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Abstract

The clinical goal of radiation therapy is to maximize tumor cell killing while minimizing

toxic effects on surrounding healthy tissues. A treatment protocol is used to decide on the

treatment strategy and is a description of the desired radiation dose to the various regions of

interest. Treatment planning then aims to find a plan as close to the treatment protocol as

possible (Romeijn and Dempsey (2008)). Every step of radiation therapy is subject to some

types of uncertainties (i.e., setup uncertainty, patient motion, and tumor shrinkage), which

may compromise the quality of treatment. Basically, in treatment planning, a region of the

patient where both tumor and organs at risk (OARs) are located with a certain probability

is irradiated with a lower dose than the prescribed tumor dose. However, under uncertainty,

the nearby healthy organs that should be irradiated by lower dose are always occupied by

tumor voxels with a higher dose. Although the more ambitious goal is to damage the tumor

cells so as to guarantee total tumor coverage for treatment, severe patient complications can

occur when the surrounding healthy tissues receive an excessive amount of the radiation

dose. Therefore, it is desired to develop an optimization approach to meet prescription

requirements and tackle the uncertainties in radiation therapy treatments.

The proposed research attempts to overcome these limitations and find optimal beamlet

intensity that will deliver a dose distribution close to the prescribed dose lead to a better

sparing of healthy tissues.

First, to control the safety of the critical organs at risk during radiation as well as to

provide sufficient tumor coverage, a Chance Constrained Programming (CCP) (Charnes and

Cooper (1959)) approach is presented to handle setup uncertainty in radiation treatment

planning that allows constraint violation up to a certain degree as it is the case in practice.

We assume the uncertain dose distribution is governed by a known probability function

and demonstrate that the proposed CCP model can solve the treatment planning problems

efficiently.

Second, a CCP framework for radiation therapy treatment planning is considered, in
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which the probability distribution of the random dose contribution is not completely spec-

ified, but is only known to belong to a given class of distributions. Sometimes, the infor-

mation on hand for the random parameter might be limited to mean, covariance, and/or

support of the uncertain data. In these situations, Distributionally Robust Chance Con-

strained Programming (DRCCP) (Calafiore and El Ghaoui (2006)) can be considered as a

natural way to deal with uncertainties. An explicit convex condition is provided that guar-

antees the satisfaction of the probabilistic treatment planning constraints for any realization

of the distribution within the given class.

Third, to systematically quantify the biological effects of radiation beams, a linear energy

transfer (LET) is incorporated into the optimization of intensity modulated proton therapy

(IMPT) plans. Because increased LET correlates with increased biological effectiveness

of protons, high LETs in target volumes and low LETs in critical structures and normal

tissues are preferred in an IMPT plan. Conventionally, the IMPT optimization criteria

only includes dose-based objectives in which the relative biological effectiveness (RBE) is

assumed to have a constant value of 1.1. In this study, we added LET-based objectives for

maximizing LET in target volumes and minimizing LET in critical structures and normal

tissues. We then explore the effect of this optimization to not only produce satisfactory dose

distributions but also to achieve reduced LET distributions (thus lower biologically effective

dose distributions) in critical structures and increased LET in target volumes compared to

plans created using conventional objectives.

Moreover, to effectively treat a cancer patient with radiotherapy, an effective treatment

strategy must be in place that considers dose delivery history and the patients’ on-treatment

biological changes. However, assessing the biological impacts of radiation on a tumor and

the nearby healthy structures is not an easy task. But, the response of the cells to the

radiation can be categorized by volume change, and these changes can be investigated by

mathematical models that approximate reality. In this study, we seek to understand the

importance of considering tumor shrinkage and proliferation during radiation treatment

and how this affects the optimal prescribed dose in each fraction. We propose a stochastic

sequential optimization structure under setup uncertainty of dose delivery, that optimizes
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the dose in various fractions of an adaptive radiation therapy treatment plan by comparing

the damage in tumor cells against the damage to the normal tissues volumetrically. Thus,

while not prescribing specific strategies, this report provides the framework and guidance

physicians to make apropriate decisions in implementing a safe and efficient treatment plan

in their clinics on an individual patient.
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Chapter 1

Introduction

1.1 Background

Every year, approximately 1.7 million people in the United States alone that are newly

diagnosed with cancer may benefit from radiation therapy (AmericanCancerSociety (2019)).

With cancer affecting more individuals on a yearly basis, radiation therapy (RT) has become

a key component in the successful treatment of this illness. In radiation therapy, radiation

is delivered to the cancerous regions, to damage the DNA of the cells in the area being

treated, interfering with their ability to divide and grow. As a result, radiation can kill

cancerous tumor cells and stop them from regenerating. However, it will also damage

healthy cells (Stone et al. (2003)). Thus, such treatment must be carefully planned so

as to deliver sufficient dose to the tumor, while ensuring that the healthy tissue around

the tumor is spared as much as possible. For some people, radiation may be the only

treatment, but, most often it can be used in combination with other treatment methods

(e.g. chemotherapy, immunotherapy, and surgery (Institute (2019)). According to American

Cancer Society about half of the cancer patients receive a form of radiation therapy at some

stage (AmericanCancerSociety (2019)).

1.1.1 Initial Treatment Planning Setup

To create a treatment plan, the starting point is to acquire the digital images of the

internal anatomy. Medical teams use CT (Computed Tomography, see Figure 1.1), MRI

(Magnetic Resonance Images) scans of the patient or position emission tomography (PET),

to develop a radiation therapy plan. The images will go through a treatment planning

1



process called "simulation" so that a physician will precisely detect the target and critical

structures. Cancerous areas are known as targets, while healthy organs located close to the

targets are called critical structures or organs-at-risk (OARs). Healthy tissues are considered

for the remaining portions.

Figure 1.1: CT simulator (21th Century Oncology (2019))

Typically, there are several clinical targets that we wish to treat, and several OARs that

we would like to spare. The primary target, called gross tumor volume (GTV), includes areas

where the disease is visible by any imaging modality. A secondary target, called clinical

target volume (CTV), includes the GTV and an additional margin for possible microscopic

disease (MD) extension that may not be visible in the images (see Figure 1.2). The third

volume is the planning target volume (PTV) that allows for uncertainties in planning or

treatment delivery. It is a geometric concept designed to ensure that the radiotherapy dose is

actually delivered to the CTV. In some particular circumstances, a margin analogous to the

PTV margin will be considered around an organ at risk to prevent the body from receiving a

higher-than-safe dose, and this gives a planning-organ-at-risk volume. The concept of GTV,

CTV, and PTV have been enormously helpful in optimizing the treatment modalities (which

we will discuss further) and developing modern radiotherapy.

After the imaging and contouring phases, the details are used to set the treatment

machine (linear accelerator (see Figure 1.3)). Along with the outlines of the structures, the

physician will also prescribe a "treatment protocol". The treatment protocol is a description
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Figure 1.2: Clinical targets

of the desired dose to the various regions of interest. A radiation oncologist specifies a

set of requirements that have to be satisfied with any acceptable treatment plan. These

requirements are in the form of a minimum prescription dose for target structure voxels and

a maximum tolerance dose for nearby critical structure voxels. A prescription dose is the

dose level necessary to destroy or damage target cells, while a tolerance dose is the level

above which complications for healthy tissues may occur.

Figure 1.3: Treatment room and linear accelerator machine (Acceletronics (2019))

Treatment planning, then, refers to activities involved in finding the beam intensities

that deliver a dose distribution as close to the prescribed dose as possible. Next, a human

planner picks the parameters that are required as input to a treatment plan optimization

software. These parameters are mostly the weights assigned to different objectives that
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will guide the optimization algorithms to evaluate trade-offs which arise in balancing target

radiation and healthy tissue sparing. The treatment planner usually works with commercial

treatment planning software that uses an optimization procedure to find the treatment plan

that best satisfies the treatment protocol requirements. Finally, after physician’s approval,

the treatment plan is delivered to the patient.

There are different types of beam modalities used for external beam radiation treatment

such as photon beams and proton beams. In most cancer cases, the proton treatments are

preferable to photon treatments due to the nature of the dose as a function of depth. For

a given energy, the dose from proton beams increases as a function of depth of penetration

in the patient until it reaches a peak (the "Bragg" peak) and then falls sharply to near zero

(see Figure 1.4). This makes a more accurate dosage to the tumor cells but at the same

time, is vulnerable to causing critical errors when uncertainty is present. For a photon

beam, however, when the beam penetrates the skin, the dosage increases rapidly until it

peaks. After peaking, there is an exponential reduction in dose as a function of the depth.

Although photons are not able to focus the dose as well as protons, they are more robust

to uncertainties such as patient setup errors and organ motion.

Figure 1.4: Characteristic depth-dose distribution of a proton beam (Key (2019))

External beams of radiation can be delivered in multiple ways. Fore example intensity

modulated radiation therapy (IMRT) is designed to use beams of photon therapy to treat
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tumor cells whereas Intensity modulated proton therapy (IMPT) is designed to use beams of

proton particles. Their general aim is to increase local tumor control rates while keeping the

radiation induced complications below desired thresholds. Intensity-modulated radiation

therapy (IMRT) is a conventional cancer treatment method that aims to deliver a sufficient

radiation dose to the target, based on tumor size, shape and location. Furthermore, IMRT

allows a significant amount of control over the characteristics of the radiation delivered,

by providing flexibility in the shapes of treatment beams, time of exposures, etc. (Webb

(2004)). Each beam is divided into many thin beams ("beamlets") that can vary their

intensity. This allows different doses of radiation to be given across the tumor. Similarly, in

IMPT, the intensity of each beamlet or Bragg peak of each beam angle can be modulated

independently. Due to characteristic of proton beams, intensity-Modulated Proton Therapy

(IMPT) known as a highly precise type of radiation therapy, which can deliver highly

conformal and homogeneous dose distributions to a target of complex shape while sparing

adjacent healthy tissues as much as possible. Our work in this dissertation spans both of

these treatment modalities.

1.1.2 Uncertainties in Radiation Therapy

Each step of the radiation treatment process involves uncertainties, both human and

technology based, which significantly affects the quality of treatment. There are many

sources of uncertainty that need to be taken into account in the course of a treatment

planning. The segmentation of the target (tumor) and surrounding patient anatomy on the

treatment beams is inherently uncertain and error prone. Patient positioning uncertainties

are also relevant because the patient needs to be set up in the same position every day

over the course of the treatment. Also, the clinical aspects of treatment simulation rely on

the positioning and immobilization of the patient as well as on the data acquisition and

beam geometry determination. Another class of uncertainty is motion effects which can

be classified as inter-fraction and intra-fraction motion. The inter-fraction motion refers

to motion between treatment sessions (also known as fractions), and intra-fraction motion

refers to motion that occurs during a treatment session, such as breathing motion. Setup
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uncertainty is caused by the setup procedure at the beginning of each fraction as well as

the inter- and intra-fraction motion of the anatomy.

There are many reasons why errors occur, but they are usually divided into two cat-

egories: random and systematic errors. Systematic errors include setup error and organ

motion on the CT scanner during treatment planning session, target delineation errors, and

equipment calibration errors. Random errors include target movement during radiation de-

livery and day-to-day variation in the patient setup and equipment Van Herk (2004); Keller

et al. (2003).

Among different ways of delivering radiation, proton therapy is more vulnerable than

photon therapy to perturbations caused by various factors. The sharp fall-off of the dose

at the end of the range of protons is their significant advantage, but it also makes them

sensitive to various sources of uncertainty. To be effective, IMPT requires a high degree

of precision and accuracy in delivery. In IMPT two important sources of uncertainty exist

which are setup uncertainty (that is explained earlier) and range uncertainty. Range changes

may originate from computed tomography (CT) artifacts, uncertainties in CT numbers, or

conversion from CT numbers to stopping powers. Other possible sources of range uncer-

tainties are tumor shrinkage and patient weight gain or loss (Unkelbach et al. (2009); Liu

et al. (2012b)). These risks may result in deviation of the delivered IMPT dose distribution

from the planned dose distribution, which may lead to unexpected treatment outcomes.

Immobilization devices are commonly used to reduce uncertainty by helping patients

maintain consistent positioning, both during and between treatment (Bentel (1999)). More-

over, active breathing control (ABC) devices are used to reduce the effects of respiratory

motion (Wong et al. (2005); Koshani et al. (2006)). The radiation treatment is then de-

signed using the "ABC scan" as input. On the one hand, the ABC method better spares the

OARs, while maintaining target coverage. On the contrary, this approach is time-consuming

at imaging and treatment delivery. It is also expensive because of the device, and it is not

useful for all of the patients. In addition, small discrepancies in the position of the target

and surrounding patient anatomy are inevitable.
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Other approaches used in practice to capture the geometrical uncertainties include

convolution-based methods (Lujan et al. (1999); Chetty et al. (2003); Beckham et al. (2002))

and Multiple Instance of Geometry Approximation (MIGA) (McShan et al. (2006)). In

convolution-based methods, uncertainties caused by daily setup procedures at the beginning

of each treatment fraction, as well as the inter- and intra-fraction motion of the internal

organs, are incorporated in dose calculations to calculate average dose values to tissues.

MIGA, on the other hand, approximates the random setup variation by a discrete distri-

bution of setup instances and performs a dose deposition matrix calculation for each setup

instance.

In photon therapy, the safety margins (CTV, PTV) are designed to accommodate sys-

tematic and random uncertainties that might be introduced following the acquisition of the

initial planning data. The underlying assumption in the determination of the CTV-to-PTV

margin is that the CTV will be sufficiently covered with high (e.g., 95%) probability in the

face of uncertainties. This approach may work for photon-based therapy because of the

relatively small variations in photon dose distributions when patient anatomy changes (Liu

et al. (2012b); Chen et al. (2012)). However, for IMPT, uncertainties can cause substan-

tial perturbations in the dose distributions not only in the CTV-to-PTV margins, but also

within the CTV, as well as in normal tissues lateral to the CTV. Thus, simply applying the

concept of PTV cannot efficiently mitigate the impacts of uncertainties in radiation therapy

(Fredriksson et al. (2011)) and alternative approaches are required.

1.1.3 Radiobiological Effects of Radiation Therapy

Absorbed radiation dose is an important quantity when predicting the biological effect.

However, many factors affect the biological response to a given dose. The most impor-

tant biological factors influencing the response of tumors and normal tissues to fractionated

treatment (i.e. a treatment that is carried out as a series of small dosages over a period)

are often called five R’s (Khaled and Held (2012); Withers (1975)), such as repair, repopu-

lation, redistribution, re-oxygenation, and radiosensitivity. These radiobiology effects were

7



initially described to provide a means of understanding the success or failure of localized

radiotherapy. Repair is one of the primary reasons to fractionate radiotherapy. By splitting

radiation dose into small parts, cells are allowed to repair sub-lethal damage (i.e., damage

that can be repaired before the next fraction of radiation is delivered). Healthy cells are

capable of repairing some of the radiation damage between fractions, whereas tumor cells

have much less repair capability. In addition, the repair capacity of the cells depends on the

time and the amount of dose. These two elements could significantly affect the capability of

cells to treat themselves. Repopulation, i.e., the cell proliferation occurring during fraction-

ated RT, occurs in both tumors and healthy tissue. Although repair of radiation damage

between the fractions and proliferation of survival cells enhance the radiation tolerance of

the normal tissue, the response of tumor is also influenced the treatment outcome. In fact,

the damage and cell death that occur during the radiation may induce an increased rate

of tumor proliferation. Hence, selecting the appropriate approach relies on an adequate

balance between the tumor and normal tissue responses. In addition, redistribution and

reoxygenation would also be expected to affect the total dose required for treatment. Re-

distribution refers to the fact that the cells exhibit differential radiation sensitivity while in

the different phases of the cell cycle. Basically, normal cells interrupt typical cell cycling

after exposure to ionizing radiation to allow for enough time for DNA repair, or in the case

of extreme damage, prepare for cell death. This makes cells more sensitive and causes a

therapeutic gain. Another major challenge for RT is the presence of hypoxic areas within

solid tumors. A single fraction of irradiation preferentially kills the well-oxygenated cells.

Reoxygenation of hypoxic areas occurs during fractionated treatment in part due to tumor

shrinkage. This makes the cells more sensitive to subsequent radiation. The other factor is

radiosensitivity which reminds us that for different cell types, the relative susceptibility of

the cells to radiation is different.

Due to the radiobiological effects of radiation dose on the healthy and cancerous cells ,

the total amount of radiation that is to be delivered is split into fractional doses. There-

fore, by splitting the dose over many days, healthy cells have a chance to recover between
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fractions, while the cumulative dose of tumor cells destroy cancerous cells (Thames and

Hendry (1987)). However, as the fractionated treatment is prolonged to longer times, the

contribution of repopulation becomes greater.

The fact that the biological factors depend on the treatment schedule has significant im-

plication for the planning of radiation therapy. Thus, understanding how radiation affects

the underlying biological processes will give us an insight on investigating the optimal frac-

tionation treatment plan. However, conventional radiation treatment plans mostly ignore

the biological changes during the treatment and prescribe an equal amount dose for each

stage.

One way to adapt doses and treatments is to make use of information acquired between

fractions. This type of treatment modification, known as adaptive radiation therapy (ART),

permits customized day-to-day dose delivery to mitigate treatment variations and incorpo-

rating them to re-optimize the treatment plan early on during therapy. There are multiple

ways to optimize treatment dynamically. One way is to make use of feedback information

obtained from the CT images throughout the course of therapy, which is known as online

ART (Acharya et al. (2016)). However, one of the major challenges for on-line adaptive

treatment is the length of time required to re-optimize the treatment plan. Planning time

for a treatment varies depending on the complexity of the case and the experience of the

planner. If treatment plans can be optimized and quality assured fast enough, we can adapt

treatment using online ART ; otherwise, we can use offline ART, in which past CT images

are used to adjust future treatment (Reilly et al. (2016); Yang et al. (2014); Qin et al.

(2015)) . In a case that the existing technology cannot be used to observe such biological

information, adaptive models can be developed to adjust a treatment dynamically. In this

situation, the question arises as:

How should a treatment plan be adapted considering the dynamic nature

of the natural biological processes in a patient body to improve the treatment

outcome?
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1.1.4 Quantification of the Biological Effectiveness of Radiation

Every radiation type has its special distribution of energy depositions. Two important

physical quantities in radiation therapy that affect the biological outcome are the absorbed

dose and the linear energy transfer (LET). In radiation therapy, not only the amount of

energy deposited in a volume (the dose) is of importance but also how the energy depositions

are distributed. This characteristic of radiation would also affect the biological responses

of survival cells. As an example, high-LET radiation is believed to cause damage that is

more difficult to repair compared to low-LET radiation (Goodhead (1994); Karlsson and

Stenerlöw (2004)).

LET mainly indicates the quality of different types of radiation and is important because

the biological effect of radiation (its relative biological effectiveness, RBE) depends on its

average LET. Relative biological effectiveness (RBE) is defined as the ratio of the doses

required by two radiations to cause the same level of effect. As defined, the RBE is a simple

concept, but it is clinical compound because it is a function of particle type, dose, energy,

dose per fraction, fraction number and the biological endpoints. When effects of equal doses

of different types of radiation are compared, they produce different biological effects. The

RBE can be expressed as a comparison of effects of different types of radiation.

To incorporate the biological aspects of radiation into modeling a treatment plan, al-

ternative measures has been studied in the literature (e.g., the tumor control probability

(TCP) and normal tissue complication probability (NTCP), the equivalent uniform dose

(EUD) (Wu and Mohan (2002))) , among those RBE is a measure that uniquely describes

the radiation quality.

Hence, we can classify the above issues with treatment planning optimization into fol-

lowing categories:

• Reliable and efficient intensity profile under uncertainty

• Fractionation scheduling considering the radio-biological effects

• Fluence map optimization under uncertainty considering the linear energy transfer (LET)
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• Including relative biological effectiveness in a fluence map optimization under uncertainty

,which we will explain further in the Problem Description.

1.2 Problem Description

Optimization concept makes a significant contribution to the calculation of radiation

therapy treatment plans. The objectives on target coverage and sparing different organs

at risk are often conflicting, and there has been extensive research on how to prioritize the

objectives (e.g., Wilkens et al. (2007)), and find the relative objective weights (e.g., Cotrutz

and Xing (2003)). In such an optimization problem, designing treatment plans that meet

prescription dose under uncertainty is one of the greatest challenges. Hence, the purpose

of this section is to address and specify remaining challenges in this area, and then propose

solution methods.

1.2.1 Reliable and Efficient Intensity Profile under Uncertainty

The typical decision variables for treatment planning are the intensities (or how long the

beam is turned "on") of radiation beams and the angles from which to deliver the radiation.

In this study, we focus on the optimization of beamlet intensities (called the fluence map

optimization (FMO) problem) assuming the optimal beam directions are given. The re-

sulting solution is called "intensity map", because it resembles a topological map where the

height of a point on the map matches the intensity of the corresponding beamlet. This topic

has received a lot of attention from the optimization community. Comprehensive reviews

of the existing literature are provided in references (Shepard et al. (1999); Reemtsen and

Alber (2009)). However, due to the challenges in this field of optimization, new approaches

need to be developed for clinical problems. In this regard, one of the issues would be:

How can we identify the reliable intensity fluence map in a radiation therapy

treatment planning under uncertainty?

Currently, the primary challenge in the optimization of radiation therapy problem is

to address the treatment uncertainties. Therefore, investigation on the development of
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stochastic optimization approaches is needed. In the last few years, stochastic models have

been used to formulate uncertainties in IMRT treatment planning (e.g., Lof et al. (1995);

Unkelbach and Oelfke (2004)). Robust optimization (RO) is also constructed to produce

optimal and resilient plans that are more aggressive than traditional margin approaches,

without sacrificing protection from uncertainty. For the recent studies who applied robust

optimization in radiation therapy problems, we can refer to Chu et al. (2005); Olafsson

and Wright (2006); Chan et al. (2006); Bortfeld et al. (2008); Pflugfelder et al. (2008);

Fredriksson et al. (2011). Probabilistic and worst case robust optimization methods are the

two main groups in the area of robust optimization in radiotherapy.

In RO, the uncertainty is often expressed using an uncertainty set that contains all pos-

sible scenarios of the uncertain data. Traditional RO models only consider the worst-case

scenario of the unknown parameters and do not optimize for cases when non-worst-case

scenarios inside the uncertainty set occur. Such an approach, while producing a treat-

ment that is robust against uncertainty, is over-conservative and necessarily increases the

radiation exposure of healthy tissue and organs-at-risk. In practice, an overestimation of

uncertainties leads to a conservative decision resulting in an unnecessary deterioration of

the objective function. In other cases, an aggressive decision may be preferred due to the

physician expectations from treatment. Nevertheless, even under certain circumstances,

it may not be possible to find beamlet intensities that satisfies two conflicting objectives,

ensuring the tumor receives the required dose, while exposing healthy tissue to less dose.

Accordingly, a systematic way is required to evaluate the trade-off between treatment

efficiency and reliability. That calls for using one of the major approaches in stochastic

modeling programs, called chance-constrained programming (CCP). This approach that is

recently applied to stochastic radiation therapy problems (Zaghian et al. (2018)), was first

introduced by Charnes and Cooper (1959) and Miller and Wagner (1965), and has been

widely studied as an alternative methodology for optimization under uncertainty (Geletu

et al. (2013); van Ackooij et al. (2014); Kamjoo et al. (2016)). Its main feature is that the

resulting decision ensures the probability of complying with constraints, i.e. the confidence
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level of being feasible. When there is randomness in some or all data elements, and when

the restrictions are required to be satisfied with at least some level of confidence less than

one, CCP relaxes the constraints in deterministic mathematical programming and replaces

them with probabilistic constraints. Thus, the relation between the treatment efficiency

and reliability can be quantified using chance constrained programming.

However, there are some important issues concerning the CCP in an optimization prob-

lem. One of the issues using the CCP approach is that the feasible set of a chance constraint

is usually nonconvex, which makes the optimization problem difficult to solve (Nemirovski

and Shapiro (2006)). However, under some assumptions on an uncertain parameter, de-

terministic equivalent transformations have been developed in the literature (Charnes and

Cooper (1959); Geletu et al. (2013)). Finding a feasible solution for the deterministic coun-

terparts of the chance constraints is often computationally less burdensome than solving

the original stochastic model.

