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ABSTRACT

This work involves an experimental investigation of the defor

mation and breakup of liquid drops as well as the instability of 

liquid threads (both Newtonian and viscoelastic) in an extensional 

flow field.
For Newtonian systems, it is found that Taylor’s first order 

theory works quite well over a wider range of deformation than ex

pected, and Chaffey and Brenner’s second order theory does not pro

vide a better approximation than Taylor’s theory. It is also con

cluded that Barthes and Acrivos theory is good for systems with vis
cosity ratio, defined as X.= (where *1  o an<^ ^C are v^s“ 

cosities of dispersed phase and continuous phase), 0.7*  but fails 

to describe deformation for systems with small X • The pointed 
end phenomenon associated with Newtonian drops with \^0.5 was also 

observed for viscoelastic drops, however in the latter it was ob

served when X 11.2.

The breakup criterion for Newtonian drops is established and 

expressed in terms of two dimensionless groups: E^= and

X where and are the dispersed and the continuous
viscosities, Gc/2 i-s the extensional rate at breakup, a is the drop 

radius and <5 is the interfacial tension. The range of viscosity 

ratio within which drop breakup can occur in a plane hyperbolic flow 

field is wider than that in a simple shear flow field, and the ratio 

of Eq plane hyperbolic flow fields and Eg in simple shear flow 
fields is only about 1/3 at X= 1» and becomes smaller as \ takes 

values different from 1. As for the breakup of viscoelastic drops, 

Er is found to increase with Deborah number up to about 10, and 



then level off gradually as Deborah number increases further.

The bounds of validity of four limiting equations of Tomotika’s 

general theory for stationary liquid threads have been obtained in 

terms of the appropriate dimensionless groups. These criteria pro

vide bounds for applying the limiting equations of Rayleigh and 

Tomotika.

The instability of stationary Newtonian threads is found to 

follow Tomotika’s theory quite well, and that of stationary visco

elastic threads deviate from the Newtonian systems in a way which 

seems to confirm qualitatively with Lee’s theory on viscoelastic 

threads.

The instability criterion, in terms of Eppg= (where

C is the extensional rate and d^p is the broken drop diameter) and 

the viscosity ratio, of an extending Newtonian thread is also es
tablished, and it is found that the system with small X is more 

unstable than the system with high X .

The value of :DPQ in case of an extending viscoelastic thread

is again found to increase almost linearly with Deborah number, and 

the slope depends on the viscosity ratio; the smaller the viscosity 

ratio, the steeper the slope.
The measurements of the relative varicosity amplitude, ^/a, 

at various times before breakup reveal that the viscoelastic thread 

(both stationary and extending) is more unstable than the Newtonian 

thread with same viscosity ratio, interfacial properties, and kine

matic conditions.
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CHAPTER I

INTRODUCTION

A characteristic response of all real fluids is the irre

versible deformation resulting from the application of an even 

infinitely small stress. In multiphase systems, besides the dy

namic stresses arising from inertial and viscous interactions 

between the phases, we also have interfacial forces arising from 

the non-zero inteffacial tension between the phases. Interfacial 

tension usually tends to resist the increase of contact area be

tween different immiscible phases. The interaction of these dy

namic and interfacial forces plays a very significant role in dis

persion processes of immiscible fluids. Practically, such pro

cesses arise in the atomization of fuel in internal combustion 

engines, aeration operations during fermentation, emulsification 

processes, as well as in the fiber spinning of polymer melts, etc.

The basic concerns in these problems are:

(1) What are the possible physical processes vzhich may cause 

the drop (or the thread) to break up?

(2) How do these physical processes proceed, and how do 

fluid properties affect the nature of the dispersion 

resulting from these processes?

Due to the importance of breakup of drops and threads in 

many essential processes, it has captured the interests of sci

entists and techonologists in various fiels for many decades.
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Despite this, the complexity and uncertainty of these processes 

still prevent convincing and sufficiently accurate results to be 

obtained. Such results will be forthcoming only after we under
stand single droplet(and thread) deformation and breakup in certain 

flow field.

The dispersion of one immiscible fluid in another usually 

begins*with  two originally irregular bulky fluids*  The disinte

gration process may occur only when the dynamic stresses induced 

by certain devices are large enough to overcome the static force 

of interfacial tension which always resists deformation and dis

persion by attempting to maintain minimum contact area between 

the fluids. However, once the drop is extended into a thread, 

the interfacial tension is the agent promoting the breakup via 

capillary forces.

As the disintegration process goes on, more and more individual 

drops are formed, and the drop size is gradually decreased. In 

addition, the inertial forces diminish, and the interfacial and 

viscous forces become dominant. Further, the drops tend to become 

more regular in shape and the nature of the flow fields causing 

the deformation and breakup can be clearly identified. In viscous 

systems, it is these latter stages of dispersion which are of 

principal interest since they govern the ultimate size and distri

bution of the droplets obtained.

The eventual equilibrium drop size depends not only on the 

physical properties of the fluid system, but also on the flow con

ditions, i.e., flow type, deformation rate, etc.. According to
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Hinze's analysis (3?), the flow patterns which may cause drop 

breakup can be classified as:

(1) Parallel flow

(2) Couette flow

(3) Plane hyperbolic flow

(4) Biaxial hyperbolic flow

(5) Rotational flow

The flow field of any dispersion device can always be charac

terized as one or a combination of these five elementary patterns. 

To date,.only Couette, parallel, and plane (uniaxial) hyperbolic 

flow have been extensively studied with respect to deformation 

and breakup of drops,
G. I. Taylor (34) first initiated the study of drop deformation 

and breakup in viscous systems in 193^- Besides an experimental 

investigation of the critical shear rate at breakup, he derived the 

first equation relating the deformation of a drop to the physical 

properties of fluids and the shear rate of flow field. Taylor's 

theory was limited to small deformations and conditions of neg

ligible inertial effects. This pioneering work has been modified- 

by a number of investigators— Chaffey and Brenner ( 5), Cox ( ?), 

and Barthes and Acrivos( 8 ), among the others. However, their 

works still can not explain the breakup process at large deformation.

Most of the earlier studies were mainly concerned with Newtonian 

systems, especially in simple shear (or Couette) flow fields. However, 

the plane hyperbolic flow field has been shown experimentally to be 

a prefered flow type in dispersion devices, particularly with systems 

with either high of low viscosity ratios. It is the purpose of this 
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work to conduct an experimental investigation of the deformation and 

breakup of liquid drops in plane hyperbolic flow fields, and the in

stability of stationary and extending liquid threads. Both Newtonian 

and viscoelastic fluids will be studied.
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CHAPTER 2

THEORETICAL BACKGROUND

2-1. General Remarks

Increased viscosity and non-Newtonian effects such as visco

elasticity and shear dependent viscosity, are well-known phenomena 

of dispersions, or emulsions when these systems undergo a hydro

dynamic flow. Most of these phenomena result from the interaction 

of the deformable and non-deformable particles which make up the 

dispersion. From the point of view of hydrodynamics, the increased 

viscosity of a dispersion may be considered as a consequence of the 

perturbation of the continuous phase flow field around the suspended 

particles or liquid drops. The degree of perturbation which leads 

to an increase rate of energy dissipation, of course, will be 

closely related to the shape of particles present. Experimentally, 

it has been found that the viscosity of suspensions is affected by 

factors such as: the shape, size, internal flexibility, and ease of 

deformation of the dispersed phase. Thus it is important to obtain 

more precise information on the deformation of drops in various 

flow fields. Such information is essential for the development of 

theories to accurately describe the rheological behavior of disperse 

systems.

Considerable theoretical and experimental efforts have been 

devoted to the study of drop deformation and breakup in simple 

shear flows, beginning with G. I. Taylor's original small deform

ation theory. Among these works, of particular importance are:
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The thorough study of Rumscheidt and Mason ( 28 ), who studied the 

deformation, circulation, and breakup of liquid droplets both in 

plane hyperbolic and Couette flow fields; the theoretical analysis 

of Chaffey and Brenner, which extended Taylor’s theory to a second 

order approximation in the deformation parameter; and the transient 

analysis of Cox ( 7) who studied the time effect on the deformation 

and circulation. The most recent development in this area is that 
due to Acrivos ( 8) who derived the time dependent equation for 

deformation and also presented a theoretical way .to predict approxi

mate conditions for breakup.

We now review the important aspects- of these studies in the 

next section.

