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ARSTRACT

Consider an n-dimensional space which has been par-
titioned into "t" unique subspaces, called categories or
populations. Associated with each category is a set of
n-tuples, to be referred to as pattern vectors. Since each
pattern vector belongs to one and only one category, each
vector may be considered to be a data vector having "n"
dimensions and belonging to a specific category.

A program was written which realizes an algorithm
that performs an adaptive process with data of known classi-~
fication. This procedure will establish the necessary cri-
terion for a classification scheme for other data from the
same space whose category is unknown. A second program was
written which performs the classification process acccording
to the criterion established by the adaptive technique. It
should be noted that a priori knowledge about the probability
distributions of the data sets need not be known.

Several tesf problems were run on the IBM 360 digital
computer using geophysical data. The results of these runs

were highly successful in correctly classifying the data

that was used.
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CHAPTER I

PATTERN RECOGNITION

1.1 Introduction

Suppose that an n-dimensional space is partitioned
into "t" subspaces, called categories or populations. Each
point in this space is considered to be an n-dimensional
vector, a pattern vector. Each category mey have an in-
finite number of pattern vectors associated with it., It is
desirable to develop a model which will, according to sonme
given algorithm, classify each pattern vector to its appro-
priate category.

As an example, suppose that it is desirable to disz-
tinguish between earthquakes originating from different
depths (a problem to be considered later in this paper).
The categories could be chosen according to arbitrarily
selected depths of occurrance, whereas the data taken from
a seismograph would determine the number of dimensions of

each pattern vector.

1.2 Discriminant Functions

A pattern vector, say X, is a point in an n-dimen-
sional space. The coordinates which describe this vector
(xl Xy o o o xn) are the real numbers. A pattern classi-

fier can therefore be considered as an instrument which maps
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the points in the n~dimensional space into the subspace or
category numbers 1, 2, . . ., t. The bouncdaries that sep-
arate the subspaces are called decision surfaces. Any de-
cision surface can be clearly defined by a set or family of
functions called discriminant functions. These functions
are chosen such that for all X ¢ tj, fj(X) > fk(X) for j,
k=1, 2, ... t, 3j#k, where fj and fk are single-~valued
scalar functions of the pattern vector X, and tj is one cf
the "t" partitioned subspaces. Extending this concepit, con-

sider the discriminant function

ujk(x) = fj - £ (1.1)
then
ujk > o iff fj > fk {1..2)
ujk < o iff fj < £y
hence
X € tj iff Ujk > o0 (1.3)

i L <
X ¢ tk iff ujk o
The choice of the discriminant.function is a compro-

mise between two considerations: (1) the desired accuracy

of classification, and (2) the economics considerations.



For example, a linear discriminant function will not gen-
erally partition the space as precisely as would a quadratic
function; however, the linear function will be the more
economical of the two in terms of the necessary computation
and storage required. Consequently, a "trade-off" situation
develops. The solution to this is to consider the charac-
teristics of the particular problem to be solved.
Discriminant functions may be of any order; however,
the most commonly used are the linear and the quadratic
forms. Equation (4) below is the general linear discrimin-
ant function using three variables, and Equation (5) is the

quadratic form using the same variables.

yl(x,y,z) = a;x + a,y + a3z + a, (1.4)
u2(x,y,z) = alx2 + a2y2 + a322 + a,xXy +

asxz + a6yz + a7x + a8y +

agz + a10

Once the discriminant function has been chosen, the
problem then becomes a matter of choosing the "best" values

for the coefficients a o7 + o o4 A The vector A, de-

ll
noted by A = (al, ay, « o+ - am), is called the weight vector
and the vector components are called the weighﬁs. It should

be noted that if there are more than two categories, then



additional discriminant functions will be necessary to per-

form the pattern classification.

1.3 Bayes Discriminant Function

The classification problem has been solved by sta-
tistical decision theoxry if the probability density func-
tions are known for each population. The discriminant
function which performs this "optimum" decision process is
known as the Bayes discriminant function.

Minimizing the probability of misclassification is
the most desirable trait for any classifier. The central
issue of the decision-theoretic treatment is the specifica-
tion of a loss function, C(3/k), j, k=1, 2, . . ., t,
where t eguals the total number of unique categories. Con-
sider a two-category problem, tl and t2. There are only
two types of errors that can be made: (1) <classifying an

observation as coming from tl when it belongs to t de-

2!
signated C(1/2), and (2) classifying an observation as

coming from t, when it belongs to t designated C(2/1).

ll
Let the probability that an observation will come
from tl be 9, and from t, be q,- Let the probability density

function for t., be pl(X) and for t2 be p2(X), where X =

1
(xl Xo o o - xn). From Bayes Theorem, the conditional pro-
bability that, given an observation X, it comes from popula-

tion ti is



qipi (X)
05, %)+ q,0, (0

P(ti/X) =

If X is classified as belonging to t then the exvected loss,

ll
also called a conditional average loss, for misclassification

is
Ll(X) = C(1/2)P(t2/X) (1.7)

Using Equation (l1.6) yields

C(1/2)da,p, (X)

L, (X) = (1.8)
1 d,pq (X) + q,p, (X)
Similarly, if X is classified as belonging to tyy
) C(2/1)q;py (X) (
L,(X) = - 1.9)
2 q,py (X) + g,p, (X)

The minimum expected loss is obtained by assigning each X
to the population which has the smallest expected loss. This

rule is called the Bayes Decision Rule, and is expressed as

D(X) = L,(X) - L;(X)
C(2/1)qpy - C(1/2)q,p,
- q,p, * 9,p, : (1.10)
where
X e ty 1ff D(X) > o (1.11)

X ¢ t2 iff D(X) < o
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The function D(X) is called the Bayes discriminant function.
When there are more than two populations with known
probability densities, the procedure is to, as before, min-
imize the total expected loss. For example, consider a
three-category problem. Let C(j/i) be the cost of mis-
classifying an observation X as coming from tj when it be-

longs to ti. The resulting expected losses are:

C(1/2)a,p, + C(1/3)q,p,

Ll(x) (1.12)

3
n£1 9Py
C(2/1)q.p, + C(2/3)q.p
L, (X) = % 1 3°3 (1.13)
nzl qnpn
C(3/1)g,p, + C(3/2)q,p
Ly(X) = é 1 272 (1.14)
nZl qnpn
The discriminant functions are defined as:
Dij(x) = Lj(x) - Li(X) (1.15)
which results in
Dlz(X) = LZ(X) - Ll(X) ' (1.16)
Dy3(X) = Ly(X) = Ly (X) . (1.17)

D23(X) = L3(X) - L2(X) (1.18)



The decision rules are

X ¢ tl iff D12 > o and D13 > o0 (1.19)

v

X € t2 iff D12 < o and D23 > 0

X ¢ t3 iff D13 < o0 and D23 < 0

Now, consider the case where

c(2/1) = C(3/1) (1.20)
C(1/2) = C(3/2)
C(1/3) = C(2/3)

Then, for i # j # k

C(j/k)ayp, + C(3/i)q;p;

Dij(X) 3 (1.21)
Lanpy
C(i/k)qkpk + C(i/j)quj
- 3
nzl qnpn
Since C(j/k) = C(i/k),
C(j/i)g,p. ~ C(i/j)d.p.
Dy (X) = ; = JJ (1.22)
nzl qnpn

Since the decision rule indicates that only the sign is im-



portant when classifying, Equation (1.22) becomes

C(3/i)q;p; - C(i/j)qu-

J (1.23)
qipi + quj

Dij(X) =

There are two poinﬁs worth mentioning at this time. Since
the log function is a monotonically increasing function of
its argument, taking the logarithm of D(X) results in the
same decision process. Also, if the probability density
functions are gaussian, then the resulting discriminant
functions will be quadratic [Ref. 4}. Generally, ths pro--
bability density functions for the populations will noi ke

known; hence, the Bayes function can not be applied.

1.4 Adaptive Pattern Recognition

An adaptive pattern classification scheme is one
which is able to monitor its own performance, thus enabling
it to alter, if necessary, its decision making process
according to some stipulated criterion; it is, therefore,
considered to be self-optimizing. Central to the adaptive
scheme is the "training process", which enables the classi-
fier to achieve the desired performance level. The training
proceeds as follows: A set of pattern vectors of known
classification, the training set, is used to determine the
"optimum" coefficients of the discriminant functions. The

system's performance to these coefficients is measured; and,
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if the desired performance has been obtained, that discri-
inant function is used during the classification procedure.

There are at least three significant reasons why
an adaptive pattern classifier is used:
(1) This approach offers a reasonable way of processing
large quantities of data, where little, if any, information
is known concerning the probability distributions of the
populations.
(2) An adaptive technique is capable of handling a systemn
whose parameters may fluctuate from time to time.
(3) The adaptive approach can be used to determine the
significance of the training set parameters.

There are fbur desirable characteristics in any
adaptive pattern classifier.
(1) The expected loss of the classified patterns should be
as close as possible to the minimum expected loss.
(2) The system should possess enough versatility to be
capable of handling a broad spectrum of pattern classifica-
tion problems.
(3) The use of a large-scale digital computer to implement
the algorithm would be undesirable.
(4) It is desirable in adaptive systems to express the use-~
fulness of a discriminant function qpantitatively, i.e., to

measure the system's capability to correctly classify a



pattern vector of an unknown population.

1.5 Summary

In conclusion, this first chapter has ocutlined four
points: (1) The definitions for a pattern vector; category;
training set, énd adaptive classification scheme have been
stated; (2) The use of discriminant functions for establish-
ing decision rules has been discussed; (3) The optimum ds-~
cision rule-Bayes function-has been derived, and (4) The
usefulness as well as the desirable characteristics of an

adaptive pattern classification scheme have been presented.



CHAPTER IX

AN ADAPTIVE TECHNIQUE

2.1 Patterson's Method

Chapter I discussed pattern recognition in general
and also presented a brief introduction regarding adaptive
pattern recognition; this chapter will present the develop-
ment of a particular adaptive pattern recognition schemne.

