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Abstract

The p-median problem and Intensity-Modulated Radiation Therapy (IMRT)

treatment planning problems are very important practical applications in the area

of optimization. Real-life instances of both problems are time-consuming to solve

using traditional solution techniques. However, both problems can be involved in

time-sensitive decision-making processes, in which rapid and accurate solutions are

required. This study explores parallel computational algorithms and implementa-

tions for these two discrete optimization problems. Specifically, we address the use

of Graphics Processing Unit (GPU) and Central Processing Unit (CPU) based algo-

rithms that are specific to the needs of real-life applications.

The p-median problem is often used to model many real-world situations, which

is NP-hard. Although the polynomial algorithm is available when the number of

median is fixed, large scale p-median problems are still very difficult to solve. Pre-

vious studies in using a GPU to solve the p-median problem in parallel are limited.

We propose the design and implementation of the parallel Vertex Substitution (pVS)

algorithm for the p-median problem based on high-performance, many-core GPUs.

pVS is based on the best profit search algorithm, an implementation of Vertex Sub-

stitution (VS), that is shown to produce reliable solutions for the p-median problem.

Numerical experiments show pVS achieved speed gains ranging from 10x to 57x over

the traditional CPU-based Vertex Substitution.

The Fluence Map Optimization (FMO) problem in IMRT can be modeled as

a large-scale LP problem. Real-life FMO problem can be time-consuming to solve

using traditional sequential LP solvers. We developed a GPU-based parallel linear

programming solver (GPU LP solver) using the Bounded Variable Simplex algorithm

with Steepest-edge pricing for large-scale sparse LP problems. This solver is designed
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for general linear programming problems and can be used in branch-and-bound tech-

niques for mixed integer programming problems. We propose a parallel explicit matrix

update method to replace transformation-based matrix update in sequential simplex.

A special sparse matrix format is designed so as to improve the speed of sparse col-

umn selection and parallel matrix operations. We tested our GPU-based LP solver

in two FMO problems and obtained 2x speedup compared to CPLEX 12.1.

The Beam Angle Optimization (BAO) problem in IMRT is a Combinatorial

Optimization Problem (COP), which is very difficult to obtain an optimal solution.

Previous studies explored the theories and implementations of solution techniques

for general COP problems. However, applications of such techniques to IMRT prob-

lems usually applies many approximations, which may impact the quality of the final

solution. The parallelization of those techniques for BAO are also limited in the

literature. We focused our research on CPU-based parallel algorithms in the appli-

cations of IMRT treatment planning using the Message Passing Interface (MPI). We

developed an MPI-based Master-Worker framework for solving BAO problems using

various types of algorithms including Genetic Algorithm and Simulated Annealing.

The proposed framework separates integer variables from the MIP model and uses

optimal LP solutions as evaluation functions. We developed a hybrid framework to

communicate between algorithms in parallel. The results of numerical experiments

demonstrate that this framework is 5x faster than traditional solution techniques and

is able to obtain a clinic-standard treatment plan in a very short time.

vi



Table of contents

Abstract v

Table of contents vii

List of Figures x

List of Tables xii

Chapter 1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Problem Descriptions . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 p-Median Problem . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Intensity-Modulated Radiation Therapy (IMRT) Treatment Plan-

ning Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Overview of Parallel Computing . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Message Passing Interface . . . . . . . . . . . . . . . . . . . . 8

1.3.2 General-Purpose Computation on GPU . . . . . . . . . . . . . 9

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 2 Literature Review 16

2.1 p-median Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 GPU-based Parallel Solution Techniques for FMO Problem . . . . . . 18

vii



2.3 Solution Techniques for Combinatorial Optimization and Beam Angle

Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Chapter 3 GPU-based Parallel Vertex Substitution Algorithm for

the p-Median Problem 22

3.1 Integer Programming Model of the p-Median Problem . . . . . . . . 22

3.2 Vertex Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Design of Parallel Vertex Substitution . . . . . . . . . . . . . . . . . . 24

3.4 GPU Implementation of pVS . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.1 Experiments Setup . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 4 Design and Implementation of GPU-based Bounded Vari-

able Simplex Algorithm 37

4.1 Linear Programming Model of Fluence Map Optimization . . . . . . 37

4.2 Bounded Variable Simplex Algorithm . . . . . . . . . . . . . . . . . . 38

4.3 GPU Implementation of Bounded Variable Simplex Method . . . . . 42

4.3.1 Overview of GPU-based Bounded Variable Simplex Solver . . 42

4.3.2 Source of Parallelism . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.3 Pre-solve Process . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.4 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.5 Parallel Matrix Update . . . . . . . . . . . . . . . . . . . . . . 48

4.3.6 Optimality Check . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.7 Ratio Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

viii



4.4 Experiments on Radiation Treatment Planning Problem with GPU-

based LP Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.1 Pre-Solve Processes . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.2 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . 53

Chapter 5 MPI-Based Parallel Framework for Beam Angle Opti-

mization in Radiation Treatment Planning 56

5.1 MPI-based Parallel Genetic Algorithm . . . . . . . . . . . . . . . . . 56

5.1.1 Global Parallel Genetic Algorithm for a Type of Combinatorial

Optimization Problem . . . . . . . . . . . . . . . . . . . . . . 56

5.1.2 MPI-based Master-Worker framework for GpGA . . . . . . . . 61

5.2 MPI-based Master-Worker Hybrid Parallel Framework . . . . . . . . 63

5.2.1 Parallel Simulated Annealing . . . . . . . . . . . . . . . . . . 63

5.2.2 Framework Architecture Overview . . . . . . . . . . . . . . . . 65

5.2.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . 68

5.2.4 Experiments Environment . . . . . . . . . . . . . . . . . . . . 68

5.2.5 The Performance of GpGA on MPI Framework . . . . . . . . 69

5.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Chapter 6 Conclusions and Future Work 76

6.1 Current Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

References 80

Appendices 91

Chapter A Computational results for pVS 91

ix



List of Figures

Figure 1.1 Solvability of the instances in MIPLIB2010 [1] . . . . . . . . . 2

Figure 1.2 Linear accelerators in intensity-modulated radiation therapy [2]. 5

Figure 1.3 Float point operation capacity comparison between GPUs and

CPUs [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 1.4 Memory bandwidth comparison between GPUs and CPUs [3]. 10

Figure 1.5 CUDA scalability and abstractions [3]. . . . . . . . . . . . . . 11

Figure 1.6 CUDA threads, blocks, and grids [3]. . . . . . . . . . . . . . . 13

Figure 3.1 pVS GPU implementation flowchart . . . . . . . . . . . . . . . 26

Figure 3.2 pVS representation of candidate solution set . . . . . . . . . . 28

Figure 3.3 Average pVS performance on random network problems, p = 5 31

Figure 3.4 Average pVS performance on random network problems, p = 10 32

Figure 3.5 Average pVS performance on random network problems, p =

10%n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 3.6 Average pVS performance on random network problems, p =

20%n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 3.7 Average pVS performance on random network problems, p =

33%n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 3.8 Average pVS performance on random network problems . . . . 34

Figure 4.1 GPU-based Bounded Bariable Simplex solver . . . . . . . . . . 44

Figure 4.2 Column major coordinate list format . . . . . . . . . . . . . . 47

Figure 4.3 Parallel matrix update . . . . . . . . . . . . . . . . . . . . . . 50

Figure 4.4 Non-zero data structure of FMO problem . . . . . . . . . . . . 52

x



Figure 4.5 DVH plot for IMRT pancreas cases . . . . . . . . . . . . . . . 55

Figure 4.6 DVH plot for IMRT prostate cases . . . . . . . . . . . . . . . 55

Figure 5.1 Global Parallel Genetic Algorithm . . . . . . . . . . . . . . . . 57

Figure 5.2 Binary Encoding . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 5.3 Index and Key encoding . . . . . . . . . . . . . . . . . . . . . 59

Figure 5.4 Single position crossover . . . . . . . . . . . . . . . . . . . . . 59

Figure 5.5 Generalized MPI GpGA framework for combinatorial optimiza-

tion problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 5.6 Hybrid Framework Overview . . . . . . . . . . . . . . . . . . . 66

Figure 5.7 Case1, Experiments on Mutation and Crossover Rate . . . . . 70

Figure 5.8 Case2, Experiments on Mutation and Crossover Rate . . . . . 70

Figure 5.9 Case1, DVH plot . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 5.10 Case2, DVH plot . . . . . . . . . . . . . . . . . . . . . . . . . 74

xi



List of Tables

Table 3.1 pVS performance on OR-lib p-median test problems p = 5 . . . 30

Table 3.2 pVS performance on OR-lib p-median test problems p = 10 . . 30

Table 3.3 pVS performance on large network problems p = 10 . . . . . . 35

Table 3.4 Average pVS performance on large network problems, p = 0.1 ∗ n 35

Table 3.5 Average pVS performance on large network problems,p = 0.2 ∗ n 35

Table 4.1 Notations for FMO and BAO Model . . . . . . . . . . . . . . . 38

Table 4.2 Voxel information . . . . . . . . . . . . . . . . . . . . . . . . . 53

Table 4.3 Problem size and matrix density . . . . . . . . . . . . . . . . . 53

Table 4.4 Time consumption and objective value . . . . . . . . . . . . . . 54

Table 5.1 Test Problems: IMRT Beam Angle Optimization for Prostate

cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Table 5.2 CPLEX 12.5 using 16 threads, MIP benchmarks . . . . . . . . 69

Table 5.3 Sequential GA, average of 10 runs . . . . . . . . . . . . . . . . 69

Table 5.4 Population 12, Crossover 90%, Mutation 30%, 12 angle cases . 71

Table 5.5 Case 1 Average Speedup in MPI framework . . . . . . . . . . . 71

Table 5.6 Case 2 Average Speedup in MPI framework . . . . . . . . . . . 71

Table 5.7 Case 1, 36 angle mutation type comparison . . . . . . . . . . . 72

Table 5.8 Case 2, 36 angle mutation type comparison . . . . . . . . . . . 72

Table 5.9 Case 2, 36 angle mutation type, terminated at 1 hour . . . . . 72

Table 5.10 Case 2, 36 angle pSA, terminated at 1 hour . . . . . . . . . . . 72

Table 5.11 Hybrid Framework 36 angle performance . . . . . . . . . . . . 73

Table 5.12 GpGA and pSA improves global objective function value . . . . 73

xii



Table A.1 pVS performance on OR-lib p-median test problems p = 0.1 ∗ n 92

Table A.2 pVS performance on OR-lib p-median test problems p = 0.2 ∗ n 92

Table A.3 pVS performance on OR-lib p-median test problems p = 0.33 ∗ n 92

Table A.4 Average pVS performance on randomly generated networks p = 5 93

Table A.5 Average pVS performance on randomly generated networks p = 10 93

Table A.6 Average pVS performance on randomly generated networks p =

0.1 ∗ n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Table A.7 Average pVS performance on randomly generated networks p =

0.2 ∗ n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Table A.8 Average pVS performance on randomly generated networks p =

0.33 ∗ n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xiii



Chapter 1

Introduction

Linear programming and its generalization, mathematical programming,

can be viewed as part of a great revolutionary development that has given

mankind the ability to state general goals and lay out a path of detailed

decisions to be taken in order to “best” achieve these goals when faced with

practical situations of great complexity. The tools for accomplishing this

are the models that formulate real-world problems in detailed mathematical

terms, the algorithms that solve the models, and the software that execute

the algorithms on computers based on the mathematical theory.

– George B. Dantzig

1.1 Background

Since G. Dantzig first introduced the simplex method in 1947 [4], linear pro-

gramming (LP) and mixed integer programming (MIP) have been widely studied in

the field of optimization. The ability to solve real-life problems became one of the

most important research objectives for many years. Hence, many researchers have

focused on developing computationally efficient solution algorithms for solving real-

world problems. In recent decades, algorithmic improvements have provided solid

conceptual techniques for LP and MIP problems [5]. However, solving large-scale LP
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Figure 1.1: Solvability of the instances in MIPLIB2010 [1]

or MIP problems is still time-consuming. In the latest Mixed Integer Problem Library

(MIPLIB 2010), a test library created to measure the performance of MIP solvers,

more than 40% of the problems are regarded as difficult to solve, and around 24% of

the problems cannot be solved by leading commercial or open source MIP optimizers

in a reasonable time [1].

In recent years, parallel computing has provided a new paradigm for solving

large-scale problems in various areas of science and engineering. Contrary to tra-

ditional solution techniques, parallel computing delegates the pressure of massive

calculations to different processing units, which execute the computing instructions

simultaneously.

1.2 The Problem Descriptions

Many practically important problems in optimization require that solutions be

obtained in a short period of time in order to support decision-making processes, e.g.,

the deployment of emergency facilities in evacuation planning using the p-median

problem and cancer treatment planning in Intensity-Modulated Radiation Therapy

(IMRT). Real-life instances of such problems are usually very difficult to solve using

traditional sequential algorithms due to problem size and complexity. However, rapid

and accurate solutions are necessary to make better decisions. This study explores the
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parallel computational algorithms designed for two discrete optimization problems,

i.e., the p-median problem and the IMRT treatment planning problem.

1.2.1 p-Median Problem

The p-median problem concentrates on selecting the location of facilities on a

network and allocating demand points to those facilities. The p-median problem

is well-studied in the field of discrete location theory, which includes the p-median

problem, p-center problem, uncapacitated facility location problem (UFLP), and the

quadratic assignment problem (QAP) [6], to name a few.

The objective of the p-median problem is to select the location of facilities on a

network, so that the sum of the weighted distances from all demand points to their

nearest facility is minimized; this is also classified as the mini-sum location-allocation

problem. The original problem can be dated back to the 17th century, when Pierre

de Fermat discussed the method to find the median point in a triangle on a two-

dimensional plane, which minimizes the sum of the distances from each corner point

of that triangle to the median point. This problem was extended in the early 20th

century by Alfred Weber [7] and acknowledged as the first location-allocation problem.