2-2 Deformation of ‘a Single Droplet 

2-2-1 Previous Theoretical Studies

The two flow fields as chosen by G. I. Taylor in his studies 

on the deformation and breakup of liquid droplets can be written 

as:

Plane hyperbolic flow: Vx-^X, ^-0(2-1)

Uniform shear flow: Vx= Vg » 0 (2-2)

Where G is the magnitude of the rate of strain in flow field. The 

first flow field is irrotational, and the second is rotational. As 
pointed out by Taylor (3^)» and Batrok and Mason, if the coordinate 

axes X and Y of the plane hyperbolic flow field are rotated with a 
constant angular speed G/2, and if the coordinate axes X*  and Y’ of 

the uniform laminar shear flow field lie instantaneously at 45° to
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Figure 2-1. Coordinate Transformation of Plane Hyperbolic

Flow to Simple Shear Flow by Rotation of Axes
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axes X and Y, then the two flow fields become identical at that 

moment. The situation of transformation is shown on Fig. 2-1. In 

this instance, the coordinates of these two flow fields are related 

by:
X*  = 1/42(X + Y)

Y*  = 1//2(X - Y)

<£/ = <|) - TT/M-

Here the identity of these two fields is instantaneously only. 

Therefore, effects which depend only on .the instantaneous distri

bution of velocity and are not affected by a rotation of the whole 

system will be identical in the two fields; this applies to internal 

circulation in an undeformed fluid drops. On the other hand, effects 

which depend both bn the instantaneous distribution and on the time 

sequence of distribution of velocity will be very different in the 

two. This occurs when fluid drops suffer large deformations. The 

significance of these remarks has been demonstrated by Taylor in 

his original paper.

When a neutrally bouyant liquid drop is placed in the center 

(or stagnant) point of a plane hyperbolic flow field, the distur

bance to the fluid motion surrounding this droplet will generate 

a stress field, which can be discomposed into tangential and normal 

components acting on the drop surface. In the case of a liquid 

drop whose interface is not contaminated by any impurity or sur

factant, the tangential stresses are continuously transmitted across 

the interface, so that a velocity gradient will be developed inside 

the drop. The normal stresses, on the other hand, are discontinuous at 

the interface and will generate a pressure difference which will be 
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counterbalanced by the capillary pressure due to the interfacial 

tension. The drop, therefore,” assumes a shape which balances the 

forces associated with the normal stresses and capillary pressure.

As we know, the difficulties in an analytical formulation of 

such a problem are almost insurmountable, partly because the correct 

boundary conditions are not always known, and partly because the 

interdependence of drop shape and velocity distribtitioniis unse- 

parable. Taylor initiated the first attempt to make an approxi

mate analytical formulation of this problem. In his hydrodynamical 

analysis, Taylor made the following assumptions:

(1) There is no slip at the surface of the drop (velocity 

components are continuous across the interface).

(2) The drop is only slightly deformed from its spherical 

equilibrium shape.

(3) The tangential stress parallel to the surface is continuous 

at the surface of the drop so that any film which may exist 

between the two liquids merely transmits tangential stress 

from one fluid to the other.
*

(^) The normal stress is discontinuous, and the difference is 
balanced by capillary pressure, ^(l/R^ + 1/R2)•

Where ($*  is interfacial tension and R^ and Rg are the principal ra

dii of surface curvature.

By using Lamb's general solution to the Navier-Stokes equation 

for steady creeping flow, Taylor derived the velocity and pressure 

distribution both in the drop and in the suspending fluid. From 

these results, the respective normal stresses acting at the surface 

were obtained, and expressed as:
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Prr = 5/2 G ^(X+8/5)/(X+l) cos2^ outside drop (2-3)

Prr = A'/CX+l)) cos2c£) inside drop (2-4)

With a resulting pressure difference across the interface given 

by:
aPN = PBr " prr =“-Zj' G^(19 X+16)/(16\+16) cos2^ (2-5) 

Whereviscosity of continuous phase

\ : the ratio of viscosity of drop and outside fluid, 

aPn: normal stress difference of inside and outside fluid
<j> : polar angle of spherical coordinate (Refer to Fig.2-li) 
From Eq. (2-5)» it follows that AP^o when - "n"/4 < 4*  < >

and the drop will be subjected to compressive stresses which tend 
to contract the drop; and that Pti>0 when ^4 < 4><^3 11/4, aand 

the drop will be subjected to tensile stresses which tend to extend 

it. In addition, it can also be seen that APpj has its maximum 
and minimum-values when 4*  = "n/2(6r 3TT/2), and 0(or"TT ) respectively. 

Based on these considerations, the shape of the deformed drop is 

that given in Figure 2-2.

Then boundary condition (4) gives

6"(1/R| + 1/^2^ = Prr ” Prr + constant (2-6)

or (Jd/Ri + 1/R2) = -4g'^(19A+ 16)/(16X+ 16) cos24>+ constant 

It can be seen from Eq. (2-6) that it is necessary to find the 

shape of a nearly spherical drop for which the variation in (1/R^+ 

1/R2) is proportional to cos24>. Taylor has verified that for 

the surface whose equation is

r = a(l-DIcos2<|> ).. (2-7)
l/Rl+l/Rg will be proportional to cos2<|> , and can be expressed 

as:

(2-8)
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Figure 2-2. The Shape of A Deformed Drop and Its

Parameters
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l/R^t-l/Rg = 2/a (1 - 2DIcosa4>) (2-8)

Here Dj is the deformation parameter in the equatorial X-Y plane. 

For small deformation, it can be shown that
DI = .D = (L. - B)/(L + B) (2-9)

Where L and B are the principal axes of the deformed ellipsoid drop.
By combining Eqs. (2-6) and (2-8), and equating the coefficients 

of cos2<t> , Taylor finally obtained the following equation*

Dj = (19K+ 16)/(16K+ 16) G^a/^ (2-10)

Equation (2-10) reveals that for nearly spherical drops, the 

deformation parameter, defined by Eq. (2-9), is proportional to 

a non-dimensional group, E- = G^a/g- , which is a ratio of viscous 
forces, YcG’ in^erfacial tension forces, ^a. The constant of 

proportionality, (19X+ 16)/(16 16), varies from .1 to 1.875 when

X changes from 0 to i?o.
It should be noted that Equation (2-10) stemmed from the velo

city field associated with a spherical drop, or rather a zero order 

velocity field in D^. In order to obtain the drop deformation 
with accuracy to second order in bj, it is necessary to know the 

fluid velocity both outside and inside the drop to first order in 

Dj. Chaffey and Brenner made such an effort and derived the first 

order velocity field and from this they found the equation giving 

the drop shape to second order in Dj for both uniform shear field 

and plane hyperbolic field. Their equation for the plane hyperbolic 

field is;(in XY plane):

r/a = 1-Dicos24> + (h, + (HA)cos^<^ ) + O(D^) (2-11)

Where Ga (19X+ 16)/(16.\+ 16)
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H = 2(1171^+ 656)/(19X+ 16)/2?

H’= (8383X2+ 125^3\+ 3728)/ (JX +1) (19X+ 16)]/63O 

According to Equation (2-9)» the experimentally observed parameter 
D = (L-B)/(L+B) is related to by

D = (L-B)/(L+B) = DI/ (1+D2(H’+H/4)J (2-12)

In the limit Dj -*  0, this equation can be simplified to Taylor's 

first order equation, i.e., Equation (2-10). However, after compa-' 

rison with experimental data in a uniform shear flow field, Turner 

and Chaffey in 1969 concluded that the applicable range of Chaffey 

and Brenner's second order theory is not significantly beyond that 

of Taylor’s first order theory.
In 1969 Cox developed a first order theory expanding in term 

of , a small parameter representing the magnitude order of defor

mation, to determine the transient shape of a fluid drop in both 

simple shear and plane hyperbolic flow field. For steady state, 
his equation reduced to Equation (2-10) for plane hyperbolic flow 

field.

The most recent theoretical work on the deformation and break

up of drops is due to Barthes and Acrivos (8 ). These investigators 

expanded the solution to the creeping flow equations in powers of 

E', a small parameter representing the tendency of the drop to de

form. They carried out the expansion solution to second order 

in E’. Further, they applied the linear stability theory to pre

dict the onset of burst.

As shown by Frankel and Acrivos ( 12) in 1970, the surface of 
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the drop in a system of axes moving with the center of the particle 

is defined by

x1x o A X1X X X
r = + + 0(3)

(2-13)
where r = (x^x^)f, and E*  = Ga^c/26".

The tensor F. . and F. .lw1 ij ijlm are chosen to be symmetric with respect 

to any permutation of their indices and to have zero contraction.

Their expressions will depend on the dynamic behavior of the system, 

i.e., on the type of the undisturbed creeping flow field.

