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ABSTRACT

The inverted pendulum system, expressed mathematicallyvy
bv a third order transfer function with a zero at the origin,
has many practical applications. Because of the complexity of
the third order transfer function with zZero at the origin, opti-
mization is difficult., In this paper a combination of the
classical and state variable approach is used to analyze, com-
pensate, and design a working model of an inverted pendulum
system. The state variable feedback technique is used to pro-
vide syster: stability, Performance criteria optimization of
the above third order transfer function is investigated in

classical methods for application to practical models.,
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CHAPTER I
INTRODUCTION

In the early 1950's, a new method, called the state vari-
akble approach, was introduced for modeling and analvzing control
systems. The motivations for development of this new method

L
vere:
1. The general convenience of powerful vector space

and its related theorems regarding the analytic

structure of system responsz,

2. The necessity for a general and basic structure
for theoretical investigations of indefinite and

varied systems.

3. The acknowledgment of the classical apnproach limi-

tations.

One of the limitations of classical apnroaches in con-
trol system design is synthesis., ' Howvever, in the state variatles
approach, the availability of notentiometers and amplifiers
makes the precblem of design synthesis relatively straightforward.

Moreover, the advent of the general purpose digital
computer suited for analysis of highly complex systems further

"enforces the use of the state variable approach. The digital
computer provides high speed capabilities which minimizes the

control theorist's complicated computation difficulties. .Since
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the state variable approach uses the algebra of matrices exten-
sively, complex systems mav be characterized in simple and con-
cise ways. Thus the complexity is overcome allowing a better
intuitive insight into the functioning of a physical system.

Optimum control is the most modern and direct of all
design..methods. It utilizes exclusively the state variable,
rather than transfer-function or system descriptions. It
supplies the unique solution (which is trgely optimal for given
indices of performance) for linear or nonlinear and time variant
or invariant systems. In addition, it incorporates as adequately
as possible all the factors that add to the cost of performance.
Ey using optimum control methods, engineers may design systems
with performance characteristic that.the classical methods may
not allow.

However, although the state variable approach is use-~
ful in the analysis of many systems, the classical freguency
response techniques and transfer functioanescription excel in
certain cases, for example the steady state analysis of systems
is kest done with the classical approach. Also, system de-
scriptions based on the desired closed loop transfer function-
are in some casas the only design information of practical wvalue,
There are many other examples and the classical theory must not
be regarded as inferior in the hierarch of methods.

The following chapters of this paper is devoted to the

investigation analysis, compensation, and optimization of a



stabilized inverted pendulum system.



CHAPTER II
STRUCTURE OF INVERTED PENDULUM SYSTE:!M

The structure of the inverted pendulum system to be
considered is presented in Figure 1, It consists of a cart
with an inverted pendulum hinged on top of it and the cart
acted upon by a driving force, u, and a viscous friction
force, £. The control objective is to maintain the pendulum
in a vertical position, or as nearly vertical as possible,
with the assistance of the control force u. This artificial
method of balancing the pendulum represents a very accurate
dynamic model of a space missilé on take off or of a helicopter7
in the air, as depicted in Figqure 2., The missilé.is balanced
on top of the rocket engine thrust vector, T. The thrust vec--

tor can rLe given swall horizontal components which have the

t

;ane effect on the rocket as the force u has on the inverted
pendulun system. The viscous friction of the wheel bearings
of the cart is a suitable substitute for the air viscous fric-

tion on the

=

issile. The only kasic difference between the
missile and the inverted pendulum svstems is that the inverted
pendulum is restricted to perform dynamics in only one vertiéal
plane, i.e., a two dimensional syvstem. Fowever, the nissile
systen can ke considered as a two dimensional system bv treat-
ing the pitch and yaw dvnamics separatcly,

Similarly, the torgue producad bv the horizontal rotor

: . 7 N ; .
system of the helicopter causes lateral rotation of the air-
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FPigure 1. Ctructure of Inverted Pendulum System

(b)

(a)

Figure 2. a) lMissile on Take Off

k) Helicopter in Air



6
craft. Applying a horizontal component at the rear of the air-

craft offsets the lateral rotation.,



CHAPTER III

CONSTRUCTION OF MATHEHMHATICAL MODEL

The mathematical model of this inverted pendulum system

2,6
can be simply obtained by Laagrange's equation@

d oL ) P —
T (3' ) - 3‘11{ = Z:.qk (1)
Ik
where L, called Langrangian Function, is the difference between

the total kinetic and potential energies
L, = T=-U (2)

and q is the system variabkle, Subscript k denotes the different
system variables and IF represents the sum .of all forces acting
upon the body of the systen,.

