETS greater than 0.10. Since the model mostly  

https://cfpub.epa.gov/airnow/index.cfm?action=pubs.aqiguideozone
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Table 3.2. Daily MDA8 ozone categorical statistics for 2017 with 55 ppbv threshold. See text for details. 
 Na Nb Nc Nd Nr HIT CSI FAR POC ETS 

CAMS003 6 18 325 16 2.24 0.53 0.45 0.25 0.94 0.42 

CAMS008 10 21 314 20 3.48 0.51 0.41 0.32 0.92 0.37 

CAMS012 19 33 268 45 11.11 0.42 0.34 0.37 0.82 0.25 

CAMS013 10 19 305 31 3.97 0.38 0.32 0.34 0.89 0.27 

CAMS015 2 7 342 14 0.52 0.33 0.30 0.22 0.96 0.29 

CAMS019 2 1 338 24 0.21 0.04 0.04 0.67 0.93 0.03 

CAMS026 4 11 321 29 1.64 0.28 0.25 0.27 0.91 0.22 

CAMS035 1 7 336 21 0.61 0.25 0.24 0.13 0.94 0.22 

CAMS045 4 4 334 23 0.59 0.15 0.13 0.50 0.93 0.11 

CAMS053 3 14 320 28 1.96 0.33 0.31 0.18 0.92 0.28 

CAMS059 4 5 331 25 0.74 0.17 0.15 0.44 0.92 0.13 

CAMS078 9 16 316 24 2.74 0.40 0.33 0.36 0.91 0.29 

CAMS401 6 10 322 27 1.62 0.27 0.23 0.38 0.91 0.20 

CAMS403 2 9 335 19 0.84 0.32 0.30 0.18 0.94 0.28 

CAMS416 10 4 332 19 0.88 0.17 0.12 0.71 0.92 0.10 

CAMS617 5 8 331 21 1.03 0.28 0.24 0.38 0.93 0.21 

CAMS618 4 3 345 13 0.31 0.19 0.15 0.57 0.95 0.14 

CAMS620 4 16 329 16 1.75 0.50 0.44 0.20 0.95 0.42 

CAMS695 7 19 319 20 2.78 0.49 0.41 0.27 0.93 0.38 

CAMS1034 4 19 309 33 3.28 0.37 0.34 0.17 0.90 0.30 

CAMS1035 2 5 341 17 0.42 0.23 0.21 0.29 0.95 0.19 

Overall 118 249 6813 485 35.14 0.34 0.29 0.32 0.92 0.26 

under predicts, the HIT ranges from 0.04 to 0.53, with one station (CAMS-019) at 0.04 and the 

other stations above 0.15. More than half of the stations exhibit a HIT greater than 0.30. The 

FAR was between 0.13 and 0.71, with only four stations reporting a FAR greater than 0.50 and 

ten stations reporting a FAR as low as 0.20 or below. 

3.3.3. Case Study 

3.3.3.1. Stations with fewer meteorological input features 

To evaluate the model's effectiveness, two stations (CAMS-003 and CAMS-059) were 

selected that monitor three meteorological input features and six stations (CAMS-045, 053, 078, 

617, 618, and 620) that monitor four meteorological input features. Although these stations 

monitor few meteorological variables (i.e., wind speed and direction, temperature, and solar 
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radiation), the performance of these stations was on par with other stations. The IOAs for CAMS-

003 and 059 were greater than 0.89. CAMS-003 had the highest ETS of 0.42, while CAMS-059 

had an ETS of 0.13. While stations CAMS-053, 078, 617, and 618 performed well with IOAs 

greater than 0.88 and correlations greater than 0.79, stations CAMS-045 and 620 had IOAs of 0.84 

(an explanation of their weak performance and solution for these stations are discussed in the next 

section). An analysis of the importance of input features to predicted ozone concentrations 

suggested that the results stemmed from the dependence of the model on previous day ozone 

concentrations. The model assigns higher weights to the previous day ozone than to the previous 

day meteorology, indicating that the model considers ozone concentration (previous day) the most 

important input variable.  Thus, even with only three or four meteorological input variables, the 

model was relatively accurate at forecasting ozone concentrations. 

3.3.3.2. Station CAMS-045 

In this study, the stations with the weakest performance were CAMS-045, CAMS-620, and 

CAMS-1034. These stations are uniquely located near large bodies of water, which can initiate a 

cooling effect that results in the lowering of the height of the PBL (planetary boundary layer). As 

a result, observed ozone concentrations varied considerably hour by hour (Chai et al., 2013). 

During the training phase of the model, these variations created noise that may have led to lower 

performance metrics.  To mitigate the problem of noise, more input data were used in the model 

for training purposes. Station CMAS-045 was trained with ten years (2007-2016) of data instead 

of three years (2014-2016) and observed improvement in the results: The IOA increased by 2.5% 

and the correlation by 3.6%. Table 3.3 shows a month-by-month comparison of the effect of 

additional training examples. 
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Table 3.3. Comparison of IOA and correlation for station CAMS045 based on 10 and 3-year training 

Months 
IOA Correlation 

10 Years 3 years 10 Years 3 years 

Jan 77.74 74.87 65.46 61.09 

Feb 82.90 80.57 73.36 68.84 

Mar 83.26 79.28 74.84 72.18 

Apr 80.72 77.16 68.13 64.10 

May 85.41 83.71 76.35 73.17 

Jun 86.77 86.98 77.35 78.16 

Jul 85.62 84.30 75.52 73.84 

Aug 86.98 84.41 77.60 74.01 

Sep 87.02 84.59 78.22 76.51 

Oct 83.72 82.44 73.22 71.29 

Nov 80.80 79.87 69.20 67.61 

Dec 79.14 75.82 65.71 59.73 

Overall 86.49 84.38 77.43 74.76 

Table 3.4. Specifications of neural network models compared in this study.  

Model 
Hidden/convolutional layer(s) 

structure† 

Number of 

epochs† 
Optimizer‡ 

Computational 

Time (in secs) 

CNN 5 layer of CONV1D/264* 100 Adam 16.67 

RNN (GRU) 128/64/32 400 Adam 1179.23 

DNN 128/64/32 100 Adam 4.90 

MLP Repressor - 100 SGD 1.8-4.3 

Ridge Regression - -  <1 

Lasso Regression - -  <1 

† Optimized using trial and error tests. 

‡ Both Adam and stochastic gradient descent (SGD) was explained in Kingma et al. (2014). 

* Convolutional layers with filter size 32 and kernel size 2, following with a fully connected hidden layer with size 

264. 

3.3.4. Model Comparison 

To test the robustness of the model used for this study (i.e., CNN model), various machine 

learning models were compared that are commonly used in predicting time-series, particularly 

those with high nonlinearity (e.g., Eslami et al., 2019a, 2019b). They include multilayer perceptron 

(MLP) structure (Glorot and Bengio, n.d.; Hinton, 1989), deep neural networks (DNN) formed by 

having densely-connected layers, recurrent neural networks (RNN) with Gated Recurrent Unit 

(GRU) (Cho et al., 2014), Lasso Regression (Tibshirani, 1996), and Ridge Regression (Tikhonov, 

1998). These models, including CNN, were trained on the same dataset as discussed above. Table 

3.4 shows the model configuration and performance comparisons based on the computational time 
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required to train each model. Once the model was trained, it was used to predict the whole year of 

2017. 

 
Figure 3.11.  Box and whisker plot of the index of agreement (IOA) based on hourly ozone concentration for the year 

2017 of all the stations. Y-axis represents IOA, and X-axis are the models in the study. 



32 
 

For comparing the performance of different models, the IOA of the 24-hour time series 

(Figure 3.11) and IOA of the daily maximum ozone concentration (Figure 3.12) for all stations 

were compared. The CNN model performed better than all other models, while DNN was the close 

second. CNN model had the highest mean IOA (0.89) for the 24-hourly time series. When 

comparing the daily maximum ozone concentration (Figure 3.12 and Figure 3.13), the CNN model 

(IOA = 0.78) performed better than the other models. Furthermore, Figures 3.12 and 3.13 show all 

deep learning models (CNN, DNN, and RNN) performed notably better than other machine 

learning model (MLP) and regression model (Lasso and Ridge). It means that these models 

understood the topology within the daily ozone time series (the relationship between different 

hours during a day), even though they were trained with the same amount of training samples. This 

can also be seen in the categorical analysis. CNN model has the highest mean POC (0.92), CSI 

(0.273), and ETS (0.244) among all the models (Figure F4 in the appendix). CNN was also better 

than other models in predicting an extreme event with the highest mean HIT rate (0.313). To 

summarize the abovementioned comparisons, the CNN model performed statistically better than 

the other machine learning and regression models.  

Even though Ridge and Lasso regression shows a better computational efficiency than the 

other models, they were unable to predict the outliers (high ozone peaks) because of the L2 (Ridge 

regression) and L1 (Lasso regression) regularizations. The regularization process has superb 

computational efficiency; however, it negatively affected the accuracy performance of real-time 

prediction compared with deep learning models. Also, these regression techniques have high 

variance in IOA for hourly time-series as well as in the IOA of daily maximum concentration 

across all stations. Although the MLP model was about three times faster than the CNN model 

used for this study, the accuracy (in terms of IOA) was 2-8% less than the CNN model for all 
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stations. Both DNN and RNN models show comparable accuracy but have performance lower than 

that of CNN. 

 
Figure 3.12. Box and whisker plot for the index of agreement based on daily maximum ozone concentration of all 

stations. Y-axis represents IOA, and X-axis are the models in the study. 

Additionally, RNN was ~70 times slower in training as compared to CNN for this study. It 

means that, even though the RNN model can reach a comparable level of prediction accuracy as 
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the other two deep learning models, it needs notably higher computational time. From the above 

discussion, it can be concluded that the CNN model was better than the other models tested for 

this study across various evaluation parameters for the real-time prediction of hourly ozone 

concentrations. 

One commonly used practice in improving machine learning models, especially in 

predictive regression modeling problems, was feature importance analysis. It was the automatic 

selection of features in the data that are most relevant to the predictive modeling problem. In 

feature importance analysis, the method selects the most important features present in the data 

without changing their values; and uses these selections in the training process of the predictive 

model (e.g., a CNN model). In addition, using irrelevant features can negatively impact the 

performance of the machine learning model in predicting hourly ozone time-series by making the 

model learn based on unimportant features. In this way, the robustness of the CNN model by 

presenting inputs with or without the knowledge from feature importance analysis can be tested. 

Here, the feature selection was performed using a random forest (RF) model (Breiman, 2001). RF 

was chosen due to its generally good predictive performance, low overfitting, and easy 

interpretability compared with other machine learning models. First, an RF model was trained to 

determine the importance of input features in predicting hourly ozone concentrations. Once a list 

of the features with their importance was obtained, CNN models were trained with the best 24-set 

(24, 48, 72, etc.) of features. Each model was then compared against the standard CNN model used 

in this study (Table T5 in the appendix). Results indicated that the averaged improvement in IOA 

was around 0.5% higher after applying the RF feature selection compared to the standard CNN 

model. This shows that the CNN model was able to extract enough information needed to make a 

proper prediction and understanding the importance of each input feature without applying a prior 
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feature selection method.  One of the major caveats in using RF for feature selection was that every 

station has a different number of features on which their performance improved. It would become 

cumbersome for the user to run multiple models for an optimum result. Thus, to have a generalized 

model for all stations, the standard CNN was used. 

3.4. Conclusions 

In this paper, a real-time 24-hour ozone prediction model based on a deep convolutional 

neural network was developed, discussed, and evaluated. After designing the model architecture, 

it was trained on examples from 2014 to 2016. The hourly concentrations of ozone for each day 

of 2017 were predicted by training the model with examples until the last day and evaluated the 

prediction data using discreet and categorical statistics.  

 
Figure 3.13. Bar plot average of IOA for all stations. IOA was based on hourly ozone concentration for the year 2017. 

Y-axis represents IOA, and X-axis are the models in the study. 

In general, the observed ozone concentrations at all stations increased from winter to spring 

and then decreased during the summer months. During the fall, concentrations again steadily rose 

until September and then declined to their lowest levels in December. Although the model was 
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able to capture these patterns, the model's response to these changes was slow. For example, when 

the observed ozone concentration increased, the model generally underpredicted (for both daily 

and monthly variations), and when observed ozone concentrations declined, it was generally 

overpredicted. The change in the trends of prediction was largely the result of the delay of the 

model in responding to changes in the concentrations of observed ozone.  

Because of the location of CAMS-012 (El-Paso) 1140m above sea level, it exhibited a 

meteorological condition that differed markedly from those of other stations in this study.  As a 

result, this station did not follow the general trend mentioned above. Here, the monthly mean ozone 

concentration steadily increased until May-June and then decreased until December before 

increasing again. The probable cause for this increase could be the presence of comparatively high 

temperatures and sunlight during the daytime, leading to the high production of ozone. Another 

explanation could be the accumulation of ozone from the reversal of the wind direction from 

westerly to easterly (Figure F2 in the appendix) during the summer and the presence of the Rocky 

Mountains in the West. Even though this station did not exhibit the general trend, the model 

captured the trend in the observed ozone concentration with an IOA of 0.89 and a correlation of 

0.81. The model's performance at this station suggests that it was able to comprehend the station-

specific trends and produce satisfactory results.  

At a few stations (e.g., CAMS-045), the model did not perform satisfactorily because of 

more frequent hourly variations in observed ozone concentrations, either due to NOx emissions or 

the lowering of the PBL triggered by the cooling effect from the sea breeze. However, with the 

addition of more years of training data, the performance metrics of these stations improved. The 

model was trained with seven more years of examples for station CAMS-045, and its IOA 

improved from 0.84 to 0.86, and its correlation improved from 0.74 to 0.77.  In addition, even 
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though the model was capable of predicting daily trends with reasonable accuracy, it mostly under-

predicts daily maxima (also evident in the scatter plot Figure F3 Appendix).  This drawback can 

be overcome with the addition of more days of training data as well as more inputs (i.e., more 

meteorological inputs like PBL, cloud fraction or air pollutants), which can be obtained from a 

numerical model such as WRF or CMAQ.  

The deep CNN model developed forecasted hourly ozone concentrations 24 hours in 

advance. It showed significant improvement over both numerical and statistical models. 

Furthermore, when compared with other neural networks (MLP, RNN, and DNN) and regression 

models (Lasso and Ridge), the CNN model was better in predicting both daily time-series and 

daily maximum of ozone concentrations. Additionally, it was able to generate the same level of 

accuracy compared with a model with feature importance analysis. 

In addition, the model successfully predicted ozone concentrations with IOAs greater than 

0.85 for 19 of the 21 stations. The performance metrics were considerably improved for the stations 

by adding more years of training examples, as demonstrated in the second case study. The model 

also proved its effectiveness on stations with fewer meteorological inputs (i.e., CAMS-003, 

CAMS-059). In addition, it took only a few minutes to predict a single day so that it could be 

employed at any station. The benefit of this model was that it could be a useful, efficient tool for 

forecasting air quality and issuing health advisories in advance, thus reducing the serious effects 

of ozone on human health.  
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CHAPTER 4 

A NOVEL CMAQ-CNN HYBRID MODEL TO FORECAST HOURLY 

SURFACE-OZONE CONCENTRATIONS FOURTEEN DAYS IN 

ADVANCE2 

4.1. Introduction 

Surface ozone can pose a significant health risk to both humans and animals alike, affecting 

crop yields (USEPA - 2006). According to the US Clean Air Act, it was one of the six most 

common air pollutants, and considering its impact on health; the Environmental Protection Agency 

(EPA) of the United States has limited the maximum daily eight-hour average (MDA8) 

concentration of ozone to 70 ppb. Similarly, the Ministry of Environment in South Korea has 

declared a standard for hourly ozone of 100 ppb and 60 ppb for MDA8.  To achieve these 

attainment goals and to understand future projections (forecasts), researchers have turned to 

various numerical modeling and statistical analysis tools. One such numerical model was the 

Community Multi-scale Air Quality Model (CMAQ), a chemical transport model (CTM) 

developed by the USEPA (Byun and Schere, 2006). Widely used to forecast the air quality of a 

region with considerable accuracy, CMAQ was an open-source multi-dimensional model that 

provides estimated concentrations of air pollutants (e.g., ozone, particulates, NOx) at fine temporal 

and spatial resolutions. It has been used as a primary dynamical model in regional air pollution 

studies; CMAQ modeling, however, has several limitations (e.g., parameterization of physics and 

chemistry) and raises uncertainties that lead to significant biases (overestimations or 

 
2 Published: Sayeed, A., Choi, Y., Eslami, E., Jung, J., Lops, Y., Salman, A.K., Lee, J.-B., Park, H.-J., Choi, M.-H., 

2021a. A novel CMAQ-CNN hybrid model to forecast hourly surface-ozone concentrations 14 days in 

advance. Sci Rep 11, 1–8. 
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underestimations) overestimations of ozone concentrations (Chatani et al., 2011; Kitayama et al., 

2019; Liu et al., 2010; Morino et al., 2010; Trieu et al., 2017). Also, the stochastic nature of the 

atmosphere results in inherent uncertainty in even comprehensive models that might limit their 

accuracy (Rao et al., 2020). 

CTMs require substantial computational time since they entail multiple physical and 

chemical processes for each grid. The testing time for various scenarios of the CMAQv5.2beta  

configuration test (with US EPA Calnex 12km domain July 2, 2011 testing dataset) was in the 

range of 34-54 minutes (Further detail about the test can be found at CMAQ version 5.2beta 

(February 2017 release) Technical Documentation - CMASWIKI (airqualitymodeling.org)). 

(“CMAQ version 5.2beta (February 2017 release) Technical Documentation - CMASWIKI,”)  

Unlike CTMs, machine learning (ML) can be trained to forecast multi-hour output using a certain 

set of inputs more accurately within a faster processing time (Lops et al., 2019; Sayeed et al., 

2020a). In addition, it requires only one training process, further reducing the computational time. 