For a plane hyperbolic flow field,Barthes and Acrivos derived 
the following expression'for D

3 E’D + 105
D -------- -- ----- T,--- ------------------------- x <2"14)

2 + 3E’S + E^( 18SV5 + 6DV5 +

where S = Fn +,.F22, D = Fn - F22

sllll=- 35- K 5 - 76V '81S2 + 57D2)

+3 ^1 — 9 ^2Dinr- 55 V s " V bf SD

Here S and I) are determined from the following equations at steady 

state,

a-S + §^|aoD-aq(3S2-D2)/2 J + E,2S [ cq(3S2+D2)/2 +D(c>,+Cz/3)
* D \ 5 x D o

+Cp/3 + 2°,^ = 0

atD + 2a0+E’S(a2+a3D) + E'2 ^(20^0^0) (3S2+D2)/2 +c^’52+

c6(S2+ D2)/2+D(2c2+c74-2c5)J = 0 (2-15)
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The coefficient a0»...a^ bo,b^,b2iC^,... , Cr,, are known rational 

functions of A. , and their expression are given in Appendix I .
Solving numerically Equation (2-15) for various values of E* , 

we are able to construct the prediction curve, DpVS. E*  The compa

rison with experimental data will be shown in Chapter 4,

Before ending this section, we would like to point out the dif

ferences between these theoretical works. There are various pertur
bation approaches to the solution of this problem: 1) expansion in 

terms of a drop deformation parameter, G, 2) expansion in terms of 
dimensionless group E = Ga)cZgr , 3) expansion in terms of X . Taylor, 

Chaffey and Brenner, and Barthes and Acrivos used E as the expansion 

parameter; Taylor also used On the other hand, Cox obtained a 

solution expanding in terms of , by assuming only the. drop defor

mation be small and of order €-, where !•
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2-2-2. Dimensional Approach For Viscoelastic Fluids

All of the equations described so far are only applicable to New

tonian systems, and the results have been expressed in terms of Dj, E, 

and viscosity ratio, However,for a viscoelastic drop, some addi

tional groups are expected to arise in these problems which are due to 

the complex rheological behavior of the fluid.

To date, theories for the deformation of non-Newtonian drops are 

not available.- Nevertherless, a dimensional analysis can be used to 

identify the important characteristic groups once the rheological equa

tion of state is specified. For this purpose, the modified form of the 
Bird-Carreau (1968) model was chosen to characterize the fluid rheolo-i 

gical properties. According to this theory, the constitutive equation 

is expressed as

ty =-j •*  f) ricj«') - rr5ct')J tt' (2.1.6)

with memory function as:

_[4/. (2-17)

and finite strain tensor as:

rciw)=-3ij<x)+(dX^x'm) (r"cx') (2.18)

= - (2-19)

Where x^, x| : material coordinate of fluid element at time t and t*  

respectively

g^j s contravariant and covariant components of the metric 

tensor
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II(t): second invariant of the rate of strain tensor

The material constants X|p» 3X1(1 A2p are rel-a'te<1 empirically 

to other five parameters, which can be determined from simple vis

cometric data. These parameters are defined by

। X^p—(2/(p+l)) , \2p=X2(2/(p+l))C<2

(2-20)

where to
Xl» Xg1

1 ’ ^2 *

zero shear viscosity

time constants

slope parameters

Therefore, for a viscoelastic fluid drop in a plane hyperbolic 

flow field of a .Newtonian fluid, the physical parameters occuring in 
the problem are the extensional rate C^£(of the undisturbed flow), the 

initial (undeformed) radius a of the drop, the interfacial tension g", 

the viscosity of continuous fluid ^c, and the five parameters of drop 

fluid, ^^X^, Xg’ ^2*  Here we assume a neutrally buoyant drop. 
Six dimensionless groups can be formed from these quantities: Ga^c/^- , 
j^j/^c’ X^, X.j/^2, <X1, CX2. The deformation is then

D * p (Ga^/y , X1/\2, o<1, C<2) (2-21)

As reported by MacDonald, Garreau, and Bird, the ratios X yx
1/ A2’ 

Xi/o<2 are more or less constant for a large number of viscoelastic 

fluids. Assuming this to be the case, we can simplify Equation (2-21) 

into:

D =3) (Mc/s-- M/a-lc - <2-22)
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This is the equation which will be used to analyze the experi

mental data of viscoelastic fluid drop in Newtonian fluids. For a 
Newtonian drop, X^= 0, <X^= 1, Equation (2-22) becomes

D = P(Gatc/(5- , X ) (2-23 )

Comparing with Equations (2-10) and (2-12), we find that the latter 

result is consistent with the theoretical relations given previously.

In the case of a viscoelastic drop, the deformation depends not 
only on E, \ , and(X^, but also on /ay^c= T. Physically this 

group XjL5'/aY^c can be considered as the ratio between the characte

ristic time Xi viscoelastic fluid making up the drop and a ^c/^»

a characteristic relaxation time of the drop under deformation.

2-3- Breakup Of A Deformed Drop and The Deformation At Burst

The deformation of a suspended drop will increase gradually and 

attain an equilibrium state, when the extension rate of the continuous 

phase is increased until a critical value Gc/2 is reached, at which 

point the drop will break,. For Newtonian fluids, this critical value 

is a function of the viscosity ratio, X , with the following important 

properties:

if G <. stable deformation obtainedc
if G > Gc continuous deformation and breakup

To date, almost no theoretical equation exists to predict the 

critical shearing rate for a given fluid system (both Newtonian and 

non-Newtonian), However, an interpretation of this phenomenon can 

be obtained simply by using dimensional analysis. Here the critical 

extension rate at which breakup of a deformed drop occurs can be ex
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pressed as a function of all the physical parameters occuring in the 

problem, i.e.,

=c = °c( Pc’ Pd' VU- Id- a- =■> (2-24-a)

for a Newtonian drop in a Newtonian continuous phase, and
Gc = * Gc^ ’Zc'^oD’ fc’ fD? Al’ ^2*  °^1, ^2’ (2-2^)

mation, presents the ratio of X^, the characteristic time of the VE 

fluid, and 1/GC, the characteristic time.of the flow field.
Equation (2-26--b) will give Equation (2-26.-a) as a special case 

when X^= 0 and 1, i.e., when the drop is Newtonian.

G. I. Taylor interpreted the critical condition of breakup as 

the point when the maximum value of distributed over the drop .

for viscoelastic drop in a Newtonian continuous phase. By applying 

dimensional analysis, the above two equation can-be rewritten as:

Vic- Vfc- (2-25-a)

and Ec=^,( Vct/lc- V(c- Pc^V’lc- ^c^l-\A2- V (2-25-b)

Here, the Bird-Carreau model is again used to characterize!the 

properties of the viscoelastic material. Neglecting inertial effects, 

and gravity forces (a neutrally buoyant drop), and making use of the 

constant ratio, 2» o<i/c><2*  as rePorl’ed by MacDonald etc.,.we can 

simplify Equations (2-25-a) and (2-25-b) into

Bc = Bc(V,U) (2-26-a)

E= = Ec( Vn.c- Vl-*!  > (2-26-b)

where E * G a • G L is the "Deborah number", which, similar 

to the T’ dimensionless group in the correlation for VE drop defor
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surface tending to disrupt the drop exceeds the force, due to surface 

tension, tending to hold it together. Based upon this definition, and 

assuming that Equation (2-5) holds, Taylor indicated that the drop 

will burst when'

(2-2.7)

Further, if Equation (2-10) is used in this equation we obtain the 

critical deformation, i.e., the deformation at which the drop begins to 

break. This is given by

(2-28)

In using these last two results, it must be kept in mind that 

they are based on a small deformation theory. . .
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CHAPTER 3

EXPERIMENTAL APPARATUS, MATERIALS, AND PROCEDURES

3-1. Experimental Apparatus

Two four-roll devices, one built by W. K. Lee during his Ph. D. 

work, the other built during this study, were alternatively used to 

produce the plane hyperbolic flow field required in this experimental 

-investigation^—We will term these two devices respectively as "mo- 

dified four-roll device" (MFRD, built by W.K. Lee), and "four-roll 

device" (FRD, built in this study). The MFRD was built with the 

four rolls mounted on the comers of a 4 X 3 -inch rectangle in order 

to obtain the best approximation to an uniaxial extensional flow 

field along the X-axis. According to the theoretical analysis of 
Lee (20), the flow field produced by this device can also be ex

pressed approximately by Equation (2—1) for the area around the stag- ■ 

nation point, i.e., X=0, Y=0. The details relating to the construc

tion of the MFRD was explained in Lee’s dissertation.

The four-roll device built in this study is similar to the MFRD, 

with a change in the driving machanism and the location of the rollers. 
It consists of four identical plexi-glass cylinders, Ij" diameter and 

3i" high, which were-mounted at the comers of ^4 inch rectangle, 

as shown in Figure 3-1*  These cylinders are immersed in the conti

nuous phase, whibh was floated on a heavier low viscosity fluid and 

contained in a 13X13X^4 inch plexi-glass box with a removable cir

cular cover at the top. Each cylinder was mounted in the box with a 

teflon bearing installed in the top plate to hold the upper end in 

position, and with a sealed ball bearing at the bottom plate to su

pport the shaft which extends through the bottom plate and connects
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Y

Figure 3-1. The scheme of Four-Roll Apparatus
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to the drive system below (see Figure 3-2, 3-3)•

Figure 3-1 shows schematically the FRD built here to experi

mentally examine the drop behavior. The four rolls are driven by 

two separate variable speed motors, one driving rolls one and two 
and the second deriving rolls three and four. The flow field pro

duced is avplane hyperbolic flow field in which the velocity com

ponents in the X arid Y directions are given by*  

----- vy = GX/2;.- Vv = -GY/2, V7 0”.----------- -------------------------  
Where G/2 is the extension rate.

