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ABSTRACT

Consider an n-dimensional space which has been par­

titioned into "t" unique subspaces, called categories or 

populations. Associated with each category is a set of 

n-tuples, to be referred to as pattern vectors. Since each 

pattern vector belongs to one and only one category, each 

vector may be considered to be a data vector having "n" 

dimensions and belonging to a specific category.

A program was written which realizes an algorithm 

that performs an adaptive process with data of known classi­

fication. This procedure will establish the necessary cri­

terion for a classification scheme for other data from the 

same space whose category is unknown. A second program was 

written which performs the classification process according 

to the criterion established by the adaptive technique. It 

should be noted that a priori knowledge about the probability 

distributions of the data sets need not be known.

Several test problems were run on the IBM 360 digital 

computer using geophysical data. The results of these runs 

were highly successful in correctly classifying the data 

that was used.
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CHAPTER I

PATTERN RECOGNITION

1.1 Introduction

Suppose that an n-dimensional space is partitioned 

into "t" subspaces, called categories or populations. Each 

point in this space is considered to be an n-dimensional. 

vector, a pattern vector. Each category may have an In­

finite number of pattern vectors associated with it. It is 

desirable to develop a model which will, according to some 

given algorithm, classify each pattern vector to its appro­

priate category.

As an example, suppose that it is desirable to dis­

tinguish between earthquakes originating from different 

depths (a problem to be considered later in this paper). 

The categories could be chosen according to arbitrarily 

selected depths of occurrance, whereas the data taken from 

a seismograph would determine the number of dimensions of 

each pattern vector.

1.2 Discriminant Functions

A pattern vector, say X, is a point in an n-dimen­

sional space. The coordinates which describe this vector 

(x, x„ . . . x ) are the real numbers. A pattern classi- 1 2 n
fier can therefore be considered as an instrument which maps
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the points in the n-dimensional space into the subspace or 

category numbers 1, 2, . . ., t. The boundaries that sep­

arate the subspaces are called decision surfaces. Any de­

cision surface can be clearly defined by a set or family of 

functions called discriminant functions. These functions 

are chosen such that for all X e t, fj(X) > for j,

k = 1, 2, . . . t, j 7^ k, where f. and f. are single-valued 

scalar functions of the pattern vector X, and t^ is one of 

the "t" partitioned subspaces. Extending this concept, con­

sider the discriminant function

tk(x> = fj - fk (1-1>

then

yjk > o iff > fk (3.2)

yjk < o iff f. < fR

hence

X e tj iff Pjk > o (1.3)

X e tk iff vjk < o

The choice of the discriminant.function is a compro­

mise between two considerations: (1) the desired accuracy 

of classification, and (2) the economics considerations.
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For example, a linear discriminant function will not gen­

erally partition the space as precisely as would <'t quadratic 

function; however, the linear function will be the more 

economical of the two in terms of the necessary computation 

and storage required. Consequently, a "trade-off" situation 

develops. The solution to this is to consider the charac­

teristics of the particular problem to be solved.

Discriminant functions may be of any order; however, 

the most commonly used are the linear and the quadratic 

forms. Equation (4) below is the general linear discrimin­

ant function using three variables, and Equation (5) is the 

quadratic form using the same variables.

y1(x,y,z) = axx + a2y + a3z + a4 (1.4)

2 2 2
= aix + a2y + a3z + a4xy +

acxz + aryz + a„x + aoy + 5 6 7 8

a9Z + a10

Once the discriminant function has been chosen, the 

problem then becomes a matter of choosing the "best" values 

for the coefficients a^, a2, . . ., a^. The vector A, de­

noted by A = (a^ a2 . . . a^), is called the weight vector 

and the vector components are called the weights. It should 

be noted that if there are more than two categories, then 
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additional discriminant functions will be necessary to per­

form the pattern classification.

1.3 Bayes Discriminant Function

The classification problem has been solved by sta­

tistical decision theory if the probability density func­

tions are known for each population. The discriminant 

function which performs this "optimum" decision process is 

known as the Bayes discriminant function.

Minimizing the probability of misclassification is 

the most desirable trait for any classifier. The central 

issue of the decision-theoretic treatment is the specifica­

tion of a loss function, C(j/k), j, k = 1, 2, . . ., t, 

where t equals the total number of unique categories. Con­

sider a two-category problem, t^ and t2« There are only 

two types of errors that can be made: (1) classifying an 

observation as coming from t^ when it belongs to t2> de­

signated C(l/2), and (2) classifying an observation as 

coming from t2 when it belongs to t^, designated C(2/l).

Let the probability that an observation will come 

from t^ be q^ and from t2 be q2. Let the probability density 

function for t^ be p^(X) and for t2 be P2(X), where X = 

(Xi X2 . . . xn). From Bayes Theorem, the conditional pro­

bability that, given an observation X, it comes from popula­

tion t. is 1
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(1.6)

If X is classified as belonging to t, then the expected loss, 

also called a conditional average loss, for misclassification 

is

L1(X) = C(l/2)P(t2/X) (1.7)

Using Equation (1.6) yields

C(l/2)q9p9(X)
L, (X) = --------TxFv—A-----tw (1-8)

1 qlPl(X) + q2P2(X)

Similarly, if X is classified as belonging to t2,

C(2/l)q p (X)
Ij2(X) = q1P1(X) + q2P2(X) (1*9)

The minimum expected loss is obtained by assigning each X 

to the population which has the smallest expected loss. This 

rule is called the Bayes Decision Rule, and is expressed as

D(X) = L2(X) - ^(X)

C(2/I)q1p1 - C(l/2)q2p2
= qlpl + 92P2 <1-10)

where

X e t1 iff D(X) > o (1.11)

X E t2 iff D(X) < o
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The function D(X) is called the Bayes discriminant function*

classifying an observation X as coming from it be­

longs to t. . The resulting expected losses

(X)

(X) (1.13)

(X)

The discriminant functions are defined as:

(1.15)

which results in

(X) (1.16)

(X) (1.17)

(X) (1.18)

t. when
3

are:

D23

D13

- l2(x)

- L-^X)D12

Lj (X)

L1

L2

= L2(X)

L3

= l3(x)
= l3(x)

- L-JX)

- ^(X)

probability densities, the procedure is to, as before, min­

D..(X)13

When there are more than two populations with known

imize the total expected loss. For example, consider a

three-category problem. Let C(j/i) be the cost of mis-

C(2/l)q1P1 + C(2/3)q3p3

Z g p 
n=l

C(3/l)q1P1 + C(3/2)q2p2

C(l/2)q2p2 + C(l/3)q3p3

I q pL, ^n^n n=l

nn n=l
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The decision rules are

X E tl iff D12 >_ o and D13 > o

X E t2 iff D12 < o and D2 3 > o

X £ t3 iff D13 < o and D23 < o

(1.19)

Now, consider the case where

C(2/l) = C(3/l)

C(l/2) = C(3/2)

C(l/3) = C(2/3)

(1.20)

Then, for i j k

(1.21)

C(i/k)qkpk + C(i/j)qjPj 

2 i p n^n n=l

Since C(j/k) = C(i/k),

C(j/i)q.p. - C(i/j)q.p.
D. . (X) =----------^-2:------------------

1J 3 (1.22)

Since the decision rule indicates that only the sign is im­
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portant when classifying. Equation (1.22) becomes

C(j/i)q.p. " C(i/j)q.p.n =________t...t____________ J 1

There are two points worth mentioning at this time, 

the log function is a monotonically increasing function of 

its argument, taking the logarithm of D(X) results in the 

same decision process. Also, if the probability density 

functions are gaussian, then the resulting discriminant 

functions will be quadratic [Ref. 4]. Generally, the pro­

bability density functions for the populations will not be 

known; hence, the Bayes function can not be applied.

1.4 Adaptive Pattern Recognition

An adaptive pattern classification scheme is one 

which is able to monitor its own performance, thus enablJng 

it to alter, if necessary, its decision making process 

according to some stipulated criterion; it is, therefore, 

considered to be self-optimizing. Central to the adaptive 

scheme is the "training process", which enables the classi­

fier to achieve the desired performance level. The training 

proceeds as follows: A set of pattern vectors of known 

classification, the training set, is used to determine the 

"optimum" coefficients of the discriminant functions. The 

(1.23)

Since

system's performance to these coefficients is measured; and 
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if the desired performance has been obtained, that discrim­

inant function is used during the classification procedure.

There are at least three significant reasons why 

an adaptive pattern classifier is used:

(1) This approach offers a reasonable way of processing 

large quantities of data, where little, if any, information 

is known concerning the probability distributions of the 

populations.

(2) An adaptive technique is capable of handling a system 

whose parameters may fluctuate from time to time.

(3) The adaptive approach can be used to determine the 

significance of the training set parameters.

There are four desirable characteristics in any 

adaptive pattern classifier.

(1) The expected loss of the classified patterns should be 

as close as possible to the minimum expected loss.

(2) The system should possess enough versatility to be 

capable of handling a broad spectrum of pattern classifica­

tion problems.

(3) The use of a large-scale digital computer to implement 

the algorithm would be undesirable.

(4) It is desirable in adaptive systems to express the use­

fulness of a discriminant function quantitatively, i.e., to 

measure the system's capability to correctly classify a



10

pattern vector of an unknown population.

1.5 Summary

In conclusion, this first chapter has outlined four 

points: (1) The definitions for a pattern vector; category; 

training set, and adaptive classification scheme have been 

stated; (2) The use of discriminant functions for establish­

ing decision rules has been discussed; (3) The optimum de­

cision rule-Bayes function-has been derived, and (4) The 

usefulness as well as the desirable characteristics of an 

adaptive pattern classification scheme have been presented.



iHAPTER II

AN ADAPTIVE TECHNIQUE

2.1 Patterson's Method

Chapter I discussed pattern recognition in general 

and also presented a brief introduction regarding adaptive 

pattern recognition; this chapter will present the develop­

ment of a particular adaptive pattern recognition scheme.