In August, 1966, Patterson [Ref. 5] presented an
adaptive pattern classification scheme. The discriminent

functions were of the following form

u (A,X) = i
1

| 0~

) a; ¢, (X) (2.1)

where ays 85r o o .y @ are the weighting parameters which
are adjusted during the adaption process. The ¢i(X) func-
tions are the scalar functions of the pattern vector which
are determined by the choice of the discriminant function.

In vector notation
T "
u(a,X) = A ¢ (X) (2.2)
where

18 + + « & 1 (2.3)



¢ (X)

~~
.
.
>

~—

[¢1(X)¢2(X) o« o e ¢m(X)]
X = (xl Xy o o s xd) (2.5)

and where

the total number of terms in the discriminant

=
It

function

d = the dimension of the space.
The decision rule was

X e t, iff p(A,X) > 0 (2.8)

1

X et, iff u(A,X) <0

The performance criterion was defined as

9 1 (1) 2
(A) = —— § [p(a,x:"") - c2/1)1° +
MNlNz Ny w21 a
q N
) [U(A,Xéz)) + c(1/2)12 (2.7)
2 =1

where C(i/j) is the cost for misclassifying a vector X as
belonging to ti when it actually belongs to tﬁ. The super-
scripts indicate the category to which the pattern vector
belongs, while Ny and N, are the total number of training

samples in classes tl and t2 respectively. The criterion
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My N has two characteristics which make it very attractive:

172
(1) My w is convex and thus lends itself readily to opti-
172
mization techniques.

(2) My N approaches the Bayes discriminant function as
172 .

Nl and N2 become large.

A search technique was used to optimize the performance
criterion.

The aforementioned algorithm can be extended to
handle a multicategory problem; however, it is not the most
desirable approach for the following reason. Suppose that
a training set has adapted the system. Furthermore, suppose
that one acquires an additional training set. If the system
is to be updated using the previous algorithm, i.e., using
the second training set to re-adapt the system, then all
training samples must be used in the updating process. 1t
is to this problem that Pitt [Ref. 6] directed his attention.
The solution was to sequentialize the adaptive routine;
hence, once a training vector was used in the adaptive pro-
cess, it need never be used again, even if an updating pro-
cess takes place. This sequentialization procedure results

in less computer time.

2.2 The Multicategory Problem

Consider the discriminant function ujk(X,Ajk), which

discriminates between categories tj and ty s where
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ujk(x,A3k> - -ukj(x,A3k> (2.8)

ik . . e e
The A’ 's are chosen such that MN., is minimized, where

jk
N
Ny .
1 Jjk . 2
i, =& 7§t 5,33 - v (2.9)
e Ny g = IR

T = the total number of categories
N‘Q = the total number of samples in category "&%

N = the total number of samples

and

r(j/k) = C(k/%) - C(3/%) if 2 # 3, k (2.10)
= C(k/2) if 2=
= -C(3/k) if 2 0=k

Then, a sample Xi is said to belong to cateygory tj if and

only if uj, (X, ad%) > 0 for all j # k.

Suppose that there are three categories, say,

~
o
~-

and 3. Then

2
f
2

{ [h,, - C(2/1)1% +
12 Xgl 12
2
[y, + C(1/2)1% +
xgz 12
] Tuy, - (C(2/3) - c/3)31% 3
Xe3
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The diagram below will be useful in the following discus-

sion.
I ———> + C(2/1)

IIT—* 4+ C(2/3) - C(1/3)
10

II-****‘-[—C(1/2)

As can be seen in the diagram, Category I samples are
"mapped" to the point C(2/1), Category II, to -C(l1/2) and
Category III, to C(2/3) - C(1/3). Intuitively, this mapping
is satisfying. Increasing C(2/1) has the effect of increas-
ing the penalty of putting an X ¢ tl into Y therefore,

it is desirable to map X ¢ ty further from the point 0.
Similar reasoning follows for X ¢ t2. Now suppose that

X € t3 and that C(2/3) > C(1/3). Then the cost of putting

a sample from t3 into t2 is greater than putting it into tl'
So, if a mistake in classification is made, it is better to
put the sample in tl. Using the same reasoning, if C(1/3) >

C(2/3), then if a mistake must be made for X ¢ t3, map X to t2.

2.3 The Sequential Approach

Let the (mxl) vector ®(X) be defined as



2(X) = [$; (X 0,00 . . . ¢ (0]

" (2.12)

where "T" means transpose. The ¢i(X), i=1, 2, . . ., m,
are chosen such that they are linearly independent with

probability 1. Define the set of discriminanrt functions

as

) al% . (x)

ik
ujk(Aj , X)

]
Il o~
f

@I T ) (2.13)

where j, k =1, 2, . . . t such that 1 < j < k < t and where

Ajk e S™. The decision rule is

X e t, iff p., > 0
3 Hik Z

. 4
X e tk iff ujk <0 (2.14)

The set of A vectors are determined sequentially using
the training set. Let the (mxm) random matrix Pn be defined

as

T
n Pn—l + d(n)d (n), Po

jae]
n

[
lp]
o

(2.15)

where @ (n) @(xn), n=1, 2, .. . N (N = the total number
of training samples), and I is an (mxm) identity matrix. The
parameter € is an arbitrarily small constant such that & > o.

The matrix P;l is converted sequentially by the recurrence
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relation
-1 _ -1 T -1 L1y 1,-1 LT -1
Pn = Pn_l~[® (n)Pn_l®(n)+l] Pn_lé(n)é (n)Pn_l
(2.16)
forn =1, 2 -, N and P;—l =1 I
— ' ’ - . - , 4 O 8 -
Let
23¥ () = ¢, (3/k) iff X_ e t (2.17)
X L n L iy

where rz(j/k) is defined by Equation (2.10), which appecars

below:
rz(j/k) = C(k/8) - C(j/%): L # Jr k
= C(k/3J) ; L =73
= -C(j/k) ;7 L=k (2.10)
where
- C(3/k) =0, J =k (2.18)

Let the (mxl) random vector ng be defined as

jk

o3% = o3k 4 2 (m)s(m) | (2.19)

forn=1, 2, . . ., N and where @gk is an (mxl) vector whose
elements are all zero. After N training samples, the Ajk

vectors are determined by
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ik _ - jk .
AN = PN ON | {(2.20)

This relation, (2.20), will be proven below.

Equations (2.16) and (2.19) are used to update the

system,.
2.4 The Performance Criterion
The performance criterion for the sequential schema
N N.
is derived from equation (2.7). Let 9 = § and 9, = ﬁé ;

therefore, equation (2.7) becomes, after combining terms,

2
rR\J/k)]

(2.21)

t
jk 43k _ 1
"o, AMy Ay = § zl iZ=1 [ k(‘N X3

)~
9[ £

where Nl’ N2' .« e ey Nt indicate the number of training vec—
tors in categories 1, 2, . . ., t respectively such that

N
N+ Ny + .. . +N =N, and where Zl means that the

i, =1

2

summation is over all Xi e t i=1,"2, . . «, N (The

! L
smaller the value of M%k, the better the classification.)

Now define
ok (aJ¥) = wikF@d¥*) + 1 @l adk (2.22)

It is easily seen that Qék is a continuous, convex function
jk jk . e s ik .
of AN ; therefore, the AN vectors which minimize QN will

satisfy
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andk A Jk

0 Q- (AZT)
N iN =0 (2.23)
283

where

pe@JS)  ag@lk) 2 £ (a3F)
jk = jk « o s ———]—'}?— (2.24)

B(AN ) Sal Bam

Performing the indicated operations yields, after simplifi-

cation,
t Ny . Lot N
YL Ie(dpet (ipveTlagt= ] 1 xr, (3/k)0(i,)
=1 i2=1 2=1 i2=1
(2.25)
orxr
N . Lot
I [e()e ()+eTlag™=§ ] r, (3/K)0(i,) (2.26)
i=1 2=1 i =1

Using equationé (2.15) and (2.19), it is easily seen that

equation (2.26) becomes
ik _ ik
PAY = She (2.27)
and equation (2.20) follows.

2.5 Setting a Pound for ¢

A "poor" initial choice for the value of € may result

in an obviously useless set of A%k vectors as indicated by the
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Ca - » . Jk )
magnitude of the performance criterion, MN . The reasonu
for this useless result is round-off error in the computer.

Consider the term [@T(n)P;}lQ(n)+l]—l in equation (2.16).

For convenience, choose
“jk = a;x, + a,X, + aj (2.28)

After substituting the appropriate terms and performing the
indicated matrix operations, one can reduce the term in

question to
2 * Y]
xy € + X, € + € + 1 (2.29)

suppose € = 1077%, a_ > o; x; = k; (10)%1, and x, = k, (10)%2
2

such that 1 <k: < 10, i = 1, 2. The restriction 1 < k7 < 10

(o}

merely prevents any change in the values of oy and ¢,. Assune

Z
that lal| > lazl > Qo then the dominating term is xi e™L ox

o

1 o
[k, (10)

12110] © (2.30)

There are 56 bits of "magnitude information" in the IBM 360

56 17

system in double precision, (2 = 107"). To allow for over-—

flow, use 1016. In order to "prevent" round-off error the

criterion to be used is

20 + o < 16 _ (2.31)

O
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Since e—l appears in (2.29), it can be considered in (2.31)-

this makes the calculations a little easier. Hence, egua-

tion (2.31l) becomes
201 +.2ao < lé6

or

The inequality (2.32) is only a guideline for choosing an
initial €.
This discussion can be generalized quite easily.

Suppose that

= 2
ujk a;xq + a,X, + . e . asx: + . . .+ a, (2.33)

where B > 0 and i =1, 2, . . ., d. There will exist sone
xB (or possibly some ombination sa xBl B2x83 where
i p Y me COm 7 Y 3 Xi i+2!

B = Bl + 82 + 83), which may be written as,

B “i.B
x; A [k, (20) ) (2.34)

such that oy is greater than any other uj. Following a simi-

lar procedure, one would determine the new guideline to be

2Bui + 2ao < 16 ' (2.35)
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Summary

To conclude this chapter, the sequential scheme will

be outlined.

