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This dissertation studies the determinants of expected option returns and equilibrium

determinants of variance risk and the variance risk premium. In the first essay, I analyze

the relation between expected option returns and the volatility of the underlying securi-

ties. In the Black-Scholes-Merton and stochastic volatility models, the expected return

from holding a call (put) option is a decreasing (increasing) function of the volatility of

the underlying. These predictions are strongly supported by the data. In the cross-section

of stock option returns, returns on call (put) option portfolios decrease (increase) with

underlying stock volatility. This strong negative (positive) relation between call (put)

option returns and volatility is not due to cross-sectional variation in expected stock re-

turns. It holds in various option samples with different maturities and moneyness, and it

is robust to alternative measures of underlying volatility and different weighting methods.

Time-series evidence also supports the predictions from option pricing theory: Future re-

turns on S&P 500 index call (put) options are negatively (positively) related to S&P 500

index volatility.

In the second essay, I show that in many consumption-based general equilibrium mod-

els with Epstein-Zin-Weil preferences, the market variance risk premium is related to the

leverage effect, defined as the conditional covariance between market returns and changes

in the conditional market variance. The sign of the relation between the market variance

risk premium and the market leverage effect depends on the coefficient of relative risk

aversion and the elasticity of intertemporal substitution. I find a statistically significant

negative intertemporal relationship between the variance risk premium and the leverage

effect for the S&P 500 from 1996 to 2014. This implies an elasticity of intertemporal sub-

stitution less than one and a preference for the early resolution of uncertainty. Exploiting

the relation between the variance risk premium and the leverage effect also allows me to

characterize the historical behavior of the variance risk premium going back to 1926.
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Chapter 1

Volatility and Expected Option Returns

1.1 Introduction

Coval and Shumway (2001) �rmly integrate the study of expected option returns into main-

stream asset pricing theory. They �nd that index option data con�rm the theoretically

expected relation between moneyness and expected returns on puts and calls. More re-

cently, the empirical literature on the cross-section of equity option returns has been ex-

panding rapidly, along with increasing liquidity and data availability. For example, Boyer

and Vorkink (2014) investigate the relation between skewness and option returns. Good-

man, Neamtiu, and Zhang (2013) �nd that fundamental accounting information is related

to future option returns. A related literature documents the impact of inventory and order

�ow on option returns (see Muravyev, 2015 and the references therein).

Several papers control for volatility when investigating determinants of the cross-section

of option returns, but the use of volatility as a control variable is usually motivated by

discussing the relation between volatility and option prices. One argument considers the

e¤ect of an unexpected (future) change in volatility. This increases the future option price

and therefore returns. From the perspective of asset pricing theory, which emphasizes

the relation between ex ante risk and expected return, this argument is incomplete. An

alternative argument considers a contemporaneous increase or shock in volatility. This

increases the current price of the option, which leads to the hypothesis that volatility and

returns are negatively related. This argument applies to a transitory shock to volatility,

which ignores that changes in the volatility level may a¤ect the future option payo¤. We

conclude that when discussing volatility and option returns, several arguments are used
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in the empirical literature that may refer to current or future volatility, to anticipated or

unanticipated changes in volatility, and to the impact of volatility on current or future

prices.

This paper attempts to contribute to this literature by explicitly considering the ex

ante relation between volatility and expected option returns. This integrates the analysis of

volatility as a determinant of expected option returns into mainstream asset pricing theory,

following Coval and Shumway�s (2001) analysis of moneyness. We analytically study the

relation between volatility and discrete holding period returns, and empirically investigate

this theoretical prediction. Building on the work of Rubinstein (1984) and Broadie, Chernov,

and Johannes (2009), we �rst use analytical expressions for expected holding period option

returns in the context of the Black-Scholes-Merton framework. The expected return on

holding a call option is a decreasing function of the underlying volatility, while the expected

return on holding a put option is an increasing function of the underlying volatility.

Our results can easily be understood in terms of leverage, consistent with the intuition

in Coval and Shumway (2001), who analyze index call and put returns as a function of the

leverage due to moneyness. The leverage embedded in an option is a function of moneyness,

maturity, and volatility. Figure 1-1 plots expected returns as a function of volatility for an

ATM option with one month maturity. Expected call returns are positive and expected

put returns are negative, following the arguments in Coval and Shumway (2001). For both

calls and puts, the absolute value of returns is higher for the low-volatility options. This

re�ects leverage: low volatility options are cheaper and therefore constitute a more leveraged

position.

We provide several extensions of the benchmark analysis. The empirical shortcomings of

the Black-Scholes-Merton model are well-documented, and we therefore investigate if real-

istic extensions of the Black-Scholes-Merton model lead to di¤erent theoretical predictions.

We use realistic parameterizations of the Heston (1993) model to show that if volatility is

time-varying and if the innovations to volatility and returns are correlated, similar predic-

tions obtain.
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We plot expected monthly returns on a call option, a put option and the underlying stock

in the Black-Scholes-Merton model. We set the expected annual return on the stock � equal

to 10% and the risk-free rate r equal to 3%: Options are at-the-money (ATM) and have a

maturity of 1 month.

Figure 1-1: Option Leverage as a Function of Volatility in the Black-Scholes-Merton Model
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We provide cross-sectional and time-series tests of this theoretical relation between stock

volatility and expected option returns. Using the cross-section of stock option returns for

1996-2013, we document that call (put) option portfolio returns exhibit a strong negative

(positive) relation with underlying stock volatilities. Sorting available one-month at-the-

money options into quintiles, we �nd a statistically signi�cant di¤erence of �13:8% (7:1%)

per month between the average returns of the call (put) option portfolio with the highest un-

derlying stock volatilities and the call (put) portfolio with the lowest underlying volatilities.

We demonstrate that these �ndings are not driven by cross-sectional variation in expected

stock returns. Our results are robust to using di¤erent option maturities and moneyness,

alternative measures of underlying volatility and portfolio weighting methods, and relevant

control variables.

We also provide time-series evidence. We �nd that index call (put) options tend to have

lower (higher) returns in the month following high volatility periods. The �ndings are robust

to di¤erent index volatility proxies and are not driven by illiquid option contracts. The time-

series results complement our cross-sectional �ndings and provide empirical support for our

theoretical predictions.

To the best of our knowledge the cross-sectional relation between option returns and

volatility has not been documented in the empirical asset pricing literature, but some exist-

ing studies contain related results. Galai and Masulis (1976) and Johnson (2004) study very

di¤erent empirical questions related to capital structure and earnings forecasts respectively,

but their analytical results are related, exploiting the relation between volatility and in-

stantaneous expected option returns. Galai and Masulis (1976) argue that, under the joint

assumption of the CAPM and the Black-Scholes-Merton model, the expected instantaneous

rate of return on �rm equity, which is a call option on �rm value, decreases with the variance

of the rate of return on �rm value under certain (realistic) additional restrictions. Johnson

(2004) points out that in a levered �rm, the instantaneous expected equity return decreases

as a function of idiosyncratic asset risk. He uses this insight to explain the puzzling negative

relation between stock returns and the dispersion of analysts�earnings forecasts. We show
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that in a Black-Scholes-Merton setup, the negative (positive) relation between expected call

(put) option return and underlying volatility can be generalized to empirically observable

holding periods, and we provide empirical evidence consistent with these theoretical predic-

tions. It is well known (see for instance Broadie, Chernov, and Johannes, 2009) that results

for instantaneous returns may not generalize to empirically observable holding periods, be-

cause the option price is a convex function of the price of underlying security. Our focus on

holding period returns instead of instantaneous returns facilitates the interpretation of the

empirical results. It also has certain analytical advantages, which become apparent when

we analyze stochastic volatility models.

In other related work, Lyle (2014) explores the implications of the negative relation

between expected call option returns and underlying volatility to study the relation between

information quality and future option and stock returns. Broadie, Chernov, and Johannes

(2009) use simulations to show that expected put option returns increase with underlying

volatility.

Finally, recent empirical work on equity options has documented several interesting pat-

terns in the cross-section of option returns that are related to the volatility of the underlying

securities. Goyal and Saretto (2009) show that straddle returns and delta-hedged call option

returns increase as a function of the volatility risk premium, the di¤erence between histor-

ical volatility and implied volatility. Vasquez (2012) reports a positive relation between

the slope of the implied volatility term structure and future option returns. Cao and Han

(2013) document a negative relation between the underlying stock�s idiosyncratic volatility

and delta-hedged equity option returns. Duarte and Jones (2007) analyze the relation be-

tween delta-hedged equity option returns and volatility betas. These studies all focus on

volatility, but they analyze its impact on delta-hedged returns and straddles. Under the null

hypothesis that the Black-Scholes-Merton model is correctly speci�ed, volatility should not

a¤ect delta-hedged returns in these studies, and therefore the main focus of these papers is

by de�nition on the sources of model misspeci�cation. The objective of our paper is instead

to analyze the theoretical and empirical relation between volatility and raw option returns,
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and to integrate this analysis into the mainstream asset pricing literature. Volatility is one

of the main determinants of option prices and returns. Given that the theoretical predicted

relations are validated by the data, our work suggests that empirical work on option returns

may want to control for the e¤ect of volatility when identifying other determinants of option

returns.

The paper proceeds as follows. Section 2 provides the analytical results on the relation

between expected option returns and underlying stock volatility in the Black-Scholes-Merton

model. Section 3 discusses the data. Section 4 presents our main empirical results, using

data on the cross-section of stock option returns. Section 4 also presents results on straddles

and investigates expected returns in a stochastic volatility model. Section 5 performs an

extensive set of robustness checks. Section 6 discusses several extensions as well as related

results. Section 7 presents time-series tests using index options, and Section 8 concludes

the paper.

1.2 Volatility and Expected Option Returns

In this section, we derive the analytical results on the relation between option returns and

the volatility of the underlying security. We �rst derive these results in the context of the

Black-Scholes-Merton model (Black and Scholes, 1973; Merton, 1973), even though it is

well known that the Black-Scholes-Merton model has some empirical shortcomings. Most

importantly, more accurate valuation of options is possible by accommodating stochastic

volatility as well as jumps in returns and volatility.1 However, the Black-Scholes-Merton

model has the important advantage of analytical tractability, and we therefore use it to

derive a benchmark set of theoretical results. In Section 1.4.4, we investigate if these results

continue to hold if other, more realistic, processes are assumed for the underlying securities.

Much of the literature on option returns uses expected instantaneous option returns. In

1For studies of option pricing with stochastic volatility and jumps, see for instance Bates (1996), Bakshi,

Cao, and Chen (1997), Chernov and Ghysels (2000), Eraker (2004), Jones (2003), Pan (2002), and Broadie,

Chernov, and Johannes (2007).
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the Black-Scholes-Merton model, consider the following notation for the geometric Brownian

motion dynamic of the underlying asset:

dSt
St

= �dt+ �dBt (1.1)

where St is the price of underlying asset at time t, � is the volatility parameter, and � is

the drift or the expected return of the underlying asset. It can be shown that in this model,

the expected instantaneous option return is linear in the expected instantaneous return on

the underlying asset:

E(
dOt
Ot
) = rdt+

@Ot
@St

St
Ot
(�� r)dt (1.2)

where Ot is the price of the European option, and r is the risk-free rate. This expression

provides some valuable intuition regarding the determinants of expected option returns.

The expected option return depends on @Ot
@St

St
Ot
, which re�ects the leverage embedded in the

option. The leverage itself is a function of moneyness, maturity, and the volatility of the

underlying security.

Equation (1.2) provides valuable intuition on option returns, but it has some important

drawbacks and limitations. Some of these drawbacks follow from the fact that for empirically

observable holding periods, the linear relation between the option returns and the underlying

asset returns may not hold because the option price is a convex function of the price of

underlying asset. For more complex stochastic volatility models, these drawbacks are more

severe, see Broadie, Chernov, and Johannes (2009). We analyze stochastic volatility models

in Section 1.4.4.

These drawbacks also surface when analyzing the relation between volatility and ex-

pected option returns. We can use (1.2) to compute the derivative of expected returns with

respect to volatility �. Galai and Masulis (1976), in their analysis of the optionality of

leveraged equity, characterize su¢ cient conditions for this derivative to be negative for a

call option when the underlying dynamic is given by (1.1). Johnson (2004), using a similar

setup, notes that the derivative is always negative for call options. Because these statements

are somewhat contradictory, and also because this result does not seem to be su¢ ciently

appreciated in the literature, we include it in Appendix A.
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We now investigate if this result holds for empirically observable holding periods, where

we have to account for the fact that the option price is a convex function of the price of

underlying security. We analyze the impact of underlying volatility on expected option

returns by building on the work of Rubinstein (1984) and Broadie, Chernov, and Johannes

(2009), who point out that expected option returns can be computed analytically within

models that allow for analytic expressions for option prices. For our benchmark results,

we rely on the classical Black-Scholes-Merton option pricing model to obtain an analytical

expression for the expected return of holding an option to maturity. We then compute the

�rst derivative of the expected option return with respect to the volatility of the underlying

security. We show that the expected return for holding a call option to maturity is a

decreasing function of the underlying volatility, while the expected return for holding a put

option to maturity is an increasing function of underlying volatility.

Denote the time t prices of European call and put options with strike price K and

maturity T by Ct(t; T; St; �;K; r) and Pt(t; T; St; �;K; r) respectively. By de�nition, the

expected gross returns for holding the options to expiration are given by:

Rcall =
Et[max(ST �K; 0)]
Ct(t; T; St; �;K; r)

(1.3)

Rput =
Et[max(K � ST ; 0)]
Pt(t; T; St; �;K; r)

: (1.4)

Propositions 1 and 2 indicate how these expected call and put option returns change with

respect to the underlying volatility �. We provide the detailed proof for the case of the call

option in Proposition 1, because the proof provides valuable intuition for the result. The

intuition for the case of the put option is similar and the proof is relegated to the appendix.

Proposition 1 Everything else equal, the expected return of holding a call option to expi-

ration is higher if the underlying asset has lower volatility (@Rcall@� < 0).

Proof. We start by reviewing several well-known facts that are needed to derive the main

result. If the underlying asset follows a geometric Brownian motion, the price of a European

call option with maturity � = T�t written on the asset is given by the Black-Scholes-Merton

8



formula:

Ct(t; T; St; �;K; r) = StN(d1)� e�r�KN(d2) (1.5)

d1 =
ln St

K + (r + 1
2�

2)�

�
p
�

d2 =
ln St

K + (r � 1
2�

2)�

�
p
�

: (1.6)

Vega is the �rst-order derivative of the option price with respect to the underlying volatility.

It measures the sensitivity of the option price to small changes in the underlying volatility.

The Black-Scholes-Merton Vega is the same for call and put options:

� =
p
�St (d1) (1.7)

where  is the probability density function of the standard normal distribution. We also

have:

St (d1) = e�r�K (d2). (1.8)

We �rst write the expected call option return in (1.3) in a convenient way. This allows us

to conveniently evaluate the derivative of the expected option return with respect to the

underlying volatility, using the Black-Scholes-Merton Vega in (1.7).

The denominator of (1.3) is the price of the call option and is therefore given by the

Black-Scholes-Merton formula in (1.5). The numerator of (1.3), the expected option payo¤

at expiration, can be transformed into an expression that has the same functional form as

the Black-Scholes-Merton formula. We get:

Et[max(ST �K; 0)] =

Z
z�
(Ste

��� 1
2
�2�+�

p
�z �K) 1p

2�
e�

z2

2 dz (1.9)

= e�� [StN(d
�
1)� e���KN(d�2)] (1.10)

where

z� =
ln K

St
� (�� 1

2�
2)�

�
p
�

d�1 =
ln St

K + (�+ 1
2�

2)�

�
p
�

d�2 =
ln St

K + (�� 1
2�

2)�

�
p
�

. (1.11)

Combining (1.5) and (1.10), the expected return for holding a European call option to

maturity is given by:

Rcall =
Et[max(ST �K; 0)]
Ct(t; T; St; �;K; r)

=
e�� [StN(d

�
1)� e���KN(d�2)]

StN(d1)� e�r�KN(d2)
. (1.12)
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Taking the derivative of (1.12) with respect to � gives:

@Rcall
@�

=
e��
p
�St (d

�
1)[StN(d1)� e�r�KN(d2)]� e�� [StN(d�1)� e���KN(d�2)]

p
�St (d1)

[StN(d1)� e�r�KN(d2)]2

=
e��
p
�Stf (d�1)[StN(d1)� e�r�KN(d2)]�  (d1)[StN(d�1)� e���KN(d�2)]g

[StN(d1)� e�r�KN(d2)]2
.(1.13)

Note that we use equation (1.7) to derive (1.13). From (1.13) it can be seen that @Rcall
@�

inherits the sign of EX =  (d�1)[StN(d1)� e�r�KN(d2)]�  (d1)[StN(d�1)� e���KN(d�2)].

We now show that EX is negative. We have:

1

 (d�1) (d1)
EX =

StN(d1)� e�r�KN(d2)
 (d1)

� StN(d
�
1)� e���KN(d�2)
 (d�1)

: (1.14)

Using equation (1.8), it follows that

1

 (d�1) (d1)
EX =

StN(d1)� St (d1)
 (d2)

N(d2)

 (d1)
�
StN(d

�
1)�

St (d�1)
 (d�2)

N(d�2)

 (d�1)
(1.15)

= St[(
N(d1)

 (d1)
� N(d2)

 (d2)
)� (N(d

�
1)

 (d�1)
� N(d�2)

 (d�2)
)]. (1.16)

According to economic theory, the expected rate of return on risky assets must exceed the

risk-free rate (� > r). We therefore have d�1 > d1 and d�2 > d2. We also have d�1 � d�2 =

d1�d2 as well as d�1 > d�2 and d1 > d2, from the de�nition of (1.6) and (1.11). Now consider

N(d)
 (d) . It can be shown that it is an increasing and convex function of d. Evaluating

N(d)
 (d)

at d1, d2, d�1, and d
�
2, it can be seen that the expression (

N(d1)
 (d1)

� N(d2)
 (d2)

) � (N(d
�
1)

 (d�1)
� N(d�2)

 (d�2)
)

e¤ectively amounts to the negative of the second di¤erence (derivative) of an increasing and

convex function. Therefore:

(
N(d1)

 (d1)
� N(d2)

 (d2)
)� (N(d

�
1)

 (d�1)
� N(d�2)

 (d�2)
) < 0. (1.17)

This implies EX < 0 which in turn implies @Rcall
@� < 0.

Proposition 2 Everything else equal, the expected return of holding a put option to expi-

ration is higher if the underlying asset has higher volatility (@Rput@� > 0).

Proof. See Appendix B.

There is a subtle but important di¤erence compared to the proof for instantaneous

returns. In the instantaneous case, one exploits the fact that N(x) (x) is an increasing function

10



in x. In contrast, the �nite-period derivation relies on the fact thatN(x) (x) is not only an

increasing but also a convex function in x. This is required because any �nite holding

period option return is a nonlinear function of �, whereas the instantaneous return is a

linear function of �:

These results can be extended to compute expected option returns over any holding

period h in the Black-Scholes-Merton model. Following Rubinstein (1984), the expected

return on a call option is given by

Rhcall =
e�h[S0N(d

�
1)� e�[r+(��r)HP ]TKN(d�2)]

S0N(d1)� e�rTKN(d2)
(1.18)

d�1 =
ln S0

K + [HP (�� r) + r + 1
2�

2]T

�
p
T

d�2 =
ln S0

K + [HP (�� r) + r � 1
2�

2]T

�
p
T

where the timeline is shifted to [0; T ] from [t; T ] to ease notation, h is the holding period

(0 < h < T ), and HP = h=T is the ratio of the holding period to the life of the option

contract. Details are provided in Appendix C. Note that the expected holding-to-expiration

option return in (1.12) is nested in (1.18), for HP = 1. We can use the structure of the proof

of Proposition 1 to show @Rhcall
@� < 0, by observing r + (� � r)HP > r. Thus, we conclude

that expected call (put) option returns decrease (increase) with underlying volatility for

any holding period in the Black-Scholes-Merton model.

Figure 1-2 graphically illustrates these results for a realistic calibration of the Black-

Scholes-Merton model. We set � = 10% and r = 3%. We present results for out-of-

the-money, at-the-money, and in-the-money options. The left-side panels are for calls and

the right-side panels are for puts. Figure 1-2 clearly illustrates the qualitative results in

Propositions 1 and 2. We discuss the quantitative implications in more detail in Section

1.6.2.

The patterns in expected returns suggest a simple interpretation of our results in terms of

leverage, consistent with the intuition in Coval and Shumway (2001). As mentioned before,

in equation (1.2), @Ot@St
St
Ot
re�ects the leverage embedded in the option, which is a function of

moneyness, maturity, and volatility. Coval and Shumway (2001) analyze index call and put

11
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Notes: We plot expected option returns in the Black-Scholes-Merton model against volatility

(�) and time-to-maturity (�). In all computations, we set the expected return on the stock

� equal to 10% and the risk-free rate r equal to 3%. We set the strike price (K) equal to

100 and the stock price (S) equal to either 95, 100 or 105. Returns are reported as raw

returns for the relevant horizons.

Figure 1-2: Expected Option Returns in the Black-Scholes-Merton Model
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returns as a function of the leverage due to moneyness. Figure 1-1 plots expected returns as

a function of volatility for an ATM option with one month maturity. The expected return

on the stock is � = 10%. Expected call returns are positive and expected put returns are

negative, following the arguments in Coval and Shumway (2001). For both calls and puts,

the absolute value of returns is higher for the low-volatility options. This re�ects leverage:

low volatility options are cheaper and therefore constitute a more leveraged position.2 Note

that in the limit, as volatility goes to in�nity, the expected call return approaches the stock

return and the expected put return approaches the riskfree rate.

1.3 Data

We conduct two empirical exercises, one using the cross-section of equity option returns,

and another one using the time series of index option returns. Here we discuss the two

datasets used in these exercises. The sample period is from January 1996 to July 2013 for

both datasets.

1.3.1 Equity Option Data

The main objective of our empirical exercise is to test Propositions 1 and 2 using the cross-

section of options written on individual stocks. Propositions 1 and 2 predict a relation

between expected option returns and underlying volatility, everything else equal. When

studying the relation between option returns and the underlying volatility, it is therefore

critical to control for other option characteristics that a¤ect returns. Existing studies have

documented that moneyness and maturity also a¤ect option returns, see for example Coval

and Shumway (2001).

To address this issue, we use option samples that are homogeneous in maturity and

moneyness. For our benchmark empirical analysis, we use the cross-section of stock options

2Higher volatility options are sometimes incorrectly thought of as more leveraged, presumably capturing

the relation between unanticipated changes in volatility and higher prices. This argument ignores the cost

of the option position.
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that are at-the-money and one month away from expiration, because these are the most

frequently traded options, and they are subject to fewer data problems (see, among others,

Goyal and Saretto, 2009). In subsequent robustness exercises, we use options with di¤erent

maturities and moneyness.