The realtionships retween the system coordinates, shown

in Figure 3, are:

X2 = Xl + %2 sin® (3)
Y2 = % cosb * (4)

S = X + S 5
YZ /1 %.8cogb (5)

Y = -26gind (6)

*Assuming Yl is zero.



Figure 3. Coordinate System for the Inverted Pendulum
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therefore,

and
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3L _
30

1 2 1 °2 1 *2 1 *2
z 5 mivi =3 mlxl + 5 mzx2 + > m2y2 (7)
z m.gh; = mgy, (8)
l 02 l . . 2 l 2.2 . 2
= + = : +4 8 + = 2 6
> mlxl 5 m2 (xl fcosh) 2 m2 sin 6 (9)
nglcose _ (10)
. - . 20 2
% mlxi + % mz(xl+£ecose)2 + % mzz & sin 6 - ngzcose
(11)
= 0 (12)
= mlxl + m2(xl+zecose) (13)
Ly =n é + ; + zgcose - m zézsinG (14)
A 1%L 7 WMy T M 2
Bxl
= —m 0w Bsi l ing (15)
m22A1651n6 + ngls
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oL . 2

— = m,&xjcosf *+ m2£ 6 (16)
o6

& () gk cosé - m 4% 8. sing + ML (17)
taé 2" 2771 158 2

In addition,

IF = u-K xl for Xl variable (18)
IF = 0 for 8 variable (19)

where K is the viscous friction force constant. Consequently,

.. -

+m2)x +m_£06cosB-m lezsine = u-le (20)

(m 1 2

1

. 2 .. ]
mzlecose+m22 6-m2g281n6 =0 (21)

Equation (20) and (21) form the basis for all the future

invéstigation analysis and design of the system.



CEAPTEPR IV

LINEARIZATION OF MATHEMATICAL

MODEL

Unfortunately, nature is inherentlyv nonlinear; there-
fore, in constructing models for physical systems, one arrives
more often than not at nonlinear equations1such as Equation 20
and 21 in Chapter III. The present mathematical methods are
inadequate to handle any but the very simplest types of non-
linear differential equations. i

Fortunately, the apparentlvy hopeless problem posed by
the model's nonlinearity can he solved by linearization. To
linearize any model, some limitations and assumptions are
essentiai. The choice of a suitable model embodving all the
features of a physical system, critical to its performance,
may be difficult., If an overly simplified model is used, the
results oktained from it will not closely apnroximate the he-
‘havior of the physical system. If, on the other hand, an un-~
necessarily complicated model is used, it may be difficult or
even impossible to analyze.

In the inverted pendulum system, the force u corrects
the angle of deviation 0, as soon as the pendulum starts fall-
ing. Therefore, the angle 6, will in general be very small,

so small in fact that

<<l
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then, with sufficient accuracy

3
Sine=e_‘:——'coooze (22)
e2

In addition, the angular acceleration 6, can be assumed small.

Consequently, 62 can be neglected. Then, the nonlinear equations

(20) and (21) change into the linear equations:

2 (23
mzl 6 + mzzx—ngle = 0 X (24)

o

(ml+m2);2 + Kx + m28 = u | (25)

An infinite number of sets of state variables mav he ob-
tained from Equation 24 and 25; but only those which can ke
practically measured will be chosen for analwvzing the system.