Weber’s problem [7] was introduced into a network of graph theory from the

Euclidean plane in the early 1960s by Hakimi [8, 9]. Hakimi later proved that the

optimal median is always located at a vertex of the graph, albeit this point is allowed

to lie along the graph’s edge. This result provided a discrete representation of a

continuous problem.

Let (V,E) be a connected, undirected network with vertex set V = {v1, . . . , vn}

and nonnegative vertex and edge weights wi and lij, respectively. Further, let γ(vi, vj)

be the length (distance) of the shortest path between vertices vi and vj with respect

to the edge weights wi, and d(vi, vj) = wiγ(vi, vj) be the weighted length (distance) of

the corresponding shortest path. Notice d is not a metric since wi is not necessarily
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wj, i 6= j. This notation is extended so that for any set of vertices X, we have

γ(vi, X) = min{γ(vi, x) : x ∈ X} and d(vi, X) = min{d(vi, x) : x ∈ X}. With this

notation, the p-median problem can be expressed as

min

 ∑
vi∈V

d(vi, X) : X ⊆ V, |X| = p

 . (1.1)

The p-median problem is very important to model many real-world situations such

as the location of public or industry facilities and warehouses [10, 11, 12]. However,

numerous instances of location problems have proven to be too large for an exact

solution to be found in a reasonable time [13]. The p-median problem in general

has been proven to be NP-hard by Kariv and Hakimi [14]. Although a polynomial

algorithm is available where p is fixed [15], large-scale real-world problems usually

cannot be solved. As a result, heuristic algorithms that are capable of providing

approximate solutions in a reasonable time are often applied on the p-median problem

in order to reduce computation time.

1.2.2 Intensity-Modulated Radiation Therapy (IMRT) Treat-

ment Planning Problem

Cancer is one of the most significant health problems worldwide and is the second

leading cause of death in the United States, exceeded only by heart disease. A total

of 1,665,540 new cancer cases and 585.720 deaths from cancer are projected to occur

in the United States in 2014 [16]. There are many types of cancer treatments, which

are determined by the cancer type and stage. The most common cancer treatments

are surgery, chemotherapy, and radiation therapy.

IMRT is an advanced mode of high-precision radiation therapy which has been

rapidly adopted by radiation oncologists to treat patients with specific types of cancer

in United States [17]. IMRT has the potential to enhance the target tumor conformity
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Figure 1.2: Linear accelerators in intensity-modulated radiation therapy [2].

and/or normal tissue sparing when compared with other treatment techniques [18].

IMRT utilizes linear accelerators (LINAC) to deliver precise radiation doses to a

malignant tumor or specific areas within the tumor. The LINAC can rotate 360

degrees in a perpendicular plane when the patient is lying on the treatment couch,

as shown in Figure 1.2. The LINAC stops at one angle to deliver multiple shapes

of radiation beams and then moves on to the next angle. The multi-leaf collimator

(MLC) is used to shape the beam to conform to the tumor’s shape by moving its leaves

back and forth to block a portion of each beam’s radiation dose. As a result, many

two-dimensional beam shapes can be constructed to perform intensity modulation.

The MLC divides its aperture into rectangular grids so as to partition beams into

sub-beams, called beamlets or pencil beams.

In contrast to conventional 3D-CRT, which relies on the forward planning, IMRT

treatment plans are often created with inverse planning. In inverse planning, the

physician defines the target volume on computed tomography (CT) or magnetic reso-

nance imaging (MRI). After the desired dose to the tumor and the constraints for the

surrounding normal structures provided by the treatment planner, a series of opti-

mization techniques are applied to calculate non-uniform intensities that enhance the
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conformity of the dose delivered to the tumor while sparing the surrounding critical

and normal tissue. Typically, three problems are involved in IMRT treatment plan-

ning optimization: Fluence Map Optimization (FMO), Beam Angle Optimization

(BAO), and Beam Segmentation (BS).

The BAO problem is to find a subset from a given candidate beam angle set to

deliver treatment. Given a fixed beam angle set, the FMO problem is to optimize the

beam intensity map for each beam angle. Once the beam intensity map is obtained,

the BS problem converts the intensity map to MLC leaf sequences for dose delivery

because the optimized beam intensity maps contain non-uniform dose for the beam-

lets. We focus on the FMO and BAO problem in our research, as a substantial speed

gain can be obtained using a parallel computation framework.

The Fluence Map Optimization specifies the intensity of radiation doses of

each beamlet within a beam. FMO solves for an optimal intensity map for each beam

angle. Intensity of beamlet refers to the intensity of radiation delivered from one

beam angle through that beamlet. There are three main target volumes in IMRT

treatment planning: gross tumor volume (GTV), clinical target volume (CTV), and

planning target volume (PTV) [19]. The GTV is the gross tumor area that can be

imaged using an MRI or CT scan. The CTV applies a margin for microscopic disease

spread which cannot be fully imaged. The PTV adds a margin around CTV so as to

allow organ movements and clinical uncertainties in planning or treatment delivery.

The organs at risk (OARs) are important organs close to the PTV, and all remaining

portions are considered normal tissues.

There are usually two types of objective function in FMO: dose-based models

and biological models. Dose-based models only consider radiation dose, while biolog-

ical models also calculate the biological effects of dose distribution. Although many

6



research efforts are underway, biological models have not been widely used in practi-

cal optimization [20]. In this research, we focus on the dose-based model of IMRT.

FMO can also be represented in both linear [21, 22, 23] and non-linear programming

models [24, 25, 26]. It is found that the FMO problem is highly degenerate [27, 28].

Many existing nonlinear models cannot not guarantee optimality, and the result of

the optimization will depend on the starting conditions [29, 30, 31, 32]. We use a

linear programming model, which can guarantee the optimal solution and has full

control over constraints.

Beam Angle Optimization determines treatment angles used by the LINAC to

deliver the radiation dose. A well-designed FMO algorithm may result in a subop-

timal treatment plan if the angles are not carefully selected. Therefore, BAO is a

key component in the process of IMRT treatment planning, and it can greatly affect

treatment quality [33, 34]. The BAO problem is a combinatorial optimization prob-

lem. The BAO solves for the optimal combination of a fixed number of treatment

beam angles among all feasible orientations along the 360◦ circumference. Traditional

exact solution techniques, such as branch and bound, typically do not produce good

feasible solutions within a reasonable time due to the size and complexity of this

problem.

1.3 Overview of Parallel Computing

Traditionally, software or algorithms are designed for serial computation which

involves a discrete series of instructions to be executed on a single computer having

a single Central Processing Unit (CPU). Those instructions are executed in certain

order, and only one instruction is processed at a time. In parallel computing, a prob-

lem is broken into parts that can be solved simultaneously using multiple computing
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resources. Those computing resources can be a single computer with multiple pro-

cessors, a group of computers connected in a network, computing cores on a model

Graphics Processing Unit (GPU), or a combination of the above approaches. The

development of parallel computing is largely driven by the limitations of traditional

serial computing, which faces physical and practical challenges in maintaining contin-

uous growth in computing capacity [35]. Parallel computing provides methodologies

and technologies to speed up the solution process of large problems which were, in

practice, impossible to process using serial computing.

1.3.1 Message Passing Interface

The Message Passing Interface Standard (MPI) is a message passing library

standard based on the consensus of the MPI Forum, which has over 40 participating

organizations, including vendors, researchers, software library developers, and users.

The goal of the MPI is to establish a portable, efficient, and flexible standard for

message passing that will be widely used for writing message passing programs. As

such, MPI is the first standardized, vendor independent, message passing library.

The advantages of developing message passing software using MPI closely match the

design goals of portability, efficiency, and flexibility.

MPI primarily addresses the message passing parallel programming model: data

is moved from the address space of one process to that of another process through

cooperative operations on each process. Originally, MPI was designed for distributed

memory architectures. As architecture trends changed, shared memory computers

were combined over networks, creating hybrid distributed memory and shared mem-

ory systems. MPI implementors adapted their libraries to handle both types of un-

derlying memory architectures seamlessly. They also developed ways of handling

different interconnections and protocols. Today, MPI runs on virtually any hardware

platforms including Distributed Memory, Shared Memory, or Hybrid. Nevertheless,
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the programming model clearly remains a distributed memory model regardless of

the underlying physical architecture of the machine.

1.3.2 General-Purpose Computation on GPU

A Graphics Processing Unit is a microprocessor which was first designed to

render and accelerate 2D and 3D image processing on computers. Although GPUs

have been available for most desktop computers since the 1990s, they were once very

difficult to program and were rarely used beyond graphics processing.

It was not until the early 2000s that the high-performance, many-core architec-

ture of the GPU and its capability to handle very high computation and data through-

put became available for programming and scientific computations. The applications

of GPU parallel computing have been introduced into different areas of science and en-

gineering [36, 37, 38, 39, 40]. Most of those applications achieved significant speedups

when compared with traditional CPU-based algorithms. A GPU’s many-core proces-

sors and high-bandwidth memory are extremely suitable for computation-intensive

and data-parallel computations.

Figure 1.3 illustrates that desktop GPUs have exceeded CPUs in float point

operation tests since 2003, and the gap between GPUs and CPUs has kept growing.

Figure 1.4 shows the same trend in a memory bandwidth test, which is often the

bottleneck in scientific computations.

Programming interfaces, industry-standard languages, and developing tools are

very important for general-purpose computing on GPU. There are several GPU com-

puting architectures currently available to the public, including NVIDIA CUDA,

Open CL, and Direct Computing. Currently, NVIDIA CUDA is the mainstream

framework for general-purpose computing on GPUs. Our research is based on the

CUDA architecture.
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Figure 1.3: Float point operation capacity comparison between GPUs and CPUs [3].

Figure 1.4: Memory bandwidth comparison between GPUs and CPUs [3].
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Figure 1.5: CUDA scalability and abstractions [3].

NVIDIA CUDA [3] was first introduced by NVIDIA in November 2006 as a

general-purpose parallel computing architecture. This architecture provides parallel

programing model and instruction set, which enables the programmers to directly

access NVIDIA’s GPUs. CUDA’s environment allows developers to use high-level

programming languages, such as CUDA C and CUDA Fortran. Three key abstrac-

tions, namely a hierarchy of thread groups, memory, and barrier synchronizations,

are introduced by CUDA to provide scalability in applications. Figure 1.5 shows how

CUDA automatically distributes same application to different pieces of hardware.

CUDA threads are the smallest hardware abstraction that CUDA provides to

control the GPUs multiprocessors. A block is a group of threads which are expected
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to run on the same processor core. Blocks are organized into grids. The number of

blocks in a grid is usually determined by the total number of threads or the size of

the data. CUDA kernel is a group of logic statements which is similar to a function

in the C programming language. However, A CUDA kernel can be executed multiple

times by multiple different CUDA threads simultaneously.

There are three levels of memory structure in CUDA architecture: local, shared,

and global memory. CUDA threads can access data from different memory spaces.

Each thread has private local memory which can be accessed by the corresponding

thread only. Within each block, shared memory is accessible by all threads in that

block and the data in the shared memory has the same lifetime as the block. Global

memory is accessible by all threads during the program’s lifetime. Shared memory

and local memory have ultra-fast bandwidth and the lowest latency, but the size is

very limited.

1.4 Contributions

In this research, we present the design and implementation of parallel algorithms

for two real-world problems: the p-median problem and the IMRT treatment plan-

ning problems. Both of these large-scale real-life instances posed a severe challenge to

obtaining solutions. Some test cases took days, even weeks, to obtain a solution us-

ing traditional solution techniques. We developed parallel computational algorithms

using both CPUs’ and GPUs’ parallel computing platforms.

For the p-median problem, a GPU-based parallel Vertex Substitution (pVS) al-

gorithm is proposed and the results are compared with a similar CPU-based sequential

algorithm. We achieved speed gains ranging from 10x to 57x over the traditional VS

in all test network instances. pVS also reduces worst-case complexity from sequential

VS’s O(n3) to O(p · (n − p)) on each thread by parallelizing computational tasks in

GPU implementation.
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Figure 1.6: CUDA threads, blocks, and grids [3].
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For the FMO problem in IMRT treatment planning, we developed a GPU-based

parallel linear programming solver (GPU LP solver). This bounded variable simplex

solver is designed for solving general linear programming problems. We tested this

solver on two FMO problems. The solution quality obtained by GPU LP solver were

as good as the results of CPU-based sequential algorithms and the solution times for

the GPU-based parallel LP solver were twice as fast as thsse of CPU-based algorithms.

As an effort to solve the BAO problem, we developed a MPI-based Master-

Worker Framework with hybrid algorithms including parallel Genetic Algorithm and

parallel Simulated Annealing. This framework achieved at least 5x-12x speedups

compared to the traditional solution approaches. The framework is able to reach

clinic standard treatment planning within a short time, while the MIP solution failed

to converge in more than a week.

1.4.1 List of Publications

1.4.1.1 Journal

• G.J. Lim and L. Ma, GPU-based Parallel Vertex Substitution Algorithm for the

p-median Problem, Computers and Industrial Engineering, June 2012.

• L. Ma and G.J. Lim, A GPU-based Parallel Linear Programming Solver and Its

Application to the Fluence Map Optimization Problem in Radiation Therapy

Planning, submitted to Annals of Operations Research.

1.4.1.2 Conference Proceedings

• L. Ma and G.J. Lim, GPU-based Parallel Algorithm for IMRT Beam Angle

Optimization, In Proceedings of the 2011 Industrial Engineering Research Con-

ference.
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1.4.1.3 Presentations

• L. Ma and G.J. Lim, GPU-based Parallel Algorithm for IMRT Beam Angle

Optimization, 2011 INFORMS Annual Conference.

• L. Ma and G.J. Lim, GPU-based Bounded Variable Simplex Method for Solving

Fluence Map Optimization Problem, 2012 INFORMS Annual Conference.

• L. Ma and G.J. Lim, MPI-based Parallel Genetic Algorithms for Radiation

Treatment Planning, 2013 INFORMS Annual Conference.