In August, 1966, Patterson [Ref. 5] presented an 

adaptive pattern classification scheme. The discriminant 

functions were of the following form

m 
p(A,X) = ai<!)i(X)

i-1
(2.1)

where a^, a£, . . ., a are the weighting parameters which 

are adjusted during the adaption process. The <j)^ (X) func­

tions are the scalar functions of the pattern vector which 

are determined by the choice of the discriminant function. 

In vector notation

T p(A,X) = A^CX) (2.2)

where

^T . .TA = [a1 a2 . . . amJ (2.3)
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$(X) = [<f>T (X) 4>2 (X) . . . ^m(X)] (2.4)

X = (x1 x2 . . . Xj) (2.5)

and where

m = the total number of terms in the discriminant 

function

d = the dimension of the space.

The decision rule was

X c iff p(A,X) > 0 (2.6)

X e t iff p(A,X) < 0

The performance criterion was defined as

N1
2 [p(AzX(J1)) - C(2/l)]2 +

a=l
ql

^2 (A) =

q2 N2
Y [p(A,X<2)) + C(l/2)]2 (2.7)

g=l N * P

where C(i/j) is the cost for misclassifying a vector X as 

belonging to t^ when it actually belongs to t. The super­

scripts indicate the category to which the pattern vector 

belongs, while and N2 are the total number of training 

samples in classes t^ and t2 respectively. The criterion
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PLt has two characteristics which make it very attractive: U1N2

(1) is convex and thus lends itself readily to opti­

mization techniques.

(2) tL approaches the Bayes discriminant function as
12 

and become large.

A search technique was used to optimize the performance 

criterion.

The aforementioned algorithm can be extended to 

handle a multicategory problem; however, it is not the most 

desirable approach for the following reason. Suppose that 

a training set has adapted the system. Furthermore, suppose 

that one acquires an additional training set. If the system 

is to be updated using the previous algorithm, i.e., using 

the second training set to re-adapt the system, then all 

training samples must be used in the updating process. It 

is to this problem that Pitt [Ref. 6] directed his attention. 

The solution was to sequentialize the adaptive routine; 

hence, once a training vector was used in the adaptive pro­

cess, it need never be used again, even if an updating pro­

cess takes place. This sequentialization procedure results 

in less computer time.

2.2 The Multicategory Problem
I''- *Consider the discriminant function p.. (X,AJx), which 

discriminates between categories t^ and t^, where
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p ,k(X,Ajk) = -p. . (X,Ajk) (2.8)
JK

■'kThe AJ 1s are chosen such that MN., is minimized, wherejk

T
MN = 1 1 [p.k(X,Ajk) - r(j/k)]2 (2.9)

N £=1 i =1 Dk

T = the total number of categories

N^ - the total number of samples in category "Slv 

N = the total number of samples

and

r(j/k) = C(k/£) - C(j/£) if t j, k

= C(k/£) if £ = j

= -C(j/k) if £ = k

(2.10)

Then, a sample X^ is 

only if Pjk(Xir A^k)

said to belong to category t. if

> 0 for all j k.

and

Suppose that there are three categories, say, 1, 2,

and 3. Then

MN12 = i { J [P12 - C(2/l)]2 +

2 [p19 + C(l/2)]2 +
Xe2 1

£ [p - (C(2/3) - C(l/3))]2 }
Xe3 1
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The diagram below will be useful in the following discus­

sion.
I-----------*• ■ • C(2/l)

III■ • - C(2/3) - C(l/3)
• 0.

n-----► • -C(l/2)

As can be seen in the diagram, Category I samples are 

"mapped" to the point C(2/l), Category II, to -C(l/2) and 

Category III, to C(2/3) - C(l/3). Intuitively, this mapping 

is satisfying. Increasing C(2/l) has the effect of increas­

ing the penalty of putting an X e t^ into t2,- therefore, 

it is desirable to map X s t^ further from the point 0. 

Similar reasoning follows for X e t2« Now suppose that 

X e tg and that C(2/3) > C(l/3). Then the cost of putting 

a sample from tg into tg is greater than putting it into t^. 

So, if a mistake in classification is made, it is better to 

put the sample in t^. Using the same reasoning, if C(l/3) > 

C(2/3), then if a mistake must be made for X e tg, map X to tg.

2.3 The Sequential Approach

Let the (mxl) vector $(X) be defined as
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$(X) = [<f)1(x)<j)2 (X) , . . <i>ra(x):i,r (2.12)

where "T" means transpose. The <j)^(X), i = 1, 2, . . . , m, 

are chosen such that they are linearly independent with 

probability 1. Define the set of discriminant functions 

as

pjk(Ajk,X)
m ..

■= 1 a^MX)
i=l x

= (Ajk)T $(X) (2.13)

where j, k = 1, 2, . . . t such that 1 < j < k <_ t and where 

A^k e Sm. The decision rule is

iffX E

iff (2.14)X £

The set of A vectors are

training set Let the (mxm)the defined

as

(2.15)

determined sequentially using

tk

random matrix P be n

p .. < 0 M jk

t.
3

P = Eo
TP = p + $ (n)4> (n) n n-±

where 4>(n) = 4 (Xn) , n = 1, 2, . . . N (N = the total number 

of training samples), and I is an (mxm) identity matrix. The 

parameter e is an arbitrarily small constant such that e > o. 

The matrix Pn^ is converted sequentially by the recurrence
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relation

-1 -1 T -1 -1-1 T -1P = P ,-[$ (n)P .. <$> (n)-H] P ,C>(n)C' (n)P ", n n-1 n-1 n-1 n-1
(2.16)

for n = 1, 2, . . .■, N and P = — I.o E

Let

Z^k(n) = r£(j/k) iff Xr e t^ (2.17)

where r^(j/k) is defined by Equation (2.10), which appears 

below:

r£(j/k) = C(k/£) - C(j/Jt); % / j, k

= C(k/j) ; £ = j

= -C(j/k) ; £ = k (2.10)

where

C(j/k) = 0, j = k (2.18)

Let the (mxl) random vector 0^ be defined as

0nk = 0n-l + zjk(n)$(n) (2.19)

"i kfor n = 1, 2, . . ., N and where 0^ is an (mxl) vector whose
"i kelements are all zero. After N training samples, the AJ

vectors are determined by
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P"1
N (2.20)

This relation, (2.20), will be proven below.

Equations (2.16) and (2.19) are used to update the 

system.

2.4 The Performance Criterion

The performance criterion for the sequential scheme 
N1 N2

is derived from equation (2.7). Let q^ = and - jj-'- ;

therefore, equation (2.7) becomes, after combining terms,

t N£
“NnN, MNk(ANk) = 5 J, 1

1 2 x,=l l.=l x
y' (2.21)

where N^, , . . ., N indicate the number of training vec­

tors in categories 1, 2, . . ., t respectively such that 

N, + Nn + . . . + N. = N, and where ? means that the
12 h i -1xsummation is over all e t^, i = 1, 2, . . ., N^. (The

•"I
smaller the value of , the better the classification.)

Now define

Qik(Aik) =^k(A^) +1 e(^k)TA3k (2.22)

-1
It is easily seen that is a continuous, convex function 

of A^; therefore, the vectors which minimize will 

satisfy
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where

3f(A^k) 8f(Ajk) df(A^k)
(2.24)

Performing the' indicated operations yields, after simplifi­

cation ,

t Nt t N£
1 2 [^(ijr (i£)+El]A^ = 2 2 r, (j/k)4>(ij;)

£=1 i£=l w £=1 i^=1

(2.25) 

or
NN- m -v t £

2 [4> (i) 3>1 (i)+El]A^ =2 2 rp (j/k) «> (ip) (2.26)
i=l N £=1 i£=l

Using equations (2.15) and (2.19), it is easily seen that 

equation (2.26) becomes

PN^k = ®Nk (2-27)

and equation (2.20) follows.

2.5 Setting a Pound for e

A “poor" initial choice for the value of e may result 

in an obviously useless set of Ar. vectors as indicated by the
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”i k magnitude of the performance criterion, L'H . The reason 

for this useless result is round-off error in the computer.
T —1 —1Consider the term (n)(n)+1] in equation (2.16).

For convenience, choose

P3k = alxl + a2X2 + a3 (2.28)

After substituting the appropriate terms and performing the 

indicated matrix operations, one can reduce the term in 

question to

2 "la. 2 “la. "I a. 1

X1 G +x2e +e + 1 (2.29)

Suppose £ = 10 a’°, ao > o; = k^(10)al, and = 'k^UO)012 
2 2such that 1 < k. <10, i = 1, 2. The restriction 1 < k7 < 10 — i ' ' — i

merely prevents any change in the values of and . Assume 

that [ot^l > 10^21 > ao, then the dominating term is x^ e or 

a-i 9 a
[^(10) -L]Z[10] ° (2.30)

There are 56 bits of "magnitude information" in the IBM 360 

system in double precision, (2^^ - 10"*"^) . To allow for over- 
1 g

flow, use 10 . In order to "prevent" round-off error the

criterion to be used is

2a, + a <161 o (2.31)



21

Since e appears in (2.29), it can be considered in (2.31)- 

this makes the calculations a little easier. Hence, equa­

tion (2.31) becomes

2a, + 2 ot <161 o

or

a < 8-a o (2.32)

The inequality (2.32) is only a guideline for choosing an 

initial e.

This discussion can be generalized quite easily.

Suppose that

“jk = alxl + a2x2 + ' " ‘ aixi + ' ‘ ' + am ,2-33)

where 8 > 0 and i = 1, 2, . . ., d. There will exist some
o Pq ^2 ^3

x? (or possibly some combination, say, x^ xq x-l+2' where

8 = + ^2 + ^3)/ which may be written as,

x? A [^(lO)011]5 (2.34)

such that a. is greater than any other a.. Following a simi­

lar procedure, one would determine the new guideline to be

2Ba^ + 2aQ < 16 (2.35)



22

2.6 Summary

To conclude this chapter, the sequential scheme will

be outlined.