Photographs of the four-roll apparatus are shown in Figures3332 

and 3-3*  As shown, the four rollers are driven by two motors mounted 

behind the bottom plate of the box. Here a no-slip plastic belt and 

gear pulley system is usedrin the-drive mechanism. TheTspeed rof 

these two variable drives are controlled by an electric controller 

in which two speed adjustments are possible, one regulating the speed 

of both motors together, the other regulating the speed of.one motor 

relative to the other. By adjusting these two control knobs , we 

could easily match the motor speeds and control the drop at the stag

nation point. The speeds of the motors are determined directly from 

the reading shown on the digital voltmeter which is connected to the 

outputs of two tachometers installed inside the motors. The actual 

roll speed and the meter reading are related by
W (RPM) = 1.75xvolt for 100-1 ratio gear box

W (RPM) = 17.5xvolt for 10-1 ratio gear box

for both tachometers.
According to W. K. Lee (20), the extension rate, G/2, in the 

four-roll device should be equal to a constant times the roller speed. 

However, we found that the accuracy of this statement depends on the
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Figure 3-2. The Four-Roll Apparatus (Front View)
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Figure 3-3. The Four-Roll Apparatus (Top View)
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viscosity of the fluid used as the continuous phase. Two series 

of velocity measurements of tracer particles dispersed in two dif

ferent continuous phase (80% glycerine solution (low viscosity) and 

Dow Corning Oil 510 with 300 poise) were carried out to esta

blish the relation between W and G. The velocity fields corres

ponding to different roller speeds were determined from motion,picture 

of the movement of aluminium tracer particles in the fluid. Also, 

small air bubbles were used for the same purpose. The extension rate, 

G^for each roller speed was calculated from the following, equations:

G = 21n(X (3-2-a) 

G =-21n(Y (3-2-b)

By measuring the time elapsed for a particle to move between 

two different X (or Y) positions, we could determine C^for each 

roller speed. The accuracy of Equation (2-1) in describing the 

flow field near the stagnant (observation) point 0 in Figure 3-1 

is confirmed from such experiments (see data in Appendix II). The 

results are plotted in Figures 3-^ and 3-5 for the 80%- glycerine 

solution and the silicone oil ( 300 poise), respectively.

The data for the glycerine solution deviates from a straight 

line as W reaches about 15 RPM and higher. On the'"Other hand, the 

data tor the silicone oil fall approximately on a straight line 

for roller speeds up to 50 RPM. The deviation from a straight line, 

we believe, is due to the increasing inertial effects as the speed 

is increased. Since the viscosity of the silicone oil is about 100 

times greater than that of the glycerine solution, it is expected 

that the linear relation between G and W will hold for roller speeds
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significantly higher than even the 50 RPM measured here.
In this study, silicone oils with ytc= 103 poise and 300 poise 

were used as the continuous phases. The relationships between the 
roller speed, Wf(RPM), and the magnitude of the extension rate, G/^ , 

are taken as:

G (sec ^) = O.O556W Four-roll device (3-3-a)

--- --- G (sec—= 0.0322W----- Modified four-roll device—(3-3-b)----

Equation (3-3-b) was derived and experimentally verified by 
Lee in his dissertation (20). Extension rates from 0.0048 sec”^ 
to 21 sec”l can be obtained with the FRD.

The continuous phase was floated on a heavier, low viscosity 
fluid (a water-glycerine solution) for the purpose of reducing the 

end effects of bottom wall. The drop was introduced into the con
tinuous phase by injection from a syringe through the circular win

dow at the center of top wall. By regulating the speed of two 

drive motors, the drop could be adjusted to the center of the appa- 

ratus, which was also the stagnation point of the flow field? The 

behavior of the drop was observed through a Wild-M? microscope, which 

gives a magnification up to 124 times. Photographs were taken with 

a Nikon PFM still camera connected to the microscope.

3-2. Material

Tables 3-2-1 to 3-2-3 show the properties of the fluid systems 

used in this experimental study. Silicone oil 5i0 and 200 were used 

as the continuous phase. Various fluids, including glycerine-water 

solutions, syrup, molasses, and polymer solutions (Separan AP 30 in



30

Table (3-2-1). Properties of Fluid Systems (Newtonian Systems)

* Drop Deformation Method

Continuous'Phasei Silicone Oil 200F

Yc = 10J poise, JSc =0-97 g/c.c.

System Drop 
Phase Yll> 

poiSe
k = S' 

dyne/cm o
Q 

• 
cr-vs9

1 Molasses 2828 27;^6 38.8 ** 1.45

2 R 353 3.42 34.6 ** 1.44 *

3 It 232 2.25 33.8 1.43

4 If 72.8 0.707 33-5 ** 1.41

5 ft — 42^5 0.413 35-0 1,40

6 II 30.7 0.298 37.0 ** 1.39

7 Syrup 8.8 0.085
* 

33-7 1.36 •

8 It 3.4 0.033 32.0 * 1.34

9 glycerol 2.59 0.025 28.5 ** 1.24

10 11 1.95 0.0189 29.0 * 1..24

11 It 0.62 0.006 26.2 * 1.22

** Pendant Drop Method



31

Table (3-2-2). Properties of Fluid Systems (Newtonian Systems)

* Drop Deformation Method

Continuous Phase: Silicone

= 300

Oil 510F 

poise, = 1.0 g/ c c.c.

System Fluid
Thread Id

poise
X - VK" A

(S' * 
dyne/cm

D 
g/c.c.

12 Molasses 2828 9.^2 26.80 * 1.45

13 tl 382 12.73
*

28.4 1.44

1^ •1 232 0.77 28.5 * 1.43

15 tv 72.8 0.2^ 26.5 * 1.41 -

16 •I 30.7 0.10 26.0 * 1.39

17 Syrup 8.8 0.03 29.5 . 1.36

18
u..

Glycerol 2.59 0.0086
*

20.6 1.24

Table (3-2-3)• Properties of Fluid Systems (Viscoelastic Dispersed Phase)

Continuous Phase: Silicone Oil 510F
^G= 300 poise, -^c = 1.0 g/c.c.

Dispensed 
Phase

g/c.c.

u
poise sec

-1 sec
°^1 <X2 (S'**  

dyne/cm
2.0%, *

Sep AP 30 1.066 3364 11.2 49.5 66.5 3.04 2.71 18.5
1.5%II 1.058 1013 3.4 35-5 30.9 2.68 2.18 22.5
1.0% 1.056 381 1.27 21.0 22.0 2.56 2.10 25.0

0.75%
•1 1.056 159 0.53 11.1 6.94 2.48 1.78 26.0

g In 80-20 Water-Glycerine Solution

Pendant Drop Method
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20-80 glycerine-water solution) were used as the dispersed phase.

The viscosities of the Newtonian fluids were measured with a 
Weissenberg Rheogoniometer with the temperature controlled at 24.5°Ct 

which was the temperature of the laboratory where the experiments 

were conducted. The data checked very well with separate measure

ments using the falling ball method.

The polymer solutions were characterized by the modified Bird- 
Carreau model (1968), involving 5 parameters, i.e., Y). X1 , Xo» CKi 

o<2*  The physical interpretation of these parameters has been ex

plained in the last chapter. This model was used successfully by 
Flumerfelt (10) in a study of drop breakup of .viscoelastic fluids 

in a simple shear field.

In order to characterize all five material parameters, visco

sity-shear rate and normal stress-shear rate data were obtained with 

the Weissenberg Rheogoniometer with the temperature controlled at 

Generally,the lowest shear rate obtainable with this equip

ment is not low enough to determine Consequently, the zero
shear viscosities, ^Q, of the polymer solution were all measured 

with the falling ball tests with different diameter balls (31)- 

The parameters were then determined by a computer fitting of the 

B-C model to experimental data. These data and the predicted curves 
are plotted in Figures (3-6). and (3-7). . t the fitted parameters 

are shown in Table ,(3-2-3).

The interfacial tensions for the Newtonian systems were measured 
by the drop deformation method (assuming Taylor’s Equation (2-10) 

holds when Dj is small). In checking with pendant drop data ob

tained as a function of contact time of the phases, it was found
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that the initial contact time value of should be used, in stead 
of the final equilibrium value of 6T (as t 00 ) in the calculation

of the dimensionless group E = Ga^/g- » The reliability of the defor

mation method, based on Taylor's theory of small deformation, has’ been 

established by Rumscheidt and Mason (28).

For the non-Newtonian systems, the interfacial tensions at various 

contact times were also measured. The interfacial tension value used 

will be dependent on the contact time of the drop innersed in continuous 

phase.. The (S - t data are shown in Figure 3-8. The value corres

ponding to initial(5 min)contact time was used in the work here. The 

use of the latter was based on the estimated time which the drops 

spent in the continuous phase before the breakup experiment was com

pleted.