1.5 Dissertation Overview

This dissertation is organized into six chapters as follows. In Chapter 2, we

briefly review the literature of the p-median problem and parallel solution techniques.

Existing parallel algorithms for IMRT treatment planning problems are introduced.

In Chapter 3, we describe the Vertex Substitution on CPU followed by the design and

implementation of GPU-based parallel algorithms. Numerical results are discussed

in the last part of Chapter 3. In Chapter 4, we explain the details of the GPU-based

linear programming solver and its application in the FMO problem. In Chapter 5,

we present a MPI-based Master-Worker framework with parallel Genetic Algorithm,

parallel Simulated Annealing, and the hybrid approaches for solving Beam Angle

Optimization problems. In Chapter 6, we conclude the dissertation with a summary

of our contributions and the direction of future research.
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Chapter 2

Literature Review

2.1 p-median Problem

The p-median problem is well-studied and widely applied in operation research,

machine learning, and graph theory. Numerous solution methods for the p-median

problem have been discussed in literature. These methods can be categorized into

several types [41]. The major types are: Heuristic, such as Vertex Substitution and

variable neighborhood search, LP relaxation, IP formulations reductions, approxima-

tion algorithms, and enumeration.

Since solving large scale p-median problems is time-consuming, heuristic meth-

ods are always popular topics in this area. In 1963, Kuehn [42] introduced a greedy

method which selects potential locations that maximize the saving gain from replacing

those initially chosen locations. Maranzana [43] presented a method which divides the

network and calculates the center of gravity for each partition. Neebe and Rao [44]

proposed one sub-gradient method to solve the dual of the relaxed LP model for

p-median problem. More recently, Hansen and Mladenovic [45] applied the variable

neighborhood search (VNS) method, which is a meta-heuristic that systematically

changes the neighborhood within a local search algorithm. Genetic Algorithms (GA)

has become popular in recent years, e.g., Erkut and Drezner’s infeasible initialization

method [46].

16



One important and most common solution technique for the p-median prob-

lem is the vertex substitution (VS) method, which was first developed by Teitz and

Bart [47]. The basic idea of vertex substitution is to find one vertex which is not

in the solution set and replace it with one vertex in the solution set until further

switching cannot improve the objective. Many different versions of the vertex sub-

stitution method have appeared after Teitz and Bart’s work [47]. Those variants use

different rules in choosing vertex switch pairs. Lim, et al [48] showed that VS can

usually return a stable and robust solution for the p-median problem. However, it

typically takes longer to converge than other heuristic algorithms, such as Discrete

Lloyd’s Algorithm [49].

Recently, CPU-based parallel implementations have been reported in literature.

López [50] introduced a parallel variable neighborhood search algorithm. Crainic [51]

improved López’s method by adding a cooperative feature among parallel computing

jobs. López [52] also proposed a parallel scatter search algorithm. However, those

implementations usually achieve speedups of less than 10x. Additionally, it is still

time-consuming to solve problems with more than 1000 vertices and p larger than

100. GPU-based parallel algorithms for the p-median problem are rarely reported in

the literature.

This dissertation presents a parallel Vertex Substitution (pVS) algorithm and

its implementation on a GPU with the NVIDIA CUDA framework. This GPU-based

pVS is able to solve the p-median problem for very large networks with more than

5000 nodes. The numerical experiments show the proposed pVS obtained a peak 57x

speedup compared to CPU-based VS.
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2.2 GPU-based Parallel Solution Techniques for FMO Prob-

lem

Solving large-scale optimization problems in IMRT treatment planning is time-

consuming with CPU-based sequential algorithms. Recently, GPU-based algorithms

became popular in IMRT research because the potential computation speed can over-

come the computational challenge in treatment planning. GPU-based dose calculation

algorithms have been developed to meet the massive data-calculation demand in treat-

ment planning. [40, 53, 54]. For the FMO problem, Men [55] developed a GPU-based

IMRT planning framework. Their work implemented a gradient projection method

with Armijo line search rule and concentrated on fluence map re-optimization during

the treatment plan based on a non-linear optimization model. However, there are few

parallel methods for solving FMO problems with the linear programming model.

Recent literature review [56] shows that there is no CPU-based parallel simplex

implementation reported that outperforms sophisticated sequential implementation.

Early works involving the CPU-based parallel simplex method were investigated by

Zenios [57]. More recently, Eckstein et, al [58] developed a parallel standard simplex

with dense matrix representation. Shu [59] explored the performance of the revised

simplex method with sparse matrix representation. Both Eckstein and Shu’s work can

be categorized as data parallelism. Task parallelism was introduced into simplex by

Hall and Mckinnon [60], and Bixby and Martin [61]. However, as concluded by Hall’s

survey [56], most existing parallel simplex methods and implementations are CPU-

based and have very limited advantages compared to their CPU-based sequential

counterpart.

As for GPU-based parallel simplex implementations, Spampinato presented a

CUDA-based simplex method in 2009 [62] which achieved 2x speedup in compari-

son with BLAS-based CPU implementation. Bieling [63] implemented the revised
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simplex method which obtains 18x speedup compared to the GLPK simplex solver.

Lalami [64] reported 12x speedup on a problem with 4000 variables and constraints

when compared to a similar CPU-based C++ implementation. Meyer [65] proposed

a revised simplex with steepest-edge pricing on a multiple-GPUs cluster and observed

100x speedup compared to the COIN-OR CLP solver.

Though GPU-based simplex implementations have been frequently reported in

recent years, most of these implementations have limitations in problem size. A

notably misleading message on some of these methods is that their performance

comparisons are made against self-implemented or open source solvers rather than

leading commercial solvers such as CPLEX and GUROBI. These commercial solvers

solved the majority of the test problems much faster than the leading open source LP

solvers [1].

This dissertation introduces a GPU-based parallel linear programming solver

(GPU LP solver) using the Bounded Variable Simplex algorithm with the steepest-

edge pricing method. The implementation of this GPU LP solver focuses on the

ability to handle real-life sparse problems, e.g., the FMO problem in IMRT treatment

planning. We propose a special sparse matrix format and parallel explicit matrix

update method to improve the speed of sparse column selection and parallel matrix

operations in Simplex.

2.3 Solution Techniques for Combinatorial Optimization and

Beam Angle Optimization

Many practically important problems can be categorized as Combinatorial Op-

timization problems (COP), including the Travel Salesman problem, Quadratic As-

signment problem, and Minimum Spinning Tree problem. Beam Angle Optimization

is also a type of COP problem.
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A typical COP is described as follow. Given a finite set S of vectors in Rn and

objective function f(x), find

min f(x|x ∈ S)

s.t. A · x ≤ c
(2.1)

For large-scale problems, S is often huge and exponential in n. Though polynomial

algorithms are available for some specific problems, general COPs are NP. For large

problems, exact solution methods or semi-enumerate algorithms are usually compu-

tationally intractable for COP.

Heuristic algorithms have been a rapidly growing research area in combinatorial

optimization. Simulated annealing (SA) was first introduced by Kirkpatrick [66] to

solve COPs. With the explicit strategy to escape from local optima, SA has been suc-

cessfully applied to several COPs [67, 68]. However, stand-alone SA can be unstable

in solution quality as well as time-consuming. Variable Neighborhood Search tech-

niques were presented by Hansen and Mladenović [69]. VNS is a general algorithm

that can be implemented to solve various COPs [70], and it usually guarantees a local

optimal solution. Other heuristic algorithms such as Tabu search and the Ant Colony

algorithm have also proved to be valuable tools in solving COPs. More recently, suc-

cessful GA implementations have been explored to solve mixed integer programming

and combinatorial optimization problems [71]. Parallel GA implementations [72, 73]

and parallel SA [74]have been explored separately in the literature.

Sequential GA [75, 76] and SA [33, 77] have been applied to solve the BAO

problem. Hybrid approaches [76, 78] are also reported in the literature. Most of the

mentioned approaches applied a sequential combination of two algorithms, where one

algorithm solves for beam angles and the other algorithm approximates the beam

intensities. These approaches involve many approximations in solving subproblems

as well as the relaxation of integer constraints, which may lead to inefficient searching
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directions.

This dissertation proposes a Global Parallel Genetic Algorithm, a parallel

Simulated Annealing Algorithm, and a hybrid approach for solving the Beam Angle

Optimization problem on the MPI-based Master-Worker framework. We designed this

framework to handle a type of Combinatorial Optimization problems, where integer

variables can be separated from the MIP model and linear programming subproblems

can be generated using any feasible combination of integer variables. This hybrid

framework focused on real-time communication between parallel algorithms so as to

improve the overall performance. By using the optimal LP solution as the evaluation

test, the framework ensures that the searching direction is accurately contributed by

each evaluation. This framework also has the potential to integrate extra heuristic

algorithms in its operation.
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Chapter 3

GPU-based Parallel Vertex Substitution

Algorithm for the p-Median Problem

3.1 Integer Programming Model of the p-Median Problem

Typically, the p-median problem can be formulated as an integer programming

(IP) problem as follows. Let ξij be the decision variable such that:

ξij =


1 if vertex vi is allocated to vertex vj

0 otherwise,

min ∑
ij
d(vi, vj)ξij

subject to ∑
j
ξij = 1, for i = 1, . . . , n,

∑
j
ξjj = p,

ξjj ≥ ξij, for i, j = 1, . . . , n, i 6= j,

ξij ∈ {0, 1}.

(3.1)

The objective function is to minimize the sum of distances, and constraints ensure that

each vertex is allocated to one and only one element in the p subset and guarantee the

number of median to be p. The p-median problem is NP-hard for general p on general
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graphs and networks. If p is fixed, the p-median problem is solvable in polynomial

time [41].

3.2 Vertex Substitution

We now briefly describe the Vertex Substitution algorithm to motivate this study.

A pseudocode is presented in Algorithm 1, and details can be found in [48]. Let S be

the candidate solution set and N = V \S be the remaining vertices. We consider every

vi in N as a candidate median and insert vi into S to construct a candidate solution

set with p + 1 medians. The gain of inserting each vi is calculated. Then, based on

each candidate solution set, the loss of removing each vr in previous solution set S is

calculated, with S0 being the initial solution. As a result, a new candidate solution

set with p medians is obtained. The profit π(vr, vi) is defined as the gain minus loss

for each pair of (vr, vi). A new solution set is obtained by swapping vertex vr with

another vertex vi based on the profit evaluation approach. There are two common

implementations for evaluating the profit: first-profit approach [79] and best-profit

approach [80]. The first-profit approach selects (vr, vi) once the first positive profit

is found. The best profit approach evaluates all possible profits and selects (vr, vi)

which has the most positive profit.

Algorithm 1 Pseudocode for Resende and Werneck’s implementation of vertex sub-
stitution
1: procedure VertexSubstitution(S0)
2: q ← 1
3: Sq ← S0
4: repeat
5: π∗q ← max{π(vr, vi) : vr ∈ Sq, vi 6∈ Sq}
6: if π∗q > 0 then
7: Sq+1 ← (Sq ∪ {v∗i })\{v∗r}, where (v∗r , v∗i ) is a solution to Line 5
8: q ← q + 1
9: until π∗q ≤ 0
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3.3 Design of Parallel Vertex Substitution

Our parallel Vertex Substitution method is based on Lim [48], which is a modified

version of Hansen’s implementation [80]. The purpose of the parallel Vertex Substi-

tution is to fully utilize the power of a GPU’s many-core architecture and to reduce

the solution time required by VS without compromising solution quality. Thus, only

the best-profit approach is considered in our pVS implementation. The best-profit

approach requires evaluating all possible swap pairs that profit evaluations among

different swap pairs are independent and can be one of the major source of task

parallelism. When implementing VS with the best-profit approach, the algorithm

evaluates the total distance between each vertex to its nearest median among all can-

didate swap pairs (vr, vi) and its worst case-complexity is O(n3). In order to reduce

the solution time, pVS utilizes an important feature of VS, which is the independence

of the candidate solution evaluation. Within each iteration, new candidate solutions

are obtained by swapping two vertices (vr in the solution set with another vertex vi)

for all possible combinations. The objective value of a new candidate solution can be

evaluated separately due to the independence. The main idea of pVS is to map the

evaluation job of each candidate solution to each virtual thread on the CUDA GPU.

All evaluation jobs are processed on individual threads.

A pseudocode of our parallel Vertex Substitution method is presented in Algo-

rithm 2. Parallel Vertex Substitution begins with an initial solution S0, which is ran-

domly generated. A swap pair consists of a vertex vi ∈ N and a vertex vr ∈ S, and this

pair will be assigned to one thread, thread(vr, vi). Each thread(vr, vi) then establishes

a new solution set (Sq ∪{vi})\{vr}) and the objective value of each (Sq ∪{vi})\{vr})

is evaluated on this thread. Profit π(vr, vi) is obtained by using the objective value

of Sq minus the objective value of each (Sq ∪ {vi})\{vr}). The best solution is found

based on the most positive profit by using the parallel reduction method [81]. Parallel
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Algorithm 2 Pseudocode for parallel vertex substitution
1: procedure ParallelVertexSubstitution(S0)
2: q ← 1
3: Sq ← S0
4: repeat
5: Activate thread(vr, vi)
6: thread(vr, vi) evaluates objective value of (Sq ∪ {v∗i })\{v∗r}
7: π∗q ← max{π(vr, vi) : vr ∈ Sq, vi 6∈ Sq} by parallel reduction
8: if π∗q > 0 then
9: Sq+1 ← (Sq ∪ {v∗i })\{v∗r}, where (v∗r , v∗i ) is a solution to Line 7

10: q ← q + 1
11: until π∗q ≤ 0

reduction is an iterative method which utilizes parallel threads to perform compar-

ison on elements in one array to find a minimum or maximum value. For example,

in maximizing reduction, each thread compares two elements and selects the larger

one. Thus, in each iteration, the number of candidate maximizers will be reduced to

half of its number in the previous iteration until it narrows down to the last single

element.

Theorem 1. The complexity of pVS is O(p ∗ (n− p)).