We obtain stock return data from CRSP and relevant accounting information from Com-

pustat. We obtain option data from OptionMetrics through WRDS. OptionMetrics provides

historical option closing bid and ask quotes, as well as information on the underlying secu-

rities for U.S. listed index options and equity options. Every month, on the �rst trading

day after monthly option expiration, we select equity options with 0:95 � K=S � 1:05 that

expire over the next month.3 The expiration day for standard exchange-traded options is

the Saturday immediately following the third Friday of the expiration month, so our sample

consists mainly of Mondays. If Monday is an exchange holiday, we use Tuesday data.

We apply several standard �lters to the option data. An option is included in the sample

if it meets all of the following requirements: 1) The best bid price is positive and the best

bid price is smaller than the best o¤er price; 2) The price does not violate no-arbitrage

bounds. For call options we require that the price of the underlying exceeds the best o¤er,

which is in turn higher than max(0; S �K). For put options we require that the exercise

price exceeds the best bid, which is in turn higher than max(0;K � S); 3) No dividend

is paid over the duration of the option contract; 4) Open interest is positive; 5) Volume

is positive; 6) The bid-ask spread is higher than the minimum tick size, which is equal to

$0:05 when the option price is below $3, and $0:10 when the option price is higher than $3;

7) The expiration day is standard, the Saturday following the third Friday of the month; 8)

Settlement is standard; 9) Implied volatility is not missing.

We compute the monthly return from holding the option to expiration using the mid-

point of the bid and ask quotes as a proxy for the market price of the option contract. If an

option expires in the money, the return to holding the option to maturity is the di¤erence

between the terminal payo¤ and the initial option price divided by the option price. If an

3We obtain similar results when we use options collected on the �rst trading day of each month.
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option expires out of the money, the option return is �100%. Our equity option sample

contains 247,859 call options and 188,046 put options over the time period from January

1996 to July 2013.4

In our benchmark results, we measure volatility using realized volatility computed using

daily data for the preceding month, and we refer to this as 30-day realized volatility.5 In the

robustness analysis we use realized volatility over di¤erent horizons, which is also computed

using daily data over the relevant horizon.

Table 1.1 reports summary statistics for equity options across moneyness categories.

Moneyness is de�ned as the strike price over the underlying stock price. On average the

returns to buying call (put) options are positive (negative). Put option returns increase

with the strike price. Call returns increase for the �rst four quintiles but decrease for the

�fth.6 Also note that option-implied volatility exceeds realized volatility for all moneyness

categories, but the di¤erences are often small. Gamma and Vega are highest for at-the-

money options and decrease as options move away from the money.

4Stock options are American. We do not fully address the complex issue of early exercise, but attempt to

reduce its impact by only including options that do not have an ex-dividend date during the life of the option

contract. This of course does not address early exercise of put options (Barraclough and Whaley, 2012).

However, several studies (see among others Broadie, Chernov, and Johannes, 2007; Boyer and Vorkink, 2014)

argue that adjusting for early exercise has minimal empirical implications. See also the discussion in Goyal

and Saretto (2009).

5Because this measure uses data for the previous month, it is e¤ectively based on approximately 22

returns. For convenience, we refer to it as 30-day volatility. The same remark applies to volatility measures

for other horizons used throughout the paper.

6We veri�ed that returns for further out-of-the money calls continue to decrease. Returns for calls are

therefore non-monotonic as a function of moneyness, consistent with the results for index returns in Bakshi,

Madan, and Panayotov (2010).
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Table 1.1: Summary Statistics for Equity Options

Moneyness K=S [0:95� 0:97] (0:97� 0:99] (0:99� 1:01] (1:01� 1:03] (1:03� 1:05]

Panel A: Call Options

Return 0.054 0.080 0.111 0.119 0.100

30-day realized vol 47.06% 45.57% 44.70% 44.23% 44.97%

Implied vol 49.03% 46.94% 45.49% 44.90% 45.44%

Volume 232 306 385 430 396

Open interest 1846 1855 1798 1897 1885

Delta 0.68 0.61 0.53 0.45 0.38

Gamma 0.11 0.12 0.14 0.13 0.12

Vega 4.41 4.81 4.95 4.89 4.52

Panel B: Put Options

Return -0.137 -0.121 -0.100 -0.104 -0.087

30-day realized vol 45.86% 44.88% 45.51% 46.19% 47.62%

Implied vol 48.97% 47.29% 47.01% 47.24% 48.25%

Volume 318 359 340 278 207

Open interest 1875 1841 1672 1670 1563

Delta -0.33 -0.39 -0.47 -0.55 -0.61

Gamma 0.10 0.11 0.13 0.12 0.11

Vega 4.69 5.15 5.27 5.25 4.87

Notes to Table: We report averages by moneyness category of monthly equity option returns

(return), the underlying stock�s realized volatility over the preceding month (30-day realized

vol), option implied volatility (implied vol), option volume (volume) and the option Greeks.

Panel A reports on call options and Panel B on put options. We compute monthly option

returns using the midpoint of bid and ask quotes. Realized volatility is calculated as the

standard deviation of the logarithm of daily returns over the preceding month. The sample

consists of options that are at-the-money (0:95 � K=S � 1:05) and approximately one

month from expiration. The sample period is from January 1996 to July 2013.
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1.3.2 Index Option Data

We also investigate the relation between volatility and expected returns using the time

series of index option returns. On the �rst trading day after each month�s option expiration

date, we collect index options with moneyness 0:9 � K=S � 1:1 that mature in the next

month. Table 1.2 provides summary statistics for SPX option data by moneyness. Index

put options (especially out-of-the-money puts) generate large negative returns, consistent

with the existing literature (see for example Bondarenko, 2003). For example, for the

moneyness interval 0:94 < K=S � 0:98, the average return is �40:6% per month. Table

1.2 also shows that in our sample, out-of-the-money SPX calls have large negative returns.

This is consistent with the results in Bakshi, Madan, and Panayotov (2010).

Comparing Tables 1.2 and 1.1 highlights several important di¤erences between index

options and individual stock options. First, the volatility skew, the slope of implied volatil-

ity against moneyness, is much less pronounced for individual stock options. Second, the

average realized volatility for index options is approximately 17%, and therefore the volatil-

ity risk premium for index options exceeds the volatility risk premium for stock options.

This is consistent with existing �ndings, but note that the index variance risk premium in

our paper is smaller than many existing �ndings due to our sample period.

1.4 Volatility and the Cross-Section of Option Returns: Em-

pirical Results

In this section, we empirically test Propositions 1 and 2 using the cross-section of options

written on individual stocks. First, we present our benchmark cross-sectional results. As

mentioned before, for our benchmark empirical analysis, we use the cross-section of stock

options that are at-the-money and one month away from expiration to control for option

characteristics other than volatility that a¤ect returns. Subsequently, we conduct a series

of tests to control for the expected returns on the underlying stocks. We also discuss the

relation between volatility and straddle returns. Finally, the Black-Scholes-Merton model
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Table 1.2: Summary Statistics for S&P 500 Index Options

Moneyness K=S [0:90� 0:94] (0:94� 0:98] (0:98� 1:02] (1:02� 1:06] (1:06� 1:10]

Panel A: SPX Call Options

Return 0.027 0.057 0.060 -0.112 -0.617

Implied vol 27.30% 22.75% 19.68% 17.42% 17.28%

Volume 251 306 2029 2867 2156

Open interest 9679 11770 15236 15388 14807

Delta 0.88 0.76 0.51 0.20 0.06

Gamma 0.002 0.005 0.007 0.005 0.002

Vega 60.32 93.12 119.86 80.66 32.99

Panel B: SPX Put Options

Return -0.540 -0.406 -0.224 -0.133 -0.171

Implied vol 26.56% 22.87% 19.66% 18.20% 22.68%

Volume 3699 2662 2619 391 338

Open interest 19604 18649 14674 8992 12322

Delta -0.11 -0.23 -0.48 -0.75 -0.88

Gamma 0.002 0.005 0.007 0.006 0.003

Vega 55.13 90.56 119.80 93.61 53.04

Notes to Table: We report averages of monthly S&P 500 index option returns (return),

implied volatility (implied vol), option volume (volume), and option Greeks by moneyness.

Panel A reports on call options and Panel B reports on put options. We compute the

monthly option return using the midpoint of the bid and ask quotes. The sample consists

of S&P 500 index options (SPX) with moneyness 0:90 � K=S � 1:10 and one-month

maturity. The sample period is from January 1996 to July 2013.
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has some well-known empirical shortcomings, and it is possible that adjusting the theoret-

ical model for these empirical shortcomings may a¤ect the results. The most important

shortcoming is the constant volatility assumption. We therefore investigate if our �ndings

are robust to the presence of stochastic return volatility.

1.4.1 The Cross-Section of Option Portfolio Returns

Each month, on each portfolio formation date, we sort options with moneyness 0:95 �

K=S � 1:05 into �ve quintile portfolios based on their realized volatility, and we compute

equal-weighted returns for these option portfolios over the following month. We conduct

this exercise for call and put options separately.

Panel A of Table 1.3 displays the averages of the resulting time series of returns for the

�ve call option portfolios, as well as the return spread between the two extreme portfo-

lios. Portfolio �Low�contains call options with the lowest realized volatility, and portfolio

�High�contains call options with the highest realized volatility. Proposition 1 states that

the expected call option return is a decreasing function of the underlying stock volatility.

Consistent with this result, we �nd that call option portfolio returns decrease monotonically

with the underlying stock volatility. The average returns for portfolio High and portfolio

Low are 0:9% and 14:7% per month respectively. The resulting return di¤erence between

the two extreme portfolios (H-L) is �13:8% per month and highly statistically signi�cant,

with a Newey-West (1987) t-statistic of �3:42.7

Panel B of Table 1.3 presents the averages of the resulting time-series of returns for the

�ve put option portfolios. Again, portfolio Low (High) contains put options with the lowest

(highest) underlying stock volatilities. For put option portfolios, the average return increases

from �14:6% per month for portfolio Low to �7:5% per month for portfolio High, with a

positive and signi�cant H-L return di¤erence of 7:1%. This �nding con�rms Proposition 2,

which states that expected put option returns are an increasing function of the underlying

7T-statistics computed using the i.i.d. bootstrap as in Bakshi, Madan, and Panayotov (2010) are very

similar.
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stock volatility.

Table 1.3 also provides results using only options with moneyness 0:975 � K=S � 1:025.

By using a tighter moneyness interval, we reduce the impact of moneyness on expected op-

tion returns. The results are very similar. The average option portfolio returns decrease

(increase) with the underlying stock volatility for calls (puts). The H-L di¤erences are

�13:8% and 7:7% for call and put option portfolios respectively, and are statistically sig-

ni�cant. This indicates that our empirical results are not due to di¤erences in option

moneyness.8

These results are obtained using option returns computed using the mid-point of the

bid and ask quotes. To ensure that our results do not depend on this assumption, Panel C

of Table 1.3 computes average option portfolio returns based on the ask price. As expected,

average returns are somewhat smaller than in Panels A and B. However, we again �nd

a strong negative (positive) relation between call (put) option portfolio returns and the

underlying stock volatility. The H-L di¤erences are both statistically signi�cant and are of

a similar order of magnitude as the ones reported in Panels A and B.

Figure 1-3 complements the average returns in Table 1.3 by plotting the cumulative

returns on the long-short portfolios over time. Figure 1-3 indicates that the negative (posi-

tive) sign for the call (put) long-short returns is quite stable over time, although it of course

does not obtain for every month in the sample.

1.4.2 Controlling for Expected Stock Returns

The empirical results in Table 1.3 document the relation between volatility and expected

option returns. These results control for other well-known determinants of option returns

such as moneyness and maturity. Now we attempt to control for other confounding factors

8We focus on patterns in expected returns as a function of volatility. We do not address the more complex

question of the riskiness of these returns. Not surprisingly, the standard deviation of returns is lower for

higher volatility quintiles, but these di¤erences are small compared to di¤erences in returns. The pattern in

Sharpe ratios is therefore similar to the pattern in returns. However, Sharpe ratios are a poor measure of

risk for option strategies.
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Table 1.3: Option Portfolio Returns Sorted on Underlying Volatility

Panel A: Call Option Portfolios

Low 2 3 4 High H-L

0:95 � K=S � 1:05 0.147 0.128 0.111 0.084 0.009 -0.138***

(-3.422)

0:975 � K=S � 1:025 0.155 0.145 0.120 0.094 0.017 -0.138***

(-3.496)

Panel B: Put Option Portfolios

Low 2 3 4 High H-L

0:95 � K=S � 1:05 -0.146 -0.153 -0.109 -0.077 -0.075 0.071**

(2.004)

0:975 � K=S � 1:025 -0.145 -0.157 -0.101 -0.065 -0.068 0.077**

(2.081)

Panel C: Using Ask Prices

Low 2 3 4 High H-L

Call Option Portfolios 0.048 0.045 0.033 0.012 -0.060 -0.108***

(-2.942)

Put Option Portfolios -0.209 -0.209 -0.165 -0.133 -0.133 0.076**

(2.302)

Notes to Table: We report average equal-weighted monthly returns for option portfolios

sorted on 30-day realized volatility, as well as the return di¤erences between the two extreme

portfolios. Panel A reports on call options and Panel B on put options. Panel C reports

results for option returns based on ask prices rather than the midpoint of bid and ask quotes.

Every month, all available one-month at-the-money options are sorted into �ve quintile

portfolios according to their 30-day realized volatility. Portfolio Low (High) contains options

with the lowest (highest) underlying volatilities. The sample period is from January 1996 to

July 2013. Newey-West t-statistics using four lags are reported in parentheses. Statistical

signi�cance at the 10%, 5%, and 1% level is denoted by *, **, and *** respectively.
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Notes: We plot the cumulative losses and pro�ts from investing in the long-short portfolios

documented in Table 3. We assume that an investor invests $100 in the long-short portfolio

every month.

Figure 1-3: Cumulative Losses and Pro�ts on the Long-Short Portfolios
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by analyzing the role of the drift � in the law of motion for the underlying asset (1.1).

We derive Proposition 1 and 2 assuming a constant drift �. If the drift is not constant,

our empirical results in Table 1.3 may be due to patterns in the returns on the underlying

stocks rather than to the mechanics of option returns studied in Propositions 1 and 2. We

now discuss this in more detail. First consider a drift � that depends on volatility. We know

that @Rcall
@� > 0 and @Rput

@� < 0 (see Appendix D for details). We therefore need to refer

to the theoretical and empirical literature on the relation between volatility and expected

stock returns. If the relation between stock returns and volatility is positive, it cannot

explain the empirical relation documented in Table 1.3. If this relation is negative, on the

other hand, we need to control for it in the empirical analysis.

Theory predicts a positive relation between stock returns and volatility, but the em-

pirical time-series evidence is tenuous, perhaps because estimating expected returns from

the time series of returns is notoriously di¢ cult.9 In the cross-sectional literature, Ang,

Hodrick, Xing, and Zhang (2006) document a negative relation between volatility and stock

returns. Their work has inspired a voluminous literature, and some studies �nd a positive

or insigni�cant cross-sectional relation, but overall the literature con�rms their �ndings.10

We therefore need to re-visit our results while controlling for the expected return on the

underlying security. It is of course well-known that controlling for the expected return on

the underlying stock is di¢ cult. To the extent that we are not able to do so, it is possible

that the cross-sectional e¤ect documented by Ang, Hodrick, Xing, and Zhang (2006) partly

explains our results.

We now present empirical results that control for the expected return on the underlying

9See, among others, Nelson (1991), Campbell and Hentschel (1992), French, Schwert, and Stambaugh

(1987), Glosten, Jagannathan and Runkle (1993), Goyal and Santa-Clara (2003), Ghysels, Santa-Clara and

Valkanov (2005), Bali et al. (2005), and Bali (2008).

10See, among many others, Adrian and Rosenberg (2008), Ang, Hodrick, Xing, and Zhang (2009), Bali and

Cakici (2008), Chen and Petkova (2012), Fu (2009), Huang, Liu, Rhee, and Zhang (2009), and Stambaugh,

Yu, and Yuan (2015).
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security in various ways. First we present results for double sorts on volatility and average

historical stock return. Second, we specify a single-factor market model for the underlying

security and control for the underlying stock�s exposure to the market. Third, we use

Fama-MacBeth regressions to control for a wide variety of determinants of expected stock

returns. Fourth, we use the option pricing model to control for the empirical di¤erences in

stock returns between quintiles.

Controlling for Expected Stock Returns Using Historical Averages

Expected call (put) option returns increase (decrease) with the expected return on the

underlying asset. If the high volatility portfolios in Table 1.3 are primarily composed of

stocks that have lower expected returns than those in the low volatility portfolios, the result

that average call (put) options in the high volatility portfolios earn lower (higher) returns

may not be due to volatility. We therefore start by documenting if the underlying stock

returns a¤ect our results by empirically controlling for expected stock returns. This is of

course challenging because unlike volatility, expected stock returns are notoriously di¢ cult

to measure.

Our �rst approach follows Boyer and Vorkink (2014), who estimate expected stock

returns as the simple average of daily returns over the past six months. Each month we

�rst form �ve quintile portfolios based on estimated expected stock returns �, and then

within each � quintile options are further sorted into �ve quintile portfolios according to

underlying stock volatility. We once again measure underlying stock volatility by 30-day

realized volatility.

Table 1.4 presents the results of this double sort. The columns correspond to di¤erent

volatility levels, and the rows correspond to di¤erent average returns. Consistent with the

single sort results, in each � quintile call (put) option portfolio returns decrease (increase)

with underlying volatility. In all � quintiles, the average return di¤erences between the

two extreme call option portfolios are negative, ranging from �24% to �11% per month,

and highly signi�cant. For put options, the high minus low di¤erences are all positive and
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statistically signi�cant in four out of �ve � quintiles. These �ndings suggest that our results

are not driven by di¤erences between the expected returns of the underlying stocks.

A Single-Factor Market Model

Estimates of expected returns from historical averages as in Section 1.4.2 are notoriously

imprecise. Our next approach controls for expected returns using the simple market or

index model rather than the historical average. Panel A of Table 1.5 presents results for a

double sort on market beta and volatility. Beta is estimated by the market model over the

most recent 30 days preceding the portfolio formation date. The results are similar to those

in Table 1.4, where we control for the expected return using lagged average returns, but the

t-statistics are somewhat smaller. Average call option returns decrease with volatility for

each beta quintile and the return spread between the two extreme portfolios is statistically

signi�cant across all beta quintiles. In contrast, average put option returns increase with

volatility for each beta quintile and the return spread is signi�cant for the top three beta

quintiles.

Panel B of Table 1.5 uses the results from the market model in a slightly di¤erent

way. We present results for sorts on idiosyncratic volatility based on the market model.

Panel B indicates a negative relation between call option portfolio returns and idiosyncratic

volatility, and a positive relation between put option portfolio returns and idiosyncratic

volatility.11 We obtain similar results when sorting on idiosyncratic volatility computed

relative to the Fama-French three-factor model.

Fama-MacBeth Regressions

To control as comprehensively as possible for the impact of the drift of the underlying

assets on option returns, we run Fama-MacBeth (1973) regressions that allow us to simul-

11Given the additional assumption of the market model, the results in Propositions 1 and 2 e¤ectively

establish a relation between option returns and idiosyncratic volatility. This interpretation is more in line

with Johnson�s (2004) analysis of the role of volatility in returns on levered equity.
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Table 1.4: Option Portfolio Returns Double-Sorted on Expected Stock Return and Under-

lying Volatility

Panel A: Call Options Low 3 3 4 High H-L

1 0.246 0.151 0.075 0.033 0.001 -0.245***

(-5.889)

2 0.190 0.148 0.117 0.085 -0.006 -0.195***

� Quintiles (-3.628)

3 0.146 0.170 0.125 0.082 0.021 -0.125***

(-2.769)

4 0.131 0.122 0.136 0.094 0.018 -0.112***

(-2.854)

5 0.154 0.106 0.101 0.066 0.038 -0.116***

(-2.823)

Panel B: Put Options Low 2 3 4 High H-L

1 -0.113 -0.079 -0.067 -0.028 -0.044 0.069*

(1.799)

2 -0.162 -0.136 -0.117 -0.102 -0.056 0.107**

(2.092)

� Quintiles 3 -0.153 -0.187 -0.162 -0.095 -0.078 0.074*

(1.762)

4 -0.154 -0.158 -0.136 -0.116 -0.133 0.021

(0.450)

5 -0.182 -0.095 -0.132 -0.102 -0.079 0.103***

(3.165)

Notes to Table: We report average equal-weighted monthly returns on option portfolios

sorted on expected stock return (�) and 30-day realized volatility. Panel A reports on call

options and Panel B on put options.
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Table 1.5: Controlling for Expected Stock Returns Using the CAPM

Panel A: Double Sorts on Beta and Volatility

BetanVol Low 2 3 4 High H-L

1 0.156 0.126 0.094 0.067 -0.01 -0.165***

(-3.384)

2 0.162 0.165 0.15 0.135 0.061 -0.101**

(-2.082)

Call 3 0.149 0.194 0.147 0.112 0.05 -0.099*

(-1.969)

4 0.113 0.133 0.107 0.106 0.031 -0.082**

(-2.024)

5 0.09 0.076 0.104 0.022 0.005 -0.085**

(-2.115)

BetanVol Low 2 3 4 High H-L

1 -0.15 -0.095 -0.132 -0.126 -0.121 0.029

(0.618)

2 -0.149 -0.165 -0.156 -0.101 -0.107 0.041

(0.896)

Put 3 -0.147 -0.198 -0.112 -0.069 -0.065 0.082**

(1.997)

4 -0.14 -0.122 -0.14 -0.071 -0.047 0.093**

(2.087)

5 -0.133 -0.106 -0.085 -0.067 -0.065 0.068*

(1.957)

Panel B: Sorts on Idiosyncratic Volatility

Low 2 3 4 High H-L

Call 0.156 0.13 0.119 0.083 0.021 -0.133***

(-3.245)

Put -0.157 -0.151 -0.119 -0.069 -0.077 0.080**

(2.271)

Notes to Table: Panel A reports average equal-weighted monthly returns on option portfolios

sorted on market beta and 30-day realized volatility.
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taneously control for risk factors and stock characteristics that have been shown in the

existing literature to be related to expected stock returns.

Every month we run the following cross-sectional regression

Rit+1= 
0;t+
1;tV OL
i
t+�tZ

i
t+� (1.19)

where Rit+1 is the return on holding option i from month t to month t + 1, V OLit is the

underlying stock volatility for option i, and Zit is a vector of control variables that includes

the stock�s beta, �rm size, book-to-market, momentum, stock return reversal, the option

skew, the volatility risk premium, the slope of the implied volatility term structure, as well

as option characteristics such as moneyness, Delta, Vega, Gamma and option-beta. Option

beta is de�ned as delta times the stock price divided by the option price. Both V OLit and

Zit are observable at time t for option i. We again use 30-day realized volatility as a proxy

for the underlying stock volatility.