Although all ML models are more accurate with faster processing speeds, they are very localized 

(station-specific) and generate large underpredictions of daily maximum ozone concentrations 

(Eslami et al., 2019a, 2019b; Sayeed et al., 2020a).   

The objective of using this ML technique was to enhance the CMAQ modeling results by 

taking advantage of i) the deep neural network (DNN), a computationally efficient, artificially 

intelligent system that recognizes uncertainties resulting from simplified physics and chemistry 

(e.g., parameterizations) of the CMAQ model; and ii) CMAQ, which computes unmeasured 

chemical variables along with fine temporal and spatial resolutions. This approach aimed to use 

the best of both numerical modeling and ML to design a robust and stable algorithm that more 

accurately forecasts hourly ozone concentrations 14 days in advance and covers a larger spatial 

https://www.airqualitymodeling.org/index.php/CMAQ_version_5.2beta_(February_2017_release)_Technical_Documentation
https://www.airqualitymodeling.org/index.php/CMAQ_version_5.2beta_(February_2017_release)_Technical_Documentation
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domain. The ML technique used in this study was based on the convolutional neural network 

(CNN) model.  

4.2. Material and Methods 

The proposed algorithm uses two sets of inputs: i) parameters predicted by numerical 

models and ii) the previous day's observed air quality (Figure F7 in the appendix displays a 

schematic of the deep CNN architecture for predicting hourly ozone concentrations for the next 

fourteen days.) 

Like any neural network, a deep CNN was an optimization problem that attempts to 

minimize the loss function. The most generally used loss functions are the mean squared error, the 

mean absolute error, and the mean bias error. In this study, two loss functions were tested: i) the 

mean square error (method 1) and ii) a customized loss function (method 2) based on the index of 

agreement (IOA) (Willmott, 1981; Willmott et al., 1985). The mathematical expression of IOA 

appears in the appendix (Appendix D: General Statistics).  In method 1, the model attempts to find 

a solution iteratively such that the mean square error was a minimum.  Similarly, in method 2, the 

model attempts to fit it in such a way that the IOA was maximum. In both cases, two separate 

models were obtained for each day of prediction. The reason for choosing the IOA as a loss 

function was that high peaked concentrations in air quality forecasting prediction are critical. IOA, 

unlike the mean bias or the mean square error, was a better parameter that more accurately reports 

the quality of a model. The CNN, like any ML technique, was an optimization problem; the model 

tries to simulate as close to true observations as possible and relies on minimization or 

maximization of certain performance parameters. In general, ML algorithms, “mean squared 

errors” (method 1) are used as the cost (loss) function and the model tries to minimize this loss. 

The issue with this method in the hourly forecast was that it generalized the model and was unable 
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to predict the high peak values because of the sampling bias (only 3-4 high values in 24-hour as 

compared to 20-21 low or average values). To mitigate this issue, the Index of agreement (IOA) 

was used as the cost (loss) function and found out that the model was able to predict better high 

peaks compared to method 1. 

4.2.1. Data Preparation and Model Training 

The observed air quality was obtained from the Air Quality Monitoring Stations network, 

operated by the National Institute of Environmental Research (NIER) for 255 urban stations for 

the years 2014 to 2017 across the Republic of Korea. The network measures and provides real-

time air pollutant concentrations such as sulfur dioxide (SO2), carbon monoxide (CO), ozone (O3), 

and nitrogen dioxide (NO2). Since the CNN model requires continuously measured data for 

training/testing, the missing values of observational datasets were imputed. For these missing 

values, SOFT-IMPUTE by Mazumder et al. (2010) was used. Then the concentrations of air 

pollutants were extracted from CMAQ and meteorological parameters from the WRF (processed 

by Meteorology-Chemistry Interface Processor (MCIP) modules of the CMAQ model). For this 

purpose, the temporally and spatially matched CMAQ grid points of the NIER station locations 

were used. Table T6 (appendix) displays all of the parameters extracted from the MCIP and 

CMAQ. 

After acquiring hourly meteorological fields from the WRF model, previous day pollutant 

concentrations from observations and the forecasted parameters from the CMAQ runs, the inputs 

were prepared for each station in the form of a two-dimensional matrix in which each column 

represented a specific parameter (meteorology or gaseous concentration), and each row 

represented hourly values. Figure F8 (Appendix) represents the schematic diagram of the data 

preparation used for the 14-day forecasting. For each day (24 hours), separate models were 
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prepared in such a way that inputs remained the same for all the models, but the output (target) 

was changed from day 1, day 2 until day 14. Thus, a total of 14 models were prepared, one for 

each forecasting day. Then the model was trained for three years (i.e., 2014 to 2016) and evaluated 

for the year 2017 (Note: 2017 was never used for training the model; the training of the CNN 

models was done using data from 2014 to 2016; 1096 days). The input dataset consisted of 

previous 24-hour observed air pollutant concentrations and the meteorology generated by the 

WRF; and the following 24-hour forecasted air-pollutants from the CMAQ model (in total 50 input 

parameters). The output dataset consisted of the next day's 24-hour observed ozone concentration 

for day 1, 24 to 48 hours for day 2, 48 to 72 hours for day 3, and so on. After the inputs and outputs 

were defined, the datasets were combined from all stations to construct a matrix for training/testing 

a generalized deep CNN model across the spatial domain. Since there were 255 stations and three 

years of hourly data for training, the model was trained with 279,480 (1096×255) examples (days), 

which were further split randomly into equal parts so that the model was trained on one half and 

validated on the other. Since each parameter had a unique range of values, each was normalized 

between zero and 1 to remove the model bias toward any specific high or low valued parameter. 

It has been observed that having a different maximum and minimum for a training and prediction 

set destabilizes the model and produces varied results over different runs. Therefore, for the 

normalization process, a “global” maximum and minimum values were chosen for each parameter. 

These global maximum and minimum values guaranteed that none of the hourly values exceeded 

a certain level; thus, the normalization process remained independent of the temporal and spatial 

variations. After normalization, the deep CNN architecture (defined in the previous section) was 

used to train the model and generated two models, each with a unique loss function. Once the 

model was generated, it was used to predict the entire year of 2017. 



43 
 

For long-term training and prediction, the datasets were prepared so that they had the same 

inputs, but the outputs were changed from the first day to the second, third, and fourth days and so 

on until the fourteenth day (Figure F8 in the appendix presents a schematic diagram of the data 

setup used in this study.) Hence, with two loss functions and 14 days of predictions, there were 28 

models to evaluate. 

4.3. Results and Discussion 

The models were trained based on two loss functions (methods 1 and 2) and fourteen days 

(28 different models), from January 1, 2014, 0000UTC to December 31, 2016, 2300UTC. After 

training the models, they were evaluated based on various performance parameters. The index of 

agreement (IOA) based on hourly values of the year 2017 was calculated for each station and then 

averaged. (The IOA was selected over correlation as the performance metric for reporting the 

results because i) a correlation of 1 doesn’t mean that model captures the high and lows; ii) an IOA 

considers the bias within the performance metric. Thus, an IOA of 1 will mean that all highs and 

lows of a time series were captured well. Furthermore, the numerator of IOA addresses the mean 

bias (Appendix: General Statistical Analysis)).  The models based on both methods of the CNN 

model reported the highest IOA for predicting one day ahead, but the IOA decreased on subsequent 

days. The average IOAs (method 1 – 0.90, method 2 – 0.91) and correlations (method 1 – 0.82, 

method 2 – 0.83) for one-day ahead prediction were comparable.  The performance of both 

methods showed improvement over that of the CMAQ model (IOA-0.77, correlation-0.63). The 

IOA with method 1 increased by 16.86% and that with method 2 by 17.98%.  The correlation with 

method 1 increased by 30% and that with method 2 by 32%. 
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4.3.1. Performance Comparisons of CMAQ and CNN models 

Figure 4.1 shows the yearly IOA (average of all stations). The IOA decreased sharply from 

day 1 to day 3 but stabilized after the three-day forecasts from both methods. The IOA for day 4 

was lowest during the first week of prediction for method 1. After day 4, the IOA increased until 

day 6 and then decreased until day 10. It increased slightly on day 11 but then decreased further. 

For method 2, the IOA decreased until day 5, increased until day 7, and then further decreased 

after day 8. One possible explanation for the weekly trend relates to the weekly cycle of ozone 

 
Figure 4.1. Comparison of Index of Agreement for two-advance prediction using Method 1 and 2. x-axis in the plot 

shows the days ahead, and the y-axis represents the index of agreement. The blue line represents the IOA of each day's 

advance prediction using Method 1 (mean squared error as loss function). The orange line represents the IOA of each 

day's advance prediction using Method 2 (Index of Agreement as loss function).  

concentrations (Choi et al., 2012). Figure F9 (Appendix) shows the autocorrelation (average of all 

stations) of the current day observed ozone with the subsequent day observations. (The 

autocorrelation was the correlation of current hourly values with subsequent hours (0 to 336 

hours)). The observed ozone followed a weekly cycle, exhibiting a decreasing trend in its 

correlation until day 3 and then an increasing trend until it peaked on day 7. The same cycle 



45 
 

occurred during the second week. Figure 4.1 and figure F9 show that the CNN model also follows 

this weekly trend. Also, figure 4.1 depicts the superior performance of the CNN model method 2 

to that of method 1. The average increase in the IOA of method 2 compared to that of method 1 

was 4.77%; a maximum increase of 6.64% occurred on day 4, and a minimum increase of less than 

1% occurred on day 1. The greatest increase in the IOA happened on the worst-performing days 

(days 4, 13, 8, 7, and 12 show an increase of 6.6, 5.8, 5.6, 5.4, and 5.3%, respectively) by method 

1.  

Figure F10 to F15 (Appendix) shows the hourly time series plots for the month of February 

and June of stations 131591, 238133, and 823691. (The stations shown here have the highest, 

median, and least IOA for Day 1 forecasts by the CNN-method 2 model). These figures show that 

both the CNN models are good up to 7 days forecast. For seventh- and fourteenth-day forecasts, 

the CNN-method 2 model performed better than the method 1 model. Even though the 

performance decreases, the CNN models can produce a reliable forecast for up to fourteen days. 

In terms of mean bias (Table T7 - Appendix), both the CNN models were under predicting 

for all days while the CMAQ model for the day 1 forecast was overpredicting. The average of all 

stations' mean bias for the CMAQ forecast was 1.21. Whereas for CNN-method 1 and CNN-

method 2 models, the mean bias was -1.23 and -0.96, respectively. From day 2 onwards, the model, 

with IOA as loss function, performed significantly better than the model with MSE as loss 

function. The root means square error (RMSE) for the CMAQ model, the CNN model method 1, 

and the CNN model method 2 were 18.98, 11.00, and 11.01 for day 1 forecasts, respectively (Table 

T8 - Appendix). While for day 1, both the methods of the CNN model were equivalent for RMSE, 

in subsequent days, CNN-method 2 performed slightly better than CNN-method 1. In terms of 

correlation (Table T9 – Appendix), method 2 of the CNN model outperformed method 1 as well 
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as the CMAQ model. The correlation for all 14 days forecast by the CNN-method 2 model was 

greater than or equal to the CMAQ’s forecast for the first day. 

The models were also evaluated based on categorical statistics (Chai et al., 2013; Eder et 

al., 2006) as defined in Chai et al. (2013). For categorical statistics, the National Ambient Air 

Quality Standards (NAAQS) for daily maximum 8-hour average (MDA-8) was used. The standard 

threshold of 70 ppb was too high to properly evaluate model performance with categorical 

statistics. Thus, the standard (threshold) was further reduced to 55 ppbv as done in Sayeed et al., 

2020a). Tables S10 to S14 in the appendix show the hit rate (HIT), false alarm rate (FAR), critical 

success index (CSI), equitable threat score (ETS), and proportion of correct (POC), respectively. 

The hit rate for the CNN-method 2 increased to 0.80 from 0.77 for the CMAQ model, while it 

decreased to 0.67 for the CNN-method 1. The hit rate for day 2 to day 14 forecast ranges between 

0.47-0.74. The FAR for the CNN-method 1 was better than the CNN-method 2 for all forecast 

days. The decrease in FAR for the method 1 and 2 were ~46% and ~35% respectively when 

compared with the CMAQ model for the first-day forecast. POC, ETS, and CSI were used to 

evaluate model skills. While the CNN- method 2 performed equivalent to method 1 for POC for 

all 14 days of forecasts, it had better skill in terms of ETS and CSI when compared with method 

1. 

From the discussion above, it can be concluded that by changing the cost/loss function, 

better optimization can be achieved. Introducing IOA as the cost function (see equation 1 in 

Appendix) not only reduced the bias but also increased the correlation and IOA. This improvement 

was attributed to the reduction of bias in both high and low values rather than the average/overall 

bias. Compared to correlation, IOA was a better metric to evaluate a time series since correlation 

only considers the shape of the time series and not the bias. 
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4.3.2. Performance Evaluation of Selected Method 

It was evident from the above discussion that the performance of the CNN-method 2 

overshadowed that of the CNN-method 1; therefore, the performance was further analyzed for 

method 2 below. Figure 4.2 lists the average yearly IOA of each district in South Korea (Figures 

were created using R ggplot2 package: https://ggplot2.tidyverse.org/). If a district had more than 

one station, IOAs were averaged.  The inland cities performed slightly better than the coastal ones, 

and their performance improved the farther they were from the coast (Figures 4.2 & 4.3a and 

Figure F16 in the appendix). For example, Seoul performed slightly better than Incheon, the former 

being farther away from the coast. One explanation for the better performance in the central region 

was that it has ozone chemistry exhibiting a typical diurnal ozone cycle throughout the year than 

the coastal region, where predominant land-sea breezes may have an impact on ozone chemistry 

(Figure F17 in the appendix shows 24-hour observed ozone concentrations throughout the year. 

Figures F17-a, b, and c display the three worst-performing stations, while Figures F17-d, e, and f 

display the three best (Kotsakis et al., 2019; Pan et al., 2017)). It was evident from the figures that 

stations with the typical diurnal ozone cycle (Strode et al., 2019) provided more accurate forecasts 

than those with less variability in hourly concentrations. Ideally, the ozone concentration starts to 

increase in the afternoon and peaks a few hours before sunset (Eslami et al., 2019a). This forms a 

distinct diurnal cycle of ozone concentration (addressed like a typical diurnal ozone cycle in this 

study). The CNN model also follows this typical ozone chemistry and attempts to make predictions 

based on this information; hence, the station with generalized (typical) ozone chemistry produced 

more accurate forecasts than the station with less variability in its concentration of ozone 

throughout the day. (Since the sample size of the typical ozone diurnal cycle was much greater 

than the diurnal cycle with less variability, the CNN model was biased toward the former.) 
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Figure 4.2. Average IOA all stations (CNN-method 2) in each district of South Korea. a) IOA for Day 1; b) IOA for 

Day 7; and c) IOA for Day 14. (Figures are created using R ggplot2 (“Create Elegant Data Visualisations Using the 

Grammar of Graphics,”): https://ggplot2.tidyverse.org/ ) 

The accuracy of forecasting was also dependent on the level of urbanization (Figures 4.2 

and F18 in the appendix). Out of seven cities with an IOA higher than 0.94, six were among the 

least urbanized (the 4th and 5th quantiles: urbanization quantiles based on Chan et al. (2015), and 

only one was an urban region (the 2nd quantile). Ozone precursors are mostly anthropogenic in 

urban areas that can be highly variable (Choi et al., 2012). This variability leads to a departure 

from the general (or ideal) diurnal trend of ozone concentrations and thus leads to less accurate 

forecasting of method 2 in urban areas than in rural areas.   

 

 

 

 

 

 

(c) (b) (a) 



49 
 

 

 
Figure 4.3. a)Variation of IOA based on distance from the coast. The x-axis represents the distance of the station 

from the coast, and the y-axis represents the index of agreement. The colored symbols represent the range of CMAQ-

IOA for the corresponding station. All IOA are based on one-day ahead prediction only. b) Percentage change in IOA 

based on distance from the coast. The figure shows the percentage increase in IOA of the CNN model-method 2 when 

compared with the IOA of the CMAQ model. 

(a) 

(b) 
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Figure 4.3a shows station-wise IOA based on the distance from the coast. The symbol in 

the figure represents the bin of the CMAQ model’s IOA. It was evident from the figure that the 

IOA for the CNN model- method 2 increases as the distance from the coast increases. The possible 

reason for the low IOA was that the CMAQ itself has a lower IOA near the coast. From figure 

4.3b, it was evident the stations closest to the coast show more improvement compared to the 

stations away from the coast, in general. The increase in IOA with the CNN model – method 2 

was in the range of 7%-55% when compared with the CMAQ model for day 1 forecast (Figure 

F19 – Appendix shows the station-wise IOA for the CMAQ and the CNN-method 2 model 1 day 

forecast). Among the stations on the coastal regions, those on the northwestern coast provided less 

accurate predictions than those on the northeastern and southeastern coastal cities (Figure F16).  A 

possible explanation for such a trend could be the variability induced by long-range transport from 

China (Pouyaei et al., 2020). The effects of transport are observable at the three stations on Jeju 

Island. Because of transport from the Korean Peninsula, two stations (339111 and 339112) on the 

northern coast have a lower IOA (0.84 for both stations) than the one station (339121) on the 

southern coast (IOA - 0.90). As a mountain range separates the northern part of the island from 

the south, the transport was blocked. Note: Location of stations can be found in Figure F20 – 

Appendix. 
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Figure 4.4. Box plot of hourly bias of all stations combined. The x-axis represents the prediction days, and the y-axis 

represents the hourly bias in ppb. The Redline represents the zero bias, and the black horizontal line in each box 

represents the mean bias for that model. 