Another difficulty is that the CCP tackles the problem in a way that uncertain param-

eters depend on the known probability distribution. In practice, distributional information

of uncertainty may be partially available. This information might be limited to mean, co-

variance, and/or support of the uncertain data. Therefore, there is a need to develop a new

approach to deal with uncertainties in a chance-constrained framework. This is addressed

via distributionally robust chance-constrained programming (DRCCP) which is proposed

by Calafiore and El Ghaoui (2006). In their study, they provided convex conditions that

guarantee the satisfaction of the chance constraints when only partial information about

the probability distribution is known. There are few other studies where they have explored

DRCCP to ensure the probabilistic constraint irrespective of the probability distribution of

the data (Zymler et al. (2013)). In general, within the CCP setting, one seeks to obtain

the feasibility of the constraints with high probability. However, this is not the concern of

robust optimization. In fact, in RO, the goal is to achieve feasibility under any realization

of a predetermined uncertainty set. Hence, the primary motivation of CCP and DRCCP is

to incorporate the concept of the confidence level to control the satisfactory of each chance
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constraints. A confidence level, the probability that the constraints will hold under uncer-

tainty, can help a physician in selecting an appropriate treatment plan based on the risk

tolerance level for constraint violation.

1.2.2 Fractionation Scheduling Considering the Radio-biological Effects

The fact that the biological effect of radiation depends on the fractionation schedule has

important implications for the planning of radiation therapy. Recently, with the improve-

ment of models and imaging technologies, adaptive treatment planning problems, aiming

at the optimal fractionation scheme and dose delivery over time, has tremendous potential.

In a fractionated regime, radiation-induced responses of the tumor and normal tissues are

used as feedback to modify and improve radiotherapy in to get the highest therapeutic

gain. The complexities of how radiation affects the underlying biological processes make

it difficult to determine how a treatment plan should be scheduled, however, it is crucial

to understand the relationship between biological modeling assumptions and the resulting

optimal treatment plan.

Thus, in addition to the radiation dose distribution of each beam as the general goals

of optimization in an FMO, a physician needs to determine the best decomposition of a

single treatment plan into several smaller fractions under uncertainty. Within these goals,

we present the CCP fractionation model in an attempt to address the uncertainty issue in

providing the safe treatment dose for each fraction considering repair and repopulation as

the most important biological factors. The finding that healthy cells appear to have greater

repair capability than tumors is one factor favoring the fractionated treatments. In fact,

full repair may take about 6 to 8 hours and can be longer in such tissues under different

circumstances. For simplicity, the recovery ratio can be measured as the proportion of

surviving cells receiving a split dose divided by surviving cells receiving the total dose as a

single dose. This ratio can be used to predict the normal cells’ responses to the radiation

during treatment. On the other hand, repopulation of tumor cells is much faster than

the normal cells which could result in a treatment failure. These effects suggest that the
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repopulation and repair need to be considered simultaneously in adapting a treatment.

The growth rate of the tumor is expected to be an exponential function of time and

dose, and it could be varied due to the nutrition deprivation and other conditions (e.g. re-

oxygenation). In this regard, various models have been developed in an attempt to describe

and predict how tumor volume changes. However, the models for predicting the response

of normal cell during the treatment has not been demonstrated. Thus, the main motivation

for this study is the potential use of the appropriate model to link the biological changes for

measuring the treatment outcome. We consider the effects of the tumor and healthy cells re-

sponses to the radiation which are characterized by volume changes. This is because tumor

volume is well-known and extensively studied in the literature as a significant predictor of

treatment outcome (Bral et al. (2009)). Various models have been developed in an attempt

to describe and predict how tumor volume changes over time (Nieves and Ubriaco (2015);

Huang et al. (2010)). One way of measuring these biological effects of irradiation is by the

cell survival fraction. Nevertheless, a few studies worked on optimizing the fractionation

dose considering the volumetric reaction of cells to the radiation.

1.2.3 Fluence Map Optimization under Uncertainty Considering Linear

Energy Transfer

The first dosimetric quantity in radiotherapy optimization is the absorbed dose. This,

however, does not guarantee a homogeneous distribution of Linear Energy Transfer (LET)

values. Even though radiobiologists have been aware of the effect of energy variations in

treatment, the differences in a treatment outcome were considered too small to be significant

clinically. With improved treatment delivery techniques and powerful computational meth-

ods available, recent publications have sparked interest in LET measurements. Using LET,

a biophysical model by Wilkens and Oelfke (2004) is a commonly studied method. There

are few alternative studies in treatment planning problems considering LET (Grassberger

et al. (2011)). In this work, our goal would be a simultaneous optimization of radiation

energy and fluence under uncertainty.
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1.2.4 Including Relative Biological Effectiveness in a Fluence Map Opti-

mization under Uncertainty

Treatment planning is usually based on specific prescription doses to the target and con-

straints for the normal tissues, and not on clinical and biological endpoints of radiotherapy.

While it would be preferable to base plans on the more clinically and biologically relevant

parameters such as RBE. The biological effects of different beams can be optimized by the

concept of relative biological effectiveness (RBE), that is the ratio of biological effectiveness

of one type of radiation relative to another one, given the same amount of absorbed energy.

RBE varies significantly as a function of dose, depth in the patient along the path of the pro-

tons, tissue and cell type, end-point and possibly other factors Wilkens and Oelfke (2004);

Carabe-Fernandez et al. (2007) ; yet in radiation therapy (e.g. proton therapy), a physician

currently utilizes a generic RBE of 1.1 for all situations. This value is based on averages of

existing biologic data from past experiments performed under limited conditions. The fixed

RBE value of 1.1 is recommended by the International Commission on Radiation Units

and Measurements (ICRU) and is used in most clinical proton therapy centers Wilkens and

Oelfke (2005). Nevertheless, the use of a constant RBE disregards the dependencies of the

RBE on physical and biological properties. As a result, by incorporating RBE quantification

and using other such biologic information into a treatment planning optimization, the plans

could be generated preferentially in a way that the high RBE portions of the Bragg peaks

are placed within the tumor volume. Hence, the biological optimization rather than the

physical dose optimization would translate into both improved tumor control and reduced

normal tissue exposure.

The potential clinical impact of a variable RBE for various situations is studied in the

literature. Polster et al. (2015) utilized a tool for particle simulation for the implementation

of eight biophysical models to predict RBE values based on LET and other elements. Few

studies centered on model formulation and optimization of beamlet intensities considering

RBE values. For an optimization model considering radiobiological effects, many studies

were reported using the equivalent uniform dose (EUD) biological function problem. Alber
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and Nüsslin (2001) presented an unconstrained optimization with interior penalty functions.

Wilkens and Oelfke (2005) and Carabe-Fernandez et al. (2007) proposed RBE models based

on variable radiobiological parameters for different tissues. Thus, some research on dose

and RBE constrained based optimization in a probabilistic framework need to be addressed.

In summary, a treatment outcome depends on the physical and biological characteristic

of radiation and anatomical information of a patient’s body, and varies according to the

dose, fractionation, LET, cell status before irradiation and other important factors. The

respective roles of radiation treatment planning optimization are to study the feature of

healthy and tumor cells in responding to radiation on one hand, and the complex mecha-

nisms which may react to those factors as listed above, continue to be the subject of future

radiobiological research. This is done hoping that better understanding of these factors may

permit a scientific judgment on the existence treatment plans, and lead to the improvements

which the risk of radiation-induced cancer reduced to zero.

1.3 Objectives and Contributions

The overall aim of this dissertation is to develop mathematical modeling methods to

optimize and analysis the quality of a treatment plan in each fraction with the prediction

of biological changes and considering the setup uncertainty under radiotherapy. In this

Section, we briefly specify the first and second issues discussed in Section 1.2 and the way

we approached the problems. Note that, we will address the remaining challenges in our

future study. Through achieving the objectives, this research addresses the shortcomings of

the existing approaches to handling uncertainties and satisfying prescription requirements

in treatment planning optimization by presenting the following contributions.

• First, we present a chance constrained optimization approach to handling setup un-

certainty in the problem of radiation therapy treatment planning. We describe testing

the performance of the proposed CCP models regarding plan quality, robustness, and

homogeneity for three patient datasets. Optimized CCP plans are also compared to

the plans from a deterministic approach that does not take the uncertainties into
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account. Dosimetric tests confirmed that the CCP can control setup uncertainty in

target coverage and organs-at-risk sparing and this framework do not depend on tissue

or patient specific.

• Then, we present the first distributionally robust chance-constrained approach to ra-

diation treatments subject to setup uncertainty. This stochastic programming frame-

work is an extension to CCP framework to mitigate other types of uncertainty. The

DRCCP model is evaluated regarding affine and quadratic dependence of random

dose contribution. The experimental studies are conducted in a small cancer case and

prostate cancer case to illustrate the general feature of proposed DRCCP model.

• For the third work, we investigate the impact of incorporating LET criteria directly

into IMPT optimization. Both dose and LET distributions could be optimized simul-

taneously in the proposed approach. Dose-averaged LET was used to indicate LET

values in this study. The goal of this optimization was set to not only produce satis-

factory dose distributions but also to achieve reduced LET distributions (thus lower

biologically effective dose distributions) in critical structures and increased LET in tar-

get volumes compared to plans created using conventional objectives. In this study,

five brain tumor patients who had been treated with proton therapy at our institution

were selected. Two plans were created for each patient based on the proposed LET-

incorporated optimization (LETOpt) and the conventional dose-based optimization

(DoseOpt). The optimized plans were compared in terms of both dose (assuming a

constant RBE of 1.1 as adopted in clinical practice) and LET. Both optimization ap-

proaches were able to generate comparable dose distributions. The LET-incorporated

optimization achieved not only pronounced reduction of LET values in critical organs,

such as brainstem and optic chiasm, but also increased LET in target volumes, com-

pared to the conventional dose-based optimization. However, on occasion, there was

a need to tradeoff the acceptability of dose and LET distributions. Our conclusion is

that the inclusion of LET-dependent criteria in the IMPT optimization could lead to

18



similar dose distributions as the conventional optimization but superior LET distri-

butions in target volumes and normal tissues. This may have substantial advantage

in improving tumor control and reducing normal tissue toxicities.

• In the last part of this study, we investigate an alternative treatment mode where the

radiation is allowed to be delivered in multiple fractions. We model the repair effect

in addition to tumor repopulation and find the optimal fluence maps for each fraction

of the radiotherapy simultaneously by considering the overall dose delivered to the

patient. The optimization model decides how many doses to give in each fraction

under the radio-biological changes and setup uncertainty. Under this problem setting,

we show that safe fractionation dose has a particular threshold form. We investigate

the benefit of this approach with computational studies on real prostate case patients.

This sequential model reduces the treatment time and thus the comfort level of the

patient. Furthermore, because the optimization exploits the opportunities provided

in each fraction better treatment plans can be obtained.
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• Maryam Zaghian, Gino Lim, and Azin Khabazian (2018). "A Chance-Constrained
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• Wenhua Cao, Azin Khabazian, Pablo Yepes, Gino Lim, Falk Poenisch, David Grosshans,

Radhe Mohan (2017). "Linear energy transfer incorporated intensity modulated pro-

ton therapy optimization," Physics in Medicine & Biology, 63(1), Featured Article,

015013.

• Azin Khabazian, Maryam Zaghian, and Gino Lim (2019)."A feasibility study of a risk-

based stochastic optimization approach for radiation treatment planning under setup
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• Azin Khabazian, Gino Lim, "Understanding Impacts of Radiobiological Parameters

in Adaptive Radiation Treatment Planning under Uncertainty," INFORMS Annual

Meeting, Phoenix, AZ, Nov 2018.

1.5 Organization

This dissertation is organized as follows. Chapter 2 is a comprehensive overview of

the optimization models in FMO problem that deal with uncertainties. A review of the

robust and chance-constrained optimization as well as the adaptive optimization of radiation

treatment is also provided. In Chapter 3, we present our chance constrained approach to

incorporate setup uncertainty in radiation therapy treatment planning optimization. We

assumed that the uncertain dose distribution was governed by a known (or estimated)

probability distribution function and demonstrated that the associated CCP models could

help significantly in sparing organs-at-risk (OARs).

In Chapter 4, a distributionally robust chance-constrained treatment planning problem

is derived. Our framework generalizes the presented CCP model for the case that uncertain

parameter does not follow a particular distribution and is less conservative than robust

approach. We demonstrate how this approach used to formulate the radiation therapy

problems under the affine assumption of dose contribution. Then, we provide more precise

deterministic equivalences of DRCCP model considering the quadratic format of random

dose contribution. We evaluate the proposed DRCCP models in the context of a radiation

therapy treatment planning problem.

In Chapter 5, we provide a feasibility study on incorporating linear energy transfer

(LET) into the optimization of intensity modulated proton therapy (IMPT) plans. Two

IMPT plans were created for each patient case, one using the conventional dose-based op-

timization and the other using the proposed LET-incorporated optimization. We compare

the performance of our LET-incorporated IMPT optimization method with conventional

dose optimization model in terms of both dose and LET distributions. Both optimization

approaches were able to generate comparable dose distributions. The LET-incorporated

optimization achieved not only pronounced reduction of LET values in critical organs, but
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also increased LET in target volumes, compared to the conventional dose-based optimiza-

tion. However, on occasion, there was a need to tradeoff the acceptability of dose and LET

distributions. Our conclusion is that the inclusion of LET-dependent criteria in the IMPT

optimization could lead to similar dose distributions as the conventional optimization but

superior LET distributions in target volumes and normal tissues. This may have substantial

advantage in improving tumor control and reducing normal tissue toxicities.

In Chapter 6, we provide an analysis of the biologically-based treatment planning model.

This method not only allows for the correction of patient setup error but also allows dose

recalculation and adaptive radiation therapy (ART), using the volumetric information to

adjust the treatment plan of each fraction to the updated patient anatomy. We evaluate

the effect of tumor repopulation and rapair capability of healthy tissues on optimal frac-

tionation schemes based on the exponential survival rate of cancer cells as a function of

dose delivery and resting time. The optimization problem consists of minimizing the num-

ber of surviving tumor cells under the constraints on maximum prescribed dose in OARs.

We discuss the results from implementing the biologically-based CCP models at the end.

Chapter 7 provides direction of the future research.
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Chapter 2

Literature review

2.1 Fluence Map Optimization

The FMO problem is one of the most popular subproblems in treatment planning opti-

mization, which has been extensively studied in the literature. The models that have been

developed for the FMO are generally based on sets of conflicting treatment plan evaluation

criteria. Thus, considering the treatment requirements, the typical approach in the FMO

model has been to formulate the bound constraints and define an objective function that

optimizes the value of a weighted sum of criteria (Shepard et al. (1999)). A wide range

of optimization techniques have been used for FMO in IMRT, from linear programming

(e.g., Hamacher and Küfer (1999); Holder (2003); Romeijn and Dempsey (2008); Lim et al.

(2008)) to mixed-integer linear programming (e.g., Bednarz et al. (2002); Lee et al. (2003,

2006)) and penalty-based quadratic and nonlinear programming (e.g., Bortfeld (1997); Wu

and Mohan (2002); Romeijn et al. (2003)). Several authors have proposed quadratic varia-

tional penalties ( Spirou and Chui (1998); Chvetsov et al. (2005); Matuszak et al. (2007)),

which promote smooth fluence profiles. In a recent paper, Aleman et al. (2014) employed

the convex objective function that penalizes the deviation of delivered to desired dose. Dias

et al. (2016) provided a voxel-based convex penalty nonlinear model to find the optimal

fluence map. They consider each voxel to be penalized considering the square difference of

the amount of dose received by the voxel and a given upper and/or lower bound.

Over the past few years, several researchers have studied the FMO problem (Romeijn

et al. (2003); Lim et al. (2008); Zaghian et al. (2014)). However, due to the presence of

uncertainties in radiation therapy, solving the FMO problem is computationally difficult in

practice.
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2.2 Treatment Plan Optimization under Uncertainty

Robust optimization is a methodology that govern the tumor coverage and OAR spar-

ing under uncertainty simultaneously. Besides robust optimization, Chance-constrained

programming (CCP) has been widely used in the literature to deal with optimization prob-

lems under uncertainty.. In the next section, we review the application of RO to a treatment

planning in more detail. Then, we will explain the chance-constrained programming which

is the focus of this study.

2.2.1 Robust Optimization

To date, robust optimization is one of the main approaches to deal with the uncertainties

in a treatment planning problem. There are a handful of robust optimization approaches

proposed to incorporate uncertainties into radiation therapy treatment plan optimization

Baum et al. (2006); Unkelbach and Oelfke (2004); Bortfeld et al. (2008); Chan et al. (2006);

Chan and Mišić (2013); Lomax (2008); Pflugfelder et al. (2008); Unkelbach et al. (2007,

2009); Liu et al. (2012b); Fredriksson et al. (2011). Research by Baum et al. (2006) and

Unkelbach and Oelfke (2004) highlights the importance of robustness in radiation therapy

Baum et al. (2006); Unkelbach and Oelfke (2004). Bortfeld et al. (2008) and Chan et al.

(2006) use probability density functions that describe breathing motion, and provide a ro-

bust formulation of the problem of optimizing IMPT, generalizing existing mathematical

programming formulations Bortfeld et al. (2008); Chan et al. (2006). They did not assume

any fixed distribution for the patient breathing. Chan and Mišić (2013) generalized the

existing single planning robust optimization approach to develop an adaptive robust opti-

mization. Robust and stochastic optimizations are the two most widely used approaches for

incorporating the uncertainties in treatment planning optimization problems. Chan et al.

(2006) proposed a robust formulation of the treatment planning optimization problem using

probability density functions of the uncertainty in breathing motion. They did not assume

any fixed distribution for the patient breathing. Chu et al. (2005) and Olafsson and Wright

(2006) showed that a robust linear optimization model can become a second-order cone
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program when the ellipsoidal uncertainty set is taken into account. All of these robust opti-

mization approaches involve solving a single planning problem before the start of treatment

and using the resulting solution in all of the subsequent treatment sessions.

Worst-case robust optimization technique is another useful approach to handle uncer-

tainties in treatment plan optimization. Two current approaches are the "worst-case dose"

robust optimization Pflugfelder et al. (2008) and the "minmax" robust optimization ap-

proaches Fredriksson et al. (2011). (In reality, both are worst case approaches - the former

is based on worst case dose in each voxel, whereas the latter considers the worst case value

of the objective function for the dose distribution as a whole). Both of these approaches

can work with either a linear programming (LP) model Cao et al. (2012) or a nonlinear

programming (NLP) model Liu et al. (2012a). Some groups have proposed a worst case

dose robust optimization approach using an LP model to consider range uncertainties Un-

kelbach et al. (2007, 2009); Chan (2007), whereas Pflugfelder et al. (2008) proposed a worst

case dose distribution-based robust optimization approach using a nonlinear quadratic ob-

jective function. This approach can also be used with linear objective functions.Pflugfelder

et al. (2008) and Liu et al. (2012a) developed a modification of the nonlinear worst case

dose distribution-based robust optimization approach that additionally penalized hot spots

within the target for better target dose homogeneity.

The minmax robust optimization approach was first proposed by Fredriksson et al.

(2011). This nonlinear constrained model does not assume any probability distribution for

the uncertainties. Chen et al. (2012) also reported a multicriteria minmax optimization

approach utilizing a piecewise-linear convex constrained model, similar to the work by

Fredriksson et al. (2011).

2.2.2 Chance Constrained Programming

Chance-constrained programming (Charnes and Cooper (1959)) is as one of the major

approaches in modeling stochastic programs and has enjoyed widespread appeal and accep-

tance. If the uncertainty only affects the right-hand-side parameters of the single chance
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constraints, deterministic equivalent transformations are linear and their corresponding fea-

sible region is convex. On the other hand, when the uncertainty is in the left-hand-side pa-

rameters of the chance constraint, additional non-linearity will be introduced to the original

problem by using deterministic equivalent transformations (Charnes and Cooper (1963)).

Deterministic equivalents of the chance constraints are usually developed based on some

distributional assumptions of the uncertain data (Kall et al. (1994); Prékopa (2013); Birge

and Louveaux (2011)). Generalization of the chance constraints and relaxation of the distri-

bution assumptions are recent developments in chance constrained programming. Without

any major assumption on the distribution of random parameter, Pinter (1989) and Birge

and Louveaux (2011) proposed upper bound and lower bound approximations on chance

constraints. They used Chebyshev’s, Bernstein’s, and Hoeffding’s inequalities to develop

approximations.

Distributionally robust chance constraint has been found as a natural way to deal with

uncertainties in a chance constrained framework. Calafiore and El Ghaoui (2006) converted

the single chance constrained linear programs into convex second-order cone constraints for

a wide class of probability distributions. They provide convex conditions that guarantee

the satisfaction of the chance constraints for the given class of probability distribution.

Assuming that the first and second order moments as well as the support of the random

parameter are known, Zymler et al. (2013) developed models to approximate robust chance

constraints. The chance constraints are approximated by worst-case CVaR constraints,

which is motivated by the recent study described above (Chen et al. (2010)). However, the

exact semidefinite programming (SDP) reformulations of the approximation are proposed.

The reformulations are based on the theory of moment problems and conic duality argu-

ments rather than the loose probabilistic inequalities. The approximation by Zymler et al.

(2013) is proved to be exact for single chance constrained programming with either concave

or (possibly non-concave) quadratic in random parameter. Robust individual chance con-

straints are shown to have manifestly tractable SDP representations in most cases in which

CVaR approximation is exact.
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As an immediate consequence, the treatment plans can be severely conservative for the

tumor region, which leads to overdose on the surrounding healthy tissues. In an attempt to

overcome these limitations and to potentially improve sparing of healthy tissues, we develop

further a CCP framework of the FMO problem first introduced by Zaghian et al. (2018).

We then develop a distributionally robust chance constrained structure for this problem to

relax the assumption on uncertainty.

2.3 Biologically-based Treatment Planning Optimization

An important subproblem related to the FMO problem is the fractionation problem.

In this type of optimization problem instead of having one single treatment, a treatment

plan is divided into several sessions, called fractions. This is done to take advantage of the

radio-biological effects of the normal and tumor cells during the treatment.

To this end, growing number of literatures has been devoted to adaptive radiation ther-

apy. Lu et al. (2006) introduced the concept and strategy of adaptive fractionation therapy

(AFT) which enables a quick and easy way to achieve a better therapeutic gain without

planning. In this study, Lu et al. (2006) minimized the expected OAR dose for the re-

maining fractions in which they put constraints on the fraction size so that all fractions

meet the lower and upper bounds, respectively. Chen et al. (2008) explored an adaptive

fractionation scheme with biological optimization. There is another paper presented by

Kim et al. (2012), in which a quantitative measure of the efficacy of dynamic treatment

strategies is maximized. Dynamic biologically conformal radiation therapy (DBCRT) that

is introduced in their paper, is used to exploit the mathematical modeling capabilities, and

to achieve the best possible health outcome for each individual patient over several treat-

ment sessions. Unkelbach et al. (2014) introduced a simple biological model that takes the

trade off between tumor shrinkage and tumor cell repopulation into account. They reduce

normal tissue dose by optimizing the time gaps and amount of dose which is delivered to

the target in each treatment stage. ART can also be viewed as a problem of sequential deci-

sion making under uncertainty and as such, several studies have considered using dynamic
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programming techniques. Ramakrishnan et al. (2012) establish a benchmark by using dy-

namic programming algorithm to solve the problem exactly. They have found out that the

amount of decrease in dose to the OAR can vary significantly depending on the amount of

motion in the anatomy, the number of fractions and the range of fraction sizes allowed. Saka

et al. (2011) highlight the importance of adaptive intensity modulated radiation therapy.

They present a promising iterative optimization approach that re-optimizes and updates

the treatment plan periodically by incorporating the latest tumor geometry information.

Kardar (2014) present a robust adaptive optimization approach, combined with conditional

value-at-risk (CVaR) representation of dose volume constraint, considers tumor shrinkage

as an uncertain parameter. They showed that robust adaptive planning improve sparing of

healthy tissue without compromising the target coverage. Kim et al. (2009) mathematically

explores the benefits of such fractionation schemes. This is achieved by building a stylistic

Markov decision process (MDP) model, which incorporates some key features of the prob-

lem through intuitive choices of state and action spaces, as well as transition probability

and reward functions.

Recently, researchers have shown a lot of interest in developing sophisticated optimiza-

tion methods used in this step of radiation therapy (For review see Shepard et al. (1999);

Reemtsen and Alber (2009)). Once the beamlet intensities are optimized, they are divided

into fractional doses. Fractionation gives time to surrounding healthy tissue to recover and

increases tumor control probability Thames and Hendry (1987).