3-3*  Experimental Procedures

Figure 3-9 shows schematically the arrangement of the appara

tus used to experimentally examine the drop behavior. The micros

cope and camera (still or motion) were mounted above the center of 

apparatus. A lamp was put below the bottom plate to provide the 

proper illumination. With this arrangement, the drop could be viewed 

from the top or side. The initial drop size were measured with a ca
thetometer when (? = 0.

After locating the drop at the center, of the apparatus, with, the 

roller speeds being such that G<GC, the drop was seen to be deformed 

into a steady ellipsiod shape oriented along X-axis. Every effort 

was taken to keep the drop at center as long as possible. The drop 

shape was then photographed with the still camera connected to the
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Figure 3-9• The arrangement of Experimental Apparatus
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microscope. In Newtonian system, different drop sizes at different 

extension rates were examined to determine the deformation curves. 

On the other hand, in non-Newtonian systemm the deformation curves 

were obtained from measurements on a single drop size only, since, 

as pointed out in the last chapter, the deformation of viscoelastic 

drops depends on the T group, which for a given fluid system depends 

only on the drop size. By holding the diameter constant, we can 

hold T group constant, and canthen determine the deformation as a 

function of E.

The critical extension rate was determined by inserting a drop 

into continuous phase, and then gradually increasing the roller 

speed until the drop became unstable.
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CHAPTER

EXPERIMENTAL RESULTS

4-1. Deformation

Drop sizes ranging from 0.05 cm to 0.3 cm were used in the 

experimental study" of drop behavior. All Newtonian data were taken 

with the modified four-roll apparatus (MFRD); the data for the vis

coelastic systems were taken with the four-roll apparatus (FRD).

In this section, deformation data for a number of fluid sys- 

tem, both Newtonian and non-Newtonian, will be presented and com

pared with the theoretical equations of G. I. Taylor, Chaffey and 

Brenner, and Barthes and Acrivos, in order to check the relative 

accuracy and range of applicability of these theories. VJhere po

ssible, the relative effects of the physical properties will be 

specified and demonstrated.

A drop when suspended in the center of a hyperbolic flow fi

eld will be distorted into an ellipsoidal shape when viewed along 

the Z-axis, and its major axis will be along the X-axis and its 

minor axis along the Y-axis. In a- simple shear field (V = GY), 
the major and minor axes are rotated 45° from the orientation in 

the plane hyperbolic flow field. The deformation defined by Equa
tion (2-9), increases with extension rate, G/2, until a sharply 

defined critical value, G^, is reached, above which the drop bursts. 

Different drop deformation and breakup mechanisms were observed 

with Newtonian systems of different viscosity ratios. When G>G^ 

and\<0.5, the ends of the drop drew out into sharp points from 

which small droplets of disperse phase were released. When G^G_
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and X>0.5« in stead of developing pointed ends, the drop was 

pulled out into a thread, which increased in length until its dia-
-3meter reached the order of 10 cm. However there is no sharp 

boundary between these two cases (Fig. 4-1-)*  The deformation 

of a viscoelastic drop is similar to that of a Newtonian drop, 

but the mechanism of bursting into thread is somewhat different. 

The pointed end phenomenon was also observed in case of visco- 

elastic drops, however it happened even when A= 11.2 (2.0%-Sep—----

AP 30 solution), and , instead of releasing droplets from the 

pointed ends, the drop increased its length until the onset of 

burst. This is quite different from a Newtonian drop. Figure
(4-2)^ shows the deformation of a viscoelastic drop (2.0% Sep-AP 

30 solution) under various extension rates up to breakup.

4-1-1. Deformation of Newtonian Drops

Quantitative measurements of deformation of six fluid .systems 

were taken, and the results were represented in termsc-of the de
formation parameter, D = (L-B)/(L+B), and the dimensionless group, E.

Figures (4-.3) to (4- 8) show the experimental deformation 

data of six systems. A linear relation between D and E were observed 

in each case when D small, i.e., at small extension rates. If we 

assume Taylor's linear equation holds in this region, then the 

’interfacial tension can be determined from the slope of the linear 

portion by means of Equation (2-10). This method has been shown 

reliable by Rumscheidt and Mason (1966).

In order to show the reliability of this method, interfacial
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Figure 4-1. Typical Observation of Deformation and
Burst of Drops in Plane Hyperbolic Flovz Field
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Za=Q.1163 cm,G/2 = 0.0298 sec 2a=0.1163 cm, G/2 = 0.0506 sec

2a=0.1163 cm, G/2 = 0.0790 sec

Figure 4-2.

2a=0.1163 cm, G/2 = 0.1005 sec

Deformation of a Viscoelastic Drop at Various
Extension Rates up to Breakup (2.0% Sep AP30)
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Figure Experimental Deformations and Theoretical Lines
For Fluid System 2 (X= 3.^2)
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Figure ^-4. Experimental Deformations and Theoretical Lines 
for Fluid System 4 ( \ = 0.?07)
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Figure 4-5- Experimental Deformations and Theoretical Lines
for Fluid System 7 ( K = 0.085)
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Figure ^-6. Experimental Deformations and Theoretical Lines 

for Fluid System 8 ( \ - 0,033)
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Figure M— 7. Experimental Deformations and Theoretical Lines 
for Fluid System 10 ( \ = 0.0189)



U8

(L
-B

)/
(L

+B
)

Figure 4-8. Experimental Deformations and. Theoretical Lines 
for Fluid System 11 ( K = 0.006)
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tensions of two fluid systems at various interphase contact times 

were measured using the pendant drop method. • The drop shape was 

photographed with the system described in the last chapter. The 

resulting slides were then projected on a wall to make accurate 

determinations on drop shape; the magnification was in the order 

of 60 to 80, The interfacial tension values obtained with the 

deformation method are shown in Fig. (4-9).. As seen, the ini

tial contact values from the pendant drop method agree quite well 

with those from the deformation method.
■The circled dots in Figures (4-3) to (4- 8). show the de

formation results calculated with the interfacial tensions corr

esponding to zero contact time. Curves corresponding to Equation 

(2-10), (2-12), and (2-14) are also shown on each plot. It can 

be seen that the experimental data match very well with these 

theoretical curves for small values of E, but deviate away from 

the curves of Taylor, and of Chaffey and Brenner as E gets higher, 

and in fact in a reverse trend from that predicted by Chaffey and 

Brenner. The agreement with Acrivos’ theory depends on the fluid 

systems, i.e., on the viscosity ratios. The agreement is good 

for systems 2 and 4 (A= 3-4 and 0.70?). However, the deviations 

are quite significant for systems 7, 8, 10, and 11, where E can 

become quite large.

To summarize,the second order theory developed by Chaffey 

and Brenner does not appear to provide a better approximation 

than the first order theory of Taylor. Acrivos*  theory is quite 

good when A^.0.7, but completely fails to describe the deformation 

for systems with small A or alternately, in systems where large E 

values are required before significant deformation occurs.
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Contact Time (minite)
Figure 4-9a.;Interfacial Tension vs. Contact Time

Contact Time (minite)
Figure 4-9b. Interfacial Tension vs. Contact Time



It is quite interesting to find that Taylor's Equation (Eq. 

(2-10)) works fairly well as D goes up to about 0.2 for 3.^2 

and about 0.35 for \= 0.006, although this theory was derived 

for small deformation of nearly spherical drops.

There is a steep increase of the deformation group D, which 

occurs approximately when D = 0.350.55 for changing from 
0.0189 to 3*̂2,  and about 0.6 ***0,7  for \= 0.006. Therefore, 

the value Dc= 0.5» which was estimated by Taylor is not strictly 

correct; however, it is surprisingly good considering it results 

from a small deformation theory.

4-1-2. Deformation of Viscoelastic Drops

No theoretical relation has been derived for the deformation 

of viscoelastic drops. In this case, we use the dimensionless 

representations given in Chapter 2. In particular, we have

For a given fluid system, ^y0^z0, are fixed» and E and 

will depend on the experimental conditions, that is, the exten

sion rate and drop diameter. Consequently, the deformation data 

for the viscoelastic drop case shall be given with both E and 

specified in each case.

The interfacial tension corresponding to initial contact 

time was used in each case, and the experimental data are shown 
on Figures (4-10) . to (4-12). . In each Figure, two deformation 

curves with different values are shown. It is worthwhile to 

point out that, in all three fluid systems shown, data with di-
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for 1.0^ Sep AP 30 Solution

(L
-B

)/
(L

+B
)



53

for 0.75% Sep AP 30 Solution
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Figure ^-12 Experimental Deformations vs. E
2.0$ Sep AP 30 Solution
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fferent , i.e., with different drop sizes, fall on the same^'Lt-
linear line when the dimensionless group, E, is small, especially, 

for the 0.75f° and 1.0^ Sep AP 30 solution cases. This seems to 

indicate that within this range of E, the non-Newtonian effects 

are negligible. In other words, Taylor's linear equation for 
Newtonian systems would be applicable in this range, with ^ = ^oD/*2  

With this in mind, Equation (2-10) was also shown in each plot.

what we expected. As G1? a/^- gets large, the data , corresponding

values, start to depart slightly from each

other in each system. This effect can also be demonstrated in 

the breakup experiment, as will be shown in the next section.