Table 1.6 reports the time-series averages of the cross-sectional 
 and � estimates from

equation (1.19), along with Newey-West (1987) t-statistics which adjust for autocorrelation

and heteroscedasticity. Columns (1) to (3) report regression results for call options. Column

(1) of Table 1.6 shows that in a univariate regression the average slope coe¢ cient on 30-

day realized volatility is �0:239 with a Newey-West t-statistic of �4:19. This estimate

is consistent with the sorting results. The di¤erence in the average underlying volatility

between the two extreme call option portfolios in Table 1.3 is 0:6, which implies a decline of

�0:239� 0:6 = 14:34% per month in average returns if a call option were to move from the

bottom volatility portfolio to the top volatility portfolio, other characteristics held constant.

This estimate is very similar to the result in Table 1.3.

The speci�cation in column (2) includes several well-known determinants of cross-

sectional stock returns. The loading on volatility increases in absolute value from -0.239 to

-0.277 and remains highly signi�cant. The speci�cation in column (3) includes additional

controls as well as option characteristics. The slope coe¢ cient on volatility is even larger

in absolute value and is again statistically signi�cant. The results in columns (1)-(3) are all

consistent with our theoretical conjecture in Proposition 1.
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Table 1.6: Fama-MacBeth Regressions

Calls Puts

(1) (2) (3) (4) (5) (6)

Vol -0.239*** -0.277*** -0.389** 0.117** 0.125*** 0.584***

(-4.192) (-5.293) (-2.241) (2.552) (2.725) (2.911)

Beta -0.004 0.045*** 0.000 -0.034*

(-0.284) (2.714) (-0.002) (-1.789)

Size 0.000 0.001 0.000 -0.002**

(0.185) (0.829) (-0.234) (-2.285)

Btm 0.002 0.057* 0.005 -0.060*

(0.938) (1.754) (0.798) (-1.832)

Mom 0.026 0.020 -0.023 -0.013

(0.971) (0.824) (-1.252) (-0.666)

Reversal -0.188* -0.162*

(-1.940) (-1.828)

Option skew 0.065 0.474**

(0.256) (2.133)

Vrp -0.059 0.454**

(-0.327) (1.982)

Slope 0.685*** 0.648**

(3.270) (2.580)

Moneyness -0.090 -0.920

(-0.090) (-0.944)

Delta -0.069 -0.381

(-0.160) (-1.000)

Vega -0.021** 0.015

(-2.347) (1.379)

Gamma 0.011 0.156

(0.022) (0.233)

Option beta -0.002 -0.012

(-0.197) (-0.847)

Notes to Table: We report results for the Fama-MacBeth regressions.
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In columns (4)-(6), we provide results for put options. As expected, the average slope

coe¢ cient on underlying volatility is positive and statistically signi�cant for all speci�ca-

tions, ranging from 11:7% to 58:4% per month. These �ndings again suggest that our results

cannot be attributed to di¤erences in expected stock returns. As we add more controls in

column (6), the loading on volatility increases signi�cantly in absolute value.

We conclude that the results in Table 1.6 are consistent with the theoretical predictions.

Moreover, the empirical results get stronger when we insert more controls for expected

stock returns. For call options, the slope coe¢ cient on 30-day realized volatility is �0:389

in column (3), compared to �0:239 in column (1). For put options, the estimate in column

(6) is 0:584, compared to 0:117 in column (4). This may suggest that we control more

e¤ectively for the e¤ect of the drift of the underlying security when we include more controls.

Presumably controlling for the drift using expected returns or a market model as in Sections

1.4.2 and 1.4.2 is not very e¤ective, which explains why the results in Tables 1.4 and 1.5

are very similar to the benchmark results in Table 1.3. However, note that the t-statistic in

column (3) is lower than that in column (1), and therefore some caution is advisable when

interpreting these results.

In columns (3) and (6), we also include the variance risk premium studied by Goyal and

Saretto (2009) and the slope of the volatility term structure studied by Vasquez (2012). The

variance risk premium is signi�cant for puts and the slope is signi�cant for both calls and

puts. However, note that Goyal and Saretto (2009) and Vasquez (2012) study delta-hedged

returns, and we analyze raw returns. From our perspective, the most important conclusion

is that the cross-sectional relation between volatility and returns remains in the presence of

these controls.

A Controlled Experiment

Finally, we assess if Ang, Hodrick, Xing, and Zhang�s (2006) �nding of a negative relation

between volatility and stock returns can explain our results in a more direct way using a

simple computation. In Table 1.3, the di¤erence in option returns between the �fth and
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the �rst quintiles is -13.8% for call options (0.9%-14.7%). We compute the average returns

on the stocks in these portfolios, which is 10.8% for the �rst quintile and 4.8% in the �fth

quintile. We now �x volatility � across these quintiles to conduct a controlled experiment

and compute option returns using the Black Scholes-Merton model. Consider a �xed �

of 50%, which is close to our sample average. This experiment indicates how much of

the return di¤erential in option returns is generated by the di¤erential in returns in the

underlying stocks.

For the low volatility quintile, the average return of 10.8% and the 50% volatility yield a

monthly option return of 6.31%. For the high volatility quintile the average return is 4.8%,

which for a 50% volatility gives a 1.63% option return. The di¤erence between the two

returns is 1:63%� 6:31% = �4:68%: In other words, this computation indicates that of the

13.8% return di¤erential in the data, 4.68% is due to the di¤erences in stock returns. The

volatility di¤erence accounts for the majority of the di¤erence in option returns, empirically

con�rming the theoretical relation.

1.4.3 Volatility and Expected Straddle Returns

Straddle returns are not very sensitive to the expected returns on the underlying secu-

rity. Therefore, several existing papers that investigate the cross-sectional relation between

option returns and di¤erent aspects of volatility focus on straddle returns to separate the

cross-sectional e¤ect of volatility and volatility-related variables from that of the underlying

stock returns. See for example Goyal and Saretto (2009) and Vasquez (2012).

A straddle consists of the simultaneous purchase of a call option and a put option on

the same underlying asset. The call and put options have the same strike price and time to

maturity. The expected gross return on a straddle is given by:

Rstraddle =
Et[max(ST �K; 0)] + Et[max(K � ST ; 0)]

Ct(� ; St; �;K; r) + Pt(� ; St; �;K; r)

where Ct(� ; St; �;K; r) and Pt(� ; St; �;K; r) are the call and put prices that an investor has

to pay to build a long position in straddle.
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Because the derivative of calls and puts with respect to volatility has the opposite sign,

it is impossible to obtain general results for straddles. Appendix E shows that d2 > 0

is a su¢ cient condition for a negative relation between straddle returns and underlying

volatility. Recall that d2 =
ln
St
K
+(r� 1

2
�2)�

�
p
�

. The condition d2 > 0 is thus likely to hold

for straddles with strike prices below the current stock price, and we investigate if average

straddle returns decrease with underlying volatility for such straddles. Table A.1 in the

online appendix con�rms that this relation indeed holds in the data. However, e¤ectively

the return on the straddle is dominated by the call option when d2 > 0, which means that

the negative sign in theory and in the data simply con�rms the results above.

1.4.4 Stochastic Volatility and Expected Option Returns

The Black-Scholes-Merton model�s treatment of volatility is perhaps its most important

shortcoming. An extensive literature has demonstrated that volatility is time varying, and

that (the innovations to) volatility and stock returns are correlated.12 This correlation is

often referred to as the leverage e¤ect.

To address the implications of time-varying volatility and the leverage e¤ect, we now

analyze expected option returns using a stochastic volatility model instead of the Black-

Scholes-Merton model. We use the Heston (1993) model, which has become the benchmark

in this literature because it captures important stylized facts such as time-varying volatility

and the leverage e¤ect, while also allowing for quasi-closed form European option prices.

The Heston (1993) model assumes that the asset price and its spot variance obey the

following dynamics under the physical measure P :

dSt = �Stdt+ St
p
VtdZ

P
1

dVt = �(� � Vt)dt+ �
p
VtdZ

P
2

where � is the drift of the stock price, � is the long run mean of the stock variance, � is the

12For seminal contributions to this literature, see Engle (1982), Bollerslev (1986), Nelson (1991), Glosten,

Jagannathan and Runkle (1993), and Engle and Ng (1993).
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rate of mean reversion, � is the volatility of volatility, and Z1 and Z2 are two correlated

Brownian motions with E[dZ1dZ2] = �dt.

By focusing on discrete holding periods instead of instantaneous returns, we can express

expected returns in the Heston model in quasi-closed form.13 Appendix F shows that the

expected return of holding a call option to expiration in the Heston model is given by:

RHestoncall (St; V t; �) =
e�� [StP

�
1 � e���KP �2 ]

StP1 � e�r�KP2
(1.20)

where P1, P2, P �1 and P
�
2 are de�ned in Appendix F. The expected call option return in

the Heston model has the same functional form as in the Black-Scholes-Merton model, but

unlike for the Black-Scholes-Merton model, the sign of @R
Heston
call (St;V t;�)

@Vt
cannot be derived

analytically. However, the expected option return in equation (1.20) can be easily calculated

numerically given a set of parameter values.

In Panels B and C of Table 1.7, we compute expected option returns according to (1.20)

for di¤erent parameterizations of the expected stock return � and the conditional stock

variance. For simplicity we �rst set the variance risk premium � equal to zero. For all other

parameters, we use the parameters from Broadie, Chernov, and Johannes (2009), which are

listed in Panel A. The patterns in expected option returns in a stochastic volatility model

are similar to the patterns in Black-Scholes-Merton expected option returns. In particular,

expected call option returns increase (decrease) with expected stock return (current stock

variance), whereas expected put option returns decrease (increase) with expected stock

return (current stock variance). In unreported results, we obtain similar results using

di¤erent parameterizations.

In the Black-Scholes-Merton model, volatility a¤ects expected returns through leverage.

In the Heston model, volatility a¤ects expected returns not only through leverage, but also

through the volatility risk premium �. Figure 1-4 further explores expected returns in the

Heston model. We set � equal to 0 or �0:5. The main conclusion is that expected returns

do not strongly depend on �. The relation between volatility and expected option returns

13The delta and vega are not available in closed form when computing instantaneous option returns.
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Table 1.7: Expected Option Returns in the Heston Model

Panel A: Parameters r
p
� � � � T � t

0.045 0.15 5.33 0.14 -0.52 1/12

Panel B: Call Options Vt

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

8% 0.118 0.094 0.080 0.072 0.066 0.061 0.057 0.054 0.051

� 12% 0.257 0.202 0.172 0.153 0.139 0.128 0.120 0.113 0.107

16% 0.405 0.316 0.268 0.237 0.215 0.198 0.185 0.174 0.165

Panel C: Put Options Vt

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

8% -0.104 -0.081 -0.068 -0.060 -0.054 -0.049 -0.046 -0.043 -0.040

� 12% -0.217 -0.172 -0.146 -0.130 -0.117 -0.108 -0.100 -0.094 -0.089

16% -0.320 -0.256 -0.220 -0.195 -0.178 -0.164 -0.153 -0.144 -0.136

Panel D: Straddles �

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

� 12% 0.022 0.024 0.026 0.028 0.030 0.031 0.033 0.035 0.037

Notes to Table: We report expected monthly option returns in the Heston (1993) stochastic

volatility model. Panel B (C) reports expected returns on at-the-money call (put) options

for di¤erent levels of the current stock variance (Vt). Panel D reports expected returns on at-

the-money straddle for di¤erent levels of the volatility risk premium (�). The computations

are based on the model parameters reported in Broadie, Chernov, and Johannes (2009),

which are calibrated from historical S&P 500 index return data. These parameters are

reported in Panel A. For simplicity, the dividend yield is set to zero. We set � equal to 0

in Panels B and C, and we set Vt equal to 0:0225 in Panel D.
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is similar to the results in the Black-Scholes-Merton model.14

Finally, Panel D of Table 1.7 shows straddle returns as a function of the volatility risk

premium �. Returns increase with higher volatility risk premiums. This is consistent with

the empirical �ndings in Goyal and Saretto (2009), who document that option returns

increase as a function of the variance risk premium.

1.5 Robustness

In this section we investigate the robustness of the results in Table 1.3 to a number of

implementation choices. We investigate the robustness of the empirical results to the mea-

surement of realized volatility, the composition of the option sample, and the weights used

to compute portfolio returns. We also use holding-period returns rather than holding-to-

maturity returns.

1.5.1 The Volatility Measure

Table 1.3 uses realized volatility computed using daily data for the preceding month as a

measure of the underlying volatility. This is a standard volatility measure that is often used

in the literature. Ang, Hodrick, Xing, and Zhang (2006) and Lewellen and Nagel (2006)

argue that 30-day realized volatility strikes a good balance between estimating parameters

with a reasonable level of precision and capturing the conditional aspect of volatility. We

now consider �ve alternative estimators of underlying stock volatility. We proxy underlying

volatility using realized volatilities computed over the past 14 days, the past 60 days, and

the past 365 days, as well as option-implied volatility and a simple autoregressive AR(1)

model for volatility to take into account the mean reversion in volatility.

Panel A of Table 1.8 presents average returns for the �ve quintile call option portfolios

and Panel B reports average returns for put option portfolios. Consistent with our bench-

mark results in Table 1.3, we �nd that for all underlying volatility proxies, the returns on

14For (unrealistically) large negative �, the relation is not monotone for OTM options.
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Notes: We plot expected option returns in the Heston model against volatility (�) and time-

to-maturity (�) for at-the-money (ATM) options. We use the parameter values in Panel A

of Table 1.8, and set the expected stock return � equal to 9:91% as in Broadie, Chernov

and Johannes (2009). The volatility risk premium (�) is either 0 (Panels A and B) or -0.5

(Panels C and D). Returns are reported as raw returns for the relevant horizons

Figure 1-4: Expected Option Returns in the Heston Model
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Table 1.8: Option Portfolio Returns Sorted on Alternative Volatility Measures

Low 2 3 4 High H-L

Panel A: Call Options

14-day realized vol 0.146 0.122 0.114 0.081 0.016 -0.130***

(-3.539)

60-day realized vol 0.155 0.109 0.115 0.086 0.014 -0.141***

(-3.437)

365-day realized vol 0.130 0.104 0.117 0.084 0.044 -0.086*

(-1.805)

Implied vol 0.156 0.117 0.134 0.081 -0.010 -0.166***

(-3.598)

AR(1) vol 0.117 0.107 0.112 0.080 0.018 -0.099**

(-2.142)

Panel B: Put Options

14-day realized vol -0.146 -0.139 -0.103 -0.086 -0.087 0.059*

(1.765)

60-day realized vol -0.157 -0.151 -0.109 -0.084 -0.059 0.098**

(2.488)

365-day realized vol -0.170 -0.144 -0.120 -0.071 -0.053 0.117***

(2.817)

Implied vol -0.130 -0.143 -0.118 -0.087 -0.083 0.047

(1.128)

AR(1) vol -0.171 -0.154 -0.129 -0.077 -0.014 0.157***

(3.868)

Notes to Table: We report equal-weighted monthly option portfolio returns sorted on dif-

ferent measures of underlying volatility, as well as the return di¤erences between the two

extreme portfolios.
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the call option portfolios exhibit a strong negative relation with underlying stock volatilities,

while put option portfolio returns display a strong positive relation with underlying stock

volatilities. For example, when sorting on 60-day realized volatility, the average returns

for call option portfolios with the largest and smallest underlying volatilities are 1:4% and

15:5% per month respectively. The resulting di¤erence between the two extreme portfolios

is �14:1% per month and is highly statistically signi�cant with a Newey-West t-statistic of

�3:44. For put option portfolios, the average returns monotonically increase from �15:7%

per month for the lowest volatility portfolio to �5:9% per month for the highest volatility

portfolio. The resulting di¤erence is 9:8% per month and is also statistically signi�cant.

When sorting on 14-day and 365-day realized volatility, the returns display a similar

pattern. The average returns decrease (increase) with underlying volatilities for call (put)

portfolios. The return di¤erences between the two extreme call option portfolios are nega-

tive and statistically signi�cant with a magnitude of �13% and �8:6% per month, respec-

tively. The corresponding di¤erences for put option portfolios are positive and statistically

signi�cant, with a magnitude of 5:9% and 11:7% per month, respectively.

We also sort options based on implied volatilities. Option-implied volatilities are at-

tractive because they provide genuinely forward-looking estimates, but they are model-

dependent and may include volatility risk premiums.15 Again consistent with our bench-

mark results, we �nd that call (put) option portfolios with larger implied volatilities earn

lower (higher) returns. Panel A of Table 1.8 reveals that returns on call option portfolios

monotonically decrease with implied volatilities. The return spread is �16:6% per month

and is highly statistically signi�cant. The return spread for the two extreme put option

portfolios is positive with a magnitude of 5:9% per month, but it is not statistically signi�-

cant. Finally, we use an autoregressive model for volatility instead. In particular, we obtain

an estimate of conditional volatility by �tting an AR (1) model on monthly realized volatil-

ities. The results are again statistically signi�cant. The economic magnitude is somewhat

15On the volatility risk premium embedded in individual stock options, see Bakshi and Kapadia (2003b),

Driessen, Maenhout, and Vilkov (2009), and Carr and Wu (2009) for more details.
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smaller for calls and somewhat larger for puts.

These results suggest that our empirical �ndings are not due to the volatility measure

used in Table 1.3.

1.5.2 The Option Sample

We now investigate the relation between expected option returns and underlying volatility

using �ve other option samples with di¤erent maturity and moneyness. We examine the

following �ve option samples: two-month at-the-money options, one-month in-the-money

options, two-month in-the-money options, one-month out-of-the-money options, and two-

month out-of-the-money options. We de�ne at-the-money as having moneyness of 0:95 �

K=S � 1:05, in-the-money calls as 0:80 � K=S < 0:95; and in-the-money puts as 1:05 <

K=S � 1:20. Out-of-the-money calls are de�ned as 1:05 < K=S � 1:20 and out-of-the-

money puts as 0:80 � K=S < 0:95.

Table 1.9 presents the results. Panel A of Table 1.9 provides average returns of call

option portfolios sorted on 30-day realized volatility for the �ve alternative option samples.

Consistent with the benchmark results in Table 1.3, we �nd that returns on call option

portfolios decrease with underlying volatility for all option samples. The return di¤erences

between the two extreme portfolios are negative and statistically signi�cant in all cases, with

magnitudes ranging from �7:8% to �18:6% per month. For instance, for two-month at-

the-money calls, the equal-weighted average option portfolio returns decrease monotonically

with underlying volatility. The return spread is �17:1% per month and highly signi�cant

with a Newey-West t-statistic of �3:04.

Panel B of Table 1.9 presents average returns of put option portfolios sorted on 30-

day realized volatility for the �ve option samples. Average put option returns exhibit a

strong positive relation with underlying volatilities. The returns spreads are all positive

and statistically signi�cant, ranging from 5:7% to 17:8% per month. For instance, for two-

month at-the-money puts, average returns monotonically increase from �20:7% per month

for the lowest volatility portfolio to �5:6% per month for the highest volatility portfolio.
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Table 1.9: Option Portfolio Returns for Alternative Option Samples

Low 2 3 4 High H-L

Panel A: Call Options

Two-month ATM 0.144 0.135 0.112 0.035 -0.027 -0.171***

(-3.037)

One-month ITM 0.053 0.060 0.042 0.026 -0.025 -0.078***

(-3.678)

Two-month ITM 0.089 0.084 0.068 0.027 -0.067 -0.156***

(-5.224)

One-month OTM 0.055 0.049 0.077 0.048 -0.066 -0.121**

(-2.214)

Two-month OTM 0.132 0.088 0.098 0.022 -0.054 -0.186**

(-2.361)

Panel B: Put Options

Two-month ATM -0.207 -0.149 -0.118 -0.079 -0.056 0.151***

(3.203)

One-month ITM -0.091 -0.069 -0.052 -0.043 -0.034 0.057***

(2.933)

Two-month ITM -0.127 -0.090 -0.055 -0.048 -0.023 0.105***

(3.625)

One-month OTM -0.309 -0.217 -0.193 -0.090 -0.131 0.178***

(2.759)

Two-month OTM -0.276 -0.197 -0.188 -0.118 -0.099 0.177**

(2.037)

Notes to Table: We report equal-weighted monthly option portfolio returns sorted on 30-

day realized volatility, as well as the return di¤erences between the two extreme portfolios.

Di¤erent option samples are used: two-month at-the-money (ATM) options, one-month in-

the-money (ITM) options, two-month ITM options, one-month out-of-the-money (OTM)

options, and two-month OTM options.
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The resulting return spread is 15:1% per month and is both economically and statistically

signi�cant.

For empirical results that use index options, using out-of-the-money options is very

important because this market is more liquid and has higher volume, as evidenced by Table

1.2. For equity options, the di¤erences in liquidity and volume across moneyness are less

pronounced, as evidenced by Table 1.1. Nevertheless, it is reassuring that the results are

robust when we only use out-of-the-money options in Table 1.9.

These results suggest that our empirical �ndings are not due to the sample used in Table

1.3.

1.5.3 The Portfolio Weighting Method

In this subsection, we examine if the negative (positive) relation between call (put) option

portfolio returns and underlying volatility persists if di¤erent weighting methods are used

for computing option portfolio returns. We calculate option volume weighted, option open

interest weighted and option value weighted average portfolio returns. Option value is

de�ned as the product of the option�s open interest and its price.16

Table A.2 in the online appendix contains return spreads for option portfolios sorted

on 30-day realized volatility, using these alternative weighting methods. Regardless of the

weighting method, the return spreads are negative (positive) for call (put) option portfolios,

and they are statistically signi�cant in most cases. These results suggest that our empirical

�ndings are not due to the equal-weighting method used in Table 1.3.

1.5.4 Holding-Period Returns

Ni, Pearson, and Poteshman (2005) argue that holding-to-maturity option returns are af-

fected by biases at expiration. We therefore repeat the analysis in Table 1.3 using one-month

16We also consider portfolio returns weighted by underlying stock capitalization and �nd similar results.
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option returns instead of holding-to-maturity returns.17 Table A.3 in the online appendix

presents the results for ATM, ITM, and OTM call and put options. The results are again

statistically signi�cant and consistent with Propositions 1 and 2. However, the magnitudes

of the long-short returns are smaller, especially for calls.

1.6 Discussion and Extensions

In this section, we further explore our results. We �rst discuss delta-hedged returns, which

have been studied in the existing literature, and we verify if the di¤erences in expected

returns between portfolios are consistent with theoretical predictions. Subsequently we in-

vestigate if the models�quantitative implications for returns are consistent with the data and

we compute option-implied average stock returns. Finally we provide a detailed discussion

of the di¤erences between our results and those in the existing literature.

1.6.1 Delta-Hedged Returns

Cao and Han (2013) document that the cross-sectional relation between idiosyncratic stock

volatility and both delta-hedged call and put option returns is negative.18 It is natural to

wonder if these empirical results are consistent with our theoretical and empirical results,

especially because the results seem so di¤erent.

We show that these results are mutually consistent, and simply result from the di¤erence

between raw and delta-hedged returns. Our study may seem super�cially related to Cao and

Han (2013) but the analysis is fundamentally di¤erent. Our study empirically investigates

the theoretical relation between option returns and the underlying stock volatility, which by

de�nition is accounted for when computing delta-hedged returns. When we investigate the

robustness of our results in Section 1.4.2, we correct for the drift of the underlying stock,

17Broadie, Chernov, and Johannes (2009) argue against the use of holding period returns. Duarte and

Jones (2007) argue that bid-ask bounce can bias returns, which also favors the use of holding to-maturity

returns.