Proof. Proof of the complexity of pVS consists of three parts. The first step is to

group the non-solution set N into p clusters. This requires p comparisons for each

vertex, and it can be done in O(p∗ (n−p)). The next step is to evaluate the objective

value of the solution candidate on each thread, which is obtained by the summation

of all distances among those n− p vertices in set N with O(n− p) operations. Third,

pVS performs parallel reduction to find the best solution among p∗ (n− p) candidate

solution sets which has a O(log p ∗ (n− p)) complexity [81]. Therefore, its worst-case

complexity is O(p ∗ (n− p)).
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3.4 GPU Implementation of pVS

The implementation of pVS is achieved by a GPU-CPU cooperation procedure

as illustrated in Figure 3.1. The procedure begins with CPU operations which pre-

pare the distance matrix D = {d(vi, vj) for all vi, vj ∈ V} and the initial solution

information S0. GPU then executes the main pVS procedures. The results are copied

back to the CPU for checking the termination condition.

Figure 3.1: pVS GPU implementation flowchart

As an initialization step, a pre-generated random solution set S0 and the dis-

tance matrix D are loaded into the CPU’s memory. We assume a strongly connected
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network with a symmetric distance matrix. The distance matrix is compressed by

only storing its upper triangular matrix in a linear memory location. This compressed

distance matrix and the pre-generated random solution are then copied to the GPU’s

global memory.

Most of the computations are carried out by kernels in the GPU Operations

module, which includes updating the solution set in GPU global memory, getting

candidate solution sets, profit evaluation, and finding the best pair to swap. Once

the best profitable swap pair is found in each iteration, the swap pair of vertices and

new objective value are copied back to CPU memory so that the solution information

gets updated. The solution update operation is performed on the CPU. This will

ensure that the time to copy data between the host and the device memory will be

minimized. We now explain three main GPU operations below.

Get candidate solutions: The candidate solution sets are generated by using

a two-dimensional CUDA block on the GPU. pVS uses one dimension to represent

the set of candidate vertices N = V \ S and another dimension to represent the

current solution set S. A thread can be identified by using the thread ID which is

associated with a vertex pair (vr, vi). By swapping the vertices (vr and vi), a new

candidate solution set is obtained. Since storing a new solution set Sq+1 for each

thread on GPU global memory is too expensive, the new solution sets are never

generated explicitly in the GPU’s memory. Instead, by referring to a thread’s ID,

each thread(vr, vi) acquires the information on which vertex should be removed from

Sq and which should be inserted. Therefore, a candidate solution set can be obtained

without storing extra data on the GPU memory and can thus avoid consuming a

large amount of memory. As an illustration, suppose we have a network with five

vertices and two medians and its current solution set S contains vertices 1 and 2 and

the remaining set N contains {3, 4, 5}. In Figure 3.2, thread(2, 4) indicates that this

thread will replace vertex 2 in S by vertex 4 in N to obtain a new candidate solution

27



(a) Thread configuration (b) Link between solution sets and threads

Figure 3.2: pVS representation of candidate solution set

set {1, 4}. Note that all possible candidate solution sets are established on parallel

threads. Once the new candidate solutions are established, pVS moves on to evaluate

the objective values of those candidate solutions using the Profit Evaluation Kernel.

Profit Evaluation Kernel: The threads and blocks structure of this kernel

is inherited from above. In this kernel, thread(vr, vi) will loop over the vertices in

the entire network. For each vertex, the nearest median in set (Sq ∪ {vi})\{vr} and

the distance between each vertex to its median is returned. Since no negative path

is allowed in the network, if a vertex itself is in the set (Sq ∪ {vi})\{vr}, it will select

itself as the median with zero distance, and thus has no effect to the objective value.

The total sum of distances is returned by each thread(vr, vi) and it is the objective

value for candidate solution (Sq ∪ {vi})\{vr}. The maximum profitable (minimum

objective value) pair (vr, vi) will be selected by Reduction Min Kernel.

Reduction Min Kernel: We now have the objective values for all possible

candidate solutions on a GPU. In order to find a solution with the minimum objective

value, pVS implements the parallel reduction method, which returns the minimum

objective value and its solution set. The index of the resulting pair (vr, vi) will be sent

back to the CPU so that new solution set can be updated. The loop in Figure 3.1

continues until the maximum profit is less than or equal to zero.
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3.5 Computational Results

3.5.1 Experiments Setup

In this section, we benchmark the performance of pVS against its CPU coun-

terpart. We denote pVS as the GPU-based parallel VS algorithm and VS as the

CPU-based VS algorithm. The specific CPU we use is an Intel Core2 Quad Q9650

3.00 GHz CPU with 4GB RAM, while the GPU is an NVIDIA GTX 285, which has

240 cores with 1.48 GHz and 1GB onboard global memory. The Operating System is

Ubuntu 10.04 and the GPU parallel computing framework is NVIDIA CUDA 3.2.

Two sets of problem instances are used to evaluate the performance of our GPU-

based parallel algorithms:

(1) OR-Lib p-median test problems. These test problems were first used by Beasley [82].

The OR-Lib test set includes 40 different undirected networks. In pre-processing, we

generated the shortest path for each pair of vertices using the Dijkstra algorithm [83].

(2) Randomly generated networks. These networks are generated based on the

OR-lib test set. Two key network parameters (the number of nodes and the number

of medians) are obtained from a network instance from the OR-Lib test set. Given

these values, ten strongly connected network instances are generated by selecting

random points on a two-dimensional space. Then, the distance matrix is calculated

and stored. Since the test data set does not contain large network instances, we

generated additional large networks that range from 1000 vertices to 5000 vertices;

number of medians tested includes 10, 10% and 20% of total vertices.

3.5.2 Numerical Results

We compared the computational performance of VS and pVS on the OR-Lib

networks and the results are organized in Table 3.1 and Table 3.2 by different number

of medians. Additional results are also provided in Table A.1 through Table A.3 in the
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Table 3.1: pVS performance on OR-lib p-median test problems p = 5

Problem ID n Edge p Objective value Solution time Speedup
VS pVS VS pVS

1 100 200 5 5718 5718 0.000 0.000 N/A
6 200 800 5 7527 7527 0.010 0.000 N/A
11 300 1800 5 7578 7578 0.040 0.000 N/A
16 400 3200 5 7829 7829 0.040 0.000 N/A
21 500 5000 5 9123 9123 0.070 0.000 N/A
26 600 7200 5 9809 9809 0.120 0.010 12.0
31 700 9800 5 10006 10006 0.140 0.010 14.0
35 800 12800 5 10306 10306 0.240 0.010 24.0
38 900 16200 5 10939 10939 0.310 0.010 31.0

Table 3.2: pVS performance on OR-lib p-median test problems p = 10

Problem ID n Edge p Objective value Solution time Speedup
VS pVS VS pVS

2 100 200 10 4069 4069 0.010 0.000 N/A
3 100 200 10 4250 4250 0.010 0.000 N/A
7 200 800 10 5490 5490 0.050 0.000 N/A
12 300 1800 10 6533 6533 0.090 0.000 N/A
17 400 3200 10 6980 6980 0.180 0.010 18.0
22 500 5000 10 8464 8464 0.370 0.020 18.5
27 600 7200 10 8257 8257 0.430 0.010 43.0
32 700 9800 10 9233 9233 0.620 0.030 20.7
36 800 12800 10 9925 9925 0.730 0.020 36.5
39 900 16200 10 9352 9352 1.120 0.040 28.0
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Figure 3.3: Average pVS performance on random network problems, p = 5

Appendix. The problem IDs are identical to the OR-lib test problems. The number

of total vertices in the network is denoted as n, Edge is the number of edges in the

network, and p stands for the number of medians. Objective value is the summation

of total distances returned by each algorithm. Solution time records CPU and GPU

computation time in seconds. Speedup is calculated as CPU time divided by GPU

time, speedup = CPUtime

GPUtime
and N/A in the speedup column means either time is too

short to measure or the iterations did not terminate after five hours. pVS obtained

same objective values as VS for all problem instances, which implies that pVS can

obtain the same solution quality as VS. Furthermore, pVS outperforms VS in solution

time on all problem instances. Table 3.1 and Table 3.2 show that, when the number

of medians is small, pVS works 10x to 40x faster than VS. As the number of medians

increases to a larger percentage of the total number of vertices, pVS takes greater

advantage of its parallel design and gains substantial speedups as seen in Tables A.1,

A.2, and A.3. Table A.4 through Table A.8 in the Appendix show the average time

consumption over 10 network instances in each size (combinations of number of n and

p). Figure 3.3 through Figure 3.7 illustrate the time consumption for both pVS
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Figure 3.4: Average pVS performance on random network problems, p = 10

Figure 3.5: Average pVS performance on random network problems, p = 10%n
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Figure 3.6: Average pVS performance on random network problems, p = 20%n

Figure 3.7: Average pVS performance on random network problems, p = 33%n

33



Figure 3.8: Average pVS performance on random network problems

and VS. The solution time of the CPU-based VS increases sharply when the size of

the network increases. In contrast, the increasing rate of pVS’s solution time is much

lower. Figure 3.8 displays the average speedups of pVS over VS on different network

sizes and with a different number of medians. The trend of speedup proves that pVS

achieves more benefits when the problem size and the number of medians are large,

and it is consistent with the results seen in our previous experiments on OR-lib. VS

is an efficient algorithm and it still performs reasonably fast for problem instances

with less than 1000 nodes. Good solutions could be found by VS in several minutes.

When the problem size is beyond 1000 nodes with a large p, VS may fail to obtain

good solutions within a reasonable time. Our experiments clearly show that pVS is

a better alternative to VS, as it has the ability to solve large problems much faster

than VS. Table 3.3 through Table 3.5 show the results of our experiments on large

problem instances. When p is small, VS still works well. However, when p is larger

than 10% or 20% of the node size, VS usually could not solve the problem within five

hours. On the contrary, pVS is capable of solving those problem in a few minutes. In

Table 3.4, VS solved a problem instance (n = 3000, p = 300) in about 4.2 hours while
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pVS found the same solution in less than 5 minutes. In the largest problem we tested

(n = 5000, p = 1000), the estimated solution time of VS is roughly 5 days (based on

the number of iterations evaluated in 5 hours), whereas pVS found the solution in

about two hours.

Table 3.3: pVS performance on large network problems p = 10

Problem ID n p Objective Value Solution Time Speedups
VS pVS VS pVS

0 1000 10 364.80 364.80 2.82 0.10 28.2
3 2000 10 754.68 754.68 20.58 0.58 35.5
6 3000 10 1090.53 1090.53 77.92 1.85 42.1
9 4000 10 1475.80 1475.80 89.04 2.09 42.6
12 5000 10 1749.92 1749.92 130.74 2.98 43.9

Table 3.4: Average pVS performance on large network problems, p = 0.1 ∗ n

Problem ID n p Objective Value Solution Time Speedups
VS pVS VS pVS

1 1000 100 23.28 23.28 155.72 3.20 48.7
4 2000 200 23.46 23.46 2905.56 53.28 54.5
7 3000 300 23.68 23.68 15351.30 270.94 56.7
10 4000 400 N/A 23.08 > 5 hours 822.38 N/A
13 5000 500 N/A 22.34 > 5 hours 2103.91 N/A

Table 3.5: Average pVS performance on large network problems,p = 0.2 ∗ n

Problem ID n p Objective Value Solution Time Speedups
VS pVS VS pVS

2 1000 200 7.72 7.72 492.61 10.10 48.8
5 2000 400 8.13 8.13 9036.87 159.33 56.7
8 3000 600 N/A 7.77 > 5 hours 837.12 N/A
11 4000 800 N/A 7.92 > 5 hours 2606.40 N/A
14 5000 1000 N/A 35.78 > 5 hours 7405.54 N/A
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3.6 Conclusion

We have developed a GPU-based parallel Vertex Substitution algorithm for the

p-Median problem on the NVIDIA CUDA GPU architecture. We designed a GPU-

CPU cooperation procedure for pVS which uses the GPU to compute expensive pVS

operations in parallel and uses the CPU to coordinate the iterations and the termina-

tion of the algorithm. The worst-case complexity of pVS was reduced from sequential

vertex substitution’s O(n2) to O(p ∗ (n− p)) on each parallel thread. We tested the

performance of pVS on two sets of test cases and compared the results with a CPU-

based sequential vertex substitution implementation (best-profit search). Those two

test data sets include 40 different network instances from OR-lib, 400 similar randomly

generated network instances, and 15 randomly generated large network instances. The

pVS algorithm on a GPU ran significantly faster than the CPU-based VS algorithm

in all test cases. In small network instances such as OR-lib problems and those 400

randomly generated network instances, pVS obtained 10x to 40x speedups. More

substantial speedups (28x to 57x) were observed on larger network instances, which

have more than 1000 nodes. This is particularly important because CPU-based VS

could not solve some of these large instances within five hours, while the GPU-based

pVS solved all instances in two hours or less.
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Chapter 4

Design and Implementation of GPU-based

Bounded Variable Simplex Algorithm

4.1 Linear Programming Model of Fluence Map Optimiza-

tion

We define the intensity of a beamlet as walp, which is the intensity of radiation

delivered from beam angle a through the (l, p)th beamlet, where l = 1, 2, 3...m, and

p = 1, 2, 3, ...n. m is the number of MLC leaves and n is the number of units that

a leaf can be moved. The 3D treatment volume is discretized into small voxels vxyz.

We denote d(x,y,z),a,l,p as the dose delivered from beam angle a through the (l, p)th

beamlet with a weight of 1 and received by voxels vxyz. The total dose Dxyz delivered

to a voxel is ∑
a,l,p

wa,l,p · d(x,y,z),a,l,p. There are various formulations for FMO problems.