(1)
(2)
(3)
(4)

(5)

(6)

(7)
(8)

Choose the form of the discriminant function.

Choose a‘value for £ using (2.35).

Choose the cost function, C(j/k).

Apply equations (2.16, 2.17, 2.18, 2.19,) to the train-
ing set.

After N samples, use (2.20) to determine the set of

Agk vectors.

Determine the ujk's from (2.13).

Determine the Mgk's from (2.21).

Perform the decision process using (2.14).



CHAPTER IIXI

A SEQUENTIAL AILGORITHM

3.1 Introduction

The program-called SAPRA, meaning Sequential Adap-
tive Pattern Recognition Algorxithm,is divided into two parts:
(1) Determining the A vectors and performance criterion,

MN, and (2) The decision process. The former will be pre-
sented as a general flow table in this chapter and will be
discussed in detail in Appendix A. The latter will be treat-
ed in detail in this chapter with the flow graph appearing,

in detail, in Appendix B.

3.2 Generating the A Vectors

A general flow chart for the generation cof the A
vectors appears in Fig. 3.1. The following list presents

each variable used and its associated meaning:

-1
€ « « « « « convergence factor for PO

M. ... . total number of terms in the discriminant
function

NN, . . . . total number of traininyg samples, NN=N

T. .. . . total number of categories, T=t

UPDATE. . . a "flag" used to update the system

COsST. . . . the values of C(j/k)



MN. the performance criterion

D.. .. . the dimension of the space

The flow chart follows the following sequence of
operations.
(1) The values of ¢, M, NN, T, UPDATE, D, and COST are read
in.

1 and ng are scot.

(2) The initial conditions for P;
(3) Begin a "DO LOOPY; read one pattern vector and its

associated category, n =

]
bt

-
A

-~

. . ., NN.

I
-
~
N
~

(4) Compute ¢j(Xn), j = e e oo M,

(5) Compute Pgl and ng and return to (3) above if n<NN.
(6) If n = NN, compute Agk.

(7) Begin a "DO LOOP"; read one pattern vector and its
associated category.

(8) Compute ¢j(X Y, =1, 2, . . ., M

(9) Compute the value of the discriminant function ujk“
(10) Compute the "value" of the performance criterion, MNjk’

and return to (7) above if n<NN.

(11) If n = XN, compute final value of MNjk‘

3.3 The Decision Process

After the adaptive procedure is completed, i.e., the
A vectors are determined, the decision rule is applied. Re-

calling, the rule states that for any Xi' i=1,2, . . ., N,
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if pjk > o, then Xi € tj, otherwise Xi £ tk’ where
1 <j<k<T., The bounds on "j" and "k" as applied to the
discriminant functions mean that given a t-category problem,

there will exist a set of discriminant furncltions as shown

@k x.y,

below, where yu. N X5

jk = ujk

Hio H33 Mg Mis = ¢ = Hig
o3 Moy Hog o =« Hop

H3g Hzg o+« Hop

i1, ¢

Now, refer to row one (1) as the row containing all Ujk where
j = 1, row two (2) as the row containing all ujk where 1 = 2,
etc; moreover, refer to column 2 as the column containing all
ujk where k = 2, column 3 as the column containing all “jk
where k = 3, etc. Assume that all ujk values have been de-

termined and that Myx > 1

> o and U < o, where k., >1,k
1~ lk2 1 2

and kl # k2. Now, ulkl > o implies that Xi € tl, whereas

H < o0 implies that X, € t, . This is considered to be a
lk2 i k2

"conflict" since X. can not belong to both t; and t, . With
2

this in mind, one can easily determine an algorithm toc perform
the decision making, or classification. The algorithm is as

follows:
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(1) 1If each Mk >0, k=2,3, ..., %, then Xi e t

1/
otherwise, go to (2) below.
(2) If each Mo >0, k=3,4, . . ., t, then Xi £ t2 iff
Hio < 0; otherwise go to (3) below.
(3) If there exists a row j' such that each “j'k > o then
every ujk <o, fork=3', =1, 2, . . . j'-1, is nec-

essary and sufficient for X; € tj'; otherwise go to (4)
below.

(4) If (3) above can not be satisfied, then check the last
column, i.e., if each ujt <o, for j =1, 2, . . ., t-1, then

Xi € tt;

otherwise, go to (5) below. SEE NOTE AFTER (&)

(5) Since (4) above can not be satisfied, search for the
smallest ujk’ magnitude wise, and change its sign. Return
to (1) above. If a classification does not result after the
ﬁirst sign change, then search for the "next" smallest value
and change its sign. Return to (1) above. Continue this
sign changing process until either a classification has been

made or until all ujk's have had their sign changed exactly

one time.

NOTE: The value of ujk can be considered as a distance be-
tween Xi and the decision surface determined by ujk; hence,

if one changes the sign of ujk’ this has the effect of "mov-
ing" Xi from, say, tj to tk’ If (4) above can not be satis-

fied, then a classification could possibly result by changing



the sign of the smallest “jk’ magnitude wise. It should be
noted that by changing the signs of the discriminant func-
tions, one is "altering" the system; moreover, it seems that
as the number of sign changes increases, the resulting

classification, if any, will become somewhat guestionable.

3.4 A Simulated Problem

A test problem was used to check the program's per-
formance. A four-category, two dimensicnal problem was used
for two reasons. (1) The multicategory aspect of the zi-
gorithm could be verified without using too much coxputes
time. (2) A plot of each discriminant function could be
obtained quite readily thus enabling a pictorial representa-
tion of the discriminatory process. The pattern vectors were
chosen in a "random" manner; however, they were chosen so as
to provide some overlapping between the categories. The
cost function was chosen to be C(j/k) = 1, j # k and
C(j/k) = 0.0, j = k. Figures 3-2 and 3-3 display the simu-
lated problem and the discriminant functions found using the

SAPRA program.

3.5 Summary

In conclusion, this chapter has presented the basic
flow chart for the SAPRA program; examined, in detail, the
decision process, and presented the results of a simulated

study involding a four-category two-dimensional space.
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CHAPTER IV
DIFFERENTIATING REEF FROM NON-RIEF CARBONATES

4.1 Introduction

It was felt that the results obtained from the sim-
ulated study of Chapter III indicated that the SAPRA prograu
was performing satisfactorily. Hence, the next few chapters,
IV thru VII, will be directed towards classification pro-

blems involving geophysical data.

4,2 The Problem

Chester [Ref. 1] was concerned with the problem bf
trying to determine the value of various trace elements -as-
facies indicators in a series of reef and non-reef carbonates
by analyzing the distribution of these elements. He obtained
data from carbonates of Devonian Age from the Sturveon Lake
reef area of Alberta, Canada. In his analysis, he was in-
terested in the detrital and non-detrital trace elements of
the carbonates used. The word "detrital" implies that a
rock mixture was carried into the basin of deposition in the
solid state, whereas, non-detrital implies material entering
the basin of deposition in solution. While removing the
trace elements in the non-detrital portion of the rocks, one
should be able to determine something about the chemical en-

vironment in which the sediment was formed. On the other
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hand, the detrital fraction should reveazl not only the
nature of the source material but also the scdimentary
characters which are more dependent on the physical vari-
ables of the area. Any trace element may be of some use as
a geochenical indicator if (1) there is a significant
variation in the content of the element as it is traced-
over a basin of deposition, (2) there is a relationship

between the element and a certain type of environment,

4.3 The Method

The method used by Chester to determine the useful-

ness of trace elements as facies indicators is as follows:

(1) A Student's t-test was performed on the total numbex
of analyses for each particular element from the two cate-
gories-reef, non-reef. The purpose of this test was to de-
termine whether a statistical difference could be made be-
tween the two categories.

(2) A graph was made of the distribution of each element
between the two popuiations.

(3) The trace element concentrations were partitioned by
inspection according to the best separation.

(4) The accuracy of the chosen partition values was then

evaluated.
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4.4 The Rgiglts

The results of Chesterxr's analysis on non-detrital
trace elements will now be summarized. The trace elements,
and element ratios, of concern were: Ni; Cc; Cr; Vi Cu;

Pb; Ga; Ni/Co; Cr/V; Pv/Ga, and Cu/Co. There were 43 reef
samples and 100 non-reef samples. The percentage of samples
that were correctly classified from the reef facies was 71%,
from the non-reef facies, 87%, and from both facies waz 82%.
The classification was performed using a ccnbined 8-elenent,
and element ratio, test or a 4-clement, and elemeni ratic,
test for the samples in which Pb, Ga, and Cu were not de-
termined. A scheme for classificeation was devised whieh
assumed that a sample was correctly classified if five or
more of the trace elements had values which fell within the
limits for the facies of that sample. The 4-element test

required that three values be within the bounds of the facies.

4.5 The Sequential Approach

When the SAPRA program was applied to this problem,
the resulting classification was far superior to that ob-
tained by Chester. The trace elements used were: Ni; Co; V;
Cu, and Pb. Only 19 samples were used from the reef category
and 60 samples, from the non-reef category. A quadratic
discriminant function was chosen; hence, there were 21 terns

in the function, i.e., ¢i(X) for i =1, 2, . . ., 21. The
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initial choice for € was determined using the koundary con-~
dition as established in Chapter II, 2.35. TFor convenience;

the inequality (2.35) appears beclow.

2Bo, + 2a < 16 (2.30)
i "o .

Since a quadratic.discriminant function was chosen, B = 2.
The value of a, was determined from the data and found to
be 2., Inserting these values into (2.35) yields oy < 4. A
value of oy which produced an acceptable performance ¢z~
terion was a, = 5. The cost function was C({j/k) = 1, 1 = k
and C(j/k) = 0, whenever j = k. The performance critarion
MN had a value of 0.258., The table below 4.1 presents a

summary of the results obtained by the SAPRA program.