(1) Choose the form of the discriminant function.

(2) Choose a value for s using (2.35).

(3) Choose the cost function, C(j/k).

(4) Apply equations (2.16, 2.17, 2.18, 2.19,) to the train­

ing set.

(5) After N samples, use (2.20) to determine the set of 
, jk ,A,< vectors.N

(6) Determine the p.. 1 s from (2.13).

(7) Determine the T^^’s from (2.21).

(8) Perform the decision process using (2.14).



CHAPTER III

A SEQUENTIAL AI.GORITHM

3.1 Introduction

The program-called SAPRA, meaning Sequential Adap­

tive Pattern Recognition Algorithm,is divided into two parts:

(1) Determining the A vectors and performance criterion, 

MN, and (2) The decision process. The former will be pre­

sented as a general flow table in this chapter and will be 

discussed in detail in Appendix A. The latter will be treat­

ed in detail in this chapter with the flow graph appearing, 

in detail, in Appendix B.

3.2 Generating the A Vectors

A general flow chart for the generation of the A 

vectors appears in Fig. 3.1. The following list presents 

each variable used and its associated meaning: 

s  convergence factor for Pq

M  total number of terms in the discriminant 

function

NN total number of training sampJ.es, NN=N

T total number of categories , T=t

UPDATE. . . a "flag" used to update the system

COST. . . . the values of C(j/k)



MN.. . .3k the performance criterion

the dimension of the space

The flow chart follows the following sequence of

operations.

(1) The values of ef M, NN, T, UPDATE, D, and COST are read 

in.
-1 ik(2) The initial conditions for P and 0J are set.o o

(3) Begin a "DO LOOP"; read one pattern vector and ils 

associated category, n = 1, 2, . . ., NN.

(4) Compute (Xn), j = 1, 2, . . ., M.

(5) Compute Pn and 0^ and return to (3) above if n<NN.

(6) If n = NN, compute

(7) Begin a "DO LOOP"; read one pattern vector and its

associated category.

(8)

(9)

Compute <f) . (X ) j n 3=1/2, M.

Compute the value of the discriminant function "jk-
(10) Compute the "value" of the performance criterion, MN., , 

and return to (7) above if n<NN.

(11) If n = NN, compute final value of

3.3 The Decision Process

After the adaptive procedure is completed, i.e., the

A vectors are determined, the decision rule is applied. Re­

calling, the rule states that for any X^, i = 1, 2, . . ., N,
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if u.. > o, then X. e t.jk - i 3 otherwise X. e t, , wherei k'
1 < j < k < T. The bounds on "j" and ”k" as applied to the

discriminant functions mean that given a t~category problem, 

there will exist a set of discriminant functions as shown
-1

below, where ,Xi) ,

P12 p13 P14 P15 * * * Plt

P23 P24 P25 * * * P2t

P34 P35 * * * P3t

pt-l,t

Now, refer to row one (1) as the row containing all where

D = 1 row two (2) as the row containing all y.,
D K

where j = 2,

etc; moreover, refer to column 2 as the column containing all

p., where k = 2, column 3 as the column containing all u..Hjk ’ y h3k
where k = 3, etc. Assume that all p., values have been de- 

3K
termined 

and k^ 

plk2 < °

and that p^k >_ o and < o, 

Now, p^k o implies thatk2

implies that X. e t, . This is
1 K2

where k^ > 1, > 1

X. e t., , whereas i 1
considered to be a

"conflict" since X. can not belong to both t, and t, . With 
1 1 k2

this in mind, one can easily determine an algorithm to perform 

the decision making, or classification. The algorithm is as 

follows:
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k then e

4 E

below.

* such that each p o then

for k = j1, j ne

(4)for

below.

benot

t-1

sign changing process until either a classification has been 

one time.

X.
i

X.
1

X.
1

1, 2every Pjk 

essary and sufficient

j'k - 
j 1 -1, is

e tj 1 ; otherwise go to

made or until all Pjk’s have had their sign changed exactly 

t£ iff

and change its sign. Return to (1) above. Continue this 

(1) If each p^k > 

otherwise, go to (2) below.

(4) If (3) above can

column, i.e., if each ^jt

Xi E tt' otherwise, go to

(5) Since (4) above can not be satisfied, search for the

(2) If each , k = 3

for j = 1, 2

first sign change, then search for the "next" smallest value 

P12 < o; otherwise go to (3)

(3) If there exists a row j

smallest p., , magnitude wise, and change its sign. Return 

to (1) above. If a classification does not result after the 

satisfied, then check the last

(5) below. SEE NOTE AFTER (5)

NOTE: The value of p.. can be considered as a distance be-3k
tween X. and the decision surface determined by p; hence, 

1 3K
if one changes the sign of p., , this has the effect of "mov- 

3K
ing" X^ from, say, t^ to t^. If (4) above can not be satis­

fied, then a classification could possibly result by changing 

t, then
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the sign of the smallest magnitude wise. It should be 

noted that by changing the signs of the discriminant func­

tions, one is "altering" the system; moreover, it seems that 

as the number of sign changes increases, the resulting 

classification, if any, will become somewhat questionable.

3.4 A Simulated Problem

A test problem was used to check the program’s per­

formance. A four-category, two dimensional problem was used 

for two reasons. (1) The multicategory aspect of the al­

gorithm could be verified without using too much computer 

time. (2) A plot of each discriminant function could be 

obtained quite readily thus enabling a pictorial representa­

tion of the discriminatory process. The pattern vectors were 

chosen in a "random" manner; however, they were chosen so as 

to provide some overlapping between the categories. The 

cost function was chosen to be C(j/k) =1, j k and 

C(j/k) = 0.0, j = k. Figures 3-2 and 3-3 display the simu­

lated problem and the discriminant functions found using the 

SAPRA program.

3.5 Summary

In conclusion, this chapter has presented the basic 

flow chart for the SAPRA program; examined, in detail, the 

decision process, and presented the results of a simulated 

study invoiding a four-category two-dimensional space.
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CHAPTER IV

DIFFERENTIATING REEF FROM NON-REEF CARBONATES

4.1 Introduction

It was felt that the results obtained from the sim­

ulated study of Chapter III indicated that the SAPRA program 

was performing satisfactorily. Hence, the next few chapters, 

IV thru VII, will be directed towards classification pro­

blems involving geophysical data.

4.2 The Problem

Chester [Ref. 1] was concerned with the problem of 

trying to determine the value of various trace elements -as, 

facies indicators in a series of reef and non-reef carbonates 

by analyzing the distribution of these elements. He obtained 

data from carbonates of Devonian Age from the Sturgeon Lake 

reef area of Alberta, Canada. In his analysis, he was in­

terested in the detrital and non-detrital trace elements of 

the carbonates used. The word "detrital" implies that a 

rock mixture was carried into the basin of deposition in the 

solid state, whereas, non-detrital implies material entering 

the basin of deposition in solution. While removing the 

trace elements in the non-detrital portion of the rocks, one 

should be able to determine something about the chemical en­

vironment in which the sediment was formed. On the other
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hand, the detrital fraction should reveal not only the 

nature of the source material but also the sedimentary 

characters which are more dependent on the physical vari­

ables of the area. Any trace element may be of some use a 

a geochemical indicator if (1) there is a significant 

variation in the content of the element as it is traced 

over a basin of deposition, (2) there is a relationship 

between the element and a certain type of environment.

4.3 The Method

The method used by Chester to determine the usefxnl 

ness of trace elements as facies indicators is as follows:

(1) A Student’s t-test was performed on the total number 

of analyses for each particular element from the two cate- 

gories-reef, non-reef. The purpose of this test was to de 

termine whether a statistical difference could be made be­

tween the two categories.

(2) A graph was made of the distribution of each element 

between the two populations.

(3) The trace element concentrations were partitioned by 

inspection according to the best separation.

(4) The accuracy of the chosen partition values was then 

evaluated.
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4.4 The Results

The results of Chester's analysis on non-detrital 

trace elements will now be summarized. The trace elements, 

and element ratios, of concern were: Ni; Co; Cr; V; Cu; 

Pb; Ga; Ni/Co; Cr/V; Pv/Ga, and Cu/Co. There were 43 reef 

samples and 100 non-reef samples. The percentage of samples 

that were correctly classified from the reef facies was 71%, 

from the non-reef facies, 87%, and from both facies was 82%. 

The classification was performed using a combined 8-element, 

and element ratio, test or a 4-element, and element ratio, 

test for the samples in which Pb, Ga, and Cu were not de­

termined. A scheme for classification was devised which 

assumed that a sample was correctly classified if five or 

more of the trace elements had values which fell within the 

limits for the facies of that sample. The 4-element test 

required that three values be within the bounds of the facies.

4.5 The Sequential Approach

When the SAPRA program was applied to this problem, 

the resulting classification was far superior to that ob­

tained by Chester. The trace elements used were: Ni; Co; V; 

Cu, and Pb. Only 19 samples were used from the reef category 

and 60 samples, from the non-reef category. A quadratic 

discriminant function was chosen; hence, there were 21 terms 

in the function, i.e., ((m(X) for i = 1, 2, . . . , 21. The 
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initial choice for e was determined using the boundary con­

dition as established in Chapter II, 2.35. For convenience 

the inequality (2.35) appears below.

2SCU + 2cto < 16 (2.30)

Since a quadratic discriminant function was chosen, 3=2. 

The value of was determined from the data and found to 

be 2. Inserting" these values into (2.35) yields (xo <4. A 

value of «o which produced an acceptable performance cri­

terion was «o = 5. The cost function was C(j/k) “1, j - k. 

and C(j/k) = 0, whenever j = k. The performance criterion 

MN had a value of 0.258. The table below 4.1 presents a 

summary of the results obtained by the SAPRA program.