We follow the FMO model used in Lim and Cao [84]

f(D) = λ+
t ‖ (DT − θU · eT )+ ‖∞ + λ−t ‖ (θL · eT −DT )+ ‖∞

+ λs ‖ (DS − φ · eS)+ ‖1

| S |
+ λn ‖ DN ‖1

| N |
, (4.1)
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min
ω

f(D)

subject to Dx,y,z = ∑
a,l,p

(ωa,l,p · dx,y,z,a,l,p) ∀(x, y, z) ∈ T ∪ S ∪N

LT ≤ Dx,y,z ≤ UT ∀(x, y, z) ∈ T

DN̄ ≤ UN̄ ∀(x, y, z) ∈ N̄

0 ≤ ωa,l,p ≤Ma,l,p ∀a ∈ A′, l = 1, 2, ...,m,

p = 1, 2, ..., n.

(4.2)

Notation Definition
A Beam angle set
D Dose deposited
ωa,l,p IMRT beamlet weight
T A set of voxels in PTV
S A set of voxels in OAR
N A set of voxels in Normal
θL Cold spot control parameter on PTV
θU Hot spot control parameter on PTV
φ Hot spot control parameter on OAR
LT Lower reference bound on PTV
UT Upper reference bound on PTV
UN̄ Upper reference bound on normal structure
λ+
t Penalty coefficient for hot spots on PTV
λ−t Penalty coefficient for cold spots on PTV
λs Penalty coefficient for hot spots on OAR
λn Penalty coefficient for normal structure

Table 4.1: Notations for FMO and BAO Model

4.2 Bounded Variable Simplex Algorithm

Consider a LP model in the following standard form:

min cTx

subject to Ax ≤ b

l ≤ x ≤ u,

(4.3)
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where c ∈ Rn,b ∈ Rm and A ∈ Rn∗m. l ≥ −∞ and u ≤ ∞. c is the vector containing

the coefficients of objective function, x is the vector of variables, and l and u are

the vectors of the variables’ lower bounds and upper bounds. A is the matrix of

constraints coefficients. B stands for the set of indices for basic variables, and N is

the set of indices for non-basic variables. A simplex basis B = AB is the sub-matrix

of A, whose columns are selected based on B. Furthermore, we define two additional

sets of indices: Nl and Nu, such that Nl
⋂Nu = �, Nl

⋃Nu = N , uj <∞ for j ∈ Nu,

lj > −∞ for j ∈ Nl. Variables belonging to Nl will be set to their lower bounds l, and

variables in Nu will take value at their upper bounds u. Variables that can be fixed

before the algorithm begins will be removed and responding impact will be added

into A and cT . We describe a modified variant of bounded variable simplex (BVS)

method from Bixby [85] in Algorithm 3.

Our BVS method differs from the original algorithm by integrating steepest-

edge pricing [86] for selecting entering variables and the EXPAND procedure [87] for

selecting leaving variables. The standard simplex pricing rule selects the entering

variable, which minimizes the reduced cost. The steepest-edge pricing method se-

lects the entering variable which minimizes the normalized reduced cost, which was

proven [88] to be more effective than the Dantzig rule in most cases. We implement

a variant of steepest-edge approximation [86] as our pricing rule. The EXPAND [87]

procedure improves the numerical stability and reliability of the simplex method. We

now describe the steps of our bounded variable simplex procedure.

Step 0. Initialization

Given a feasible initial basis, compute dual variables π by solving

BTπ = cB. (4.4)
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Calculate the reduced costs for non-basic variables:

dN = cN − πTN. (4.5)

Initialize steepest-edge weights δ, feasibility tolerance κ and feasibility increment

τ .

Step 1. Optimality Check

If dj ≥ 0 for all j ∈ Nl, dj ≤ 0 for all j ∈ Nu, B is optimal: Stop.

Otherwise, select the most favorable normalized reduced cost

d∗q = dq/
√
δq, (4.6)

and select xq as entering variable.

Step 2. Step direction

Compute the simplex step direction y by solving

By = Aq. (4.7)

Step 3. Ratio test with the EXPAND procedure

3.1 Calculate simplex step size θ using origin bounds l and u

If dq < 0, let

θi =


+∞ if yi = 0,

(xBi
− lBi

)/yi if yi > 0, and

(xBi
− uBi

)/yi if yi < 0,

(4.8)
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Else if dq > 0, let

θi =


+∞ if yi = 0,

(uBi
− xBi

)/yi if yi > 0, and

(lBi
− xBi

)/yi if yi < 0,

(4.9)

Let θp = min(mini θi, uq − lq) be the minimum ratio.

3.2 Calculate the minimum acceptable step

θmin = τ yp. (4.10)

If θp ≥ θmin, then θp is the actual step size, and xp is the leaving variable.

Otherwise, repeat equations 4.8 and 4.9 with extended bounds l− κ and u + κ

to obtain a new θp, which will be selected as the actual step size. Then, update

feasibility tolerance κ for the next iteration:

κ̄ = κ+ τ. (4.11)

3.3 If θp =∞, problem is unbounded, stop

Step 4 Solution and matrices update

4.1 If dq < 0, then xB ← xB − θpy. Else, xB ← xB + θpy;

4.2 If θp = uq − lq, xp will not enter basis. Instead, xp will be moved from one

bound to other. e.g. if p ∈ Nu, then Nl ← Nl
⋃{p} and Nu ← Nu \ {p} or vice versa.

Otherwise, update B, N, and the value of the entering variable

xBi
←


uq − θp if q ∈ Nu

lq + θp if q ∈ Nl,
(4.12)
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Step 5. Compute pivot row ᾱ

Solve B̄Tη = ep for η, (4.13)

ᾱ = −N̄Tη. (4.14)

Step 6. Update reduced cost

d̄q = dq/αq, (4.15)

d̄j = dj − ᾱjdq , if j ∈ N \ {q} . (4.16)

Step 7. Update approximation of steepest-edge weights

δ̄q = δq/α2
q , (4.17)

δ̄j = max(δj, ᾱ2
jα

2
q + 1)− 2ᾱ2

jα
2
q + ᾱ2

jδq , if j ∈ N \ {q} . (4.18)

4.3 GPU Implementation of Bounded Variable Simplex Method

4.3.1 Overview of GPU-based Bounded Variable Simplex Solver

The implementation procedures of our main solver are illustrated in Figure 4.1.

The rectangular nodes are GPU kernels, which perform parallel operations on the

GPU, and diamond nodes, which are decision functions running on the CPU. Be-

fore the GPU solver begins, input data sets are prepared in the host memory (CPU

memory) by CPU. Several pre-solve processes [89] are applied to the model to reduce

model size and remove unnecessary constraints and variables. The next step is to
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Algorithm 3 Bounded variable simplex method
1: procedure Bounded Variable Simplex Method
2: repeat
3: Solve BTπ = cB for π
4: Compute dN = cN −AT

Nπ. (dB = 0).
5: if dj ≥ 0 for all j ∈ Nl, dj ≤ 0 for all j ∈ Nu then
6: B is optimal, Stop; (Optimality Check)
7: else
8: select an entering variable xje , je ∈ N , such that dje violates these

conditions.(Pricing)
9: Solve By = Aje .

10: (Ratio Test)
11: if dje < 0, then let

θi =


+∞ if yi = 0,
(XBi

− lBi
)/yi if yi > 0, and

(XBi
− uBi

)/yi if yi < 0,

12: else if dje > 0, then let

θi =


+∞ if yi = 0,
(uBi

−XBi
)/yi if yi > 0, and

(lBi
−XBi

)/yi if yi < 0,

13: θ = min{mini θi, uje − lje}.
14: if θ = +∞ then, (4.3) is unbounded, Stop.
15: else
16: Update xB
17: if dje < 0 then xB ← xB − θy
18: else
19: xB ← xB + θy;
20: if θ = uje − lje then
21: if je ∈ Nu then Nl ← Nl

⋃{je} and Nu ← Nu \ {je}
22: elseNu ← Nu

⋃{je} and Nl ← Nl \ {je}
23: else if θ < uje − lje then Update jl = Bi, Bi = je, and set

XBi
←

{
uje − θ if je ∈ Nu
lje + θ if je ∈ Nl,

24: if djeyi < 0 then Nl ← Nl
⋃{jl}

25: else if djeyi > 0 then Nu ← Nu
⋃{jl}

26: until Optimality
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Figure 4.1: GPU-based Bounded Bariable Simplex solver

convert the above input data from dense representation to a sparse matrix format.

We used a column major coordinate list (CMCOO) to store our coefficients matrix.

Additionally, an initial solution, including B, Nl, Nu, and xB, is taken by the solver as

an input. As long as the initial solution passes the feasibility check, the simplex model

and solution are copied from host memory to device memory (GPU global memory)

as the finishing step of the solver initialization. Based on the current B and N , the

GPU LP solver first updates update B and N and then calculates reduced cost. The

step of calculating reduced cost involves solving one linear system πTB = cTB for π,

and one matrix-vector multiplication NTπ to calculate reduced cost dN . The pricing

step finds best beneficial entering variable based on the steepest-edge rule. Ratio test

determines the leaving variable by solving a linear system By = Aje for y. After

the solver obtains a pair of entering variable and leaving variable, a parallel matrix

update is performed to construct the new B and N for the next iteration until the

44



solver reaches optimality or is terminated by the unbounded condition. Cusp [90] is

used to solve the linear system in the above procedures.

4.3.2 Source of Parallelism

The bounded variable simplex method is a sequential algorithm; each step is

built on the result provided by previous step. Besides, in each iteration, only a pair of

entering and leaving variables are selected to update the solution. As a result, there is

no task parallelism in this simplex implementation. However, data parallelism is very

common in the simplex procedures. This is because the simplex method heavily relies

on linear algebra operations. The bounded variable simplex method we implemented

involves solving two sparse linear systems in step 3 and 10 in Algorithm 3, two column

independent, one row independent, and four element independent parallel operations,

as shown in Figure 4.1. In this paper, we focus on maximizing the data parallelism

in simplex method and optimize the GPU memory usage to handle large-scale LP

problems.

4.3.3 Pre-solve Process

A modern LP solver usually has two components: the pre-solve process and the

main solver. The pre-solve process is often critical to reduce solving time because

LP models are usually not in their most compact forms. The pre-solve process can

provide equivalent models to the original model but save memory and solution time.

Common pre-solving rules described by Andersen [89] are implemented, includeing re-

move redundant constraints, replace constraints by simple bounds, represent columns

by bounds on shadow prices, and fix variables at their bounds.
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4.3.4 Data Structure

4.3.4.1 Column Major Coordinate List

We implement sparse matrix and dense vector for all of our linear algebra opera-

tions. For sparse matrix storage, we design a column major coordinate list (CMCOO)

format to provide fast row reference and column selection. An Example of the CM-

COO matrix is illustrated in Figure 4.2. The CMCOO format is a modification based

on the COO format [91].

typedef struct {

int nCol;

int nRow;

int nnz;

int *col_idx;

int *row_idx;

double *val;

int *colptr;

} CMCOO_Mat;

The standard COO matrix is a sparse matrix format with sophisticated parallel im-

plementation in sparse linear algebra operations. The COO matrix uses one array

to store the value of each non-zero element and another two arrays to store row and

column index for each non-zero element. In CMCOO matrix, all non-zero elements

are stored in an one-dimensional array linearized based on columns. Two standard

row and column index arrays are still employed. Then, we add another array, colptr,

to record the beginning position of each column.
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Figure 4.2: Column major coordinate list format

4.3.4.2 Benefits of CMCOO Format

Simplex is a column-based algorithm. In each simplex iteration, the simplex

method tries to find an entering variable and a leaving variable, whose indices are

going to switch between the sets B and N . The Matrix B and N are defined by

selecting the columns of matrix A in B,N , respectively. Because the simplex ratio

test also relies on the solution of By = Aje, whose right-hand side is the column

of A corresponding to the entering variable. Furthermore, most pricing rules, such

as steepest-edge, are column-related operations. Thus, the simplex data structure

should support the algorithm for fast column selection. The colptr array of CMCOO

format enables the GPU solver to easily locate a column and estimate the column’s

non-zero elements.

Furthermore, simplex algorithm involves intensive row-based operation, such as

Matrix-vector multiplication and vector-vector subtraction. These operations are row

independent and can be very important for parallel implementation. Thus, it is also

critical that we have row reference in the sparse data representation, which is difficult

to obtain using common column-based sparse format, such as Column Compress
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Storage (CCS). CMCOO format has the advantage of CSS format. Non-zero elements

are stored in linearized memory based on columns and colptr provides us necessary

information to perform fast column selection. Meanwhile, efficient parallel linear

algebra operations optimized for COO format can be applied to CMCOO format

without major modification.

4.3.5 Parallel Matrix Update

For each iteration, two major updates may be required. The first is called the

solution update, which is to update value of xB, and the second is the parallel matrix

update for generating B and N according to the new B and N .

In solution update, only the basic variables will be updated, based on Algorithm 3

step 16. It is straightforward to use one thread threadi to update one variable in xB.

Since each of the non-basic variables in xN will be set to either its lower bound or

upper bound, we do not track the actual value of non-basic variables. Instead, we only

track which category each non-basic variable belongs to, i.e., Nl or Nu, by using array

var-cat. Non-basic variable xNi
∈ Nl has a positive value in var-cat while non-basic

variable xNi
∈ Nu has a negative value.

Traditionally, the matrix update is accomplished by implementing backward

transformation or BTRAN , and forward transformation or FTRAN [92], which in-

volves iteratively solving or calculating Bq+1 = B0E1E2...Eq where q is the current

number of iterations and E is the eta matrix to update B. In our GPU LP solver, we

implement a parallel explicit update to replace BTRAN and FTRAN so as to avoid

the sequential linear algebra operations and extra memory usage.

The parallel matrix update is divided into four parts: (1) estimates number of

non-zero elements of each new column (nnzi), (2) finds starting position for each new

column (sptri), (3) updates non-zero elements and their row and column indices of

each new column, and (4) calculates the total number of non-zero elements in the
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new matrix.