CATEGORY NO. OF SAMPLES NO. OF ERRORS
Reef 19 1
Non-Reef 60

TABLE 4.1

Differentiating'Reef and Non-Reef Carbonates Using

the SAPRA Program

The next table 4.2 compares the percentages of cor-
rect classification between Chester's method and SAPRA's

method.
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METHOD  CATEGORY  NO. OF SAMPLES  CORRECT CLASSIFICATION
Chester Reef 43 71%
SAPRA Reef 19 %43
Chester Non~Reef 100 87%
SAPRA Non-Reef 60 97%
Chester Both 143 82%
SAPRA Both 79 96%
TABLE 4.2

A Comparison Between Chester's Method and SAPRA's

It is clear from the above that the results from tha

SAPRA program are far superior to those obtained by Chester.

Note, especially, that the results using SAPRA are better

in all cases using fewer samples.

4.6

éummary

A problem concerned with differentiating between
reéf from non-reef carbonates using the analysis of non-
detrital trace elements was presented. The percentage of
correct classification obtained by using the SAPRA program
was far superior to the method used by Chester. These re-
sults indicate that a geochemical differentiation can

definitely be made between reef carbonates from non-reef

carbonates.



CHAPTER V

SEPARATION OF SHALLOW AND DEEP EARTHQUARLS

5.1 The Problem

The problem is to differentiate between shallow
(focus < 100 km deep) and deep (focus > 100 km deep) carth-
quakes. This was investigated by Nersesov et al in 1968

[Ref. 3].

5.2 The Method

He approached the problem in two ways.
(1) A separating function was formed by using the product
of one-dimensional probability densities. This function was
of the form

fl(xl)"ffn(xn) B
fl(xl)...fn(xn)+gl(xl)...gn(xn)

F(Xll s s s g Xn) =

(5.1)
The function (5.1) is used with seismic parameters, say,

Z Z such that if

l’ . . .7

F(2y, « « «r 2.)>K _ (5.2)

where K is some constant such that o < K < 1, then the phe-

nomenon is classified as belonging to Class I; and if

F(zl, « o ey zn)iK (5.3)
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then it belongs to Class II.

(2) The second approach used a linear criterion of the

following form:

n

Flxg, » « «p %) = _2__ pijxi(ai - Aj) (5.4)
i;J=1
where
n = the dimension of the space
pij = the inverse of the ccrrelation matrix
o, = the mean values of the parameters for Class I
Aj = the mean wvalues of the parameters for Class I

The decision rule is similar to that used in (1) above with

the exception that -» <K < o,

5.3 The Results

Nersesév et al used 100 training samples, 50 from
each population, to adapt the system. The data was obtained
from shallow and deep earthguakes in Central Asia. The para-
meters, dimensions, involved were (1) tmax - the time from
first arrival to onset of the maximum in the "P" wave. (The
"P" wave is the compressional wave; it travels in the direc~—
tion of particle motion.) (2) fp - the apparent frequency
of the "P" wave. (3) fs - the apparent frequency of the

"S" wave. (The "S" wave, or shear wave, travels in a direc-
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tion that is perpendicular to particle motion.)
After the system was adapted, Nersesov et al used
40 samples (20 from each class) to evaluate the probability
of errors. The results were summarized and indicated that
any one method produced approximately 10-15% erronccus

classifications.

5.4 The Sequential Approach

The data which was used to verify Nersesov's system
was used as the training set for the SAPRA program. Re-
turning, once again, to the inequality (2.353), it was de-
termined from the data used that oy = 1. Since a quadratic
discriminant function was used, B = 2; and the resulting
bound is o < 6. The value of a, =5 was chosen. The cost
function was C(j/k) = 1 for j # k and C(j/k) = 0 for j = k.

Thus, with & = 107°

and using 40 training samples, the value
of the performance criterion was 0.305. Category I, deep
earthquakes, had no errors in classification; Category II
had 2 errors. Hence, a 5% error resulted.

By an analysis'of the A vectors, one can determine
the significance of any one, or more, of the parameters in-

volved. For example, consider the following discriminant

function

x2+ax2+axx+ax

W= 33Xy Fasx, Fazx X ta,x,tagx,

+a6 (5.5)
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1f, say, the values of ayr ag and a, were such that Aqr Ags

a, << a,, agy agy and if x, << Xos then on2e would naturally

1

assume that the terms a1Xy ¢ 83X X, and A%y

bute little to the discriminant function. Since the co-

would contri-

efficients, 31s « o+ o5 8g, are considered to be weighting
factors, it is reasonable to assume that the parameter Xq
is of "lesser" significance than is X, for discriminatory
purposes.

A situation of this nature occurred when applying
the SAPRA program to this problem. The "insignificant”
parameter was X = tmax' Consequently, a second run with
€ = 10"5 was made using the same training set, but with
X = o. The results were gratifying; the performance cri-
terion was 0.404. There were two errors in each category:
thus, a total error of 10% resulted. 7This result strongly
suggests an additional advantage of the SAPRA program, i.e.,
the capécity to differentiate between parameters that will
"weigh heavily" in the discriminant function and those which

will not.

5.5 Summary

A problem concerned with differentiating between deep
and shallow earthquakes was investigated. The methods used
by Nersesov et al produced an error of 10-15%. The SAPRA

program not only produced fewer errors, 5%, but also used less
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training samples for the adaptive process. The feasibility
of using the A vectors to indicate "insignificant" training

parameters was also suggested.



CHAPTER VI

TRACE EBELEMENTS IN MARINE AND FRESH WATER

6.1 The Problem

The trace elements B, Co, Cr, Cu, Ga, Ni, Pb, V and
Zn were analyzed in a total of 66 samples of both ancient
and modern marine and fresh-water argillaceous sediments
by Potter et al in 1962 [Ref. 7]. The purpose of the anal-
ysis was to determine the value, if any, of the abecve trace
elements as environmental discriminators. The sampleg werc
taken such that the climates, samwple location, and geologic
age varied considerably in order to form a more general test.
The data was categorized as follows: 14 samples of modern
marine; 19 modern fresh; 20 ancient marine, and 13 ancient

fresh water samples.

6.2 The Method

A preliminary graphical evaluation was first made by
Potter et al for each of the trace elements. This involved
choosing a partition line which would best separate modern
marine samples from modern fresh water samples according to
the concentration, in parts per million, of the trace ele-
ments. By using all six elements equally weighted, Potter
et al were able to correctly classify 88% of the ancient

sediments,



A statistical approach was teken next. A linear

discriminant function of the form
X7 = alxl+a2x2+a3x3+adx4+a5X5+a6:6+a7x7 {(6.1)

was used, where X, = boron, Ry = chromium, X3 = Ccopper,
Xy = gallium, Xg = lead, Xe = nickel, and Xg = vanadium and
the coefficients ays i=1, .. ., 7, are the weighting
factors. It was assumed that for each of the four cate-
gories there existed a common covariance matrir but thet
the means of the elements could vary. The cowmigon coveaeriancs
matrix was obtained by a pooling of the covariance matricecs
for each of the four populations. The method cof determining
the weighting factors, ai,~for i=1, . . ., 7, is discussed
in Appendix I of Ref. 7. The basic approach was to deter-
mine "that linear combination of the x's for which the 't°
of Student's test is maximized".

The classification scheme consisted of the following:

(1) Compute

Xl? = alxll+a2x12+ ce. + anXq 4 (6.2)

alx21+a2x22+ ce. + a.x

X327 7%27

(2) Let Xy1Xgr o s ey Xy be observed for the unknown sample,

then compute
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X7 = alxl+a2x2+ ees F a7x7 (6.3)
(3) If X., has a value closer to that of X, then that

7 17’

sample belongs *to population 1; and if X7 has a value closer
to that of X,.,, then that sample is said to belong to cate-

gory 2.

6.3 The Results

The results obtained by use of a linear discriminant
function which used only the trace elewents B and V wars

considered impressive. The form of the function was

X2 = alxl+a2x2 (6.4)

There were only 5 samples from the 33 "ancient" samplies that
were misclassified and 5 samples from the 33 "modera” sam-

ples that were misclassified.

6.4 The Sequential Approach

When the SAPRA program was applied to this problem,
the results were even more impressive than were those obtain-
ed by Potter et al. Several different computer runs were
made; the results of each will be discussed separately. The
values for the cost function were C(j/k) =1, j # k and

C(3/k) = 0, j = k.
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RUN I
The elements used were B, Cr, Ni, and V. ‘The eles-
ments Cr and V were analyzed byv two different methods;
hence instead of having a 4-dimensional problem, thz preblem
had 6 dimensions. The value of a, = 3 was chesen. The

categories were:

I = modern marine water
II = modern fresh water
IIT = ancient marine water
Iv = ancient fresh water

A gquadratic discriminant function was chosen. The resulting

values of the performance criterion were, for g = 10"3:
MN,, = 0.1864
MN13 = 0.1506
MN,, = 0.1678
MN,, = 0.1871
MN,, = 0.2963
MN,, = 0.1244

The table below 6,1 indicates the errors that were made in

classification.



CATEGORY  TOTAL ERRORS  ERROR CATEGORIES
I 2 TI
II 3 IV
III 1 I
IV 5 1/1, Ii/4

TABLE 6.1
Classification Errors for the Elements B, Cr, Wi

and V

Notice that 4 samples were classified as belonging to Il
when they actually belonged to category IV, and that 3 were
put in IV when they belonged to II. This discrimination
problem is indicated by the value of MN24 in comparison to

the remaining MN values. The percentage of error is 16.7%.

RUN II
The elements used were B, Cr, Cu, Ga, Ni, and V.
The discriminant function was quadratic, and g = 10—3. The

categories were the same as those of Run I. The resulting

values of the performance criterion were:

Mle = 0.2289
MN13 = 0.2190
MNl4 = 0.1529
MN23 = 0.2052
MN24 = 0.2208
MN = 0.1652

34
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Table 6.2 below displays the erxrors madce daring classifica-

tion. The error is 16.7%.

CATEGORY TOTAL ERRORS ERROR CATEGORIES

I 1 v

IT 2 IV

11T 5 i/2, 11/3

Vv 3 /1, 11/2
TABLE 6.2

Classification Errors for the Elements

B, Cr, Cu, Ga, Ni, and V

RUN II1X
The elements used were B and V. The problem was

subdivided as indicated below.