The value of deformation where the breakup process begins is 
generally in fair agreement with Dc= f given by Taylor's ana

lysis for Newtonian systems.

^-2. Drop Breakup Results

4-2-1. Newtonian Systems

It had been shown both theoretically and experimentally that 

deformation of a Newtonian system depends upon \ and E only, and 

increases sharply as E approaches a certain value. Therefore, 

for a given fluid system with a fixed viscosity ratio, there must 

be a critical value of E, say Ec» above which the unstable condi

tion in drop deformation will consequently result in breakup of 

the drop. Remenbering that E is the ratio of viscous forces to 

interfacial forces, we, therefore, expect that large drop size, 

high continuous phase viscosity, high extension rate, and small 

interfacial tension, S' » will be associated with an easily dispersed

The comparison between the data and the curve seems to confirm 

to different T =



system. This can be explained and confirmed with the experimental 

results which gave an almost constant critical Ec with different 

drop diameters for given fluid systems. Figure 4--13 shows the 

constancy of Ec with various combinations of drop sizes for fluid 

system

All of the breakup results with the 11 fluid systems are 
given in Table 4-2-1 and plotted in Figure 4-14 in accordance 

with Equation (2-26-a) in chapter 2. The critical value, Ec, 

shown here for each system is an average value of several, experi
mental data like those illustrated in Figure 4-13.- The average 

percent deviations from the mean value are also shown in the Table, 

the later'being calculated from

ac °/ = _L yAt=c/o M 2- p
cc

where N is the number of individual experimental points taken, 

and Ec^, the critical E corresponding to each point, and E^ the 

average value of Ec^

The results are also plotted in Figure 4-14 . on a log-log 

scale with Ec and \= coordinates. The few data points

taken by G. I. Taylor and by Rumscheidt and Mason are - also added 

on this plot. These data fall on a curve, which shows a minimum 

in Ec at viscosity ratio somewhere between 1 and 2, with a slow 
increase in E as X is decreased from 1 down to 0.006, and a si- c
milar slow increase in Ec as X is increased from 2 or up. The 

minimum value of Ec, according to Figure 4-14 is approximately 

equal to 0.22. In order to compare these data, the corresponding
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° O.o 0.5 1.0

M

a (mm)
Figure ^-13 Constancy of EcWith Different Drop Radii 

Fluid System 3 ( \ = 2.25 )
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Table ^-2-1. Experimenatal Data of Drop Breakup of Newtonian 
Fluid Systems

Fluid
System Ec Deviation 

%
Range of
Diameter(cm)

1 27.46 0.263 2.2 0.09-0.14

2 3.42 0.241 2.0 0.10-0.15

3 2.25 0.233 2.8 0.07-0.14

4 0.707 0.249 2-5 0.11-0.16

5 0.413 0.237 1.8 0.12-0.17*

6 0.298 0.243 2.3 0.11-0.18

7 0.085 0.326 1.6 0.12-0.16

8 0.033 O.362 1.7 0.13-0.18

9 0.025 0.430 2.5 0.11-0.20

10 0.0146 0.445 1.9 0.13-0.18

11 0.0060 0.493 1.1 0.13-0.22



Figure ^-1^. Effect of Viscosity Ratio On E^ Required for Drop Breakup
in Plane Hyperbolic Flow Field
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experimental curve obtained, by W. K. Lee (1972) is also shown in 
Figure ^-1^... Lee's data fall onto an envelope curve above that 

obtained in this study, and show a minimum Ec (about 0.35) at the 

range of from 0.1 to 1, with higher increase rate in Ec at 

both high and low ends of \ • This difference , I believe, is 

due to the end effect, since Lee did not float his quite high vis

cosity (100 ~ 300 poise) continuous phase on a heavier low visco

sity fluid to reduce the wall effect caused by the bottom plate.

Similar experimental data, but in a simple shear flow field, 

has been reported by several investigators. A comparison is shown 

in Figure 4-15•> It is interesting to note that the minimum value 

of Ec in a plane hyperbolic flow field is only one-third of that 

(about 0.6) observed in a simple shear field, and that there is 

a limitation of the range of for possible drop breakup in
simple shear fields (\< 3*5)  • The ratio of Ec in a plane hy

perbolic flow field to that in rotational flow field becomes even 

smaller as the viscosity ratio , moves away from the minimum 

point (about \ =1) in either direction. Thus, for same mag

nitudes of G, the plane hyperbolic flow field seems to be more 

effective in drop breakup and dispersion than the simple shear 

field.

4-2-2. Viscoelastic Systems (VE Drop Phase - Newtonian Continuous 

Phase)

The relation for Ec in this case in quite different to that 

for Newtonian systems. In accordance with the analysis in chapter 2, 

the breakup data on viscoelastic systems can be described by:
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Figure Mr-15. Effect of Viscosity Ratio on Ec Required for Drop 
Breakup in Simple Shear Flow Field
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where C = G /2. Here the Bird-Carreau model was used to char- c c 
acterize the polymer solutions.

Four fluid systems were examined here (see Table 3-2-3 for

physical properties), and the results are shown in Figures ^-16 

to ^-19* *• The curves for each system were constructed by taking 

data with different drop sizes. It is quite interesting to find 

that the critical value of E increases almost linearly with De

borah number, up to about De = 10, and then goes gradually into an 

asymptotic constant value as De increases further. This can 

be seen from these figures, especially in the cases involving 
the 1.5% and 2.0^ Sep AP 30 solutions, where De values up to 22 

were obtained.
*

Similar experimental data in a simple shear flow field have 

also been reported by Tavgac in 1972. However, in his experiments, 

the linear increase of Ec with De was observed over the full range 

of De number studied, about 2<De< 250.

Thus, the plane hyperbolic flow" field seems to be attractive 

in the design of dispersion devices for VE materials in view of 

the leveling off of Ec as De gets large, since this may give a 

smaller Ec= Gca which means h smaller drop size can be

obtained for a given Gc.

If we extropolate the linear portion of Ec vs.. De to 

De = 0, we will obtain a' limiting value of Ec, which should be 

equal to that of Newtonian system with X= • As shown on 

these figures, the extropolated values of Ec for the 1.5% and



Figure 4-16. Effect of Deborah Number on Required for Breakup 
.of O.?5^ Sep AP 30 Drop - Silicone Oil



Figure M—17. Effect of Deborah Number on Required for Breakup 
of l.O^o Sep AP 30 Drop - Silicone Oil
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Figure ^-18. Effect of Deborah Number on En Required for Breakup 
of 1.5/s Sep AP 30 Drop - Silicone Oil



Figure 4-19. Effect of Deborah Number on Eg Required for Drop Breakup

of 2.0/2 Sep AP 30 Drop - Silicone Oil

o\ Ox



2.0% Sep AP 30 agree fairly well with the corresponding Ec in New 

tonian system with X= about 10% deviation were observed 

for 0.75% and 1.0% Sep AP 30 solutions.



CHAPTER 5

THE INSTABILITY OF LIQUID THREADS

IMMERSED IN ANOTHER LIQUID PHASE
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5-1• Introduction

The breakup of liquid drops in viscous systems consists of 

two distinct machanisms: 1) the breakup of the liquid drops into 

a cylindrical liquid thread,and 2) the breakup of the liquid 

thread into a number of smaller droplets.. The former process 

depends on the ratio of the viscous and interfacial forces for a 

given Newtonian fluid system as shown in previous chapters; the 

latter process depends on the stability of the thread to inter- 

facial wavy disturbances caused by certain external factors such 

as the mechanical vibration in the apparatus and fluctuation of 

pressure in the ambient fluid.

The breakup of liquid threads or jets has attracted the atten

tion of scientists for over a century, and is one of the most im

portant problems in capillary hydrodynamics. Practically, such 

problems are encountered in fiber spinning operations, internal 

combustion engines, and many emulsification and dispersion pro

cesses.

From considerations of minimum surface area (or surface po

tential energy), Plateau (23) in 1873 established that a cylin

drical liquid thread subject to surface tension will become un

stable if its length exceeds its circumference. By considering 

the stability of the disturbance wave imposed upon the thread sur

face, Lord Rayleigh (25) reached a similar conclusion in 1879» i.e., 



the disturbancewave will be unstable if Xw>2,n'a. This can also 

be revealed quite easily by considering the variation in capillary 

pressure due to the wavy motion on a cylindrical interface. Imagine 

an axisymmetrical capillary wave with length in the surface of 
a stationary thread (see figure ,Jr-l). ,

S - So <^os (5-1-1)

Then the pressure due to surface tension CT for an undistorted 

thread is?