Algorithm 4 Pseudocode for parallel matrix update
1: procedure parallel matrix update
2: Activate threadi for i ∈ {0, 1, 2, ...,m− 1}.
3: Each threadi calculates nnzi = colptri+1 − colptri.
4: threadi initialize sptri = 0.
5: for j = 0→ i do
6: threadi calculates sptri = sptri + nnzj.
7: Activate blockj for j ∈ {0, 1, 2, ...,m− 1}.
8: Activate threadi for i ∈ {0, 1, 2, ..., nnzj − 1} in each blockj.
9: threadi copies A � val[colptrj + i] to B � val[sptrj + i].

The example in Figure 4.3 explains how the parallel matrix update was imple-

mented to update B according to new B. On our device global memory, we have the

CMCOO format A. B and N are sub-matrix of A by selecting different columns

based on B and N . Assume that we have m basic columns, n non-basic columns,

and total n + m columns in A. For updating the basic matrix B, this kernel uses

m threads and each thread threadi calculates the number of non-zero elements in

column Bi, i.e., nnzi. Note that the ith column in B is the Bthi column in A, i.e.,

Bi = ABi
. threadi can easily obtain nnzi = colptrBi+1 − colptrBi

. The results are

stored in array nnz-map. Given the fact that the starting position for the first column

is always B0, the starting position of each column in B is then obtained by running

a prefix sum on the nnz-map array. Now, each threadi has matched the beginning

position sptri in B with that column beginning position colptrBi
in A. By looping

through 0 to nnzi, threadi copies the non-zero element values and indices of the cor-

responding column from A to B. Once all threads have finished copying, the new

B is generated. Furthermore, the total number of non-zero elements will be the last

column’s start position plus its number of non-zero elements.
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Figure 4.3: Parallel matrix update

4.3.6 Optimality Check

The bounded variable simplex algorithm reaches optimality iif the reduced cost

di is positive for all non-basic variable xNi
∈ Nl and di is negative for all non-basic

variable xNi
∈ Nu. The Optimality Check Kernel takes the array of reduced cost

dN as input. Each thread threadi will multiply dNi
with its var-cat value, and the

multiplication results are stored in an array called opt-condition. At this point, any

negative value in opt-condition is a violation of optimality condition, and such a

variable will be considered as a candidate entering variable. A parallel reduction

is then performed on opt-condition to find the minimum element. If the minimum

element in opt-condition is non-negative, then the algorithm reaches optimality.
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4.3.7 Ratio Test

The ratio test is to find the maximum value that an entering variable can be

increased from its lower bound or decreased from its upper bound while not violating

any constraints or feasibility. The ratio test first solves a linear system By = Aje for

y via the Cusp iterative solver. Then, depending on the entering variable’s var-cat

value, we determine if dje is positive or negative. Each thread threadi in ratio test

kernel calculates the ratio of each XBi
according to Algorithm 3 step 10. The results

are stored in an array called theta. A parallel reduction is performed on the theta to

find the minimum ratio. The index of the minimum ratio refers to the position of the

leaving variable in B. This minimum ratio thetam is copied back to host memory. The

value of thetam needs to be compared with the difference between entering variable’s

upper bound and lower bounds, uje − lje, in order to ensure the feasibility of the

entering variable. This comparison is done on the CPU. At this point, the algorithm

has obtained a pair of indices of the entering and leaving variables, and it will continue

to the Update Kernel. However, if the minimumratio = ∞, the algorithm will be

terminated because the problem is unbounded.

4.4 Experiments on Radiation Treatment Planning Problem

with GPU-based LP Solver

4.4.1 Pre-Solve Processes

Fluence Map Optimization (FMO) is a large-scale LP problem due to its number

of constraints and variables. Current GPUs usually have less than 4GB on-board

memory on each video card. Given the constraint that FMO problem size is large

but GPU memory is limited, it is quite important to have memory-efficient model to

handle the FMO problem on a GPU.

In our FMO model, one important component of our objective is that we want
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(a) Primal FMO (b) Dual FMO

Figure 4.4: Non-zero data structure of FMO problem

to panelize overdose on each OAR voxel by minimizing λs‖(DS−φ·eS)+‖1
|S| in Function 4.1,

which provides good control of OARs’ over doses. However, this objective forces our

model to have one extra constraint and one extra variable to control the total dose

and overdose for each OAR voxel. Figure 4.4 visualizes the non-zero data structure of

a typical FMO problem. The bottom half of 4.4(a) are the constraints for the OAR

voxels and the diagonal sub-matrix is the coefficient of the control variable for each

OAR voxel’s over dose. In order to have a better representation of the diagonal OAR

over doses, we first convert the FMOmodel to its dual form, as shown in Figure 4.4(b).

The diagonal structure now has been transformed to a group of constraints with only

one non-zero element per row. Such rows are much easier removed from the LP

model by replacing them with simple bounds on corresponding variables [89]. Then,

we performed the other pre-solve process method described in Chapter 5 to further

reduce the problem size.
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Table 4.2: Voxel information

Pancreas case Prostate case
Voxel set Set size Voxels in Use Voxel set Set size Voxels in Use
Pancreas 1244 1244 Prostate 1767 1767

Spinal Cord 489 332 Rectum 5848 4141
Left kidney 9116 945 Bladder 10603 2923
Right Kidney 5920 587 Normal 9865 6483

Liver 50391 1998
Normal 8787 7609

Table 4.3: Problem size and matrix density

Pancreas case Prostate case
Original 4662×13959 8226×17085
Pre-solved 202×13511 646×17016

Density after pre-solve 7.23% 6.70%

4.4.2 Numerical Experiments

Currently, we have tested our solver on two clinical cases: one pancreas case

with four beam angles and one prostate case with six beam angles. Table 4.2 lists the

number of voxels of each organ in both cases. Two processes are applied before we

generate the simplex model. First, we sample the voxels in certain organs to reduce

the data size without compromising the treatment quality [84]. We uniformly select

1/8 voxels from the liver set in pancreas case. For the normal set, we only sampled

voxels which surrounded the PTV area for both cases. Secondly, we only sampled the

voxels which have positive values in the dose-contribution matrix from the angles we

are interested in. The simplex models are generated based on the information listed

in Table 4.2, and pre-solve processes are applied to the models. Pre-solve results and

matrix densities are listed in Table 4.3.

The CPU we used was an Intel Core i7 950 3.0 GHz with 24 GB RAM, and the

GPU was an Nvidia GTX 480 with 1.5 GB GPU memory. We solved the pancreas case

using CPLEX 12.1 with GAMS interface using a single CPU thread as a benchmark.
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Table 4.4: Time consumption and objective value

Case Pancreas Prostate
Objective value Time (sec) Objective value Time(sec)

CPLEX 1 thread 0.317 40.10 0.447 65.92
CPLEX 2 threads 0.317 40.04 0.447 66.19
CPLEX 4 threads 0.317 40.37 0.447 66.60
GPU 0.317 18.56 0.447 39.54
Speedup N/A 2.16 N/A 1.71

The computational results, listed in Table 4.4, show that the GPU-based simplex

solver reached the same optimal solutions when compared to CPLEX, but at a faster

rate. We also tested CPLEX with one, two, and four threads on both cases as

benchmarks. We control the CPLEX threads by using the threads parameter in

CPLEX options. The results show that using multiple threads in CPLEX did not

obtain any benefits. This is because CPLEX threads is a parameter designed for

parallel MIP solver. Although multiple threads are assigned to CPLEX, only one

thread is used to solve the LP model in execution using primal simplex method. We

calculated the speedups based on single-thread CPLEX solution time. We observed

2.1x and 1.7x speedups obtained by the GPU solver for the pancreas and prostate

case, espectively.

Figures 4.5 and 4.6 are the dose distribution plots for both problems, which are

used to visualize the solution quality. The dotted line is the CPLEX solution and

the solid line is the solution of GPU LP solver. We can see that the GPU LP solver

provided the same solution quality compared to CPLEX while taking much less time.

However, it is difficult to conclude the performance and quality of the GPU LP solver

at this point. We need to test the solver on more cases as well as different selected

beam angles to evaluate the quality and speed.
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Figure 4.5: DVH plot for IMRT pancreas cases

Figure 4.6: DVH plot for IMRT prostate cases
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Chapter 5

MPI-Based Parallel Framework for Beam Angle

Optimization in Radiation Treatment Planning

5.1 MPI-based Parallel Genetic Algorithm

5.1.1 Global Parallel Genetic Algorithm for a Type of Com-

binatorial Optimization Problem

We consider a type of combinatorial optimization problem in the integer pro-

gramming model

min Z = ax + by

s.t. A

x

y

 ≤ c,

u · y = d,

(5.1)

where x is the vector of continuous variables and y is vector of binary variables. u

is a unit vector. There are general constraints on both type of variables as well as

constraints to limit the number of selected binary variables. We assume there are

much more continuous variables than binary variables in this model.

In the proposed Global Parallel Genetic Algorithm (GpGA), we only consider

the binary variables y in the chromosome so that each chromosome represents a
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Figure 5.1: Global Parallel Genetic Algorithm

certain combination of binary variables y′. The initialization step generates a set S ′,

where {S ′ = y′1,y′2, ...,y′p|S ′ ∈ S} and p is number of individuals in each population.

Taking a certain y′ as parameters, we can obtain a subproblem fitness(x,y′). Each

fitness(x,y′) in a certain generation is then evaluated in parallel. As illustrated in

Figure 5.1, GpGA starts by creating a initial generation of y′. Each chromosome

y′ is a randomly selected binary combination which meets the general constraints of

y. The fitness value of each chromosome is evaluated in parallel. The fitness results

are collected to apply Crossover and Mutation operations. Elitism selection is used

to generate the next iteration if the current generation does not meet the terminate

conditions.
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Figure 5.2: Binary Encoding

5.1.1.1 GpGA Components

Fitness Test For each y′i ∈ S ′, a linear programming subproblem LP (x,y′) is

obtained by fixing the value of y to be y′i. In our GpGA, we solve the subproblem

LP (x,y′) to its optimal solution and the objective function value is returned as a

fitness value of chromosome y′i. Compared to the traditional approximate fitness

test, this approach ensures that there won’t be any misleading direction caused by

fitness approximation.

Encoding Method The original y′ is a binary string which fits the general GA

chromosome format. However, binary encoding is not aware of any constraints of the

binary variables. Typical GA operations, such as crossover and mutation, will easily

generate infeasible y′ as the example shows in Figure 5.2. Besides, repeat fitness tests

are too expensive as the fitness test is a time-consuming operation. Binary string is

not intuitive for identification or avoidance of repeats. Furthermore, when problem

size grows, the communication time used for delivering genes to the parallel computer

increases linearly with gene string length.

To overcome the above issues, we designed two layers of encoding for each y′.

The first layer (index encoding) using indices of non-zero binary variables as the value

of each allele in a gene. The length of the gene becomes a fixed property in the gene
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Figure 5.3: Index and Key encoding

Figure 5.4: Single position crossover

to represent the constraint on y. As a result, the GA operations always inherit this

information and will never alter the number of non-zero variables in the evolution

process. A second layer of encoding (key encoding) is applied to the gene so that

each will be assigned a unique key, as described in Figure 5.3 and Algorithm 5. The

key encoding helps to easily identify a gene and simplify the distribution of the gene

for parallel computing.

Algorithm 5 Key Encoding Pseudocode
1: procedure Key Encoding(key)
2: if |y| < 64 then
3: i← 0
4: while i < |y| do
5: key ← key ∗ 2 + y′[i]
6: i← i+ 1
7: else
8: key ← bitset(y), where bitset is C++ std::bitset

return key
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Crossover As described in Algorithm 6, proposed GpGA uses single-position crossover

between a pair of two chromosomes. In the crossover operation, a random pair of

chromosomes are selected from the current generation, and a random position is se-

lected so that the two chromosomes exchange a portion of their gene, as described in

Figure 5.4.

Algorithm 6 Single position crossover pseudocode
1: procedure Single position crossover
2: cr ← fixed crossover rate
3: Sj ← {y1,y2, ...,yp} in jth iteration.
4: while Sj 6= ∅ do
5: Randomly select pair(yn,ym), where n,m ≤ p, n 6= m
6: cr′ ← RandomNumber ∈ [0, 1]
7: K← {0, 1, 2, ...|y|}
8: if cr′ ≤ cr then
9: while K 6= ∅ do

10: k ← RandomPosition ∈ K
11: (y′n,y′m)← crossover(yn,ym) at kth position.
12: if (y′n,y′m) is valid then
13: Sj+1 ← Sj+1

⋃{y′n,y′m}
14: Sj \ {yn,ym}
15: Break
16: else
17: K← K \ {k}
18: else
19: Sj+1 ← Sj+1

⋃{yn,ym}
20: Sj ← Sj \ {yn,ym}

return Sj+1

Mutation We consider three types of single-position mutation in our GpGA. For

each y in Sj+1 returned by crossover, a random number mr′ is generated. If this

mr′ is greater than the fixed mutation rate mr, mutation is applied to this chro-

mosome. (1) Random single-position mutation is selected as our default mutation

scheme. A random position in the chromosome is selected; the index value on the

selected position will then be replaced by a valid random index which does not exist in

this chromosome. (2) Score-based mutation selectes the position in the chromosome
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which has the lowest performance score subject to the fitness value. In the applica-

tion of radiation treatment planning, this performance score is calculated based on a

linear combination of function values using Formula 5.2. The minScore(a), a ∈ A′

is selected to be mutated to a valid random value. (3) We also use a combination

of the above two types of mutation where score-based mutation is applied to GpGA

and random mutation is requested by MPI-framework to generate extra candidate

chromosomes when idle computing resources are available.

Score(a) = (sTa /
∑
a∈A′

sTa )− ws · (sSa/
∑
a∈A′

sSa ), ws ≥ 0

uD(T )a = ∑
(x,y,z)∈T

∑
l,p
dx,y,z,a,l,p, a ∈ A′

D(ψ)a = ∑
(x,y,z)∈ψ

∑
l,p
wa,l,p · dx,y,z,a,l,p, ψ ∈ {T, S}

sTa = D(T )a/uD(T )a

sSa = D(S)a/|S|

(5.2)

5.1.2 MPI-based Master-Worker framework for GpGA

A MPI-based master-worker framework is designed to implement our proposed

GpGA algorithm. As illustrated in Figure 5.5, the Master Processor hosts major

GpGA operations, including crossover, mutation, and selection. Each worker proces-

sor only works on one assigned fitness test.