Unlike the FMO problem, the fractionation problem has not been well studied in the

literature, despite the evidence that the fractionation scheme bears significant impact on

clinical outcomes (Bourhis et al. (2006); Ferreira et al. (2010); Ho et al. (2009); Hoffmann

et al. (2008)). Although there have been numerous studies on the importance of the fraction-

ation scheme, no consensus nor standardization exists with regards to how a fractionation

scheme should be structured Ho et al. (2009) , and most previous studies focused on the

number of fractions rather than mathematically optimizing the dose per fraction.
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Chapter 3

A feasibility study of a risk-based stochastic opti-

mization approach for radiation treatment planning

under setup uncertainty

3.1 Introduction

Figure 3.1: Illustration of a radiation therapy treatment planning.

According to the American Cancer Society, there were around 17.0 million new cancer

cases diagnosed in 2019, and radiation therapy is used in more than half of the cases, some

in conjunction with chemotherapy or surgery (AmericanCancerSociety (2019)). Radiation
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therapy delivers radioactive particles to the tumor region to damage the DNA of the cells

(see Figure 3.1). It is often unavoidable that the radiation can also harm healthy cells

which may lead to radiation-induced side-effects (complications). The goal of radiation

treatment planning is to shrink tumors (Erridge et al. (2003); Knap et al. (2010)) and kill

cancer cells, while minimizing negative effects on healthy organs. This can be achieved by

optimally choosing the amount of radiation to be delivered to the cancerous region. Two

common radiation delivery modalities are photon-based intensity modulated radiation ther-

apy (IMRT) (Lim and Cao (2012)), and proton-based intensity-modulated proton therapy

(Cao et al. (2017); Bai et al. (2018)). Both methods decompose one open beam into many

“beamlets” for each angle. The intensity of each beamlet can be modulated to achieve the

optimal treatment effect; hence, clinical practitioners must determine how much radiation

to deliver through each beamlet (i.e., beamlet intensity or weight) so that the target volume

receives the prescription dose while healthy tissues receive a minimal or no dose. This is

commonly known as a fluence map optimization (FMO) problem. Over the past few years,

several mathematical models have been developed for the FMO problem (Romeijn et al.

(2003); Zaghian et al. (2014); Cao et al. (2017)). However, in the presence of uncertainties

in radiation therapy, solving the FMO problem is computationally challenging because it

often involves millions of continuous and discrete variables.

Various uncertainties occur in treatment planning, such as in patient positioning, or-

gan motion, breathing motion, dose calculation, beam energy, and others. Among these

uncertainties, patient setup error is one of the most critical factors that can result in unpre-

dictable treatment outcomes. Radiation therapy is often administered daily over a period

of several weeks. For each treatment session, the patient needs to be set up on the treat-

ment couch in the exact same position for each treatment. Due to the repeated positioning

of patients, the actual and planned position of the patient with respect to the treatment

can differ between each visit. As a consequence of patient setup error, the radiation dose

received by each voxel can be different from the planned dose. Many existing studies high-

light the importance of robustness in radiation treatment planning (Baum et al. (2006);
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Unkelbach and Oelfke (2004); Bortfeld et al. (2008); Chan et al. (2006); Chu et al. (2005);

Olafsson and Wright (2006); Pflugfelder et al. (2008); Liu et al. (2012b); Chan and Mišić

(2013); Fredriksson et al. (2011)) and uncertainties are addressed using different models

and assumptions (Shepard et al. (1999); Reemtsen and Alber (2009)).

As an extension of the deterministic (or nominal) optimization method, robust opti-

mization (RO) is commonly used for incorporating the uncertainties in treatment planning

optimization problems. An RO approach constructs a single solution that is feasible for

all possible realizations of the parameter within an assumed uncertainty set. Chan et al.

(2006) proposed a robust formulation of the treatment planning optimization problem us-

ing probability density functions of the uncertainty in breathing motion. Other studies

have included scenario-based worst-case RO approaches (Pflugfelder et al. (2008); Liu et al.

(2012b); Fredriksson et al. (2011)).

However, a drawback of RO is in the selection of the uncertainty set that contains all

possible realizations of the unknown parameter in the optimization model. Because it is

difficult to estimate the uncertainty set, the treatment plans are often developed under the

worst-case scenario (Pflugfelder et al. (2008); Chan and Mišić (2013); Fredriksson et al.

(2011)). As an immediate consequence, the treatment plans can be severely conservative

for the tumor region, which leads to overdose on the surrounding healthy tissues (Chen

et al. (2012); Casiraghi et al. (2013); Fredriksson and Bokrantz (2014)).

In an attempt to overcome the limitations of RO and to potentially improve sparing of

healthy tissues, Zaghian et al. (2018) proposed a stochastic programming approach, specif-

ically, chance-constrained programming (CCP). A key feature of CCP is to give treatment

planners control of the probability that the constraints can hold under uncertainties. Hence,

with the CCP approach a user can specify a level of confidence (1−α) ∈ [0, 1] for violating

the constraints, where higher confidence levels result in greater avoidance of constraint vio-

lations. As a result, treatment planners can bring their own experience in to the treatment

planning and have better control of tumor coverage and radiation damage to healthy tissues.

A similar approach has been reported by An et al. (2017) to develop an intensity-modulated
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proton therapy plan using conditional-value-at-risk chance constraints. The minor draw-

back was that their comparison was based on the planning treatment volume-based method

whereas RO is proposed to be a better approach in handling the uncertainties (Liu et al.

(2012b)).

In CCP, an adjustable safety parameter is introduced for each of the constraints to

certify the level of satisfaction on the probabilistic constraints with high confidence. These

confidence levels represent prescribed safety tolerances or violation probabilities, which can

provide additional information for decision makers in treatment planning. As a result, a

treatment plan can be developed on the basis of the decision maker’s risk preference for

constraint violation while optimizing the treatment goal. In practice, the treatment goal is

to spare the OARs (organs-at-risk) while delivering the prescribed dose to the tumor.

Most existing radiation treatment planning optimization models in RO do not allow

constraint violation under uncertainty. But, the CCP approach allows the decision maker

to adjust the level of conservatism of the robust solutions by specifying the level of constraint

violations when the probability is derived with respect to sparing health organs. Therefore,

the goal of the present study is to provide flexible treatment plans in terms of OAR sparing

while satisfying the clinical target dose requirements. The presented model controls the

frequency of constraint violations and provides optimized treatment plans along with user-

defined confidence levels with the following objectives:

• Demonstrate the effectiveness of the CCP approach in creating treatment plans that

are flexible to the dose requirements of the clinician-approved trade-offs among dif-

ferent organs (target and OARs).

• Provide a feasibility study of the clinical implementation of the CCP approach in

radiation treatment planning under uncertainty.

We performed the experiments with five clinical cases from patients who received radiation

treatment for cancer to verify the impact of using the confidence-based FMO model on the

optimized plan quality in terms of healthy tissue sparing.
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The rest of this paper is organized as follows. In Materials and Methods, we briefly

describe our FMO model in terms of the set of fixed parameters and then explain how chance

constraints for treatment planning can be constructed. Under distributional assumptions

of uncertainty, the deterministic equivalence of the CCP framework is also elaborated. The

results for two patients with prostate cancer, one with pancreatic cancer, one pediatric

patient, and one patient with lung cancer are shown and discussed in the Results. We

conclude the paper with the Discussion.

3.2 Materials and Methods

We begin by briefly reviewing the FMO problem in radiation therapy and discussing

the deterministic constraints in our optimization problem. Next, we incorporate parameter

uncertainty into optimization by formulating a probabilistic version of the optimization

problem. The CCP approach is then described to solve the stochastic model.

3.2.1 Nominal formulation

The core task of FMO in radiation treatment planning is to find the optimal value of

the beamlet intensity for all beamlets. Therefore, we define decision variables representing

the intensity of beamlet j ∈ J as wj , and the decision vector of all beamlet intensities as w.

The dose distribution is expressed as Di(w) as a linear function of the variable wj (Shepard

et al. (1999); Lim (2008)) as

Di(w) =
∑
j∈J

dijwj = dTi w, ∀i ∈ {T ∪ O},

where dij denotes the dose per intensity contribution to voxel i from beamlet j. The input

parameters for radiation treatment planning models proposed in the present study are

defined in Table 4.1. A cold spot is defined as a fraction of voxels in a structure receiving

less than the desired prescribed radiation dose. A hot spot is defined as a fraction of voxels

in a structure receiving more than the prescribed dose.
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Table 3.1: Input parameters for radiation treatment planning models

Symbol Definition
T A set of voxels in the clinical target volume
O A set of voxels in an organ-at-risk
J A set of all beamlets
λ+
T Penalty coefficient for hot spots on the target
λ−T Penalty coefficient for cold spots on the target
λO Penalty coefficient for hot spots on an organ-at-risk
α+
T Risk level for having cold spots on the target
α−T Risk level for having hot spots on the target
α+
O Risk level for having hot spots on an organ-at-risk

The deterministic FMO model in radiation therapy (Lim et al. (2008)) can be repre-

sented as follows in constraints (2)-(6):

min − λ−T θL + λ+
T θU + λ+

O ϕ (3.2.1)

s.t.

Di(w) ≥ θL, ∀i ∈ T , (3.2.2)

Di(w) ≤ θU , ∀i ∈ T , (3.2.3)

Di(w) ≤ ϕ, ∀i ∈ O, (3.2.4)

θL ≤ θL ≤ θ̄L, θU ≤ θU ≤ θ̄U , and (3.2.5)

ϕ,w ≥ 0, (3.2.6)

in which various dose constraints are involved in the design of treatment plans. Here,

θL (Gy) and θU (Gy) represent cold spot and hot spot control variables on the target,

respectively, and ϕ (Gy) is the hot spot control variable on an organ-at-risk. Note that a

cold spot is a portion of tissue that receives less than the desired radiation dose, and a hot

spot is a portion of tissue that receives a dose higher than the desired dose (Lim et al. (2008)).

Constraint (3.2.2) ensures a high likelihood of eradicating the tumor, whereas constraint

(4.2.1) ensures a high likelihood that the functionality of critical structures is retained.

Constraint (3.2.3) is to avoid overdose on the target. In this optimization model, our goal is
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to find the beamlet intensities in such a way that deviations of the variables, θL, θU , and ϕ,

can be minimized from their target values, i.e., min θU−θL, minϕ. Parameters λ+
T , λ

−
T , and

λ+
O are for assigning different priority factors in the objective to penalize overdosing of the

target, underdosing of the target, and overdosing of the OAR over the limit ϕ, respectively.

In Constraint (3.2.5), θ and θ̄ represent lower and upper bounds for variables θL and θU ,

respectively.

3.2.2 CCP formulation

Under setup uncertainty, the random dose delivered to voxel i is denoted by

D̃i(w) = d̃′iw,

where d̃i denotes the random dose contributed by all beamlets per unit weight and is

received by voxel i. A classic approach to the solution of constraints (3.2.2)-(4.2.1) under

random uncertainty is to enforce the constraints in probability by introducing a risk level

α, which is called a chance-constrained linear program.

To construct chance constraints for radiation treatment planning optimization under

patient setup uncertainty, we introduce αi as a desired safety factor of each structure i, and

we rewrite the constraints in probability as follows:

P{D̃T (w) ≥ θL} ≥ 1− α−T , (3.2.7)

P{D̃T (w) ≤ θU} ≥ 1− α+
T , and (3.2.8)

P{D̃O(w) ≤ ϕ} ≥ 1− α+
O. (3.2.9)

The dose calculated using any feasible solution of constraints (4.2.2)-(4.2.5) will be between

the lower and upper boundary control parameters prescribed for each structure, with a

specified confidence level for each voxel. Typically, the same dose is prescribed to all voxels

in the target, so we assume equal confidence levels for all voxels in the same structure

for each set of constraints. In other words, the resulting dose of any feasible solution of
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constraints (4.2.2)-(4.2.5) is greater than θL with confidence level (1− α−T )% and less than

θU with confidence level (1 − α+
T )% for the target voxel, and it is also less than ϕ with

confidence level (1− α+
O)% for each OAR voxel, in the face of uncertainty.

Unfortunately, there is often a conflict between the lower and upper bound constraints,

which will lead to an infeasible solution in practice. To avoid infeasibility of the optimization

problem, we may allow some or all of these constraints to be violated up to a certain level.

We can easily penalize the violations of the lower and upper bounds on the amount of dose

received by each voxel in the objective function. In this regard, assuming that confidence

levels (1−αi) are given, we developed model (4.2.3), in which θL, θU , and ϕ are considered

as decision variables

min − λ−T θL + λ+
T θU + λ+

O ϕ (3.2.10)

s.t.

P{D̃T (w) ≥ θL} ≥ 1− α−T , ∀i ∈ T ,

P{D̃T (w) ≤ θU} ≥ 1− α+
T , ∀i ∈ T ,

P{D̃O(w) ≤ ϕ} ≥ 1− α+
O, ∀i ∈ OAR,

Constraints (3.2.5)− (4.2.4).

Next, we solve the CCP model (4.2.3) by treating uncertain parameters as continuous

random variables with a known probability density function.

3.2.3 CCP models under distributional assumptions

One of the computational challenges in solving a CCP model comes from the fact that

the chance constraints may not be convex (Nemirovski and Shapiro (2006)). However, a

CCP model can be made convex in a few special cases. For example, if the uncertainty

parameter (d̃i) has a log-concave probability density, the corresponding chance constraints

will be convex (Zaghian et al. (2018)).
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In this section, we consider two special probability distribution functions of random pa-

rameter d̃i, normal and uniform distribution. We focus on the normal distribution because

it is widely used and has attractive analytical properties that facilitate further analysis

(Chan et al. (2009)). As follows from the central limit theorem (Bertsekas and Tsitsiklis

(2002)), a large set of independent identically distributed random variables approach a nor-

mal distribution regardless of the underlying probability distribution. So, the normality

assumption will also help extend the analysis to multiple sources of uncertainty. Thus, we

constructed the deterministic equivalent of a CCP framework on the basis of the normality

assumption of a random parameter (Zaghian et al. (2018)) (see Appendix A) as well as

a uniform distribution (see Appendix B). Note that we used normal and uniform proba-

bility distributions that are widely used in practice as an example to describe the setup

uncertainty (Chan et al. (2009); Engelsman et al. (2005)).

3.3 Clinical cases and planning details

We evaluated the relative performance of the CCP models on the basis of treatment plan

information obtained from five cancer patients (two patients with prostate cancer, one with

pancreatic cancer, one pediatric patient, and one patient with lung cancer) who received

radiation therapy at The University of Texas MD Anderson Cancer Center.

By assuming that the setup uncertainty ranged between −5 mm and +5 mm (Manning

et al. (2001); Wong et al. (2005)), we generated four representative scenarios in addition

to the nominal scenario (Liu et al. (2012b); Casiraghi et al. (2013)) for the patient setup

uncertainty. The first- and second-order moments of the uncertain dose contributions were

calculated for each case under normal and uniform distributional assumptions. Under these

assumptions, the respective minimum and maximum doses to the target were 95% (θL =

0.95) and 105% (θ̄U = 1.05) of the prescribed dose in all plans. The values of weight factors

λ−T , λ
+
T , and λ

+
O are often selected on the basis of the planner’s preference. Table 4.4 lists

the planning parameters for the five clinical cases analyzed in the present study. For each

case, the number of beams, number of voxels within each volume, and the corresponding
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dose-volume requirements were provided.

Table 3.2: Anatomical structures and dose requirements for five clinical cases used in our analysis

Cancer Case 1 Volume NO. of Beams Constraints
Prostate I (IMRT) Target: 1000 6 Prescription: 76 Gy

Receiving ≥ 96% of θL
Receiving ≤ 105% of θU

OAR (rectum): 5848
OAR (bladder): 10603

Prostate II (IMRT) Target: 6375 6 Prescription: 76 Gy
Receiving ≥ 95% of θL
Receiving ≤ 105% of θU

OAR (rectum): 5719
OAR (bladder): 7850

Pancreas (IMRT) Target: 1244 12 Prescription: 54 Gy
Receiving ≥ 99% of θL
Receiving ≤ 101% of θU

OAR (liver): 50391
OAR (spinal cord): 489 Max dose: 45 Gy
OAR (left kidney): 9116
OAR (right kidney): 5920

Lung (IMPT) Target: 5716 3 Prescription: 70 Gy
Receiving ≥ 95% of θL
Receiving ≤ 107% of θU

OAR (heart): 8287
OAR (spinal cord): 481
OAR (esophagus): 389

Pediatric (IMPT) Target: 9307 3 Prescription: 64 Gy
Receiving ≥ 95% of θL
Receiving ≤ 105% of θU

OAR (brainstem): 1118
OAR (optic chiasm): 17

Different treatment plans were generated for each of the clinical cases: one with the

deterministic approach, one with the robust worst-case optimization and the others using

the CCP treatment planning models. The models were solved using a commercial linear

optimization solver, CPLEX (IBM Analytics (2019)). Note that the beam angles were

optimized (Lim et al. (2014)) and confirmed by clinicians in advance.

A family of dose-volume histograms (DVHs) for the comparison of different models

were applied. We used the DVH family band width method (Trofimov et al. (2012)) that

displayed all DVHs of the five dose distributions corresponding to the four scenarios of
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setup uncertainty in addition to the nominal scenario. DVH indices comparing tumor dose

coverage, homogeneity, and OAR sparing are also discussed in detail in the next section.

3.4 Results

3.4.1 Plan quality and robustness

Plans optimized by the chance-constrained and nominal (or deterministic) optimization

models for one of the patients with prostate cancer are compared in Figures 3.2a-3.2f. The

DVHs corresponding to the nominal dose distribution (i.e., no uncertainty) are displayed

along with the DVH bands for deterministic and chance-constrained models. The solid

line indicates DVHs for the nominal dose distribution and the shaded area shows the DVH

family band plotted on the basis of various shifted setup scenarios. For all plans, the nominal

DVHs (solid lines) were almost equally good, which shows that the clinical constraints were

satisfied. However, Figure 3.2a shows that the band of the DVH along the target is wider

for the deterministic model than for the CCP models (DVHs in Figures 3.2c and 3.2e),

which shows that the target coverage of the deterministic model was worse than that of the

CCP models.

Moreover, as would be expected, the DVH bands on OARs that are illustrated on the

right side of Figure 3.2 are reduced by the CCP approach under two different distributional

assumptions. In fact, these figures explain how controlling the violation of the clinical con-

straints using CCP models resulted in improved OAR sparing compared with the determin-

istic model. Overall, this comparison demonstrates that by incorporating setup uncertainty

information in the optimization, the sensitivity of the plans against errors can be reduced.
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Figure 3.2: Dose-volume histogram bands for target and organs-at-risk dose distributions cover-
ing all setup uncertainties, resulting from (a, b) the deterministic approach, (c, d)
chance-constrained programming under the normality assumption, and (e, f) chance-
constrained programming under the uniformity assumption. (Zaghian et al. (2017)).
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3.4.2 Robust optimization:

The plans were optimized to evaluate the robustness of treatment plans using CCP and

RO under random setup errors, and corresponding DVHs for the target and OARs were

analyzed for each of the setup scenarios.

Figure 3.3: Lung cancer dose-volume histogram bands for planned target volume (PTV) and
organs-at-risk dose distributions covering all setup uncertainties, resulting from (a)
the deterministic approach, (b) robust optimization, (c) chance-constrained program-
ming under the normality assumption, and (d) chance-constrained programming under
the uniformity assumption.

Figure 3.3 shows the DVH family band for the lung cancer case, based on treatment

plans developed using the deterministic approach, RO, and CCP under normal (CCP-N)

and CCP under uniform probability distributions (CCP-U). Figures in Appendix C show
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the results for the two prostate cancer cases, the pancreatic, and the pediatric cancer cases,

respectively. The DVHs in Figure 3.3 show that all nominal plans (black line) met the

clinical prescription criteria in both covering the tumor and sparing OARs, and the target

was robustly covered for all plans, as indicated by the narrow DVH family band (shaded

area) compared with the deterministic approach. Based on the experiments presented in

the paper, the confidence-based CCP models outperformed the robustly optimized plan by

improving the protection of critical organs under the nominal and setup scenarios. The

shaded area around the nominal DVHs of the spinal cord in the robust plan (Figure 3.3b)

is wider than that in the CCP plans (Figure 3.3c and 3.3d). As shown in Figures 3.3c and

3.3d, the maximum doses to the normal cells around the target from the CCP plans met

the tolerances without sacrificing the robustness of the plan to setup uncertainty, which

demonstrates the flexibility of the CCP approach compared to the RO method in creating

clinically reasonable plans.

To further illustrate the performance of the biologically-based CCP models, we explored

the effect of CCP models on sparing of normal tissues around the tumor for the five clinical

cases. Table 3.3 reports radiation dose statistics associated with OAR DVHs for each case

based on the plans optimized by the CCP models and worst-case RO approach. The values

in the nominal scenario as well as the average and worst-case values considering all setup

scenarios are presented. The table shows that the proposed CCP models delivered smaller

radiation doses to the normal organs than the RO approach for all cases for each of the

three measures: nominal, worst-case, and average dose.

Table 3.3 shows the radiation dose statistics on healthy organs for all cancer cases as

explained by An et al. (2017): D1 (Gy), the amount of dose received by more than 1% of

the organ. The CCP approach reduced the nominal dose of D1 for the rectum in Prostate

case I as compared to RO: 75.64 Gy for CCP-N and 72.39 Gy (vs. 76.46) in case of CCP-U.

The average dose of D1 (Gy) on the bladder was also reduced when the CCP approach was

used on each of the nominal, worst-case, and average scenario. We observed similar results

for Prostate case II shown in Table 3.3. For the Pancreas case, the maximum nominal
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doses of D1 on healthy organs were 35.42 Gy and 28.46 Gy for liver and spinal cord using

the RO model, respectively. Those values were reduced to 22.48 Gy and 28.05 Gy using

CCP-N, and to 23.51 Gy and 28.10 Gy using the CCP-U model for the liver and spinal cord,

respectively. Similar results were observed by comparing the results of maximum dose (D1

(Gy)) on the liver and spinal cord for worst-case and average case scenarios. For this case,

the maximum radiation dose on the spinal cord was slightly lower for CCP plans, whereas

there were significant improvements in protecting the liver by reducing the amount by at

least 12.94 Gy when compared to the RO plan. For a better illustration of the dose volume

histogram plotted for the liver in the Pancreas case, the percentage of the liver volume

receiving more than 30 Gy, V30%, was compared for all the plans. Both CCP-N and CCP-U

reduced V30% by 2.18% and 2.03%, respectively, over the robust plan. It can be seen that

the CCP plans delivered the least amount of dose to the healthy tissue, especially, in the

liver. For the case of the lung cancer, the CCP result in a slightly higher dose of D1 (Gy)

(maximum dose) for the heart. However, this was a necessary compromise to provide a plan

with better sparing of the spinal cord, which can be severely damaged if it is over-dosed.

Both CCP under the normality assumption and CCP under the uniformity assumption

appeared to provide better control than the RO approach in terms of sparing of normal tis-

sues, which can be achieved by controlling the tolerance levels assigned to each structure’s

dose requirements and studying the relationship between dose requirements and plan con-

servatism. In a CCP setting, the confidence level of satisfying the target dose requirement

can be adjusted on the basis of the physician’s preference to avoid overly conservative treat-

ment plans. As a result, with the CCP method the OAR protection can be improved, and

this will prevent side effects due to radiation and lead to better quality of life for patients.
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Table 3.3: Comparison of chance-constrained models (CCP-N and CCP-U with α = 95%) and the
worst-case robust optimization (RO) method on healthy organ sparing. The values are
derived from the dose-volume histograms. 2

Prostate I Prostate II Pancreas
Rectum Bladder Rectum Bladder Liver Spinal Cord

CCP-N D1 (Gy) D1 (Gy) D1 (Gy) D1 (Gy) V30% D1 (Gy) D1 (Gy)
nominal 75.64 77.27 77.35 77.19 0.23 22.48 28.05
worst-case 75.93 77.27 77.36 77.31 0.35 23.20 28.24
average 75.74 77.22 77.33 77.22 0.26 22.76 28.12
CCP-U
nominal 72.39 77.25 76.97 77.69 0.38 23.51 28.10
worst-case 72.88 77.29 77.06 77.72 0.46 24.34 29.33
average 72.51 77.24 76.98 77.69 0.39 23.71 28.36
RO
nominal 76.46 77.27 77.39 78.24 2.41 35.42 28.46
worst-case 77.45 77.38 77.76 78.24 2.73 36.60 32.00
average 76.71 77.28 77.46 78.24 2.50 35.88 29.84

Lung Pediatric
Heart Spinal Cord Brainstem Optic Chiasm

CCP-N D1 (Gy) D1 (Gy) V40% D1 (Gy) D1 (Gy)
nominal 85.03 49.88 5.40 60.92 14.38
worst-case 85.03 61.88 6.44 61.24 14.68
average 84.50 51.18 5.02 61.07 14.44

CCP-U
nominal 81.23 44.52 2.70 60.92 14.38
worst-case 82.22 59.52 2.91 61.24 14.64
average 81.23 47.63 2.74 60.91 14.44

RO
nominal 81.05 50.21 6.02 61.24 14.38
worst-case 81.15 61.79 11.23 61.24 14.70
average 81.10 53.26 6.44 61.23 14.50

Next, we evaluated the robustness of the CCP plans in terms of tumor dose coverage.