CATEGORY NO. OF SAMPLES NO. OF ERRORS

Reef 19 1
Non-Reef 60 2

TABLE 4.1

Differentiating Reef and Non-Reef Carbonates Using 

the SAPRA Program

The next table 4.2 compares the percentages of cor­

rect classification between Chester's method and SAPRA’s 

method.
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METHOD CATEGORY NO. OF SAMPLES CORRECT CLASSIFICATION

TABLE 4.2

Chester Reef 43 71%
SAPRA Reef 19 94%
Chester Non-Reef 100 87%
SAPRA Non-Reef 60 97%
Chester Both 143 82%
SAPRA Both 79 96%

A Comparison Between Chester’s Method and SAPRA’s

It is clear from the above that the results from the 

SAPRA program are far superior to those obtained by Chester. 

Note, especially, that the results using SAPRA are better 

in all cases using fewer samples.

4.6 Summary

A problem concerned with differentiating between 

reef from non-reef carbonates using the analysis of non- 

detrital trace elements was presented. The percentage of 

correct classification obtained by using the SAPRA program 

was far superior to the method used by Chester. These re­

sults indicate that a geochemical differentiation can 

definitely be made between reef carbonates from non-reef 

carbonates.



CHAPTER V

SEPARATION OF SHALLOW AND DEEP EARTHQUAKES

5.1 The Problem

The problem is to differentiate between shallow 

(focus < 100 km deep) and deep (focus > 100 km deep) earth­

quakes. This was investigated by Nersesov et al in 1968 

[Ref. 3].

5.2 The Method

He approached the problem in two ways.

(1) A separating function was formed by using the product 

of one-dimensional probability densities. This function was 

of the form

F, , ________gup... fn(xn)_______
xl' •••' xn f1(x1)...fn(xn)rg-1(x1)...gn(xn)

(5.1)
The function (5.1) is used with seismic parameters, say,

Zt, . . ., z , such that if V ' TV

F(Z1, . . ., zn)>K (5.2)

where K is some constant such that o < K < 1, then the phe­

nomenon is classified as belonging to Class I; and if

F (ziz z )<K n — (5.3)
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then it belongs to Class II.

(2) The second approach used a linear criterion of the

following form:

F ,
n

x ) = ? p..x.(a< -A.)
J-1 J — J-

(5.4)

where

n = the dimension of the space

Pij the inverse of the correlation matrix

the mean values of the parameters for Class I

Aj = the mean values of the parameters for Class II

The decision rule is similar to that used in (1) above with 

the exception that -<» < K < “>.

5.3 The Results

Nersesov et al used 100 training samples, 50 from 

each population, to adapt the system. The data was obtained 

from shallow and deep earthquakes in Central Asia. The para­

meters, dimensions, involved were (1) t - the time from 

first arrival to onset of the maximum in the "P" wave. (The

"P" wave is the compressional wave; it travels in the direc­

tion of particle motion.) (2)

of the "P" wave. (3) f - the s

f - the apparent frequency 

apparent frequency of the

"S" wave. (The "S" wave, or shear wave travels in a direc-
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tion that is perpendicular to particle motion.)

After the system was adapted, Nersesov et al used 

40 samples (20 from each class) to evaluate the probability 

of errors. The results were summarized and indicated that 

any one method produced approximately 10-15% erroneous 

classifications.

5.4 The Sequential Approach

The data which was used to verify Nersesov's system 

was used as the training set for the SAPRA program. Re­

turning, once again, to the inequality (2.35), it was de­

termined from the data used that oh = 1. Since a quadratic 

discriminant function was used, 8=2; and the resulting 

bound is a <6. The value of a =5 was chosen. The cost o o
function was C(j/k) = 1 for j k and C(j/k) -= 0 for j = k.

-5Thus, with s = 10 and using 40 training samples, the valu 

of the performance criterion was 0.305. Category I, deep 

earthquakes, had no errors in classification; Category II 

had 2 errors. Hence, a 5% error resulted.

By an analysis of the A vectors, one can determine 

the significance of any one, or more, of the parameters in­

volved. For example, consider the following discriminant 

function

2 2p = a.x, +a„x„ +aoxnx„+a.x.+arx„+a, (5.5)11 22 312 41 52 b
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If, say, the values of a^, a^ and a^ were such that a^, a^, 

a. << ao, ar, ar, and if x, << x„, then one would naturally 4 2. D b -L Z*
2 assume that the terms a^x., , a,x1x9 and a.x, would contr.i- J- -L O J- J-

bute little to the discriminant function.. Since the co­

efficients, a^, . . ., a.g, are considered to be weighting 

factors, it is reasonable to assume that the parameter 

is of "lesser" significance than is for discriminatory 

purposes.

A situation of this nature occurred when applying 

the SAPRA program to this problem. The "insignificant'' 

parameter was x^ = t x. Consequently, a second run with 
-5e = 10 was made using the same training set, but with 

x^ = o. The results were gratifying; the. performance cri­

terion was 0.404. There were two errors in each category? 

thus, a total error of 10% resulted. This result strongly 

suggests an additional advantage of the SAPRA program, i.e., 

the capacity to differentiate between parameters that will 

"weigh heavily" in the discriminant function and those which 

will not.

5.5 Summary

A problem concerned with differentiating between deep 

and shallow earthquakes was investigated. The methods used 

by Nersesov et al produced an error of 10-15%. The SAPRA 

program not only produced fewer errors, 5%, but also used less 
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training samples for the adaptive process. The feasibility 

of using the A vectors to indicate "insignificant" training 

parameters was also suggested.



CHAPTER VI

TRACE ELEMENTS IN MARINE AND FRESH WATER

6.1 The Problem

The trace elements B, Co, Cr, Cu, Ga, Ni, Pb, V and 

Zn were analyzed in a total of 66 samples of both ancient 

and modern marine and fresh-water argillaceous sediments 

by Potter et al in 1962 [Ref. 7]. The purpose of the anal­

ysis was to determine the value, if any, of the above trace 

elements as environmental discriminators. The samples were 

taken such that the climates, sample location, and geologic 

age varied considerably in order to form a more general test. 

The data was categorized as follows: 14 samples of modern 

marine; 19 modern fresh; 20 ancient marine, and 13 ancient 

fresh water samples.

6.2 The Method

A preliminary graphical evaluation was first made by 

Potter et al for each of the trace elements. This involved 

choosing a partition line which would best separate modern 

marine samples from modern fresh water samples according to 

the concentration, in parts per million, of the trace ele­

ments. By using all six elements equally weighted. Potter 

et al were able to correctly classify 88% of the ancient 

sediments.
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Zi statistical approach was taken next. A linear 

discriminant function of the form

= a, x,+a«xn+a-)x.-l+a,,x,-i-a[-x!-+a,x,+a.,x-7 1 1 2 2 3 3 4 4 5 5 6 6 / 7 (6.1)

was used, where x^ = boron, = chromium, x^ “ copper.

x^ = gallium, x^ = lead, x^ = nickel and x^ = vanadium and

the coefficients a^, i -- 1, 7, are the weighting

factors. It was assumed that for each of the four cate­

gories there existed a common covariance matrix but that 

the means of the elements could vary. The common covariance 

matrix was obtained by a pooling of the covariance matrices 

for each of the four populations. The method of determining 

the weighting factors, a^, for i - 1, . . ., 7, is discussed 

in Appendix I of Ref. 7. The basic approach was to deter­

mine "that linear combination of the x's for which the ’t!

of Student's test is maximized".

The classification scheme consisted of the following:

(1) Compute

X17 alxll+a2x12+ + a7x1? (6.2)

X27 alx21+a2x22

(2) Let x^,X2, . . ., x7 be observed for the unknown sample, 

then compute
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X- = a, x,+a„x„+ ... + anx„, / J_ ± Z Z il (6.3)

(3) If has a value closer to that of X^^, then that 

sample belongs to population 1; and if has a value closer 

to that of X2-,, then that sample is said to belong to cate­

gory 2.

6.3 The Results

The results obtained by use of a linear discriminant 

function which used only the trace elements B and V were 

considered impressive. The form of the function was

X2 = a1x1+a2x2 (6.4)

There were only 5 samples from the 33 "ancient" samples that 

were misclassified and 5 samples from the 33 "modern" sam­

ples that were misclassified.

6.4 The Sequential Approach

When the SAPRA program was applied to this problem, 

the results were even more impressive than were those obtain­

ed by Potter et al. Several different computer runs were 

made; the results of each will be discussed separately. The 

values for the cost function were C(j/k) =1, j 5/ k and 

C(j/k) = 0, j = k.
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RUN I

The elements used were B, Crf Ni, and V. The ele­

ments Cr and V were analyzed by two different methods; 

hence instead of having a 4-dimensional problem, the problem 

had 6 dimensions. The value of a =3 was chosen. The o 
categories were:

I = modern marine water

II = modern fresh water

III = ancient marine water

IV = ancient fresh water

A quadratic discriminant function was chosen. The resulting

values of the performance criterion were for e = 10

MN12 = 0.2864

MN13 = °-1506

MN14 = 0.1678

MN23 = 0.1871

MN24 = 0.2963

mn34 = 0.1244

The table below 6.1 indicates the errors that were made in 

classification
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TABLE 6.1

CATEGORY TOTAL ERRORS ERROR CATEGORIES

I 2 II
II 3 IV
III 1 I
IV 5 1/1, II/4

Classification Errors for the Elements B, Cr, Ni 

and V

Notice that 4 samples were classified as belonging to .11 

when they actually belonged to category IV,. and that 3 were 

put in IV when they belonged to II. This discrimination 

problem is indicated by the value of in comparison to 

the remaining MN values. The percentage of error is 16.7%.

RUN II

The elements used were B, Cr, Cu, Ga, Ni, and V.
-3The discriminant function was quadratic, and s = 10 . The

categories were the same as those of Run I. The resulting 

values of the performance criterion were:

MN12 = 0.2289

MN13 = 0-2190

MN14 = °-1529

MN23 = 0.2052

MN24 =: °’2208

MN34 = 0.1652
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Table 6.2 bel.ow displays the errors made during classifica­

tion. The error is 16.7%.