5.1.2.1 Solution History Database and Load Balance

As with many master-worker frameworks, every worker should receive a similar

amount works in order to maximize parallel efficiency. At the same time, worker pro-

cessors should never receive repeat jobs due to the complexity of the fitness test in our

case. To achieve such objectives, the master processor also controls the load-balance

scheduler and the fitness solution database. The solution database uses chromosome’s

key-encoding as a primal key and records returned fitness value and LP solution time
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Figure 5.5: Generalized MPI GpGA framework for combinatorial optimization problem

from each worker.

All candidate chromosomes generated on the master processor will need to pass

two level filers based on their key encoding. The first filter is to select only unique

chromosomes among the current generation. The second filter applies a key search in

the solution database. Any existing solution in the database is immediately returned

with the fitness value and the remaining unvisited candidates form a task pool.

Traditional load-balance optimizations such as Dynamic Adjusting Factoring

(DAF) or Dynamic Predictive Factoring (DPF) [93] do not apply to our situation for

the following reasons. (1) Each fitness test is a LP problem, whose solution time is

hard to predict since the solution algorithms can be non-polynomial, like Simplex.

(2) Each fitness test cannot be divided into sub-tasks, since the complexity of each

sub-task cannot be accurately estimated and there’s no MPI-based parallel LP solver

outperforming leading sequential LP solvers in general [56].

As a result, we use a minimum fixed chunk size, single LP fitness test, in our

load-balance scheduler. The master processor sends one candidate chromosome in
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the task pool to each worker at a time and the returning fitness value is stored in the

solution database. Once a worker returns a fitness value, the master processor will

then assign a new chromosome from the task pool until no chromosome is available.

In order to offset a situation where certain workers take much more time to

obtain the fitness value than others when the task pool is already empty, the idling

workers can be optionally assigned extra candidates which are not initially in the task

pool. These extra candidate chromosomes are generated based on current generation.

The master processor will temporarily increase the population size of GpGA in this

iteration and dynamically create extra chromosomes by forcing extra mutation.

5.2 MPI-based Master-Worker Hybrid Parallel Framework

5.2.1 Parallel Simulated Annealing

Based on the MPI-based framework for proposed GpGA, we developed a hy-

brid parallel framework that generates candidate subproblems from different algo-

rithms. We propose a parallel Simulated Annealing (pSA) algorithm for solving a

type of Combinatorial Optimization Problem defined in Equation 5.1. pSA only con-

siders the binary variable y in its process, and the evaluation of a candidate y′ is

obtained by solving its corresponding LP subproblem optimally. This pSA shares

the same structure for variable vector y with GpGA as well as the same expensive

evaluation function (LP subproblem). As a result, pSA can be implemented on our

MPI-framework without major modification. The basic SA approach for parallel im-

plementations proposed here is briefly described as follows.

Initial solution Multiple candidates y′ are randomly generated on the Master pro-

cessor. Each candidate will start a pSA instance independent from others.
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Neighbor generation scheme Neighbor solution y′j+1 is obtained by using func-

tions described in Algorithm 7

Algorithm 7 SA Neighbor generation Pseudocode
1: procedure SA Neighbor generation
2: y′j is a SA candidate in jth iteration.
3: k ← random position in y′j.
4: α← random step size generated by Geometry Distribution.
5: d← random direction ∈ {−1, 1}
6: y′j+1 ← y′j
7: y′j+1[k] = y′j[k] + d · α

Accept a neighbor solution The newly generated neighbor solution y′j+1 is evalu-

ated and this solution is accepted if the associated LP subproblem has an improvement

in its objective function value. Otherwise, SA uses the geometric cooling scheme to

generate an accept rate for the non-improving solution as described in Formula 5.3.

PA(∆, tj) = exp(−(∆/(z(xj,y′j) · tj))), (5.3)

where, PA is the probability of acceptance, z(xj,y′j) is the objective function value

of the LP subproblem associated with y′j. ∆ is the difference between z(xj+1,y′j+1).

And tj is the SA temperature at jth iteration. If a random number generated between

zero and one is less than PA, this non-improving move will be accepted. Initially, the

temperature t0 = 1 and once a non-improving move is accepted, the temperature is

reduced as Formula 5.4.

tj+1 = tj/(1 + βtj), (5.4)

where β is a non-negative small constant value less than one. The purpose of this

temperature cooling function is to direct the search away from unfavorable regions

each time a non-improving solution is accepted. A threshold temperature is deter-

mined. Once temperature drops below such threshold, re-annealing takes place and
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resets the temperature to one.

5.2.1.1 Parallel SA Implementation

We implemented our pSA uses Synchronous Approach with Occasional Enforce-

ment of Best Solution-Fixed Intervals (SOEB-F). In this approach, the master proces-

sor randomly generates multiple initial solutions for independent SA chains. We note

each SA chain as a pSA instance. The master processor broadcasts the best solution

among all pSA instances and each worker starts to develop its SA chain until a fixed

number of iterations when the master broadcast another best solution. We also imple-

mented two types of cooling schemes; the first type uses a global shared temperature

and the second maintains independent temperature for each pSA instance.

5.2.2 Framework Architecture Overview

Figure 5.6 illustrated the overview structure of this hybrid framework. We con-

sider a parallel Simulated Annealing algorithm (pSA) to supply our GpGA in the

framework. Both Genetic Algorithm and Simulated Annealing have independent ini-

tialer to generate random starting candidates. Similar to GpGA, the proposed pSA

only controls binary variables and generates corresponding LP subproblems for eval-

uation. Each pSA candidate is an independent process but can be connected with

others via the temperature-cooling model or migration operations as described in

Section 5.2.1. All candidates from GpGA and pSA are organized into the single

task queue on the master processor and distributed to workers by the load-balance

scheduler. Once the optimal objective values of the candidates are obtained, they

will be sent back to their origin algorithm model. The migration process is the com-

munication model that exchange the best candidate among individual candidates, or

between two algorithms. GpGA needs to wait for the fitness value of all candidates
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Figure 5.6: Hybrid Framework Overview
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in the current generation to precede the GA operations, such as crossover and mu-

tation. A pSA instance can perform SA operation to generate the next candidate

independently from the others.

Load-Balance Scheduler and Task Queue The load-balance scheduler uses a

similar First In First Out rule as the GpGA framework. However, one important

difference is the task queue in this hybrid framework. In GpGA framework, the task

pool is generated per iteration by collecting unique and unvisited candidates in the

current GA generation. The task pool has a fixed number of tasks for each generation.

All tasks in the pool must be finished in order to proceed to next GA operations. On

contrary, the task queue in this hybrid framework is assumed to be an infinite queue.

Hybrid algorithms will continuously add candidates to the queue for evaluation. The

GpGA still adds tasks per generation, but pSA adds a new task to the queue as

soon as the previous candidate is evaluated and new candidate is obtained by SA

operations.

Migration The migration process controls the communication between pSA in-

stances and GpGA generation. A global best candidate yg is maintained on the

master processor. Each time the framework discovers a better candidate y′g, the mi-

gration will identify the origin algorithm of y′g. If it’s a GA candidate, the migration

will find the worst-performance pSA instance and set y′g as its next candidate. If y′g

is a pSA candidate, migration will replace the worst GA chromosome in the next GA

generation.
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5.2.3 Numerical Experiments

5.2.4 Experiments Environment

We prepared two BAO problem in real-life prostate cancer cases to test our

MPI-based GpGA framework. Table 5.1 listed the number of voxels in each organ set

and beamlet per angle for both cases. Two typical angle settings, selecting 6 from 12

angles or selecting 6 from 36 angles, are used in this experiments. The experiment

computer has 2 AMD Opteron 8-core 2.8GHz CPUs and 256GB RAM on a NUMA

architecture with Ubuntu 12.04 LTS operation system.

Prostate Rectum Bladder Beamlet per angle
Case 1 3269 5848 10603 220
Case 2 6375 5719 7850 250

Table 5.1: Test Problems: IMRT Beam Angle Optimization for Prostate cases

5.2.4.1 Experiment Benchmarks

Table 5.2.4.1 illustrated benchmark solution time of solving BAO using CPLEX

12.5 (Barrier LP method). The MIP column in Table 5.2.4.1 displays the objective

value and time of CPLEX using 16 parallel threads. The LP relaxation column is the

results of the relaxed BAO problem where all binary variables are forced to be one,

and the problem becomes a FMO LP problem. The results show that in 12-angle

cases, CPLEX can solve both cases within half an hour for case1 and two and a half

hours for case2. However, for 36 angles, CPLEX cannot reach a good solution even

after a week. The MIP-LP gap column shows the quality of using LP relaxation as

BAO lower bound. For BAO problem, the LP relaxation usually has a much lower

objective function value compared to the MIP model.

Table 5.3 shows the parallel efficiency of CPLEX’s multi-thread LP solver in a

sequential GA using CPLEX barrier LP method. It is clear that CPLEX’s multi-

thread already provides noticeable speedup when using barrier method, and hence
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MIP LP relaxation MIP-LP gap

Obj. val. Time(min) Obj. val. Time(min)

Case 1-12 0.164714 28.5 0.163326 0.43 0.8%
Case 2-12 0.218666 151 0.213735 0.47 2.3%
Case 1-36 NA >7days 0.156682 1.8 NA
Case 2-36 NA >7days 0.199979 4.8 NA

Table 5.2: CPLEX 12.5 using 16 threads, MIP benchmarks

Threads Obj. val. Time(min) FMO solved Iterations Gap to LP relax
1 0.218305 60 82 19 9.16%
16 0.215615 45.18 199 33 7.81%

Table 5.3: Sequential GA, average of 10 runs

all the following comparisons and speedups will based on CPLEX using multi-thread.

Since the total resource is fixed, when more processors are assigned to the MPI

framework, less CPLEX can be used by CPLEX LP solver.

5.2.5 The Performance of GpGA on MPI Framework

Although GA has been actively researched for several decades, there is still no

general optimal setting for its parameters that work best for all problems []. We

determined the following GA parameters by previous successful implementations in

the literature in this area.

• Population size: twice the number of treatment beam angles [94, 95]

• Stopping Criteria (1) 1% gap to LP relaxation of BAO for 12 angle cases, 5%

gap for 36 angle cases. (2) Ten consecutive non-improvement iterations. (3)

One hour total time. (4) Theoretical upper bound to reach optimal solution

with 80% confidence.[safe, 2004]

• All results are based on average of 10 runs for each combination.

As to the crossover and mutation rate, we performed preliminary experiments to find

the best combination for our cases. As listed in Figure 5.7 and Figure 5.8, each data
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Figure 5.7: Case1, Experiments on Mutation and Crossover Rate

Figure 5.8: Case2, Experiments on Mutation and Crossover Rate

point represented the average objective function value of GpGA. For each data point

label, m is mutation rate and c is crossover rate, e.g. m1c3 = 10% mutation and 30%

crossover rate. All experiment results are based on average of 10 runs.

The best combination towards best objective function value for GpGA was found

with 30% mutation rate and 90% crossover rate.
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5.2.5.1 Parallel Speedup

Table 5.4 lists the BAO solutions from the GpGA framework using a m3c9 rate

combination with 1 master processor and 7 workers. The results demonstrated that

the GpGA MPI framework obtained near-optimal solutions, which are less than 0.1%

to the MIP solution with 5x and 10x speedups compared to CPLEX solver. Note

that the CPLEX MIP solver is allowed to use all threads on the computer by setting

lpthread = 0.Table 5.5 and Table 5.6 illustrate the speedup using GpGA framework from

Gap to MIP Time(min) Speedups FMO solved Iterations
Case 1 0.06% 5.3 5x 56 9
Case 2 0.01% 12.5 12x 103 22

Table 5.4: Population 12, Crossover 90%, Mutation 30%, 12 angle cases

1 master 1 worker to 1 master 7 workers in 36 angle cases. For case1, all settings

were able to terminate within 5% to the LP relaxation gap and for case2, all settings

terminated by reaching ten consecutive non-improvement iterations. In both cases,

allowing more worker processors in the MPI framework obtained speedups of 2x.

5.2.5.2 Comparison in mutation types

We observed that the three types of mutation have similar performance. Ta-

ble 5.7 shows that, in case1, score-based mutation reached 5% termination gap slightly

faster than random mutation. The combined mutation reaches terminate condition

nproc Obj. val. Time(min) FMO solved Iterations Gap to LP relax
2(1-1) 0.164081 12.84 93 12 4.72%
4(1-3) 0.164220 7.75 103 13 4.81%
8(1-7) 0.164249 6.95 120 16 4.83%

Table 5.5: Case 1 Average Speedup in MPI framework
nproc Obj. val. Time(min) FMO solved Iterations Gap to LP relax
2(1-1) 0.21561 45.18 199 33 7.81%
4(1-3) 0.21589 25.98 179 29 7.95%
8(1-7) 0.21539 21.40 189 29 7.71%

Table 5.6: Case 2 Average Speedup in MPI framework
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Type Obj. val. Time(min) FMO solved Iterations Gap to LP relax
Random 0.16393 5.06 92 11 4.61%
Score 0.16418 4.48 83 9 4.76%

Score+R 0.16416 3.50 74 7 4.74%

Table 5.7: Case 1, 36 angle mutation type comparison
Type Obj. val. Time(min) FMO solved Iterations Gap to LP relax

Random 0.215396 21.40 189 29 7.70%
Score 0.215849 21.58 185 27 7.93%

Score+R 0.215775 22.40 226 24 7.89%

Table 5.8: Case 2, 36 angle mutation type comparison
Type Obj. val. Time(min) FMO solved Iterations Gap to LP relax

Random 0.214819 60 458 96 7.42%
Score 0.214828 60 417 101 7.43%

Score+R 0.214179 60 590 75 7.10%

Table 5.9: Case 2, 36 angle mutation type, terminated at 1 hour

Type Obj. val. Time(min) FMO solved Iterations Gap to LP relax
Separate Cooling 0.216542 60 617 88 8.28%
Global Cooling 0.216674 60 618 88 8.34%

Table 5.10: Case 2, 36 angle pSA, terminated at 1 hour

30% faster than random mutation. In Table 5.8, all three types of mutation have sim-

ilar performance on case2 and failed to reach the target 5% gap, stopped by having

maximum number of non-improvement iterations. We extended the experiments on

case2 by removing all terminate conditions except the one-hour limit. Table 5.9 shows

that combined mutation was be able to improve the objective value, while random

and score-based mutation have very similar performance.