18See also Black and Scholes (1972) on the relation between delta-hedged option returns and volatility.
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whereas delta hedging by de�nition corrects for the entire underlying return, which includes

the drift as well as the di¤usive part.

Panel A of Table 1.10 reports on delta-hedged returns for portfolios sorted on volatility.

We repeat the analysis in Cao and Han (2013) with two di¤erences in implementation. First,

we use total volatility instead of idiosyncratic volatility because the focus of our study is

on total volatility and we want to stay closer to the results in Table 1.3. Second, while Cao

and Han (2013) rebalance daily, we use static hedging for reasons to be explained below.

We veri�ed that these di¤erences in implementation do not signi�cantly a¤ect the results.

Panel A demonstrates the robustness of the results in Cao and Han (2013). Consistent with

their results, we �nd a statistically signi�cant negative relation between volatility and both

call and put returns.

Bollen and Whaley (2004) and Cao and Han (2013) emphasize market frictions and

inventory management as plausible explanations for the negative relation between volatility

and delta-hedged call and put returns. Bakshi and Kapadia (2003a, 2003b) show that delta-

hedged option returns can be used to infer the market price of volatility risk if volatility

is stochastic. Our implementation uses static hedging to emphasize an additional potential

explanation for these results that di¤ers from these existing explanations. In the Black-

Scholes-Merton framework, delta-hedged option returns are exactly zero in the ideal case of

continuous trading. In practice, however, it is impossible to rebalance the portfolio contin-

uously. It is well understood (see for instance Branger and Schlag, 2008; Broadie, Chernov

and Johannes, 2009) that empirical investigations using delta-hedged returns must be inter-

preted with caution, not only due to model misspeci�cation, but also due to discretization

errors and transaction costs.

Consider how underlying volatility impacts discretely delta-hedged option returns in

the Black-Scholes-Merton model in the case of static hedging. We form the delta-hedged

portfolio at time t and keep it unadjusted until the expiration date of the option at T . The

delta-hedged return for a call option, which can also be interpreted as the hedging error, is
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Table 1.10: Delta-Hedged Option Returns

Panel A: Delta-Hedged Option Returns

Low 2 3 4 High H-L

EW -0.292 -0.325 -0.356 -0.231 -0.721 -0.429**

Calls (-2.013)

VW -0.180 -0.359 -0.380 -0.205 -0.863 -0.683**

(-2.396)

EW 0.027 -0.067 0.046 0.003 -0.484 -0.511***

Puts (-2.790)

VW 0.007 -0.296 0.001 0.004 -0.616 -0.623**

(-2.260)

Panel B: Delta-Hedged Option Returns in the Black-Scholes-Merton Model

�n� 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.05 0.191 0.096 0.064 0.048 0.038 0.032 0.027 0.024 0.021

0.07 0.764 0.384 0.256 0.192 0.154 0.128 0.109 0.096 0.085

K/S=100/100 0.09 1.714 0.864 0.577 0.432 0.346 0.288 0.246 0.215 0.191

0.11 3.039 1.536 1.026 0.769 0.615 0.512 0.438 0.383 0.340

0.13 4.734 2.400 1.603 1.203 0.962 0.801 0.685 0.599 0.531

�n� 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.05 0.046 0.066 0.053 0.043 0.035 0.030 0.026 0.023 0.020

0.07 0.192 0.267 0.215 0.172 0.142 0.120 0.104 0.091 0.081

K/S=100/95 0.09 0.446 0.605 0.485 0.388 0.320 0.270 0.234 0.206 0.183

0.11 0.820 1.085 0.866 0.692 0.569 0.482 0.416 0.366 0.326

0.13 1.325 1.710 1.360 1.084 0.891 0.754 0.651 0.572 0.510

�n� 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.05 0.039 0.066 0.055 0.044 0.037 0.031 0.027 0.024 0.021

0.07 0.152 0.261 0.219 0.178 0.147 0.125 0.108 0.095 0.085

K/S=100/105 0.09 0.331 0.583 0.491 0.399 0.331 0.282 0.244 0.215 0.192

0.11 0.569 1.028 0.870 0.709 0.589 0.500 0.434 0.382 0.341

0.13 0.861 1.594 1.355 1.106 0.919 0.782 0.678 0.597 0.533
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given by

�Ct;T = CT � Ct ��t(ST � St)� (Ct ��tSt)(e
r� � 1) (1.21)

= CT ��tST � (Ct ��tSt)e
r� . (1.22)

where Ct and CT are call option prices at time t and T , S is the stock price, and r again

denotes the instantaneous risk-free rate. Using the results for the expected option payo¤ at

maturity Et(CT ), we get

Et(�
C
t;T ) = Et[CT ��tST � (Ct ��tSt)e

r� ]

= e�� [StN(d
�
1)� e���KN(d�2)]��tSte

�� � (Ct ��tSt)e
r�

= e�� [StN(d
�
1)� e���KN(d�2)]�N(d1)Ste�� +KN(d2): (1.23)

The expected delta-hedged return (or hedging error) for a put option is given by

Et(�
P
t;T ) = e�� [e���KN(�d�2)� StN(�d�1)] +N(�d1)Ste�� �KN(�d2): (1.24)

To understand how underlying volatility a¤ects delta-hedged option returns, we need the

sign of the partial derivatives of Et(�Ct;T ) and Et(�
P
t;T ) with respect to �. First, note that

equation (1.24) is equivalent to equation (1.23) by put-call parity. We therefore focus on the

relation between the expected delta-hedged call option return and underlying volatility. The

partial derivative
@Et(�Ct;T )

@� is available analytically, but can either be positive or negative

depending on the underlying parameters. However, we can easily evaluate expected returns

numerically for a given set of parameters.

Table A.4 in the online appendix shows that this negative relationship continues to hold

and is strengthened when including other control variables in a Fama-MacBeth regression.

Table A.4 also shows indicates that the results of Goyal and Saretto (2009) are con�rmed

for our sample: delta-hedged returns on puts and calls are positively related to the variance

risk premium.

Panel B of Table 1.10 considers static delta-hedging of a hypothetical call option with

strike price of $100 and a one-month maturity. We report expected delta-hedged returns

for di¤erent values of S, �; and �. Expected delta-hedged returns are all positive, which is
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consistent with the �nding of Branger and Schlag (2008) that discretization error induces

positive expected hedging error in the Black-Scholes-Merton model. More importantly for

our purpose, the expected delta-hedged return decreases with underlying volatility for all

parameter combinations.

We conclude that in the context of the Black-Scholes-Merton model, static delta-hedging

will result in a negative relation between delta-hedged option returns and underlying volatil-

ity for plausible parameterizations of the model. This qualitative result also obtains in any

practical situation where hedging is conducted in discrete time, for instance when the hedge

is rebalanced daily. Most importantly for our conclusions, the negative relation between

volatility and delta-hedged call and put returns is consistent with the negative (positive) re-

lation between volatility and call (put) returns. Both cross-sectional relations are supported

by the simple analytics of the Black-Scholes-Merton model.

1.6.2 Volatility and Expected Option Returns: A Quantitative Assess-

ment

So far we have limited ourselves to empirically verifying the qualitative predictions in Propo-

sitions 1 and 2. We now go one step further and assess the magnitude of the return di¤erence

for portfolios with di¤erent underlying volatility.

The �rst row of Panels A and B of Table 1.11 reports the benchmark results from Table

1.3. The call option quintile portfolio with high volatility earns 0:9% per month and the

call option quintile portfolio with low volatility earns 14:7% per month. The put option

quintile portfolio with high volatility earns �7:5% per month and the put option quintile

portfolio with low volatility earns �14:6% per month. We assess if these return di¤erences

are consistent with theory by computing expected returns and volatility for the underlying

stocks for these portfolios, and computing expected returns using the Black-Scholes-Merton

model.

Using historical averages for our sample period 1996-2013, we obtain an annualized �

of 4:8 percent and volatility � of 81:3 percent for the high volatility call option portfolio.
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Table 1.11: Option Returns, Stock Returns and Option-Implied Stock Returns

Panel A: Call Options

Low 2 3 4 High

Average option return 0.147 0.128 0.111 0.084 0.009

Average stock return 0.108 0.132 0.132 0.108 0.048

Average stock volatility 0.209 0.308 0.403 0.525 0.813

Expected option return 0.145 0.130 0.101 0.060 0.011

Option-implied expected stock return 0.106 0.127 0.139 0.136 0.041

Panel B: Put Options

Low 2 3 4 High

Average option return -0.146 -0.153 -0.109 -0.077 -0.075

Average stock return 0.108 0.132 0.132 0.096 0.048

Average stock volatility 0.214 0.313 0.408 0.532 0.827

Expected Option Return -0.124 -0.109 -0.083 -0.040 -0.005

Option-implied expected stock return 0.120 0.172 0.162 0.153 0.225

Notes to Table: The �rst row of each panel repeats the benchmark results from Table 1.3.

The second and third rows report the average return and volatility of stocks underlying

these option portfolios. The fourth row computes expected option returns using the Black-

Scholes-Merton expected option return formula given the stock data in rows 2 and 3. The

last row reports the option-implied expected stock return using the data in rows 1 and 3

by inverting the Black-Scholes-Merton expected option return formula. The average option

returns in the �rst row are monthly for consistency with Table 1.3. Stock returns, stock

volatilities and option implied expected stock returns are annual. The sample period is

from January 1996 to July 2013.
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For the low volatility call option portfolio, we obtain an annualized � of 10:8 percent and

volatility � of 20:9 percent. These results are reported in the second and third rows of

Panel A. Assuming a 3% annual interest rate, the Black-Scholes-Merton model predicts a

expected option return of 14:5% per month for the low volatility call option portfolio and

1:1% per month for the high volatility call option portfolio. These results are reported in

the fourth rows of Panel A. These expected option returns are very close to the average

returns in the �rst row.

The second and third rows of Panel B indicate that for the low volatility put option

portfolio, the underlying annualized � is 10:8% and the underlying volatility � is 21:4%.

The high volatility put option portfolio has a � of 4:8% and a � of 82:7%.19 Again using the

Black-Scholes-Merton model, the fourth row shows that this gives expected option returns

of �12:4% and �0:5% per month. For the low volatility portfolio, the expected return is

close to the sample average in the �rst row, but this is not the case for the high volatility

put portfolio.

Overall, we conclude that the implied call option returns are close to what we observe

in the data on average, despite the well-known shortcomings of the Black-Scholes-Merton

model. The results for put options are less impressive than those for calls, which may be

due to the well-known stylized fact that put options are expensive, possibly due to demand

pressure (see Bollen and Whaley, 2004).

1.6.3 Option-Implied Returns and Volatility

The qualitative di¤erence between the results for call and put options in Section 1.6.2 can

equivalently be expressed in terms of option-implied returns. The last row of Panels A

and B of Table 1.11 presents the results of this exercise. We use the average volatility in

each quintile and then invert the Black-Scholes-Merton formula to obtain an estimate of

19Note that the average stock returns and the average stock volatilities of the �ve quintile portfolios are

slightly di¤erent for calls and puts. This is because for some stocks we have calls but not puts and vice

versa.
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the implied �.

Table 1.11 indicates that the returns implied by call options are very close to the actual

average stock returns, but this is not the case for the returns implied by puts. This result

is essentially the mirror image of the �nding discussed in Section 1.6.2.

1.6.4 Further Discussion and Related Literature

We do not provide an overview of the entire related literature on empirical option pricing,

because it is vast and our results are easily distinguished.20 However, our results are at

the intersection of several strands of empirical research on cross-sectional asset pricing. We

now discuss some of these related studies in more detail in order to highlight our speci�c

contribution.

The literature characterizing volatility in index returns and stock returns is well-known

and also too vast to cite here. Our paper is most closely related to a series of papers that

highlight one particular dimension of this literature, namely the cross-sectional relation

between volatility and expected stock returns. Even in this cross-sectional literature, it

is important to di¤erentiate between studies that investigate (aggregate) volatility as a

pricing factor in the cross-section of returns and studies that investigate stock returns as a

cross-sectional function of their own idiosyncratic or total volatility. Ang, Hodrick, Xing,

and Zhang (2006) investigate both issues. As discussed in Section 1.4.2, our contribution is

clearly more related to their investigation of the cross-sectional relation between the stock�s

own (lagged) volatility and returns.

There is also a growing literature on the cross-sectional relation between option-implied

information and stock returns. Once again, some papers use index options to extract

marketwide information on pricing factors for the cross-section of stock returns, while other

papers use equity options to extract �rm-speci�c information that can be used as a cross-

20See Bates (2003) and Garcia, Ghysels, and Renault (2010) for excellent surveys on empirical option

pricing.
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sectional predictor of returns.21

Our paper di¤ers from all of these studies because it investigates the relation between

the volatility of the underlying (the stock) and the cross-section of option returns. The

literature on the cross-section of equity option returns has also grown rapidly.22 Boyer

and Vorkink (2014) document a negative relation between ex-ante option total skewness

and future option returns. Goodman, Neamtiu, and Zhang (2013) �nd that fundamental

accounting information is related to future option returns. Karakaya (2014) proposes a

three-factor model to explain the cross-section of equity option returns. Linn (2014) �nds

that index volatility is priced in the cross-section of option returns. Several recent papers use

option valuation models to highlight cross-sectional di¤erences between equity options.23

As discussed in Section 1.6.1, our work is also related to a series of recent papers that

document interesting patterns in the cross-section of delta-hedged option returns related to

the volatility of the underlying securities (Goyal and Saretto, 2009; Vasquez, 2012).

We contribute to this growing literature on the cross-section of option returns by high-

lighting the theoretically expected relation between expected option returns and stock

volatility. Stock volatility is often included in a cross-sectional study of option returns,

because it is a well-known determinant of option prices. By being explicit about the rela-

tion between volatility and call and put returns, our work not only suggests that empirical

21Chang, Christo¤ersen, and Jacobs (2013) use option-implied index skewness as a pricing factor. Conrad,

Dittmar and Ghysels (2013) study the relation between stock returns and volatility, skewness and kurtosis

extracted from equity options. The factor used by Ang, Hodrick, Xing, and Zhang (2006) is actually the

VIX, so strictly speaking it is about option-implied information as a factor. For additional work, see, for

example, Bali and Hovakimian (2009), Cremers and Weinbaum (2010) and Xing, Zhang, and Zhao (2010).

22Another literature focus on explaining the cross-section of option prices or implied volatilities rather

than option returns. See for instance Duan and Wei (2008) and Bollen and Whaley (2004). An, Ang, Bali,

and Cakici (2014) document that stock returns are higher (lower) following increases in call (put) implied

volatility, but also link past stock returns with future option-implied volatility.

23See Bakshi, Cao, and Zhong (2012) and Gourier (2015) for recent studies. Chaudhuri and Schroder

(2015) study the shape of the stochastic discount factor based on equity options.
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work on option returns should control for the e¤ect of volatility when identifying other

determinants of option returns, it also predicts the sign of the relation between volatility

and returns. Our analysis suggests that when studying other determinants of the cross-

section of option returns, it is critical to �rst account for total volatility, and it indicates

how volatility a¤ects expected returns. In this sense our work is most closely related to

that of Coval and Shumway (2001), who analyze moneyness as a determinant of di¤erent

expected option returns using returns on index options.

Finally, our work is also relevant for an important literature on the sign of the volatility

risk premium embedded in equity options. The consensus in the literature is that while the

negative volatility risk premium is very large for the index, it is much smaller or nonexistent

for equities. Most of the literature uses parametric models to characterize this risk premium,

but some studies, such as Bakshi and Kapadia (2003b) have used the cross-section of delta-

hedged option returns and arrive at the same conclusion. Our analysis in Section 1.6.1

shows that these empirical �ndings may be partly due to hedging errors, which generate a

negative relation between volatility and delta-hedged call and put returns.

1.7 Volatility and the Time Series of Index Option Returns

Thus far we have used the cross-section of equity options to provide empirical evidence

supporting Propositions 1 and 2. We now turn to the implications of our results for the

extensive literature on the time series properties of index option returns.24 In this section, we

explore the time-series implications of Propositions 1 and 2 by studying the relation between

monthly S&P 500 index option (SPX) returns and S&P 500 index volatility. Consistent with

Proposition 1 and 2, we �nd that SPX call (put) options tend to have lower (higher) returns

in the month following a high volatility month.

24This literature includes the work by Jackwerth (2000), Coval and Shumway (2001), Bakshi and Kapadia

(2003a), Bondarenko (2003), Jones (2006), Driessen and Maenhout (2007), Driessen, Maenhout, and Vilkov

(2009), Santa-Clara and Saretto (2009), Broadie, Chernov, and Johannes (2009), Constantinides et al. (2009,

2011, 2013) and Buraschi, Trojani, and Vedolin (2014).
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Propositions 1 and 2 characterize a general property of expected option returns: call

(put) option returns decrease (increase) with underlying volatility. This property should

hold in the time series of option returns as well as in the cross-section. We investigate the

time-series implications of Propositions 1 and 2 by using index option returns to estimate

the following time-series regression:

Rit+1 = constant+ �1V OLt + �2Moneynessit + �3R
I
t + � (1.25)

where Rit+1 is the return on holding index option i from month t to month t+ 1, RIt is the

return on the S&P 500 in month t and V OLt is the index volatility. Moneyness (K=S) is also

included in the regression because previous studies (e.g., Coval and Shumway, 2001) have

shown that moneyness is an important determinant of option returns. Here we consider four

proxies for S&P 500 index volatility: 14-day realized volatility, 30-day realized volatility,

60-day realized volatility, and implied volatility. These volatilities are de�ned as in the

cross-sectional analysis and are known in month t.

The slope coe¢ cient estimate on volatility �1 is the main object of interest. According

to Propositions 1 and 2, we expect �1 to be negative for SPX call options and positive for

SPX put options.

Table 1.12 presents the coe¢ cient estimates, t-statistics, and adjusted R-squares for the

regressions in equation (1.25). Consistent with Propositions 1 and 2, the slope coe¢ cient

on index volatility is always negative (positive) for SPX call (put) options, regardless of

the index volatility proxy. For example, column 2 of Panel A of Table 1.12 shows that

when using 30-day realized volatility as the volatility proxy, the slope coe¢ cient on index

volatility is �0:92 for SPX calls and is highly signi�cant with a t-statistic of �3:78. For a

1% increase in S&P 500 volatility, the return to holding an SPX call option over the next

month is expected to decrease by 0:92%. In contrast, in column 2 of Panel B of Table 1.12,

the slope coe¢ cient on index volatility for SPX puts is 1:39 and it is also highly statistically

signi�cant.

These results are based on the full sample that also contains in-the-money SPX options.

However, Table 1.2 indicates that in-the-money SPX options are much less traded than their
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Table 1.12: Regressions of Index Option Returns on Index Volatility

Panel A: SPX Calls Full sample Only liquid options

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept 4.091 4.178 4.285 7.113 9.273 9.211 9.128 10.849

(5.988) (6.360) (6.676) (14.025) (9.440) (9.311) (9.154) (11.931)

14 day realized vol -0.460 -0.194

(-1.913) (-0.548)

30 day realized vol -0.921 -0.858

(-3.781) (-2.516)

60 day realized vol -1.456 -1.617

(-4.778) (-3.767)

implied vol -3.697 -4.444

(-5.571) (-4.473)

Adjusted R-square 1.13% 1.22% 1.37% 2.01% 1.67% 1.73% 1.90% 2.54%

Panel B: SPX Puts Full sample Only liquid options

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept -4.243 -4.219 -4.216 -4.499 -6.324 -6.139 -6.069 -6.771

(-8.418) (-8.230) (-8.155) (-9.067) (-8.971) (-8.622) (-8.444) (-8.704)

14 day realized vol 2.106 2.664

(3.918) (3.881)

30 day realized vol 1.393 1.887

(2.951) (3.140)

60-day realized vol 1.070 1.582

(2.619) (2.978)

implied vol 0.263 0.920

(0.652) (1.732)

Adjusted R-square 2.70% 1.73% 1.46% 1.13% 3.18% 2.06% 1.76% 1.27%
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at-the-money and out-of-the-money counterparts. To ensure our results are not driven by

illiquid in-the-money options, we repeat the regressions in (1.25) using only liquid options.

Speci�cally, we only consider SPX calls with 0:98 � K=S � 1:10 and SPX puts with

0:90 � K=S � 1:02.

The regression results using only liquid options are presented in columns 5 through 8 in

Table 1.12. Consistent with the results using the full sample, we �nd that the slope coef-

�cient estimate on index volatility is always negative (positive) and statistically signi�cant

for SPX calls (puts) regardless of the volatility proxy. For example, when using 60-day

realized volatility as a proxy, we �nd a slope coe¢ cient of �1:62 for SPX calls and 1:58 for

SPX puts, and both are highly signi�cant with t-statistics of �3:77 and 2:98 respectively.

These results con�rm that our �ndings are not due to illiquid index options.

1.8 Conclusion

This paper analyzes the relation between expected option returns and underlying volatility.

In the Black-Scholes-Merton or stochastic volatility model, the expected return on a call

is a decreasing function of underlying volatility and the expected put option return is an

increasing function of underlying volatility.

Our empirical results con�rm this theoretical prediction. We conduct a cross-sectional

test using stock options. We �nd that call (put) options on high volatility stocks tend to

have lower (higher) returns over the next month. We also conduct a time-series test using

index option returns. Following high volatility periods, index call (put) options tend to have

lower (higher) returns over the next month. Our empirical �ndings are robust to di¤erent

empirical implementation choices, such as di¤erent option samples, weighting methods, and

volatility proxies. We also discuss results for straddles and we show that our results are

consistent with existing �ndings on the relation between volatility and delta-hedged option

returns.

Our �ndings are important for the expanding literature on equity option returns. The-

ory predicts that volatility is an important determinant of expected returns, and therefore
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volatility should be accounted for when empirically investigating other return determinants.

Our �ndings also have important implications for other areas of �nance research. Many �-

nancial instruments, such as credit default swaps, callable bonds, and levered equity, to

name just a few, have embedded option features. Our theoretical results are also applica-

ble to these assets and we plan to address this in future research. Our analysis can also

be extended in several other ways. First, a natural question is if the relation between

volatility and returns can be derived without asuming a parametric model. Second, it

might be interesting to study the relationships in this paper using more structural rather

than reduced-form asset pricing models. Third, Bakshi, Madan, and Panayotov (2010) and

Christo¤ersen, Heston, and Jacobs (2013) propose variance dependent pricing kernels. In

future work we plan to investigate the implications of those pricing kernels for the �ndings

in this paper. Finally, the implications of our results for portfolio allocation need to be

explored in more detail.