Table 3.4 shows the tumor DVH indices achieved by our confidence-based CCP models and

worst-case RO approach. For each clinical case, the first row shows the dose homogeneity

index (HI) that is often used as an objective measure of treatment plan quality (Yoon et al.

(2007)). HI is calculated by

HI = D95
D5

, 0 ≤ HI ≤ 1,

where D5 and D95 are the dose coverage at 5% and 95% volume of the target: the larger
2D1 denotes the amount of dose received by more than 1% percent of the organ, and V30% denotes the

percentage of the organ volume receiving dose of more than 30 Gy.
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(closer to 1) the value of HI, the better the dose homogeneity.

To quantify the plan robustness under uncertainty, we listed the width of the DVH

band at D5 and D95 in the second and third rows. The nominal HI values for all clinical

cases except the patient with lung cancer were equally high, and the DVH band-widths

from the CCP models were better than those from the RO model (as shown in Figure 3.3

and figures in Appendix C). For the patient with lung cancer, the nominal HI values were

slightly lower for the CCP plans, whereas the indices of DVH band width from the CCP

models outperformed those from the RO plan. This means that the target coverage of the

plans generated by the CCP models under two different distributional assumptions was

more robust when compared with the RO plan for shifted setup uncertainty.

Table 3.4: Homogeneity index for clinical cases examined in our analysis.

Case3 CCP-N CCP-U RO

Prostate cancer I
HI (nominal) 0.96 0.95 0.96
D5 DVH band 0.05 0.05 0.05
D95 DVH band 0.01 0.05 0.01

Prostate cancer II
HI (nominal) 0.96 0.96 0.96
D5 DVH band 0.03 0.05 0.05
D95 DVH band 0.01 0.02 0.02

Pancreatic cancer
HI (nominal) 0.97 0.97 0.97
D5 DVH band 0.10 0.15 0.26
D95 DVH band 0.15 0.20 0.35

Lung cancer
HI (nominal) 0.88 0.88 0.90
D5 DVH band 0.15 0.13 0.15
D95 DVH band 3.00 3.54 9.19

Pediatric cancer
HI (nominal) 0.86 0.86 0.86
D5 DVH band 0.12 0.15 0.16
D95 DVH band 0.05 0.03 0.04

3.4.3 Sensitivity Analysis

This section discusses the sensitivity of CCP models to the choice of a distribution. We

designed an experiment to test the performance of the proposed model when the assumed

dose distribution for treatment planning was different from the true distribution, which is
3HI:homogeneity index, DVH: dose-volume histogram
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not known in advance. For example, treatment plans may have been developed based on

the assumption that the set up error follows a normal distribution (CCP-N) when, in fact,

the true probability distribution was Uniform. The parameter values resulting from those

experiments on Prostate case I are shown in Table 3.5.

Table 3.5: Cold- and hot-spot control parameters on target (θL and θU ) and hot-spot control
parameter on OARs (ϕ) optimized for Prostate I.

Assumption Approach θL (Gy) θU (Gy) ϕ (Gy)

Normally distributed CCP-N 76.00 77.52 76.00
CCP-U 72.20 81.32 79.04

Uniformly distributed CCP-N 76.00 82.08 78.28
CCP-U 74.48 76.00 74.48

First, we compare the treatment plans under the two distributional assumptions in

terms of the uniformity of the planned dose distribution on the target (Lim et al. (2007)).

In radiation therapy, the uniformity is the difference between the maximum dose and the

minimum dose received on the target, which is measured by θU − θL. Ideally, we wish to

achieve a treatment plan whose gap is close to zero. In Table 3.5, when the random data

was assumed to follow a normal probability distribution, the uniformity value of the CCP-

N based treatment plan (i.e., 1.52 Gy = 77.52 − 76.00) is smaller than the CCP-U based

plan (9.12 Gy = 81.32− 72.20). However, when the random data was assumed to follow a

uniform probability distribution, we observed the opposite result as the uniformity value of

CCP-N (6.08) is larger than that of CCP-U (1.52).

Next, we compared the performance of the proposed model (CCP-N/CCP-U) with the

maximum threshold on OARs obtained based on the respective distributional assumption.

As it is shown from the last column of Table 3.5, the plan by CCP-N resulted in a consistently

lower upper threshold limit on OARs (ϕ = 76.00 Gy) than did CCP-U (ϕ = 79.04 Gy) under

the normal probability distribution assumption. A similar observation was made when the

random parameter was assumed to follow a uniform distribution (from the last two rows in

Table 3.5).
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3.5 Discussion

In the present work, we explored the CCP optimization framework using five clinical

cases. Treatment plans were optimized for robustness, quality, and homogeneity under

patient setup errors. In practice, the treatment goal is to spare the OARs while delivering

the prescribed dose to the tumor. However, these conflicting objectives are often difficult

to achieve. In a worst-case scenario, critical organs will necessarily receive more doses

when a plan robustly covers the target. Conversely, the target will not receive a sufficient

radiation dose when a plan robustly spares a nearby critical structure. Thus, the level of

the plan conservatism needs to be determined under uncertainty, and this can be decided

by adjusting the tolerance levels introduced in the CCP approach. Our results showed that

the confidence-based CCP model was a user-centric optimization tool that can help obtain

a good balance between the plan quality and robustness. Our analysis covered five clinical

cases under two probability assumptions of random setup uncertainty using the same clinical

limitations and directions. Our numerical results for the clinical cases showed that the CCP

approach was capable of controlling the robustness of the model while attaining high-quality

solutions. We believe that the CCP plans demonstrated here will be applicable to many

different types of clinical cases under different probability assumptions of uncertainty.
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Chapter 4

Distributionally Robust Chance-Constrained Pro-

gramming in Radiation Therapy Treatment Plan-

ning

4.1 Introduction

Radiation treatment (RT) planning is the process of designing an appropriate treatment

in such a way that the tumor region receives the prescribed radiation dose, while the critical

structures receive as small dose as possible to minimize the risk of side effects to healthy

tissues. RT delivery machines are capable of controlling the intensities of the beamlets (i.e.,

many small rays of radiation beams) to achieve the RT goal, and radiation is delivered to

patients from multiple angles to achieve a conformal and uniform dose distribution to the

target volume.

RT affects both the tumor volumes and the healthy tissues around the tumor. Exposure

to an excessive amount of radiation can cause permanent damage in healthy cells. There-

fore, a fractionation scheme is often used in which about 2 Gy of radiation is delivered to

the patient each day to allow the healthy tissues to recover between treatments. Hence,

treatment can take several weeks to complete, with the patient having to visit the clinic

five times a week.

There are several known uncertainties in RT planning that should be carefully consid-

ered to avoid serious degradation in treatment quality: patient setup uncertainty (Chu et al.

(2005)), uncertain dose deposition by the beam because of the type of tissue (Unkelbach

et al. (2007)), and patient breathing motion (Bortfeld et al. (2008)). The effect of these
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uncertainties on the delivery of the planned dose distribution should be mitigated appropri-

ately to ensure that the correct dose is deposited in the tumor and the patients are treated

safely.

To address parameter uncertainty, various robust planning models have been developed

in RT planning. Worst-case robust optimization is commonly used in the medical com-

munity to provide tumor coverage under uncertainty while minimizing exposure to healthy

organs (Pflugfelder et al. (2008); Fredriksson et al. (2011); Liu et al. (2012b)). Treatment

plans developed using such approaches primarily focus on the worst-case scenario for the

tumor volume, which may result in unnecessarily conservative plans that cover the tumor

region well at the risk of exposing nearby healthy organs to high doses of radiation. Hence,

physicians may prefer a treatment planning model that strikes a balance between a high

probability of tumor control and a low risk of side effects.

Over-conservatism in the model can be avoided using a stochastic optimization technique

such as chance-constrained programming (CCP) (Calafiore and El Ghaoui (2006)). In CCP,

chance constraints are used to relax the constraints in a deterministic optimization model

and replace them with probabilistic ones. Each chance constraint can be associated with

the level of confidence for satisfying the underlying deterministic constraint. The confidence

level can be helpful to treatment planners who are trying to balance a set of conflicting

objectives, i.e., delivering a therapeutic dose to the tumor while limiting the dose to the

organs-at-risk (OARs) (Zaghian et al. (2018); An et al. (2017)).

The means by which CCP deals with a parameter uncertainty depends on the prob-

ability distribution of the uncertain parameter, which is typically not known in advance.

However, there may be limited information about a possible family of distributions, on

the basis of prior observations. In these situations, distributionally robust CCP (DRCCP)

is an appropriate method of addressing uncertainties in a chance-constrained framework

(Calafiore and El Ghaoui (2006); Zymler et al. (2013); Chen et al. (2010)).

A few studies have used DRCCP to account for uncertainties in the parameters of opti-

mization models, irrespective of the probability distribution of the data. When only partial
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information about the probability distribution is known, convex conditions can be used

that guarantee the satisfaction of the chance constraints for any possible distribution, with

respect to the given information (Calafiore and El Ghaoui (2006)). Chen et al. (2010)

considered a variety of uncertainty sets and showed that there was a relationship between

the bounds on the conditional-value-at-risk measure and different approximations of in-

dividual chance-constrained problems in robust optimization. Accordingly, Zymler et al.

(2013) developed models to approximate robust chance constraints, assuming that the first-

order (FO) and second-order (SO) moments or the support of the random parameter is

known. They approximated the distributionally robust chance constraints using worst-case

conditional-value-at-risk constraints in a study that was motivated by another study by

Chen et al. (2010).

The goal of our study was to account for the uncertainties in the treatment planning

optimization process using a DRCCP approach in which the robustness of each clinical

objective can be considered and optimized separately. For this, we developed a confidence-

based robust optimization model to determine acceptable treatment plan quality, subject

to the treatment dose constraints. We considered setup uncertainty within a family of

distribution probabilities and incorporated it in the proposed model to find the highest

possible tolerance level at which the clinical goals were satisfied for all possible setup errors.

As many types of uncertainties can be considered in this way, the proposed framework may

be further used to account for various uncertainty sources and treatment modalities.

We evaluated the proposed DRCCP approach under two assumptions of the uncertainty

set: in the first class, we consider the common situation in which the coefficients of the linear

program are known to have a finite mean and lie in independent intervals. A computation-

ally tractable approximation is provided to enforce of the probability constraint, robustly

with respect to the parameter distribution. In the second class, we assumed that the FO

and SO moments (or the mean and the covariance) were known. Again, the probabilistic

constraints were enforced over all possible distributions, compatible with given moments.

For this class, the SO cone counterparts of the robust chance constraints were developed
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while considering the linear function of the random dose variable. To improve the perfor-

mance of the approximation models, we developed two novel quadratic approximations of

the random dose distribution with a higher order of uncertainties.

All proposed optimization models include the probability of the meeting planning goals

as a variable in the objective function to minimize the degree of clinical constraint violation.

It can thereby reach the highest probability for which the goals can be fulfilled. The model

simultaneously provides an optimized treatment plan and a corresponding confidence level

and controls the level of plan conservatism against which the treatment plan is robust to

the uncertainty.

To illustrate the general features of the proposed DRCCP approaches, we performed

experimental studies in a small test case, followed by a prostate cancer case. We illustrated

how well the DRCCP approaches fit the data under distributional uncertainty and compare

in terms of their efficiency. In addition, the quality, robustness, and confidence of the

plans generated using different models and under different assumptions are evaluated and

analyzed for a real prostate cancer patient. The improved plan quality, as determined by

Quadratic Majorant (QM) and SO dependence approximations, is also highlighted.

Our specific contributions in this paper are as follows:

• Assuming that our information about the uncertain dose is limited to the FO and

SO moments or the interval and mean of the random parameter, we relax the distri-

butional assumptions on the chance constraints and DRCCP approaches. Depending

on the type of information we have on the random parameter, the robust chance

constraints are transformed into the corresponding SO cone counterparts, and the

confidence levels of the constraints are maximized.

• To make the treatment plans more homogeneous, we developed two quadratic approx-

imations of the distributionally robust chance constraints under the assumption that

the FO and SO moments of the random parameter are known. These quadratic models

provide more precise deterministic approximations of the robust chance constraints.
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• We propose a hybrid solution in which a solution of the DRCCP-SOCP is used as a

starting point for other DRCCP approaches with quadratically approximated chance

constraints.

In Section 4.2, we list the probabilistic constraints based on the parameters interpreted in

Table 4.1. We then explain how chance constraints for treatment planning are constructed.

In Section 4.3, we define DRCCP and then, propose four approaches. Experimental studies

using a small test case and a clinical prostate case are presented in Section 4.4. Section 4.5

contains our conclusions.

4.2 Treatment planning chance constraints

Table 4.1: Notation

T Set of voxels in clinical target volume
OAR Set of voxels in organ-at-risk
J Set of all beamlets
θL Cold spot control parameter on target
θU Hot spot control parameter on target
ϕ Hot spot control parameter on OAR
λ+
T Penalty coefficient for hot spots on target
λ−T Penalty coefficient for cold spots on target
λOAR Penalty coefficient for hot spots on OAR
α+
T Risk of hot spots on target
α−T Risk of cold spots on target
α+
OAR Risk of hot spots on OARs
wj Intensity of beamlet j
dij The dose contributed by the jth beamlet per unit weight to voxel i

We considered decision variable w as the intensity of beamlets, and Di(w) as the total

dose in voxel i ∈ {T ∪ OAR}, which is given by

Di(w) = d′iw =
∑
j∈J

dijwj ,

where di represents the dose contribution from all beamlets to voxel i. Under uncertainties,
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the random dose delivered to voxel i is denoted by

D̃i(w) = d̃
′

iw,

where d̃i denotes the vector of random doses contributed by all beamlets per unit weight;

it is received by voxel i.

Because of the effect of radiation on the tumor and the surrounding normal tissue, we

place a lower and upper dose limits (θL and θU ) on the target to control the cold spots and

hot spots on target voxels, respectively. In addition, to spare healthy tissues from the toxic

effects of radiation, we limit the dose to a specific level, ϕ, which is a structure-specific

parameter.

Using these definitions, we have three types of constraints:

Di(w) ≥ θL, ∀i ∈ T , (4.2.1)

Di(w) ≤ θU , ∀i ∈ T , and (4.2.2)

Di(w) ≤ ϕ, ∀i ∈ OAR, (4.2.3)

where DT (w) is the nominal equivalent of the D̃T (w). Under uncertainty, the constraint

(4.2.1)-(4.2.3) can be expressed in a chance-constrained framework by introducing a confi-

dence level and enforcing the constraint in probability as represented here under:

P{D̃i(w) ≥ θL} ≥ 1− α−T , ∀i ∈ T , (4.2.4)

P{D̃i(w) ≤ θU} ≥ 1− α+
T , ∀i ∈ T , and (4.2.5)

P{D̃i(w) ≤ ϕ} ≥ 1− α+
OAR, ∀i ∈ OAR, (4.2.6)

where 1− α−T , 1− α+
T , and 1− α+

OAR are the confidence levels for avoiding cold spots and

hot spots on target voxels and sparing voxels in OARs.
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4.3 Distributionally robust chance constraints

How to best solve a stochastic problem depends on what is known about the probability

distribution of the uncertain dose contribution parameters. However, in many cases, it is

impossible to accurately estimate this distribution. In this section, we introduce distribu-

tionally robust chance constraints and illustrate deterministic counterparts to address the

problem of RT planning.

A distributionally robust chance constraint should be enforced robustly with respect

to an entire family of probability distributions on the random data. We considered the

following robust chance-constrained problem:

max
wj ,α

+
T ,α
−
T ,α

+
OAR

λ−T (1− α−T ) + λ+
T (1− α+

T ) + λOAR(1− α+
OAR) (4.3.1)

s.t.

inf
d̃i∼D

P{d̃
′

iw ≥ θL} ≥ 1− α−T , ∀i ∈ T , (4.3.2)

inf
d̃i∼D

P{d̃
′

iw ≤ θU} ≥ 1− α+
T , ∀i ∈ T , (4.3.3)

inf
d̃i∼D

P{d̃
′

iw ≤ ϕ} ≥ 1− α+
OAR, ∀i ∈ OAR, and (4.3.4)

w ≥ 0. (4.3.5)

To tractably solve this model, we first defined a family of probability distributions, D,

that was under consideration. In Section 3.1, we assumed that the mean and bounded

interval of the uncertain parameter were known, and in Section 3.2, we made assumptions

about the FO and SO moments of the uncertain parameter distribution.

4.3.1 Known FO moment and bounded intervals

The uncertain dose contribution vector d̃i is assumed to have a known mean d̂i and

known bounds on its support, i.e., we know `−ij < `+ij , such that P (d̃ij ∈ [`−ij+d̂i, `+ij+d̂i]) = 1.

The family of distributions on random vector d̃i that satisfies the above condition is denoted

with (d̂i,Li)I , where Li is a diagonal matrix of interval widths (`+ij − `
−
ij).
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Proposition 4.3.1 is related to that described in a study by Calafiore and El Ghaoui

(2006) and provides a computationally tractable approximation that ensures feasibility at

the chance constraints (4.3.9) - (4.3.11).

Proposition 4.3.1. Consider the following constraints:

d̂
′

iw−
√

(1/2) ln(1/α−T ) ‖Liw‖ ≥ θL, ∀i ∈ T , (4.3.6)

d̂
′

iw +
√

(1/2) ln(1/α+
T ) ‖Liw‖ ≤ θU , ∀i ∈ T , and (4.3.7)

d̂
′

iw +
√

(1/2) ln(1/α+
OAR) ‖Liw‖ ≤ ϕ, ∀i ∈ OAR. (4.3.8)

For any {α−T , α
+
T , α

+
OAR} ∈ (0, 1), every feasible solution of the constraints (4.3.6) - (4.3.8)

is feasible for the chance constraints (4.3.9) - (4.3.11), respectively.

inf
d̃i∼(d̂i,Li)

P{D̃i(w) ≥ θL} ≥ 1− α−T , ∀i ∈ T , (4.3.9)

inf
d̃i∼(d̂i,Li)

P{D̃i(w) ≤ θU} ≥ 1− α+
T , ∀i ∈ T , and (4.3.10)

inf
d̃i∼(d̂i,Li)

P{D̃i(w) ≤ ϕ} ≥ 1− α+
OAR, ∀i ∈ OAR. (4.3.11)

Proof. Let w be a feasible solution of the constraints (4.3.9) - (4.3.11). For each d̃i ∼

(d̂i,Li)I ,

P{D̃i(w) < θL} ≤ α−T , ∀i ∈ T , (4.3.12)

P{D̃i(w) > θU} ≤ α+
T , ∀i ∈ T , and (4.3.13)

P{D̃i(w) > ϕ} ≤ α+
lOAR, ∀i ∈ OAR. (4.3.14)

First, consider the constraint (4.3.9). By definition, for the random dose contribution in

independent intervals:

P{d̃
′

iw ≥ θL} = P{d̂
′

iw +
∑
j

ξj ≥ θL}, ∀i ∈ T
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= P{−
∑
j

ξj ≤ d̂
′

iw− θL}, ∀i ∈ T , (4.3.15)

where E(ξj) = 0, and ξj is independent and bounded in intervals of width |wj |(`+i1 − `
−
i1).

From Hoeffding’s inequality (Hoeffding (1963)),

P{d̃
′

iw ≤ θL} ≤ exp[
−2(d̂

′

iw− θL)2

‖Liw‖2
], ∀i ∈ T . (4.3.16)

Thus, inequality (4.3.17) is required

exp[−2(d̂
′

iw− θL)2

‖Liw‖2
] ≤ α−T , ∀i ∈ T , (4.3.17)

from which the constraint (4.3.6) follows.

Constraints (4.3.7) and (4.3.8) were also proven in a similar fashion to that of (4.3.6).

The resulting model (DRCCP-I) is:

max
wj ,α

+
T ,α
−
T ,α

+
OAR

λ−T (1− α−T ) + λ+
T (1− α+

T ) + λOAR(1− α+
OAR)

s.t. (4.3.18)

d̂
′

iw−
√

(1/2) ln(1/α−T ) ‖Liw‖ ≥ θL, ∀i ∈ T ,

d̂
′

iw +
√

(1/2) ln(1/α+
T ) ‖Liw‖ ≤ θU , ∀i ∈ T ,

d̂
′

iw +
√

(1/2) ln(1/α+
OAR) ‖Liw‖ ≤ ϕ, ∀i ∈ T , and

w ≥ 0. (4.3.19)

4.3.2 Finite FO and SO moments

We assumed that the uncertain coefficient d̃i depends affinely on a random variable ε̃ij

whose distribution is unknown, but the FO and SO moments are known to be finite.

di(ε̃) = d0
i +

∑
j∈J

ej ε̃ij ,
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where d0
i vector is equal to E(d̃i), and elements of ej vectors are 0, except for the jth

element, which is 1. For ease of notation, the auxiliary functions yji (w) are introduced;

these are defined by

yi0(w) = di0
′
w,

yij(w) = e′jw.

The random dose per voxel i is defined as

D̃i(w) = y0
i (w) + y′i(w)ε̃i,

where yi
′(w) is affine in w for every voxel i. Thus, the chance constraints in (4.3.2)-(4.3.4)

are rewritten in constraints (4.3.20)-(4.3.22).

inf
d̃i∼D

P{y0
i (w) + y′i(w)ε̃i ≥ θL} ≥ 1− α−T , ∀i ∈ T , (4.3.20)

inf
d̃i∼D

P{y0
i (w) + y′i(w)ε̃i ≤ θU} ≥ 1− α+

T , ∀i ∈ T , and (4.3.21)

inf
d̃i∼D

P{y0
i (w) + y′i(w)ε̃i ≤ ϕ} ≥ 1− α+

OAR. ∀i ∈ OAR. (4.3.22)

The next three Propositions in this section provide convex SO cone approximations for the

distributionally robust chance constraints when the mean and variance are known.

Proposition 4.3.2. Let random vector ε̃i have a known mean of 0 and covariance matrix

σ2(ε̃i) and consider the following model (DRCCP-SOCP):

max
wj ,α

+
T ,α
−
T ,α

+
OAR

λ−T (1− α−T ) + λ+
T (1− α+

T ) + λOAR(1− α+
OAR) (4.3.23)

s.t.

y0
i (w)−

√
(1− α−T )/α−T ‖σ(ε̃i)yi(w)‖ ≥ θL, ∀i ∈ T , (4.3.24)

y0
i (w) +

√
(1− α+

T )/α+
T ‖σ(ε̃i)yi(w)‖ ≤ θU , ∀i ∈ T , (4.3.25)

y0
i (w) +

√
(1− α+

OAR)/α+
OAR ‖σ(ε̃i)yi(w)‖ ≤ ϕ, ∀i ∈ OAR, and (4.3.26)

w ≥ 0.
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Every feasible solution of the constraints (4.3.24) - (4.3.26) is feasible for the chance con-

straints (4.3.20) - (4.3.22), respectively.

Proof. Let w be a feasible solution of the constraints (4.3.24) - (4.3.26). For each d̃i ∼

(d̂i, σ2(d̃i))

P{y0
i (w) + y′i(w)ε̃i < θL} ≤ α−T , ∀i ∈ T , (4.3.27)

P{y0
i (w) + y′i(w)ε̃i > θU} ≤ α+

T , ∀i ∈ T , and (4.3.28)

P{y0
i (w) + y′i(w)ε̃i > ϕ} ≤ α+

OAR, ∀i ∈ OAR. (4.3.29)

First, consider the constraint (4.3.20). From the upper-sided Chebyshev inequality (Bert-

simas and Popescu (2005)), we have

sup
(d̂i,σ2(d̃i))

P{−y′i(w)ε̃i ≥ y0
i (w)− θL} = 1

1 + (r−i )2 , ∀i ∈ T , (4.3.30)

where

(r−i )2 = inf ε̃
′
i σ
−1(ε̃i) ε̃i, ∀i ∈ T ,

s.t.

y′i(w)ε̃i ≤ θL − y0
i (w), ∀i ∈ T . (4.3.31)

Considering constraint (4.3.31), we notice that, if θL − y0
i (w) ≥ 0, ∀i ∈ T , then ε̃i =

0,∀i ∈ T and (r−i )2 = 0,∀i ∈ T . Assuming θL − y0
i (w) < 0, ∀i ∈ T , then (r−i )2, ∀i ∈ T

is minimized if constraint (4.3.31) holds true for equality. Hence, for any voxel inside the

target:

ε̃i = θL − y0
i (w)

y′i(w)
, ∀i ∈ T ,

(r−i )2 = [θL − y0
i (w)

y′i(w)
]′ σ−1(ε̃i) [θL − y0

i (w)
y′i(w)

], ∀i ∈ T . (4.3.32)
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According to equation (4.3.30), the chance constraint (4.3.27) is satisfied if and only if

1
1 + (r−i )2 ≤ α

−
T , ∀i ∈ T ,

that is equivalent to:

(r−i )2 ≥ 1− α−T
α−T

, ∀i ∈ T , (4.3.33)

from which the constraint (4.3.24) follows.