Figure 4.4 shows the boxplot for the hourly bias of all the stations combined for 14-day 

advance prediction. The bias for one-day advance prediction using the CNN model -method 2 was 
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the least. As the number of advance prediction days increases, variability in the bias also increases, 

but the mean bias remains close to 0 for all days. The day 14 forecast has a similar bias as the one-

day advance forecast by the CMAQ model. Although the mean bias remains close to zero, it should 

not be inferred that model performed similarly for all days. The bias resulting from a low observed 

value will be low, and the frequency of occurrence of a low value in a typical diurnal hourly ozone 

cycle was more frequent than the high value (Highs occurs only for 4-6 hours in a 24-hour period). 

Therefore, the evaluation of an air-quality model must be performed in conjunction with other 

metrics like IOA, correlation, or both. This was demonstrated in Figure F21 (Appendix), which 

shows a box plot of bias for a daily maximum ozone concentration for all stations (CNN method 

2). The interquartile range (IQR) of bias for CNN Day-1 was lower compared to the CMAQ Day-

1 bias. The IQR increases with subsequent days and for the 14th day, the mean of bias was -4.89 

ppb. From the second day on, the CNN model initiated over predictions, which peaked around 

days 3and 4 and then began to decrease. Days 7 and 8 showed the fewest over predictions, and the 

mean of maximum daily ozone was close to the mean of the observations. The second week 

followed the same trend as that of the first week. Overprediction increased until the 9th and 10th 

days, and it decreases. The reason for such weekly trends in the IOA of prediction was that ozone 

concentrations also followed a weekly trend (Choi et al., 2012). Ozone concentrations were 

strongly auto-correlated with the seventh day, which provided better training of the CNN model 

for days 7 and 14; hence, the performance of the model on these days improved. 

4.4. Conclusions 

The predictive accuracy of the CNN model depended on one or a combination of multiple 

factors: i) the performance of the base model (in this case, CMAQ), ii) distance from the coast, iii) 

level of urbanization, and iv) transport. These factors, individually or in combination, led to a 
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departure from typical diurnal ozone trends. As a result, an anomaly occurred, and in some cases, 

the model was not able to successfully understand the anomaly, which led to comparatively less 

forecasting accuracy. The model generally performs better when the CMAQ performs well. The 

quantification of variance in performance can provide a future direction for improving the 

performance further.  

The variability caused by the cyclic reversal of land and sea breeze in ozone concentrations 

led to poor performance by the CNN model in the coastal region. Distance from that coast has an 

inverse effect on the prediction accuracy of this CNN model. The accuracy improves towards the 

inland. Similarly, as a less urbanized locale has a more consistent diurnal ozone trend, training of 

the CNN model becomes easier, enhancing its prediction accuracy.  

The highly contrasting performance of the model, when applied to the western and eastern 

coasts of South Korea, suggests that transport also plays a significant role in determining the 

accuracy of model predictions. Unlike the east coast, the western coast was subject to long-range 

transport that adds to the variability of ozone trends. This hypothesis was supported by 

observations of the effects of transport at the three stations on Jeju Island. 

Apart from affecting individually, the combination of these factors can also lead to poor 

performance. The low correlation over the northwest coast regions near Incheon was possibly from 

the combination of land-sea breeze and poor emission inventory. The airport located in Incheon 

was well-known for missing the NOx source (aircraft emission) in the emission inventory and thus 

affecting the CMAQ’s performance. Seosan was a big industrial region located south of Incheon 

where both land-sea breeze and the NOx chemistry affect the typical ozone diurnal cycle. Also, 

the KORUS-AQ report mentioned that the emission data highly underestimated VOC emission 
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over the region) which was another reason for the poor performance by the CMAQ model and the 

CNN model.  

The developed CNN model was successful in reducing the uncertainties arising from the 

systematic biases in the system while, to some extent, unable to account for the uncertainties 

arising from high variability in the atmospheric dynamics, emission, and chemistry. The current 

systems for air quality prediction are either a short-term forecasting system or a low-accuracy 

system that covers a more extended forecasting period. Since this model provides a reasonable 

forecast two weeks in advance, it can provide an actionable window within which government 

agencies can deploy effective measures for reducing the occurrence of extreme ozone episodes. 
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CHAPTER 5 

BIAS CORRECTING AND EXTENDING THE PM FORECAST BY CMAQ 

UP TO 7 DAYS USING DEEP CONVOLUTIONAL NEURAL NETWORKS3 

5.1. Introduction 

Concentrations of particulate matter (PM) arise from primary PM emissions and gaseous 

precursors, such as sulfur dioxide (SO2), volatile organic compounds (VOCs), nitrogen oxides 

(NOX), and ammonia (NH3), through secondary formation in the atmosphere (Behera and Sharma, 

2010; Hodan and Barnard, 2004). In addition, urban fine PM consists of chemical constituents 

such as organic carbon (OC), sulfate (SO4
2-), nitrate (NO3

-), ammonium (NH4
+), trace metals, 

elemental carbon (EC), and organic matter (OM) (de Gouw et al., 2008; Zhang et al., 2015). Two 

components of NOX, produced from various sources such as the combustion of fossil fuels (Noxon, 

1978), biomass burning (van der Werf et al., 2006), soil microbial activity (Yienger and Levy, 

1995), and lightning (Choi et al., 2009) are nitrogen dioxide (NO2) and nitric oxide (NO). These 

compounds play an important role in the troposphere because they determine levels of ozone (O3) 

and the formation of PM formation. A major air pollutant in the world, PM (Koulouri et al., 2008; 

Li et al., 2014; Mukherjee and Agrawal, 2017), comes in two aerodynamic diameters of fine 

particles: less than 10µm (PM10) and less than 2.5µm (PM2.5) (US EPA, 2016). World Health 

Organization guidelines of ambient air have defined hourly mean concentration thresholds of 25 

µg/m3 for PM2.5 and 50 µg/m3 for PM10 (WHO, 2018). Short-term exposure to ozone and PM has 

been linked to respiratory and cardiovascular diseases and mortalities (Brunekreef and Holgate, 

 
3Published: Sayeed, A., Lops, Y., Choi, Y., Jung, J., Salman, A.K., 2021b. Bias correcting and extending the PM 

forecast by CMAQ up to 7 days using deep convolutional neural networks. Atmospheric Environment 253, 

118376. 
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2002), and estimates show that over two million deaths per year resulting from damage to the 

respiratory system are associated with PM pollution (Kim et al., 2015; Shah et al., 2013). Thus, to 

mitigate PM2.5 and PM10 pollutants, researchers, in an effort to reduce local emissions before 

thresholds are reached, have focused on developing strategies to forecast PM more accurately. 

The development of new technology has enabled atmospheric scientists to receive an 

overwhelming amount of data on air quality from space, in-situ monitoring sites, and numerical 

simulations. These data sources provide significant unexploited opportunities to improve the 

understanding of atmospheric constituents and to model and forecast these processes. Researchers 

have mainly used historical meteorological data to forecast weather and atmospheric constituents 

by applying statistical models. Some, however, have applied chemical transport models (CTMs), 

which are often dependent on the accuracy of numerical weather prediction models and initial 

input data to accurately estimate distributions of atmospheric constituents.  

Although CTMs have shown significant improvement in the last two decades, they are 

unable to provide fully reliable air quality forecasts. Their reliability was especially low in 

topographically complex regions because of their shortcomings in horizontal resolution, physical 

parameterizations, and initial- and boundary conditions. Overcoming the limitations of both 

numerical and statistical model require comprehensive observational data for model tuning and 

selection (i.e., estimating the best possible parametrizations) and data assimilation (i.e., estimating 

the system state for more accurate predictions), both of which can use the same data. 

The most widely used air pollution chemical transport model was the Community 

Multiscale Air Quality (CMAQ) model, developed by the United States Environmental Protection 

Agency (Byun and Schere, 2006). To improve the reliability of CMAQ for accurately forecasting 

atmospheric constituents’ concentrations, several studies have applied pollution transport and 
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trajectory methods. While they have improved the transport modeling and simulating trajectories 

in CMAQ, cases of significant bias in higher concentrations of constituents are still present (Hur 

et al., 2021; Jeon et al., 2016; Pouyaei et al., 2020). To bridge the gap between observations and 

models, several studies that have applied data assimilation techniques have incorporated ground 

observations and remote sensing products for atmospheric chemistry and weather forecasting and 

reported significant improvement in model accuracy (Bocquet et al., 2015; Jung et al., 2019).  

Another significant parameter affecting the performance of CMAQ was emissions. For 

cases regarding NO2, CMAQ uses bottom-up NOX emissions to simulate temporal and spatial 

variations in ozone (Li et al., 2016); several problems involving the simulation of NOX, however, 

have arisen (Choi and Souri, 2015). For one, these emissions are susceptible to rapid obsolescence 

resulting from both rapid changes in anthropogenic emissions and the fast response of NO2 to these 

emissions, resulting from the relatively short lifetime (Martin et al., 2003). In addition, the 

uncertainties of NOX emissions within a region are even more pronounced when studies use 

different emissions inventories in their models, which generate significant changes in 

concentrations (Choi and Souri, 2015). Hence, because of the atmospheric transport of emissions 

(Sadeghi et al., 2020) and non-linear interactions (Pandis, 2004), the difficulty of estimating them 

under all possible conditions was apparent (Davidson et al., 2005). In addition, as meteorological 

factors are significant in the formation of atmospheric constituents, which further emphasize the 

non-linear process within the atmosphere, they should also be considered in forecasting 

(Ghahremanloo et al., 2021; Memarianfard et al., 2017). Due to their inherent non-linear algorithm, 

machine learning (ML) and deep learning (DL) algorithms have shown significant potential in 

addressing the limitations of CMAQ (e.g., simulating non-linear processes). 
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Various ML and DL algorithms have been implemented in a variety of fields in the 

atmospheric sciences to forecast atmospheric constituents (Biancofiore et al., 2017; Díaz-Robles 

et al., 2008; Eslami et al., 2019a; Hooyberghs et al., 2005; Lops et al., 2019; Sayeed et al., 2021a, 

2020a) and improve current models in forecasting or modeling air quality (Pouyaei et al., 2020; 

Sayeed et al., 2020b). A significant number of these papers have implemented convolutional neural 

network (CNN) models, which are capable of joint feature and classifier learning. In addition to 

demonstrating greater accuracy with large-scale datasets (LeCun and Bengio, 1995), CNN models 

used for feature extraction are more efficient than other neural network methods, particularly when 

multiple hidden layers are structured. This feature of CNNs has been responsible for significant 

advancement in classification (Scarpa et al., 2018) and image processing in the atmospheric 

sciences and other diverse set of applications (Krizhevsky et al., 2017; Lawrence et al., 1997). The 

research in this study focuses on expanding already developed DL forecasting systems (Eslami et 

al., 2019a; Lops et al., 2019; Sayeed et al., 2021a, 2020a) by integrating observational and CTM 

data to improve and extend the forecasting capability of DL forecasting systems. This process 

addresses several limitations of DL models in forecasting NO2, PM2.5, and PM10 with only in-situ 

observational data. This research also demonstrates the capability of DL models to optimize the 

output of current CTMs that experience significant biases of atmospheric chemical constituents in 

short and long-term forecasts. 

Unlike conventional machine learning methods, deep CNNs are capable of automatically 

identifying the most informative required features, which facilitates predictions from the input-

output information of the bias-correction and long-term forecasting system used in this paper. 
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5.2. Material and Methods 

This study focuses on two tasks: a) improving the air-quality forecast of the CMAQ model 

by using a convolutional neural network (CNN) model, and b) obtaining high-quality forecasts for 

up to 7 days. South Korea was selected as the study region because of its diverse topography, small 

spatial scale dimensions, active pollution areas, and air pollution transport from surrounding 

regions. The observational data were acquired from the National Institute of Environmental 

Research (NIER) in South Korea for 404 air-quality monitoring stations, the locations of which 

appear in Figure 5.1. The stations monitor and record hourly average concentrations of PM2.5, 

PM10, carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3), and nitrogen dioxide (NO2). The 

data cover a period from 2016 to 2019. The CNN model proposed in this study requires both 

observed pollutant concentrations from the 24 hours and air quality and meteorology forecasts 

from the following 24-hour period from numerical models. The meteorology was generated using 

Weather Research and Forecasting (WRF) model version 3.8 and processed with Meteorology 

Chemistry Interface Processor (MCIP). The air quality forecasts were obtained by running the 

CMAQ v5.2. Detailed configurations of the CMAQ and WRF models can be obtained from Jung 

et al. (2019). The WRF and CMAQ models were run for the years 2016 to 2019.  
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Figure 5.1. Map of South Korea showing: a) the locations of the 255 stations used in training; b) map of the locations 

of the 149 stations (i.e., out-of-box stations) not used for the training, but instead for validating the model. 

In this study, three air-quality parameters were forecasted -PM2.5, PM10, and NO2 -seven 

days in advance. Figure 5.2 shows the schematic diagram of the arrangement of inputs and output 

of the CNN model used in this study. For each parameter and each day, a specific model was 

trained, so 21 different CNN models were trained. The inputs described in Section 2.1 were the 

same for each model but with a different target (output). Since the Day 1 CNN model uses the 

CMAQ model’s day one forecasts as inputs, it was essentially a bias-correction model, while days 

2-7 are forecasts based on the day 1 forecast of the CMAQ model. The models were trained for 

the years 2016 to 2018 with 255 stations (252 for PM2.5). The remaining 149 stations were not 

used in training but for the spatial validation of the CNN model (Figure 5.1b). In addition, for 

temporal validation, PM2.5, PM10, and NO2 were forecasted separately for each of the seven days 

for the year 2019. For each station, the closest grid point was located on the numerical model grid 
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and assigned the grid to the station. To ensure a generalized model, the inputs for each station were 

prepared and stacked over one another, and randomly shuffled for training. Since there was a large 

pool of training examples (1096x255), days with any missing observational data were removed 

from the training.  

 
Figure 5.2. Schematic diagram of the CNN models used in this study. 21 different CNN models were prepared based 

on each day (7 days) and air quality species (3 species). Day 1 CNN model was a bias correction model for CMAQ 

day 1 forecast, while Day 2-7 are forecasts of the CNN model. Including CMAQ day 1 forecast extends the forecasting 

capability of the CNN Models up to 7-days. 

5.2.1. CNN Model 

In this study, a state-of-the-art convolutional neural network (CNN) model was used. The 

architecture used was similar to that used by Sayeed et al. (2021a). The input consists of 24-hourly 

forecasts of 31 meteorologies (see Table T6 in the appendix), 10 air-quality constituents (see Table 

T6 in the Appendix) and six current air-quality parameters (CO, SO2, NO2, PM10, PM2.5, O3) 

observed daily. Thus, the number of parameters, which form the input layer to the CNN model, 

was 1,128 (24×47). The input layer was followed by five convolutional layers, each consisting of 

32 filters and convolved through a kernel of size 2×1. The output of the five-layer convolutions 

was a two-dimensional array, which was then converted to a one-dimensional array using 

flattening. The flattening layer was followed by a dense layer with 264 neurons that were processed 
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through an output layer with 24 parameters. In the end, a 24-hour forecast was obtained of the 

desired air-quality parameter. The activation function used in each layer was ReLU. Table T15 

(Appendix) provides a detailed description of the architecture of each layer used in the CNN 

model. Since a deep neural network system was an optimization problem, in which the quality of 

a model depends on the feedback mechanism (i.e., maximization or minimization of the loss 

function) used to optimize the model, a loss function specific to air-quality studies (Sayeed et al., 

2021a) was developed. The loss function used in this study was based on the index of agreement 

(IOA) (Willmott et al., 1985).  

5.3. Results and Discussion 

The performance of the models was evaluated on both temporal and spatial scales. For the 

spatial evaluation process, the models were trained on only 255 stations out of the available 404 

stations and reserved the remaining 149 stations for the spatial evaluation process (see Figure 

5.1b). For this evaluation, only stations with more than a month of observations (more than 720 

hours) were selected in 2019 (141 stations for NO2, 138 stations for PM2.5, and 140 stations for 

PM10). For the temporal evaluation process, the models were trained from 2016 to 2018; the model 

then produced forecasts for all of 2019, which were compared to in-situ measurements. The IOA 

was used to evaluate the hourly performance of the model and categorical statistics (Eder et al., 

2006; Chai et al., 2013) to evaluate its daily performance based on the daily maximum values of 

PM2.5 and PM10.  

Figure 5.3a shows the IOA for the hourly forecasts of NO2 generated by the CMAQ and 

CNN models. The blue bars in the figure represent the average IOA of all stations during the 

training phase, and the orange bar represents the average IOA of all the stations that were not 

included in the training phase (out-of-box stations). Figure 5.3a demonstrates the success of the 
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CNN model at improving the average IOA for first-day forecasts from the CMAQ model from 0.6 

to 0.86 for the stations used for training and from 0.6 to 0.83 for the stations used for validation. 

Although the forecasts of the IOA from the CNN models saw less and less improvement from day 

to day, the seventh-day forecast from the CNN model still outperformed the one-day forecast from 

the CMAQ model. In fact, the improvement in the forecasted IOA from CNN on the seventh day 

was 10% higher than that from the CMAQ on the first day. The lowest forecasted IOA was for the 

fifth day. The performance of the sixth- and seventh-day forecasts, however, were equivalent to 

that of the third-day forecasts (see Table T16 in the appendix).  

Figure 5.3b represents the spatial IOA distribution for the first-day forecast by both CMAQ 

and CNN models. The performance of the CNN model was generally dependent on the 

performance of the CMAQ model for the station locations (Sayeed et al., 2021a). The stations that 

are farther away from the coast performed slightly better than those near the coast. The main reason 

for such variation in performance was due to issues with the performance of CMAQ in the coastal 

regions (Sayeed et al., 2021a). In addition, some out-of-box stations on the eastern coast performed 

poorly because of an insufficient number of stations in the region for training.  The errors were 

reduced further, based on geospatial location, by including topographical and demographical 

details of the stations as input to the CNN model. The regions with more stations for training show 

comparatively stronger performance than those with fewer stations available for training (a smaller 

cluster). 