CATEGORY TOTAL ERRORS ERROR CATEGORIES

I 1 IV
II 2 IV
III 5 1/2, II/3
IV 3

TABLE 6.2

1/1, II/2

Classification Errors for the Elements

B, Crz Cu, Ga, Ni, and V

RUN III

The elements used were B and V. The problem was 

subdivided as indicated below.

CATEGORY CASE _I CASE II

I ancient marine modern marine
II ancient fresh modern fresh

Case I

The discriminant function was again quadratic, and
-3

e = 10 . The value of = 0.3736 was determined. Table

6.3 indicates the errors made during classification and com­

pares them to those made by Potter et al.



CATEGORY SAPRA ERRORS POTTER ERRORS

112 
II 2 3

TABLE 6.3

Classification Errors for the Elements B and V

I = Ancient Marine; II = Ancient Fresh

The error percentage for SAPRA was 9% and for Potter

et al, 15%.

Case II

The discriminant function was quadratic, and e - 10

The value of = 0.3356 was determined. Table 6.4 com­

pares the errors made during classification.

CATEGORY SAPRA ERRORS POTTER ERRORS

Ill 
II 1 4

TABLE 6.4

Classification Errors for the Elements B and V

I = Modern Marine; II = Modern Fresh

The percentage of errors are 6% for SAPRA and 15% 

for Potter et al.

Run IV

The elements used were B and V. The categories were
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the same as those of run I. For e - 10 , the values of 

the performance criterion were:

MNi2 = 0.3417

MN13 = 0.3705

MxT14 = °-2831

MN23 = 0.3423

MN24 = 0.4564

MN34 = 0.2781

Table 6.5, below, presents the classification error made.

CATEGORY TOTAL ERRORS ERROR CATEGORIES

TABLE 6.5

I 4 II/2, III/2
II 4 III/2, IV/2
III 7 1/4, II/3
IV 10 1/1, I1/9

Classification Errors for the Elements B and V

It is obvious that the results of this run are not 

acceptable. The conclusion is that the trace elements B and 

V are not good differentiators for the four-category case.

Run V

The elements B and V were used once again; however, 

the discriminant function was chosen to be linear. Further-
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more, the problem vzas subdivided in the same manner as in

Run III. The discriminant function had the form

P12 = a1x1+a2x2+a3 (6.5)

where x^ = boron and x2 = vanadium. Table 6.6 presents the
-4 results of case I, where e = 10 . The performance criter­

ion was MNj2 = 0»4340

CATEGORY SAPRA ERRORS POTTER ERRORS

13 2
II 2 3

TABLE 6.6

Classification Errors for the Elements B and V

I = Ancient Marine; II = Ancient Fresh

Table 6.7 shows the results for Case II, where 
-4e = 10 and MN^2 = 0.4135.

CATEGORY SAPRA ERRORS POTTER ERRORS

12 1
II 2 4

TABLE 6.7

Classification Errors for the Elements B and V

I = Modern Marine; II - Modern Fresh
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6.5 Summary

The question as to whether trace elements can be 

used as indicators to differentiate between both modern and 

ancient marine and fresh water has been studied. The re­

sults of several studies which employed the SAPRA program 

indicate quite strongly that certain trace elements may in­

deed be used as "water differentiators”. The last table, 

6.8, of this chapter consolidates all of the previous re­

sults concerned with this classification problem.



RUN ELEMENTS
NUM. OF 

CATEGORIES
DISCRIMINANT

FUNCTION
VALUE
OF E

% "SAPRA”
ERRORS

% POTTER
ERRORS

I B,Cr,Ni,V 4 Quadratic io"3 16.7% Not Applicable

II B,Cr,Cu, 4 Quadratic io-3 16.7% Not Applicable

Ga,Ni,V

III B,V 2 (Ancient) Quadratic io-3 9% 15%

B,V 2 (Modern) Quadratic 10~3 6% 15%

IV B,V 4 Quadratic IO"3 38% Not Applicable

V B,V 2 (Ancient) Linear IO"4 15% 15%

BfV 2 (Modern) Linear IO"4 12% 15%

TABLE 6.8

Summary of Results for Chapter 6

Ut



CHAPTER VII

SAND ANALYSIS

7.1 The Problem

The last problem is concerned with the differentia­

tion between modern beach, coastal dune, inland dune and 

river sands on the basis of a whole phi sieve analysis of 

these sands. In 1967, Moiola and Weiser [Ref. 2] made an 

evaluation on the use of textural parameters as indicators 

to classify the aforementioned grades of sand. A total of 

120 samples, 30 from each of the categories, were gathered 

for the study. A sieve analysis was run on the data. 

Following this analysis, Moiola and Weiser compiled the 

quarter, half, and whole phi weight percentage distributions 

and then calculated the associated textural parameters by 

using a linear interpolation on the weight percentage dis­

tributions. The parameters used were:

(1) mean diameter - the average grain size

(2) standard deviation - a measure of dispersion about the 

mean

(3) skewness - a measure of asymmetry of distribution

(4) kurtosis - a measure of peakedness of the frequency curve

7.2 The Method

Moiola and Weiser then made plots of the textural 
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parameters using various combinations of the four categor­

ies. If a given plot demonstrated an effective differen­

tiation between the two populations of concern, then a 

straight line, called a boundary line, was drawn such that 

a maximum separation between the two categories was attained. 

The results of their work will be presented with those 

attained by the use of the SAPRA program.

7.3 The Sequential Approach

The program was employed in three different ways on 

this problem. The first method considered various two- 

category problems as did Moiola and Weiser. The second 

approach investigated the idea of "stripping" one category' 

from the four populations, one category from the remaining 

three, etc. The last method treated the entire problem as 

one four-category problem. The results of these approaches 

will be presented shortly.

The data that was used was obtained from a whole phi 

sieve analysis of 120 samples, 30 samples from each of the 

four categories. An analysis of the data reveiled that 

= -4. A quadratic discriminant function was used, hence, 

B = 2. And, from (2.35), ct < 16. The value a =10 was 

used for each of the three approaches to the problem. The 

cost function was C(j/k) = 1, j k and C(j/k) = 0, j = k.
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Tables 7.1 thru 7.4 present the results of the various two- 

category combinations. The columns labled "whole", "half", 

and "quarter" refer to the errors of Moiola and Weiser for 

whole phi, half phi, and quarter phi sieve analysis data.

MN12 = 0.1737

CATEGORY SAPRA WHOLE HALF QUARTER

Inland 0 5 3 2
Coastal 3 0 0 1

TABLE 7.1

Classification Errors for Two-Category Sand Problem

MN12 = 0-0437

CATEGORY SAPRA WHOLE HALF QUARTER

River 0 1 1 0
Beach 0 2 0 1

TABLE 7.2

Classification Errors for Two-Category Sand Problem

MN12 = 0.1334

CATEGORY SAPRA WHOLE HALF QUARTER

Beach 2 1 0 0
Inland 1 2 3 2

TABLE 7.3

Classification Errors for Two-Category Sand Problem
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MN12 = 0.0328

CATEGORY SAPRA tfUOLE HALF QUARTER

River 0 3 1 1
Coastal 0 0 0 0

TABLE 7.4

Classification Errors for Two-Category Sand Problem

The results in table 7.1 indicate that three sam­

ples (SAPRA column) from the Coastal Category were miss- 

classified. The error is 5%. Table 7.2 shows that there 

were no errors with the SAPRA program. Table 7.3 indicates 

that there were two beach samples classified incorrectly 

and one inland dune sample classified incorrectly. The 

error is 5%. Table 7.4 shows a perfect separation betvzeen 

coastal and river sands.

The next set of results were obtained by a "stripping" 

process. The concept of stripping can best be explained by 

the use of an example. Consider a three-category, say. A, 

B, and C, classification problem. One means of classifica­

tion would be to separate (strip), say, class A from the 

remaining two categories, and then strip B from C. In other 

words, the stripping technique essentially re-defines the 

problem from a t-category problem to several two-category 

ones. In the example above, for the "first strip". Category
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A could be considered as Category I and Categories B and 

C combined as category IT. For the "second strip", ate- 

gory B could be I and C, II. The order of stripping is 

important in that different errors result for different 

orders of stripping. The results of the stripping runs, 

tables 7.5 and 7.6, demonstrate this effect.

Classification Errors Obtained by "Stripping'1

FIRST STRIP SECOND ;STRIP THIRD STRIP
CATEGORY ERRORS CATEGORY ERRORS CATEGORY ERROR;

I-River 2 I-Beach 7 I-Inland 0
Il-Beach 4 Il-Inland 9 Il-Coastal 3

Inland Coastal
Coastal

TABLE 7.5

Classification Errors Obtained by "Stripping"

FIRST STRIP SECOND STRIP THIRD STRIP
CATEGORY ERRORS CATEGORY ERRORS CATEGORY ERRORS

I-Beach 7 I-River 2 I-Inland 0
II-River 9 Il-Inland 3 Il-Coastal 3

Inland Coastal
Coastal

TABLE 7.6

Note that the total number of errors for table 7.5 is

25 and for table 7.6 is 24. Note, also, that when beach 
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sands vzere stripped, in both cases more errors were attained 

than at any other strip.

The last approach viewed the situation as a four- 

category problem. The resulting values of the performance 

criterion were:

MN12 = 0.1454

MN13 = 0.1391

MN14 = °*1568

MN23 = 

mn24 = 
mn34 =

0.1606

0.3946

0.2029

Table 7.7 displays the errors in classification.

TABLE 7.7

CATEGORY TOTAL ERRORS ERROR CATEGORIES

I-River 4 III/3, IV/1
Il-Beach 9 IV/9
Ill-Inland 5 1/2, II/l, III/2
IV-Coastal 8 II/8

Classification Errors for Four-Category Sand Problem

Notice that 9 samples were classified as belonging 

to category IV when they actually belonged to II, and that 8 

samples were misclassified in Category IV. This result is 
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not surprising since the value of ^2^ is much larger with 

respect to the other values of the performance criterion. 