CATEGORY CASE I CASE IT
I- ancient marine modern marine
IT ancient fresh modern fresh

Case I

The discriminant function was again quadratic, and

e = 1073, The value of MN,, = 0.3736 was determined. Table

6.3 indicates the errors made during classification and com-

pares them to those made by Potter et al.
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CATEGORY SAPRA EKRORS POTTER ERROKS

TABLE 6.3
Classification Errors for the Elements B and V

I = Ancient Marine; II = Ancient Fresh

The error percentage for SAPRA was 9% and for Potter

et al, 15%.

Case IE

. . . . -3
The discriminant function was quadratic, and € = 10 =,

The value of MN12 = 0.3356 was determined. Table 6.4 com-

pares the errors made during classification.

CATEGORY SAPRA ERRORS POTTER ERRORS

I 1
IT 1 4
TABLE 6.4

Classification Errors for the Elements B and V

I = Modern Marine; II = Modern Fresh

The percentage of errors are €% for SAPRA and 15%

for Potter et al.

Run IV

The elements used were B and V. The categories were
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the same as those of run I. For € = 10 7, the values of

the performance criterion were:

MN,, = 0.3417
MN13 = 0.3705
MN14 = 0.2831
MN23 = 0.3423
MN24 = 0.4564
MN34 = 0.2781

Table 6.5, below, presents the classification error made.

CATEGORY TOTAL ERRORS ERROR CATEGORIES

I 4 11/2, II1/2
11 4 I11I/2, IV/2
III 7 1/4, I1/3
v 10 /1, I1/9

TABLE 6.5

Classification Errors for the Elements B and V

It is obvious that the results of this run are not
acceptable. The conclusion is that the trace elements B and

V are not good differentiators for the four-category case.

Run V

The elements B and V were used once again; however,

the discriminant function was chosen to be linear. Further-
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more, the problem was subdivided in the same manner as in

Run III. The discriminant function had the form
Hpp = ayXytasx,tag (6.5)

where x; = boron and X, = vanadium. Table 6.6 presents the

-4

results of case I, where € = 10 °, The performsnce criter-

ion was MN12 = 00,4340

CATEGORY SAPRA ERRORS POTTER ERRORS

I 3 2
IT 2 3
TABLE 6.6

Classification Errors for the Elements B and V

I = Ancient Marine; II = Ancient Fresh

Table 6.7 shows the results for Case II, where
-4

e = 10 and MN12 = 0,4135.

CATEGORY SAPRA ERRORS POTTER ERRORS

TABLE 6.7
Classification Errors for the Elements B arnd V

I = Modern Marine; II = Modern Fresh
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6.5 Summary

The guestion as to whether trace elements can be
used as indicators to differentiate betveen bhoth modern and
ancient marine and fresh watexr has becn studied. The re-
sults of several studies which employed the SAPRA progiam
indicate quite strongly that certain tracec elements may in-

deed be used as "water differentiators". The last table,

6.8, of this chapter consolidates all of the previcus rve-

sults concerned with this classification problen.



NUM. OF DISCRIMINANT VALUE % "SAPRA" % POTTER

BEH ELEMENTS CATEGORIES FUNCTION OF ¢ ERRORS ERRORS
I B,Cr,Ni,V 4 Quadratic ZLO—3 16.7% _Not Applicable
IT  B,Cr,Cu, 4 Quadratic 1073 16.7% Not Applicable
Ga,Ni,V
IrI B,V 2 (Ancient) Quadratic 10—3 9% 15%
B,V 2 (Modern) Quadratic 10“3 6% 15%
v B,V 4 Quadratic 10_3 38% Not Applicable
\% B,V 2 (Ancient) Linear 10_4 15% 15%
B,V 2 (Modern)  Linear 1074 123 153
TABLE 6.8

Summary of Results for Chapter 6



CHAPTER VII

SAND ARNALYSIS

7.1 The Problem

The last problem is concerned with the differentia-
tion between modern beach, coastal dune, inland dune and
river sands on the basis of a whole phi sieve analysis of
these sands. In 1967, Moiola and Weiser [Ref. 2] made an
evaluation on the use of textural parameters as indicators
to classify the aforementioned grades of sand. A total of
120 samples, 30 from each of the categories, were gathered
for the study. A sieve analysis was run on the data.
Following this analysis, Moiola and Weiser compiled the
quarter, half, and whole phi weight percentage distributions
and then calculated the associated textural parameters by
using a linear interpolation on the weight percentage dis-

tributions. The parameters used were:

(1) mean diameter - the average grain size

(2) standard deviation - a measure of dispersion about the
mean

(3) skewness - a measure of asymmctry of distribution

(4) kurtosis - a measure of peakedness of the freguency curve

7.2 The Method

Moiola and Weiser then made plots of the textural
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parameters using various combinations of the four categor-
ies. If a given plot demonstrated an effective differen-
tiation between the twb populations of concern, then a
straight line, called a boundary line, was drawn such that

a maximum separation between the two categories was attained.
The results of their work will be presented with those

attained by the use of the SAPRA program.

7.3 The Sequential Approach

The program was employed in three different ways on
this problem. The first method considered varicus Lwo-
category problems as did Moiola and Weiser. The second
approach investigated the idea of "stripping" one category:
from the four populations, one category from the rcmaining
three, etc. The last method treated the entire problew us
one four-category problem. The results of these approaches
will be presented shortly.

The data that was used was obtained from a whole phi
sieve analysis of 120 samples, 30 samples from each of the
four categories. An analysis of the data reveiled that
a, = -4, A quadratic discriminant function was used, hence,
B = 2. Aand, from (2.35), oy < 16. The value a, = 10 was

used for each of the three approaches to the problem. The

cost function was C(j/k) =1, j # k and C(j/k) = 0, i = k.
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Tables 7.1 thru 7.4 present the results cf the various two-
category combinations. The columns labled “"whole", "half",
and "quarter" refer to the errors of Moioia and Weisexr for

whole phi, half phi, and quarter phi sieve analysis data.

CATEGORY SAPRA WHOLE HALF QUARTER

Inland 0 5 3 2
Coastal 3 0 ]
TABLE 7.1

Classification Errors for Two-Catcyory Sand Problem

MN = 0.1737

12

CATEGORY SAPRA WHOLE HALF QUARTER

River 0 1 1
Beach 0 2 0
TABLE 7.2

Classification Errors for Two-Category Sand Problem

Mle = 0.0437

CATEGORY SAPRA WHOLE HALF QUARTER

Beach 2 1 0 0
Inland 1 2 3 2
TABLE 7.3

Classification Errors for Two-~Category Sand Problem

Mle = 0.1334



CATEGORY  SAPRA  WHOLE HALF  QUARTER

River 0] 3 ] i
Coastal 0 0 0] 4]

TABLE 7.4
Classification Errors for Two-Category Sand Problem

Mle = 0.0328

The results in table 7.1 indicate that three sam-
ples (SAPRA column) from the Coastal Category were miss-
classified. The error is 5%. Table 7.2 shows that there
were no errors with the SAPRA program. Table 7.3 indicates
that there were two beach samples classified incorrectly
and one inland dune sample classified incorrectly. The
error is 5%. Table 7.4 slows a perfect separation between
coastal and river sands.
| The next set of results were obtained by a "stripping"
process. The éoncept of stripping can best be explained by
the use of an example. Consider a three—category, say, 2,
B, and C, classification problem. One means of classifica-
tion would be to separate {strip), say, class A from the
remaining two categories, and then strip B from C. In other
words, the stripping technique essentially re-defines the
problem from a t-category problem to several two-category

ones. In the example above, for the "first strip", Category
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A could be considered as Categcry I and Categories B and
C combined as Category IT. For the "second strip", ate~
gory B could be I and €, II. The order of stripping is
important in that different errors result for different
orders of stripping. The results of the stripping rung,

tables 7.5 and 7.6, demonstrate this effect.

FIRST STRIP SECOND STRIP THIRD STRIP
CATEGORY ERRORS CATEGORY ERRORS CATEGORY ERRORS
I-River 2 I-Beach 7 I-Inland
IT-Beach 4 IT-Inland 9 I1~-Coastal

Inland Coastal
Coastal
TABLE 7.5

Classification Errors Obtained by "Stripping"

FIRST STRIP SECOND STRIP THIRD STRIP?
CATEGORY  ERRORS  CATEGORY  ERRORS CATEGORY  ERKORS
I-Beach 7 I-River 2 I-Inland 4]
II-River 9 ITI-Inland 3 II~-Coastal 3

Inland Coastal
Coastal '
TABLE 7.6

Classification Errors Obtained by "Stripping"

Note that the total number of errors for table 7.5 is

25 and for table 7.6 is 24. Note, also, that when beach
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sands were stripped, in both cases more errors were attained

than at any other strip.

The last approach viewed the situation as a four-

category problem.

criterion were:

MNy, =

MNy 5 =

MN14 =

MN23 =

MN,y =

MNg, =

0.1454
0.1391
0.1568
0.1606
0.3%46

0.2029

The resulting values of the performance

Table 7.7 displays the errors in classification.

CATEGORY TOTAL ERRORS ERRCR CATEGORIES
I-River 4 I11/3, 1IV/1
II-Beach 9 iv/9
III-Inland 5 /2, 11/1, 111/2
IV-Coastal 8 I1/8

TABLE 7.7

Classification Errors for Four-Category Sand Problem

Notice that 9 samples were classified as belonging

to category IV when they actually belonged to II, and that 8

samples were misclassified in Category IV. This result is
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not surprising since the value of MN24 is much larger with
respect to the other values of the performancs criferion,
Also, note that more errors were again encountered with the
classification of beach sands. Compare the errors of tables
7.5, 7.6, and 7.7. This consistency of misclassification
for beach sand may indicate that the parameters used during
the adaption process were very similar to those of coastal

sand.

7.4 Summary

The last example problem has been concerrned with the
classification of modern beach, coastal dune, inland dune,
and river sands on the basis of a whole phi sieve analysis
of the sqmples used. Three different approaches were taken

on this problem:

(1) considering various combinations of two-category pro-
blems;
(2) a "stripping" process;

(3) a four-category problem.