Figures 5.4a and b show the average yearly IOA of the CNN model for PM2.5 at all stations 

for the 7-day forecast and the station-wise yearly IOA of the CMAQ and CNN models for the first-

day forecast, respectively. For the first day, the CNN model improved the PM2.5 forecast by ~13%; 

for the second day, however, the CNN model generated a similar IOA to that of the first-day 
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Figure 5.3. a) Yearly IOA of all stations (averaged) of the CMAQ and the CNN models for forecasting NO2. b) Station-

wise yearly IOA of both models for the one-day forecast of NO2. 

a) 

b) 
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forecast of the CMAQ model. Nevertheless, for the days following the first day, the accuracy of 

the CNN forecasts declined. The IOA increased in all stations, except for stations 336471 and 

339131, which showed decreases of less than 1%.  Stations 525162 (see Figure F25 in the 

appendix) and 525143 had the lowest IOA. These stations had an unusually high value of 500 

µg/m3 on several days, significantly impacting the performance of the models. These abnormal 

values may have resulted from measurement errors (Figure F28 in the appendix shows the location 

of these stations). While the IOA performance for the second-day forecast of the CNN model was 

equivalent to that of the CMAQ second day forecast (see Table T17 in the appendix), the CNN 

model was much faster than CMAQ (it takes 2-3 minutes to forecast all stations), and can be used 

as an alternative to the CMAQ model. (Note: More time series examples can be found in figures 

F22- F27) 

Figures 5.5a and b show a comparison of the performance of the CMAQ and CNN models 

for PM10 7-day forecasts. The CNN model for PM10 increased the average IOA by ~22% for 

stations used in the model training and 21% for the stations used for the spatial validation. The 

second-day CNN forecasts for PM10 were more accurate than the CMAQ first-day forecasts. From 

the third day onwards, however, the performance of the CNN model decreased drastically. Figure 

5.4b shows a significant improvement in the station-wise IOA for stations in both the training and 

validation phases. The increase in the IOA was greater than 10% for 387 out of 393 stations. For 

138 stations, the IOA increased by more than 25% when comparing the CMAQ model to the CNN 

model. The smallest increase in performance was 4% for station 238471. The performance of the 

CNN model for PM10 was better than the CMAQ model by up to two days (see Table T18 in the 

appendix). In addition, the faster computational speed of the CNN model makes it a good candidate 

for PM10 forecasts for up to two days.  
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Figure 5.4. a) Yearly IOA of all stations (averaged) of both CMAQ and CNN models for forecasting PM2.5. b) The 

station-wise yearly IOA of both models for the one-day forecast of PM2.5. 

a) 

b) 
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Figure 5.5. a) Yearly IOA of all stations (averaged) generated by the CMAQ and CNN models for forecasting PM10. 

b) Station-wise yearly IOA generated by both models for the one-day forecast of PM10. 

a) 

b) 
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While the accuracy of hourly forecasts of NO2 was reasonable for up to 7 days in advance, 

those of PM2.5 and PM10 were only reasonable for up to 2 days in advance. Possible explanations 

for this finding follow: i) more uniform uncertainty in the CMAQ forecasts of NO2 than for those 

of PM2.5 and PM10; ii) the diurnal cycle of NO2, which was mostly high during heavy traffic time 

(mornings and evenings); and/or iii) the effect of the transport of PM from adjoining regions. All 

of these factors contribute to the ease with which an AI model can be trained. Because of the high 

variability of PM throughout the day, it was difficult for the model to achieve a high level of 

accuracy for a longer period. For particulate matter, the model produced stronger forecasts for the 

less variable PM2.5 than it did for PM10; it also produced more accurate forecasts for the more 

uniform diurnal ozone and a longer forecast duration (Sayeed et al., 2021b) 

5.3.1. Categorical Performances: 

The performance of the model was evaluated by daily maximum values. To evaluate the 

model, categorical statistics (Chai et al., 2013, Eder et al., 2006) was used and pairs of observations 

and predictions were divided as follows: 

a) Na, number of days when an observation was below the threshold and a prediction was 

above. 

b) Nb, number of days when both observations and predictions are above the threshold. 

c) Nc, number of days when both observations and predictions are below the threshold. 

d) Na, number of days when an observation was above the threshold and a prediction was 

below. 

After categorizing, the observations and predictions, the following metrics were defined 

based on the following: the hit rate (HIT), which represented the capability of the model to 

correctly forecast an extreme event (i.e., an event above the threshold); the false alarm rate (FAR), 
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which represented times when the model falsely forecasted an extreme event; and the equitable 

threat score (ETS), which defined the skill of a model on a scale of -1 to 1, in which 1 indicated 

that the model was skillful; and the proportion of correctness (POC), which defined times the 

model was able to correctly predict the occurrence of an event (both exceedances and non - 

exceedances). 

  𝐻𝐼𝑇 =
𝑁𝑏

𝑁𝑏+𝑁𝑑
       (5.1) 

𝐹𝐴𝑅 =
𝑁𝑎

𝑁𝑎+𝑁𝑏
          (5.2) 

𝐸𝑇𝑆 =
𝑁𝑏− 𝑁𝑟

𝑁𝑎+𝑁𝑏+𝑁𝑑−𝑁𝑟
       (5.3) 

where 𝑁𝑟 =
(𝑁𝑎+𝑁𝑏) ×(𝑁𝑏+ 𝑁𝑑) 

𝑁𝑎+𝑁𝑏+𝑁𝑐+𝑁𝑑
           (5.4) 

𝑃𝑂𝐶 =
𝑁𝑏+𝑁𝑐

𝑁𝑎+𝑁𝑏+𝑁𝑐+𝑁𝑑
       (5.5) 

The thresholds were set based on the WHO guidelines for ambient air. The standard for 

NO2, PM10, and PM2.5 was a 100 ppb one-hour mean, 50 µg/m3 for the daily maximum, and 25 

µg/m3 for the daily maximum, respectively. The categorical statistics were inconclusive for NO2 

because the NO2 in-situ measurements did not exceed the 100-ppb threshold. Without threshold 

exceedances, the categorical analysis could not be performed. Table 5.1 represents the categorical 

statistics for PM10 based on the 50 µg/m3 threshold, averaged over all stations. The average hit rate 

of the CNN model at all stations increased by 95%, but the false alarm rate remained almost 

equivalent to that of the CMAQ model. The equitable threat score increased by 123%, from 0.22 

for the CMAQ model to 0.42 for the CNN model. The POC, which signifies the times a model 

accurately predicts an event, also increased by ~9% for the CNN model.  
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Table 5.1. Categorical statistics; average of all of the stations for PM10. 

PM10 HIT FAR ETS POC 

CMAQ 0.42 0.32 0.22 0.80 

CNN 0.82 0.31 0.49 0.87 

Table 5.2 represents the categorical statistics for PM2.5 based on the 25 µg/m3 threshold, 

averaged over all stations. The CMAQ model performed comparatively better for PM2.5 than it did 

for PM10. Since the CNN model was based on the CMAQ model, the performance of CNN for 

PM2.5 was also better than it was for PM10. While the hit rate increased by 12%, the false alarm 

rate decreased by ~40%. The ETS skill of the CNN model was ~68% higher than that of the CMAQ 

model. The POC also increased by ~14%, indicating that the forecasts of the CNN model were 

14% more accurate overall than those of the CMAQ model. 

Table 5.2. Categorical statistics; average of all of the stations for PM2.5. 

PM2.5 HIT FAR ETS POC 

CMAQ 0.75 0.38 0.32 0.77 

CNN 0.84 0.23 0.54 0.88 

5.4. Conclusions 

This research demonstrates the capability of AI models to address the non-linear 

relationships of in-situ measurements and model output. Integrating the AI system and the CMAQ 

model significantly reduced the biases of CMAQ model output and extended the forecasting 

capability up to 7 days in advance. The NO2 bias correction and forecasting of the AI model 

showed the most significant improvement. The model showed same-day bias correction, 

improving IOA, on average, by 38% for all stations; in addition, its seventh-day forecast of NO2 

still exceeded the accuracy of the one-day forecast by the CMAQ model. Improving the PM2.5 and 

PM10 bias correction of the CMAQ model also improved the IOA by 13% and 21%, respectively. 

Comparing the forecasting time of the CMAQ and AI models, the AI model’s two-day forecast 
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was able to maintain the one-day forecast performance of the CMAQ model. The AI model was 

not able to maintain the one-day forecast performance of the CMAQ model on the third day, which 

significantly declined, and finally tapered off beyond the fourth day. 

A significant benefit of the AI bias correction system was its near real-time processing 

capability. While the training time of the AI model may require time to process, deployment of the 

AI system for bias correction performs in near real-time. Thus, the integration of the AI system for 

model output optimization will not have a significant or noticeable impact on the overall model 

run time. In addition, the performance of the AI model via a spatial validation process (see Figures 

5.3-5.5) further emphasizing its scalability for locations and adaptability to changes in regional 

meteorology and atmospheric constituents. 

The AI bias correction model was still subject to limitations, particularly with regard to the 

extended forecasting of PM2.5 and PM10. One reason was the dependency of AI model performance 

on CMAQ model performance. However, once the CMAQ model improves its forecasting and 

simulation of short-term atmospheric constituents, the AI model will adapt to such improvements 

and further optimize and extend the forecasting days with sufficient accuracy. The system was also 

limited to effective implementation in the locations of in-situ measurements. Thus, the integration 

of remote sensing data as input to the AI model has the potential to expand the capability of the 

AI system to bias correct each grid cell of the CMAQ model.  
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CHAPTER 6  

A DEEP CONVOLUTIONAL NEURAL NETWORK MODEL FOR 

IMPROVING WRF SIMULATIONS4 

6.1. Introduction 

The atmosphere sciences, particularly weather forecasting, have at their disposal a deluge 

of data from space, in-situ monitoring, and numerical simulations. These diverse data sources offer 

new opportunities, still largely underexploited, to improve the understanding, modeling, and 

reconstruction of geophysical dynamics. Several academic studies devoted to the problem of 

forecasting difficult-to-retrieve weather events and their associated uncertainties typically employ 

weather forecasting techniques that fall into three main categories: numerical weather predictions 

(NWP), statistical forecasting, and artificial intelligence (AI - forecasting). Dynamical (physical) 

models such as the Weather Research and Forecasting (WRF) model use meteorological and 

topological information to determine the mesoscale weather parameters of a specific region (Su et 

al., 2014), and statistical methods mainly use historical meteorological data to simulate the state 

of the weather (Eslami et al., 2019a, 2019b; Lops et al., 2019; Nie et al., 2020; Sayeed et al., 

2020b).  

To obtain the various meteorological parameters, NWP models generally entail the 

parameterization of physical phenomena using initial and boundary conditions and a series of 

partial differential equations (Wilgan et al., 2015). Unfortunately, despite advancements in these 

models, the shortcoming in resolving horizontal grid resolutions through discretization and 

 
4Revised Submission: Sayeed, A., Choi, Y., Jung, J., Lops, Y., Eslami, E., Salman, A.K., 2020c. A Deep Convolutional 

Neural Network Model for improving WRF Simulations. (2nd revised manuscript submitted to IEEE-

Transactions on Neural Networks and Learning Systems) 
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interpolation has led to unreliable weather simulations (Cassola and Burlando, 2012). NWPs are 

also computationally expensive, particularly with regard to fine-resolution simulations (Sayeed et 

al., 2020b). In addition, because of the misrepresentation of unresolved small-scale features or 

neglected physical processes, parts of numerical models are represented by empirical sub-models 

or parameterizations (Crétat et al., 2012; Lu et al., 2013; Stensrud, 2007), which tend to simplify 

involved physics that may lead to uncertainties in simulation.   

Unlike NWPs, statistical models require a large amount of historical data and completely 

neglect the physics of the atmosphere; thus, they do not consider meteorology (Erdem and Shi, 

2011; Nie et al., 2020). Since statistical methods are easily implemented and less computationally 

intensive than NWPs, they are popular among researchers. Nevertheless, owing to the scarcity of 

representing complex meteorological phenomena and non-linear patterns in the training data, 

statistical models are unreliable and inaccurate for simulating extreme weather episodes, which 

exacerbate long-range forecasting. 

Because of the chaotic nature of the weather system, errors in weather models are 

unavoidable but quite often significant regardless of the implemented modeling approach. The 

parametrization of physical process and discretization of differential equations lead to biases, 

which increases at every step of space and time in a numerical model. Overcoming these 

limitations still remains a challenging task. In the past several decades, the volume and quality of 

observations have increased dramatically, particularly thanks to remote sensing. At the same time, 

new developments in machine learning (ML), particularly deep learning (DL) (LeCun et al., 2015), 

have demonstrated impressive capabilities at reproducing complex spatiotemporal processes (Tran 

et al., 2015) by efficiently using an enormous amount of data, thus creating a path for their use in 

the atmospheric sciences.  
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Researchers have applied various ML algorithms in a variety of fields in the earth and 

atmospheric sciences, including air quality forecasting (Eslami et al., 2019a, 2019b; Lops et al., 

2019; Sayeed et al., 2020b) and hurricane tracking (Eslami, 2020). ML has also been applied to 

nowcasting based on real observations such as the sea surface temperature (Bézenac et al., 2019) 

and precipitation (Shi et al., 2017). Most studies for the bias-correction using statistical methods 

or machine learning methods focus on only one meteorological parameter, or the temporal 

resolution was very coarse (3-hourly to daily mean values) (Costoya et al., 2020; Holman et al., 

2017). Moreover, most studies use the CNN model for either image processing or classifications 

of images.  The CNN models were used as a non-linear regressor for air-quality forecasts (ozone 

and pollen) (Eslami et al., 2019a, 2019b; Lops et al., 2019; Sayeed et al., 2020b). In this study, an 

alternative approach was applied: a fully data-driven framework that combines a deep neural 

network (CNN) and physical models (WRF) that simulate the dynamics of a complex weather 

system. A weather-AI as real-time weather simulating model was developed that reduces the 

model-measurement error of the WRF model. The model developed can be used to bias-correct 

any observed meteorology parameter for an hourly temporal resolution. The system, using a 

convolutional neural network algorithm (Krizhevsky et al., 2017), post-processes and bias-corrects 

the WRF output (observation network of the 24-hour simulations) in real-time at each grid linked 

to a station location.  

6.2. Material and Methods 

The algorithm was divided into two sections: i) hourly simulation by a WRF model and ii) 

a deep CNN model that reduces uncertainty and improves simulation accuracy. Figure 6.1 shows 

the process flow diagram for the Weather-AI model. 
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Figure 6.1. Process flow for the Weather - AI model in bias correcting WRF forecasts. A Weather-AI model uses 

historical simulation by a numerical model (WRF) and uses the actual observation to understand the biases. The 

process was called training an AI model. Once a model was trained, it was used to forecast unseen scenarios.  

6.2.1. Deep Convolutional Neural Network 

The deep architecture of the convolution neural network (CNN) used in this study was 

similar to the model (Sayeed et al., 2020b). In general, CNN models are used for image processing 

and image classifications. The CNN models have proven to be an effective tool in developing 

regression models for air-quality forecasts (Eslami et al., 2020, 2019a; Eslami, 2020; Sayeed et 

al., 2021b, 2020b, 2021; Yeo et al., 2021). Since all meteorological parameters are inter-dependent, 

the convolution feature of a CNN layer provides an excellent tool for convolving different 

paraments. Several recent studies have tried to leverage this feature by either convolving a single 

parameter in time and variables using 1-D CNN (Wang et al., 2020) or established spatial inter-

correlation using 2-D CNN (Hong and Satriani, 2020).  Although these studies have shown some 

promising results, the forecast was either a shifted time-series (Wang et al., 2020) by the same 

amount as the prediction window, or they don’t provide time-series to evaluate the shifting (Hong 

and Satriani, 2020). For this study, a generalized architecture of the CNN model was developed, 

capable of bias-correcting various weather parameters modeled (by WRF) weather parameters. 

The use of the numerical model (WRF) enabled us to remove the shifts in time series by removing 

the previous day's observations from the inputs for forecasting. The model entails five one-



76 
 

dimensional convolutional layers (Figure 2.1, which shows the model architecture), a fully 

connected layer, and an output layer. Each convolutional layer, with 8, 16, 32, 32, and 32 filters, 

respectively, was activated by the rectified linear unit. To find the best architecture, several 

architectures were tested for wind speed. Figure F30 shows the comparison of the CNN model 

with a different number of layers for windspeed, u-wind, and v-wind, respectively. However, the 

model with 3 layers performs equivalent to the model with 5 layers for wind speed. The results 

from the figure show the model with 5 layers performs better for u-wind and v-wind components 

over the CNN models with fewer layers. To have generalized model architecture, a 5-layer model 

was used for this study. The input for the first layer consists of various hourly meteorological 

parameters extracted from the WRF model (Table T19 in the Appendix lists all the WRF 

meteorological parameters used as input). The convolutions are applied to the input features with 

the elements of a randomly initialized kernel (with a kernel window size of 2 × 1). The feature 

maps are obtained through the output of the first layer, then used as input for the second layer. The 

same process was applied in the succeeding layers. The output of the fifth convolutional layer was 

then passed to the fully connected layer, which contains 264 nodes (neurons) (selected by using 

grid-search CV (sklearn.model_selection.GridSearchCV — scikit-learn 0.24.1 documentation). 

Furthermore, several learning rates, optimizers and batch-sizes were tested for the model and the 

best configuration (based on highest IOA and correlation on out of box test set) was selected (i.e., 

0.001 learning rate, adam optimizer (Kingma and Ba, 2014), and 72 batch size). The hourly output 

was obtained at the last layer (output layer). A deep CNN, like any neural network, was an 

optimization problem that attempts to minimize the loss function. In general, deep learning models 

use mean squared error or mean absolute error as loss function to optimize the model. In this study, 
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the loss function developed by Sayeed et al. (2021a), based on the index of agreement (IOA) 

(Willmott et al., 1985), was used. 