Also, note that more errors were again encountered with the 

classification of beach sands. Compare the errors of tables 

7.5, 7.6, and 7.7. This consistency of misclassification 

for beach sand may indicate that the parameters used during 

the adaption process were very similar to those of coastal 

sand.

7.4 Summary

The last example problem has been concerned vzit.h the 

classification of modern beach, coastal dune, inland dune, 

and river sands on the basis of a whole phi sieve analysis 

of the samples used. Three different approaches were taken 

on this problem:

(1) considering various combinations of two-category pro­

blems ;

(2) a "stripping" process;

(3) a four-category problem.

Moiola and Weiser approached the problem by method 

one above. They used the sieve analysis data to calculate 

the associated texture parameters, and then they performed 

the separation. The SAPRA program used the raw sieve analysis
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data to perform the classified.cion, thus bypassing any 

intermediate calculations. The results obtained with SAPKA 

had fewer misclassifications than did those of Moiola and 

Weiser.



CHAPTER VIII

CONCLUDING REMARKS

An adaptive multicategory pattern recognition al­

gorithm was programmed using an IBM 360/44 digital computer. 

The algorithm was divided into two main programs: (1) The 

adaption process; (2) The decision process. The effect­

iveness of the algorithm was tested by using geophysical 

data gathered from various sources. In all, four problems 

were run with this "real-world" data; and in each case, the 

resulting classifications obtained were considered excellent.

The SAPRA program has a number of advantages over 

many of the presently used pattern classification schemes.

(1) The algorithm inverts the matrix of concern by a se­

quential routine. Thus less computer time and storage are 

required.

(2) A priori knowledge of the probability density functions 

or distributions is not necessary to perform a classifica­

tion decision.

(3) There exists a number, or set of numbers if there are 

more than two categories, called the performance criterion 

which gives a strong indication as to how "good" the result­

ing classification will be.

(4) By a proper interpretation of the values of the co­
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efficients in the discriminant function, one can determine 

the relative effectiveness of each training parameter.

(5) There exists the capability to "update"the values of 

the coefficients of the discriminant function without having 

to employ the data which has been used previously for train­

ing. The "update" procedure will be discussed in Appendix A.

(6) The number of categories and dimensions allowed in any 

given problem is only limited.by economic considerations 

and the size of the computer being used.

(7) The classification becomes optimal as the number of 

training samples becomes large.

Several observations were made.

(1) An incorrect choice for e can result in poor classifi­

cation due to computer round-off error.

(2) If there are more than two categories, the values of 

the performance criterion relative to one another give an 

indication as to the difficulty encountered when classifying 

pattern vectors.

(3) As the order of the discriminant function increases, the 

resulting error of classification decreases.
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APPENDIX A

ADAPTIVE PROGRAM

A.l A detailed analysis of the adaptive portion of the 

program will be presented in this appendix. The analysis 

will follow the program as listed at the end of this appen­

dix.

This program was written to handle a problem witli 

the following specifications:

(1) maximum number of categories 4

(2) maximum number of dimensions = 6

(3) maximum order of the discriminant function = 2.

If one desires to solve a more complex problem, then the 

dimension statements may need to be modified. For example, 

consider a problem where there are 5 categories (T - 5) 7

dimensions (D = 7), and a second order discriminant function 

is chosen. Let the dimensions be represented by x^, . . ., x?. 

The discriminant function will be

2a. 2^ 2^ 2^ 2^ 2^ 2^fjk = =-1x1+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7+a8x1x2+agx:Lx3 +

a10xlx4+allxlx5+a12xlx6+a13xlx7+a14x2x3+a15x2x4 +

a. ^-x^x.+a, -x^x^+a, ox„x„+a3 ox_x.+anrixoxc+a„,xox, +16 2 5 17 2 6 18 2 7 19 3 4 2 0 3 5 21 3 6

a22x3x7+a 23x4x5+a24x4x6+a 4-

aooxn n x^+a^x ,+a~.Xr+a. ,xr+aorxn+aor/y 1 30 2 31 3 32 4 33 5 34 6 35 7 36 (A.l.l)
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There are 36 terms in the discriminant function; therefore, 

M = 36. The dimensioning statements can now be modified 

according to T = 5, D - 7, and M = 36. For example, the A 

vectors would be dimensioned, as is suggested by the first 

group of comment cards, A(T-1, T, M) - A(4, 5, 36). Of 

course the user could dimension for the maximum limits that 

he would expect to handle in any given problem, but this 

wastes computer memory.

A.2 The variable names will now be defined.

M = the number of (X) functions appearing in the dis­

criminant function

D = the dimension of the space, i.e., the number of ele­

ments in one pattern vector

T = the total number of categories

E = the convergence factor s, Po"*" - — I

NN = N = the total number of training samples

CF (M) = the M different (X) functions appearing in the 

discriminant function, e.g., using equation (A.1.1),

2
CF(1) = (hj^CX) =

2CF(2) = <f)2(X) = x2

CF(34) = <J)34(X) = x6
CF(35) = <t>35 (X) = x?
CF(36) = 4>36(X) = 1
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X(D) = a D-dimensional pattern vector

PNI(MZM) = the (man) matrix which is computed by equation

(2.16)

TH(T-lrT,M) = the 0^ vector (s) given by equation (2.9) for 

1 < j < k £ T

A(T-1,T,M) = the vector (s) given by equation (2.20) for 

1 < j < k < T

The M, in each case designates the element of the vector. 

For example, suppose T = 4 and M -- 28, then one would ex­

pect the following vector output, where

A(j,k,£) - A^k

TH(j,k,£) = 0^k

for j = 1, . . ., T-l, k = j+1. ., T, £=1, . . ., M,

and 1 < j < k < T

A(l,2,l)
A(l,2,2)

TH(1,2,1)
TH(1,2,2)

A(1,2,28) =
A(l,3,l)
A(l,3,2)

A(l,3,28) =

TH(1,2,28)
TH(1,3,1)
TH(1,3,2)

TH(1,3,28)
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A(lz4,28) =
A(2,3/l)
A(2,3,2)

TH(1,4,2 8)
TH(2,3,1)
TH (2,3..2)

A(3,4,28) = TH (3,4,28)

Z(T-1,T) = ZJ (n) as defined by equations (2.17) and

(2.18) where 1 < j < k < T.

COST (T, I) = a(T x T) matrix whose elements are the cost 

factors, C(j/k), which are determined by 

the user. Recall that C(j/k) = 0 whenever 

j = k for 1 _< j < k <_ T.

MN(T-1,T) = MN.. = a(T-lxT) matrix whose elements are

the performance criteria for 1 <_ j < k < T.

MU(T-1,T) = p as defined by equation (2.13).
3K

UPDATE = a "flag" used in the program to determine

whether to read the initial values of P-1
o

and ©o (UPDATE = 1) or to set the initial

values of P and 0 o c( equal to 0.0 (UPDATE = 0).

This will be discussed in A.3.

Recall equation (2.16), which is repeated below for conven­

ience.

-1 -1 T -1 -1 -1 T -1P = P .-($ (n)P ,4>(n)+l) P ,$(n)$ (n)P .n n-1 ' n-1 n-1 ' x ' n-1

(2.16)
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where n = 1, 2, . . ., N-l, N and P ™ I. Now7, isolate
T -1 -1the term (5> (n) Pn_^5> (n)+]j . Define:

T -1 Cl = ^(n) P , = a(Ixm) vectorn-l

C2 = Cl $(n) = a(1x1) vector

C - C2 + 1 = a constant

-1 T —1Now, isolate the term Pn_^^> (n) $ ' (n) Pn_^. Define

TCFP = <j>(n)5> (n) = an (mxm) matrix

Pl = CFP Pn^j = an (mxm) matiix

P2 = P "*"nP1 = an (mxm) matrix
n-l 1.

A.3 The operation of the program will now be discussed. 

Consider a problem where T = 4, D = 6, NN = 120(30 samples 

from each of the four categories), and a quadratic discrim­

inant function is chosen. Since D = 6, M = 28. The di­

mensioning statements would be the same as those in the 

program in the back of this appendix. Determine, from the 

data, the value of ou and use inequality (2.35) to choose 

an ao. For example, suppose that the largest piece of data 

was 145, and the smallest, 0.003. Then

2145 = 1.45(10)^, a1 = 2

0.003 = 3.0(10) , «2 = -3
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Since > | | » choose a,^

8=2. Thus, using (2.35)

-3. Since is quadratic,

28«£ + 2ao < 16

2 (d ) (-3) + 2«o < 16

-6 + a <8 o

a <14 o

-a ~10
Choose a =10; hence s = 10 ° = 10 . [REMEMEER: Theo
"16" in (2.35) was determined from the fact that the J/tM 

360 had 56 magnitude bits (2^^ - 10"*"^) . If a different 

computer is used, it may be necessary to re-define (2.35).] 

Now, determine the values of the cost functions, C(j/k), 

being sure that C(j/k) = 0.0 whenever j = k, 1 < j < k < T.

Assume that this is the first time any of the train­

ing samples have been used for the adaptive procedure; then, 

UPDATE = 0. Refer to the program when necessary for the 

following sequence of operations.

(1) Dimension statements are read.

(2) Integer T, CAT, UPDATE, D.

(3) Read E, M, NN, T, UPDATE, D.

(4) Read cost functions.

(5) Set "upper bound" for subscript (superscript) "j".
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(6) Initialize 0-*^" = 0.
o

(7) Initialize P = — I.' o £

(8) Begin data loop, i.e., read one pattern vector.

(9) Calculate (X) , i = 1, 2, . . . , 28.

(10) Begin calculation of Pn^•

(11) Determine Cl.

(12) Determine C2.