55



Appendix A: Volatility and Instantaneous Option Returns

We show that expected instantaneous call option return is a decreasing function with respect

to �. We need to show that the elasticity @O
@S

S
O , denoted by EL, is a decreasing function of

�. In the Black-Scholes-Merton model, we have

EL =
@O

@S

S

O
=

StN(d1)

StN(d1)� e�r�KN(d2)
:

It follows that

@EL

@�
=

St (d1)
@d1
@� [StN(d1)� e

�r�KN(d2)]� StN(d1)[St (d1)@d1@� � e
�r�K (d2)

@d2
@� ]

[StN(d1)� e�r�KN(d2)]2

=
�St (d1)@d1@� e

�r�KN(d2) + StN(d1)e�r�K (d2)
@d2
@�

[StN(d1)� e�r�KN(d2)]2

=
St (d1) (d2)e

�r�K[�@d1
@�

N(d2)
 (d2)

+ N(d1)
 (d1)

@d2
@� ]

[StN(d1)� e�r�KN(d2)]2
:

Clearly, the sign of @EL
@� will depend on �N(d2)

 (d2)
@d1
@� +

N(d1)
 (d1)

@d2
@� , which we show below is

always negative. To see this, using the fact that

@d1
@�

=
p
� � d1

�
@d2
@�

= �
p
� � d2

�
,

we have

�@d1
@�

N(d2)

 (d2)
+
N(d1)

 (d1)

@d2
@�

= �(
p
� � d1

�
)
N(d2)

 (d2)
+
N(d1)

 (d1)
(�
p
� � d2

�
)

=
1

�
f�(�

p
� � d1)

N(d2)

 (d2)
+
N(d1)

 (d1)
(��

p
� � d2)g

=
1

�
fd2

N(d2)

 (d2)
� d1

N(d1)

 (d1)
g:

Note that in the last step, we use the fact that d2 = d1 � �
p
� . Finally, it can be shown

that xN(x) (x) is an increasing function in x, and therefore

d1 > d2 ) d2
N(d2)

 (d2)
� d1

N(d1)

 (d1)
< 0:
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Appendix B: Proof of Proposition 2

The expected gross return of holding a put option to expiration in (1.4) can be rewritten

using the Black-Scholes-Merton formula.

Rput =
Et[max(K � ST ; 0)]
Pt(� ; St; �;K; r)

=

R z�
(K � Ste���

1
2
�2�+�

p
�z) 1p

2�
e�

z2

2 dz

Pt(� ; St; �;K; r)

=
e�� [e���KN(�d�2)� StN(�d�1)]
e�r�KN(�d2)� StN(�d1)

(B.1)

d�1 =
ln St

K + (�+ 1
2�

2)�

�
p
�

d�2 =
ln St

K + (�� 1
2�

2)�

�
p
�

d1 =
ln St

K + (r + 1
2�

2)�

�
p
�

d2 =
ln St

K + (r � 1
2�

2)�

�
p
�

.

Taking the derivative with respect to � in (B.1) yields:

@Rput
@�

=
e��
p
�St (�d�1)[e�r�KN(�d2)� StN(�d1)]� e�� [e���KN(�d�2)� StN(�d�1)]

p
�St (�d1)

[e�r�KN(�d2)� StN(�d1)]2

=
e��
p
�Stf (�d�1)[e�r�KN(�d2)� StN(�d1)]�  (�d1)[e���KN(�d�2)� StN(�d�1)]g

[e�r�KN(�d2)� StN(�d1)]2

where we use the fact that the Vega of a put option is
p
�St (�d1). Clearly, the sign of

@Rput
@� depends on  (�d�1)[e�r�KN(�d2)�StN(�d1)]� (�d1)[e���KN(�d�2)�StN(�d�1)],

which we denote by B. Next we show B is positive. To see this,

B =  (�d�1)[e�r�KN(�d2)� StN(�d1)]�  (�d1)[e���KN(�d�2)� StN(�d�1)]
B

 (�d�1) (�d1)
=

e�r�KN(�d2)� StN(�d1)
 (�d1)

� e���KN(�d�2)� StN(�d�1)
 (�d�1)

.

Using the fact that e�r�K (�d2) = St (�d1),

B

 (�d�1) (�d1)
=

St (�d1)
 (�d2) N(�d2)� StN(�d1)

 (�d1)
�

St (�d�1)
 (�d�2)

N(�d�2)� StN(�d�1)
 (�d�1)

= Stf[
N(�d2)
 (�d2)

� N(�d1)
 (�d1)

]� [N(�d
�
2)

 (�d�2)
� N(�d�1)
 (�d�1)

]g

= Stf[
N(�d�1)
 (�d�1)

� N(�d�2)
 (�d�2)

]� [N(�d1)
 (�d1)

� N(�d2)
 (�d2)

]g.
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Because the expected rate of return on a risky asset exceeds the risk-free rate (� > r), we

have d�1 > d1 and d�2 > d2. One can easily verify that
N(�d)
 (�d) is a decreasing and convex

function in d. It follows that25

[
N(�d�1)
 (�d�1)

� N(�d�2)
 (�d�2)

]� [N(�d1)
 (�d1)

� N(�d2)
 (�d2)

] > 0.

Therefore,

B > 0) @Rput
@�

> 0:

Appendix C: Holding-Period Expected Option Returns

We derive expected holding-period option returns in the Black-Scholes-Merton model. To

save space, we only focus on call options. The analysis of put options proceeds along the

same lines. To facilitate the notation, we consider an European call option at time 0 that

matures at time T . By de�nition, the expected return of holding the call option from time

0 to time h (h < T ) is:

Rhcall =
E0fShN(d01)� e�r(T�h)KN(d02)g

S0N(d1)� e�rTKN(d2)

where ShN(d01)� e�r(T�h)KN(d02) is the future value of the option at time h, and

d01 =
ln Sh

K + (r + 1
2�

2)(T � h)
�
p
T � h

d02 =
ln Sh

K + (r � 1
2�

2)(T � h)
�
p
T � h

d1 =
ln S0

K + (r + 1
2�

2)T

�
p
T

d2 =
ln S0

K + (r � 1
2�

2)T

�
p
T

.

The expected future value of the option at time h can be split into two pieces:

E0fShN(d01)� e�r(T�h)KN(d02)g =

Z 1

�1
[S0e

�h� 1
2
�2h+�

p
hzN(d01)� e�r(T�h)KN(d02)]

1p
2�
e�

z2

2 dz

=

Z 1

�1
S0e

�h� 1
2
�2h+�

p
hzN(d01)

1p
2�
e�

z2

2 dz

+

Z 1

�1
�e�r(T�h)KN(d02)

1p
2�
e�

z2

2 dz.

25The second-order derivative of a decreasing and convex function is positive. E¤ectively [N(�d
�
1)

 (�d�1)
�

N(�d�2)
 (�d�2)

] � [N(�d1)
 (�d1) �

N(�d2)
 (�d2) ] is the second order derivative of

N(�d)
 (�d) with respect to d and therefore it is

positive.
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For the �rst integral, it can be shown thatZ 1

�1
S0e

�h� 1
2
�2h+�

p
hzN(d01)

1p
2�
e�

z2

2 dz

= S0e
�h

Z 1

�1

1p
2�
e�

(z��
p
h)2

2 N(
ln S0

K + �h� 1
2�

2h+ �
p
hz + (r + 1

2�
2)(T � h)

�
p
T � h

)dz:(C.1)

De�ne a new variable z� = z � �
p
h. (C.1) becomes

S0e
�h

Z 1

�1

1p
2�
e�

z�2
2 N(

ln S0
K + (�� r)h+ (r + 1

2�
2)T

�
p
T � h

+

r
h

T � hz
�)dz�: (C.2)

Using (see Rubinstein 1984)Z 1

�1

1p
2�
e�

z�2
2 N(A+Bz�) = N(

Ap
1 +B2

),

(C.2) can be further simpli�ed as

S0e
�hN(

ln S0
K + (�� r)h+ (r + 1

2�
2)T

�
p
T

). (C.3)

Following the same steps, the second integral can be rewritten asZ 1

�1
�e�r(T�h)KN(d02)

1p
2�
e�

z2

2 dz = �e�r(T�h)KN(
ln S0

K + (�� r)h+ (r � 1
2�

2)T

�
p
T

).

(C.4)

Putting (C.3) and (C.4) together, we obtain

Rhcall =
S0e

�hN(
ln
S0
K
+(��r)h+(r+ 1

2
�2)T

�
p
T

)� e�r(T�h)KN( ln
S0
K
+(��r)h+(r� 1

2
�2)T

�
p
T

)

S0N(d1)� e�rTKN(d2)
.

This can be further simpli�ed to

Rhcall =
e�h[S0N(d

�
1)� e�[r+(��r)HP ]TKN(d�2)]

S0N(d1)� e�rTKN(d2)
(C.5)

d�1 =
ln S0

K + [HP (�� r) + r + 1
2�

2]T

�
p
T

d�2 =
ln S0

K + [HP (�� r) + r � 1
2�

2]T

�
p
T

where HP = h=T:
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Appendix D: Expected Stock Returns and Expected Option

Returns

We show that expected call (put) option returns increase (decrease) with expected stock

returns: @Rcall
@� > 0 and @Rput

@� < 0. First, recall from (1.12):

Rcall =
e�� [StN(d

�
1)� e���KN(d�2)]

StN(d1)� e�r�KN(d2)

d�1 =
ln St

K + (�+ 1
2�

2)�

�
p
�

d�2 =
ln St

K + (�� 1
2�

2)�

�
p
�

d1 =
ln St

K + (r + 1
2�

2)�

�
p
�

d2 =
ln St

K + (r � 1
2�

2)�

�
p
�

.

Taking the derivative with respect to �

@Rcall
@�

=
�e�� [StN(d

�
1)� e���KN(d�2)] + e�� [�e���KN(d�2)]
StN(d1)� e�r�KN(d2)

where  is the probability density function of standard normal distribution. Note that we

apply the fact that the Rho of a call option is �e���KN(d�2) in deriving the above equation.

@Rcall
@� can be further simpli�ed:

@Rcall
@�

=
�e�� [StN(d

�
1)� e���KN(d�2)] + �KN(d�2)

StN(d1)� e�r�KN(d2)

=
�e��StN(d

�
1)

StN(d1)� e�r�KN(d2)
> 0.

To see that the derivative is positive, notice that the denominator is just the price of call

option which is always positive, and the numerator is obviously greater than zero.

Next we show that the expected put option return is a decreasing function of the ex-

pected stock return. Recall that the expected put option return is:

Rput =
e�� [e���KN(�d�2)� StN(�d�1)]
e�r�KN(�d2)� StN(�d1)

where d�1, d
�
2, d1, and d2 are de�ned the same as the above. Taking the derivative with

respect to � yields:

@Rput
@�

=
�e�� [e���KN(�d�2)� StN(�d�1)] + e�� [��e���KN(�d�2)]

e�r�KN(�d2)� StN(�d1)

=
��e��StN(�d�1)

e�r�KN(�d2)� StN(�d1)
< 0.
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Note the denominator is the price of put option which is always positive, and therefore the

ratio itself is negative.

Appendix E: Expected Straddle Returns

We study the relation between expected straddle returns and the underlying volatility. The

expected gross return on a straddle is de�ned as

Rstraddle =
Et[max(ST �K; 0)] + Et[max(K � ST ; 0)]

Ct(� ; St; �;K; r) + Pt(� ; St; �;K; r)

=
[StN(d

�
1)� e���KN(d�2)]e�� + [e���KN(�d�2)� StN(�d�1)]e��

StN(d1)� e�r�KN(d2) + e�r�KN(�d2)� StN(�d1)
.

We investigate the impact of volatility on expected straddle returns by taking the derivative

of Rstraddle with respect to �. It follows that

@Rstraddle
@�

=
2e��

p
�St (d

�
1)A� 2e��

p
�St (d1)B

[StN(d1)� e�r�KN(d2) + e�r�KN(�d2)� StN(�d1)]2

=
2e��

p
�Stf (d�1)A�  (d1)Bg

[StN(d1)� e�r�KN(d2) + e�r�KN(�d2)� StN(�d1)]2

where A = StN(d1) � e�r�KN(d2) + e�r�KN(�d2) � StN(�d1) and B = StN(d
�
1) �

e���KN(d�2)+e
���KN(�d�2)�StN(�d�1). It is clear that the sign of

@Rstraddle
@� is determined

by  (d�1)A �  (d1)B. This term can be positive or negative depending on underlying

parameters.

We now show that d2 > 0 implies  (d�1)A �  (d1)B < 0 and therefore @Rstraddle
@� < 0.

First recall from previous analysis d�1 > d1 > d2. We then have

d2 > 0) 0 <  (d�1) <  (d1). (E.1)

Moreover, note that

@A

@r
= �e�r�K[N(d2)�N(�d2)]

and therefore,

d2 > 0)
@A

@r
> 0

which further implies

0 < A < B (E.2)
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by noting that B is obtained by replacing r with � in A. Putting together (E.1) and (E.2),

d2 > 0)  (d�1)A�  (d1)B < 0) @Rstraddle
@�

< 0:

Appendix F: Expected Option Returns in the Heston Model

We derive the expected return of holding a call option to expiration in the Heston (1993)

stochastic volatility model. The Heston (1993) model assumes that the asset price and its

spot variance obey the following dynamics under the physical measure P

dSt = �Stdt+ St
p
VtdZ

P
1

dVt = �(� � Vt)dt+ �
p
VtdZ

P
2

where � is the drift of the stock price, � is the long run mean of the stock variance, � is the

rate of mean reversion, � is the volatility of volatility, and Z1 and Z2 are two correlated

Brownian motions with E[dZ1dZ2] = �dt. The dynamics under the risk-neutral measure Q

are

dSt = rStdt+ St
p
VtdZ

Q
1

dVt = [�(� � Vt)� �Vt]dt+ �
p
VtdZ

Q
2

where r is the risk-free rate and � is the market price of volatility risk. Again we consider

the expected return of holding a call option to expiration:

RHestonCall (St; Vt; �) =
Et[max(ST �K; 0)]
Ct(t; T; St; Vt))

=
EPt [max(ST �K; 0)]

EQt [e
�r� max(ST �K; 0)]

.

Heston (1993) provides a closed-form solution to an European call option, up to a univariate

numerical integral:

C(t; T; St; Vt) = EQt [e
�r� max(ST �K; 0)] = StP1 � e�r�KP2 (F.1)

where P1 and P2 are given by26

Pj =
1

2
+
1

�

Z 1

0
Re(

e�i� lnKfj(x; V; � ;�)

i�
)d� (F.2)

26Note that x = lnS:
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fj(x; V; � ;�) = eC(� ;�)+D(� ;�)V+i�x

C(� ;�) = r�i� +
a

�2
f(bj � ���i+ d)� � 2 ln[

1� ged�
1� g ]g

D(� ;�) =
bj � ���i+ d

�2
[
1� ed�
1� ged� ]

g =
bj � ���i+ d
bj � ���i� d

d =
q
(���i� bj)2 � �2(2uj�i� �2)

u1 =
1

2
; u2 = �

1

2
; a = ��; b1 = �+ �� ��; b2 = �+ �:

By analogy, it can be shown that expected call option payo¤ at expiration is

EPt [max(ST �K); 0] = e�� [StP
�
1 � e���KP �2 ] (F.3)

where

P �j =
1

2
+
1

�

Z 1

0
Re(

e�i� lnKf�j (x; V; � ;�)

i�
)d� (F.4)

f�j (x; V; � ;�) = eC(� ;�)+D(� ;�)V+i�x

C(� ;�) = ��i� +
a

�2
f(bj � ���i+ d)� � 2 ln[

1� ged�
1� g ]g

D(� ;�) =
bj � ���i+ d

�2
[
1� ed�
1� ged� ]

g =
bj � ���i+ d
bj � ���i� d

d =
q
(���i� bj)2 � �2(2uj�i� �2)

u1 =
1

2
; u2 = �

1

2
; a = ��; b1 = �� ��; b2 = �:

Putting (F.1) and (F.3) together, the analytical expected holding-to-maturity call option

return in Heston model is

RHestonCall (St; Vt; �) =
e�� [StP

�
1 � e���KP �2 ]

StP1 � e�r�KP2
: (F.5)
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Chapter 2

The Leverage E¤ect and the Variance Risk Premium

2.1 Introduction

Understanding risk premium is the central subject of both theoretical and empirical research

in �nancial economics. The literature on risk premium has largely been concerned with the

�rst moment of asset returns.1 With the development of derivatives markets, investors

now can buy and sell variance of asset returns just like the underlying asset. While a long

position in the stock market is rewarding, a long position in stock market return variance

is associated with large losses on average. For example, in the index option market, long

variance strategies such as delta-hedged option portfolio and a zero-beta straddle have

negative average returns (Coval and Shumway, 2001; Bakshi and Kapadia, 2003). Recent

studies on volatility claims (e.g., variance swaps and VIX futures) which o¤er investors pure

exposure to market variance risk also report a large negative variance premium (Carr and

Wu, 2009; Ait-Sahalia, Karaman and Mancini, 2015; Eraker and Wu, 2016).

While the empirical evidence for the presence of a variance risk premium is overwhelm-

ing, the economic source of the variance risk premium is less clear. The variance risk pre-

mium is formally de�ned as the di¤erence between physical and risk-neutral expectations of

future market return variance. A number of important studies in the literature investigate

the equilibrium determinants of the variance risk premium in consumption-based models

with Epstein-Zin-Weil preferences (Epstein and Zin, 1989 and 1991; Weil, 1989). Depend-

ing on the speci�cation of consumption dynamics, the variance risk premium is attributed

1One prominent example is the equity risk premium puzzle literature. There are also numerous studies

that focus on cross-sectional di¤erences in average rates of return. For excellent reviews, see Campbell (2003)

and Nagel (2012).
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to the stochastic volatility (Bansal and Yaron, 2004), the stochastic volatility of volatil-

ity (Bollerslev, Tauchen and Zhou, 2009), jumps (Drechsler and Yaron, 2011), or multiple

volatility components (Zhou and Zhu, 2015) in the underlying consumption process.

Instead of relating the variance risk premium to a particular part of the underlying

consumption process, I show that the variance risk premium is equal to the leverage e¤ect

times the price of variance risk. The leverage e¤ect is de�ned as the conditional covari-

ance between market returns and changes in the conditional market variance. It measures

the quantity of variance risk. The price of variance risk depends on both the represen-

tative agent�s willingness to take on risk (risk aversion) and her willingness to substitute

consumption over time (the elasticity of intertemporal substitution, or the EIS). The theo-

retical relation between the variance risk premium and the leverage e¤ect is derived under

a general speci�cation of consumption dynamics and is a common feature of many existing

models. I argue the relation between the variance risk premium and the leverage e¤ect can

be interpreted as the risk-return trade-o¤ for the second moment of index returns as it is

similar to the classical risk-return trade-o¤ where the equity risk premium is equal to risk

aversion multiplied by the conditional market variance.

To empirically test this theoretical relation, I estimate the intertemporal relation be-

tween the variance risk premium and the leverage e¤ect for the S&P 500 from 1996 to 2014.

I construct monthly estimates of the variance risk premium and the leverage e¤ect. In

the baseline analysis, I measure the variance risk premium by the di¤erence between real-

ized variance computed from intraday data and (the square of) the VIX index. I compute

the leverage e¤ect as the realized covariance between S&P 500 return and changes in its

conditional variance using daily data within the month. The daily conditional variance of

the S&P 500 is estimated from a rolling regression of realized variance on lagged realized

variance and the VIX.

Con�rming the theoretical relation implied from Epstein-Zin-Weil preferences, I �nd

a statistically signi�cant negative time-series relation between the market variance risk

premium and the market leverage e¤ect. A decomposition analysis suggests that changing
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expectations about future variance play the key role in driving the time-varying leverage

e¤ect and variance risk premium.

The negative relation between the variance risk premium and the leverage e¤ect is

robust to di¤erent implementations. For example, I estimate the variance risk premium

using conditional variances generated from leading variance forecasting models, and I �nd

the results based on conditional variances are even stronger than those based on realized

variance. The empirical �nding is also not sensitive to the proxy for the leverage e¤ect. I

�nd similar results when computing the leverage e¤ect as conditional covariances instead

of realized covariances.

The estimated negative relation between the variance risk premium and the leverage

e¤ect contains valuable information on preference parameters. If the representative agent�s

risk aversion is greater than one, then the negative relation in the data implies the elasticity

of intertemporal substitution is less than one as well as a preference for early resolution of

uncertainty.

Measuring the variance risk premium requires an estimate of expected future return

variance under the risk neutral measure. While risk neutral variance can be reliably com-

puted from option prices, investigating the variance risk premium over a long sample period

is di¢ cult because of the short time span of option data. Exploiting the relation between

the variance risk premium and the leverage e¤ect, I characterize the historical behavior of

the variance risk premium by extrapolating the observed empirical relation in the period

1996-2014 to the period 1926-1995. The extrapolated variance risk premium exhibits non-

trivial time variations, and the level is intuitively plausible. The two largest spikes in the

extrapolated variance risk premium are in October 1929 (Black Tuesday) and October 1987

(Black Monday).

This paper is related to the growing literature on the variance risk premium. Carr and

Wu (2009) propose a robust method for quantifying the variance risk premium, and they

�nd the average variance risk premiums are strongly negative for stock indices. Bollerslev,

Tauchen and Zhou (2009) and Drechsler and Yaron (2011) document that the variance risk
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premium predicts future stock market returns. Bollerslev et al. (2014) provide further

evidence based on international data. Todorov (2010) investigates the time-series dynamics

of the variance risk premium. This paper further deepens our understanding of the variance

risk premium by showing the leverage e¤ect is the systematic risk that determines the

variance risk premium.

This paper is also related to the long-standing literature on the leverage e¤ect. In the

data, the leverage e¤ect at the index level is strongly negative, re�ecting the asymmetric

responses of the conditional market variance to positive and negative returns. Two promi-

nent explanations have been proposed in the literature. One relates the leverage e¤ect to

�nancial leverage (e.g., Black, 1976; Christie, 1982; Cheung and Ng, 1992). The other one

attributes the leverage e¤ect to the time-varying risk premium, also known as the volatil-

ity feedback e¤ect (e.g., French, Schwert and Stambaugh, 1987; Campbell and Hentschel,

1992; Bekaert and Wu, 2000). Bandi and Reno (2012) and Yu (2012) report evidence for

a time-varying leverage e¤ect. Consistent with existing studies, I also �nd a negative and

time-varying leverage e¤ect in my sample. More importantly, this paper contributes to

the literature by highlighting the theoretical link between the variance premium and the

leverage e¤ect.

This paper also contributes to the literature by providing new empirical evidence that the

EIS is less than one. There is a considerable debate on the magnitude of the EIS. See, among

others, Attanasio and Weber (1989), Campbell and Mankiw (1989), Hall (1998), Vissing-

Jorgensen (2002), Attanasio and Vissing-Jorgensen (2003), Campbell (2003), Bansal, Khatch-

atrian and Yaron (2005), Bansal, Kiku and Yaron (2012) and Beeler and Campbell (2012).

Unlike existing studies where inferences often rely on consumption and other macroeconomic

data, I estimate the EIS based on the relationship between the variance risk premium and

the leverage e¤ect, both of which are measured using market data.

Finally, this paper is related to a vast literature that focuses on the risk-return trade-o¤

for the �rst moment of the stock market return: the behavior of expected excess return
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on the market (e.g., the equity risk premium) in relation to its conditional variance.2In

contrast, this paper focuses on the risk-return trade-o¤ for the second moment of the stock

market return.