6.2.2. Data Preparation and Model Training 

The observed meteorology was obtained from the 93 Automated Synoptic Observing 

System (ASOS) stations operated by the Korea Meteorological Administration (KMA) for the 

years 2014 to 2018 across South Korea. Figure 6.2 displays the location of all the meteorology 

monitoring stations in the country. The meteorological parameters obtained from these stations 

were wind speed, wind direction, precipitation, relative humidity, temperature, dewpoint 

temperature, and surface pressure. 

 
Figure 6.2. Map of South Korea with the location of the meteorology stations used in the Weather-AI model for bias-

correcting WRF weather simulations.  

Upon completion of the WRF run, the closest WRF grid to each station was identified, to 

which the station was assigned (Table T20 in the Appendix), and then extracted hourly 
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meteorology at each grid point (Table T19 in the Appendix). After acquiring hourly meteorological 

fields from the output of the WRF model, the inputs were prepared for each station in the form of 

a two-dimensional matrix in which each column represented a specific meteorology parameter 

from the WRF model and each row represented hourly values. As each column represented a 

specific meteorological parameter (Figure F29a, appendix shows the arrangement of inputs and 

outputs), it displayed a range of values. To establish uniformity over all inputs, each column was 

normalized between 0 and 1 with a global minimum and maximum (Sayeed et al., 2020b). The 

output dataset consisted of the hourly observed meteorology. To construct a matrix for 

training/testing a generalized deep CNN model across the spatial domain, all station data were 

combined row-wise and further split the training dataset into a 50-50 ratio (randomly) for training 

and validation. Then, the model was trained for four years (i.e., 2014 to 2017) and evaluated for 

the year 2018 (Note: The data from 2018 was not used in the model training). A separate model 

was trained for each of the observed meteorological parameters. One of the major challenges with 

any ML algorithm was overfitting. To minimize the overfitting, several tests run by varying the 

number of iterations(epoch) were performed for the model and evaluated the model on the 

evaluation set in terms of IOA and correlation. In all these sets, the model performed best just 

before when the validation loss becomes larger than the training loss. So, for the final model, it 

was trained until this point (i.e., the point before the intersection of train and test curve). 

A) Special Case: Precipitation model 

Simulating the amount of hourly rainfall for a specific region requires complex physics and 

chemistry pertaining to atmospheric conditions. Thus, the simulated rainfall was divided into two 

sections: a classification model (Rain-CM: Rain Classification model) that identified rain hours; 
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and an hourly quantity prediction model (Rain-RM: Rain Regression Model). The two models are 

combined to simulate the hourly and daily accumulated total rainfall (in mm). 

The Rain-CM model was similar to the model discussed in previous sections but differs in 

its output, consisting of 0’s for no rain and 1’s for rain hours. The data setup of the Rain-RM model 

differed slightly from that of the models discussed in this study (Figure F29b, appendix, shows the 

data arrangement of the Rain-RM model). The output consisted of observed 24 hourly rain 

amounts (in mm) arranged in rows, and the inputs consisted of the daily simulated meteorology 

and simulated 24-hourly rain amounts (in mm) by the WRF (This model has 87 inputs instead of 

64 inputs and 24 outputs instead of 1). Therefore, each row in the setup consisted of daily values 

instead of hourly values. 

6.3. Results and Discussion 

For the Weather-AI model, the following meteorological parameters were obtained: wind 

speed, wind direction, temperature, pressure, dewpoint temperature, relative humidity, vapor 

pressure, and precipitation at the surface. The CNN model was then used with the WRF model to 

obtain predictions for all of 2018. The CNN models, developed for each meteorological variable, 

were evaluated against the WRF model performance in the following sections. In addition to using 

WRF as a benchmark, linear regression and lasso regression models were also used for the 

evaluation of the performance of wind speed. The windspeed was evaluated as a benchmark as it 

was a more difficult meteorological parameter to simulate. Both regression models were fitted as 

a generalized model and a station-specific model (the generalized model used all stations as input). 

The average performance of the CNN model (generalized) exceeds the performance of the best 

regression model (Table T21, appendix). However, the station-specific CNN model was better 

than the generalized model in terms of IOA and correlation. The problem with the station-specific 



80 
 

model was that it takes greater computational time to train and it would need 93 different models 

for each variable for each station (93 stations). Furthermore, a generalized model can be used at 

any station apart from the 93 used in this study. Thus, to have a generalized and easy-to-use model, 

the performance of the CNN generalized model for each variable was discussed in further sections.  

6.3.1. Wind Speed and Direction:  

Figure 6.3 shows the performance of the WRF model (Figure 6.3a) and the Weather-AI 

model (Figure 6.3b) for each station in terms of IOA. The Weather-AI models show an average 

increase of 27% in IOA for all stations; IOA increased from 0.67 (correlation = 0.66) for the WRF 

model to 0.85 (correlation = 0.75) for the Weather-AI model. Overall, the Weather-AI model 

improved the performance of WRF simulations for all stations, with more than two-thirds (64 out 

of 93) of the stations showing an IOA increase greater than 20% (Figure F31 shows the percentage 

change in the IOA at all stations).  

 
Figure 6.3. Station-wise IOA comparison of wind speed for a) WRF model and b) Weather-AI models. 
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Figure 6.4 shows Taylor diagrams (separated by month) comparing the performance of the 

two models for all stations combined. The figure shows that the model closest to the observed 

point on the diagram performs the best (Taylor, 2001), demonstrating the superior performance of 

the Weather-AI model in all months. Although the root mean squared error (RMSE) for the WRF 

varied each month and was larger in the cold months, the RMSE for the Weather-AI remained 

constant at 1 m/s.  Similarly, while the standard deviation (SD) and correlation of the WRF varied 

each month, those of the Weather-AI remained stable throughout the year. From Figure 6.4, one 

can conclude that seasonality does not affect the performance of the Weather-AI model for wind 

speed.  

Predicting the wind direction was challenging because of its circular nature. To do so, first, 

predict u and v components of winds were predicted and the direction was calculated. To evaluate 

the performance of the wind direction, all the predictions that are in the bin of ±45⁰ from observed 

values are treated as true predictions, and all other values are treated as false predictions. Hence, 

categorical statistic evaluations, in this case, are as follows:  

HRwd, Hit Rate = 

𝑁𝑜.  𝑜𝑓 ℎ𝑜𝑢𝑟𝑠 𝑤ℎ𝑒𝑛 𝑏𝑜𝑡ℎ 
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑎𝑛𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑎𝑛𝑔𝑒

 𝑜𝑓 ±45⁰ 𝑓𝑟𝑜𝑚 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 ℎ𝑜𝑢𝑟𝑠 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
                    (6.1) 

FARwd, False Alarm Rate= 

𝑁𝑜.  𝑜𝑓 ℎ𝑜𝑢𝑟𝑠 𝑤ℎ𝑒𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

 𝑎𝑟𝑒  𝑛𝑜𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑎𝑛𝑔𝑒 𝑜𝑓 ±450

𝑓𝑟𝑜𝑚 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠  

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 ℎ𝑜𝑢𝑟𝑠 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 
                      (6.2) 

The HRwd for all stations combined for the Weather-AI was 54.83% and HRwd for the WRF 

was 52.16%.  
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Figure 6.4. Taylor diagram of each month comparing the performance of the WRF model and Weather-AI model for 

wind speed. 

Figure F32a shows the yearly time series of wind speed and Figure F32b shows the wind 

direction at station 115. This station was unique because it was situated near the southeastern coast 

of a small island, Ulleng-do (120 km east of the Korean Peninsula). The WRF model significantly 
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overpredicted wind speeds during the cold months (Figure F32a). As summer approached, its 

performance improved (also shown in Figure 6.4), with the most dramatic improvement in the JJA 

season. The Weather-AI model was able to reduce the seasonal biases of the WRF, out-performing 

it in all months for predicting wind speed and more accurately predicting the wind direction (Figure 

F32b). Furthermore, the model significantly improved the wind direction predictions by 

successfully predicting dominant southwestern and northeastern wind directions. 

6.3.2. Precipitation 

The bias correction of precipitation consisted of two models. Therefore, different 

techniques were used to evaluate them. Rain-CM was evaluated based on categorical statistics, 

that is, the hit rate (HR) and the false alarm rate (FAR), defined as follows: 

HRrain, HR Rain Condition = 

𝑁𝑜.  𝑜𝑓 ℎ𝑜𝑢𝑟𝑠 𝑤ℎ𝑒𝑛 
𝑏𝑜𝑡ℎ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 

𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑎𝑟𝑒 𝑎 𝑟𝑎𝑖𝑛 ℎ𝑜𝑢𝑟
𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 ℎ𝑜𝑢𝑟𝑠 𝑤ℎ𝑒𝑛

 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑖𝑠  𝑎 𝑟𝑎𝑖𝑛 ℎ𝑜𝑢𝑟

                                (6.3) 

FARrain, FAR Rain Condition = 

𝑁𝑜.  𝑜𝑓 ℎ𝑜𝑢𝑟𝑠 𝑤ℎ𝑒𝑛  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
 𝑖𝑠 𝑎 𝑛𝑜 𝑟𝑎𝑖𝑛  𝑎𝑛𝑑 𝑜

𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎 𝑟𝑎𝑖𝑛 ℎ𝑜𝑢𝑟
𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 ℎ𝑜𝑢𝑟𝑠 𝑤ℎ𝑒𝑛 

𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎 𝑟𝑎𝑖𝑛 ℎ𝑜𝑢𝑟

                (6.4) 

HRno-rain, HR No-Rain Condition =

𝑁𝑜.  𝑜𝑓 ℎ𝑜𝑢𝑟𝑠 𝑤ℎ𝑒𝑛 𝑏𝑜𝑡ℎ 
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛

 𝑎𝑟𝑒 𝑛𝑜 𝑟𝑎𝑖𝑛 ℎ𝑜𝑢𝑟 
𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 ℎ𝑜𝑢𝑟𝑠 𝑤ℎ𝑒𝑛 

𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎 𝑛𝑜 𝑟𝑎𝑖𝑛 ℎ𝑜𝑢𝑟

                (6.5) 

FARno-rain, FAR No-Rain Cond. = 

𝑁𝑜.  𝑜𝑓 ℎ𝑜𝑢𝑟𝑠 𝑤ℎ𝑒𝑛
 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑟𝑎𝑖𝑛 

 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜 𝑟𝑎𝑖𝑛 ℎ𝑜𝑢𝑟
𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 ℎ𝑜𝑢𝑟𝑠 𝑤ℎ𝑒𝑟𝑒 

𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎 𝑛𝑜 𝑟𝑎𝑖𝑛 ℎ𝑜𝑢𝑟

                (6.6) 

Tables 6.1a and 6.1b show the HR and FAR of the WRF and Weather-AI models, 

respectively, for the year 2019 for all stations combined (observations with “NaN” values were 

removed). The Weather-AI Rain-CM model showed 7% and 1% improvement over the WRF 
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model in the HR for rain and no-rain hours, respectively, and 37.5% and 6.25% decrease in the 

FAR for rain and no-rain, respectively. 

Table 6.1a. Categorical evaluation of the rain classification for the WRF model. 
 Observed Rain Hours Observed No Rain Hours 

Predicted Rain 44058 HRrain = 0.84 122670 FARno-ain = 0.16 

Predicted No Rain 8256 FARrain = 0.16 638654 HRno-rain = 0.84 

Total Hours 52314  761324  

Table 6.1b. Categorical evaluation of the rain classification for the Weather-AI (Rain-CM) model. 
 Observed Rain Hours Observed No Rain Hours 

Predicted Rain 47214 HRrain = 0.90 117572 FARno-ain = 0.15 

Predicted No Rain 5100 FARrain = 0.10 643752 HRno-rain = 0.85 

Total Hours 52314  761324  

After obtaining the predictions from the classification model, the regression model (Rain-

RM) was used to predict the hourly amount of precipitation. To merge both models and predict 

rain more accurately, all the non-rain hours from the Rain-CM were converted to zero. The average 

IOA for all stations for hourly rain was 0.62 (WRF = 0.56) and the correlation was 0.51 (WRF = 

0.43). According to Figure 6.5, which presents a station-wise IOA comparison for hourly rain, 

90% of the stations show an improved IOA, and 95% show an improved correlation for hourly 

rain. 

 
Figure 6.5. Station-wise IOA comparison of hourly rainfall for a) the WRF model and b) the Weather-AI model. 
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The next step in rainfall prediction was daily accumulated rainfall, calculated from the 

hourly rain predicted by the Rain-RM model. Figure 6.6 represents a station-wise IOA comparison 

of the WRF and Weather-AI models. The average IOA and correlation of the Weather-AI model 

were 0.87 (WRF-0.86) and 0.79 (WRF-0.77), respectively.  

 
Figure 6.6. Station-wise IOA comparison of daily accumulated rainfall by a) the WRF model and b) Weather-AI 

models. 

6.3.3. Other Weather Variables:  

Figure 6.7a and 6.7b present the station-wise IOA of hourly temperature for 24 hours 

predictions by the WRF and Weather-AI models, respectively. Both models performed well in 

predicting temperature, with an average IOA for all stations combined of 0.98 from the WRF and 

0.99 from the Weather-AI models. The range of the IOA for the WRF was 0.92-0.99 and for the 

Weather-AI 0.98-0.99. Even though the temperature predictions of the WRF were exceptionally 

accurate, those of the Weather-AI still showed improvements in all stations. A similar 

improvement occurred for the dewpoint temperature (Figure 6.7c and 6.7d). A monthly Taylor 

diagram comparison of both models for temperature and dewpoint temperature are shown in Figure 

F33a and F33b. Results have shown the RMSE and the SD from WRF were slightly larger during 
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the DJF (December, January, and February) season with a weaker correlation. Whereas during the 

warmer months, WRF had smaller RMSE and SD with a higher correlation. In contrast, the 

Weather-AI generated more accurate predictions than the WRF for all months. The RMSE and SD 

did not vary or exceed 2oC for each month throughout the season. 
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Figure 6.7. Station-wise IOA comparison of the forecasts of the WRF and Weather-AI models for temperature, dew-

point temperature, surface pressure, and relative humidity. a), c), e), and g) represents IOA for temperature, dewpoint 

temperature, pressure, and relative humidity, respectively, for the WRF model. b), d), f), and h) represents IOA for 

temperature, dewpoint temperature, pressure, and relative humidity, respectively, for the Weather-AI model.   

The IOA for the hourly surface pressure predictions for 24 hours increased significantly, 

as shown in Figures 6.7e and 6.7f. The average IOA of the WRF and Weather-AI models were 

0.69 and 0.91, respectively. For several stations, the WRF produced uniform bias in simulating 
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surface pressure, which was adjusted by the Weather-AI (Figure F34 in Appendix). Since the bias 

from the WRF was uniform, the correlation was stronger for these stations, but the IOA was 

weaker. However, as the bias from the Weather-AI decreased, the IOA increased.  

Figure 6.7g and 6.7h show the yearly IOA of the hourly simulations of relative humidity 

from the WRF (IOA-0.87) and Weather-AI (IOA-0.92) models, respectively. All, except for five 

(Station 169, 165, 129, 140, and 170), stations show improvement in the IOA. According to Figure 

F33c, the Weather-AI model performed better than the WRF model for relative humidity. Also, 

the bias-corrections by the Weather–AI model were slightly more accurate than the simulations of 

the WRF model in all months. 

6.4. Conclusions 

In this study, a deep CNN model was developed and discussed that reduced bias in an NWP 

model and significantly improved predictions. Although the same model configuration was used, 

several meteorology-specific models based on the target/output were developed. The models 

showed improved predictions over the WRF model and significantly reduced bias.  

The IOA for wind speeds from the Weather-AI model improved for all 93 stations in South 

Korea. Improvement fell within the range of 2.3 – 39.3%, with a mean of 17.83% in absolute 

terms. For wind direction, the predictions of the Weather-AI model improved in 52 out of 93 

stations. Moreover, the performance remained consistent throughout the year. Since the Weather-

AI model uses the WRF meteorology as an input, it does not indicate any time-series shift as the 

input doesn’t have true observations (Figure F35, Appendix, shows the best, the median, and the 

least performing station based on IOA). The Rain-CM improved the hit rate by 6% over the WRF 

model for the prediction of rain hours, but it remained the same as the WRF for the prediction of 

no-rain hours. The bias correction of the hourly rainfall amount by the Rain-RM model improved 
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in most of the stations; nevertheless, simulating the absolute amount of hourly rainfall remains a 

challenge.  

Predictions of the daily accumulated rainfall amount showed a slight improvement in the 

IOA and a 2% improvement in the correlation. The performance statistics of other meteorological 

parameters⸻ temperature, dewpoint temperature, and relative humidity⸻ also improved.  

The Weather-AI model significantly improved and bias-corrected the simulated wind 

speed, relative humidity, and hourly precipitation by the WRF model. As WRF predictions were 

already relatively accurate, they did not show significant improvement in the bias-correction of 

temperature and dewpoint temperature. The correlation and IOA for temperature were in the range 

of 0.92-0.99 for the WRF model. However, for the CNN, the range of correlation and IOA was 

0.97-0.99 and 0.98-0.99, respectively. Similarly, for dew point temperature, the IOA and 

correlation for the WRF model were in the range of 0.93-0.99 and 0.95-0.98, respectively. For the 

CNN model, the range of IOA and correlation were 0.96-0.99 and 0.97-0.99, respectively.  The 

simulation of surface pressure from WRF contained a uniform bias in several stations that were 

corrected by the Weather-AI model. Even though the Weather-AI model was trained for South 

Korea WRF simulation, a similar model can be trained and reproduced for any numerical model 

(simulations and forecasts). In addition, the system can be utilized for any location to bias-correct 

any number of meteorological parameters while being computationally fast. Although the AI 

model showed significant improvement over the WRF model, it does not cover WRF domains 

over the sea/ocean (because of the lack of observations). In addition, unlike the WRF and more 

advanced architectures of CNN, the Weather-AI model has no spatial gridded structure. Therefore, 

developed AI models are capable of spatial and temporal simulation and forecasting, specifically 

long-range forecasting, based on Weather-AI.  
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

7.1. Conclusion 

In this study, several deep learning algorithms, particularly CNN, were used to develop 

computational fast and accurate techniques to bias-correct numerical models and forecast air 

quality and meteorology with better accuracy. The models developed were also able to forecasts 

the air-quality parameters like surface ozone, PM10, PM2.5, and NO2 for a longer duration (up to 

two weeks in advance). The meteorology model, Weather-AI, was able to achieve better accuracy 

than the conventional numerical model (WRF). 