Moiola and Weiser approached the problem by method
one above. They used the sieve analysis data to calculate
the associated texture parameters, and then they performed

the separation. The SAPRA program used the raw sieve analysis
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data to perform the classification, thus bypassing any
intermediate calculations. The resulls chtained with SADRA
had fewer misclassifications than did those of Mziola and

Weiser.



CEHAPTER VIII

CONCLUDING REMARK

An adaptive multicategory pattecn recognition al-
gorithm was programmed using an IBM 360/44 digital computer.
The algorithm was divided into two main programs: (1) The
adaption process; (2) The decision process. The effect-
iveness of the algorithm was tested by using geophysical
data gathered from various sources. In all, four problems
were run with this "real-world" data; and in each case, the
resulting classifications obtained were considered excellent.

The SAPRA program has a number of advantages over

many of the presently used pattern classification schemaes,

(1) The algorithm inverts the matrix of concern by a se-
quential routine. Thus less computer time and storage are
required.

(2) A priori knowledge of the probability density functions
or distributions is not necessary to perform a classifica-
tion decision.

(3) There exists a number, or set of numbers if there are
more than two categories, called the performance criterion
which gives a strong indication as to how "good" the result-
ing classification will be.

(4) By a proper interpretation of the values of the co-
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efficients in the discriminanrt function, one can deltermine
the relative effectiveness of each trainiug parameter.

(5) There exists the capability to "update" the values of
the coefficients of the discriminant function withcout having
to employ the data which has been used previously for train-
ing. The "update" procedure will be discussed in Appcndix A.
(6) The number of categories and dimensions allowed in any
given problem is only limited. by eccnomic considerations

and the size of the computer being used.

(7) The classification becomes optimal as the nunber of

training samples becomes large.
Several observations were made.

(1) An incorrect choice for € can result in poor classifi-
cation due to computer round-off error.

(2) 1If there are more than two categories, the values of

the performance criterion relative to one another give an
indication as to the difficulty encountered when classifying
pattern vectors.

(3) As the order of the discriminant function increases, the

resulting error of classification decreases.



BIBLICGRAPEY

Chester, R.; Geochemical Criteria for I 'fFCTGntiatjng
Reef from Non-Reef Facies in CaLbonacg Rocks Bulletin

Of the American Association of Petroleun Lcu]oq¢st‘.
Vol. 49, No. 3, March 1%65, pp. 258-276.

Moiola, R. J. and Weiser, D.; Textuvural Parameters i An
Evaluation; Journal of Sedimentary Petrology, Voi. 38,
No. 1, March 1968, pp. 45-53,

Nersesov, I. L.; Pisarenko, V. F.; Rautian, T. G.;
Smirnova, N. A., and Khalturin, V. I.; G&tudies on

the Tsunami Wave, Joint Publications Research Service,
Washington, D. C., 57P, 2 Mat 69 UNCLAS FLD/GP 8C.

Nilsson, N. J.; Learning Machines McGraw-I111i11 Book
Co., New York, 1965.

Patterson, J. D.; Wagner, T. S., and Womack, B. F.,

A Performance Criterion for Adaptive ?dttern Classifica~
tion Systems, Joint Automatic Control Conference Pre~
print, August 1966, pp. 38-46.

Pitt, J. M. and Womack, B. F.; Proccedings of the IEEE,
December 1966, pp. 1987-1988.,

Potter, P. E.; Shrimp, N. F., and Witters, J., Trace
Elements in Marine and Fresh-Water Argillaceous Sedi-
ments, Geochimica et Cosmochimica Acta, 1963, Vol. 27,
Pergamon Press Ltd., pp. 669-694,

Ralston, A., A First Course in Numerical Analysis,
McGraw-Hill Book Co., New York, N. Y., 1965, p. 462,
problem 65.




APPEND1X A
ADAPTIVE PROGRAM

Al A detailed analysis of the adaptive portion of the
program will be presented in this appendix. The anslysis
will follow the program as listed at the end of this appen-
dix.

This program was written to handle a problem with

the following specifications:

H

(1) maximum number of categories = 4

I

(2) maximum number of dimensions 6

(3) maximum order of the discriminant function = 2.

If one desires to solve a more complex problem, then the
dimension statements may need to be modified. For exanble,
consider a problem where there are 5 categories (T = 5), 7
dimensions (D = 7), and a second order discriminant function

is chosen. Let the dimensions be represented by Kyr o o op Xgo

The discriminant function will be

B 2 2 2 2 2 2 2
],ljk = alxl+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7+a8X x‘+a9xlx3 +

172

alOxlx4+allxlx5+al2x1x6+al3xlx7+a14X2x3+al5x2x4 +

8y gXpXgTay gX X Hag gX X Ha, gXoX +8, (XX gha,y XX +
a22x3x7+a23x4x5+a24x4x6+a25x4x7+a26x5x6+a27x5x7+a28x6x7 +

Ag¥ taggXytagXatag X tazXgtag XetaspXgtase (A.1.1)



64
There are 36 termms in the discriminant function:; therefore,
M = 36. The dimensioning statements can now be modified
according to T =5, D= 7, and M = 36. For example, the A
vectors would be dimensioned, as 1is suggested by ihe first
group of comment cards, A(T-1, T, M) = A(4, 5, 36). OF
course the user could dimension for the maximum limits that
he would expect to handle in any given problem, but this

wastes computer memory.
A.2 The variable names will now be defined.

M = the number of ¢i(X) functions appcaring in the dis-
criminant function
D = the dimension of the space, i.e., the number of ele-

ments in one pattern vector

T = the total number of categories
E = the convergence factor ¢, P;l = % T
NN = N = the total number of training samples

CF (M) = the M different ¢i(X) functions appearing in the

discriminant function, e.g., using equation (A.1.1),

CF(1) = ¢1(X) = x}
CF(2) = ¢,(X) = x}
CF(34) = ¢,,(X) = x;
CF(35) = ¢55(X) = x,

CF(36) = ¢36(X) =1



X(D) = a D~dimensional pattern vectoxr
PNI (M,M) = the (mxm) matrix which is computed by eqauation
(2.16)

TH(T-1,T,M) = the ng vector (s) given by equation (2.9) for

1<3<k<T

A(T-1,T,M) the A&k vector (s) given by egquation (2.zZ0) for

1 <j<kxrT

The M, in each case designates the element of the vector.

For example, suppose T = 4 and M = 28, then one would ex-

pect the following vector output, where

A(3,k,2) = ad¥
TH(J, k%) = 03
for 3 =1, . . ., T-1, k = j+1, . . ., T, %=1, ., M,
and 1 < j <k <T
A(1,2,1) = TH(1,2,1) =
A(l,2,2) = TH(]-IZIZ) =
A(1,2,28) = TH(1,2,28) =
A(l,3,l) = TH(lI3Il) =
A(1,3,2) = TH(1,3,2) =
A(1,3,28) = TH(1,3,28) =
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A(l,4,28) = TH(L1,4,28) =
A(2,3,1) = T (2,3,1) =
A(2,3,2) = TH{2,3.2) =
A(3,4,28) = PH{3,4,28) =

Z(T-1,T) = ij(n) as defined by equations {2.17) and
(2.18) where 1 < j <k < T.

CosT (T, T) = a(T x T) matrix whose elenents are the cost
factors, C(i/k), which are determined by
the user. Recall that C{(j/k) = 0 whenever
j=%k forl<j<k<T,

MN(T-1,T) = MNjk = a(T-1xT) matrix whose elements are
the performance criteria for 1 < Jj <k <™

MU(T-1,T) = ujk as defined by eqguation (2.13).

UPbATE = a "flag" used in the program to determine

1

. whether to read the initial values of P;

and @o (UPDATE = 1) or to set the initial
values of P;l and @O equal to 0.0 (UPDATE =

This will be discussed in A.3.

Recall equation (2.16), which is repeated below for conven-

ience.

P

-1
n

_—..P-
n

l—-
-1

1 1

(0" (n)p 1 0 (m)+1)” -1

p_ L o(m)e” (n)B]

(2.16)

0).
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wheren =1, 2, . . ., N-1, N and P;1 = é I. Now,isoclate
. T -l P \'"1 .
the term (9 (n)Pn_YQ(n)+l) . Define:
Cl = ¢(n) Pq = a(lxm}) vectox
C2 = Cl o(n) = a(lxl) vector
C =C2 + 1 = a constant
Now, isolate the term P 1 @(n)@T(D)P—l Define
! n-1 Y Tn-1° T
CFP = @(n)@T(n) = an (mxm) matrix
Pl = CFP P;El = an (mxm) matrix
- p-l - .
P2 = Pn__lPl = an (mxm) matrix
A.3 The operation of the program will now be discussed.

Consider a problem where T = 4, D = 6, NN = 120(30 samples
from each of the four categories), and a quadratic discrim-
inant function is chosen. Since D = 6, M = 28. The di-
mensioning statements would be the same as those in the
program in the back of this appendix. Determine, from the
data, the value of oy and use inequality (2.35) to choose
an o_. For example, suppose that the largest piece of data

was 145, and the smallest, 0.003. Then

I

145 1.45(10)2, o, = 2

3.0(10)73, a. = -3

0.003
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> —~ P 3 3 3 J oy o 3
since [a,| > Iull, choose o; = -3. Since uyy is quadratic,

B = 2. Thus, using (2.35)

ZBui + 2ao < 16
20)(-3) + Zuo < 16
-6 + o < 8

(@]

o < 14
o)

-0 ~10

Choose o, = 10; hence ¢ = 10 © =10 . [REMEMELR: The

16" in (2.35) was determined from the fact that the IRM

360 had 56 magnitude bits (2°° = 1017

). If a different
computer is used, it may be necessary to re-define (2.35).]
Now, determine the values of the cost functions, C(j/k).
being sure that C(j/k) = 0.0 whenever j = k, 1 < j < k < T,
Assume that this is the first time any of the train-
ing samples have been used for the adaptive procedure; then,

UPDATE = 0. Refer to the program when necessary for the

following sequence of operations.