(13) Determine C.

(14) Determine CEP.

(15) Determine Pl.

(16) Determine P2.

(17) Determine P^^.

(18) Determine Z-’^'(n).

(19) Determine 0^(n).

(20) If all pattern samples have been read, go to (21) 

otherwise, return to (8) above.
-1

(21) Determine vectors.

(22) Set initial values of MN., = 0.0.3k
(23) Begin data loop, i.e., read one pattern vector.

(24) Determine <f)^(X), i = 1, 2, . . . , 28.

the

(25) Determine p.. values. 3k
(26) Determine MN., values.Jk
(27) Determine final MN., values.

(28) "i kPunch an output deck containing the vectors,

0„ vectors and the matrix P.. .N N
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Now, suppose that additional training samples have 

become available, and you wish to update the system. The 

flag, UPDATE, is now set equal to one (1). The values that
"i k **■ 3were obtained for the Or, vectors and the P... matrix from N N

the object deck will be the new initial conditions for the 

"update run". The program operation will be essentially 

the same, except in two operations.

(1) Steps 6 and 7 above will be modified, i.e., the ini­

tial values will be read from the object deck.

(2) Because the performance criteria are calculated by 

using the A^ vectors plus all of the data required to 

calculate these vectors, the values of MN., calculated3k 
during an updating procedure are not valid. It is for this 

reason that a third program may be desired to calculate the

MN., values 3k even though such a program is not necessary.

A.4 The order of the data cards for the adaptive program 

is given below.

1. Card with E, M,

500.

2. Cards with cost

520. For example,

UPDATE = 0

NN, T, UPDATE, D.

factors [C(j/k)J.

f T = 4 and all c

See format statement

See format statement 

t functions are equal
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then

0. 1. 1. 1. CARD 2
1. 0. 1. 1. CARD 3
1. 1. 0. 1. CARD 4
1. 1. 1. 0. CARD 5

Note C(l/1) = C(2/2) = C(3/3) = C(4/4) 0.

3. First set of data cards. See format statement 640.

4. Duplicate set of data. Same format.

UPDATE = 1

1. Card with E, M, NN, T, UPDATE, D. See format statement 

500.

2. Cards with cost factors. See format statement 520.
"i k3. Cards from output deck containing 0^ vectors.

4. Cards from output deck containing P^^ matrix.

5. First set of data cards. See format statement 640.

6. Duplicate set of data. Same format.
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C THE FL'LLOWiNG PERTAINS TO THE DIHEN'SION STAYERENT:
C H=NURDER CF PHI FUNCTIONS
C D=THE: NUH3ER OF DI PENSIONS IN THE SPACE
C ' T^THE NIJHBER OF DISTINCT CATEGORIES
C . E = T!E: CCRVEEGENCE FACTOR TO CALCULATE PNI
C CFff.)
C CFP(HJ-'i)
C . C1 ( H}
C TH ( T— 11 T t !•')
C A(T-],TtM)
C P2(!’VM)
C PNHL1$M)
C PKMJ1)
C X(D)
C Z(T-1,T)
C COST(T»T)
C MN(T-’1,T)
C MU ( T--11T )
C NiN IS THE NUMBER OF PATTERN VECTORS OF KRCKN CLASSIFICATION

DOUBLE PRECISION CF(2 8 ) $CFP(20428)tCI(28)sTH(3rA,28),A(3,A $ 28)f 
1P1 (28t28) tP2(28$28) ePNI (28t28) >E,C2tC?MN(3i,A )tHU(3,6)

DIMENSION X(6) ,Z(3v4) fCOST(-';$A)
INTEGER T 7 C A TU P D A T E v D

C READING IN SYSTEM. PARAMETERS
RE AD ( 5,500 ) EM ,NN y T $ UPDA1 E t. D

500 FORMAT(ID 10-9,515)
WRITE ( 6 $ 510 ) E t R t. NN ,T „UPDATEt D

510 FORMAT (1H1$25X,« E=e tD20<>9?5X t $ I 5 » 5 X t $ NN~ 4 t 15 p 5X $ eT=« t IS, 5XV *
1UPDATE=‘,I5$5X$«D -etI2t/////)

C READING IN COST CRITERIA
DO 10. I = 1,T

10 READ(5$520) (COST(ItJ),J=1vT) 
520 FORMAT(16F5-2 )

WRITE(6?530)
530 FORMAT(50Xr‘THE COST MATRIX ISef//i 

DO 20 Ll=ltT
20 WRITE(6,540)(COST(LI,Ml),Ml=ltT)

540 F0RMAT(54X$16(1X,F5.2))
C FIXING UPPER BOUND FOR SUBSCRIPT ”J”

JJ=T-1
DO 3C JO=ltJJ
JJO=JO-:-l
DO 30 KO=JJO,T
IF (UPDATEoEQo DGO TO 5
DO 40 10=1,M

40 TH(J0,K0,I0)=0.
GO TO 30

C READING IN INITIAL THETA VECTOR
5 READ(5,570)(TH(J0,K0,101,10=1,M)

570 FORMAT(4D20.10)
30 CONTINUE

DO 60 J1=1,M
IFtUPDATE.EQ.DGO TO 6
DO 70 K1=1,M
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PNI (JI,KI 1=0»

70 PNK
GO TO 60

C READING IN INITIAL MATRIX
6 READ! 5,600) ( PNI ( JI ,K1 )

600 FORMAT! 6D20d0)
60 CONTINUE

C BEGINNING DATA LOOP
DO 90 N=1,NN
READ(5,660) CAT,(X(J),J=1$D) 

640 FORMAT!I5,9F10e3)
C CALCULATING PHI FUNCTION VALUES

CF(1 ) = X(1)*X(1)
CF(2)=X(2)*X(2)
CF(3)=X(3)*X(3)
CF(4 ) = X(4 )^X(4 )
CF(5)=X(5)^X(5)
CF (6)r--X(6)vX(6)
CF(7)=X(1)*X(2)
CF (8 ) =X (1) ❖>: (3 )
CF(9)=X(1)^X(4)
CF(10)=X(1)»X(5)
CF(11 )=X(1)-X(6)
CF(12)=X( 2)*X(3).
CF(13)=X(2)»X(4)
CF(14)^X(2);:X(5)
CF(15)=X(2)^X(6)
CF(16)-X(3)'6X(4)
CF(17)=X(3)*X(5)
CF(18)=X(3)A.X(6)
CF(19)^X(4)>:-X(5)
CF(20 ) = X(4);::X(6)
CF(21)=X(5)=:<X(6)
CF(22)--:X( 1)
CF(23)=X(2)
CF(24)=X(3)
CF(25)^-X(4)
CF(26)=X(5)
CF(27)=X(6)
CF(28)-1O

C BEGINNING CALCULATION FOR INVERSE OF P MATRIX
DO 100 J2-1,M
Cl(J2)=0o
DO ICO K2=1,M

100 Cl (J2)=-CF(K2)»PN1 (K2, J2HC1( J2)
C2 = 0o
DO 110 J3=1,M

110 C2 = C1(J3)*CF( J3HC2
C=C2<-1.
DO 120 J4=1,M
DO 120 K4=1,M

120 CFP( J4 ,K4 ) = CF ( J4 )*CF (l<4 )
DO 130 J5=1,M
DO 130 K5^-1,M
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Pl(J5tK5)^Oe 
DO 130 1.5=1$ M 

130 Pl (J5,K5) = CFP( J5yL5)^PHI (L5$K5)-s-Pl(J5,K5) 
DO 140 
DO 140 K6-=1,M 
P2(J61K6)=0o 
DO 140 L6=1,M 

140 P2 ( J6, K6) =PNI ( J6 s L6) -P1 (If > /C-:-P2 (06$ 1'6 ) 
DO 150 J7---UM 
DO 150 K7=1,M 

150 PNI ( J7,K7)=PNI (J7tK7)--P2 ( J7»K7)
C END OF CALCULATIONS FOP INVERSE Or P MATRIX 
C DETERMINING THETA VECTOR

DO 160 J8=1$JJ 
JJ1=J8-:1
DO 160 K8=JJ1,T
IF(CAToNEoJ8oANDoCAToNEoKO)Z(J8$K8INCOST(K8,CAT)-COST(J 8>CAT' 
IF(CAT.EQoJ8)Z(J 8 $K8)=COST(K8»J8)
IF(CAT,EQ <K8)Z(J8$ K8)=-COST(JO;K8)
DO 170 L8 = iai

170 TH (J 8 t K8$ L8 ) =TH( J8t K8 $ L8 ) <-Z ( J8, K8 ) ’^CF (1.8 ) 
160 CONTINUE
90 CONTINUE

WRITE(6$660) 
660 F0RMAT(//,50Xt'THE A(JSK) AND TH{JPK) VECTORS ARES///! 