The selected state variables for this gsystem are the
angular position of the pendulum 8, the angular acceleration

of the pendulum 6, and the velocity of the cart Xy

state variable equations derived from the linear eguations by

sinple manipulations are:

= ) 2
17 % (26a)
m
. _ 9-— —.2— K _ u
22 =3 (L + = )zl + 537'23 — : (26b)
1 1
1
. m,g
o2, kR oLu (26¢)
3 ml 1 ml 3 ml
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where,

z, = 0 (27a)
= . 2
z3 xl ( 7c)

7/
1')2

A complete procedure to oktain the simple block diagram of the
system is shown in Figure 4. The transfer function, from the

block diagram,

— l N
m £ S
8 _ -
u m
3 K 2 g 2 Kg
g 289 (14 —=yS-
+(ml)o 2(1 ml)g EIT

clearly indicates that the system is unstahle, i.e., negative

coefficients in the denominator.
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K
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Figure 4. Simplification Procedure of the System Block

Diagram.



CHAPTER V
FEEDBACK CONTROL MODEL

It is important in any feedback model to choose those
variables which can be practicallv measured and fed into the
system; -a feedback model with no practical synthesis is of
little use.

All the state variables of the inverted pendulum system
can be simply measured by different techniques which will be
discussed in Chapter VII. The feedback control model of the
system is presented in Figure 5, The closed loop transfer func-

tion, from the feedkack model, is:

-C/mll S

8

- = T T n T T

wT 3, K CH, R CF3)32+ o = Cfl)s+(- - Cg}3)
my mlE Iy ) mlﬁ mlz le mlz

(29)
okviously, by choosing different forms for the stats variable
feedback compensators, any desired closed loop transfer “unc-~
tion can he obtained. To maintain the order of the system as low
as possilble, the compensators Hl, Hz, Hy, ané C ara chosen as
constants., However, it is still necessary to choose the numeri-
cal values of the chosen closed léop transfer function coefficients
viaich is to be synthesized. To obtain optimum values for C, Hl'

H2 and Hy, an investigation analysis for a general third order

transfer function with a zero at the origin is essential,.



Figure 5.
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Feedback Control Model of the System
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CHAPTER VI

*
OPTIMIZATION OF THIRD ORDER TRANSFER FUNCTION

WITH A ZERO AT TEE ORIGIN

The third order transfer function with a zero at the
origin is expressed in general by the equation:
S

T = - (30)
s +as?+bs+e

The integral square valug, ISV, of the transfer function is:

1 (31)

Isv = 2 (ab=c)

N+

orploro
p o alp T
Qoonooo

The transfer function can be changed into a new form:

S
T = 5 Y (32)
(8+z) (s +2€wns+wn)
where,
a = 2tw + z (33a)
n
b = 2 + 2 33b
= mn Ewnz ( )
c = zw2 (33¢)
n .

*witn respect to maximum peak and settling time.
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then,

ISV = ! (34)

2 2
4£wn(z +2£wnz+wn)

Equation (34) clearly shows that ISV is a decreasing monotonic
fuﬁction for all positive wvalues of g, wn,'and z. Therefore,
absolute optimization can not be approached. In addition, the
indices of performance are not available for this type of
transfer function in order to optimize the system by the Riccati
equation. However, by using coﬁputer programming, a set of
curves relating reasonable performance criteria such as the
maximum peak Mp, and the setting time TS of the unit step re-~
sponse versus &, wn, and z can be obtained. Then knowing the
required Mp, an& Ts' one can select the desired closed loop
transfer function from the curves shown in Figure 6. The curves
can be used to intelligently design third order systems with a

zero at the origin.
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Function with a Zero at the Origin vs. §3wy for z=100
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CHAPTER VII
DESIGN OF THE FELDBACK MODEL

A small maximum peak, Mp, and short settling time, Ts, are
essential for the inverted pendulum system being compensated.
The maximum peak must be limited to values for which the linear
approximation is valid; the settling time should be small
enough to keep the maximum cart displacement to a few inches.