The rest of the paper is organized as follows. Section 2 derives a theoretical relation

between the variance risk premium and the leverage e¤ect. Section 3 conducts empirical

estimation of this risk-return relation. Section 4 presents robustness results. Section 5

discusses the implications of the empirical �ndings. Section 6 contains additional discussion

of the main results, and Section 7 concludes the paper.

2.2 The Leverage E¤ect and the Variance Risk Premium:

Theory

In this section, I use a consumption-based general equilibrium framework with Epstein-Zin-

Weil preferences to derive a risk-return relation between the market variance risk premium

and variance risk. Variance risk is determined by the conditional covariance between mar-

ket returns and changes in the conditional market variance. I refer to this as the leverage

e¤ect.3 The sign of this relation depends on relative values of risk aversion and the elastic-

ity of intertemporal substitution, the key parameters characterizing the preferences of the

representative agent.

2The empirical evidence regarding the mean-variance relation is inconclusive. Some studies �nd a positive

relation (e.g., Scruggs, 1998; Ghysels, Santa-Clara and Valkanov, 2005; Guo and Whitelaw, 2006; Lundblad,

2007; Ludvigson and Ng, 2007; Pastor, Sinha and Swaminathan, 2008; Rossi and Timmermann, 2015),

but others report a negative relation (e.g., Campbell, 1987; Turner, Startz and Nelson, 1989; Glosten,

Jagannathan and Runkle, 1993; Harvey, 2001; Brandt and Kang, 2004). Some studies �nd no statistically

signi�cant relation (e.g., French, Schwert and Stambaugh, 1987; Campbell and Hentschel, 1992).

3Note that the leverage e¤ect is sometimes de�ned in terms of a correlation instead of a covariance.
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2.2.1 The Model

I consider a discrete time endowment economy with a simple consumption good and a

representative agent who has Epstein-Zin-Weil preferences (Epstein and Zin, 1989 and 1991;

Weil, 1989) to learn about the equilibrium determinants of variance risk and the variance risk

premium.4 Epstein-Zin-Weil preferences, by disentangling risk aversion from the elasticity

of intertemporal substitution, are able to endogenously generate a variance risk premium.

The important implications of Epstein-Zin-Weil preferences for asset pricing have been

highlighted in recent studies. See, among others, Bansal and Yaron (2004), Drechsler and

Yaron (2011), Wachter (2013) and Campbell et al. (2016).

Epstein-Zin-Weil preferences postulate that the representative agent derives utility not

only from current consumption but also from the expected discounted future utility. Specif-

ically, the utility function takes the form:

Ut = [(1� �)C
1�

�

t + �(Et[U
1�

t+1 ])

1
� ]

�
1�
 (2.1)

where � is the time discount factor, Ct is current consumption in time t, 
 is the coe¢ cient

of relative risk aversion,  is the elasticity of intertemporal substitution and � = 1�

1� 1

 

.

When 
 = 1
 , the utility function in (2.1) can be solved forward to yield the familiar

time-separable, constant relative risk aversion (CRRA) power utility.

Epstein and Zin (1991) show that equation (2.1), combined with the intertemporal

budget constraint, implies the following Euler equation:

Et[e
mt+1+ri;t+1 ] = 1: (2.2)

Note that ri;t+1 is the logarithm of the gross return on asset i, and mt+1 is the logarithm

of the pricing kernel:

mt+1 = � log � � �

 
�ct+1 + (� � 1)ra;t+1 (2.3)

4Epstein-Zin-Weil preferences build on the early work by Kreps and Porteus (1978). The recursive utility

speci�cation is developed in continuous time by Du¢ e and Epstein (1992).
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where �ct+1 = log(Ct+1) � log(Ct), and ra;t+1 is the logarithm of the gross return on all

invested wealth.

I assume consumption dynamics are driven by a vector of state variables Xt+1 2 RN

that follows a �rst-order VAR:

Xt+1 = �+ FXt +Gtzt+1 (2.4)

GtG
0
t = h+

nX
HnXt;n

where � 2 RN , F 2 RN�N , Gt 2 RN�N , h 2 RN�N , Hn 2 RN�N , Xt;n is the nth element

of Xt, and zt+1 � N(0; I) is a vector of independent Gaussian shocks. While shocks are

independent, the state variables can be correlated with each other if o¤-diagonal elements

of Gt are not zero.5 GtG
0
t is the conditional variance and covariance matrix of zt+1, and

it is speci�ed such that (2.4) falls into the a¢ ne class of Du¢ e, Pan and Singleton (2000).

Lastly, without loss of generality, consumption growth �ct+1 is the �rst element of Xt+1

and dividend growth �dt+1 is the last element of Xt+1. The wealth portfolio is a claim to

future consumption and a share of stock represents a claim to future dividend.

Equation (2.4) provides a fairly general framework that nests many existing consumption-

based models. See, among others, Bansal and Yaron (2004), Bansal et al. (2014), Bollerslev,

Tauchen and Zhou (2009), Campbell et al. (2016), and Zhou and Zhu (2015). Eraker and

Shaliastovich (2008) and Drechsler and Yaron (2011) provide detailed discussion on solving

this type of model.

To endogenously generate a time-varying variance risk premium that is consistent with

the data, it is common to adopt a two-factor structure for the underlying consumption

volatility dynamics. Bollerslev, Tauchen and Zhou (2009) and Bollerslev, Sizova and Tauchen

(2011) make the volatility of consumption volatility stochastic. Zhou and Zhu (2015) con-

sider a speci�cation where consumption volatility is the sum of two volatility components.

5To ensure that the variance premium and any return-volatility correlation are endogeneous to the model,

I assume consumption growth-related state variables are uncorrelated with consumption volatility-related

state variables. This assumption is also used by Bollerslev, Tauchen and Zhou (2009) and Drechsler and

Yaron (2011), for example.
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The aforementioned studies can be conveniently mapped into (2.4). Below I show, within

this framework, the variance risk premium is a simple function of the leverage e¤ect re-

gardless of the speci�cation of the consumption dynamics. Instead of adding additional

volatility factors, an alternative way to generate a variance risk premium is to use jumps

(e.g., Drechsler and Yaron, 2011).

2.2.2 The Leverage E¤ect and the Variance Risk Premium

Given the preferences in (2.1) and the exogenous consumption and dividend dynamics in

(2.4), both the variance risk premium and the leverage e¤ect are endogenously determined.

Appendix A shows that the equilibrium market return process is given by

rm;t+1 = constant+BmXt+1 (2.5)

where Bm (1�N) is the loading of the market return on state vector Xt+1. The conditional

variance of next period market return (�2m;t) is given by

�2m;t = BmGtG
0
tB

0
m = Bm(h+

nX
HnXt;n)B

0
m: (2.6)

Following the literature, the variance risk premium is de�ned as the di¤erence between

physical and risk-neutral expectations of one-period ahead conditional variances:

Et[�
2
m;t+1]� E

Q
t [�

2
m;t+1]:

Throughout the paper, risk neutral quantities are denoted by Q, and all other quantities

are taken to be under the physical measure. To compute the variance risk premium, I also

need to solve for the model dynamics under the risk neutral measure. Appendix A shows

that the dynamics of the state variables under the risk neutral measure are:

Xt+1 = �+ FXt �GtG0t�0 +Gtezt+1 (2.7)

where ezt+1 � N(0; I), and � represents the market price of risk for shocks to the state

variables. From (2.4) and (2.7), it follows that

Et(Xt+1)� EQt (Xt+1) = GtG
0
t�
0: (2.8)
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Using (2.6) and (2.8), I compute the variance risk premium:

Et[�
2
m;t+1]� E

Q
t [�

2
m;t+1] = Et[Bm(h+

PnHnXt+1;n)B
0
m]� E

Q
t [Bm(h+

PnHnXt+1;n)B
0
m]

=
nX
BmHn[GtG

0
t(n)�

0]B0m: (2.9)

where GtG0t(n) denotes the nth row of GtG
0
t.

I now compute the leverage e¤ect, de�ned as the conditional covariance between market

return and change in its conditional variance: covt(rm;t+1; �2m;t+1 � �2m;t). Using (2.5) and

(2.6),

covt(rm;t+1; �2m;t+1 � �2m;t) = covt(BmXt+1; Bm(h+

nX
HnXt+1;n)B

0
m)

=

nX
BmHn[GtG

0
t(n)B

0
m]B

0
m: (2.10)

where as before GtG0t(n) denotes the nth row of GtG
0
t.

From (2.9) and (2.10), Appendix A shows that:

Et[�
2
m;t+1]� E

Q
t [�

2
m;t+1] = (1� �)� LM � covt(rm;t+1; �2m;t+1 � �2m;t) (2.11)

where LM is a leverage multiplier. LM arises because the consumption claim and a share

of the market have di¤erent loadings on the state variables, and it is related to the notion

that equity represents a levered exposure to consumption process.

2.2.3 The Risk-Return Trade-O¤ Between the Variance Risk Premium

and the Leverage E¤ect

For the purpose of this paper, I will set the leverage multiplier equal to one (LM = 1).

Appendix B shows that this is equivalent to modeling the stock market as a claim to future

consumption (Lucas, 1978; Mehra and Prescott, 1985; Bollerslev, Tauchen and Zhou, 2009).

In this case, (2.11) becomes:

Et[�
2
m;t+1]� E

Q
t [�

2
m;t+1] = (1� �)� covt(rm;t+1; �2m;t+1 � �2m;t): (2.12)

Equation (2.12) says the market variance risk premium is equal to the price of variance

risk times the quantity of variance risk. The price of variance risk is determined by (1� �),
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which depends on both risk aversion and the EIS of the representative agent. The quantity

of variance risk is determined by the leverage e¤ect: covt(rm;t+1; �2m;t+1 � �2m;t). Equation

(2.12) suggests that it is only the part of variance variations that co-moves with the market

that is compensated.

Equation (2.12) is not critically model-dependent in the sense that it is derived under

a fairly general framework without assuming a particular speci�cation of the underlying

consumption dynamics. The relation between the variance risk premium and the leverage

e¤ect holds regardless whether the variance risk premium is caused by stochastic volatility

(Bansal and Yaron, 2004), or the stochastic volatility of volatility (Bollerslev, Tauchen and

Zhou, 2009), or multiple volatility components (Zhou and Zhu, 2015) in the consumption

process. Section 6.2 and 6.3 further illustrate the link between the variance risk premium

and the leverage e¤ect using the models proposed by Bansal and Yaron (2004) and Boller-

slev, Tauchen and Zhou (2009).

Equation (2.12) is reminiscent of the classical risk-return trade-o¤ for the equity pre-

mium (e.g., Merton, 1980), which is based on the following equation:

Et(rm;t+1)� EQt (rm;t+1) = 
�2m;t (2.13)

where 
 is a measure of aggregate risk aversion, and �2m;t is the conditional variance of

market returns. Equation (2.13) is a statement on the �rst moment of stock market return,

and it describes a risk-return trade-o¤ between the equity risk premium and its systematic

risk determined by the conditional market variance. On the other hand, (2.12) is a statement

on the second moment of the stock market return, and it characterizes a risk-return relation

between the variance risk premium and its systematic risk which is determined by the

leverage e¤ect.

2.3 Empirical Analysis

This section begins by describing the data and the construction of the variables used in

the empirical analysis. Section 3.2 presents the main empirical results on the intertemporal
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relation between the variance risk premium and the leverage e¤ect. Section 3.3 performs

the decomposition of the leverage e¤ect and relates the variance risk premium to each

component of the leverage e¤ect.

2.3.1 Data and Sample

To empirically test (2.12), I construct monthly estimates of the variance premium and the

leverage e¤ect from 1996 to 2014. Following Bollerslev, Tauchen and Zhou (2009), at the

end of each month I measure the variance risk premium (V RPt) as the di¤erence between

realized variance (RVt) and risk neutral expected variance (QVt):

V RPt = RVt �QVt:

This measure of the variance risk premium is simple and model free. It does not require

one to specify a correct model for forecasting variance under the physical measure. In the

robustness section, I verify my empirical �ndings continue to hold when using conditional

forecasts of physical variance in the construction of the variance risk premium.

I compute realized variance (RVt) by summing the squared 5-min log returns on SPY

over the month.6 SPY is an exchange traded fund that targets the performance of the S&P

500. Following the literature, I treat the return from the close of the previous trading day to

the open of a new trading day and the return over a weekend as one 5-min interval. Finally,

following existing studies I multiply realized variances by 104 to convert them in monthly

percentage-squared form. As demonstrated in the literature (see, among others, Andersen

et al., 2001; Andersen et al., 2003; Barndor¤-Nielsen, 2002), realized variance based on

high-frequency data provides a better ex-post measure of return variations. I download the

intraday data on SPY from the TAQ database. While the TAQ database starts in 1993,

data on SPY is limited in the �rst few years. As a result, my sample begins in 1996 and ends

in 2014. Appendix C contains more details on extracting realized variance from intraday

data.

6Although more sophisticated sampling techniques are available, I follow the recommendation from Liu,

Patton and Sheppard (2015) and use the 5-min realized variance.
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Table 2.1: Descriptive Statistics

Panel A: Summary Statistics

N Mean Std. Skew. AR-1

RV 228 34.72 52.11 7.24 0.59

QV 228 43.03 37.59 3.22 0.79

V RP 228 -8.31 28.94 6.95 0.15

COV 228 -15.84 76.45 -10.22 0.41

SP 228 0.63 4.45 -0.68 0.08

Panel B: Correlations

RV QV V RP COV SP

RV 1

QV 0.84 1

V RP 0.71 0.22 1

COV -0.89 -0.64 -0.78 1

SP -0.37 -0.43 -0.11 0.38 1

Notes to Table: Panel A of Table 2.1 reports mean, standard deviation (Std.), skewness

(Skew.) and �rst-order autocorrelation coe¢ cient (AR-1) for realized variance (RV ), risk

neutral variance (QV ), the variance risk premium (V RP ), the leverage e¤ect (COV ) and

S&P 500 returns (SP ) at monthly frequency. Panel B reports correlations among these

variables. RV is calculated as the sum of the squared 5-min log returns on SPY over the

month. I multiply realized variances by 104 to express them in monthly percentage-squared

term. SPY is an ETF that targets the performance of the S&P 500. QV is the squared

VIX divided by 12 observed on the last trading day of the month. V RP is the di¤erence

between RV and QV . COV is the realized covariance between S&P 500 returns and changes

in the conditional variance of the S&P 500 using daily data within the month. The daily

conditional market variance is estimated via equation (2.14) based on a rolling window of

the past 22 trading days. SP is monthly return of the S&P 500 (in percent). The sample

period is from January 1996 to December 2014, a total of 228 months.
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I measure the risk neutral expectation of future return variance (QVt) based on the

closing value of the VIX index on the last trading day of each month. Since the VIX is

expressed in annualized volatility term (in percent), I divide the squared VIX by 12 to

make it comparable to the realized variance. The VIX data is obtained from the Chicago

Board Options Exchange (CBOE) website. The CBOE developed the �rst-ever volatility

index in 1993, which then was based on the Black-Scholes-Merton implied volatilities from

at-the-money S&P 100 index options. In 2003, the CBOE modi�ed the methodology and

started publishing a new VIX index that is based on prices of S&P 500 index options. In this

paper, I use the new VIX. The new methodology is motivated by a number of studies that

highlight the fact that the market�s risk neutral expectation of the total return variation

can be recovered from option prices in a model free manner without using any particular

option pricing model. For more details on the model free method, see among others Dupire

(1994), Neuberger (1994), Carr and Madan (1998), Britten-Jones and Neuberger (2000),

and Jiang and Tian (2005).

I calculate the leverage e¤ect (COVt) as the realized covariance between market return

and changes in its conditional variance using daily data over the month:

COVt = cov(ri; �̂2i � �̂2i�1)

where ri and �̂2i are the log return of the S&P 500 (in percent) and the conditional market

variance (in monthly percentage-squared term) in day i of month t, respectively. Daily

conditional variances �̂2i are obtained as predictive values from the following forecasting

model:

RVi = �0 + �1RVi�1 + �2QVi�1 + �i (2.14)

where RVi�1 and QVi�1 are lagged realized variance and squared VIX in day i � 1. To

avoid any looking ahead biases, I compute �̂2i at daily frequency using data over the past

22-trading days.

Panel A of Table 2.1 reports summary statistics for RVt; QVt; V RPt; COVt and monthly

returns of the S&P 500 (SPt). The sample means for the realized and risk neutral variances

84



1998 2000 2002 2004 2006 2008 2010 2012 2014
0

100

200

300

400

500

600

Panel A: Realized Variance

1998 2000 2002 2004 2006 2008 2010 2012 2014
0

100

200

300

400

Panel B: Risk Neutral Variance

Notes: This �gure plots monthly realized (RV ) and risk-neutral variances (QV ). RV is

calculated as the sum of the squared 5-min log returns on SPY over the month. I multiply

realized variances by 104 to express them in monthly percentage-squared term. SPY is an

ETF that targets the performance of the S&P 500. QV is the squared VIX divided by 12 on

the last trading day of the month. The sample period is January 1996 to December 2014.

Figure 2-1: Realized and Risk Neutral Variances
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Notes: This �gure plots monthly market variance risk premium (V RP ) and leverage e¤ect

(COV ). V RP is the di¤erence between RV and QV (in monthly percentage-squared term).

COV is realized covariance between S&P 500 return and changes in its conditional variance

as computed in Table 2.1.

Figure 2-2: The Variance Risk Premium and the Leverage E¤ect
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are 34.72 and 43.03, respectively, yielding an unconditional average variance risk premium of

-8.31. While stock return variance processes are fairly persistent, the variance risk premium

is much less persistent. The �rst-order autocorrelation coe¢ cient is only 0.15 for V RPt.

These �ndings are consistent with the existing studies. Panel A also shows that the leverage

e¤ect COVt is negative on average, with an unconditional mean of -15.84 and an AR(1)

coe¢ cient of 0.41. Lastly, over the sample period the average monthly return of the S&P

500 is 0.63 percent.

Panel B of Table 2.1 reports correlation coe¢ cients among RVt; QVt; V RPt; COVt

and SPt. The variance risk premium V RPt is positively correlated with both physical

variance RVt and risk-neutral variance QVt. The correlation coe¢ cient is 0.71 and 0.22

respectively. On the other hand, V RPt is strongly negatively correlated with the leverage

e¤ect COVt, with a coe¢ cient of -0.78. Panel B also indicates that S&P 500 return is

negatively correlated with RVt; QVt; and V RPt. In contrast, the correlation is positive

between S&P 500 return and the leverage e¤ect.

To better understand the dynamic behavior of these variables, I plot RVt and QVt in

Figure 2-1, and V RPt and COVt in Figure 2-2. Figure 2-1 shows that physical and risk-

neutral variances share a lot of commonalities. The correlation between the two time series

is 0.84. Todorov (2010) �nds that the variance risk premium varies considerably over time.

Bandi and Reno (2012) and Yu (2012) document a time-varying leverage e¤ect. Consistent

with these studies, Figure 2-2 shows that both V RPt and COVt exhibit substantial temporal

�uctuations. The striking feature of Figure 2-2 is that the variance risk premium and the

leverage e¤ect tend to move in opposite directions, especially during the recent crisis period.

2.3.2 Empirical Results

I test the risk-return relation between the market variance premium and the market leverage

e¤ect derived in (2.12) by running the following time-series regression:

V RPt = �+ �COVt + �t (2.15)
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where V RPt and COVt are computed in Section 3.1.7 According to theory, V RPt and COVt

move one-to-one with each other and therefore � should be insigni�cant. On the other hand,

� should be signi�cant although theory provides less guidance on the sign of �. In theory,

� can be either positive or negative, depending on the representative agent�s willingness to

take on risk and her willingness to substitute wealth over time.

Table 2.2 contains results for the estimation of (2.15). Panel A shows that over the

full sample period, there is a negative and statistically signi�cant relation between the

variance premium and the leverage e¤ect. The estimated coe¢ cient � is -0.29, with a

highly signi�cant OLS t-statistic of -18.49. The t-statistic is -12.35 when using Newey and

West (1987) standard errors that adjust for autocorrelation and heteroskedasticity. The lag

selection follows Newey and West (1994). Panel A also indicates that a substantial fraction

of variations in the variance risk premium can be tied to the leverage e¤ect (e.g., the R2

is 60%), though the estimate on the intercept (�) is negative and statistically signi�cantly

di¤erent from zero.

Panel B shows that the signi�cance of � is robust to excluding the Great Recession (from

December 2007 to June 2009). As is evident in Figure 2-2, the Great Recession features

a strong negative correlation between the variance risk premium and the leverage e¤ect,

and it is possible that the empirical �nding is entirely driven by this particular period.

After excluding the Great Recession, the estimated coe¢ cient � is close to the full sample

estimate with a magnitude of -0.21, and it remains statistically signi�cant with OLS and

Newey-West t-statistics of -5.64 and -3.95, respectively. However, R2 does drop substantially

to only 13%, and the intercept is still signi�cant.

Panel C and D of Table 2.2 report estimation results for two subperiods that are of

approximately the same length: 1996 to 2004 and 2005-2014. While the signi�cance of �

is robust in both sub-samples, the relation is much stronger in the more recent period of

2005-2014 judging by t-stats and R2.

In summary, con�rming the theoretical relation implied from a consumption-based

7 I obtain simialr results when suppressing the intercept in the regression.
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Table 2.2: Regressing the Variance Risk Premium on the Leverage E¤ect

Panel A: 1996-2014

� � Adj: R2

-12.96 -0.29 60%

OLS (-10.48) (-18.49)

Newey-West (-7.43) (-12.35)

Panel B: Without the Great Recession

� � Adj: R2

-11.13 -0.21 13%

OLS (-9.59) (-5.64)

Newey-West (-8.31) (-3.95)

Panel C: 1996-2004

� � Adj: R2

-9.40 -0.24 11%

OLS (-4.91) (-3.74)

Newey-West (-5.05) (-2.32)

Panel D: 2005-2014

� � Adj: R2

-15.85 -0.30 75%

OLS (-9.70) (-19.04)

Newey-West (-6.95) (-11.86)

Notes to Table: Table 2.2 reports results of the following regression:

V RPt = �+ �COVt + �t

for various sample periods. The market variance risk premium (V RPt) and the market

leverage e¤ect (COVt) are computed in Table 2.1. Both OLS t-statistics and Newey-West

t-statistics that adjust for autocorrelation and heteroskedasticity are reported in brackets.

Panel A covers the full sample period from January 1996 to December 2014. Panel B

excludes the Great Recession which is from December 2007 to June 2009. Panel C and D

represent two sub-periods: January 1996 to December 2004 and January 2005 to December

2014.
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model with Epstein-Zin-Weil preferences, I �nd a statistically signi�cant intertemporal re-

lation between the market variance risk premium and the market leverage e¤ect for the

period from 1996 to 2014. I also �nd the sign of the relation is negative. While a negative

risk-return relation may seem counter to common intuition, it does not necessarily contra-

dict the theory. As discussed, the trade-o¤ between the variance premium and variance risk

can be either positive or negative, depending on the relative magnitudes of risk aversion

and the elasticity of intertemporal substitution. Section 5.1 further discusses how one can

utilize the empirical estimate on � to infer the representative agent�s preferences.