(1) Dimension statements are read.
(2) Integer T, CAT, UPDATE, D.

(3) Read E, M, NN, T, UPDATE, D.
(4) Read cost functions.

(5) Set "upper bound" for subscript (superscript) "j".



(6)

(7)

(8)

(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)

(21)
(22)
(23)
(24)
(25)
(26)
(27)

(28)

Initialize ng =
Initialize P; =

Begin data loop, i.e., read one pattern

1

M= o

I.

Calculate ¢i(X), i=1, 2, .

Begin calculation of P; .

1

Determine Cl.

Determine C2.

Determine C.

Determine CFP.

Determine Pl.

Determine P2.

Determine P .,

Determine ij(n).

Determine Ojk(n).

3

14

28.

vector.
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If all pattern samples have been read,; go to (21);

otherwise, return to (8) above.
Determine A%k vectors.
Set initial wvalues of MNjk = 0.0.

Begin data loop, i.e., read one pattern vector.

Determine ¢i(X), i=1,2, .. ., 28.

Determine “jk values.

Determine MNjk values.

Determine final MNjk values.

Punch an output deck containing the A

3k
N

vectors and the matrix P&

1

ik

N

vectors,

the



70
Now, suppose that additional training samples havs
become available, and you wish to update the systcm. The
flay, UPDATE, is now set equal to one (1). The values that
were obtained for the ng vactors and the P&l matrix from
the object deck will be the new initial conditions for the
"update run". The program operation will be essentially

the same, except in two operations.

(1) Steps 6 and 7 above will be medified, i.e., the ini-
tial values will be read from the object deck.

(2) Because the performance criteria are calculated by
using the Agk vectors plus all of the data reqguired to
calculate these vectors, the values of MNjk calculated
during an updating procedufe are not valid. It is for this

reason that a third program may be desired to calculate the

MNjk values, even though such a program is not necessary.

A.4 The order of the data cards for the adaptive program

is given below.

UPDATE = 0

1. Card with E, M, NN, T, UPDATE, D. See format statement
500.
2, Cards with cost factors [C(j/k)]. See format statement

520. For example, if T = 4 and all cost functions are equal,
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then
0. 1. 1. 1. CARD 2
1. 0. 1. 1. CARD 3
1. 1. 0. 1. CARD 4
lo 1. lo 0. CZ‘J.RD 5

Note C(1/1) = C(2/2) = C(3/3) = C(4/4) = 0.

3. First set of data cards. Sece format statement 640.

4, Duplicate set of data. Same format.

UPDATE = 1

1, Card with E, M, NN, T, UPDATE, D. See format statement

500.
2. Cardé with cost factors. See format statement 520.

3. Cards from output deck containing O%k vectors.

4, Cards from output deck containing PNl matrix.

5. First set of data cards. See format statement 640.

6. Duplicate set of data. Same format.
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THE FOQLLOWING PERTAINS TO THE DINLHNSION SYATERENT:
G=NUMBER CF PHI FURCYIONS
D=THE RUNBER OF DYHINSICNS IN THE
T=THD NUNDBER OF DISTINCY CATEGSRIC
E=THi CCHVENGENCE FACTOR 10 CALCU
CFi{f)
CRP(L M)
Cr({I)
THIT~1e Tl

C

C

C SP
C CsS
C LAT
C

c

C

c :

C AY=1sT 1)

C

C

C

C

C

C

C

C

C

PRI

Pz (FoM)
PNI(lis1)
PI{HM:H)
X{0)
Z{T-1,T7})
COST(T:T)
MN(T=1,T)
MUIT=-1:T)
Niv IS THE RUMBER OF PATTERN VCCTCRS OF KROWH CLASSIF
DOUBLE PRECISION CF(28)CFP({28:28)sC 1(k8)sTH(3¢ ¥
1Pl(28r28)9P2(28928)9PNI(28‘78);E Cdc ,7fl { )p/ }; (
DIFENSION X{6)+Z(3:4),COSV{%4)
IRNTEGER TsCAT,UPDAYTLE:D
C READING IN SYSTCHM PARAHETERS
READ(S:500)E¢ KyMNs T UPDAYE (D
500 FORMAT(1ID10.9,515)
WRITE(6:510)E, f:h s T g UPDAY[YL

ICATIC
28) 5 A (Jg.;/b)i
B.4)

510 FORMAT(1H1;25 "'pD/O QebXe =t T8 0K, *NN=% 15, 5Xs8T=0,165;5
1UPDATE=‘p15g5Xp‘D =0 12:¢/417/77)
c READING IN COST CRITERIA
DO 10 I=1,T7

10 READ(5:520) (COST(Isd)od=1,T}
520 FORMAT(16F5.2)
: HRITE(65530)
530 FORMAT(S50Xs "THE COST MATRIX 1St3//}
DO 20 L1=1,T7
20 HRITE(G:540}(COST(LL M1} sMLI=1,T)
540 FORMAT(54Xs16(1XF5.21))
C FIXING UPPER BOUND FOR SUBSCRIPT fige
JJ=T-1
DO 3C JO=1:JJ
JJ0=J0+1
DO 30 KO=J3J0,T
IF(UPDATE-EQ.L1)GO TO 5
DO 40 10=1:M
40 TH(JO;KO0;:I0)=0.
GO TO 30
C READING IN INITIAL THETA VECTOR
. 5 READ(S?S?O)(TH(J09K0710)110=17H)
570 FORMAT(4D20.10)
30 CONTINUE
DO 60 Jl=1,¢M
IF(UPDATE.EQ.1)G0 TO 6
DO 70 Ki=1,M




10

600
60

640

100

110

120

CF(20)

PN10JY101)=0.
PHICIL,J1)=1./E
6O TO 60
READING IN INITIAL HATRIY
READ(S, 600 {PNI(JIT KL 1)
FORMAT(4020.10)
CONTINUE
BEGINNING DATA
DO 9C N=1¢NN
READ(5,640) CAT, (X(J)gd=1
FORMAT(I5s9F10.3)
CALCULATING PHI FUNCYLICGHN
CE(L)=X{1)%X(L)
CF(2)=X{2)%X(2)
CF(31=X{31%X{3)
CF(4)=X{4)5X(4)
CF(5)=X{5)%X(5)
CF(6)=X{6)%X(6)
CRLT)=X11)%Y(2)
CFI8)=X(1)%%(3)
CFIQI=X{1)%X(4)
CF{10)=X{1)}=X(5)
CFILL)=X{1)%X(6}
CR{12)=X(2)1%X(3),
CF(13)=X{2)%3X(4)
CE{14)=X(2)%X(5
CFI15)=X(2)%X{6)
CFI16)=X(3)%X(4)
CFELTI=X(31%X(5)
CE(18)=X{3)%X(6)
CEL19)=X(4)%X(5)
=Y (41X (6)
CF(21)=X{5)%X(6)
CF(22)=X(1)
CR(23)=X{2)
CF(24)=X1(3)
CF(257=X{4])
CF(26)=X{5)
CF(2T)=X{6)
CF(28)=1,
BEGINNING CALCULATION FOR
DO 100 J2=1,H
C1(J2)=0.
DO 1C0 K2=1:H

LaGP
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1+

s D)

VALUES

INVERSE OF P HATRIX

C1(J2)=CFIK2)*PN1(K2,J2)+C1(J2)

C2=0.

DO 110 J3=14M
C2=C1(J3)=CF({J3)+C2
C=C2+1.

DO 120 J4=14M

DO 120 K4=14H

CEP(Ja K& )=CF{J4)*CF(K4)
DO 130 J5=1,H

DO 130 K5=1,HM
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P1{Jd5:K5)=0<
DO 130 15=1:¢H
136 PLUJS KRS I=CFP{JS, L EPRILLEKO)ILPLLIOKD)
DD 140 J6=14M
DO 140 KG6=1,H
P2{J6:K6)=0.
00 140 LOo=14M1
140 P2(J6,KOY=PRNI{JI6sLEY=PT{LEROGIICHDP2{J5:10)
DO 150 J7=1:M
DO 150 K7=14HM
150 PNI(JT¢KT)=PNI{JTKTI~P2(IT:KT}
END OF CALCULATIOMS FOR INVERSE BF P MHATRIX
DETERMINING THETA VECTOR
DO 160 J8=1¢4J
Jd1=Jdg+1l
DO 160 K8=JJ1:7
IF(CAToNEoJBo AND o CATNE.KBIZ I8 KB )=COST (KB CAT)I-COSY (J8,CAT
IF{CATEQoJ8IZIJUGsKB)=LO0STIKEJB)
TF(CAT.EQ KBIZ{JB;K8}=~CO0ST(JC:KE}
DO 170 L8=1¢H
170 TH{JO¢KBLB)=TH{JBKELBI+Z{JIBKCYHCF({LB)
160 CONTINUE
90 CONTIRUE
HRITE(6:660)
660 FORMAT(//¢S50Xe YTHE A{JK) AND TH{J K} VECTORS LREC /77,
DETERMINING A VECTOR
DO 180 J9=1,J44
Jdz= J9+1
DO 180 K9=dJ2,T
DO 180 L9=1,:H
AlJ9:K9y1.9)=0¢
DO 190 1M9=1:H
190 A(JO:KOoLO)=PNI{LOsHO)xTHIJIOoKO MY +A(IGsKG (LD}
180 WRITE (6:670) J9: h9gL9gl(J9 !)TL“)S\ RO Lo THEJO RS, LY
670 FOR“AT(3OX?‘[‘(‘9!2? :IZ: 9!?9()‘:91)’?‘“991 9[‘/ ]Os}(z!.
TOTH( o125t 9% 9l2s® 9129‘)‘9]7 £ 1Ny D20:105 /)
SETTING IRITIAL VALUE OF PERFORMANCE CRITCERION EQUAL 10 ZERO
DO 220 J=1¢JJ
KK=J+1
DO 220 K=KK,T
220 MN(J4K)=0o
BEGINNING DATA LOOP
DO 240 I=1¢NN
READ(5, 730} CATs(X{J)ed=1:D)
730 FORMAT(I5:9F10.3)
CALCULATING PHI FUNCTIONS VALUES
CF{1)=X{1)%X(1)
CF(2)=X{2)}%X(2)
CF{3)=X{3})%X(3)
CF{4)=X{4)=X(4)
CF(5)=X(5)%X(5)
CEI6)=X16)%X(06)
CRIT)I=X{1)%X(2)
CF(8)=X{1)%X(3)