In the first task, a deep CNN model was developed to forecast hourly ozone concentration 

for 24-hours in advance at various monitoring stations in Texas, USA.  For this model, previous 

day (24- hour, hourly) values of observed meteorology and atmospheric constituents like ozone 

and NO2 were used. The model was trained on examples from 2014 to 2016 and evaluated for the 

year 2017. The robustness of the model was evaluated on discrete as well categorical parameters. 

For 19 of the 21 stations in the study, results show that the yearly index of agreement (IOA) was 

above 0.85, confirming the acceptable accuracy of the CNN model. The results also showed that 

the model performed well, even for stations with varying monthly trends of ozone concentrations 

(specifically CAMS-012, located in El-Paso, and CAMS-013, located in Fort Worth, both with 

IOA=0.89). In addition, to ensure that the model was robust, we tested it on stations where fewer 

meteorological variables were monitored. Although these stations have fewer input features, their 

performance was similar to that of other stations. However, despite its success at capturing daily 

trends, the model mostly underpredicts the daily maximum ozone, which provides a direction for 

future study and improvement. As this model predicts ozone concentrations 24-h in advance with 
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greater accuracy and computationally fewer resources, it can serve as an early warning system for 

individuals susceptible to ozone and those engaging in outdoor activities. 

Learning from the previous task, a deep CNN architecture was designed and developed to 

forecast hourly ozone concentration two weeks in advance for the second task. In this task, we 

developed a modeling system based on a convolutional neural network (CNN) model that is not 

only fast but covers a temporal period of two weeks with a resolution as small as a single hour for 

255 stations. The CNN model uses meteorology from the Weather Research and Forecasting 

model (processed by the Meteorology-Chemistry Interface Processor), forecasted air quality from 

the Community Multi-scale Air Quality Model (CMAQ), and previous 24-hour concentrations of 

various measurable air quality parameters as inputs and predicted the following 14-day hourly 

surface ozone concentrations. The model achieves an average accuracy of 0.91 in terms of the 

index of agreement for the first day and 0.78 for the fourteenth day, while the average index of 

agreement for one day ahead prediction from the CMAQ is 0.77. Through this task, the best 

features of numerical modeling (i.e., fine spatial resolution) and a deep neural network (i.e., 

computation speed and accuracy) were amalgamated to achieve more accurate spatio-temporal 

predictions of hourly ozone concentrations. Although the primary purpose of this study is the 

prediction of hourly ozone concentrations, the system was extended to various other pollutants in 

the third task. 

In the third task, the algorithm developed in the second task was extended to forecast other 

atmospheric constituents like PM2.5, PM10, and NO2 for up to two weeks, but it was found that the 

forecast was only reliable for up to one week only. The model was also used to evaluate the stations 

that were not in training for robustness. The CNN model developed in this task, bias-corrects 

hourly concentrations of air pollutants from the CMAQ model on the first day and forecasts the 
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remaining six days. Our results show improved performance of the average yearly index of 

agreement (IOA) from the CMAQ to the CNN model by 13% for PM2.5, 22% for PM10, and 43% 

for NO2 for the first-day bias correction; and the seventh-day forecast of NO2 by the CNN model 

was more accurate than the first-day forecast of the CMAQ model. The forecasts for PM2.5 and 

PM10, however, were reliable only up to two days in advance. The trained model was also capable 

of forecasting pollutants at stations not included in the training and showed similar performance 

metrics as that of the stations included in the training. The increase in the average yearly IOA at 

such stations was 13% for PM2.5, 22% for PM10, and 40% for NO2. Although the CNN model 

enhances the performance of the CMAQ model, it can be further improved by adding remote 

sensing data. 

In the fourth task, various deep CNN models specific to specific meteorology (like 

temperature, pressure, relative humidity, etc.) were developed.  The use of a computationally 

efficient deep learning method, the Convolutional Neural Network (CNN), as a post-processing 

technique that improves mesoscale Weather and Research Forecasting (WRF) one-day simulation 

(with a one-hour temporal resolution) outputs were investigated. Using the CNN architecture, 

several meteorological parameters calculated by the WRF model for 2018 were bias-corrected. 

The CNN model was trained with a four-year history (2014-2017) to investigate the patterns in 

WRF biases and then reduce these biases in simulations for surface wind speed and direction, 

precipitation, relative humidity, surface pressure, dewpoint temperature, and surface temperature. 

The WRF data, with a spatial resolution of 27 km, covers South Korea. The surface measurement 

was obtained from the Korean Meteorological Administration station network for 93 weather 

station locations. The results indicate a noticeable improvement in WRF simulations in all station 

locations. The average annual index of agreement for surface wind, precipitation, surface pressure, 
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temperature, dewpoint temperature, and relative humidity of all stations were 0.85 (WRF:0.67), 

0.62 (WRF:0.56), 0.91 (WRF:0.69), 0.99 (WRF:0.98), 0.98 (WRF:0.98), and 0.92 (WRF:0.87), 

respectively. While this study focuses on South Korea, the proposed approach can be applied for 

any measured weather parameters at any location. 

The models developed in this study were evaluated both spatially and temporally for a very 

complex region. These evaluations have shown that the model is robust enough to estimate various 

parameters of meteorology and air-quality.  The dissertation successfully developed technology 

that integrated both numerical models and the deep neural networks techniques. With this 

integration a better and longer forecast (up to two weeks) were made possible for difficult to 

estimate quantities like ozone, NO2, PM2.5 and PM10. The model was also able to improve the 

performance of estimation of various meteorology simulated by WRF model. This methodology 

can also be used to estimated other measures/monitored quantities.  Although the region for this 

study was South Korea, this study can be used for any region. This was also shown by the spatial 

evaluations in chapter 4.  

7.2. Future Work 

Although the deep learning models developed performed exceedingly well for various 

scenarios, they can be further improved with the more advanced ML algorithms like 2D CNN, 

reinforcement learning, unsupervised learning, etc. Also, the algorithms developed in this study 

focus mainly on post-processing of simulation results and extending the forecast through ML 

techniques; the future researcher can develop a pre-processing technique, wherein ML can take 

care of the parametrization of partial differential equations. The other approaches can also be using 

the better forecast of meteorology as developed in the fourth task and using it in the CMAQ model 

for better physics.  
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Another approach to having a better weather forecast can be the use of ML for solving 

adjoints for data assimilations. The traditional way of reconstructing the space-time variations of 

weather events from observations relies on data assimilation (DA) methods involving a known 

dynamical model, also referred to as a numerical weather prediction (NWP) model.  These data 

assimilation techniques require estimation of a cost function and its minimization, typically 

through the use of an adjoint-based variational approach, an ensemble-based approach, or a 

combination of both. However, adjoint versions of the forecast model are non-trivial to develop 

and can be computationally expensive to run, especially when they involve a linearization 

(gradient) of highly nonlinear ‘physics’ components of the NWP model, used for representing the 

effects clouds, radiation, and turbulence. An alternative approach can be explored for estimating 

the adjoint operators used in data assimilation, based on a fully data-driven framework that 

combines machine learning and NWP to develop a computationally fast deep neural network 

(DNN). 
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APPENDIX 

A: Tables 
Table T1. Sites in Texas: Location of all stations with available (monitored) meteorological and pollutants parameter 

(WS=Wind Speed, WD =Wind Direction, TEMP=temperature, DPT=Dew point Temperature, RH= Relative 

Humidity, SOL-RAD = Solar Radiation, PPT=precipitation, NET-RAD = net radiation, PR= Pressure) 

Station ID Area Lat. Lon. Meteorology Pollutant 

CAMS003 ARR 30.354 -97.76 WS/WD/TEMP NOx/ O3 

CAMS008 HGB 29.901 -95.326 WS/WD/TEMP/DPT/RH/SOL-RAD/PR NOx/ O3 

CAMS012 ELP 31.768 -106.5 WS/WD/TEMP/RH/SOL-RAD/PPT NOx/ O3 

CAMS013 DFW 32.806 -97.356 WS/WD/TEMP/DPT/RH/SOL-RAD NOx/ O3 

CAMS015 HGB 29.802 -95.126 WS/WD/TEMP/DPT/RH/SOL-RAD NOx/ O3 

CAMS019 TLM 32.379 -94.712 WS/WD/TEMP/SOL-RAD/PPT NOx/ O3 

CAMS026 HGB 30.039 -95.674 WS/WD/TEMP/DPT/RH/SOL-RAD NOx/ O3 

CAMS035 HGB 29.67 -95.128 WS/WD/TEMP/DPT/RH/SOL-RAD NOx/ O3 

CAMS045 HGB 29.583 -95.015 WS/WD/TEMP/SOL-RAD NOx/ O3 

CAMS053 HGB 29.696 -95.499 WS/WD/TEMP/SOL-RAD NOx/ O3 

CAMS059 SAN 29.275 -98.311 WS/WD/TEMP NOx/ O3 

CAMS078 HGB 30.35 -95.425 WS/WD/TEMP/SOL-RAD NOx/ O3 

CAMS401 DFW 32.82 -96.86 WS/WD/TEMP/DPT/RH/SOL-RAD NOx/ O3 

CAMS403 HGB 29.734 -95.257 WS/WD/TEMP/DPT/RH/SOL-RAD NOx/  O3 

CAMS416 HGB 29.686 -95.295 WS/WD/TEMP/RH/SOL-RAD/ PPT NOx/ O3 

CAMS617 HGB 29.821 -94.99 WS/WD/TEMP/NET-RAD NOx/ O3 

CAMS618 HGB 29.149 -95.765 WS/WD/TEMP/NET-RAD NOx/ O3 

CAMS620 HGB 29.402 -94.946 WS/WD/TEMP/NET-RAD NOx/ O3 

CAMS695 HGB 29.718 -95.341 WS/WD/TEMP/RH/PR/PPT O3 

CAMS1034 HGB 29.254 -94.861 WS/WD/TEMP/DPT/RH/SOL-RAD NOx/ O3 

CAMS1035 BPA 29.979 -94.011 WS/WD/TEMP/DPT/RH/SOL-RAD NOx/ O3 

 

Austin-Round Rock (ARR), Houston-Galveston-Brazoria (HGB), El Paso-Juarez (ELP). Dallas-Fort Worth (DFW), 

Tyler-Longview-Marshal (TLM), San Antonio (SAN), Beaumont-Port Arthur (BPA)  
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Table T2. Month-wise Index of Agreement for all stations. 

Station ID Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Overall 

CAMS-003 0.85 0.82 0.86 0.85 0.86 0.93 0.93 0.90 0.94 0.82 0.84 0.77 0.89 

CAMS-008 0.80 0.85 0.87 0.91 0.91 0.92 0.92 0.89 0.92 0.89 0.89 0.84 0.90 

CAMS-012 0.78 0.82 0.83 0.84 0.83 0.87 0.87 0.87 0.88 0.83 0.80 0.83 0.89 

CAMS-013 0.85 0.79 0.83 0.84 0.91 0.88 0.88 0.89 0.92 0.88 0.83 0.84 0.89 

CAMS-015 0.75 0.72 0.79 0.78 0.85 0.88 0.89 0.88 0.91 0.84 0.83 0.78 0.85 

CAMS-019 0.84 0.77 0.84 0.84 0.84 0.88 0.91 0.89 0.94 0.88 0.86 0.86 0.88 

CAMS-026 0.84 0.85 0.88 0.86 0.87 0.93 0.92 0.90 0.92 0.89 0.89 0.85 0.90 

CAMS-035 0.79 0.83 0.83 0.84 0.88 0.90 0.86 0.90 0.91 0.89 0.86 0.80 0.88 

CAMS-045 0.75 0.81 0.79 0.77 0.84 0.87 0.84 0.84 0.85 0.82 0.80 0.76 0.84 

CAMS-053 0.81 0.84 0.83 0.86 0.86 0.89 0.90 0.88 0.90 0.87 0.88 0.82 0.88 

CAMS-059 0.85 0.86 0.84 0.86 0.87 0.92 0.94 0.86 0.93 0.89 0.90 0.87 0.90 

CAMS-078 0.86 0.86 0.86 0.89 0.90 0.92 0.94 0.91 0.93 0.89 0.88 0.84 0.91 

CAMS-401 0.78 0.80 0.83 0.81 0.89 0.88 0.88 0.87 0.90 0.87 0.85 0.81 0.88 

CAMS-403 0.79 0.82 0.78 0.82 0.86 0.87 0.87 0.86 0.87 0.84 0.86 0.78 0.86 

CAMS-416 0.77 0.84 0.82 0.87 0.86 0.89 0.87 0.76 0.90 0.89 0.88 0.80 0.87 

CAMS-617 0.81 0.87 0.84 0.84 0.87 0.89 0.91 0.86 0.94 0.89 0.89 0.79 0.89 

CAMS-618 0.84 0.83 0.82 0.84 0.85 0.92 0.88 0.90 0.94 0.91 0.90 0.84 0.90 

CAMS-620 0.77 0.80 0.79 0.77 0.81 0.85 0.81 0.84 0.86 0.74 0.80 0.78 0.85 

CAMS-695 0.78 0.83 0.82 0.84 0.85 0.87 0.89 0.83 0.91 0.86 0.85 0.75 0.87 

CAMS-1034 0.81 0.82 0.80 0.77 0.79 0.89 0.81 0.88 0.87 0.76 0.82 0.73 0.85 

CAMS-1035 0.80 0.85 0.78 0.83 0.86 0.89 0.90 0.93 0.91 0.88 0.87 0.80 0.88 
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Table T3. Month Wise Correlation for all stations.  

Station ID Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Overall 

CAMS-003 0.76 0.72 0.77 0.76 0.77 0.87 0.87 0.82 0.89 0.68 0.73 0.62 0.81 

CAMS-008 0.66 0.75 0.79 0.84 0.84 0.85 0.86 0.80 0.88 0.81 0.83 0.74 0.83 

CAMS-012 0.64 0.71 0.75 0.73 0.70 0.81 0.78 0.79 0.81 0.72 0.68 0.73 0.82 

CAMS-013 0.73 0.64 0.71 0.73 0.86 0.79 0.78 0.81 0.87 0.79 0.72 0.74 0.81 

CAMS-015 0.62 0.55 0.66 0.64 0.76 0.79 0.81 0.78 0.87 0.75 0.72 0.65 0.76 

CAMS-019 0.74 0.64 0.74 0.74 0.75 0.79 0.85 0.80 0.90 0.80 0.76 0.77 0.80 

CAMS-026 0.72 0.74 0.80 0.78 0.78 0.87 0.85 0.82 0.86 0.82 0.81 0.75 0.83 

CAMS-035 0.66 0.72 0.75 0.74 0.81 0.84 0.78 0.82 0.87 0.81 0.77 0.67 0.81 

CAMS-045 0.61 0.70 0.73 0.64 0.74 0.79 0.74 0.73 0.76 0.72 0.68 0.60 0.75 

CAMS-053 0.69 0.73 0.75 0.78 0.77 0.81 0.83 0.79 0.85 0.80 0.82 0.72 0.81 

CAMS-059 0.75 0.77 0.75 0.79 0.79 0.86 0.89 0.76 0.88 0.80 0.84 0.79 0.83 

CAMS-078 0.76 0.76 0.78 0.81 0.83 0.85 0.89 0.84 0.88 0.81 0.81 0.75 0.83 

CAMS-401 0.63 0.68 0.72 0.71 0.82 0.79 0.80 0.78 0.82 0.76 0.76 0.68 0.79 

CAMS-403 0.66 0.72 0.69 0.70 0.76 0.78 0.79 0.77 0.82 0.76 0.78 0.63 0.78 

CAMS-416 0.68 0.78 0.77 0.78 0.78 0.80 0.81 0.81 0.84 0.84 0.80 0.70 0.81 

CAMS-617 0.67 0.77 0.73 0.74 0.77 0.81 0.84 0.76 0.89 0.80 0.81 0.66 0.80 

CAMS-618 0.72 0.72 0.75 0.76 0.74 0.85 0.79 0.82 0.89 0.83 0.83 0.73 0.82 

CAMS-620 0.63 0.69 0.72 0.64 0.68 0.77 0.69 0.72 0.78 0.59 0.68 0.63 0.75 

CAMS-695 0.63 0.71 0.73 0.73 0.74 0.78 0.81 0.71 0.85 0.77 0.74 0.59 0.77 

CAMS-1034 0.69 0.72 0.75 0.63 0.68 0.84 0.69 0.79 0.79 0.61 0.69 0.55 0.76 

CAMS-1035 0.65 0.76 0.66 0.72 0.77 0.82 0.83 0.87 0.87 0.79 0.79 0.67 0.81 

 

Table T4. Categorical Statistics results from Chai et al. (2013) compared with the CNN model’s categorical statistics. 
 a b c d Nr HIT CSI FAR POC ETS 

Pacific Coast 2047 977 47796 681 97.35 0.59 0.26 0.68 0.95 0.24 

Lower Middle 1156 168 44875 217 10.98 0.44 0.11 0.87 0.97 0.10 

Southeast 2774 345 54107 132 25.94 0.72 0.11 0.89 0.95 0.10 

Rocky Mountain 939 70 42667 88 3.64 0.44 0.06 0.93 0.98 0.06 

Upper Middle 1963 281 52056 171 18.62 0.62 0.12 0.87 0.96 0.11 

North East 2232 770 42637 157 60.77 0.83 0.24 0.74 0.95 0.23 

CONUS 11119 2616 284706 1449 186.18 0.64 0.17 0.81 0.96 0.16 

Overall 22230 5227 568844 2895 372.17 0.64 0.17 0.81 0.96 0.16 
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Table T5. Model comparisons of RF+CNN and CNN. 