2.3.3 Decomposing the Leverage E¤ect

Recall from Section 2, the variance risk premium is related to the leverage e¤ect through

the following equation:

Et[�
2
m;t+1]� E

Q
t [�

2
m;t+1] = (1� �)� covt(rm;t+1; �2m;t+1 � �2m;t):

Expanding the covariance term, it follows that:

Et[�
2
m;t+1]�E

Q
t [�

2
m;t+1] = (1� �)� �(rm;t+1)� �(�2m;t+1� �2m;t)� �(rm;t+1; �2m;t+1� �2m;t)

where �(rm;t+1) is the standard deviation of market returns, �(�2m;t+1 � �2m;t) is the stan-

dard deviation of changes in the conditional variance which is related to kurtosis, and

�(rm;t+1; �
2
m;t+1 � �2m;t) is the correlation between changes in the conditional variance and

market returns which is related to skewness. This is consistent with the insight from Bakshi

and Madan (2006) that the variance risk premium is related to higher-order physical return

moments and parameters of the pricing kernel.

Empirically, I decompose the leverage e¤ect COVt into the correlation between S&P 500

return and changes in its conditional variance (�r;v) , the standard deviation of S&P 500

returns (�r) and the standard deviation of changes in the conditional variance (�v). Figure

2-3 plots the three components over time. It seems that �v plays the key role in driving the

time-varying leverage e¤ect. For example, the huge downward spike of the leverage e¤ect
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Notes: This �gure plots the three components of the leverage e¤ect (COV ): correlation be-

tween S&P 500 return and changes in its conditional variance (�r;v), the standard deviation

of S&P 500 returns (�r) and the standard deviation of changes in the conditional variance

(�v).

Figure 2-3: Decomposing the Leverage E¤ect
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Table 2.3: Decomposing the Leverage E¤ect

Panel A: Summary Statistics

N Mean Std. Skew.

�r;v 228 -0.45 0.26 0.61

�r 228 1.09 0.63 2.63

�v 228 13.95 33.63 5.80

Panel B: Regressions

Intercept -12.16 -28.58 -16.30 -16.24

(-4.18) (-2.93) (-5.94) (-3.13)

�r;v -8.53 -4.55

(-1.32) (-1.05)

�r 18.67 -2.27

(1.91) (-0.38)

�v 0.57 0.60

(2.71) (2.33)

Adj: R2 0% 16% 44% 44%

Notes to Table: Panel A of Table 2.3 reports summary statistics for the three components

of the leverage e¤ect (COV ): correlation (�r;v) between S&P 500 return and changes in

its conditional variance, the standard deviation of S&P 500 returns (�r) and the standard

deviation of changes in the conditional variance of the S&P 500 (�v). Panel B contains

results of regressing the variance risk premium on the three components. Newey-West t-

statistics that adjust for autocorrelation and heteroskedasticity are reported in brackets.

The sample period is January 1996 to December 2014.
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during the recent crisis is largely due to an unprecedented increase in �v. Panel A of Table

2.3 reports summary statistics for the three components of the leverage e¤ect.

Panel B of Table 2.3 reports results of regressions of the variance risk premium on the

three components of the leverage e¤ect. Taken separately, the correlation �r;v itself has no

explanatory power for the variance risk premium. The standard deviation of returns �r

shows modest explanatory power, although it becomes insigni�cant after controlling for the

other two components. The standard deviation of changes in conditional variances �v is

strongly related to the variance risk premium, accounting for 44% variations in the variance

risk premium. Note that 44% is lower than the R2 with the leverage e¤ect as reported in

panel A of Table 2.2. Of course, this is not entirely surprising because theory suggests it is

the covariance (product of the three components) that should matter.

2.4 Robustness

In this section, I investigate the robustness of the negative relationship between the variance

risk premium and the leverage e¤ect documented in Section 3. I show the empirical �nding

is robust to alternative measures of the variance risk premium and the leverage e¤ect.

2.4.1 Measuring the Variance Premium

In the main analysis, the variance risk premium is computed as the di¤erence between

realized variance over the month (RVt) and the squared VIX (QVt). Table 2.4 examines

whether empirical results are sensitive to the measurement of the variance risk premium.

Column (1) of Table 2.4 considers a measure of ex-post variance risk premium: the

di¤erence between future realized variance (RVt+1) and the squared VIX (QVt). Column

(2) uses the variance risk premium measure in Bollerslev, Tauchen and Zhou (2009). The

realized variance used in this paper is based on intraday returns on a S&P 500 ETF, whereas

in Bollerslev, Tauchen and Zhou the realized variance is based on the S&P 500 index itself.

The data is downloaded from Professor Hao Zhou�s website.

A more serious concern is the use of realized variance as a proxy for conditional expected
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variance. The physical variance process might not be a martingale and thus lagged realized

variance is a potentially biased estimate of future realized variance. The biases in the

conditional variance will of course render the subsequent estimate of the variance premium

imprecise.

To address this concern, columns (3) to (5) of Table 2.4 construct the variance risk pre-

mium based on the conditional forecasts of future realized variance. Following the literature,

I estimate the conditional expectation of future variance under the physical measure by pro-

jecting realized variances on a set of predetermined conditioning variables. In particular, I

adopt the following three variance forecasting models:

RVt = �0 + �1RVt�1 + �2QVt�1 + �t (2.16)

RVt = �0 + �1RVt�1 + �2RV
W
t�1 + �3RV

D
t�1 + �4QVt�1 + �t (2.17)

RVt = �0 + �1RVt�1 + �2RV
W
t�1 + �3RV

D
t�1 + �t (2.18)

where RVt and QVt�1 are de�ned in Section 3.1. RV W
t�1 and RV D

t�1 represent average

realized variances over the past 5 trading days and 1 trading day respectively, measured

on the last trading day of month t� 1. The three models come from Drechsler and Yaron

(2011), Bekaert and Hoerova (2014) and Corsi (2009). To avoid any looking-ahead biases, I

estimate (2.16), (2.17) and (2.18) at monthly frequency in a rolling fashion using only past

data. More precisely, every month I estimate the models based on past 24 months data and

calculate the forecast for 1-month ahead realized variance based on the estimated models.

I then subtract the squared VIX from these conditional forecasts to arrive at conditional

variance risk premiums. Because I use the �rst 24 months to initialize the rolling regression,

the resulting sample period for columns (3) to (5) is from December 1997 to December 2014.

Table 2.4 shows that the negative relationship between the variance risk premium and

the leverage e¤ect is not a¤ected by di¤erent computations of the variance risk premium.

Across all speci�cations, the slope estimate is negative and highly signi�cant. Note that

results are in fact stronger when I compute the variance risk premium using conditional

forecasts of future return variance. Figure 2-4 plots the variance risk premium measures
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Table 2.4: Robustness: Measuring the Variance Risk Premium

(1) (2) (3) (4) (5)

� -15.08 -20.68 -16.60 -20.00 -21.38

(-6.20) (-10.36) (-5.79) (-4.26) (-4.33)

� -0.43

(-10.06)

-0.19

(-7.59)

-1.02

(-5.82)

-1.65

(-6.06)

-1.53

(-5.73)

Adj: R2 62% 40% 73% 71% 74%

Notes to Table: Table 2.4 reports results of the following regression:

V RPt = �+ �COVt + �t

with alternative measures of the variance risk premium (V RPt). Column (1) computes

ex-post variance risk premium as the di¤erence between future realized variance (RVt+1)

and the squared VIX (QVt). Column (2) considers the variance risk premium measure

used in Bollerslev, Tauchen and Zhou (2009) where realized variance is computed based on

intraday data on the index. Columns (3) to (5) compute variance risk premiums based on

conditional expected variances instead of realized variance. The forecasting models for the

conditional variance are from Drechsler and Yaron (2011), Bekaert and Hoerova (2014) and

Corsi (2009), and they are given in (2.16), (2.17) and (2.18) respectively. The conditional

variances are estimated using a rolling window of past 24 months data. Newey-West t-

statistics that adjust for autocrrelation and heteroskedasticity are reported in brackets. The

sample period is January 1996 to December 2014 for column (1) and (2), and is December

1997 to December 2014 for columns (3) to (5).
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used in columns (1) to (3) in Table 2.4.

2.4.2 Measuring the Leverage E¤ect

In the main analysis, the leverage e¤ect is computed as realized covariance between S&P

500 return and change in its conditional variance using daily data within the month:

COVt = cov(ri; �̂2i � �̂2i�1)

where �̂2i is estimated at daily frequency using the variance forecasting model in (2.14) based

on a rolling window of past 22 trading days. Table 2.5 reports the results of regressing the

variance risk premium on eight alternative measures of the leverage e¤ect.

Column (1) of Table 2.5 uses the squared VIX as a proxy for �̂2i and compute the leverage

e¤ect as realized covariance between S&P 500 returns and changes in the VIX. The VIX

provides genuinely forward-looking information and is a natural candidate for conditional

variance (see, for example, Ang, Hodrick, Xing and Zhang, 2006). Of course, the VIX

contains a potentially time-varying variance risk premium component, and it is likely to be

a biased estimate of conditional expected variance under the physical measure.

Instead of using a rolling window, Column (2) of Table 2.5 estimates the variance fore-

casting model in (2.14) month by month using daily data within each month and takes the

�tted values as estimates of �̂2i .

Column (3) considers a new variance forecasting model for estimating �̂2i . Besides daily

realized variance and the VIX, I add the average realized variance over past month and week

as additional predictors to the main forecasting model in (2.14). Figure 2-5 plots realized

covariances used in columns (1) to (3).

Column (4) considers daily realized variance as a proxy for �̂2i and calculate the leverage

e¤ect as realized covariance between S&P 500 returns and changes in realized variances.

So far I have only focused on realized covariances. Some measures of realized covariance

tend to be fairly persistent, which justi�es the use of lagged realized covariance as a proxy
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Notes: This �gure plots alternative measures of the variance risk premium. Panel A plots

the di¤erence between ex-post realized variance and the VIX. Panel B plots the variance

risk premium used in Bollerslev, Tauchen and Zhou (2009). Panel C plots the di¤erence

between expected physical variance and the VIX.

Figure 2-4: Alternative Measures of the Variance Risk Premium
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Table 2.5: Robustness: Measuring the Leverage E¤ect

(1) (2) (3) (4) (5) (6) (7) (8)

� -13.70 -11.61 -12.27 -12.23 -13.16 -13.14 -12.04 -12.70

� (-7.10) (-7.76) (-7.53) (-5.85) (-7.90) (-8.20) (-7.39) (-7.47)

-0.54 -0.28

(-4.44) (-18.21)

-0.40 -0.38

(-3.07) (-15.88)

-0.16 -0.05

(-36.03) (-23.69)

-0.48 -0.26

(-2.90) (-10.57)

Adj: R2 39% 24% 64% 40% 57% 58% 57% 52%

Notes to Table: Table 2.5 reports results of the following regression:

V RPt = �+ �COVt + �t

with di¤erent measures of the leverage e¤ect (COVt). Columns (1) to (4) compute the

leverage e¤ect as realized covariance between S&P 500 return and changes in its conditional

variance using daily data within the month, but with di¤erent proxies for daily conditional

market variance. Column (1) uses daily squared VIX. Column (2) obtains daily conditional

variances as �tted values from estimating the variance forecasting model in (2.16) month by

month. Column (3) constructs conditional variances at daily frequency using the forecasting

model in (2.17) based on a rolling window of past 22 trading days. Column (4) uses daily

realized variance. Columns (5) to (8) report results using expected covariances correspond-

ing to realized counterparts in columns (1) to (4). Expected 1-month ahead covariances are

predictive values from the forecasting model in (2.19) based on a rolling window of past 24

months data. Newey-West t-statistics that adjust for autocrrelation and heteroskedasticity

are reported in brackets. The sample period is January 1996 to December 2014 for columns

(1) to (4) and December 1997 to December 2014 for columns (5)-(8).
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Notes: Panels A to C of this �gure plot alternative measures of the leverage e¤ect used in

columns (1) to (3) in Table 2.5. The sample period is January 1996 to December 2014

Figure 2-5: Alternative Measures of the Leverage E¤ect
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for conditional expected covariance.8 To further ensure empirical �ndings are not dependent

on the use of realized covariances, I also compute conditional covariances. For each realized

covariance, I estimate the conditional covariance by projecting realized covariances on lagged

realized variances and market returns: :

COVt = �0 + �1RVt�1 + �2Rt�1 + �t (2.19)

where COVt is realized covariance in month t; and RVt�1 and Rt�1 are realized variance

and realized market return in month t� 1, respectively. I estimate (2.19) based on a rolling

window of past 24 months data and use the model estimates to obtain the forecast of next

period leverage e¤ect. The choice of the conditioning variables is motivated by Bandi and

Reno (2012) who �nd the time-varying leverage e¤ect is strongly related to the level of

market variance, and Yu (2012) who �nds that the size and the sign of lagged returns are

driving the time-varying leverage e¤ect. The regression results with conditional covariances

are reported in columns (5) to (8), corresponding to their realized counterparts in columns

(1) to (4). Since I use the �rst 24 months to initiate the rolling estimation, the resulting

sample period for columns (5) to (8) is from December 1997 to December 2014, a total of

205 months.

Table 2.5 shows that regardless of the leverage e¤ect measure, the estimated coe¢ cient

� is always negative and statistically signi�cant. In unreported results, I also regress other

measures of the variance risk premium against the eight leverage e¤ect measures and obtain

similar conclusions.

2.5 Implications

Section 5.1 discusses the implications of a negative relation between the variance risk pre-

mium and the leverage e¤ect on investor preferences. Section 5.2 conducts an extrapolation

to characterize the historical behavior of the variance risk premium dating back to 1926.

8The AR (1) coe¢ cient is 0.66, 0.60, 0.37 and 0.20, respectively for realized covariances in columns (1)

to (4).
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2.5.1 Preferences

Recall from (2.12), theory states a relationship between the market variance risk premium

and the market leverage e¤ect:

Et[�
2
m;t+1]� E

Q
t [�

2
m;t+1] = (1� �)� covt(rm;t+1; �2m;t+1 � �2m;t)

where � = 1�

1� 1

 

, 
 and  are the representative agent�s relative risk aversion and the

elasticity of intertemporal substitution, respectively. The sign of the relation (1� �) can be

either positive or negative depending on relative magnitudes of risk aversion and the EIS.

Table 2.6 shows how the sign of 1 � � is related to 
 and  , as well as the subsequent

implications on investors�attitudes towards the way in which uncertainty about consump-

tion is resolved over time. As is shown in Panel A, if 
 = 1
 , then 1 � � = 0. In this case,

Epstein-Zin-Weil preferences collapse to the standard power utility, and the representative

agent is indi¤erent to the timing of the resolution of uncertainty of consumption process.

Panel B considers scenarios where risk aversion is less than one: 
 < 1. In this case,

if  is between one and 1

 , then 1 � � is negative. Since  < 1


 , this implies that the

representative agent prefers late resolution of consumption uncertainty. On the other hand,

when  is greater than 1

 or less than 1, then 1� � is positive.

Panel C considers scenarios where risk aversion is greater than one: 
 > 1. In this case,

if  is between 1

 and one, then 1� � is negative. This implies that the representative agent

prefers early resolution of consumption uncertainty as  > 1

 . This also implies that a rise

in the market leverage e¤ect lowers the variance risk premium as 1 � � < 0. On the other

hand, when  is greater than 1 or less than 1

 , 1 � � is greater than zero and a rise in the

leverage e¤ect leads to an increase in the variance risk premium.

The above analysis suggests that the empirical behavior of the variance premium in

relation to the leverage e¤ect can be used to infer the representative agent�s preferences. In

the data, 1 � � is estimated to be negative and statistically signi�cant. First, this can be

viewed as evidence to reject the null hypothesis that  = 1

 . In other words, Epstein-Zin-

Weil preferences are supported by the data.
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Table 2.6: Implications for Preferences

Panel A: 
 = 1
 

1� � Prefer early resolution Prefer late resolution Indi¤erent


 = 1
 

= 0 X

Panel B: 
 < 1

1� � Prefer early resolution Prefer late resolution Indi¤erent

 > 1



> 0 X

 < 1 > 0 X

1 <  < 1



< 0 X

Panel C: 
 > 1

1� � Prefer early resolution Prefer late resolution Indi¤erent

 > 1 > 0 X

 < 1



> 0 X
1


<  < 1 < 0 X

Notes to Table: Table 2.6 reports implications of di¤erent combinations of preference para-

meters in the Epstein-Zin-Weil utility function on the sign of 1 � �, as well as on investor

preference regarding the timing of resolution of consumption uncertainty. In the Epstein-

Zin-Weil utility function,  is the elasticity of intertemporal substitution, 
 is relative risk

aversion and 1� � = 1� 1�

1� 1

 

.
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Moreover, although relative risk aversion is not without controversial, most studies would

conclude that a reasonable value of 
 should be between 1 and 10 (Mehra and Prescott,

1985). If one believes that the representative agent�s risk aversion is greater than one,

then a negative estimate on 1 � � implies an EIS that is between 1

 and 1. That is, the

representative agent is less willing to substitute consumption over time ( < 1), and she

prefers early resolution of the uncertainty of consumption process ( 1
 <  ).

Note that the above estimate of the EIS is obtained based on market data only. This

feature di¤erentiates my analysis from existing studies where consumption and other macro-

economic data are often utilized to make inference on the magnitude of the EIS. The poten-

tial issues with consumption data have been long recognized in the literature (e.g., Working,

1960; Breeden, Gibbons and Litzenberger, 1989; Savov, 2011). In fact, the mixed evidence

might be in part due to the use of consumption data in empirical tests. For example,

Campbell (2003) and Beeler and Campbell (2012) infer the magnitude of the EIS by re-

gressing consumption growth rate on the risk-free rate, and they conclude that the EIS is

less than one. On the other hand, Bansal, Khatchatrian and Yaron (2005) and Bansal,

Kiku and Yaron (2012) emphasize the negative relation between price dividend ratio and

consumption volatility and they conclude that the EIS is greater than 1.

Theory states a conditional relationship between the variance risk premium and the

leverage e¤ect

Et[�
2
m;t+1]� E

Q
t [�

2
m;t+1] = (1� �)� covt(rm;t+1; �2m;t+1 � �2m;t):

One can take unconditional expectations for both sides to derive an unconditional relation

E[�2m;t+1]� EQ[�2m;t+1] = (1� �)� cov(rm;t+1; �2m;t+1 � �2m;t):

As shown in Table 2.1, on average both the variance risk premium and the leverage e¤ect

are negative. This implies that 1� � is positive, which contradicts the conditional results.

Under the assumption that 
 > 1, 1� � > 0 is consistent with two types of preferences. It

implies either that  > 1 and a preference for early resolution of uncertainty, or that  < 1



and a preference for later resolution of uncertainty.
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Finally, when deriving the above theoretical equation, I assume the leverage multiplier

is equal to one. This will not a¤ect inference as long as the leverage multiplier is positive.

While a positive leverage multiplier is intuitively sensible and certainly true in many existing

models, it is possible under some speci�cation and parameterization the leverage multiplier

might be negative. If the leverage multiplier is negative, a negative relation between the

variance risk premium and the leverage e¤ect would suggest the opposite results. Note that

the di¤erence between conditional and unconditional results still exist.

2.5.2 Extrapolating the Variance Risk Premium

This section presents another application of (2.12). To empirically estimate the variance

risk premium, one needs to compute an expectation of future return variance under the

risk neutral measure. Thanks to the development of options market, this quantity can be

estimated reliably with option data. Option data, however, only becomes available very

recently and therefore existing studies on the variance risk premium are forced to focus on

a short sample period.9

Exploiting the theoretical equivalence between the variance risk premium and the lever-

age e¤ect, one can estimate the variance risk premium from the leverage e¤ect. The com-

putation of the leverage e¤ect relies only on return data which is readily available for a

much longer sample period. I compute the leverage e¤ect for the S&P 500 index going

back to 1962 and the CRSP value-weighted market index going back to 1926 when daily

return data �rst becomes available. I extrapolate the variance risk premium to the pre-1996

period based on the observed empirical relationship between the variance premium and the

leverage e¤ect in the period of 1996 to 2014.

To construct a long monthly time series of the leverage e¤ect, daily market variances

cannot be computed from high-frequency returns because of the short time span of intraday

data. Instead, I proxy daily market variance using the French, Schwert and Stambaugh

9The VIX starts in 1990. The old VIX (VXO) starts in 1986.
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Notes: The top panel plots the extrapolated variance risk premium for the S&P 500 index

from August 1962 to December 1995. The bottom panel plots the extrapolated variance

risk premium for the CRSP Total Return Index from February 1926 to December 1995.

Figure 2-6: Extrapolating the Variance Risk Premium
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(1987) measure which is the sum of squared daily log returns, adjusted for autocorrelations:

�̂2i =
21X
j=0

r2i�j + 2
21X
j=0

ri�jri�j�1: (2.20)

Note that I compute (2.20) at daily frequency by using the past 22 trading days to generate

a time-series of �̂2i .

Top panel of Figure 2-6 plots the implied variance risk premium for the S&P 500 index

from August 1962 to December 1995. Bottom panel plots the implied variance risk premium

for the CRSP market index from February 1926 to December 1995. Figure 2-6 shows that

the variance risk premium is also time-varying in the pre-option period with occasional large

spikes such as October 1987 (Black Monday) and October 1929 (Black Tuesday).

2.6 Discussion

This section includes further analysis on the relationship between the variance risk premium

and the leverage e¤ect derived in Section 2. Section 6.1 discusses the variance risk premium

in a standard consumption model with power utility. Section 6.2 considers the relationship

between the market variance risk premium and the market leverage e¤ect in the long-

run risks model of Bansal and Yaron (2004) (BY hereafter). Section 6.3 considers the

relationship between the market variance risk premium and the market leverage e¤ect in

the stochastic volatility of volatility model of Bollerslev, Tauchen and Zhou (2009) (BTZ

hereafter). The two models are chosen because of their importance in the literature as well

as the analytical tractability. I follow the notations used in the two papers, respectively.

2.6.1 The Variance Risk Premium with Power Utility

In a standard consumption model (e.g., Rubinstein, 1976; Lucas, 1978; Breeden, 1979), the

representative agent is endowed with a power utility function:

Ut =
C1�
t

1� 
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where 
 is the coe¢ cient of relative risk aversion. In this case, the log pricing kernel takes

the form (Campbell, 2003):

mt+1 = log � � 
�ct+1 (2.21)

where as before �ct+1 = log(Ct+1) � log(Ct). Equation (2.21) suggests that only the

transient shock to consumption growth is priced. Equation (2.21) is a special case of the

Epstein-Zin-Weil pricing kernel in (2.3) when 
 = 1
 . As Appendix A shows, the variance

risk premium is determined by the conditional covariance between physical variance process

and the pricing kernel process:

Et[�
2
m;t+1]� E

Q
t [�

2
m;t+1] = �covt(�2m;t+1 � �2m;t;mt+1)

= 
covt(�2m;t+1 � �2m;t;�ct+1)

= 0:

Note that covt(�2m;t+1� �2m;t;�ct+1) will be equal to zero unless one imposes an exogenous

correlation between the two. The fact that the power utility is unable to endogenously

generate a variance risk premium has been pointed out by many prior studies. See, among

others, Bollerslev, Tauchen and Zhou (2009) and Drechsler and Yaron (2011).