C DETERMINING A VECTOR
DO 100 09=1$JJ 
JJ2= J9:1 
DO 180 K9=JJ2,T 
DO 180 L9=1$M 
A( J9$K9tL9) = 0<. 
DO 190 M9=ltM 

190 A ( J9 $ K9 $ L9 ) =PN I ( L9 $ M9 ) ^'T H ( J9 $ K9r, 119 ) >A ( J9 $ K9 $ L9 ' 
180 WRITE (6$ 670) J9 $ K9$ L 9 $ A ( J 911(9$ L9) , J9 $ K9 r L9 $ Tl 1 ( J9 t K9 . L9 ; 
670 FORMAT(30X,6A(«$ 12 $'$ *,I 2t•$»$ 12.* )‘»IXr' = •,1X$D20.10$)G.

l'TH(« $ 12$$ 12$',12,«)« rlX$' = ',lX,D20.10t/)
C SETTING INITIAL VALUE OF PERFORMANCE CRITERION EQUAL 10 ZERO 

DO 220 J=1$JJ 
KK=J<1
DO 220 K=KK,T 

22 0 MN(J-J()=0o
C BEGINNING DAT/i LOOP 

DO 240 1=1,NN 
READ(5,730) CAT,(X(J),J=1 $D) 

730 FORMAT(I5,9F10=3)
C CALCULATING PHI FUNCTIONS VALUES

CF(1)=X(1)*X(1) 
CF(2)=X(2)*X(2) 
CF(3)=X(3)«X(3) 
CF (4)=X(4)❖X(4) 
CF(5)=X(5)^X(5) 
CF(6 ) = X(6)*X(6) 
CF(7)=X(1)*X(2) 
CF(8)=X(1)*X(3)



CF (9 ) = X( 1 )-:-X(^) 
CFdOi^ X( 1)»X(5) 
CF(11) = X( 1)--:<X(6) 
CPU 2) = X(2)*X(3) 
CF()3)=X(2)*X(<) 
CF ( }y}) = X( 2)*X( 5) 
CF(15 ) = X(2 )-X(6) 
CF (16)=X( 3)>: X(^ ) 
CF (17 )-X( 3)'-X( 5) 
CF(18 > = X(3)(6) 
CF(19}=X(^)*X(5) 
CF(20)=X(6)*X(6) 
CF (21 ) = X( 5)3:'X(6) 
CF(22)=X(1) 
CF(23)=X(2) 
CF ( ) = X( 3 >
CF (25)-X(/; ) 
CF(26)=X(5) 
CF(27)^X(6) 
CF(28)=lo

C CALCULATING VALUE OF DISCRIMINANT FUNCTION 
DO 250 J=1$JJ 
KK=J-M 
DO 2 50 K---KK,T 
MU(JtK)=0.
IFtCAT.NEeJ oANDeCATeNE.K )Z(J $K ) = COST(R ,CAT)-COS If J ?CA 
IFtCATeEQoJ )Z(J ,K >-CUSl(K tJ ) 
IF(CAT»EQ.K )Z(J , l( )-~COST(J , !< ) 
DO 2 60 L=1$M

260 MU ( J t K) A ( J $• Kr L ) < CF ( L ) -:-MU ( J <■, K )
C CALCULATING PARTIAL VALUE CF PERFORMANCE CRITERION 

250 MN(J»K)= (MU( JVK )—Z ( J t K) ) *^2-c MN ( J »K ) 
260 CONTINUE

WRITE(6,760)
740 FORMAT!///,50X,1 THE PERFORMANCE CRITERION IS:rt///) 

DO 270 J-ltJJ 
KK=J<1 
DO 270 K=KKrT

C CALCULATING FINAL VALUE OF PERFORMANCE CRITERION 
MN(J,K)=MN(J$K)/ NN

270 UR I IE ( 6,7 50 ) J s K $ f'N ( J r K )
750 FORMAT(50X,’MN(’,12,*,’r12,•) =’$D20«10 ,///)

C PUNCH OUTPUT DECK FOR A VECTORS,THETA VECTORS AND PNI MATRI 
DO 280 J=1,JJ 
KK = J: 1 
DO 280 K=KK,T

280 WRITE(7,760)(A(J,K,L)$L™1,M) 
760 FORMAT (4D20«10) 

DO 290 J=1,JJ 
KK = J-i-l 
DO 290 K=KK,T

290 WRITE(7,760)(TH(J,K,L),L=ltM) 
DO 300 J=ltM

300 WRITE (7,760) (PNI ( J,K) IK=lsf-') 
WRITE(7,8888)

8888 FORMAT!‘ ’)
END



APPENDIX B

THE DECISION PROCESS

B.l Since the decision process has been discussed in 

detail in section 4.3, only the flow chart. Fig. B-l, the 

definitions of variables, the program, and the order of the 

data cards will appear in this appendix.

DATA CARDS

B. 2

1. Card containing T, M, D. See format statement 200.
"i k2. Cards containing 7^ vectors from output deck.

3. Data cards. See format statement 240.

PROGRAM VARIABLES

KOUNTS = maximum number of sign changes

JJ = upper bound for superscript/subscript "j"

KOUNT = counter for sign changes

LATCH = a controller used when finding "smallest" value

of p ..3k
SMALL 1 = used with LATCH and SMALL 2 to determine "smallest"

^jk
CAT = category

SMALL 2 = used with LATCH and SMALL 1 to determine "smallest"

Pjk
J STAR, K STAR = subscripts of "smallest" p



FIG. B-l FLOW GRAPH FOR DECISION PROCESS
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C •M = THE NUMBER OF PHI FUNCTIONS.
C D = THE DIMENSION OF. THE PATTERN SPACE.
C THE FOLLONINC PERTAINS TO THE DIMENSION STATEMENT: CF (H ) trX( D ) $
C KU(T"l$T)tA(T-l,T1l-,l),CF(H)

DOUBLE PRECISION MU( 3, A) , CFI 28 ) T A ( 3, A » 28 ) , SM A LL11 SHAL !.2 
DI PENSION X(6)
INTEGER TtTU0/2/t0NE/l/vD
READ (5$ 200) T$F.,D

200 FORMAT(315)
WRITE(6,210)T,M,D

210 FORM AT ( 1H ] $ 50 X v ‘ T 6 $ IX t 1 - 6 $ I 2 y 5X $ 6 F, t 1X t 5--c $ I 2 r 5X y 6 D s y I2y// ) 
JJ-T-1 
KOUNTS=0 
DO 70 I=1,T 
II=T-I

70 KOUNTS=--KOUNTSvII 
DO 10 J=lyJJ 
KO=J:-1
DO 10 K=KOrT
READ(5y220) (A( JtKyL) rl-^l»M)

220 FORMAT!AD20.10)
DO 10 L=ltM

10 WRITE(6$230)J $ K,L t A(J t K$ L)
230 FORMAT ( 50 X. ‘ A( c y I 2 5.< f * V I 2 y » y 5 y I 2 y f ) c y 1 X y E =-• 6 y IX y D20.1 0 y / )

A READ(5,240)(X(I)y1-1$D) 
240 FORMAT(5Xr6F10o5)

KOUNT-O 
LATCH-0 
SMALL 1-0. 
CF(1 )-X(l)»X(l) 
CF < 2 ) = X( 2 )>^X{ 2 ) 
CF(3)-X(3)*X(3) 
CF(4)=X(4)*X(4) 
CF(5 ) = X(5)*X(5) 
CF(6) = X(6)’:;X(6) 
Cr-(7)=X(1)^X(2) 
CF (8 ) = X( 1 )>:;X(3) 
CF(9)=X(1)»X(4) 
CF(1O)=X(1)*X(5) 
CF(11)-X(1)»X(6) 
CF (12) = X(2)*X(3) 
CF (13) = X(2)*X(4) 
CF (14) = X ( 2) X ( 5 ) 
CF(15)-X(2)=:--X(6) 
CF(16)-X{3)’!:X(4) 
CF(17)=X(3)*X(5) 
CF(18)=X(3)^X(6) 
CF(19)=X(4)*X(5) 
OF(20>=X(4)*X(6) 
CF(21)=X(5)*X(6) 
CF(22)-X(1) 
CF(23)=X(2) 
CF(24)=X(3) 
CF (25 )-X(4)
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CF(26)=X(5)
CF(27)=X(6>
CF(28)=le
DO 20
KO=J-:1
DO 20 K=KO,T
HU(J,K)=0.
DO 30 L=lfM

30 MU(JtK)=A(JtKfL)^CF(L) !-MUi Jf K)
20 lVRITE(6s255) JtK)

255 FORMAT(5OXV ‘MUt 6tI2$ S ’vI2$ ‘ ) =SD20<.)0)
1 DO 40

KO = J-:-l
DO 45 K=K0vT
IF(TeEQ=2) GO TO 12
IF(KU(J,K))5f6,6

5 IF(J J—J)15f15v40
6 1F(T-K)3r3,45

45 CONTINUE
40 CONTINUE

3 IF(JoEQel) GO TO 8
K=J
JK=K-J
DO 50 J^lrJK
IF(MU(J$K) )7t2$2

7 IF(JK~J)9»9t50
9 L'RITE(6t 270) (X( I ) tI = ltD)

270 FORMAT(33Xf6(F9»4,3X) )
WRITE(6t271}K

271 FORMATU + SlOOXftCAT =«,I2) '
GO TO 4

50 CONTINUE
15 DO 46 J^1SJJ

IF (MUIJfTloGEoOo) GO TO 2
46 CONTINUE

WRlTE(6t270)(XII)fI=ltD)
WR ITE(6f271)T
GO TO 4

2 DO 60 J=1$JJ
K0 = J-i-l
DO 60 K=KOVT
IF (LATCHoEQolIGO TO 16
IF(SMALLloLToDABSIMUIJtK)I IGO TO 17
GO TO 60

17 SMALL2=DADS(MUIJ,K)I
LATCH=1
JSTARrrJ
KSTAR=K
GO TO 60

16 IFIDABSIHUIJ.KII.LT.SMALLZ.ANDoDABSIMUIJfKD.GT.SMALLIIGC TO 18
GO TO 60

18 SMALL2=DABS(MU(J,K)I
JSTAR=J
KSTAR-K
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60 CONTINUE

SMALL1=SMALL2
LATCH=0
I 'i U ( J S T A R $ K S I A R ) = M U ( J S T A R f K S I A R )*(-!„} 
KOUNl^KOUNKl
IFIKCUNTeGToKOUNTS) GO TO 11
GO TO 1

11 V'R ITE ( 6 r 280 )
280 FORi‘AT(50Xy‘NO DECISION CAN DE IiADEo‘j

GO TO 6
12 IF(MU(J,K))13r14(14
13 WR ITE(6V 270)(X(I)»1 = 11D)

WRITE (6f271 )TV;O
GO TO 4

14 HRITE(6$270)(X(I)fI=1$D)
WRITE(6t271IONE
GO TO 4

8 WRITE(6$270) (X(I),I=1VD)
WRITE(6t271)0NE
GO TO 4
END