*Top features selected by Random Forests 

# Total Number of available input features 

^Percent change in computational time. Negative means improvement. 
¥Percent change in IOA. Positive means improvement. 
αPercent change in Correlation. Positive means improvement. 

 

  

   Percent change for RF+CNN from CNN only model 

 Inputs* Total Inputs# Time^ IOA¥ Correlationα 

CAMS003 72 120 19.96 0.58 0.72 

CAMS008 120 216 15.17 0.29 0.22 

CAMS012 144 192 19.65 0.60 0.44 

CAMS013 48 192 -22.91 0.11 0.63 

CAMS015 168 192 35.13 0.39 0.16 

CAMS019 96 168 -1.41 1.76 1.28 

CAMS026 48 192 -24.22 0.06 -0.08 

CAMS035 72 192 -11.91 -0.08 0.41 

CAMS045 120 144 29.63 -1.35 -0.69 

CAMS053 96 144 14.41 0.34 -0.22 

CAMS059 48 120 -6.98 0.19 0.12 

CAMS078 48 144 -19.34 0.16 0.84 

CAMS1034 48 192 -21.95 -0.29 0.36 

CAMS1035 72 192 -9.77 0.51 0.07 

CAMS401 48 192 -22.62 1.77 1.48 

CAMS403 72 192 -4.46 1.69 1.06 

CAMS416 48 192 -28.02 0.26 0.80 

CAMS617 72 144 0.48 0.49 0.34 

CAMS618 48 144 -15.42 0.98 0.92 

CAMS620 72 144 4.03 0.98 1.14 

CAMS695 48 168 -21.72 0.17 0.69 
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Table T6: List of parameters from WRF/MCIP and CMAQ used to train the CNN model. 

 

 

 

 

 

 

 

 

 

 

 

  

Abb. Variable Name (CMAQ) Units 

PM10 Particulate Matter-10 µg/m3 

PM2.5 Particulate Matter-2.5 µg/m3 

O3 Ozone ppmV 

NOx Nitrogen Oxides ppmV 

NO Nitric Oxide ppmV 

NO2 Nitrogen dioxide ppmV 

ISOPRENE Isoprene ppmV 

OLES Olefins ppmV 

AROS Aromatics ppmV 

ALKS Allanes ppmV 

Abb. Variable Name (WRF/MCIP) Units 

PRSFC Surface Pressure Pascal 

USTAR Cell Averaged Friction Velocity m/s 

WSTAR Convective Velocity Scale m/s 

PBL Planetary Boundary Level Height M 

MOLI Inverse Of Monin-Onukhov Length 1/m 

HFX Sensible Heat Flux watt/m2 

RADYNI Inverse Of Aerodynamic Resistance m/s 

RSTOMI Inverse Of Bulk Stomatal Resistance m/s 

TEMPG Skin Temperature At Ground Kelvin 

TEMP2 Temperature At 2 M Kelvin 

Q2 Mixing Ratio At 2 M Kg/Kg 

WSPD10 Wind Speed At 10 M m/s 

WDIR10 Wind Direction At 10 M Degrees 

GLW Longwave Radiation At Ground watt/m2 

GSW Solar Radiation Absorbed At Ground watt/m2 

RGRND Solar Rad Reaching Sfc watt/m3 

RN Nonconvec. Pcpn Per Met Tstep cm 

RC Convective Pcpn Per Met TSTEP cm 

CFRAC Total Cloud Fraction fraction 

CLDT Cloud Top Layer Height (M) meter 

CLDB Cloud Bottom Layer Height (M) meter 

WBAR Avg. Liquid Water Content Of Cloud g/m3           

SNOCOV Snow Cover fraction 

VEG Vegetation Coverage (Decimal) Fraction 

LAI Leaf-Area Index m2/m2 

SEAICE Sea Ice Fraction 

WR Canopy Moisture Content M 

SOIM1 Volumetric Soil Moisture In Top Cm m3/m3        

SOIM2 Volumetric Soil Moisture In Top M m3/m4 

SOIT1 Soil Temperature In Top Cm Kelvin 

SOIT2 Soil Temperature In Top M Kelvin 

SLTYP Soil Texture Type By USDA  Category 
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Table T7: Average of all stations mean bias for the CMAQ model and both methods of CNN model 

Mean 
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CMAQ 1.21 NA NA NA NA NA NA NA NA NA NA NA NA NA 

Method1

/ MSE 
-1.23 -2.11 -3.23 -2.59 -1.55 -2.06 -1.62 -1.48 -2.08 -2.78 -2.26 -2.47 -3.24 -2.62 

Method2

/ IOA 
-0.96 -1.01 -1.69 -0.22 -0.25 0.65 -0.84 -0.54 -0.95 0.01 -0.15 0.84 -0.29 -1.89 

Table T8: Average of all stations root mean squared error for the CMAQ model and both methods of CNN model 

RMSE 
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CMAQ 18.98 NA NA NA NA NA NA NA NA NA NA NA NA NA 

Method1/ 

MSE 
11.00 13.48 15.82 16.14 16.05 16.00 16.03 15.80 16.43 16.61 16.55 16.39 16.38 16.45 

Method2/ 

IOA 
11.01 13.30 15.59 16.27 16.44 15.95 15.60 16.08 16.78 16.77 17.31 16.55 16.64 16.06 

 Table T9: Average of all stations correlations for the CMAQ model and both methods of CNN model 

Correlation 
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CMAQ 0.63 NA NA NA NA NA NA NA NA NA NA NA NA NA 

Method1/ 

MSE 
0.82 0.72 0.62 0.60 0.60 0.61 0.60 0.61 0.59 0.58 0.59 0.59 0.59 0.59 

Method2/ 

IOA 
0.84 0.76 0.67 0.66 0.66 0.66 0.66 0.66 0.64 0.63 0.65 0.64 0.64 0.63 

Table T10: Average of all stations hit rate for the CMAQ model and both methods of CNN model 

Hit Rate 
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CMAQ 0.77 NA NA NA NA NA NA NA NA NA NA NA NA NA 

Method1/ 

MSE 
0.67 0.50 0.39 0.36 0.40 0.42 0.41 0.37 0.38 0.34 0.37 0.33 0.31 0.34 

Method2/ 

IOA 
0.80 0.74 0.58 0.66 0.63 0.64 0.57 0.62 0.61 0.60 0.69 0.61 0.63 0.47 
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Table T11: Average of all stations false alarm rate for the CMAQ model and both methods of CNN model 

False 
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CMAQ 0.43 NA NA NA NA NA NA NA NA NA NA NA NA NA 

Method1/ 

MSE 
0.23 0.28 0.44 0.47 0.49 0.48 0.46 0.47 0.49 0.51 0.53 0.50 0.48 0.47 

Method2/ 

IOA 
0.28 0.35 0.48 0.50 0.50 0.49 0.47 0.48 0.52 0.53 0.54 0.53 0.51 0.49 

Table T12: Average of all stations critical success index for the CMAQ model and both methods of CNN model 

Critical 

Success 

Index D
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CMAQ 0.47 NA NA NA NA NA NA NA NA NA NA NA NA NA 

Method1/ 

MSE 
0.56 0.43 0.30 0.28 0.30 0.31 0.31 0.29 0.29 0.25 0.27 0.25 0.24 0.26 

Method2/ 

IOA 
0.61 0.53 0.38 0.40 0.39 0.40 0.38 0.39 0.37 0.36 0.38 0.36 0.38 0.32 

Table T13: Average of all stations equitable threat score for the CMAQ model and both methods of CNN model 

Equitable 
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CMAQ 0.34 NA NA NA NA NA NA NA NA NA NA NA NA NA 

Method1/ 

MSE 
0.47 0.34 0.20 0.18 0.19 0.20 0.20 0.18 0.18 0.15 0.15 0.15 0.15 0.16 

Method2/ 

IOA 
0.51 0.42 0.26 0.26 0.25 0.26 0.25 0.26 0.23 0.21 0.22 0.21 0.24 0.20 

Table T14: Average of all stations proportion of correct for the CMAQ model and both methods of CNN model 

Proportion 
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CMAQ 0.80 NA NA NA NA NA NA NA NA NA NA NA NA NA 

Method1/ 

MSE 
0.88 0.84 0.79 0.78 0.78 0.78 0.78 0.78 0.77 0.76 0.76 0.77 0.77 0.77 

Method2/ 

IOA 
0.88 0.85 0.78 0.77 0.76 0.77 0.78 0.78 0.75 0.74 0.73 0.74 0.76 0.77 
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Table T15: Detailed architecture of CNN model 

DNN Layers Dimensions Additional Comments 

Input Layer (1128, 1)  

Convolutional Layer 1 (1127 x 32) Filters 32, kernel - (2 x1)  

Convolutional Layer 2 (1126 x 32) Filters 32, kernel - (2 x1) 

Convolutional Layer 3 (1125 x 32) Filters 32, kernel - (2 x1) 

Convolutional Layer 4 (1124 x 32) Filters 32, kernel - (2 x1) 

Convolutional Layer 5 (1123 x 32) Filters 32, kernel - (2 x1) 

Flatten (35936)  

Dense (264)  

Dense, Output Layer (24)  

 

Table T16: Performance in terms of IOA and correlation for the CMAQ and the CNN models (average of all stations) 

for NO2 

 Day - 1 Day - 2 Day - 3 Day - 4 Day - 5 Day - 6 Day - 7 

CMAQ - IOA 0.60 0.60 0.57  - -  -  -  

CNN - IOA 0.85 0.76 0.67 0.65 0.62 0.66 0.66 

CMAQ - Correlation 0.45 0.45 0.41  - -  -  -  

CNN - Correlation 0.75 0.60 0.46 0.43 0.40 0.45 0.45 

 

Table T17: Performance in terms of IOA and correlation for the CMAQ and the CNN models (average of all stations) 

for PM2.5 

  Day - 1 Day - 2 Day - 3 Day - 4 Day - 5 Day - 6 Day - 7 

CMAQ - IOA 0.76 0.75 0.69 - - - - 

CNN - IOA 0.86 0.75 0.60 0.52 0.50 0.48 0.49 

CMAQ - Correlation 0.62 0.60 0.52 - - - - 

CNN - Correlation 0.76 0.61 0.37 0.29 0.26 0.25 0.24 

 

Table T18: Performance in terms of IOA and correlation for the CMAQ and the CNN models (average of all stations) 

for PM10 

  Day - 1 Day - 2 Day - 3 Day - 4 Day - 5 Day - 6 Day - 7 

CMAQ - IOA 0.68 0.65 0.59 - - - - 

CNN - IOA 0.83 0.73 0.57 0.52 0.51 0.53 0.50 

CMAQ - Correlation 0.53 0.51 0.44 - - - - 

CNN - Correlation 0.71 0.55 0.35 0.27 0.26 0.26 0.26 
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Table T19. List of WRF meteorological parameters extracted from each grid point and used as input for the CNN 

model. (*WRF diagnostic variables) 

Symbol Description Units 

P_HYD Hydrostatic Pressure Pa 

Q2 Water Vapor Mixing Ratio at 2m kg/kg 

T2 Temperature at 2m K 

TH2 Potential Temperature at 2m K 

PSFC Surface Pressure Pa 

U10 U Wind at 10 M m/s 

V10 V Wind at 10m m/s 

QVAPOR Water Vapor Mixing Ratio kg/kg 

QCLOUD Cloud Water Mixing Ratio kg/kg 

QRAIN Rain Water Mixing Ratio kg/kg 

SHDMAX Annual Max Veg Fraction  

SHDMIN Annual Min Veg Fraction  

SNOALB Annual Max Snow Albedo in Fraction  

TSLB Soil Temperature K 

SMOIS Soil Moisture m3/m3 

SH2O Soil Liquid Water m3/m3 

SFROFF Surface Runoff mm 

UDROFF Underground Runoff mm 

IVGTYP Dominant Vegetation Category  

ISLTYP Dominant Soil Category  

VEGFRA Vegetation Fraction  

GRDFLX Ground Heat Flux W/m2 

ACGRDFLX Accumulated Ground Heat Flux J/m2 

ACSNOM Accumulated Melted Snow kg/m2 

SNOW Snow Water Equivalent kg/m2 

SNOWH Physical Snow Depth m 

CANWAT Canopy Water kg/m2 

SSTSK Skin Sea Surface Temperature K 

COSZEN Cos of Solar Zenith Angle  

LAI Leaf Area Index m2/m2 

VEGF_PX Vegetation Fraction for PX LSM area/area 

CANFRA Satellite Canopy Fraction  

VAR Orographic Variance  

F Coriolis Sine Latitude Term s-1 

E Coriolis Cosine Latitude Term s-1 

HGT Terrain Height m 

RAINC Accumulated Total Cumulus Precipitation mm 

RAINSH Accumulated Shallow Cumulus Precipitation mm 

RAINNC Accumulated Total Grid-Scale Precipitation mm 
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SNOWNC Accumulated Total Grid-Scale Snow and Ice mm 

GRAUPELNC Accumulated Total Grid Scale Graupel mm 

HAILNC Accumulated Total Grid-Scale Hail mm 

CLDFRA Cloud Fraction  

SWDOWN Downward Short-Wave Flux at Ground Surface W/m2 

GLW Downward Long-Wave Flux at Ground Surface W/m2 

SWNORM Normal Short-Wave Flux at Ground Surface (Slope-Dependent) W/m2 

OLR TOA Outgoing Long Wave W/m2 

ALBEDO Albedo  

ALBBCK Background Albedo  

EMISS Surface Emissivity  

NOAHRES Residual of the NOAH Surface Energy Budget W/m2 

TMN Soil Temperature at Lower Boundary K 

XLAND Land Mask  

PBLH PBL Height m 

HFX Upward Heat Flux at the Surface W/m2 

QFX Upward Moisture Flux at the Surface kg m-2 s- 

LH Latent Heat Flux at the Surface W/m2 

SNOWC Flag Indicating Snow Coverage 

SR Fraction of Frozen Precipitation  

SST Sea Surface Temperature K 

Ue10* U-wind in Earth Coordinate m/s 

Ve10* V-wind in Earth Coordinate m/s 

WS* Wind Speed m/s 

WD* Wind Direction  
 

Table T20. Table showing the Latitude, Longitude, and distance between each station and WRF grid points. 

Station ID Station Latitude Station Longitude WRF Latitude WRF Longitude Distance (in km) 

100 37.68 128.72 37.59 128.67 10.40 

101 37.90 127.74 37.86 127.74 4.68 

102 37.97 124.63 37.87 124.58 12.07 

104 37.80 128.86 37.83 129.00 12.91 

105 37.75 128.89 37.83 129.00 12.94 

106 37.51 129.12 37.58 128.99 14.72 

108 37.57 126.97 37.62 127.10 13.07 

112 37.48 126.62 37.38 126.47 17.69 

114 37.34 127.95 37.36 128.04 8.18 

115 37.48 130.90 37.51 130.87 4.00 

119 37.27 126.99 37.37 127.10 14.75 

121 37.18 128.46 37.10 128.34 13.72 

127 36.97 127.95 36.86 128.02 13.76 

129 36.78 126.49 36.88 126.47 11.58 
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130 36.99 129.41 37.07 129.28 15.32 

131 36.64 127.44 36.62 127.39 4.67 

133 36.37 127.37 36.37 127.39 1.43 

135 36.22 127.99 36.11 128.00 11.80 

136 36.57 128.71 36.60 128.63 7.27 

137 36.41 128.16 36.36 128.00 14.60 

138 36.03 129.38 36.07 129.53 14.32 

140 36.01 126.76 35.88 126.77 13.59 

143 35.83 128.65 35.85 128.60 5.32 

146 35.84 127.12 35.88 127.07 6.14 

152 35.58 129.33 35.59 129.20 12.13 

155 35.17 128.57 35.11 128.57 6.80 

156 35.17 126.89 35.14 126.76 12.81 

159 35.10 129.03 35.09 129.18 13.20 

162 34.85 128.44 34.86 128.56 11.67 

165 34.82 126.38 34.89 126.45 10.79 

168 34.74 127.74 34.63 127.65 14.22 

169 34.69 125.45 34.65 125.55 10.04 

170 34.40 126.70 34.40 126.75 4.26 

172 35.35 126.60 35.39 126.46 13.75 

174 35.02 127.37 35.13 127.36 12.58 

175 34.47 126.32 34.40 126.45 13.98 

184 33.51 126.53 33.41 126.44 13.76 

185 33.29 126.16 33.42 126.15 13.56 

188 33.39 126.88 33.41 126.74 13.59 

189 33.25 126.57 33.17 126.44 14.48 

192 35.16 128.04 35.12 127.97 8.05 

201 37.71 126.45 37.63 126.47 9.43 

202 37.49 127.49 37.37 127.41 15.43 

203 37.26 127.48 37.37 127.41 13.24 

211 38.06 128.17 38.10 128.06 10.55 

212 37.68 127.88 37.61 127.73 15.51 

216 37.17 128.99 37.08 128.96 9.81 

217 37.38 128.65 37.34 128.66 4.60 

221 37.16 128.19 37.10 128.34 14.45 

226 36.49 127.73 36.37 127.70 13.72 

232 36.76 127.29 36.87 127.40 15.29 

235 36.33 126.56 36.38 126.46 10.40 

236 36.27 126.92 36.38 126.77 17.93 

238 36.11 127.48 36.12 127.38 9.15 

243 35.73 126.72 35.64 126.76 11.27 
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244 35.61 127.29 35.63 127.37 8.03 

245 35.56 126.87 35.64 126.76 12.33 

247 35.40 127.40 35.38 127.37 3.60 

248 35.66 127.52 35.63 127.37 13.75 

251 35.43 126.70 35.39 126.76 7.14 

252 35.28 126.48 35.39 126.46 11.92 

253 35.23 128.89 35.35 128.88 13.14 

254 35.37 127.13 35.38 127.06 6.11 

255 35.23 128.67 35.11 128.57 15.88 

257 35.31 129.02 35.35 128.88 13.08 

258 34.76 127.21 34.64 127.35 18.80 

259 34.63 126.77 34.65 126.75 2.70 

260 34.69 126.92 34.64 127.05 13.10 

261 34.55 126.57 34.65 126.45 15.03 

262 34.62 127.28 34.64 127.35 7.31 

263 35.32 128.29 35.36 128.28 4.70 

264 35.51 127.75 35.62 127.68 13.96 

266 34.94 127.69 34.88 127.66 7.48 

268 34.47 126.26 34.40 126.15 12.79 

271 36.94 128.91 36.84 128.95 12.48 

272 36.87 128.52 36.84 128.64 11.48 

273 36.63 128.15 36.61 128.01 12.24 

276 36.43 129.04 36.34 128.93 14.45 

277 36.53 129.41 36.57 129.56 13.88 

278 36.36 128.69 36.35 128.62 6.06 

279 36.13 128.32 36.11 128.30 2.89 

281 35.98 128.95 36.09 128.92 13.01 

283 35.82 129.20 35.83 129.21 2.10 

284 35.67 127.91 35.62 127.98 8.55 

285 35.57 128.17 35.61 128.29 11.75 

288 35.49 128.74 35.60 128.90 17.95 

289 35.41 127.88 35.37 127.97 9.83 

294 34.89 128.60 34.86 128.56 4.86 

295 34.82 127.93 34.88 127.96 7.24 

90 38.25 128.56 38.34 128.70 15.59 

95 38.15 127.30 38.11 127.43 11.31 

98 37.90 127.06 37.87 127.11 5.32 

99 37.89 126.77 37.87 126.79 2.52 
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Table T21. The comparison of the WRF, CNN, and various linear models based on IOA and correlation. 