Po= ( /zo< ) (5-1-2 )

and the pressure for the surface with axisymmetrical distortion & 

as described by Eq. (5-1-1) is:

p I a.*S  ” d^X J ” a?- ~ (5-1-3)

Hence the change of pressure due to distortion, after using 
Eq. (5-1-1) is:

AP = p - p0 = -^(1- (5-1-11)

Now it is obvious that a wavelength greater than the peri

meter of undistorted thread will produce an increase in pressure 
in the nodes ( £<0) and a decrease in the peaks ( £ 7 0). Conse

quently this will lead to an increasing distortion and finally to 
the breakup of the thread when £0 = a. When X w is less than 

2 IT a, the wave disappears according to Eq. (5-1-^).

Since viscosity can be considered a damping factor for the 

amplitude growth, the capillary breakup process will occur more 

rapidly in liquids of low viscosity; this will be confirmed by 
experimental breakup data in Section 5-^.
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Figure 5-1• Parameters of Surface Varicosity on liquid 
Threads

Most of the previous theoretical studies of this problem were 

restricted to different limiting situations by either eliminating 

viscous effects or inertial effects in the continuous or disperse 

phase. In 1935 Tomotika, using linearized stability theory, ob

tained a relation which included the viscous and inertial effects 
in both fluid media. The previous works of Rayleigh ( 26, 27) and the 

later work of Christiansen ( 6 ) are limiting cases of Tomotika’s 

general solution. The complete solution structure of such problems  

in terms of the characteristic dimensionless parameters has re
cently been given by Lee (20). W. K. Lee and Flumerfelt has re

considered this problem and obtained a more general relation in 

terms of dimensionless growth rate, wave number, density ratio, 

viscosity ratio, and Ohnesorge number. From this the different 

limiting cases considered previously by Rayleigh, Weber, and 

Christiansen were also derived. Unfortunately they did not se

lect the applicability criterion in terms of the independent 
dimensionless variables.for the limiting equations.

In the present work, we present a brief review of this work, 
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with particular emphasis on the approach used by Lee. In addi

tion, the applicable ranges of various limiting equations are ob

tained as well as some experimental results on the breakup phe

nomena associated with stationary and extending threads.. A histo

ric survey of this problem can be found in Lee’s Ph. D. disser

tation (20).

5-2. Basic Equations— A Stationary Viscous Thread In Another

Viscods Fluid

By following Lee, the equation of motion for the axisymmetric 

wave can be written in vectoral form as:

(5-2-1)
* *• \

Here cylindrical co-ordinates (r, e, z) are used, and V = (U, 0, W). 

Note that the non-linear inertial effects and body force effects 

have been neglected.

By introducing the stream function and by eliminating 
pressure terms, Equation (5-2-1) can be combined into one dif

ferential equation as:

=0 (5-2-2)

where

As shown by Tomotika, the above equation can be satisfied 

by the following relation:

t=Rt|(AHl(iir)*BrK,^r)tCrI,(nr)*prK,(nr))exp(o <t

(5-2-3) 



Where o4. is the wave growth ratej k is the wave numberj n is de-

fined as (k + )2, I and k are Bessel and modified BesselT P P
functions of order p, and A, B, C, D,are arbitrary constants to 

be determined by the boundary conditions.

The finiteness of physical motions at r = 0 and r = oo gives 

the following stream functions for the inside and outside fluids, 

respectively.

ipp= (AJ>rI1(ir)+C,vI1a«] J-') (5-2-»)

and i|-c.-(Bcrkl<krt-i-PcrB.l(.vnri)evf><»<t+^^ (5-2.5)

where Jt, = (k2+ and m = (k2+ ‘Vy^)2

The boundary conditions at the interface between the two 

phases are:

(1) The velocity is continuous at the interface,

Uc)ra<K f (5-2-6a, b)

(2) The shear stress is continuous at the interface,

e (5-2-7)

(3) The difference in the normal stress across the interface 

is due to the interfacial tension,

(ctrV (5-2-8)

Where and Rg are the principal radii of curvature at the inter

face .



These boundary conditions give four linear homogeneous alge

braic equations in terms of A^, Bq, C^, Dq. Nontrivial solutions 

exist only if the determinant of the coefficient matrix vanishes 

and thus we obtain the frequency equation as

with f1= 2Tr1Dx(xio-i1)+Tr2DiD+x(x2-i)x1 

X1 K1 K1

xi0 XDTo -XK0 -XCXo
= 0 (5-2-9)

2 2UX^I1 U(X2+X2)I1 2 2X^K1 (X2+X2)Kt

F1 F r2 P3

F2= 2-[riDX(XDID-I1)4-X(X2-l)l1

F3= - 2-TTlcX(XKo+K1)+ Tr2CK0

F^= - 2TTlcX(XcKo+K1)

XD=Xa= (X2+

Where X = ka,

a2P
, D a r p i(x 4-.. ? v... S)2

u = Vic

a2Pn -i
1^5)% xc=ma=

V IplX) • Ip“ Ip<XD) . Kp= Kp(x) , KP= Kp(Xc)

tt *rr TT S "TT ~(a *̂ c)c
1T2D-(gr^)S ' V20-(^r)S , Trw (jy4 - Tllc <6s.)s

Here a characteristic time G is used to define the dimensionless

growth rate S =d<6»

The above equation gives the relationship between X and S.

 



For various characteristic times, it can be expressed in terms 

of the following dimensionless groups: the viscosity ratio U, 
the density ratio G (=JD/jc), the ohnesorge numbers defined as 

ohD=(aS‘5D)Z/’lD and 0hC=<air5c,5/*lc-  the dimensionless growth 

rate S, and the wavenumber X.

In order to obtain-a complete solution structure, it is ne

cessary to define a number of different characteristic times ( 

see Lee (20)). These characteristic times are listed in Table 5-I 

along with the various dimensionless groups which can arise in 

the problem.

Table 5-1. The Characteristic Times and the Dimensionless

Parameters

ft - c

»-3fp 
ea(T

1 ohp U1Ohp

Ga<r X 1 ohi
/6r Ohl

al, 
0 (F /^hp u/ 1 u
ate
6 <r

\y 
^Dhp Me

1/ 
/u 1

6 ts ohp ^ohp »hp uohj

etc 0hc ohb
zu Ohl
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Note that the relation between the two Ohnesorge numbers 

is
G=Ohn= U 0hn (5-2-10)

U L/

Now it is clear that the whole problem can be expressed in terms 

of any three combinations of the quantities, U, G, Oh^, and 0h^ 

with S and X as dependent variables.

5-3- Limiting Cases and Bounds of Applicability

In this section various limiting cases of Equation (5-2-9) 

will be cited and criteria for their applicability will be indi

cated.

The important characteristics of thread breakup are the rate 

of the breakup process and the size of the droplets formed after 
» 

breakup. Experimentally, the maximum wave growth rate, S , and
* the corresponding wave number, X , are the direct measurements 

of these two characteristics. The selection of a criterion of 

applicability in each limiting case is obtained by considering 
* * the variation of S and X with the independent dimensionless pa

rameters as they approach the limiting values.

(A) Dominant Inertial Effects

Two cases can be considered in this category.
(A-l) Oh -* Oo , G^OhD-» oo t g->0 (Implicit: U 0)

By using )2 as the characteristic time and re

ferring to Table 5~1» we found that a dominant inertial effect 

implies 0hc—* and G20hp —> 00 .
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With Ohc-J> vo , G20hy —* Co 

limiting equation as

G —> 0, Lee has derived the

= Xd-x2)^/^ (5-3-D

with S* r = 0.819 and X*=  0.^85 being the maximum growth rate and

the corresponding wave number, respectively.
x ■ xNote that U = GO^/Oh^G2, i.e., U is equivalent to l/G20hD

for given values of G and 0h^. By substituting various values of 
1

0hc» G, U (corresponding to G2OhD) into Equation (5-2-9) and
* *numerically solving for S and X , it is possible to determine

i
the effects of 0hc, G, and G20h^ near the limit, i.e., 0h^~ 
G^0hD-* po , and G 0.

These numerical results are shown in Figures (5-2) (5~5)

for this particular case. Figure (5-2) shows generally the ef-
-i-

feet of G, 0hc, and G20hj) on S . Figures (5-3)^ (5-5) show the 
individual effect of each parameter on S*  and X with the other 

two being fixed at various values close to the limiting values.

It is clear from these results that the effects of G and Oh on c
S and X are quite strong and that of G Ohp is quite small when 

close to the limit.