CRI9)=X{1}1%X({4)
CR{10)=Y(LixX{5}
CRE1LI=X(L) X6}
CFR{12)=X(2}=X{3)
CF{13r=X{2)=X{4)
CF{l4)= Y(?)f'(it
CRILOI=X(2=3{06)

S CR(16)Y=X(3)%X{(4)
CE(LTY=X{3)%X(5)
CFRI18Y=X({3]%X{6])

CFRI19)=X(4}=X(5)
CR{z2Q)y=X(4)%X{6)
CR{211=X(5}%)(6)
CF{(22)=X(1)
CE(23)=X(2)
CF{26)=X(3)
CF{25)=X(4)
CF(26)=X{5)
CF(271=X{(0}
CF(28)=1.
CALCULATING VALUE OF DISCRIMINANT FUNCTION
DO 250 J=14JJd
KK=J+1 '
DO 250 K=KKygT
MULJsK}=0.
IF(CATeNEd ¢ANDCAT NEK JZ(Jd R I=COST{N ,CATI-COSTLY Q67
IF(CAT.CQaJd Y24 oK }=COSTUL ¢ 1}
IF(CAT.EQ.K YZ(J K 1=~COST(J ¥ )
DO 260 L=1¢M
260 PUCIKY=Ald KLY HCFILYHMULS,K)
CALCULATING PARTIAL VALUE CF PLRFORMANCE CRITERION
250 FN(JK)= {(FU{JKI=Z{Js ) P24 MN{Jd oK)
240 CONTIRUE
WRITE(645740)
740 FORMAT(///¢50X *THE PERFCREANCE CRITERION IS:To///)
DD 270 J=1,JJ
KK=J+1
DO 270 K=KKs¥
CALCULATING FINAL VALUE OF PERFORMANCE CRITERICN
MN(JIsKI=MN{J,K)/ NN
270 VRITE(6:750YJeKeHEN(JsK)
750 FORMAT(SOXs *MN(ts12,%5;%:12,%) =%4D2010:/7/)
PUNCH OUTPUT DECK FOR A VECTORS,THETA VECTORS AND PNI MATRI
DO 280 J=1sJ4J ’ -
KK=Jd+1
DO 280 K=KK,T
280 VWRITE(TT60Y A(JsKyL) pt=1loH)
760 FORMAT (4D20,10})
DO 290 J=1.Jd
KK=J+1
DO 290 K=KKsT
- 290 \RITE(?ﬁ/éO)(TH(J KeyL)el=1y M)
00 300 Jd=1l¢H
300 WRITE{(7:760)(PNI(JsK) K=1y f)
WRITE(7:8888)

~d
U

8688 FORMAT(® ¢}

END



APPENDIX B

THE DECISION PROCESS

B.1l Since the decision process has beaen discussed in
detail in section 4.3, only the flow chart, Fig. B-1, the
definitions of variables, the program, and the order ¢f the

data cards will appear in this appendix.

DATA CARDS

B.2
1. Card containing T, M, D. Sce format statement 240.
2. Cards containing A%k vectors from output deck.

3. Data cards. See format statement 240.

PROGRAM VARIABLES

KOUNTS = maximum number of sign changes

JJ = upper bound for superscript/subscript "3j"

KOUNT = counter for sign changes

LATCH = a controller used when finding "smallest" value
of ujk

SMALL 1 = used with LATCH and SMALL 2 to determine "smallest"”
ujk

CAT = category

SMALL 2 = used with LATCH and SMALL 1 to determine "smallest"

ik
J STAR, K STAR = subscripts of "smallest"” ”jk



Dimension X

a
bouble Tirccioion
]
lIIIIIHHIHHHIIIIIIII

Kounts = 0

0

Kounts = Kounts+4Il

DO 10

AlJ,¥,L)

KO = J4+1

ZOI MU (J,K) l

1 nno4n

Continue

Emall 1<|Mu(3,x) |

G0 TO €0

17| small 2-[MU(3,K) |

JStar=J
KStar=K

l

Latchel

GO TO 60

lsl small 1<[MU(J,K)|<Small 2

18| Small 2=|Mu(J,K)|

IIIIIH!HHIIHI!!!IIIIIII

lIIIIIH%HHHIIIIIIIIII

KStar=X

60 Continuc

no
lyes

a
GO TO 2
r(Jsta:,KStar)--u(JStar,KStar)
X, Cat=T
Kount=Kount+1
| Kount>Kounts
yes
]
X, Cat=l 7 J=JK
GO TO S0 No Decision
m kg
S X, Cat=k
GO 10 4
GO TO 4

FIG. B-1 FLOW GRAPH FOR DECISION PROCESS
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M THE NUMBER OF PHI FUNCYIUNS.
D THE DINENSION OF. THE PATTERN SPACE.
THE FOLLOWINC PERTAINS TO THE DINEMSION STATEMERT: CFR(H)eX{D):
MUET= s Ty A{T-1L o T Y CE{IY
DOUBLE PRECISION MU(3,4),CF{28) N (3:4¢28)SHALLL SHALL2
DIFENSION X (6)
INTEGER TTHO/2/0ONESY1/ 4D
READ(5:200) T3¢0
200 FORMAT{31IS) .
WRITE(65210) T4, D 4
210 FORMAT(IHI 50K T gl X 8=F g I2, 00Xt e gl N ¥t ol2,5Xe D =t512://)
JJ=7T-1
KOUNTS=0
DO 70 I=1.T7
I1I=T~-1
70 KOUNTS=KOUNTS+1I
DO 10 J=1.,4J
KO=Jd+1
DO 10 K=KO0,T
READ(S 220 {ALIKeL) pl=loM)
220 FORMAT(4D20.10)
DO 10 L=1:HM
10 VRITE(6,230 s Kl Al KoL}
230 FORMATI(OO X SA( 94125t o 2,8 ¢t sl2% )0 X%, 15:020:105/1
Lt READ(S5,2403(X(1)s)=1:D)
2460 FORMAT(SX;6F10.5)
KOUNT=0
LATCH=Q0
SMALLL1=0.
CFR{TI=X(1)=X{)
CR{2}=0(2)VEX{2)
CFR(31=X(3)%X(3)
CFR{41=X{4)%3{4)
CRI5)=X(5)¥)X{5)
CRE6)I=X{6)%EX(6)
CR(T)Y=X(LYaX(2)
CE(8)=X(1}x)X{3)
CF(9)=X(1)*X(4)
CFRILO)=X(1)xX(5)
CRI1L)=X{1)2X(6)
CE(12)=X(2)%X(3)
CF{13)=X{2)%X{4&)
CF(L4)=X({2)=X(5)
CF{15)=X{2)%X{G)-
CF(LG)=X(3)xX(4)
CRL1T)Y=X(3):=X(5)
CR{18)=X{3)%X(6)
CF{19)=X(4}=X(5)
CR(20)=)X{4)%:X(6)
CFE(21)=X{5)%X(6)
CF(22)=X{1)
CF(23)=X(2)
CFL24)=X(3)
CF(25)=X{4)

At
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CF{26)=X(5)
LCE(27)=X{6)

Cr(28)=1.
DO 20 J=1,4J
KO=J+1

DO 20 K=KO0sT
HU(J,K)=0,
DO 3C L=1;H
30 MUGIeK)=ATI Ky LIHCFILY4MUTJI K )
20 WRITE(65255) 3K, FPULJK)
255 FORMAT(S50X e HU( 4 I25% %03 25%) =%,D20.10)
1 DO 40 J=1.JJ
KO=J<+1
DO 45 K=KO0.T
IF(T.EQ.2) GO YO 12
IR (MUCJIKY)I5:6456
5 IF(JJ-J)15,:15,40
6 IF(T-K)3:3,45
45 CONTINUE
40 CONTINUE
3 IF(J.EQ.1) GO TO 8
K=J
JEK=K~1]
D0 50 J=1.dK
IF(RU(I )Y 75252
T IF(JK~J)9:9:50 _
9 RRITE(6:,2T70) (X{I)¢I=1:D)
270 FORMAY (33X, 6(F9.443%))
HRITE(6:2711)K
27) FORMAT(® <91 00X *CAT =t,12)
GO -T0 4
50 CORTINUE
15 DO 46 J=1,d4
IF(HUGIsTIoCELD) GO TO 2
46 CONTVINUE
HRITE(G: 27107
GO T0 4
2 DO 60 Jd=154J
KO=J+1
DO 60 K=KQ.T
IF(LAYCH.EC.1)GO TO 16
IF{SMALLLI.LT.DABSIHU{J«KI)ICO TO 17
GO TC 60
17 SMALL2=DABS{MU(JIsK))
LATCH=1
JSTAR=Y
KSTAR=K
GO 7O 60
16 IF(DABS(MU(J;K))oLToSHALLZoANDoDABS(HU(JvK))aGToSHALLl)GC T0 18
GO 70 60
18 SHALL2=DABS(MU(J,K))
JSTAR=Y
KSTAR=K



60

11
280

12
13

14

CONTINUE

SHALLLI=SHALLZ

LAYCH=0 :
HUCISTARS KSTAR = MULJSTARGKSTAR)%(~1,}
KOUNT=KOUNT+1
LF{KOUNT.GT.KQUNTS) GO TO 11
GO 16 1

WRITE(6:280)

FORIMAT(50Xs *NO DECISION CAN BE MADE.® )
GO TO 4

IF(HUGIK)) 13504414
HRITE(6:270)(X{1)oI=1,D)
IRITE(6,2T1)THO

GO T0 4
HRITE(652T70)(X(1}4I=1:D)
HRITE(G:271)0NE

GO T0O 4

WRITE(65270) (X{I)sI=1,D)
WRITE(G6:271)ONE

GO Y0 4

END