The constraints (4.3.25) and (4.3.26) can be derived in a similar fashion to (4.3.24).

The two models presented in Sections 4.3.1 and 4.3.2 can be effective approaches to solv-

ing stochastic problems under two different conditions. Proposition 4.3.1 when information

about random data is limited to an interval with a known upper bound, lower bound, and

mean. Proposition 4.3.2 can be used to convert the stochastic problem into a deterministic

approximation, in terms of the mean and covariance of the uncertain parameter. This de-

terministic approximation can also be improved. We next describe two refined approaches

of the model in Proposition 4.3.2 that are useful if the FO and SO moments of the uncertain

data are known.

4.3.2.1 QM approximation:

To be more precise when considering uncertainties, a sentence that includes the SO of

a random vector can be added to the random dose. As a result, the random dose function

will have both the linear and quadratic terms that follow the QM (Zymler et al. (2013)) of

the constraint:

D̃i(w) = y0
i (w) + y′i(w)ε̃i + L ε̃

′
i‖yi(w)‖2ε̃i,

where L is defined as a constant parameter.

Proposition 3 is similar to proposition 2; it illustrates the deterministic approximations
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of the QM chance constraints.

Proposition 4.3.3. Let random vector ε̃i belong to family D of probability distributions

that have a mean of 0, and a known σ2(ε̃i); consider the following constraints:

y0
i (w) + L σ2(ε̃i)‖yi(w)‖2 −

√
(1− α−T )/α−T ×

((yi(w))2σ2(ε̃i) + L2‖yi(w)‖4σ2(ε̃i2))1/2 ≥ θL, ∀i ∈ T , (4.3.34)

y0
i (w) + L σ2(ε̃i)‖yi(w)‖2 +

√
(1− α+

T )/α+
T ×

((yi(w))2σ2(ε̃i) + L2‖yi(w)‖4σ2(ε̃i2))1/2 ≤ θU , ∀i ∈ T , and (4.3.35)

y0
i (w) + L σ2(ε̃i)‖yi(w)‖2 +

√
(1− α+

OAR)/α+
OAR ×

((yi(w))2σ2(ε̃i) + L2‖yi(w)‖4σ2(ε̃i2))1/2 ≤ ϕ, ∀i ∈ OAR. (4.3.36)

Every feasible solution of the constraints (4.3.34) - (4.3.36) is feasible for the chance con-

straints (4.3.37) - (4.3.39), respectively.

inf
d̃i∼D

P{y0
i (w) + y′i(w)ε̃i + L ε̃

′
i‖yi(w)‖2ε̃i ≥ θL} ≥ 1− α−T ,

∀i ∈ T , (4.3.37)

inf
d̃i∼D

P{y0
i (w) + y′i(w)ε̃i + L ε̃

′
i‖yi(w)‖2ε̃i ≤ θU} ≥ 1− α+

T ,

∀i ∈ T , and (4.3.38)

inf
d̃i∼D

P{y0
i (w) + y′i(w)ε̃i + L ε̃Ti ‖yi(w)‖2ε̃i ≤ ϕ} ≥ 1− α+

OAR,

∀i ∈ OAR. (4.3.39)

Proof. The proof of this proposition is a minor modification of Proposition4.3.2.
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4.3.2.2 SO dependence approximation:

Here, the dependence of random dose contributions di is not affine; instead, they depend

quadratically on the random vector ε̃i:

di(ε̃) = d0
i +

∑
j∈J

ej ε̃ij + q
∑
j∈J

ej ε̃2j ,

where q is the scalar parameter. The random dose per voxel i is defined by

D̃i(w) = y0
i (w) + y′i(w)ε̃i + qz′i(w)ε̃2i ,

where the auxiliary functions yi
′(w) and z′i(w) are affine in w for every voxel i, and z′i(w)

is introduced as

z′i(w) = e′jw.

Proposition 4.3.4 is similar to Propositions 2 and 3; it proposes deterministic approxi-

mations of the distributionally robust chance constraints (4.3.12) - (4.3.14)

Proposition 4.3.4. Let the random vector ε̃i have a mean of 0, and a known σ2(ε̃i) and

consider the following constraints:

y0
i (w) + qz′i(w) σ2(ε̃2i )−√
(1− α−i )/α−i (yi(w))2 σ2(ε̃i) + (q2zi(w))2 σ2(ε̃2i ))1/2 ≥ θL, ∀i ∈ T , (4.3.40)

y0
i (w) + qz′i(w) σ2(ε̃2i ) +√
(1− α+

i )/α+
i (yi(w))2 σ2(ε̃i) + (q2zi(w))2 σ2(ε̃2i ))1/2 ≤ θU , ∀i ∈ T , and (4.3.41)

y0
i (w) + qz′i(w) σ2(ε̃2i ) +√
(1− α+

i )/α+
i (yi(w))2 σ2(ε̃i) + (q2zi(w))2 σ2(ε̃2i ))1/2 ≤ ϕ, ∀i ∈ OAR. (4.3.42)
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Every feasible solution of the constraints (4.3.40) - (4.3.42) is feasible for the chance con-

straints (4.3.43) - (4.3.45), respectively. In fact, the approximations of the distributionally

robust chance constraints in (4.3.2)-(4.3.4) are rewritten in constraints (4.3.43) - (4.3.45).

inf
d̃i∼D

P{y0
i (w) + y′i(w)ε̃i + z′i(w)ε̃2i ≥ θL} ≥ 1− α+

T , ∀i ∈ T , (4.3.43)

inf
d̃i∼D

P{y0
i (w) + y′i(w)ε̃i + z′i(w)ε̃2i ≤ θU} ≥ 1− α−T , ∀i ∈ T , and (4.3.44)

inf
d̃i∼D

P{y0
i (w) + y′i(w)ε̃i + z′i(w)ε̃2i ≤ ϕ} ≥ 1− α+

OAR, ∀i ∈ OAR. (4.3.45)

Proof. The proof of this proposition is a minor modification of Proposition 4.3.2.

4.4 Experiments and results

In this section, we present numerical results that provide important insights about the

four DRCCP approaches and the CCP approaches, under distributional assumptions. Our

initial goal was to illustrate the key features of the DRCCP approaches using a small test

case; a square target surrounded by an L-shaped OAR geometry. We then demonstrated

the strength of the DRCCP approaches using a prostate cancer case.

4.4.1 A small test case

The geometry for our small example is shown in Figure 4.1 with one rectangular target

shown in white and one L-shaped OAR shown in gray. The tumor and the OARs have six

pixels of equal dimension. Each pixel can be identified by its horizontal (x) and vertical

(y) coordinates. Two perpendicular beams contribute to the voxels. Because the position

of the patient may be different from one session to the next, the actual dose contribution of

the beamlets can be uncertain during treatment sessions. Depending on the available infor-

mation about the data distribution, different DRCCP approaches can be used to optimize

the weights of the beamlets under setup uncertainty.

If the mean and the bounded intervals of the setup error are known, the DRCCP-I
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Figure 4.1: A gray L-shaped OAR; the white square shows the tumor region.

approach (4.3.18) can be used to generate distributionally robust treatment plans. If only

the FO and SO moments of the unknown parameter are available, any of the DRCCP-SOCP,

DRCCP-QM, and DRCCP-SO approaches can be used to optimize beamlet intensities.

Figure 4.2 illustrates the optimized dose to each voxel in a nominal setup generated by

all four approaches. In general, all plans can effectively cover the target volume and control

dose to the OAR. DRCCP-I outperformed DRCCP-SOCP in providing more homogeneous

dose distribution within the target. The maximum dose in DRCCP-I was 1.09, the minimum

dose to the target voxels was 0.93, and the gap was 0.16. Note that the gap difference from

DRCCP-SOCP was 0.21. These gaps were a result of the random parameter following a

uniform distribution. The DRCCP-I is also used when the interval of the uncertain dose

contribution is known. Thus, the DRCCP-I approach can be a better fit to the uncertain

parameter under the uniform distribution assumption.

Both the DRCCP-QM and DRCCP-SO approaches generally outperformed the DRCCP-

SOCP by delivering a more homogeneous dose to the target while delivering a lower dose to

the OARs. For example, in the SOCP approach, the given minimum and maximum doses

to the target were between 0.91 and 1.12, while these values were 0.91 and 1.06 for the SO

dependence and QM approaches, respectively. Hence, the plans generated by the SO and

QM approaches were more homogeneous than was the SOCP approach. Moreover, the dose

to the OAR structure was better controlled by DRCCP-QM and DRCCP-SO: the maximum

dose to the OARs from DRCCP-QM and DRCCP-SO, was 0.22, while the maximum dose

to the OAR using DRCCP-SOCP was 0.3. The target coverage homogeneity and OAR

sparing provided by the DRCCP-QM and DRCCP-SO approaches were comparable. The
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Figure 4.2: Depiction of the optimal nominal dose, generated by the DRCCP-SOCP, DRCCP-
I, DRCCP-QM, and DRCCP-SO approaches, deposited in each voxel for the model
described in Section 4.4.1.

results are intuitive because both SO and QM approximate the DRCCP approach more

accurately than does the SOCP approach.

To evaluate the robustness of the DRCCP approaches, we generated two types of random

data using uniform and normal distributions (CCP-U and CCP-N) that were consistent with

the given information of uncertain parameters. The mean and standard deviation of the

dose to the target and the OAR voxels generated from all models are presented in Table 4.2.

We verified the effectiveness of the DRCCP approach and found similar results as those for

the plan generated by the CCP approach under a distributional assumption.

As shown in Table 4.2, when the model was solved using the CCP-N approach for the

dose and the realized distribution was uniform, the dispersion of a dose set received by the

target (σCCP−N = 0.102) was higher than that using the SOCP approach (σSOCP = 0.096).
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Table 4.2: Mean and standard deviation of the dose from the shifted setups for the voxels in the
target and OARs generated by all DRCCP and CCP approaches under distributional
assumptions

(a) Considering uniform distribution for d̃i

Approach Target OAR
Mean SD Mean SD

CCP-N 0.92 0.102 0.12 0.118
DRCCP-SOCP 1.05 0.096 0.11 0.108
DRCCP-QM 1.02 0.094 0.08 0.107
DRCCP-SO 1.02 0.094 0.08 0.107
DRCCP-I 1.03 0.080 0.07 0.099

(b) Considering normal distribution for d̃i

Approach Target OAR
Mean SD Mean SD

CCP-U 0.91 0.089 0.09 0.128
DRCCP-SOCP 1.07 0.078 0.07 0.121
DRCCP-QM 1.05 0.071 0.05 0.113
DRCCP-SO 1.05 0.071 0.05 0.113
DRCCP-I 1.03 0.075 0.05 0.105

This indicates that the data points were spread over a wider range of values around the

mean. Moreover, the mean dose of the plans generated by CCP-N was 0.92, which is a sign

of underdose to the target. The same result was observed when the assumed distribution for

the random dose was uniform. As shown in Table 4.2b, CCP-U with σCCP−U = 0.089 was

more sporadic than was DRCCP-SOCP with σSOCP = 0.078, and 0.91 Gy, as an average

dose deposited to the tumor, was not sufficient to cover the tumor. Hence, we can conclude

that the distributionally robust CCP approach will give us a more realistic result, even if

there is not enough information about the distribution for the uncertain parameter.

We evaluated the robustness of the DRCCP approaches and compared them with the

distributional CCP approach. Figure 4.3 shows the differences in the average dose for voxels

in the tumor and OARs.

The computational results generated some important insights. First, the effectiveness of

the DRCCP-I and DRCCP-SOCP approaches were evaluated on the basis of the distribu-

tion assumption of the generated random parameter. The DRCCP approaches performed

better than did CCP-N while the random parameter followed uniform distribution. This is
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Figure 4.3: Differences between the mean-dose per voxel

probably because of the increase in the delivered mean-dose by the target and the decrease

in the toxic effect on normal cells. Accordingly, we infer that the interval-based method is

more efficient than is the SOCP approach because of the uniformity assumption.

We compared the abstract values, which refer to each voxel in the OARs and the target,

and found that DRCCP-I had a higher gap with CCP-N than with SOCP (Figure 4.3).

Thus, the dosage received by the normal cells around the tumor was reduced to protect them

from damage; in addition, the average dosage given to kill the cancer cells was increased.

This indicates that the optimal solution is critically dependent on the exact description

of the distribution. We next compared the relative improvement with the DRCCP-QM

and DRCCP-SO approaches with that of the DRCCP-SOCP approach when our random

parameter followed a uniform distribution. The average dose delivered to the tumor was

higher with these new approaches. QM and SO were also more effective at sparing healthy

tissues than was SOCP.
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The result shown in Figure 4.3 is also shown in Figure B.1 (Appendix) under the nor-

mality assumption of the random parameter.

4.4.2 Clinical case

We demonstrated our approach in a clinical prostate cancer case. The target volume and

normal structures were manually contoured on the axial slices of the planning Computed

Tomography (CT) scan by a radiation oncologist. The anatomy was discretized into 2.5mm

×2.5mm ×2.5mm voxels. Treatments were delivered with six fixed coplanar photon beams

at 30◦, 90◦, 120◦, 150◦, 240◦, and 270◦ angels. Note that the beam angles were optimized in

advance (Lim et al. (2014)) and confirmed by a clinician. A prescription dose of 76Gy was

used. Table 6.2 lists patient information and the specific treatment planning parameters of

the case.

Table 4.3: Patient information and treatment planning parameters.

Cancer case Volume Number of Beams Constraints
Prostate I (IMRT) Target: 1000 6 Prescription: 76 Gy

Receiving ≥ 96% of θL
Receiving ≤ 105% of θU

OAR (Rectum): 5848
OAR (Bladder): 10603

We assumed that the setup uncertainty ranged between −5 mm and +5 mm (Manning

et al. (2001); Wong et al. (2005)), and generated four representative scenarios in addition

to the nominal scenario for the patient setup uncertainty; we then calculated the values

of the mean, variance, and bounded intervals of the random dose distribution to generate

different plans from the DRCCP approaches. The treatment plans were compared in terms

of plan quality, robustness, and the chance constraint confidence level. The computational

efficiencies of different approaches were also evaluated and compared.
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4.4.3 Plan quality and robustness

We compared the quality and robustness of the plans developed using the different

approaches. For the sake of comparison, all plans were normalized so that at least 95%

of the target was covered by the prescribed dose in the nominal dose distribution. Dose-

volume indices (Dv and Vd) were used to evaluate the quality of the plans, where Dv denotes

the amount of dosage received by more than v percent of the organ, and Vd denotes the

percentage volume of the organ receiving a dose greater than d Gy.

To compare the robustness of different treatment plans, we plotted families of Dose

Volume Histogram (DVH) that corresponded to different shifted setup scenarios, along

with the nominal DVH. The resulting envelopes were used to assess the sensitivity of the

plans under the setup uncertainty. To further improve the accuracy of our evaluation

and compare the robustness of the different methods, we used the DVH family band width

method (Trofimov et al. (2012)). The width of the DVH band (∆) was inversely proportional

to the robustness of the method. Here, ∆(Dv) denotes the width of the DVH band at volume

v, and ∆(Vd) denotes the width of the DVH band at dose d.

Figure 4.4: Homogeneity comparison: D5 −D95 statistics for nominal dose distributions

The homogeneity index is an objective measure to assess the uniformity of the dose

distribution in the target volume. There are various ways to measure the homogeneity

index. In this paper, we used D95 to assess target coverage and D5 to measure the hot spot

of the target. Thus, the target homogeneity can be measured by D5−D95. Figure 4.4 shows
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the intervals [D95, D5] from all proposed approaches. The smaller D5−D95 bar corresponds

to a more homogeneous dose distribution within the target. As seen in Figure 4.4, DRCCP-

I, DRCCP-QM, and DRCCP-SO provided plans with more homogeneous dose distribution

than did DRCCP-SOCP. DRCCP-SO had the most homogeneous dose distribution.

Figure 4.5: (a) D95 minus the prescribed dose and (b) D5 minus the prescribed dose for shifted
dose distributions from all DRCCP approaches. The height of the boxes shows the
band width, i.e., ∆(D95) and ∆(D5) in the DVH family of shifted setup scenarios
are illustrated in (a) and (b), respectively. Zero on the vertical axis of (a) and (b)
corresponds to D95 and D5 for nominal dose distributions, respectively.

We next compared the robustness of the plans; Figure 4.5 shows plots of the DVH family

band widths at (a)D95 and (b)D5 from all approaches. As seen in Figure 4.5a, both the

DRCCP-I and DRCCP-SO approaches produced plans that were more robust at controlling

cold spots than were the other two plans under various uncertainty scenarios. In terms of

limiting hot spots in the target volume, DRCCP-I outperformed the others by having the

smallest deviation as seen in Figure 4.5b. Figure 4.5b also shows that plans created by

DRCCP-SOCP were notably less robust at controlling hot spots on the target.

4.4.4 Confidence levels

In this section, we discuss the use of confidence levels for satisfying treatment planning

constraints when developing treatment plans. All plans developed using DRCCP approaches

were compared with those of CCP approaches with a specific distributional assumption.
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Table 4.4: Confidence levels (1−α) of plans generated by all DRCCP approaches versus distribution
specific CCP

(a) Comparison under CCP-U

Approach Target Rectum BladderUnder-dose Over-dose
CCP-N 0.86 0.82 0.82 0.82

DRCCP-I 0.92 0.91 0.92 0.9
DRCCP-SOCP 0.86 0.85 0.85 0.85
DRCCP-QM 0.91 0.91 0.9 0.9
DRCCP-SO 0.93 0.9 0.9 0.9

(b) Comparison under CCP-N

Approach Target Rectum BladderUnder-dose Over-dose
CCP-U 0.85 0.86 0.85 0.85

DRCCP-I 0.92 0.9 0.9 0.9
DRCCP-SOCP 0.93 0.93 0.88 0.85
DRCCP-QM 0.99 0.97 0.92 0.92
DRCCP-SO 0.95 0.93 0.91 0.91

Our experiments were designed to test the performance of the proposed methods when

the assumed dose distribution for planning was different from the true distribution, which

is not known in advance. One of the many reasons why these distributions may differ is

because of an insufficient number of sampled data points for developing a treatment plan.

For example, treatment plans may have been developed on the basis of CCP-N when the data

follow a uniform distribution. The confidence levels of the chance constraints that resulted

from those experiments are shown in the first row of Table 4.4a. The DRCCP approaches

were designed to address any realization of the probability distribution for random data.

Thus, the confidence levels of DRCCP based treatment plans are also presented in Table

4.4a.

As expected, all DRCCP based plans resulted in consistently higher confidence lev-

els than did CCP-N plans (Table 4.4a). Thus, DRCCP approaches provide more reliable

treatment plans, in terms of satisfying constraints where there is an unknown probability

distribution of the random parameter.

Of the three different DRCCP approaches we evaluated (SOCP, QM, and SO), the

performance of the SOCP-based model was the poorest. This is because DRCCP-SOCP
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uses affine dependence of the random radiation dose contribution, while both the QM and

SO-based models inherently incorporate better approximations of dose contribution by using

the quadratic format of the dose calculation. Such approximations include more information

on the uncertain parameter, which makes the deterministic equivalence of CCP problems

more precise. Note that the strength of the SOCP model is that it can be solved much

faster than can the other two. This is explored further in Section 4.4.5, where we describe

a two-phase algorithm that gives a better quality solution with less computational effort.

To test the robustness of the proposed approaches, a similar study was conducted under

a different configuration. The treatment plan was developed on the basis of CCP-U. The

first row in Table 4.4b shows the confidence levels optimized by CCP-U, and the subsequent

rows show the optimized results of the DRCCP approaches. The optimized confidence levels

from the CCP-U models were 85% for target under dose (cold spot) 86% for target over

dose (hot spot) and 85% for both the rectum and bladder. Again, all DRCCP based models

outperformed these benchmark confidence levels. Among the approaches, DRCCP-QM had

the highest confidence levels on all measures for the three organs.

On the basis of these experiments, we observed that the DRCCP approaches were more

efficient than was the CCP approach (both CCP-U and CCP-N), with an assumed probabil-

ity distribution when only partial information about the uncertain parameters was available.

In reality, it is rare to have full knowledge about the probability distribution of an uncer-

tain parameter in RT planning. Under these circumstances, DRCCP approaches can better

address uncertainties than can CCP approaches because DRCCP does not assume a known

probability distribution function. Instead, it only uses partially known statistics about ran-

dom data and provides a conservative solution that works well under various distribution

scenarios.

4.4.5 Computational efficiency and a warm-start strategy

In this section, we discuss the computational efficiency of the four DRCCP approaches.

DRCCP-SOCP quickly converged to a local optimal solution, but the quality and robustness
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of the generated plan were not as good as were those of the other approaches as shown in

Figures 4.4 and 4.5. Although the other three approaches (DRCCP-I, DRCCP-QM, and

DRCCP-SO) require more time to solve, they provided treatment plans that were more

homogeneous and robust under uncertainty.

Figure 4.6: Computational time of all DRCCP approaches.

However, we found that a good starting solution to these approaches also improved

convergence. Therefore, we considered a hybrid approach in which each of the three op-

timization techniques used a solution from DRCCP-SOCP as a warm start approach for

DRCCP-I, DRCCP-QM, and DRCCP-SO.

In this approach, the DRCCP-SOCP approach is solved to generate a feasible solution

within a short amount of time. Second, the DRCCP-I, DRCCP-QM, or DRCCP-SO ap-

proach is solved, using the SOCP solution as a starting point, to identify a higher quality

optimal solution in less time. This warm start approach significantly reduced the compu-

tational time of the DRCCP approaches, as shown in Figure A.1. It also improved the

computation time by 42%, 44%, and 47% for SRCCP-I, DRCCP-QM, and DRCCP-SO,

respectively. Note that the total time of the warm-start approach includes the time needed

to solve DRCCP-SOCP, which was approximatively 6 minutes.

4.5 Conclusion

The inclusion of uncertainties in RT planning optimization has been widely recognized

as essential. For situations in which the only information about the random parameter
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is the first moment, covariance, or support of the uncertain data, a DRCCP framework

can be used to address uncertainty. We proposed the use of confidence levels for satis-

fying treatment planning constraints as a performance metric. Under those assumptions,

SO cone counterparts of the distributionally robust chance constraints were explored to

identify a more rapid solution, and two quadratic approximations of these constraints were

developed to provide more precise deterministic equivalents. On the basis of these findings,

we propose a CCP framework in which clinically relevant, locally optimal solutions can

be identified consistently, in two sequential phases. The first phase is designed to quickly

identify a feasible solution using DRCCP-SOCP. In the second, this solution is used as a

starting point for DRCCP-I, and DRCCP-QM, or DRCCP-SO to identify a solution that

is robust under uncertainty. Using both a small test case and a clinical case, we showed

that the proposed models were effective for developing robust treatment plans under various

uncertainty scenarios.
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Chapter 5

Linear energy transfer incorporated intensity mod-

ulated proton therapy optimization

5.1 Introduction

In clinical practice, proton therapy treatments to date have been prescribed at phys-

ical doses 10% lower than those used in photon therapy. This paradigm is based on an

assumption that doses deposited by protons are 10% more biologically effective than those

by photons. In other words, the relative biological effectiveness (RBE) of protons versus

photons is considered to have a constant value of 1.1. However, it is known that RBE is

a complex variable dependent on many factors, including dose per fraction, linear energy

transfer (LET), tissue type, biological endpoint, etc. Nevertheless, proton therapy practi-

tioners continue to use the simplistic constant RBE due, in part, to the lack of reliable and

accurate predictive RBE models (Paganetti et al. (2002)).