Model IOA Correlation 

WRF 0.67 0.66 

Linear Regression (Station-wise) 0.43 0.42 

Lasso Regression (Station-wise) 0.81 0.74 

Linear Regression (General) 0.77 0.69 

Lasso Regression (General) 0.77 0.69 

CNN (STATION-WISE) 0.86 0.77 

CNN (General) 0.85 0.75 
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B: Figures 

 
Figure F1. Time-variation (Observation & Prediction) plot – and average monthly variations. 
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Figure F2. Season-wise Wind Direction by O3 concentration for station CAMS-012. 

 
Figure F3. Scatterplot of Observation vs. Prediction for all stations combined. The color intensity indicates the 

frequency of occurrence.  
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Figure F4. Box and whisker plot of categorical statistics of the CNN model for all stations. a) represents Equitable 

Threat Score (ETS), b) represents Proportion of Correct (POC), c) represents Hit rate (HIT), and d) represents 

False Alarm Rate (FAR). 
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Figure F5. Block Diagram of the CNN model. “n” was the number of input variables used. Kernel size was 2×1 

and the number of filters was 32 for each layer. 

 
Figure F6. Block Diagram of DNN and RNN model. For DNN the hidden layers are Dense and for RNN hidden 

layers are GRU.  
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Figure F7: Schematic diagram of the Convolution Neural Network. ‘n’ was the number of input parameters 

(meteorology, air quality, and observations) used. Here, n=50 (32 meteorology, 14 air-quality parameters, and 4 

previous day observations), so there are 1200 (=52 × 24) inputs and 24 outputs.  Schematics are prepared by the 

NNSVG tool (LeNail, 2019). 

 

 
Figure F8: Schematic diagram of the process flow of the CNN model. Note: there are 1200 input parameters (32 

meteorology, 14 parameters from CMAQ and 4 parameters from previous day observation; 50 × 24 = 1200) for 24 

output parameters (1 day; 24-hour ozone concentration) for each day model.  
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Figure F97: Auto-correlations (average of all stations) of the observed current hour ozone concentration with the 

subsequent hour observed ozone concentration. The X-axis represents the hours, and the y-axis represents the 

correlation. (Correlation of 0th hour with 0th hour, 1st hour, 2nd hour, and so on. It was analogous to delayed response 

in electrical signals) 
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Figure F10: Hourly time-series plot for station 131591 for February 2017. The panels from top to bottom show a 

time-series comparison of the observed ozone concentration with the CMAQ day 1 forecast, the CNN-method 2 day1, 

day 2, day 3, day 7, and day 14 forecasts, respectively. The X-axis represents the days of the month and the y-axis 

represents the ozone concentration (in ppb). 
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Figure F11: Hourly time-series plot for station 131591 for the month of June 2017. The panels from top to bottom 

show a time-series comparison of the observed ozone concentration with the CMAQ day 1 forecast, the CNN-method 

2 day1, day 2, day 3, day 7, and day 14 forecasts, respectively. The X-axis represents the days of the month and the y-

axis represents the ozone concentration (in ppb). 
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Figure F12: Hourly time-series plot for station 238133 for the month of February 2017. The panels from top to bottom 

show a time-series comparison of the observed ozone concentration with the CMAQ day 1 forecast, the CNN-method 

2 day1, day 2, day 3, day 7, and day 14 forecasts, respectively. The X-axis represents the days of the month and the y-

axis represents the ozone concentration (in ppb).  



117 
 

 
Figure F13: Hourly time-series plot for station 238133 for the month of June 2017. The panels from top to bottom 

show a time-series comparison of the observed ozone concentration with the CMAQ day 1 forecast, the CNN-method 

2 day1, day 2, day 3, day 7, and day 14 forecasts, respectively. The X-axis represents the days of the month and the y-

axis represents the ozone concentration (in ppb). 
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Figure F14: Hourly time-series plot for station 823691 for the month of February 2017. The panels from top to bottom 

show a time-series comparison of the observed ozone concentration with the CMAQ day 1 forecast, the CNN-method 

2 day1, day 2, day 3, day 7, and day 14 forecasts, respectively. The X-axis represents the days of the month and the y-

axis represents the ozone concentration (in ppb). 
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Figure F15: Hourly time-series plot for station 823691 for the month of June 2017. The panels from top to bottom 

show a time-series comparison of the observed ozone concentration with the CMAQ day 1 forecast, the CNN-method 

2 day1, day 2, day 3, day 7, and day 14 forecasts, respectively. The X-axis represents the days of the month and the y-

axis represents the ozone concentration (in ppb). 
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Figure F16: Station-based CNN-IOA binned in specific ranges. A colored dot represents the location of the station, 

and a specific color represents the CMAQ-IOA. (Figures are created using R ggplot2 (“Create Elegant Data 

Visualisations Using the Grammar of Graphics,” n.d.): https://ggplot2.tidyverse.org/) 

  

https://ggplot2.tidyverse.org/
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Figure F17: Box and whisker plot 24-hour observed ozone concentration throughout the year 2017. a, b and c are 

the three worst-performing stations. d, e, and f are the best performing station. 

  

(a) (b) 
(c) 

(d) (e) (f) 
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Figure F18: a) District-wise IOA based on Method 2 of CNN. b) Percentage of Urban area(“Statistical Database | 

KOSIS KOrean Statistical Information Service,” n.d.) in each district of Korea. (Figures are created using R 

ggplot2 (“Create Elegant Data Visualisations Using the Grammar of Graphics,” n.d.): https://ggplot2.tidyverse.org/) 

 

  

https://ggplot2.tidyverse.org/
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Figure F19: Station-wise yearly index of agreement (IOA) for the CMAQ and the CNN-method 2 model for the day 

one forecast. The black bar represents the CMAQ models IOA. The sum of the black bar and red bar represents the 

IOA for the CNN-method 2 model. The red bar individually represents the absolute increase in the IOA from the 

CMAQ model. The X-axis represents IOA and the y-axis represents the station number. 
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Figure F20: Location of few stations specifically mentioned in the study. (Figures are created using python cartopy 

package(“Introduction — cartopy 0.18.0 documentation,” n.d.): https://scitools.org.uk/cartopy/docs/latest/) 
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Figure F21: Box plot of bias of daily maximum all stations combined. The x-axis represents the prediction days, and 

the y-axis represents the bias in ppb. The green line represents the median of bias, and the green triangle in each box 

represents the mean bias for that model—the extent of the box represents the interquartile range (IQR), i.e., 25th to 

75th percentile value.  
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Figure F22: a) Forecast of Daily Maximum of NO2 concentration 7-days in advance for the year 2019 as compared 

with the in-situ measurement at Station 632122. b) Forecast of Daily Mean of NO2 concentration 7-days in advance 

for the year 2019 as compared with the in-situ measurement at Station 632122.  

 

 
Figure F23: a) Forecast of Daily Maximum of NO2 concentration 7-days in advance for the year 2019 as compared 

with the in-situ measurement at Station 336521. b) Forecast of Daily Mean of NO2 concentration 7-days in advance 

for the year 2019 as compared with the in-situ measurement at Station 336521.  

  

a) b) 

a) b) 
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Figure F24: a) Forecast of Daily Maximum of PM2.5 concentration 7-days in advance for the year 2019 as compared 

with the in-situ measurement at Station 131392. b) Forecast of Daily Mean of PM2.5 concentration 7-days in advance 

for the year 2019 as compared with the in-situ measurement at Station 131392.  

 
Figure F25: a) Forecast of Daily Maximum of PM2.5 concentration 7-days in advance for the year 2019 as compared 

with the in-situ measurement at Station 525162. b) Forecast of Daily Mean of PM2.5 concentration 7-days in advance 

for the year 2019 as compared with the in-situ measurement at Station 525162.  

  

a) b) 

a) b) 
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Figure F26: a) Forecast of Daily Maximum of PM10 concentration 7-days in advance for the year 2019 as compared 

with the in-situ measurement at Station 422141. b) Forecast of Daily Mean of PM10 concentration 7-days in advance 

for the year 2019 as compared with the in-situ measurement at Station 422141.  

 
Figure F27: a) Forecast of Daily Maximum of PM10 concentration 7-days in advance for the year 2019 as compared 

with the in-situ measurement at Station 336511. b) Forecast of Daily Mean of PM10 concentration 7-days in advance 

for the year 2019 as compared with the in-situ measurement at Station 336511.  

  

a) 

a) 

b) 

b) 
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Figure F28: Location of stations discussed in the study. These represent cases of unusually high concentrations of 

PM2.5 due to measurement errors. 
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a) 

 b) 

Figure F29: Model Architecture. The Rain-RM model has 87 input (n=87) and 24 output (m=24) variables. All other 

models have 64 input and 1 output variable. a) The setup of inputs and outputs for all models except Rain-RM model; 

i=64. b) The setup of inputs and outputs for the Rain-RM model; i=64. 
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Figure F33: The performance in terms of IOA and correlation of the CNN model with a different number of layers 

for a) windspeed, b) u-wind, and c) v-wind. The primary y-axis represents IOA and the secondary y-axis represents 

correlation, the x-axis represents the number of layers of the CNN model. 

 

a) 

b) 

c) 
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Figure F31. Percentage change in the IOA from the WRF to the Weather-AI models for wind speed bias-correction. 

  



133 
 

  

Figure F32. a) Hourly wind-speed time-series for station 115 for the year 2018. Each subplot represents a month of 

the year; the X-axis represents hours of the day and the Y-axis the wind speed in m/s. b) Polar plot of hourly wind 

direction in 2018. 

a) 

b) 
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 (a) 
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 (c) 

Figure F33. Taylor diagrams comparing the WRF and Weather-AI models for a) temperature, b) dew-point 

temperature, c) relative humidity for each month in 2018. X- and Y-axis represent the standard deviation of wind 

speed. The black quarter circular axis represents the correlation. The golden circular axis represents the RMSE.  
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Figure F34. Monthly mean of surface pressure (in hPa) of stations in South Korea. The X-axis represents the months 

for the year 2018 and Y-axis represents surface pressure. 
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Figure F35. Sample of time-series of wind-speed simulation, comparison between observations, WRF and CNN. a) 

Station with best IOA (Weather-AI model); b) Station with the median IOA(Weather-AI model); c) Station with least 

IOA(Weather-AI model). 

  

a) 

b)

) 

c) 
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C: Experimental Set-up  

Since the model requires each example of all input features in a one-dimensional array, the data 

obtained from TCEQ was needed to be converted into a format the CNN model can understand. 

To achieve this, all the meteorologies were first arranged, NOx and ozone in each column and each 

row having hourly data starting from January 1, 2014, 0000-hour local time (as shown in Table 

C1).  

Table C1. Input feature Description: Sample Arrangement of all inputs column-wise  

 Wind Speed 

(miles/hour) 

Wind Direction 

(degrees compass) 

Temperature 

(Fahrenheit) 

Relative 

Humidity 

(percent) 

…… 
NOx 

(ppb) 

O3 

(ppb) 

01-01-14 0:00        

01-01-14 1:00        

: 

: 
       

31-01-17 23:00        

Since there are some missing data in the observation, the next step involves the imputation (SOFT-

IMPUTE by Mazumder et al. (2010)) of these values. Once imputed values were obtained, each 

input parameter was normalized between 0 and 1 until the last day before the prediction day. This 

was done because each feature has a different scale of measurement and to bring each scale to a 

normalized value (0-1). The process was required so that the model does not differentiate between 

the different scales of input features.  

Now, the data was arranged as input and output features (Table C2). Each row contains a day, and 

each column contains an hour of the day. For example, the first 24 columns have 24-hour wind 

speed and the next 24 columns have 24-hour wind direction and so on. Current 24-hour observation 

data constitute the input features (i.e., i1, i2, i3….ik from Figure 3). The output features have next 

24-hour ozone (this ozone was not normalized). Once the model was trained, it predicted the next 
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day (for example, January 5, 2017) based on input features (i.e., meteorology and concentrations 

of air pollutants of the previous day (for this case, January 4, 2017)). 

Table C2. The architecture of Training set for AI algorithm: An Example to show how input and output features are 

arranged to train the model. (Input features here are the same as in Figure 3) 

 

  

  
Input Feature (Normalized) 

Output Target 

(Actual Observed Values) 

Wind Speed Wind Direction …… Ozone Next day Ozone 

Hours 

(UTC 

time) 

0 1 … 23 0 1 … 23 0 1 … 23 0 1 … 23 0 1 … 23 

Figure 3 

Notations 
i1 i2 … … … … … … … … … … … … … ik     

02-Jan-14                                         

03-Jan-14                                         

:                                         

nth day                                         

January 2, 2014 

(n-1)th day nth day 

January 1, 2014 
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D: General Statistics 

IOA varies between 0 and 1 and indicates the degree of model prediction error. A value of 1 

indicates a perfect match and 0 indicates no agreement at all (Willmott et al., 1981). The IOA can 

be defined as 

IOA =  1 −  
∑(Oi  −  Pi)

2

∑(abs(Oi  −  O̅) + abs(Pi  − O̅))2
 

where Oi and Pi represent the observed and predicted values, respectively. O̅ was the mean of 

observed values for the entire observation sample. 

E: Linear Model 

The linear autoregressive model was used for station CAMS-003 with the configurations shown 

in Table E1. Before running the model, the augmented Dickey-Fuller (ADF) null hypothesis 

(Fuller, W. A., 1976) was tested for unit root and rejected. The rejection of the null hypothesis 

means that the time series does not have a unit root and was stationary.   

In univariate models, only ozone concentrations were used to fit the model, while in the 

multivariate model, the exogenous variables were previous day meteorology and air pollutants (as 

in the CNN model). Model 1 to 4 were fitted from 2014 to 2016 hourly data and predicted the 

entire year of 2017 at once. In models 5 and 6, the model was fitted until the previous day and 

predicted the next 24 hours only.  

Table E1. A detailed description of each linear model.  

Model No. Model Order (p) Computational Time IOA 

1 Univariate Auto Regression 0 4.9 s 1.72 x 10-14 

2 Univariate Auto Regression 24 6.55 min 0.037 

3 Multivariate Auto Regression 0 6.03 s 0.38 

4 Multivariate Auto Regression 24 19.92 min 0.35 

5 Univariate Auto Regression 24 1.66 days 0.84 

6 Multivariate Auto Regression 24 5.05 days 0.84 
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It was evident from Table E1 that the model needs a daily update of the previous days' data. 

Although a very good IOA was obtained for models 5 and 6, the time series was shifted 24 hours, 

as shown in Figure E2. This leads to the conclusion that the model was naïve in the prediction of 

next-day ozone concentrations. 

 
Figure E1: The effect of shifting in the predicted time-series of multivariate autoregression. The top image was the 

originally predicted time series. The bottom image was the predicted time series when shifted 24 hours back. 
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F: Time Delayed Neural Network 

The time-delayed neural network (TDNN) model with configurations shown in Table F1 was used. For 

TDNN, the input was previous 7-day and 1-day ozone. The model process was fast and had good IOA, but 

the predicted time-series was 24-hour shifted. Figure F1 shows that the model was copying information 

from the previous 24-hour and representing it as a result.  

Table F1. Configuration of Time-delayed neural network (TDNN) 

 

 

 

 

 

 

 

 

 

 

Figure F1. The effect of shifting in the predicted time-series of time-delayed neural network (TDNN). The top image 

was the originally predicted time series. The bottom image was the predicted time series when shifted 24 hours 

back.  

Input Input context Computational Time IOA 

Previous 7- day 

Layer 1 - [-15,15] 

Layer 2 - [-12,-12] 

Layer 3 - [-12,-12] 

Layer 4 - [-12,-12] 

Layer 5 - [-12,-12] 

82.94 s 0.82 

Previous 1-day 

Layer 1 - [-15,15] 

Layer 2 - [-12,-12] 

Layer 3 - [-12,-12] 

Layer 4 - [-12,-12] 

Layer 5 - [-12,-12] 

47.22 s 0.88 
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