5.2.5.3 The Performance of pSA on MPI framework

We evaluated pSA performance on our MPI framework on test case2. The results

show that the two types of pSA obtained a similar objective function value. Both

global cooling and separate cooling pSA performed slightly worse than GpGA, as

listed in Table 5.10.
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Type Obj. val. Time(min) FMO solved Iterations Gap to LP relax
Case1 0.164268 3.5 81 4 4.84%
Case2 0.213718 60 576 48 6.87%

Table 5.11: Hybrid Framework 36 angle performance

Iteration GpGA improves obj.val pSA improves obj.val
1 0.223518
2 0.221423
3 0.220326
6 0.216338
18 0.216269
25 0.214648
27 0.21446
29 0.213748

Table 5.12: GpGA and pSA improves global objective function value

5.2.5.4 The performance of Hybrid Framework

Table 5.11 lists the performance of the hybrid framework on both test cases. For

both cases, hybrid framework obtained better performance compared to the stand-

alone GpGA or pSA. In case1, the hybrid framework uses less time to reach the 5%

gap terminate condition. In case2, only the one-hour terminate condition is used. The

hybrid framework obtained a better objective solution compared to all types of our

GpGA implementation. Table 5.12 lists details of GpGA and pSA communications

in one of the hybrid framework experiments in case2. In the beginning iterations,

GpGA maintained a better solution than pSA, and the later iterations showed that

pSA obtained better a global solution and contributed the solution to GpGA.

5.2.5.5 Quality of the treatment plan in DVH plot

Figure 5.9 and Figure 5.10 are the dose distribution histogram (DVH) for the

experiment problems, which are used to evaluate the solution quality. We can see

that the MPI framework provides very good coverage on target organs and delivered

low dose on organ-in-risk.

73



Figure 5.9: Case1, DVH plot

Figure 5.10: Case2, DVH plot
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5.2.6 Summary

We have presented a MPI-based Global parallel Genetic Algorithm for solving

a type of combinatorial optimization problem. This pGA uses two layers of real-

encoding and the optimal solution of linear programming subproblem as the fitness

test. We implemented this pGA on a MPI-based master-worker framework. A solu-

tion database was deployed on the master processor to maintain the uniqueness of the

expensive fitness test and load balancing. The results of the numerical experiments in

two large-scale BAO problems showed the effectiveness of this framework. By allowing

more processor resources to be controlled by proposed GpGA MPI framework, more

than 2x speedups were observed when compared to CPLEX’s multi-thread techniques

when using the same total processing resources. The experiments also showed that

this framework can obtain clinical-standard solutions for radiation therapy within

one hour, while the traditional MIP solver will take more than one week to reach the

solution. We also observed in the mutation type comparison that, by using combined

mutation, the framework has a better schedule for the same total amount of resources

and solved around 20% more fitness evaluation (LPs). As for the pSA , we observed

that both pSA implementations are able to reach good solutions within one hour.

However, pSA solution is not as good as GpGA. As a result, we decided to use GpGA

as the base algorithm for the hybrid framework and set pSA aside to cooperate with

GpGA. The experiments show that the hybrid framework can obtain a better solution

than any stand-alone algorithm in this experiment.
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Chapter 6

Conclusions and Future Work

6.1 Current Findings

Recognizing the challenges in solving large-scale LP and MIP problems, this

dissertation investigated three types of parallel solution approaches: (1) a parallel

heuristic algorithm to solve the IP problem (pVS for the p-median problem), (2) an

exact-solution algorithm to solve LP models (pBVS for FMO problem), and (3) a hy-

brid approach using optimal LP solutions as evaluating functions for parallel heuristic

frameworks (hybrid framework for the BAO problem). We also explored different par-

allel computing platforms. The design and implementation of pVS and pBVS are to

probe the merging platform of general-purpose computation on GPUs. The MPI-

based Master-Worker Hybrid Framework for solving the BAO problem is designed to

provide a framework that can be implemented on widely adopted parallel computing

architectures from a single non-uniform memory access (NUMA) workstation to a

computer cluster.

We presented a GPU-based parallel Vertex Substitution algorithm for the p-

Median problem. pVS adopted a GPU-CPU cooperation procedure which used the

GPU to compute expensive pVS operations in parallel and used the CPU to coordi-

nate the iterations and the termination of the algorithm. The worst-case complexity
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of pVS was reduced from O(n3) to O(p∗ (n−p)) on each parallel thread. The perfor-

mance of pVS was evaluated on two sets of test cases and the results were compared

with a CPU-based sequential vertex substitution implementation with best-profit

search. The pVS algorithm on GPU ran significantly faster than the CPU-based

VS algorithm in all test cases. pVS obtained 10x to 40x speedups in small network

instances. The speed gain was more substantial for larger network instances having

more than 1000 nodes with a larger number of medians, we observed a speed gain of

28 to 57 times. Furthermore, the CPU-based VS could not solve some of the larger

problem instances within five hours (estimated solution time for sequential VS CPU

is at least two to three days), while the GPU-based pVS solved all instances in two

hours or less.

We implemented a GPU-based bounded variable simplex method to solve large-

scale sparse linear programming problem, such as the FMO problem in IMRT treat-

ment planning. The GPU LP solver is designed for general linear programming prob-

lems, but we implemented specific pre-processing techniques to optimize FMO model

and GPU memory usage. This GPU LP solver uses a column major coordinate list to

store sparse matrix data, which benefits the solver with fast column-selection ability

as well as efficient sparse linear algebra operations. We solved the FMO problem

using the proposed GPU LP solver on a Pancreas cancer case and a Prostate cancer

case. The result was compared to CPLEX 12.1 with the GAMS interface. The com-

putational result shows that the GPU LP solver obtained a similar optimal objective

value as CPLEX, while the solution time is twice faster than CPLEX in this case.

In the MPI-based Master-Worker Hybrid Framework, we proposed a Global

Parallel Genetic Algorithm, a Parallel Simulated Annealing Algorithm and a hybrid

approach for solving Beam Angle Optimization problem. We designed this framework

to handle a type of Combinatorial Optimization problem, where integer variables

can be separated from the MIP model and linear programming subproblems can be
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generated using any feasible combination of integer variables. By using the optimal

LP solution as the evaluation test, the framework ensures that the search direction

is accurately contributed by each evaluation. Such optimal evaluation tests were

previously considered computationally too expensive to be implemented in heuristic

algorithms. However, our parallel framework offsets the cost of the evaluations and

achieved at least 5x-12x speedup compared to traditional solution techniques. As a

result, we were able to obtain clinically acceptable BAO and FMO solutions in a fast

manner.

6.2 Future Work

Based on the current progress on MPI-based parallel computation, one possi-

ble research direction can be to generalize the MPI-based hybrid framework in three

areas; (1) Develop a standard interface for the Master-Worker framework so that

additional algorithms can be added as a component to provide an extra source of

LP subproblems. We observed that the current hybrid framework is benefited by

the communications between GpGA and pSA. However, there are also various other

algorithms available in the literature that have the potential to improve the solu-

tion quality and speed. By providing an interface for the framework to include new

algorithms, we can rapidly develop the ability to evaluate different algorithms and

promote framework performance. (2) Develop a Graphic User Interface (GUI) for an

end user so that it is convenient for end user to modify parameters for the component

algorithms in the framework. In the context of cancer treatment planning, the op-

timization requires agility in order to synchronize with different planning emphases

in different treatment phases. (3) Generalize the MPI framework for other COP ap-

plications. Although our framework was designed for the general type of COP, the

experiments were focused on the applications in IMRT problems. Based on the above

improvement, the future development can provide a robust solution framework for a
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generalized COP problem, which can be classified in the MIP model as described in

Formula 5.1.

The solution database maintained on the master processor is an important fea-

ture of the proposed MPI-based Master-Worker Hybrid Framework. This database

currently only serves as a record of visited notes so that the framework never evaluates

the same expensive subproblem repeatedly. However, as the framework continuously

accumulates the amount of solution history for a specific problem instance, such as a

Prostate cancer case or for a type of problems such as Beam Angle Optimization, var-

ious solution techniques, such as data mining or statistical inference, can be applied

to identify the relationships between beam angle candidate sets and their associated

LP subproblem solutions. One can apply logistic regression to the history of binary

variable combinations and their LP subproblem objective values, in which the regres-

sion function can be used to predict the quality of unvisited candidate solutions or at

least suggest better solution candidates that have not been explored.
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Appendix A

Computational results for pVS
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Table A.1: pVS performance on OR-lib p-median test problems p = 0.1 ∗ n

Problem ID n Edge p Objective value Solution time Speedup
VS pVS VS pVS

2 100 200 10 4069 4069 0.010 0.000 N/A
3 100 200 10 4250 4250 0.010 0.000 N/A
8 200 800 20 4410 4410 0.180 0.010 18.0
13 300 1800 30 4357 4357 0.690 0.020 34.5
18 400 3200 40 4643 4643 2.480 0.070 35.4
23 500 5000 50 4503 4503 5.900 0.170 34.7
28 600 7200 60 4447 4447 12.100 0.330 36.7
33 700 9800 70 4628 4628 24.580 0.680 36.1
37 800 12800 80 4986 4986 39.820 1.090 36.5
40 900 16200 90 5055 5055 0.630 0.010 63.0

Table A.2: pVS performance on OR-lib p-median test problems p = 0.2 ∗ n

Problem ID n Edge p Objective value Solution time Speedup
VS pVS VS pVS

4 100 200 20 2999 2999 0.030 0.000 N/A
9 200 800 40 2709 2709 0.500 0.020 25.0
14 300 1800 60 2919 2919 2.100 0.060 35.0
19 400 3200 80 2823 2823 8.130 0.220 37.0
24 500 5000 100 2892 2892 19.270 0.510 37.8
29 600 7200 120 3006 3006 38.680 1.010 38.3
34 700 9800 140 2939 2939 65.890 1.750 37.7

Table A.3: pVS performance on OR-lib p-median test problems p = 0.33 ∗ n

Problem ID n Edge p Objective value Solution time Speedup
VS pVS VS pVS

5 100 200 33 1355 1355 0.060 0.000 N/A
10 200 800 67 1247 1247 0.880 0.030 29.3
15 300 1800 60 2919 2919 2.100 0.060 35.0
20 400 3200 133 1781 1781 14.140 0.400 35.4
25 500 5000 167 1828 1828 36.460 1.000 36.5
30 600 7200 200 1966 1966 76.840 2.000 38.4
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Table A.4: Average pVS performance on randomly generated networks p = 5

Problem ID N p Objective Gap Average Solution Time Speedups
|zpvs − zvs| VS pVS

1 100 5 0 0.003 0.002 1.5
6 200 5 0 0.021 0.001 20.9
11 300 5 0 0.058 0.003 19.3
16 400 5 0 0.091 0.004 22.8
21 500 5 0 0.189 0.014 13.5
26 600 5 0 0.249 0.014 17.8
31 700 5 0 0.373 0.018 20.7
35 800 5 0 0.468 0.020 23.4
38 900 5 0 0.776 0.030 25.9

Table A.5: Average pVS performance on randomly generated networks p = 10

Problem ID n p Objective Gap Average Solution Time Speedups
|zpvs − zvs| VS pVS

2 100 10 0 0.015 0.003 5.0
3 100 10 0 0.017 0.001 17.0
7 200 10 0 0.069 0.005 13.8
12 300 10 0 0.159 0.007 22.7
17 400 10 0 0.340 0.014 24.3
22 500 10 0 0.569 0.021 27.1
27 600 10 0 0.997 0.031 32.2
32 700 10 0 1.228 0.047 26.1
36 800 10 0 1.633 0.053 30.8
39 900 10 0 2.377 0.064 37.1

93



Table A.6: Average pVS performance on randomly generated networks p = 0.1 ∗ n

Problem ID n p Objective Gap Average Solution Time Speedups
|zpvs − zvs| VS pVS

2 100 10 0 0.015 0.003 5.0
3 100 10 0 0.017 0.001 17.0
8 200 20 0 0.214 0.010 21.4
13 300 30 0 1.167 0.036 32.4
18 400 40 0 3.637 0.102 35.7
23 500 50 0 8.681 0.223 38.9
28 600 60 0 18.672 0.454 41.1
33 700 70 0 35.017 0.827 42.3
37 800 80 0 62.946 1.426 44.1
40 900 90 0 100.915 2.223 45.4

Table A.7: Average pVS performance on randomly generated networks p = 0.2 ∗ n

Problem ID n p Objective Gap Average Solution Time Speedups
|zpvs − zvs| VS pVS

4 100 20 0 0.042 0.003 14.0
9 200 40 0 0.648 0.027 24.0
14 300 60 0 3.436 0.093 36.9
19 400 80 0 12.163 0.306 39.7
24 500 100 0 27.503 0.649 42.4
29 600 120 0 59.624 1.383 43.1
34 700 140 0 112.597 2.453 45.9

Table A.8: Average pVS performance on randomly generated networks p = 0.33 ∗ n

Problem ID n p Objective Gap Average Solution Time Speedups
|zpvs − zvs| VS pVS

5 100 33 0 0.084 0.004 21.0
10 200 67 0 1.480 0.054 27.4
15 300 100 0 7.577 0.201 37.7
20 400 133 0 24.565 0.607 40.5
25 500 167 0 61.584 1.386 44.4
30 600 200 0 128.341 2.955 43.4
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