The LET, defined as the average energy transfer (ionization) per unit distance traveled

by charged primary particles (ICRU (2011)), increases slowly at first and then exponentially

near the end of proton range. It is shown that increased LET leads to increased RBE,

especially at the end of range of protons (Wilkens and Oelfke (2004); Guan et al. (2015b)),

where the RBE value can be 1.3 or higher at the Bragg peak and 1.6 or higher in the fall

off region (in a few millimeters). Precautions in this respect have been taken into account

in current proton treatment planning by avoiding the use of beams whose distal edge may

end up in or close to a critical structures. In this way, the possible overshooting due to

uncertainties in dose distributions and the resulting damage of high LET/RBE protons

to healthy tissues could be prevented. However, this measure may prevent the selection
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of potentially beneficial beam angles and could diminish the therapeutic value of proton

therapy.

In passively scattered proton therapy (PSPT) and single field optimized intensity mod-

ulated proton therapy (SFO-IMPT), high LET protons at the distal edge of each beam

are unavoidably placed in normal tissues just beyond the distal edges of target volumes.

In multiple field optimized intensity modulated proton therapy (MFO-IMPT), denoted as

IMPT hereafter, intensities of beamlets from all incident beams are simultaneously opti-

mized to meet dosimetric requirements. IMPT thus has much higher degree of freedom for

modulation than PSPT and SFO-IMPT. Previous studies have shown that highly modu-

lated fields in IMPT can produce equivalent physical dose distributions but greatly different

LET distributions (Grassberger and Paganetti (2011); Giantsoudi et al. (2013)). Therefore,

in theory it is feasible for IMPT to produce satisfactory dose distributions while achieving

desirable LET distributions, e.g., placement of high LET protons inside target volumes and

away from critical normal tissues, guided by innovative planning or optimization techniques.

Although treatment planning and optimization methods that incorporate variable RBE

of protons have been explored (Wilkens and Oelfke (2004); Frese et al. (2011)), they have

not yet been implemented clinically. This may be due to the reluctance to accept the re-

sulting physical dose (i.e., RBE of 1.1) distributions from such methods, which may not

be consistent with conventional practice. However, recent clinical data have reported un-

foreseen normal tissue complications from proton treatments (Sabin et al. (2013); Gunther

et al. (2015)) and their positive correlation with high LETs (Peeler et al. (2016)). Subse-

quently, considering the RBE dependence on LET in treatment planning while preserving

the physical dose prescribed in current practice has been focused in recent studies (Bassler

et al. (2010); Giantsoudi et al. (2013); Bassler et al. (2014); Fager et al. (2015); Unkelbach

et al. (2016)). We will discuss these methods in the Discussion section.

The present study aimed to investigate the impact of incorporating LET criteria directly

into IMPT optimization. Both dose and LET distributions could be optimized simultane-

ously in the proposed approach. Dose-averaged LET was used to indicate LET values in
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this study. The goal of this optimization was set to not only produce satisfactory dose dis-

tributions but also to achieve reduced LET distributions (thus lower biologically effective

dose distributions) in critical structures and increased LET in target volumes compared to

plans created using conventional objectives.

5.2 Materials and Methods

5.2.1 LET-incorporated Optimization

The goal of LET-incorporated IMPT optimization in this study was to optimize dose and

LET distributions simultaneously. The objectives and constraints on doses were consistent

with those used in conventional IMPT optimization. The calculation and planning criteria of

dose here implicitly included a RBE of 1.1, as in current clinical practice. The optimization

of variable RBE was not within the scope of this study. The additive objectives of LET

were, straightforwardly, maximization of LET in tumor targets and minimization of LET

in critical tissues and normal tissues.

Given that Dij and Lij indicate the dose and LET contribution, respectively, from

beamlet j to voxel i in unit intensity and wj indicates the intensity of beamlet j, the total

dose Di and dose-averaged LET (LETd)Li in voxel i are calculated as

Di =
∑
j∈J

Dijwj , ∀i ∈ {T ∪ O},

Li =

∑
j∈J

DijLijwj∑
j∈J

Dijwj
, ∀i ∈ {T ∪ O}.

The calculation of Dij and Lij was carried out by a previously validated fast Monte

Carlo system (Yepes et al. (2016)). Although LET is typically quantified in two averaging

variants, i.e., track-averaged and dose-averaged LET (Grassberger and Paganetti (2011);

Guan et al. (2015a)), only the latter was used in this study for consistency with most

biological dosimetric analyses.
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The general optimization model in radiation therapy including IMPT can be represented

as follows in (5.2.1)-(5.2.3):

min fD(w) = ||λi(Di −Dpr
i )+||p (5.2.1)

s.t.

LBi ≥ Di ≤ UBi ∀i ∈ T , and (5.2.2)

ϕ,w ≥ 0. (5.2.3)

The minimization cost function is formulated by the deviation between the delivered (Di)

and prescribed (Dpr
i ) doses of each voxel. Also a priority factor (λi) is assigned to each voxel

or structure in order to control the tradeoff between competing objectives. The lower and

upper bounds of the doses are LBi and UBi, which are adjusted for different structures and

specific applications. It has been established that quadratic (i.e., p=2) and linear (i.e., p=1)

forms of the cost function (5.2.1) are effective in optimizing dose distributions for radiation

therapy (Bortfeld (1999); Chan et al. (2006); Jia et al. (2011); Cao et al. (2013)). In this

study, a linear cost function (5.2.4) was used for performing the conventional dose-based

optimization (DoseOpt):

fD(w) = λ+
T

|T |
||(Di∈T −Dpr

i∈T )+||1 + λ−T
|T |
||(Dpr

i∈T −Di∈T )+

||1 + λO
|O|
||(Di∈O −Dmax

i∈O )+||1 + λN
|N |
||Di∈N ||, (5.2.4)

where T , O, N are the set of voxels in target volumes, organs at risk (OARs), and normal

tissues, respectively. Optimization priority factors for penalizing over-dosing and under-

dosing on target, OAR doses over the limit Dmax
i∈O , and normal tissue doses are λ+

T , λ
−
T , λO,

and λN , respectively.

By adding two terms for maximizing dose-averaged LET in the target and minimizing it

in OARs, the cost function for LET-incorporated optimization (LETOpt) was formulated
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as shown in (5.2.5). The optimization priority factors for the two objectives are θT and θO.

fL(w) = fD(w) + θT
|T |
||Li∈T ||1 + θO

|O|
||Li∈O||1. (5.2.5)

Note that threshold LET values and objectives for normal tissue LETs were not used

in this study, but they can be easily added for applications. Constraints on doses were

identical in DoseOpt and LETOpt.

Solving the LET-incorporated optimization problem as formulated above essentially

requires linear fractional programming (LFP) techniques, because the LET component in

the cost function is a ratio of two linear questions, i.e.,
∑
j∈J

DijLijwj and
∑
j∈J

Dijwj , with

regard to the optimization variable wj . Due to the linearity, the problem is quasiconvex

and can be conveniently reformulated to a linear programming (LP) problem. Here we

apply the Charnes and Cooper variable transformation (Charnes and Cooper (1962)) by

defining the original variable wj with two new variables xj and t, e.g., wj = xj

t . Assuming

x = w
(DT

i w) and t = 1
(DT

i w) for our problem analogically, where DT
i is the transposed dose

contribution vector for voxel i for computing one objective term in a cost function like

(5.2.5), an equivalent linear cost function can be formed as

fL(x) = fD(x) + θT
|T |
||

∑
j∈J

DijLijxj ||1 + θO
|O|
||

∑
j∈J

DijLijxj ||1. (5.2.6)

The reformulated LP model of LETOpt thus has an optimization variable xj , instead of the

original beamlet intensity wj , and an auxiliary variable t. Meanwhile, the dose constraints

defined by wj are changed to ones such as

tLBi ≤
∑
j∈J

Dijxj ≤ tUBi, ∀i ∈ T and (5.2.7)

xj ≥ 0. (5.2.8)

78



After solving the reformulated LP for LETOpt, i.e., (5.2.6)-(5.2.8), and obtaining the opti-

mal solution of xj , the beamlet intensity can be post-processed using wj = xj

t for the final

dose and LETd calculation. In this study, both DoseOpt and LETOpt models were solved

by the interior point method using a commercial solver CPLEX v12.3 (IBM, NY, USA).

5.2.2 Patients and Treatment Planning

Five brain tumor patients that had been treated with proton therapy (PSPT or SFO-

IMPT) at our institution were selected for this study, including one glioblastoma, one

anaplastic astrocytoma and three ependymoma cases. Although the tumor size and lo-

cation varied from one patient to another, in all cases, one or more critical structures,

e.g., brainstem or optic chiasm, were adjacent to or overlapped with gross target volumes

(GTVs) and clinical target volumes (CTVs). The prescriptions to target volumes and field

arrangements were the same as those used in the clinical treatments. The doses prescribed

to all OARs are set to zero in optimization. Table 5.1 lists patient information and specific

treatment planning parameters for the five patient cases.

Table 5.1: Patient information and treatment planning parameters.

Patient # Type of Cancer Prescription
Dose (Gy/fx)

Number of
Fractions

Number of Beams
(non-coplanar)

OARs included in
Optimization

1 Glioblastoma 2 (GTV) 30 2 Brainstem, Optic
Chiasm, Rt
Cochlea, Rt Optic
Nerve, Brain

1.67 (CTV)

2 Anaplastic 1.8 (GTV) 30 3 Brainstem, Optic
Chiasm, Lt Cochlea,
Lt Optic Nerve,
Brain

Astrocytoma 1.6 (CTV)

3 Ependymoma 1.8 (GTV) 30 3 Brainstem, Optic
Chiasm, Brain

4 Ependymoma 1.8 (GTV) 28 3 Brainstem, Optic
Chiasm, Rt
Cochlea, Rt Temp
Lobe, Brain

5 Ependymoma 1.8 (GTV) 30 3 Brainstem, Rt
Hippocampus,
Spinal Cord, Brain
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Two IMPT plans were created for each patient case, one using the conventional dose-

based optimization and the other using the proposed LET-incorporated optimization. Each

plan was based on 3D modulation delivery (Lomax (1999)). The intensities of all beamlets

from all treatment fields were simultaneously and independently optimized, that is, MFO

was applied. The simulation of plan delivery and dose/LET distributions was based on a

discrete pencil beam scanning system commissioned at our institution (Gillin et al. (2010)).

It should be noted that all plans optimized by either DoseOpt or LETOpt were tailored

to produce dose distributions as similar as possible to those of the previous clinical plans. If

necessary, multiple optimization runs were performed as trial and error, with adjustment to

criteria or priority factors, until the plans were reviewed and found to be acceptable. Our

goal in this study was to investigate the impact of LET-incorporated optimization on the

ability to manipulate LET distributions, not to improve dose distributions. The detailed

results of the patient studies, i.e., primarily the dosimetric data, are discussed in the next

section.

5.3 Results

Table 5.2 summarizes six key indices each of dose and LETd based on the IMPT plans

optimized by DoseOpt and LETOpt for the five patient cases: dose and LETd for 1% and

99% of the GTV, the maximum of dose and LETd for the brainstem, dose and LETd that

are exceeded in 0.1 cc of the brainstem, and the maximum and minimum of dose and LETd

for the optic chiasm. There were only minor differences (at most 4% averaged over all

five patients) in all dose indices between the DoseOpt and LETOpt plans. Meanwhile,

there were pronounced differences in LETd. The maximum LETd and LETd to 0.1cc of

the brainstem were reduced from DoseOpt to LETOpt by an average of 19.4% and 23.7%,

respectively. The maximum and mean LETd for the optic chiasm were reduced by 21.1%

and 21.9%, respectively, and the LETd for 1% and 99% of the GTV were increased by 27.2%

and 18.4%.
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Table 5.2: Dose (Gy) and Dose-averaged LET, i.e., LETd, (keV/µm) indices of the IMPT plans
optimized by DoseOpt and LETOpt for five brain tumor patients. Max and mean values
for dose and LETd are based on all voxels in corresponding structures, and the dose
and LET to 0.1cc of the brainstem are reported. Dose and LETd to 1% and 99% of the
GTV are also reported.

Patient # Dose Optimization LET Optimization
Brainstem Chiasm GTV Brainstem Chiasm GTV
Max 0.1cc Max Mean 1% 99% Max 0.1cc Max Mean 1% 99%

1 Dose 2.0 1.9 1.8 1.3 2.2 2.0 1.9 1.9 1.8 1.3 2.2 1.9
LET 8.1 7.1 6.8 4.9 3.5 1.4 7.9 6.2 1.8 1.4 3.7 1.6

2 Dose 2.0 1.8 2.0 1.2 2.1 1.8 1.9 1.8 2.0 1.2 2.1 1.8
LET 10.0 8.9 8.2 5.8 5.1 2.0 8.5 7.5 8.2 5.8 5.1 2.8

3 Dose 2.0 1.9 0.1 0.1 2.0 1.8 2.0 1.9 0.1 0.1 2.0 1.9
LET 9.3 9.0 5.1 3.6 4.2 2.6 6.8 6.3 4.5 3.3 7.0 3.0

4 Dose 2.0 1.9 0.2 0.1 2.0 1.8 2.0 1.9 0.3 0.2 2.0 1.8
LET 5.1 4.7 4.4 3.0 3.8 2.3 4.6 4.3 3.5 2.1 5.1 2.3

5 Dose 2.0 1.9 - - 2.0 1.7 2.0 1.9 - - 2.0 1.7
LET 13.5 12.4 - - 4.7 2.2 7.7 6.0 - - 6.1 2.7

Plans optimized by DoseOpt and LETOpt for one glioblastoma case (Patient 1), are

compared in Figure 5.1. Both the dose distributions and dose volume histograms (DVHs)

confirmed that the doses generated by the DoseOpt and LETOpt plans were comparable for

this case. In terms of LETd, as shown by LETd distributions and LETd volume histograms

(LVHs), the sparing of the brainstem and the optic chiasm was significantly improved. For

the optic chiasm, the max LETd was reduced from 6.8 keV/µm to 1.8 keV/µm. However,

the magnitude of the LETd increase in the GTV was not as pronounced as that of the LETd

decrease in the brainstem or the optic chiasm. Another comparison is shown in Figure 5.2

for one of the ependymoma cases (Patient 3). The DoseOpt and LETOpt plans again had

similar doses, although the DoseOpt plan was worse for sparing of the brainstem in the low-

dose region than the LETOpt plan was. LETd hotspots in normal tissues and the brainstem

were greatly reduced by LETOpt, and LETOpt plans had a larger area with high LETd

distributed in the GTV and CTV than did DoseOpt plans. The DVHs and LVHs for three

other patient cases are included in Appendix C.
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Figure 5.1: Comparison of DoseOpt and LETOpt plans for Patient 1. Panels (a) and (b) show
dose distributions (based on a constant RBE of 1.1) for the DoseOpt and LETOpt
plans. Panels (c) and (d) show dose-averaged LET distributions for the DoseOpt
and LETOpt plans. Panels (e) and (f) are dose- and LET-volume histograms for the
GTV (red contour), CTV (yellow contour), brainstem (black contour), optic chiasm
(magenta contour).

Optimized plans for the Patient 3 as a representative case are further compared in DVHs

and LVHs in Figure 5.2. One DoseOpt plan and two LETOpt plans (1 and 2) are shown

and compared. The ratio of the optimization priority factor of the dose and LET objectives

was set at one for the LETOpt plan 1 and ten for LETOpt plan 2. In other words, plan

1 was optimized with ten times less priority given to dose objectives, including ones for

target volumes and critical normal tissues, than plan 2. For plan 1, although the brainstem

was not well spared at low doses by LETOpt compared to DoseOpt, its exposure to high

LETs was greatly reduced with a decrease of 3 keV/µm from the maximum LETd. Note

that the similar behavior was observed in Patient 4 and 5. For plan 2, the dose sparing of

the brainstem was similar for LETOpt and DoseOpt, but the benefit of LET sparing could

not be achieved as it was in plan 1. Pronounced increases of LETd in target volumes were
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achieved by both LETOpt plans. However, the magnitude of increase was modestly lower

for plan 2 than for plan 1 because higher optimization priority was given to dose instead

of LET in plan 2. The choice between plan 1 and 2 in clinic should be determined by

physician’s preference on different metrics such as maximum or mean dose to brainstem,

and boost in target dose, etc. We should note that the tradeoff effect between dose and LET

metrics was observed in all patient cases, while its magnitude and sensitivity to changing

optimization priorities varied among cases (as seen in examples shown in Figure 5.1, 5.2

and C.1).

Figure 5.2: Dose (RBE=1.1) and dose-averaged LET volume histograms of the IMPT plans opti-
mized by DoseOpt (solid lines) and LETOpt (dashed lines) for Patient 3. Two LETOpt
plans (1 and 2) are shown here to illustrate the trade-off effect between dose and LET
objectives. Each LETOpt plan is compared to the DoseOpt plan. The ratio of the
optimization priority factor between the dose and LET objectives is 1 for the LETOpt
plan 1 and 10 for the LETOpt plan 2.

83



5.4 Discussion

Proton therapy is increasingly accessible to cancer patients (Chang et al. (2014); Schue-

mann et al. (2014)). Continuous improvement of this cutting-edge technology, including

treatment planning, will allow its theoretical benefits to be fully realized and its associated

risks to be minimized. Currently, the biological uncertainties of protons remain a signifi-

cant challenge to realize the full potential of proton therapy (Mitin and Zietman (2014)).

Despite extensive ongoing research to better understand the biological effectiveness of pro-

tons and other heavy particles, including in vitro and in vivo animal studies as well as

patient response analyses, a variable RBE model, especially one dependent on tissue type

and clinical endpoint, has yet not been agreed upon for use in clinical treatment planning.

From an alternative perspective, incorporation of LET in treatment planning assuming the

dependence of RBE on LET, while ensuring no or minimal changes to the dose distribu-

tions used in current practice (with its simplistic constant RBE of 1.1), can be implemented

straightforwardly and immediately in the clinic to benefit patients. At our center, we have

begun evaluating the LET-incorporated optimization presented here in a clinical setting for

selected patients and expect to generate LET-optimized plans together with conventionally

optimized plans in the clinical routine for physicians to choose.

The present study demonstrated that the LET-incorporated IMPT optimization can

create preferred dose-averaged LET distributions while maintaining satisfactory dose dis-

tributions. Optimization of LET, i.e., maximization in target volumes and minimization in

critical normal tissues as shown in our patient studies, is expected to boost the differential

benefits of increasing the biological effect of protons in tumor and/or reducing it in healthy

tissues compared to the current standard for brain tumor cases. Within dose-exposed vol-

umes, evaluation of LET can be used as another measure of plan quality, in addition to

dose. Moreover, one can also choose to use radiobiological models as additional indica-

tors of plan quality, such as the linear quadratic (LQ) cell survival model, tumor control

probability (TCP), normal tissue complication probability (NCTP), and RBE models. For

example, Figure 5.3 shows the DVHs from variable RBE-weighted doses based on a recently
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published RBE model (McNamara et al. (2015)) for a representative case (Patient 1). This

demonstrates that the LET-incorporated optimization not only increased the variable RBE-

weighted dose for target volumes but also reduced it for critical structures compared to a

plan conventionally optimized using constant RBE. Similar DVHs for other patient cases

can be found in Appendix C.

Figure 5.3: Dose volume histograms of the IMPT plans optimized by DoseOpt (solid lines) and
LETOpt (dashed lines) for Patient 1. The RBE here is variable and calculated based
on a recently published RBE model (McNamara et al., 2015). The required tissue
parameters are obtained from literature (Frese et al., 2011).

LET painting approaches have been investigated for ion (Bassler et al. (2010, 2014))

and proton (Fager et al. (2015)) therapies, in which planning methods such as splitting

targets or adopting opposite beam arrangements are used to allocate the high LET protons

within target instead of normal tissues. However, those techniques may require greater

effort in planning, quality assurance, and delivery than does the current practice because

they use more planning volumes and beam angles. In contrast, incorporating LET directly

into the optimization process may have certain practical advantages over the LET painting

techniques and it could be easily implemented in clinical settings. Such an approach as

presented in this work can adopt the same target volumes and beam arrangements that are

used in conventional PSPT and IMPT treatment plans. Meanwhile, ideas in LET painting

such as avoiding the distal edge in target boundary regions could be used to improve the

benefits of LET-incorporated optimization.

One recent study discussed a multi criteria optimization approach in which a set of
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IMPT plans were created using various dose based objectives and constraints, then plans

with superior dose and LET distributions were selected (Giantsoudi et al. (2013)). While the

advantage of this method is that multiple competing plans can be generated, the disadvan-

tage is that the performance on finding improved LET distributions may be compromised

because LET criteria are not included in optimization.

In another recent study, a two-step prioritized optimization approach was proposed:

first a plan was optimized using conventional dose criteria, and, in the second step, the plan

was optimized solely based on the product of LET and dose as a surrogate of variable RBE

weighted dose with constraints to limit the change to physical dose distribution from the

first step (Unkelbach et al. (2016)). Prioritized optimization may be an effective approach

to managing the trade-off effect between dose and LET. However, the optimality of LET

optimization may be affected by the local minimum problem in nonconvex optimization, as

the second round of prioritized optimization uses a warm start. This is less of a problem for

simultaneous optimization approaches such as the one proposed in this study. However, our

approach has the drawback of requiring determination of good optimization priority factors

to balance gains in dose and LET. The comparison of the effectiveness and efficiency of

different optimization strategies is also of interest and will be an area of future study.

Our study confirms that the redistributed LET maps may compensate the cut of quality

dose distributions achieved by IMPT (Unkelbach et al. (2016)). This was seen in Patient 3

and 5 where brainstem dose was increased in the LET optimized plans at the low dose region

compared to the dose optimized plan. However, this is not always the case. For example, the

LET optimized plan for Patient 1 in this study achieved a greatly improved LET distribution

without degrading the physical dose distribution. The varying magnitude of the benefit of

LET optimization may be attributed to patient anatomies and beam arrangements. The

trade-off effect between dose and LET merits should be thoroughly investigated in future

research. Methods such as multi-criteria optimization and beam angle optimization can be

highly helpful in the search for superior dose and LET distributions.
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5.5 Conclusion

In this study, a LET-incorporated IMPT optimization method was introduced. This

method was able to produce clinically satisfactory dose distributions while increasing dose-

averaged LET in target volumes and reducing it in critical normal tissues for five selected

brain tumor patient cases. The clinical application of this method requires no changes to the

current treatment protocols using a constant RBE and therefore has a potential to bring an

immediate improvement to IMPT in enhancing tumor control and reducing normal tissue

toxicities.
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Chapter 6

Understanding Impacts of Radiobiological Parame-

ters in Adaptive Radiation Treatment Planning un-

der Setup Uncertainty

6.1 Introduction

Radiation therapy (RT) is administered to cancer patients to destroy cancer cells with

minimum damage to healthy cells. Clinically, radiotherapy is usually delivered in multiple

fractions over several weeks in such a way that achieves tumor control while enabling the

repair of damage to normal tissues within the treatment area. In conventional RT, the

treatment dose has been designed based on digital images acquired before the treatment

begins. However, those treatment plans mostly ignore the dynamic nature of the inherent

biological processes that take place during the course of treatment. With normal anatomical

changes of both the tumor and healthy tissue during a 5- to 7-week course of radiation, rely-

ing solely on those images could lead to (1) underdosing the tumor and/or (2) unnecessary

exposure of organs-at-risk (OARs) to higher radiation doses. Also, due to the uncertainties,

the determination of radiation treatment plans for individual patients becomes a very com-

plicated task. The effect of these uncertainties on the dose distribution should be mitigated

appropriately to ensure that the right amount of dose is actually deposited in the tumor

region and patients are treated safely.

One of the significant efforts in adaptive radiation radiotherapy (ART) has been to

reduce the effects of treatment variations, such as beam placement errors and geometric

variation of the therapy target and critical normal organs incurred in previous fractions
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(Trofimov et al. (2005); Wu et al. (2008); Mohan et al. (2005); de la Zerda et al. (2007); Lu

et al. (2006)). Recent advances have centered on using image guidance for ART to allow

for treatment changes in radiation planning. The ART technique aims to customize each

patient’s treatment plan to patient-specific variation by evaluating and characterizing the

systematic and random variations through image feedback and including them in adaptive

planning. As a result, the overall patient outcome is improved by fractionating radiation

treatments. This improvement may be explained in the case of the biological responses of

tissue. The five R’s (repair, repopulation, redistribution, reoxygenation, and radiosensitiv-

ity) are well-documented biological factors influencing the responses of tumors and normal

tissues to fractionated treatment (Withers (1975); Steel et al. (1989)). Determining the re-

sponse of cells and tissues to radiation and balancing them against one another has become

one of the pillars of fractionation radiotherapy because it helps to maximize the therapeu-

tic gain. Yet, the complexities of how radiation affects the underlying biological processes

make it difficult to determine how, if at all, treatment planning should be redesigned. In

fact, the potential for improvement of any fractionation scheme employing the impact of

radiobiological factors on the outcome of treatments could be evaluated.