A suitable set of values is:

M <,2
p~ (rad)

T <1
o (sec)

An infinite number of sets of values fo; z, wn, and & can be ob-
tained from the curves of Figure 6 which wili meet the above
regquirements. However, it is desired to meet the reguirement
with the minimum gains setting needed for the three state vari-
ables. From the curves the values of z, W and & are found to

be:

w = 10
n

£ = .6
z =5

Then, the transfer function is:
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S
T = (35)

(S+5) (82+125+100)

Comparison of Equations 29 and 35 will result in:

CH CH
K 2 . Z3.
K - 2+ == 17 (36a)
ny mlz my
m,g CH
9. 2. _1-3
- mlg — 60 (36b)
1
- gCH
Kg 3 _ -
- = 500 (36c)
m12 ml£

T

he parameters of the system to Le built are chosen ac:

ml = 2 lbm

m = .25 1lbm
2

£ = 8. in

K = ,013 1lbf sec/ft
Therefore,

H = 214.2935

1

E = 27.7789
2

H_= 15,8549
3

cC = -,0414

The unit-step and impulse res»nonses of tha cloced loon trarnsfer
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function having these values of feedback constants are shown in
Figures 7a and 7b respectively. Since the design is based on
approximated linear state variable equations, it is necessary to
observe the response of the nonlinear model to insure that the
system is stable. The unit-step response of the nonlinear model
is presented in Figure 8. The results obtained from the responses
of the linear and nonlinear models, shown in Table 1, are so
close, that the difference is insignificant. In addition, the
zero input response of the system for an initial angular posi-
tion of .2 radians is shown in Figure S, The computer runs
indicate that the closed loov transfer function chosen would
provide the proper system behavior.

The system componants ares represented by the additional
blocks shown in Figure 10. The force u is obtained from a pair
of driving wheels driven through a set of gears by a D.C. servo-
motor. The cart velocity is measured by a tachometer geared
to the driving wheels. The pendulum anaular position is measured
by a potentiometer and the angular velocity is measured by a
tachometer., The corresponding voltages frcm the tachometers and
the potentiometer are amplifiad and summad and then used to
drive the servorotor.

The system as described was built. Photogranhs of the
system are shown in Figure 11, The electronic circuit built
for the system, presented in Figure 12, consists of four low
power operational amplifiers connected to a high power amplifier

which drives the motor. Ths constant voltage drop of the zener
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Results of Unit-Step Response for 6

JJon Linear Model

Linear Model

Maximum Peak

5.39 x 107> 5.45 x 1073
Radian
. s -1 -1
Settling Time 8.70 x 19 9.70 % 10
Sec-
Rise Time -1 -1
2.40 x 10 2.43 x 10
Sec
Table 1

Comparison of the Results of the lionlinear and Linear Models
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diodes obtained from the voltage supplies of the high power am-
plifier, provides the supply voltages of the low power opera-
tional amplifiers, The angular position voltage adjustment
potentiometer (mounted on the cart) is to érovide zero voltage
when the pendulum is in the vertical position. The relay at
the output of the high power amplifier is for motor protection
and limits the voltage across the motor. In addition, two
power resistors in series with the power supplies limit the

current into the circuit.
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CHAPTER VIII
EXPERIMENT AND RESULTS

The value of the theoretical fecedback gains were obtain-
ed by adjusting the potentiometers at the output of the 741
operational amplifiers., With these gains, the system performed
as predicted. Uo additional adjustments were necessary to
raintain the pendulum in a vertical position. In general the
system performance was excellent,

Figure 13 shows the angular position response of the
pendulum for an initial angular offset of .2 radians. The mea-
sured settling time of the system compared verv well with the
predicted value., The difference was less than 15%.

System stakility was maintained in the presence of ex-
ternal noise in the form of lateral forces applied to the pen-
culum mass as well as lateral forces applied to the cart., Some
gear chatter was experienced, but this chatter produced in-
significant effect on the system,

As expected, complete instability resulted when any one

of the feedback variable was eliminated.



-5 4

-1

Angular Positionxl@
6x10, radian

0 .1 .2 .3 .4 5 .6 .8 .9
Figure 13. 2ero Input Response of the Angular Position for an Initial
Angular Position of .2 Radians '

Time,Sec
-9
w



CHAPTER IX
CONCLUSTONS

In this study of inverted pendulum svstem several con-
clusions can be made.

By the use of both classical and state variable approach
the best of both techniques can be used. Tor this case the
state variable technique allowed a straight forward identifica-
tion of the variables to be measured and the classical closed
loop transfer function representation provided the stability
and time response criterias.

In addition, the normalized third order system curves
of Figure 6 provided the information for optimizing the system
with respect to some measure of costs.

Also, the simple linearization of the system provided a
sufficiently accurate description from which system design can

be accomplished.,
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