In contrast, substituting for mt+1 from the Epstein-Zin-Weil pricing kernel in (2.3), it

follows that

Et[�
2
m;t+1]� E

Q
t [�

2
m;t+1] = �covt(�2m;t+1 � �2m;t; � log � �

�

 
�ct+1 + (� � 1)ra;t+1)

=
�

 
covt(�2m;t+1 � �2m;t;�ct+1) + (1� �)covt(�2t+1 � �2t ; ra;t+1)

= (1� �)covt(�2m;t+1 � �2m;t; ra;t+1):

In summary, the standard power utility framework predicts a zero variance risk premium.

In contrast, Epstein-Zin-Weil preferences are able to endogenously generate a variance risk

premium because of the extra component in the pricing kernel. The extra component is the

direct result of separating the risk aversion from the elasticity of intertemporal substitution.
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2.6.2 The Bansal and Yaron (2004) Model

Bansal and Yaron (2004) emphasize the importance of risks that are related to time-varying

long-run growth prospects and �uctuating economic uncertainty. Their model is able to

quantitatively explain a wide-range of stylized facts in the data and has inspired many

subsequent studies. In particular, the BY model speci�es the following consumption and

dividend dynamics:

gt+1 = �+ xt + �t�t+1

xt+1 = �xt + 'e�tet+1

gd;t+1 = �d + �xt + 'd�tut+1

�2t+1 = �2 + v1(�
2
t � �2) + �wwt+1

where gt+1 and gd;t+1 are consumption and dividend growth rate, xt+1 is the small persistent

component in consumption and dividend growth rates, � is the leverage ratio on expected

consumption growth and �t is the conditional volatility of consumption. et+1; �t+1; ut+1

and wt+1 are shocks to the system and are independent of each other. Bansal and Yaron

(2004) distinguish the consumption claim from a share of the market, and therefore the

computation of the variance risk premium and the leverage e¤ect follows the analysis in

Appendix A.

Appendix D casts the BY model into the general framework in Section 2, and computes

the variance risk premium according to equation (2.9):

Et[�
2
m;t+1]� E

Q
t [�

2
m;t+1] = (�

2
m;e + '

2
d)A2�1(1� �)�2w (2.22)

where �m;e; A2 and �1 are de�ned as in Bansal and Yaron (2004). Note that the variance

risk premium in (2.22) is constant.

Appendix D also computes the leverage e¤ect according to equation (2.10):

covt(rm;t+1; �2m;t+1 � �2m;t) = (�2m;e + '2d)A2;m�1;m�2w (2.23)

which yields the same result as equation (12) of Bansal and Yaron (2004). Note that the

leverage e¤ect is also constant in their model.
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Comparing (2.22) and (2.23), one can see that the market variance premium is a linear

function of the market leverage e¤ect:

Et[�
2
m;t+1]� E

Q
t [�

2
m;t+1] = (1� �)

A2�1
A2;m�1;m

covt(rm;t+1; �2m;t+1 � �2m;t)

which not surprisingly is a special case of the general expression derived in (2.11). Note

that A2�1
A2;m�1;m

is the leverage multiplier (LM) and is positive as shown by Bansal and Yaron

(2004).

2.6.3 The Bollerslev, Tauchen and Zhou (2009) Model

Bollerslev, Tauchen and Zhou (2009) consider an extension of the long-run risks model of

Bansal and Yaron (2004) to account for a time varying variance risk premium that predicts

subsequent stock market returns. In particular, they assume the following consumption

dynamics:

gt+1 = �g + �g;tzg;t+1

�2g;t+1 = a� + ���
2
g;t +

p
qtz�;t+1

qt+1 = aq + �qqt + 'q
p
qtzq;t+1

where gt+1 and �g;t are consumption growth rate and the conditional volatility of con-

sumption, qt+1 is the volatility of the consumption volatility which is the key to generate a

time-varying variance risk premium. zg;t+1, z�;t+1 and zq;t+1 are shocks to the system and

they are independent of each other. Bollerslev, Tauchen and Zhou (2009) treat the con-

sumption claim the same as the a share of the stock market and therefore the computation

of the variance risk premium and the leverage e¤ect follows the analysis in Appendix B.

Appendix E casts the BTZ model into the general framework in Section 2, and computes

the market variance risk premium according to (A.15):

Et[�
2
m;t+1]� E

Q
t [�

2
m;t+1] = (1� �)�1[A� +Aq�21(A2� +A2q'2q)'2q ]qt (2.24)

where �1, A�; and Aq are de�ned as in their paper. Equation (2.24) is the same as equation

(16) of Bollerslev, Tauchen and Zhou (2009). Note that in the model the variance risk

premium is time-varying because the volatility of consumption volatility qt is time-varying
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Appendix E also computes the leverage e¤ect covt(rm;t+1; �2m;t+1 � �2m;t) within their

model based on (A.16):

covt(rm;t+1; �2m;t+1 � �2m;t) = �1[A� +Aq�
2
1(A

2
� +A

2
q'
2
q)'

2
q ]qt: (2.25)

As with the variance risk premium, the leverage e¤ect in their model is also time-varying

because of qt.

Comparing (2.24) and (2.25), again one can see:

Et[�
2
m;t+1]� E

Q
t [�

2
m;t+1] = (1� �)covt(rm;t+1; �2m;t+1 � �2m;t)

which is exactly the same as (2.12).

2.7 Conclusion

This paper studies the risk-return relation between the variance risk premium and vari-

ance risk. In an endowment economy where the representative agent has Epstein-Zin-Weil

preferences, variance risk is determined by the leverage e¤ect, de�ned as the conditional

covariance between market returns and changes in the conditional market variance. The

sign of the relation between the variance risk premium and the leverage e¤ect depends on

both risk aversion and the elasticity of intertemporal substitution of the agent.

Empirically, I document a negative and statistically signi�cant relationship between the

variance risk premium and the leverage e¤ect for the S&P 500 from 1996 to 2014. This

suggests that the elasticity of intertemporal substitution is less than one and that investors

have a preference for early resolution of uncertainty. Exploiting the relation between the

variance risk premium and the leverage e¤ect, I also characterize the variance risk premium

dynamics going back to 1926.

The analysis in this paper can be extended in a number of ways. While Epstein-Zin-Weil

preferences are a natural starting point for understanding the risk-return trade-o¤ between

the variance risk premium and variance risk, it would be interesting to incorporate other

preferences such as ambiguity aversion or disappointment aversion (e.g., Miao et al., 2012,;
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Bonomo et al., 2015). Second, this paper has only focused on the variance risk premium and

time-series implications, and extensions to the skew risk premium (Kozhan et al., 2013) or

a cross-sectional analysis would be useful. I plan to address these topics in future research.
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Appendix A

This appendix computes the market variance risk premium and the market leverage e¤ect.

Following Bansal and Yaron (2004), Drechsler and Yaron (2011) and Bollerslev, Tauchen

and Zhou (2009), the solution to �nding an equilibrium in this type of model is as follows.

First, I solve for the return on the consumption claim ra;t+1 as it shows up in the pricing

kernel.

I conjecture that the solution for the logarithm of wealth-consumption ratio (the price-

dividend ratio for the consumption claim) vt, is a linear function of the state variables

:

vt = A0 +A
0
Xt (A.1)

where A
0
is a 1 � N row vector of loadings on the state variables that need to be solved

endogenously. Next, I can write the return on the consumption claim as a linear function

of price-dividend ratios using the Campbell-Shiller (1988) log-linear approximation:

ra;t+1 = �0 + �1vt+1 � vt +�ct+1 (A.2)

where �0 and �1 are parameters of linearization. Dividend growth is replaced with con-

sumption growth since the consumption claim pays aggregate consumption as its dividend.

Substituting for vt and vt+1 from equation (A.1) into equation (A.2), I have

ra;t+1 = �0 + �1(A0 +A
0
Xt+1)�A0 �A

0
Xt +�ct+1

= �0 + �1A0 �A0 �A
0
Xt +BXt+1 (A.3)

where B = �1A
0
+ ec, ec = [1; 0::::0] is a 1 � N row vector that selects �ct+1 from Xt+1,

as �ct+1 is the �rst element in Xt+1. The Euler equation in (2.2) must hold for all returns

including the return on the consumption claim. One can solve for A0 and A
0
by substituting

(A.3) into (2.2) and evaluating the resulting expectation. Depending on speci�cations, a

closed-form solution is not guaranteed. For more details on this, see Drechsler and Yaron

(2011).
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Once A0 and A
0
are known, one can substitute (A.3) into (2.3) to obtain the endogenous

pricing kernel that prices all assets:

mt+1 = � log � � �

 
�ct+1 + (� � 1)ra;t+1

= � log � � �

 
�ct+1 + (� � 1)[�0 + �1(A0 +A

0
Xt+1)�A0 �A

0
Xt +�ct+1]

= � log � + (� � 1)�0 + (� � 1)(�1 � 1)A0 � (� � 1)A
0
Xt � �Xt+1

where I use the fact that �
 + 1 � � = 
, and let � = (1 � �)�1A

0
+ 
ec. As before,

ec = [1; 0::::0] is the selector vector for �ct+1: � represents the market prices of risks of

fundamental shocks to the state variables.

To compute the market variance risk premium and the market leverage e¤ect, one

needs to solve for the equilibrium price-dividend ratio and return for the stock market,

which represents a claim to future dividends. As before, I apply the Campbell-Shiller

approximation to the return on the stock market:

rm;t+1 = �0;m + �1;mvm;t+1 � vm;t +�dt+1 (A.4)

where vm;t is price-dividend ratio of the market. Note that �dt+1 has its own dynamics,

and cannot be replaced with �ct+1 as in the case of the consumption claim. I guess the

solution for vm;t takes the form:

vm;t = A0;m +A
0
mXt (A.5)

where A
0
m is a 1 � N row vector of loadings on the state variables. Substituting for vm;t

and vm;t+1 from equation (A.5) into equation (A.4), I have:

rm;t+1 = �0;m + �1;m(A0;m +A
0
mXt+1)�A0;m �A

0
mXt +�dt+1

= r0;m �A
0
mXt +BmXt+1 (A.6)

where r0;m includes all constants, Bm = �1;mA
0
m+ed, and ed = [0; 0::::1] is a 1�N row vector

that selects �dt+1 from Xt+1. As before, one can solve for A0;m and A
0
m by substituting

(A.6) into the Euler equation (2.2).
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Substituting (2.4) into (A.6), I have:

rm;t+1 = r0;m + (BmF �A
0
m)Xt +BmGtzt+1 (A.7)

which implies the conditional variance of next period market return at time t is

�2m;t = BmGtG
0
tB

0
m: (A.8)

Recall from equation (2.4), state variables have the following dynamics under the phys-

ical measure:

Xt+1 = �+ FXt +Gtzt+1: (A.9)

Risk neutral probabilities are just physical probabilities re-weighted by investors�risk pref-

erences as characterized by the pricing kernel (e.g., the Radon-Nikodym derivative dQ
dP =

Mt+1

Et(Mt+1)
). Drechsler and Yaron (2011) show that the dynamics of the state variables under

the risk neutral measure are:

Xt+1 = �+ FXt �GtG0t�0 +Gtezt+1 (A.10)

where ezt+1 � N(0; I) and the shift in mean �GtG0t�0 re�ects risk adjustment. From (A.9)

and (A.10),

Et(Xt+1)� EQt (Xt+1) = GtG
0
t�
0:

The market variance risk premium can be computed as follows:

Et[�
2
m;t+1]� E

Q
t [�

2
m;t+1] = Et[Bm(h+

PnHnXt+1;n)B
0
m]� E

Q
t [Bm(h+

PnHnXt+1;n)B
0
m]

=
nX
BmHn[Et(Xt+1;n)� EQt (Xt+1;n)]B

0
m

=
nX
BmHn[GtG

0
t(n)�

0]B0m: (A.11)

where in the last line I use Et(Xt+1)� EQt (Xt+1) = GtG
0
t�
0, and GtG0t(n) denotes the nth

row of GtG0t. Note that the market variance risk premium can be conveniently computed as

the conditional covariance between the pricing kernel process and physical variance process:

114



Et[�
2
m;t+1]� E

Q
t [�

2
m;t+1] = �covt(mt+1; �

2
m;t+1). To see this,

�covt(mt+1; �
2
m;t+1) = �covt(��Xt+1; Bm(h+

nX
HnXt+1;n)B

0
m)

=
nX
covt(�Xt+1; BmHnXt+1;nB

0
m)

=
nX
BmHn[GtG

0
t(n)�

0]B0m

The market leverage e¤ect covt(rm;t+1; �2m;t+1��2m;t) can be computed as follows. Using

(A.7) and (A.8),

covt(rm;t+1; �2m;t+1 � �2m;t) = covt(BmXt+1; Bm(h+
nX
HnXt+1;n)B

0
m)

=
nX
BmHn[GtG

0
t(n)B

0
m]B

0
m: (A.12)

From (A.11) and (A.12), one can characterize the relationship between the market vari-

ance risk premium and the market leverage e¤ect. Under the assumption that GtG0t does

not depend on �ct+1 and �dt+110,

Et[�
2
m;t+1]� E

Q
t [�

2
m;t+1] = (1� �)

nX �1A
0
(n)

�1;mA
0
m(n)

BmHnGtG
0
t(n)B

0
m(n)B

0
m (A.13)

Equation (A.13) says the variance risk premium is equal to the weighted sum of each

component of the leverage e¤ect. The weights are given by �1A
0
(n)

�1;mA
0
m(n)

. �1A
0
(n)

�1;mA
0
m(n)

arises

because the consumption claim and a share of the market have di¤erent loadings on the

state variables, and it is related to the notion that equity represents a levered exposure to

consumption process. With a slight abuse of notation, I write (A.13) as

Et[�
2
m;t+1]� E

Q
t [�

2
m;t+1] = (1� �)� LM � covt(rm;t+1; �2m;t+1 � �2m;t)

Appendix B

This appendix assumes that a share of the market represents a claim to future consumption.

In other words, the market portfolio is the same as the wealth portfolio. Now I compute

10The assumption that GtG0
t does not depend on �ct+1 and �dt+1 holds in many existing models including

Bansal and Yaron (2004), Bollerslev, Tauchen and Zhou (2009), Drechsler and Yaron (2011), and Zhou and

Zhu (2015), to just name a few.
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the variance risk premium and the leverage e¤ect for the wealth portfolio. From (A.3), the

conditional variance of next period market return at time t is given by:

�2m;t = BGtG
0
tB

0 (A.14)

which of course is known at time t.

It follows that

Et[�
2
m;t+1]� E

Q
t [�

2
m;t+1] = Et[B(h+

PnHnXt+1;n)B
0]� EQt [B(h+

PnHnXt+1;n)B
0]

=

nX
BHn[Et(Xt+1;n)� EQt (Xt+1;n)]B

0

=

nX
BHn[GtG

0
t(n)�

0]B0 (A.15)

where GtG0t(n) denotes the nth row of GtG
0
t. As before, the variance risk premium can also

be conveniently computed as the conditional covariance between the price kernel process

and physical variance process: Et[�2m;t+1]�E
Q
t [�

2
m;t+1] = �covt(mt+1; �

2
m;t+1). To see this,

�covt(mt+1; �
2
m;t+1) = �covt(��Xt+1; B(h+

nX
HnXt+1;n)B

0
)

=
nX
covt(�Xt+1; BHnXt+1;nB

0
)

=
nX
BHn[GtG

0
t(n)�

0
]B

0
:

Using (A.3) and (A.14), I compute the leverage e¤ect as follows,

covt(rm;t+1; �2m;t+1 � �2m;t) = covt(BXt+1; B(h+
nX
HnXt+1;n)B

0)

= BHn[
nX
covt(Xt+1;n; Xt+1)B

0]B0

=
nX
BHn[GtG

0
t(n)B

0]B0 (A.16)

where GtG0t(n) denotes the nth row of GtG
0
t.

Equations (A.15) and (A.16) implies,

Et[�
2
m;t+1]� E

Q
t [�

2
m;t+1] =

nX
BHn[GtG

0
t(n)�

0]B0

= (1� �)
nX
BHn[GtG

0
t(n)B

0]B0

= (1� �)covt(rm;t+1; �2m;t+1 � �2m;t)
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where as de�ned before B = �1A
0 + ec, and � = [(1� �)�1A

0 + 
ec]. The assumption that

GtG
0
t does not depend on �ct+1 ensures that I can move 1� � out of the summation.

Appendix C

In this paper, realized variance is computed using 5-minute intraday returns. To calculate

intraday returns, I construct a total of 78 5-minute intervals during the regular trading

hours from 9:30 EST to 16:00 EST. I use the trade price lastly recorded in the interval to

compute returns. If there is no trade observed in an interval, the return on that interval

is set to zero. Careful cleaning is necessary for high frequency data. Following Barndor¤-

Nielsen et al. (2011) and Christensen et al. (2010), I apply the following �lters before

sampling intraday stock prices:

1) delete entries with a correction indicator not equal to zero;

2) delete entries with abnormal sale condition. (Trades where COND has a non-missing

code except for "@", "E", "F", "@E", "@F" );

3) delete entries with price less than or equal to zero and entries with trade size less than

or equal to zero.

Appendix D

This appendix computes the market variance risk premium and the market leverage e¤ect

in the Bansal and Yaron (2004) model. First, I cast their model into the general framework

laid out in Section 2.1:
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2666666664

gt+1

xt+1

gd;t+1

�2t+1

3777777775
Xt+1

=

2666666664

�

0

�d

(1� v1)�2

3777777775
�

+

2666666664

0 1 0 0

0 � 0 0

0 � 0 0

0 0 0 v1

3777777775
F

2666666664

gt

xt

gd;t

�2t

3777777775
Xt

+

2666666664

�t 0 0 0

0 'e�t 0 0

0 0 'd�t 0

0 0 0 �w

3777777775
Gt

2666666664

�t+1

et+1

ut+1

wt+1

3777777775
zt+1

GtG
0
t =

2666666664

�2t 0 0 0

0 '2e�
2
t 0 0

0 0 '2d�
2
t 0

0 0 0 �2w

3777777775
=

2666666664

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 �2w

3777777775
h

+

2666666664

1 0 0 0

0 '2e 0 0

0 0 '2d 0

0 0 0 0

3777777775
�2t :

H�

In the BY model, there are three types of shocks that are priced: shocks to consumption

growth �t+1, to the long run component of consumption growth et+1 and to the time-varying

consumption volatility wt+1. The corresponding market prices of risks are:

� = [ 
 (1� �)�1A1 0 (1� �)�1A2 ]:

Moreover, loadings of the market return on fundamental shocks are given by:

Bm = [ 0 �1;mA1;m 1 �1;mA2;m ]:

Now I compute the variance risk premium in the BY model based on the general ex-

pression in (2.9):

V RPt = [ 0 �1;mA1;m 1 �1;mA2;m ]

266664
1 0 0 0

0 '2e 0 0

0 0 '2d 0

0 0 0 0

377775 ([ 0 0 0 �2w ]

266664



(1� �)�1A1

0

(1� �)�1A2

377775)
266664

0

�1;mA1;m

1

�1;mA2;m

377775
= [�21;mA

2
1;m'

2
e + '

2
d](1� �)�1A2�2w

= (�2m;e + '
2
d)A2�1(1� �)�2w

where �2m;e = �21;mA
2
1;m'

2
e, following the notation in the BY model.

To compute the leverage e¤ect in the model, I apply the general expression derived in

(2.10):

118



COVt = [ 0 �1;mA1;m 1 �1;mA2;m ]

266664
1 0 0 0

0 '2e 0 0

0 0 '2d 0

0 0 0 0

377775 ([ 0 0 0 �2w ]

266664
0

�1;mA1;m

1

�1;mA2;m

377775)
266664

0

�1;mA1;m

1

�1;mA2;m

377775
= [�21;mA

2
1;m'

2
e + '

2
d]�1;mA2;m�

2
w

= (�2m;e + '
2
d)A2;m�1;m�

2
w:

Appendix E

This appendix computes the variance risk premium and the leverage e¤ect in the Bollerslev,

Tauchen and Zhou (2009) model. As before, I �rst cast the BTZ model into the general

framework laid out in Section 2.1:266664
gt+1

�2g;t+1

qt+1

377775
Xt+1

=

266664
�g

a�

aq

377775
�

+

266664
0 0 0

0 �� 0

0 0 �q

377775
F

266664
gt

�2g;t

qt

377775
Xt

+

266664
�g;t 0 0

0
p
qt 0

0 0 'q
p
qt

377775
Gt

266664
zg;t+1

z�;t+1

zq;t+1

377775
zt+1

GtG
0
t =

266664
�2g;t 0 0

0 qt 0

0 0 '2qqt

377775

=

266664
0 0 0

0 0 0

0 0 0

377775
h

+

266664
1 0 0

0 0 0

0 0 0

377775�2g;t
H�

+

266664
0 0 0

0 1 0

0 0 '2q

377775
Hq

qt:

In the BTZ model, shocks to consumption growth zg;t+1, to consumption volatility z�;t+1

as well as to the volatility of consumption volatility zq;t+1 are priced. The market prices of

those risks are given by:

� =

�

 (1� �)�1A� (1� �)�1Aq

�
:

Loadings of the market return on fundamental shocks are given by:

B = [ 1 �1A� �1Aq ]:
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In the BTZ model, the variance risk premium arises because of both �2g;t and qt, and it

can be computed using (A.15) :

V RPt = [ 1 �1A� �1Aq ]

266664
1 0 0

0 0 0

0 0 0

377775 ([ 0 qt 0 ]

266664



(1� �)�1A�

(1� �)�1Aq

377775)
266664

1

�1A�

�1Aq

377775

+[ 1 �1A� �1Aq ]

266664
0 0 0

0 1 0

0 0 '2q

377775 ([ 0 0 '2qqt ]
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266664

1

�1A�

�1Aq

377775
= (1� �)�1A�qt + (1� �)�1qt[Aq�21(A2� + '2qA2q)'2q ]

= (1� �)�1[A� +Aq�21(A2� +A2q'2q)'2q ]qt:

The leverage e¤ect can be computed using (A.16):

COVt = [ 1 �1A� �1Aq ]

266664
1 0 0

0 0 0

0 0 0

377775 ([ 0 qt 0 ]

266664
1
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�1Aq
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266664

1
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�1Aq

377775

+[ 1 �1A� �1Aq ]

266664
0 0 0

0 1 0

0 0 '2q

377775 ([ 0 0 '2qqt ]

266664
1
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�1Aq

377775)
266664

1

�1A�

�1Aq

377775
= �1A�qt + �1qt[Aq�

2
1(A

2
� + '

2
qA

2
q)'

2
q ]

= �1[A� +Aq�
2
1(A

2
� +A

2
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2
q)'

2
q ]qt:
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