To this point, the theoretical advantage of ART for dosimetric and clinical parameters

has been established in multiple studies (Juloori et al. (2015); Ghilezan et al. (2010); Wu

et al. (2008); van de Schoot et al. (2017)). Within this line of research, various models

have been developed in an attempt to describe and predict how the treatment plan will be

adjusted to the biological changes (Ghate (2011); Hernández et al. (2013); Bortfeld et al.

(2015); de la Zerda et al. (2007)). Ghate (2011) proposed a stochastic control framework to

utilize the biological images and tumor response models in order to design an adaptive ra-

diation treatment strategy. They attempted to incorporate response-uncertainties into the

planning process to deliver the right dose to the right location at the right time. However,

to effectively guide decisions their approach relies on how accurately the biological infor-

mation can be gleaned from biological images. Bortfeld et al. (2015) provided a dynamic

programming framework to determine the optimal fractionation schedule in the presence of
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accelerated repopulation. Another study by de la Zerda et al. (2007) performed dynamic

closed-loop control algorithms for ART to adjust the treatment plan to the changing ge-

ometry and delivered dose. Recently, Nohadani and Roy (2017) provided a general robust

optimization framework that incorporates changes in cell oxygenation due to the radiation

during the treatment. In these studies, the normal tissue response and its effects on de-

signing a treatment plan have not been well addressed, since the main goal of their model

was to remove the tumor cells with certainty. Moreover, the patient needs to be set up

on the treatment couch in the exact same position for each treatment session. Due to the

repeated positioning of patients, the actual and planned position of the patient with respect

to the treatment can differ between each visit. So, uncertainties inherent in setting up the

treatment plans is also another factor that needs to be considered while adapting the plans.

Therefore, there is a need to determine the adapted treatment plan considering the

biological responses of the tumor and normal tissues to radiation. This study focuses

on the tumor repopulation and repair of normal cells during treatment among those five

radiaobiological factors. In particular, repair is a major factor in the response of nearly all

tissues. Studies show that such tissues appear to have a higher repair capacity than tumors

(Khaled and Held (2012)), which supports the fractionated treatments scheme. However,

prolonging treatments over a long interval may be counterproductive since proliferation and

repopulation of the surviving tumor cells will occur during the treatment.

In this research, the biological response of the tumor and healthy cells (repopulation

and repair) are characterized by volume changes, since this is the important predictor

of the treatment outcome (Bralcet et al., 2009). Many applications of the mathematical

modeling of tumor growth as a function of time have been proposed. A simple linear

model for describing the tumor growth was developed by Nieves and Ubriaco (2015) under

the assumption that the tumor is in untreated environments. They show the importance

of considering tumor growth or shrinkage in the radiation therapy treatment planning.

Furthermore, Huang et al. (2010) presented the details of the kinetic model, and they

utilized it to analyze the tumor regression data, estimate the tumor radiosensitivity, and
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time for resolving dead cells for individual patients.

We present a biologically-based treatment planning model to examine the biological

effects in terms of changes in size of the tumor and organs-at-risks (OARs) under setup

uncertainty. We optimize the prescribed dose in each treatment considering those two

important factors. One indicates a relationship between the biological effects of tumor

repopulation that occurs during the treatment and an appropriate target dose. Meanwhile,

by incorporating the biological effects of healthy cells, another relationship between a safe

treatment dose and the repair of radiation damage during a treatment can be obtained.

In this regard, a deformation in size of the target and surrounding healthy tissues are

determined, and the next treatment is optimized by incorporating the updated volumetric

changes and the clinical dose requirements.

To handle the setup uncertainty in our study, we use the chance-constrained program-

ming (CCP) approach developed for radiation therapy framework (Zaghian et al. (2018))

in a biologically-based treatment planning optimization model to overcome the conserva-

tiveness of worst-case robust optimization model (Casiraghi et al. (2013); Fredriksson and

Bokrantz (2014)) that are commonly used for incorporating uncertainties in treatment plan-

ning optimization problems (Pflugfelder et al. (2008); Liu et al. (2012b); Fredriksson et al.

(2011)). Using this method, we design the fractionation radiation scheme under setup un-

certainty in which the treatment plan can be optimized considering the best compromise

between the radiobiological effects on the tumor and healthy tissues over time in a treat-

ment planning process. Accordingly, for each treatment, reasonable confidence levels can be

determined according to the decision preference on a specific cancer case. Our goal is to in-

vestigate whether the current fractionation scheme for the treatment of clinical cancer cases

with radiation is optimal or could be improved. We investigate the circumstances under

which these optimal schedules result in a significant improvement over current treatments

for three clinical prostate cases.

The main contributions of the following methodology are summarized bellow:

• We propose a biologically-based treatment planning model that not only allows for
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the correction of patient setup error, but also allows dose recalculation and adaptive

radiation therapy (ART) using the volumetric information to adjust the treatment

plan of each fraction to the updated patient anatomy.

• In this study, a direct re-optimized treatment plan can be determined on a slower

time-scale than employing imaging information for clinical implementation of on-line

and off-line ART. Thus, considering the patient wait time and treatment duration

limitations, our model performs well.

• To make the treatment planning process clinically practical, the tumor volume was

modified every few fractions (in 7 fractions or once a week).

• Using real patient data, we analyze the CCP biologically-based treatment planning

model to determine whether there is a dosimetric advantage in adapting the treatment

delivery to compensate for the reduction in the tumor volume.

6.2 Proposed methodology and formulations

In treatment planning, we aim to deliver the prescribed dose to the target while mini-

mizing the dose to adjacent healthy tissue. Within this goal, ART plan refers to a method

of treating cancer when the total dose of radiation is divided into several smaller doses over

a period of several days. Table 6.1 summarizes the parameters and variables definitions.

The total amount of dose delivered to voxel i in fraction k can be calculated as

Dk
i (w) =

∑
j∈J

dkijw
k
j = (d′iw)k, ∀i ∈ {T ∪ OAR}, ∀k ∈ K,

where di represents the dose contribution from all beamlets to voxel i and w illustrates the

intensity of beamlets.
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Table 6.1: Input parameters and variables for radiation treatment planning models

Parameter Definition1

T A set of voxels in the planning target volume (PTV or target)
OAR A set of voxels in the organ-at-risk
J A set of all beamlets
K Number of fractions
θL ,θU Lower (L) and Upper (U) control limit on the target
ϕ Upper control limit on the organ-at-risk
λ+
T Penalty coefficient for hot spots on the target
λ−T Penalty coefficient for cold spots on the target
λOAR Penalty coefficient for hot spots on the organs-at-risk
λT Penalty coefficient for survival rate of the target
λH Penalty coefficient for survival rate of the organs-at-risk
α+
T Risk level for having hot spots on the target
α−T Risk level for having cold spots on the target
α+
OAR Risk level for having hot spots on the organs-at-risk
α−T Risk level for controlling the survival rate of the target
α+
H Risk level for controlling the survival rate of the organs-at-risk
dkij Dose contributed by the jth beamlet to voxel i per unit weight in fraction k
tk Resting time between each fraction
τg Tumor repoulation time (doubling time)
τo Time for normal cells to repair
Variables Definition
wkj Intensity of beamlet j ∈ J in fraction k
θkL, θkU Lower and upper control limit on the target in fraction k
ϕk Upper control limit on the organs-at-risk in fraction k
Dk
i (w) Total amount of dose delivered in fraction k by voxel i

6.2.1 The radiobilogical basis for the development of treatment

The idea of dividing a treatment into multiple stages with a rest period of typically one

day between two sessions has been around for a long time, as it is called the fractionation

radiotherapy. The most common argument for this method is the better preservation of

healthy tissue due to faster regeneration capability compared to tumors in the rest period.

Thus, to accurately quantify the relative amount of dose observed in each fraction of RT, it

is important to biologically adapt the treatment plan to the cell survival models for tumors

and normal tissues. In this section, we developed a model not only to control the significant
1A cold spot is a portion of tissue that receives less than the desired radiation dose, and a hot spot is a

portion of tissue that receives a dose higher than the desired dose
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tumor shrinkage or proliferation during the gap period but also to take advantage of the

repair capability of healthy cells during the treatment.

6.2.1.1 Tumor Repopulation

Let |K| be the number of the entire treatment sessions and k ∈ K is an index represent-

ing individual treatment sessions, and sk denotes the number of viable tumor cells at the

beginning of therapy stage k. Thus, the number of viable tumor cells at the next stage is

given by (Unkelbach et al. (2014)):

rk+1 = sk+1
sk

= e(−δk
i Dk

i (w)) e(tk/τg), ∀k ∈ K, ∀i ∈ T , (6.2.1)

in which δki = α0(1 + Dk
i (w)/(α0/β0)), ∀k ∈ K, ∀i ∈ T , is an effective radio-sensitivity

parameter.

The first part of equation (6.2.1) refers to the radiation effect on the tumor, which

is described by exponential cell kill such that the surviving fraction of tumor cells after

irradiation is given by eδkDk
i ,∀i ∈ T . The second exponential function (e(tk/τg)) describes

the proliferation of the surviving tumor cells after the kth treatment session. It means that

after a time tk, the number of active tumor cells increases by a factor of e(tk/τg), where τg

is the time constant for tumor repopulation. Differences in fractionation response between

tissues (Withers et al. (1983)) are quantified through differences in the ratio of parameters

α0 and β0, and this ratio (α0/β0) can be obtained from clinical data (Pedicini et al. (2013)),

which is beyond the scope of this paper.

In general, for tumors with a high α/β ratio, fractionated radiation therapy (FRT) re-

sults in a better therapeutic ratio than the single session therapy, because it spares more

healthy tissues through repair of sublethal damage, because of the repopulation of cells

between fractions, and because of increased tumor damage through reoxygenation and re-

distribution of tumor cells.
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6.2.1.2 Repair of healthy cells

In addition to the repopulation, the repair of cellular damage between treatment sessions

is the primary mechanism underlying the clinical observation that a larger total dose can be

tolerated when the radiation dose is fractionated. During the resting time of fractionation

treatment planning, healthy tissues can repair themselves. Repair of radiation damage is a

complex mechanism which is a function of radiation dose and resting time. The continuous

increase of cell survival with declining dose rate is consistent with the role of time in repair.

Accordingly, maximizing sparing of healthy cells around the target could beneficially prevent

patients from having side effects. Equation (6.2.2) shows the ratio of active cells after the

kth treatment session.

hk+1 = ok+1
ok

= e(−δk
i Dk

i (w)) e(tk/τO), ∀k ∈ K, ∀i ∈ OAR, (6.2.2)

in which, τO is the parameter showing time for healthy tissues recovery, and ok denotes the

number of healthy cells that survive radiation. The radio sensitivity parameter δki is:

δki = α
′
0(1 + Dk

i (w)/(α′0/β
′
0)), ∀k ∈ K,∀i ∈ OAR.

In fact, Dk
i (w),∀i ∈ {T ∪ OAR} is a random variable (D̃k

i (w)) which makes the con-

straints (6.2.1) and (6.2.2) probabilistic constraints. As a result, in order to simplify the

inequalities (6.2.1) and (6.2.2), we apply the logarithm of each side of the equations as:

ln rk+1 = −δki D̃k
i (w) + (tk/τg), ∀k ∈ K, ∀i ∈ T and (6.2.3)

ln hk+1 = −δki D̃k
i (w) + (tk/τO), ∀k ∈ K,∀i ∈ OAR. (6.2.4)

6.2.1.3 Dose escalation and tumor volumetric changes

The problem of interest then is to determine the amount of prescribed dose required for

the next treatment that counters the effects of volumetric changes in tumor and healthy

cells due to the radiation.
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In this regard, expressions (6.2.3) and (6.2.4) could be used to update the plan for the

next treatment. We assume that there is a linear relation between the amount of dose that

needs to be delivered for the rest of treatment and the number of cancer cells that are

remained in situ (
∑|K|
n=k θ

n ∼ sk). Having the same relation for each fraction:

|K|∑
n=2

θn = ν

|K|∑
n=1

θn (s2
s1

),

...
|K|∑
n=k

θn = ν

|K|∑
n=k−1

θn ( sk
sk−1

), ∀k ∈ K,

...
|K|∑

n=K−1
θn = ν

|K|∑
n=|K|

θn (
s|K|
s|K|−1

).

By putting all of the above equations together, the amount of prescribed dose in each stage

k can be achieved by:

|K|∑
n=k+1

θn = ν

|K|∑
n=k

θn (sk+1
sk

), ∀k ∈ K, (6.2.5)

where ν is a relative coefficient. We obtain parameter ν from Equation (6.2.5) and consider

the same amount of prescribed dose for each treatment (θ0 = θ1 = ... = θ|K|) as the

conventional treatment planning which means that for the two consecutive fractions, k and

k + 1,
∑N

n=k+1 θ
n

|K|−k+1 =
∑|K|

n=k
θn

|K|−k . Thus, Equation (6.2.5) can be reformulated as

|K| − k + 1
|K| − k

= ν(sk+1
sk

), ∀k ∈ K.

Using the survival rate equation (6.2.1) we can obtain parameter ν and update Formulation

(6.2.5) as:

|K|∑
n=k+1

θn = e(
∑

k
δ′d′)−

∑
k

(tk/τg)( |K| − k
|K| − k + 1)

|K|∑
n=k

θn (sk+1
sk

), ∀k ∈ K,
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in which d′ is a constant 2 Gy amount of dose and δ′ can be calculated from δ′ = α0 + 2β0.

6.2.2 Biologically-based plan optimization model

To optimize the amount of prescribed dose in each fraction of multi-stage treatment

planning, we will have:

min
wk

j ,θ
k
L,θ

k
U ,ϕ

k,rk,hk

− λ−T θ
k
L + λ+

T θ
k
U + λ+

OAR ϕ
k + λT

∑
k∈K

rk − λH
∑
k∈K

hk (6.2.6)

s.t.

Dk
i (w) ≥ θkL, ∀k ∈ K, ∀i ∈ T , (6.2.7)

Dk
i (w) ≤ θkU , ∀k ∈ K, ∀i ∈ T , (6.2.8)

Dk
i (w) ≤ ϕk, ∀k ∈ K,∀i ∈ OAR, (6.2.9)

−δki Dk
i (w) + (tk/τg) ≤ ln rk+1, ∀k ∈ K,∀i ∈ T ,(6.2.10)

−δki Dk
i (w) + (tk/τO) ≥ ln hk+1, ∀k ∈ K, ∀i ∈ OAR, (6.2.11)

δki = β0 θ
K + α0, ∀k ∈ K,∀i ∈ T , (6.2.12)

δki = β
′
0 ϕ

K + α
′
0, ∀k ∈ K,∀i ∈ OAR, (6.2.13)

θk = ν

|K|∑
n=k

θn (rk+1), (6.2.14)

θkL ≤ θk ≤ θkU , ∀k ∈ K, (6.2.15)
|K|∑
k=1

θkL ≥ θL ,
|K|∑
k=1

θkU ≤ θU ,

|K|∑
k=1

ϕk ≤ ϕ, and (6.2.16)

rk+1, hk+1,w > 0, (6.2.17)

where, λ−T , λ
+
T , λOAR, λT , and λH are penalty coefficients for cold spots on the target, hot

spots on the target, hot spots on the organs-at-risk (OARs), ratio of viable tumor cells and

healthy cells in each stage k, respectively. θ1
L, θ1

U , and ϕ1 are given for the first stage.

Our strategy heavily exploits the following facts:

Theorem 6.2.1. Let sk and s
′
k be the tumor volume after k number of equal dose fraction-

ation d̂ and variable dose fractionation d̂ + θi, |θi| ≤ d̂, k = {0, · · · , |K|}. If
∑|K|
i=1 d̂ + θi =
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∑|K|
i=1 d̂, then

s
′
k

sk
= e−β0(

∑|K|
i

θ2
i ) ≤ 1, ∀k ∈ K,∀i ∈ T ,

which means that the variable dose fractionation performs better than the equal dose frac-

tionation in terms of tumor coverage.

Proof. Let d̂ + θi ≥ 0 be the variable dose fractionation, where
∑|K|
i θi = 0. From the

survival rate equation, (6.2.1), the volume of the tumor at the end of the treatment (|K|

fractions) can be calculated as:

s
′

|K| = s0 e
−

∑|K|
i=1(α0(d̂+θi)+β0(d̂+θi)2) e|K|(tk/τg),

where

|K|∑
i=1

(α0(d̂+ θi) + β0(d̂+ θi)2) = α0
∑
i

d̂+ α0
∑
i

θi + β0
∑
i

d̂2 + β0
∑
i

θ2
i + 2β0

∑
i

d̂θi.

Considering
∑|K|
i θi = 0, equation above can be reformulated as:

|K|∑
i=1

(α0(d̂+ θi) + β0(d̂+ θi)2) = α0
∑
i

d̂+ β0
∑
i

d̂2 + β0
∑
i

θ2
i ,

= |K|α0d̂+ |K|β0d̂
2 + β0

∑
i

θ2
i .

So, we will have:

s
′

|K| = s0e
−|K|(α0d̂+β0d̂2)e−β0(

∑|K|
i

θ2
i )e|K|(tk/τg),

which arrives at the relation:

s
′

|K|
s|K|

= e−β0(
∑|K|

i
θ2

i ) ≤ 1.

Theorem 6.2.2. Consider d̂+θi, |θi| ≤ d̂, i = {0, · · · , |K|} to be the amount of dose received
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in each fraction of RT, such that

d̂+ θi ≥ 0,
|K|∑
i

θi = 0,

then, the equal amount of dose fractionation to produce either approximately the same final

results as the variable dose fractionation, d̂+θi, with regard to the surviving tumor will be:

d̂
′ = −α0 +

√
∆

2β0
,

where

∆ = α2
0 + 4β0(α0 + β0d̂

2 + β0

∑
i θ

2
i

N
).

Proof. Let d+ θi ≥ 0 be the variable dose fractionation and d′ be the amount of equal dose

fractionation resulting in a same tumor coverage as variable dose fractionation. Thus, we

have:

sN = s
′
N .

From equation (6.2.1):

s0 e
−N(α0d̂

′+β0d
′2) eN(tk/τg) = s0 e

−N(α0d̂+β0d̂2)e−β0(
∑N

i
θ2

i ) e|K|(tk/τg). (6.2.18)

We can simplify Equation (6.2.18) by removing the similar parameters from each side of

the equality:

e−|K|(α0d̂
′+β0d̂

′2) = e−|K|(α0d̂+β0d̂2)e−β0(
∑|K|

i
θ2

i ).

By making Logarithm from each side of the equality, we have:

|K|(α0d̂
′ + β0d̂

′2) = |K|(α0d̂+ β0d̂
2) + β0(

|K|∑
i

θ2
i ),
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which could be simplified as the following equation:

α0d̂
′ + β0d̂

′2 = α0d̂+ β0d̂
2 + β0

∑|K|
i θ2

i

|K|
.

Thus, we will have the quadratic formulation as:

β0d̂
′2 + α0d̂

′ − (α0d̂+ β0d̂
2)− β0

∑|K|
i θ2

i

|K|
= 0.

Considering that d̂′ ≥ 0, the solution to the quadratic equation above will be:

d̂
′ = −α0 +

√
∆

2β0
,

where ∆ = α2
0d̂
′ + 4(β0)((α0d̂+ β0d̂

2) + β0

∑|K|
i

θ2
i

|K| ) ≥ 0.

Theorem 6.2.3. Let O|K| and O
′

|K| be the number of voxels in OARs after N number of

equal dose fractionation d̂ and variable dose fractionation d̂ + θi, i = {0, · · · , |K|}, respec-

tively. If
∑|K|
i=1 d̂+ θi =

∑N
i=1 d̂, then

O
′

|K|
O|K|

= e−β
′
0(

∑|K|
i

θ2
i ) ≤ 1,

which shows that the outcome of a treatment plan with an equal amount of fractionation

dose will be better in terms of sparing the healthy cells.

Proof. The proof of this theorem is a minor modification of the proof of Theorem 6.2.1.

The theorems above show that to have a successful treatment plan in terms of both tumor

coverage and sparing of nearby healthy tissues, a strategy needs to be developed considering

the trade-offs between an equal amount of dose and variable amount of radiation.
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6.2.3 CCP biologically-based plan optimization

By putting the probabilistic equations under the limitations of RT treatment, the chance

constraints for controlling the amount of dose in each fraction can be formulated. Next, we

can express the physical dose constraints in a CCP framework by introducing a confidence

level (α) and enforcing the constraint in probability as described in (Zaghian et al. (2018)):

P{D̃k
i (w) ≥ θkL} ≥ 1− α−T , ∀k ∈ K,∀i ∈ T , (6.2.19)

P{D̃k
i (w) ≤ θkU} ≥ 1− α+

T , ∀k ∈ K,∀i ∈ T , and (6.2.20)

P{D̃k
i (w) ≤ ϕk} ≥ 1− α+

OAR, ∀k ∈ K,∀i ∈ OAR, (6.2.21)

where 1− α−T , 1− α+
T , and 1− α+

OAR are the confidence levels for avoiding cold spots and

hot spots on target voxels and sparing the organs-at-risk, respectively.

Similarly, we can convert the biological dose constraints to the following chance con-

straints:

P{−δki D̃k
i (w) + (tk/τg) = ln rk+1} ≥ 1− αT , ∀k ∈ K,∀i ∈ T and (6.2.22)

P{−δki D̃k
i (w) + (tk/τO) = ln hk+1} ≥ 1− αH , ∀k ∈ K,∀i ∈ OAR, (6.2.23)

where 1− αT and 1− αH are the confidence levels for the probabilistic constraints above.

Then, the CCP biologically-based treatment planning model can be formulated as fol-

lows:

min
wk

j ,θ
k
L,θ

k
U ,ϕ

k,rk,hk

− λ−T θ
k
L + λ+

T θ
k
U + λ+

OAR ϕ
k + λT

∑
k∈K

rk − λH
∑
k∈K

hk (6.2.24)

s.t.

P{D̃k
i (w) ≥ θkL} ≥ 1− α−T , ∀k ∈ K,∀i ∈ T , (6.2.25)

P{D̃k
i (w) ≤ θkU} ≥ 1− α+

T , ∀k ∈ K, ∀i ∈ T , (6.2.26)

P{D̃k
i (w) ≤ ϕk} ≥ 1− α+

OAR, ∀k ∈ K,∀i ∈ OAR, (6.2.27)
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P{−δki D̃k
i (w) + (tk/τg) ≤ ln rk+1} ≥ 1− αT , ∀k ∈ K,∀i ∈ T , (6.2.28)

P{−δki D̃k
i (w) + (tk/τO) ≥ ln hk+1} ≥ 1− αH , ∀k ∈ K, ∀i ∈ OAR, (6.2.29)

δki = β0 θ
K + α0, ∀k ∈ K,∀i ∈ T , (6.2.30)

δki = β
′
0 ϕ

K + α
′
0, ∀k ∈ K,∀i ∈ OAR, (6.2.31)

θk = ν

|K|∑
n=k

θn (rk+1), (6.2.32)

θkL ≤ θk ≤ θkU , ∀k ∈ K, (6.2.33)
|K|∑
k=1

θkL ≥ θL ,
|K|∑
k=1

θkU ≤ θU ,

|K|∑
k=1

ϕk ≤ ϕ, (6.2.34)

α−T , α
+
T , α

+
OAR, αT , αH ≤ 0.2, and (6.2.35)

rk+1, hk+1,w > 0. (6.2.36)

We formulate the deterministic equivalence of Model (6.2.24) considering random dose fol-

lows a standard normal distribution (Zaghian et al. (2018)):

min
wk

j ,θ
k
L,θ

k
U ,ϕ

k,rk,hk

− λ−T θ
k
L + λ+

T θ
k
U + λ+

OAR ϕ
k + λT

∑
k∈K

rk − λH
∑
k∈K

hk (6.2.37)

s.t.

E(D̃k
i (w))− Φ−1(1− α−T )σ(D̃k

i (w)) ≥ θkL, ∀k ∈ K, ∀i ∈ T ,

E(D̃k
i (w)) + Φ−1(1− α+

T )σ(D̃k
i (w)) ≤ θkU , ∀k ∈ K, ∀i ∈ T ,

E(D̃k
i (w)) + Φ−1(1− α+

OAR)σ(D̃k
i (w)) ≤ ϕk, ∀k ∈ K, ∀i ∈ OAR,

δki Φ−1(1− αT )σ(D̃k
i (w))− δki E(D̃k

i (w)) ≥ U, ∀k ∈ K,∀i ∈ T ,

−δki Φ−1(1− αH)σ(D̃k
i (w))− δki E(D̃k

i (w)) ≤ L, ∀k ∈ K,∀i ∈ OAR,

constraints (6.2.33− 6.2.36),

where τg and τO are considered as constant parameters, L is (ln hk+1 − (tk/τO)) and U is

(ln rk+1 − (tk/τg)).
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6.3 Experimental results

We evaluate the relative performance of Model (6.2.37) on the treatment plan informa-

tion using three clinical prostate cases who received radiation therapy at the MD Anderson

Cancer Center (MDACC), Houston, TX. Table 6.2 lists patient information and specific

treatment planning parameters for the three prostate cases.

Table 6.2: Treatment planning parameters for prostate cancer cases.

Prescription
Dose

Number of
Fractions

OARs Included in
Optimization

Dose Requirements

76 Gy 38 Target receiving ≤ 105% of θU
Target receiving ≥ 95% of θL

Rectum, Bladder OARs receiving ≤ 105% of ϕ

Two plans were created for each patient case, one using the conventional plan optimiza-

tion and the other using the proposed CCP biologically-based optimization model. We

assume the standard exponential tumor growth and OARs recovery with a constant du-

ration of τg = 5.1 days (95% CI 4.2-7.2 days) (Pedicini et al. (2013)) and τO = 2.0 days,

respectively, for a prostate cancer case. We use the realistic choice of radiobiological pa-

rameter (α0, β0) in order to assess the effect of variable dose in each fraction of RT on the

radiosensitivity parameter δ. We use α0 = 0.16 (95% CI 0.14 − 0.18 Gy−1), α0/β0 = 2.96

(95% CI 2.41 − 3.53 Gy) for target, and α‘
0 = 0.0532, α‘

0/β
‘
0 = 2.00 for OARs parameter

which are the appropriate standard values for the prostate case (Pedicini et al. (2013)). We

consider a standard fractionated treatment as a reference, i.e., a dose of 76 Gy delivered

to the target in 38 fractions of 2 Gy. The corresponding penalty coefficients in the objec-

tive were determined by manual adjustments and multiple experiments to achieve the best

resulting treatment plan in terms of both target coverage and healthy tissues sparing.

We set up the experiment using ±5 mm shift position from the original position of

the patient (nominal position). In that case, five scenarios (0,±2.5 mm, and ±5 mm) were

considered. The data were generated by sampling from a normal probability distribution
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of a random error. We evaluate the quality of the optimized plans regarding dose analysis,

tumor coverage and total damage to the healthy cells.

6.3.1 Dose fractionation analysis

Plans optimized by the proposed CCP adaptive model for three cancer cases, and the

optimal amount of prescribed dose (θK) are listed in Table 6.3. The radiobiological parame-

ters, α0 and α0/β0, are set to be 0.16 Gy−1 and 2.96 Gy for prostate cancer, and the OARs

radiobiological parameters, α‘
0 and α‘

0/β
‘
0, are considered to be 0.05 Gy−1 and 2.00 Gy,

respectively. During the first treatment, the patient is irradiated with a beamlet intensity

vector obtained by Model (6.2.37) using the initial data acquired regarding the prescribed

amount of radiation dose for any type of cancer. New data sets corresponding to different

tumor volume instances will be generated and accordingly the prescribed amount of dose

will be updated for the other fractions based on patient specific changes. This may lead to

a different beamlet intensity values to be used on the next treatments. This procedure is

optimized in Model (6.2.37), and to have a treatment plan clinically acceptable, we put two

requirements bellow for the optimization algorithm:

1: A treatment plan designed to meet the minimum dose requirement that has to be

delivered in multiple sessions of radiation therapy for a particular case. The amount

of dose delivered in each treatment considered to be between a clinically acceptable

rang of prescription (larger than 1.8 and lower than 2.0 Gy).

2: The remaining viable tumor cells can be adjusted to be less than a determined value.

This threshold can be considered to diagnose whether the therapy is working or not.

For simulation of radiation therapy treatment planning procedure occurred in multiple

weeks, treatment plans were adapted to the patient volumetric changes once a week. Our

hypothesis was that tumor and healthy tissues nearby are both subject to geometrical

changes over the course of the treatment. Therefore, the plan can be adjusted on the basis

of the physician’s preference and considering a trad-off between target coverage and healthy
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tissue recovery over time to avoid overly conservative treatment plans. Table 6.3 shows the

result of treatment plans for three cancer cases generated using the proposed methodology.

The cumulative dose prescription based on the adapted plans were calculated and presented

on the last column of that table. The result of our approach shows a reduction by at least

3.0% in cumulative dose prescription for a treatment (from 76.00 Gy to 73.12, 73.71, and

72.80 Gy). It can be seen that the biologically-based plans typically deliver less cumulative

dose to the cancerous region than the conventional plan. Note that the developed plans

essentially ensure that the target receives the required dose (by controlling the remaining

viable tumor cells to be less than a determined value (see Figure 6.1)), while reducing the

dose delivered to healthy tissue as compared to the conventional plan. This leads to an

improvement in protecting more healthy cells affected by radiation and a better recovery of

patient from radiotherapy.

Table 6.3: The prescribed doses optimized from adaptive planning model for three prostate cancer
cases I-III.

Optimized fractionated dose (Gy)
No. Treatments 1-8 9-13 14-18 19-23 24-28 29-33 34-38 Total Dose
Patient 1 2.00 1.90 1.90 1.90 1.90 1.90 1.89 73.12
Patient 2 2.00 1.93 1.93 1.93 1.93 1.93 1.89 73.71
Patient 3 2.00 1.87 1.87 1.92 1.90 1.90 1.90 72.80
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Figure 6.1: The comparison of surviving fraction of tumor volume through the course of treatment
under the conventional and the proposed plan for prostate cancer cases I.

We conducted a series of experiments on the range of radiobilogical parameters for

prostate cancer case I-III, and the optimal amount of radiation dose developed to be within

a bound that is shown in Figure 6.2. In each experiment, different radiobilogical parameters

were used having the same constant tumor population rate to estimate the changes in the

tumor volume and its impact on a treatment plan. The maximum, minimum, and the

average amount of radiation per week are plotted. Here, we consider the rate of tumor

doubling (τg) to be constant value of 5.1 days.
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Figure 6.2: The safe range of prescribed doses in each treatment optimized from adaptive planning
model under the given clinical interval of radiobilogical parameters for prostate cancer
cases I-III.

From this Figure one can see how the range of radiation dose can be changed though the

treatment. Reductions (from 2.0 Gy to 1.85 Gy) in some fractions may result in a better

sparing of healthy tissues in some cancer cases. This shows the importance of understanding

the radiobiological factors in designing a treatment plan for different types of cancer cases.

We also evaluate the effect of changes in tumor size on the amount of optimized frac-

tionated dose by comparing two cases:

1) The limitation on the growth of tumor cell is considered in each update (Survival rate

of tumor cells ≤ 1) .

2) No limitation on the growth of tumor cell in each update.

Table 6.4 presents the results of optimized plans for the two different assumptions above

on three cancer cases. As it is shown from a treatment plan developed under first condition

for Patient 1 (first column), the initial amount of radiation is set to be 2.0 Gy per treatment
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in the first week and then drops to around 1.9 Gy for the rest of the treatments. However,

a treatment plan that is developed for the same patient but under the second condition has

more variability among doses optimized for each updated sessions of a treatment plan. It

starts from 2 Gy during the first week and then is reduced to 1.8 Gy during the second and

third weeks and then increased up to 2.17 Gy during the rest of the treatment. This can

be explained from the fact that delivering a higher radiation dose in each treatment will

cause more damage to the tumor cells and this will change the dose requirement for the

next treatment to be lower. In this case, if we control the survival rate in each treatment

from increasing (rk.up = 1), the size of the tumor cells will not increase. So, the amount

of dose required for the next treatment will be the same or less than the previous one. We

can also conclude the same from the results for the other patients.

Table 6.4: The prescribed doses optimized from adaptive planning model under two different con-
ditions.

Optimized fractionated dose (Gy)
rk.up = 1 rk.up ≥ 0

Patient 1 Patient 2 Patient 3 Patient 1 Patient 2 Patient 3

Fr
ac
ti
on

s

1-8 2.00 2.00 2.00 2.00 2.00 2.00
9-13 1.90 1.93 1.87 1.80 1.85 1.80
14-18 1.90 1.93 1.87 1.80 1.85 1.80
19-23 1.90 1.93 1.92 1.85 1.85 1.87
24-28 1.90 1.93 1.90 1.90 1.93 1.95
29-33 1.90 1.93 1.90 2.17 2.19 1.95
34-38 1.89 1.89 1.89 2.05 2.08 2.05

Total Dose 73.12 Gy 73.71 Gy 72.80 Gy 73.85 Gy 74.75 Gy 73.10 Gy

This comparison demonstrates that by controlling the tumor size in each update, the

total amount of dose prescribed for a treatment can be reduced (e.g. from 74.75 to 73.71

for Patient 2). This reduction in total radiation dose may not seem to be significant, but

this will result in a better sparing of the normal tissues with a lower amount of radiation.

Note that within this approach we can have different plans in which the best one can be

determined in the clinic based on the physician’s preference on different cancer cases.
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6.3.2 Plan quality evaluation

We measured the maximum amount of dose delivered to OARs using two different plans

to determine whether prescribing variable amount of dose in each treatment of radiotherapy

could play a role in reducing the amount of cumulative radiation dose received by healthy

cells near the tumor.

Figure 6.3 presents the maximum dose received by rectum and bladder based on the

conventional plan and the new plan generated by the CCP adaptive model for three patient

cases. It is shown that the maximum amount of dose which is critical in the serial organs,

is reduced by the CCP adaptive model. Compared to the conventional plan, the CCP

adaptive plan reduced the maximum dose on both the rectum and bladder by an average

2.5% and 1.8%, respectively.

Figure 6.3: Comparison of the maximum amount of doses received by the healthy cells under the
biologically-based optimization model and conventional treatment planning model.

6.3.3 Biological Effective Dose Comparison

To quantify the extent of potential therapeutic gain, the biological effective dose (BED)

of the plans are further compared. The concept of BED has been widely used in the clinic

for iso-effective dose calculation (Fowler (2010)). More specifically, different fractionation

schemes with the same BED value in a given structure are expected to lead to the same

biological damage in that structure. The BED associated with a fractionation scheme

consisting of |K| treatment fractions, indexed by k ∈ K = {1, ..., |K|}, where a dose of Dk
i
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Gy is administered at fraction k is given by

BED(d; [α/β]) =
∑
k∈K

Dk
i (1 + Dk

i

α/β
), ∀i ∈ {T ∪ OAR}, ∀k ∈ K.

Figure 6.4: Comparison of the biological effective dose (BED) on organs-at-risk under the
biologically-based optimization model and conventional treatment planning model
(BED on target is assumed to be similar for both plans).

The goal of the biological-based treatment planning model is to obtain the optimal

fraction-dependent fluence maps that minimize the BED on normal-tissue structures while

limiting the BED in the target volume to a clinically desired level. In this experiment, we

setup the treatment for both plans to have a similar biological effect on target (BED). Figure

6.4 compares the BED on OARs (rectum and bladder) associated with the conventional plan

and biological-based model. The figure shows that the BED in target structure is similar

between the two plans. However, the BED in the normal-tissue structures are substantially

improved as a result of CCP biological-based treatment plan. This BED values were reduced

by 9% in rectum and by 11% in bladder. The results shows the effectiveness of the proposed

biologically-based model in preserving more healthy cells and improving the outcome of

treatment.
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6.3.4 Analysis based on different radiobiological parameters

We analyzed three clinical data sets on radiotherapeutic tumor control (α/β) for one

prostate cancer (Patient 1), α/β = {1.5, 3, 10} (Hernández et al. (2013); Pedicini et al.

(2013)), to assess the effects of various rates of tumor growth on the amount of dose per

fraction. Table 6.5 shows that for α/β = 1.5 there is no significant difference for the

radiation dose in each fraction (at least 1.89, at most 2.00 Gy). However, for α/β = 3 and

10 the amount of dose per fraction is lower and it is reduced until the end of the treatment

(to 1.62 Gy and 1.29 Gy). Note that tumor cells with low α/β are more sensitive to large

fraction doses and resistant to small fraction doses (Hernández et al. (2013)). Thus, for

the higher radiobiological ratio of 3 and 10 the tumor cells become more sensitive to the

radiation of 2 Gy at the beginning, which resulted in a big reduction in the number of the

viable tumor cells remaining in situ. As a result, the model did not necessitate the large

amount of dose for the following treatment and the total amount of dose for treating the

cancer could be lower.

Table 6.5: The prescribed doses optimized from adaptive planning model under different assump-
tion of the radiobiological parameters for prostate cancer (case 1).

Optimized fractionated dose (Gy)

Patient 1 Radiobiological ratio
α/β = 1.5 α/β = 3 α/β = 10

Fr
ac
ti
on

s

1-8 2.00 2.00 2.00
9-13 1.90 1.85 1.70
14-18 1.90 1.71 1.35
19-23 1.90 1.71 1.35
24-28 1.90 1.71 1.35
29-33 1.90 1.71 1.35
34-38 1.89 1.62 1.29

Total Dose 73.12 Gy 67.55 58.09 Gy

6.3.5 Treatment plans under different amount of initial dose

Next, we tested whether starting the treatment plan with the amount of dose higher or

lower than the clinical prescribed dose (2 Gy) would affect the optimum radiation delivery

for the other fractions.
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Figure 6.5 compares the prescribed dose optimized by the CCP adaptive model for

patient 1 with different amounts of initial dose given to the problem. For the treatment

that starts with a higher amount of dose (2.1 Gy), there is a large reduction (at least 1.90

Gy) for the rest of the treatments. On the other hand, when the treatment starts with a

lower amount of dose than usual (1.8 Gy), the higher amount of dose is delivered in most

of the remaining fractions, and at the end this was reduced to 1.9 Gy. From this figure,

it is shown that the total amounts of radiation vary depending on the initial amount of

dose in the first fraction of radiotherapy. Hence, if the amount of dose delivered in the first

treatment is less or more than the conventional equal fractionated dose, the total radiation

required to remove the tumor cells for a specific rate will be increased with the rate of 0.05%

(a) and 0.7%.

Figure 6.5: Optimized fractionation dose with different amount of initial radiation dose (2, less
than 2, or more than 2)-Prostate cancer (case 1).

6.3.6 Worst Case Performance:

We study the sensitivity of the proposed model on the optimized amount of dose when

the tumor re-population time is irregularly high and low. To determine whether the same

optimal prescribed dose would result in the treatment plans with different tumor types

growing, we optimized the plans when the tumor repopulation time is considered to be 5.1
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days, a standard tumor growth rate, as well as faster and slower ones that are estimated to

be 4.2 days and 7.2 days by deceasing and increasing the doubling time by 20%.

Figure 6.6 shows the results for the fractionated dose analysis in all three plans for

prostate cancer (case 1).

Figure 6.6: Dependence of the optimized prescribed dose for different choice of tumor growth rate.
We set 5.1 days as the standard tumor growth rate, 7.2 days for slower growing tumor
and 4.2 days for faster growing tumor.

Collectively, these results show that the treatment plan with a higher tumor growth rate

(slower) has more variability among the amount of radiation dose for each treatment.

6.3.7 CCP Robustness Quantification

In this section, the quality and robustness of plans developed by deterministic, CCP,

and robust optimization models are compared. In Figures 6.7(a), 6.7(b), and 6.7(c), the

DVHs corresponding to the nominal dose distribution are displayed along with the DVH

bands for the deterministic robust optimization, and chance-constrained models. Target

coverage and OAR sparing provided by nominal plans were clinically acceptable for all

plans. However, the target coverage provided by the plan based on the deterministic model

was notably less robust than the target coverage of the plans generated using chance-

constrained models. The DVH bands for the target were wider for the deterministic plan

than for those of the chance-constrained models, indicating that CCP outperformed the

deterministic model under setup uncertainty. In addition, the robustness of plans created
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using CCP and robust optimization models was similar. Both the robust optimization

model and the CCP approach were similarly robust in regard to normal tissue sparing.

Figure 6.7: Prostate cancer (case 3) dose-volume histogram bands for target and organ-at-risk dose
distributions covering all setup uncertainties in a single fraction, resulting from (a) the
deterministic approach, (b) robust optimization, and (c) CCP under the normality
assumption (c).

Looking at the DVH in Figure 6.7, the CCP adaptive plan achieved a significantly better

results than the nominal plan (a). The CCP adaptive plan performs well not only in terms

of tumor target coverage, but also in the sparing of sensitive structures. This is explained

by the fact that the CCP approach can reduce the sensitivity of the optimization model to

uncertain changes.

6.4 Conclusion

The use of ART is becoming more general in today’s clinical practices. Multiple studies

indicate the dosimetric benefits of ART when employed in particular subsets of patients,

although clinical implications of this remain unclear. In this study, we evaluate the effects

of radiobiological parameter in the dose optimization problem where the patient go through

multiple treatments of radiotherapy. We emphasize that the proposed biologically-based

treatment planning is not only dose based but also considers the most important radiobio-

logical effects as they are clinically the most relevant. We analyze the proposed model with

different assumptions on the clinical case to see the trade off in terms of tumor coverage
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and OARs recovery. The current practice of delivering physical dose distributions across the

tumor may potentially be improved by dose distributions guided by the biological responses

of the tumor and healthy tissues. The biological-based optimization model developed and

tested in this paper generate treatment plans reacting to the tumor and healthy structures

biology prior to the treatment as well as the changing them throughout the treatment while

satisfying both cumulative and fraction-size dose limit. In this study, we show that the

standard fractionation schedule of around 2 Gy per day for five days a week is probably

not optimal for all cases. Importantly, using the proposed model one can determine the

overall efficacy of the treatment among multiple plans by evaluating their clinical benefits

and consequences on a patient’s body, and this could be valuable information in designing

the clinical treatment plan.
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Chapter 7

Future Work

7.1 Fractionation Scheduling Considering the Radio-biological Effects

A biologically-based chance-constrained treatment planning model is constructed to

incorporate uncertainties in fractionated radiation therapy treatment planning problem,

explained in Chapter 6. The biological changes of the proposed model compared to the

traditional treatment plan for real cancer cases are evaluated. In this study, we assume

constant tumor volume to produce treatments for a particular patient. However, it is

shown that rate of tumor growth is not a constant parameter during a treatment. So, the

probability of the instances of the tumor shrinkage or proliferation can be considered as

the next steps of this study. In addition, further analysis and computational experiments

using different clinical cancer cases need to be performed to understand the efficacy of this

approach for other types of cancer and treatment modalities.

7.2 Fluence Map Optimization under Uncertainty Considering Energy

Deposition

In Chapter 5, we propose an LET-based optimization problem to investigate the im-

pact of including an additive linear energy transfer (LET)-dependent term in the objective

function in intensity-modulated proton therapy (IMPT) optimization. As an extension to

the current works can be optimizing the model under uncertainty using CCP approach.

So, the performance of the LET-based model can be compared with the deterministic one

regarding plan quality and robustness.
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7.3 Including Relative Biological Effectiveness in a Fluence Map Opti-

mization under Uncertainty

The future work is to develope a CCP model to optimize the intensity profile as well as

the relative biological effectiveness (RBE) under uncertainty. This model can be compared

to the CCP model with constant RBE regarding plan quality on a real patient. The CCP

model considers a probability of constraint violations under shift uncertainty, and a planner

can specify the level of conservatism for a particular patient. Within the flexibility that

CCP provides, we can analyze the plan under the different expectation of physicians and

provide more information on rejecting or approving a treatment plan.
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Appendix A

Models and figures for Manuscript "A feasibility

study of a risk-based stochastic optimization ap-

proach for radiation treatment planning under setup

uncertainty"
A.1 CCP model under Normal distribution (CCP-N)

First, consider dose contribution vector d̃i is assumed to be normally distributed with

mean E(d̃i) and standard deviation σ(d̃i). So, we have

min − λ−T θL + λ+
T θU + λ+

O ϕ (A.1.1)

s.t.

E(D̃T (w))− Φ−1(1− α−T )σ(D̃T (w)) ≥ θL, ∀ T ,

E(D̃T (w)) + Φ−1(1− α+
T )σ(D̃T (w)) ≤ θU , ∀ T ,

E(D̃O(w)) + Φ−1(1− α+
O)σ(D̃O(w)) ≤ ϕ, ∀O,

θL ≤ θL ≤ θ̄L, θU ≤ θU ≤ θ̄U ,

ϕ,w ≥ 0,

as a deterministic equivalent of CCP model (4.2.3). The cumulative distribution of a normal

standard probability density is represented with Φ(·).

A.2 CCP model under uniform distribution (CCP-U)

Similarly, under uniform distributional assumption, the deterministic linear equivalents

of the chance constraints (4.2.3) are provided.
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Assuming, vector d̃i − E(d̃i) is distributed uniformly in the ellipsoid ε = {ξ = Qz :

‖z‖ ≤ 1}, where Q = υΓf ,Γ = σ2(d̃i) � 0, υ =
√
n+ 3,Γf ∈ Rn, and υ is a full rank factor

such that Γ = ΓfΓTf , the deterministic equivalence of model (4.2.3) can be formulated as

follows:

min − λ−T θL + λ+
T θU + λ+

O ϕ (A.2.1)

s.t.

E(D̃T (w))− υ
√

Ψ−1
beta(1− 2α−T ) σ(D̃T (w)) ≥ θL, ∀ T ,

E(D̃T (w)) + υ
√

Ψ−1
beta(1− 2α+

T ) σ(D̃T (w)) ≤ θU , ∀ T ,

E(D̃O(w)) + υ
√

Ψ−1
beta(1− 2α+

O) σ(D̃O(w)) ≤ ϕ, ∀O,

θL ≤ θL ≤ θ̄L, θU ≤ θU ≤ θ̄U ,

ϕ,w ≥ 0,

where Ψbeta(·) is the cumulative distribution of a β(1/2;n/2 + 1) probability density.

Models (A.1.1) and (A.2.1) were developed to optimize the thresholds (θL, θU , and ϕ)

of the constraints while guaranteeing the constraints hold a pre-specified probability.
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A.3 Dose-volume histogram for the prostate cancer cases, the pancreatic,

and pediatric cancer cases

Figure A.1: Prostate cancer (case I) dose-volume histogram bands for target and organs-at-risk
dose distributions covering all setup uncertainties, resulting from (a) robust optimiza-
tion, (b) chance-constrained programming under the normality assumption, and (c)
chance-constrained programming under the uniformity assumption.
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Figure A.2: Prostate cancer (case II) dose-volume histogram bands for target and organs-at-risk
dose distributions covering all setup uncertainties, resulting from (a) the deterministic
approach, (b) robust optimization, (c) chance-constrained programming under the
normality assumption, and (d) chance-constrained programming under the uniformity
assumption.
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Figure A.3: Pancreatic cancer dose-volume histogram bands for target and organs-at-risk dose
distributions covering all setup uncertainties, resulting from (a) the deterministic ap-
proach, (b) robust optimization, (c) chance-constrained programming under the nor-
mality assumption, and (d) chance-constrained programming under the uniformity
assumption.
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Figure A.4: Pediatric cancer dose-volume histogram bands for target and organs-at-risk dose dose
distributions covering all setup uncertainties, resulting from (a) the deterministic ap-
proach, (b) robust optimization, (c) chance-constrained programming under the nor-
mality assumption, and (d) chance-constrained programming under the uniformity
assumption.
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Appendix B

Figures for Manuscript "Distributionally Robust Chance-

Constrained Programming in Radiation Therapy Treat-

ment Planning"

Figure B.1: Differences between the mean-dose per voxel
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Appendix C

Figures for Manuscript "Linear energy transfer in-

corporated intensity modulated proton therapy op-

timization"

Figure C.1: Dose- and LETd-volume histograms of the IMPT plans optimized by DoseOpt (solid
lines) and LETOpt (dashed lines) for Patient 2, 4 and 5.
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Figure C.2: Dose volume histograms of the IMPT plans optimized by DoseOpt (solid lines) and
LETOpt (dashed lines) for Patient 1, 2, 4 and 5. The RBE here is variable and
calculated based on a recently published RBE model (McNamara et al., 2015). The
required tissue parameters are obtained from literature (Frese et al., 2011).
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