Expanding S (or X ) in terms of G, l/0hc, l/G20hj-j ayrround 

the limit point (0, 0, 0), we obtain the following expression of 

S (or X ),

S\o.=.o) + (^)sX, t + (^\X3 i-

5Xo,o,o) = (<) X,+ 5 + X) Us.
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Where Xt= G, X2= 1/Ohc, X^= l/G20hD. 
. *An approximate conservative criterion for 57° deviation in S 

(or X ) can be defined as

s*(o,o,o)(5^)  > k1x1+k2x2+k3x3
where [(a%<£)e/^a^Xt\|)51l|!^|,,lthln (°’ °’ 0) and (X1' X2’ X3) 

for deviation. 
*#• *#•Since has the smallest effect on S' (or X ), we choose 

SuP(|d^‘|) and in ^X1» X2’ 0,00°5) as in Figures 5-3

and 5-^» 
# -it*Based on this approach, for 5% deviation in S and X , Equa

tion (5-3-1) is limited to the following conditions, 

7-f-.4-^t3o.o^hc1. 7.3,/^ < I F=r 5*  C5--3-I*)

|l(5.6^-+f.8^ht+ 10.3^^ | <1 fw X*  (S-3-lb)

Also for 5% deviation in S , Meister and Scheele (21) ottained

Ohc> 36

as the restriction on Equation (5-3-1) for the case of a gas jet 

in a low viscosity liquid by simply neglecting the effects of G 
and l/G20hp.

However, with typical values of 0.005 g/c.c. for gas and 
x

1.0 g/c.Q. for aqueous liquids, and with negligible effect of G2Ch?), 

Equation (5-3-la) requires that

48

Therefore, simply neglecting the effect of G even in the case 

of gas jets in low viscosity liquids is not strictly correct.



•X- J.Figure 5-2. The Variation of* S with G, 1/Ohr, and l/G®0hr. 
in The Case of (A-l)

0.
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Figure 5~3«
* *

Variations of STn and X with G
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G = 0.001

0.0 0.1 0.2
l/0hc

* *Figure 5-U. Variations of STr and with l/0h

-----7—1------------------------------l/G20hD= 0.0005
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Figure 5~5* Variation of and X with l/G^Oh^

l/G20hD
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(A-2). Oh^—^oc, Ohc/G2 —» uo » G(Implicit U—

By taking 9^^ as the characteristic time, it can be seen 
x 

that dominant inertial effects imply that Oh^ and Ohg/G2—^>00.
.1

Note also here that U is equivalent to Oh^/G2 for given Oh^ and G.

The limiting equation is:

SID= X(1-X2)I1/IO (5-3-2)

* #with SQ^= 0.3^, XQ = O.696 as the critical growth rate and wave

number.

The most sensitive parameter in this case turns out to be Oh^. 
For 5% deviation in SjD and X J Equation (5~3-2) is limited to

conditions where  

For S* *D: 3&^/ohj> < I (5-3~2a)

For X* : AO-3/5h, + (5-3-2b)

Using the same typical values of density for gas and aqueous
* *#■ 

solutions, we found that errors in S and X assiciated with G and
AG2/Ohg are almost negligible. Therefore, for a low viscosity liquid 

jet in a gas, the restrictions can be rewritten as:

For S*D 0hD > 39 (5-3-2a’)

For X* 0hD > 20 (5-3-2b*) 

(B). Negligible Inertial Effects as Compared with Viscous Effects

In this case we have
U I j Ohc~^ 0 , °^D 0 »

and L) > I > 0 , 0 .



By expanding the functions in the second and fourth column
2of Equation (5-2-9) in ascending powers of 0hc and UOh^ (or Oh^ 

2and Oh^/U for U > 1), and then letting these two parameters pass 

to zero, we can obtain Tomotika’s special equation corresponding 

to negligible inertial effects as

K. -XK - K.1 ol 1 o l

In XI1-Io -K XK.- K 0 10 O 10

UI. UXI K. -XKlol o

G1 G2 G3 G4

= 0 (5-3-3)

(x2- i)i1
G2 = U(I*+  XI*-  Io)s

» a2- di1where G. =- UI.S + --- -gr-—11 1 2X(^U )
96*

G,= K' S 

g4= (k'+ xk"+ Ko)S

Here Gy^ was used for the case U>1 and 9y^ used for U 1. 

We will not consider the bound criterion for this equation, since 

it is still quite complicated and not convenient for simple appli

cation. Two limiting equations can be derived from Equation (5-3-3) 

(B-l). U->0, Oh2,—*0,  UOh2 —> 0

In this case, Equation (5-3*3)  can be simplified to
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 (l-X2)/2
VC I 1+X2-(XKo/K1)2 (5-3-4)

with S =0.5 and X = 0.0.o o
The numerical results for this case indicate a dominant

*
dependence of S on U, a slight dependence on 0hc, and very 

2little dependence on UOhp (equivalent to G). This situation 

actually is a result of the assumption that the viscous effect 

is dominant in this limiting case.
* . 2 2The slope of SyC v.s. U with Ohg and UOhp —>0 increases 

quickly as U 0. As an approximation, an average slope was 

chosen to set up the criterion. The restriction in this case 

for 57° deviation in S isi

14000U+8.00h2+0.08U0h2 < 1 (5~3-4a)
V JJ

The large coefficient of U is quite reasonable since Equa

tion (5-3-4) was derived by Tomotika for the system of a "vacuum" 

jet in a low density viscous medium.

(B-2). Oh2 0, 0h2/U —> 0, U iX> 
JJ u

The limiting equation now becomes (using 9^ as the char

acteristic time)
r (X2-l)/2

Syr)— I g / / 72 I (5“3“5)

*with S = 0.166 and X = 0.0.o o
2 2The same type of dependence on U, OhZ\ and Ohf/U was observed JJ u

as in (B-l). According to the numerical results, the applicabi
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lity restriction on Equation (5-3-5) is

903/u+84.30h2+0.420h2/u < 1 (5-3~5a)
U

This case corresponds to that considered by Rayleigh for a 

low density viscous jet in a "vacuum" medium.

5-4. Experimental Studies

In his experimental studies on the breakup of a liquid drop 

in an extending flow field in 1934, G. I. Taylor came across two 

interesting and essential observations which initiated two papers 
by Tomotika (35*36)  concerning the instability of stationary and 

extending threads. G. I. Taylor observed that when a drop of 

black lubricating oil was surrounding by syrup, the thread formed 

by continuously stretching out of the deformed drop did not at - 

once break up into small drops but remained cylindrical for some 

time and finally broke up into many tiny droplets after being 

stretched into a quite thin thread. On the other hand, 

if the flow field was abruptly stopped at some stage, the thread 

gradually broke into a number of small drops spaced at nearly 

regular intervals, although it had seemed quite stable vzhile the 

surrounding fluid was in motion.

As mentioned by Tomotika, the base flow in the surrounding 

fluid may have a stabilizing effect which suppresses the break

up of the thread. This can be visualized in the following way. 

As the thread is draw out by the motion of the surrounding fluid, 

any varicosity formed at the interface would have its wavelength 

increased. That is, even though a disturbance wave at the inter-
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face of the thread might have the tendency to amplify, the base 

flow associated with the thread diminishes this effect by "stre-  

tching out" the wave and as a result delays the ultimate breakup.

The formation of liquid threads in other liquid media is 

quite important in the formation and extrusion of synthetic fibres. 

In particular, such processes are encountered in wet spinning 

processes where the liquid polymer thread is extruded and drawn 

in a liquid bath.

Experimental data on thread breakup under both conditions, 

stationary and extending, will be presented in this section and 

compared with Tomotika’s theory of stationary liquid threads in 

liquid media.

5-^-1• Experiments on the Instability of Stationary Liquid Threads

The experiments were conducted in the four-roll apparatus 

described previously and the conditions similar to those employed 

in the study of deformation and breakup of liquid drops. Stationary 

liquid threads were obtained by instantly stopping the flow field 

which had pulled the liquid drops into cylindrical threads. The 

whole process was photographed with a movie camera and then the
* /dominant wavenumber X = 2Ka/Xv, was calculated by measuring the 

thread diameter and wavelength .
V#

Silicone oil F510 ( 300 poise) was used as the continuous

phase and different syrup, molasses, glycerol solutions, and seve

ral polymer solutions as the dispersed phases covering from

0.008 to 10.

The key dimensionless parameters in case of polymer threads 

can be expressed as, according to Led's analysis,
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S = S(X, U, G, 6<1, T*  =_ Y
dTHloD

therefore, the dominant wavenumber, X , ist

.g.
X = X (U,SG, OCl, -dTHtoD

(5-^-1)

(5-2+-2)

Here the effects of 0hn and 0hr have been neglected, since in the 

case of a liquid thread immersed in a liquid medium these two pa

rameters are usually very small. Moreover the density ratio can 

also be considered as a minor factor and neglected.
*

The measured data on the dominant wavenumber, X , are plotted 

on Figure 5-6 (including some data points for extending threads) 

with as abscissa. Data for the polymer threads were speci
fied with the corresponding values of °C (and y- . The numerical

results for Tomotika’s theoretical equation for negligible iner

tial effects, i.e., Equation (5-3-3)» are also shown in Fig. 5-6.

The experimental results are in fairly good agreement with 

the theoretical curve from Equation (5-3-3), except possible for 

those data with A= 0.0083 which show some deviation from the theo

retical curve. This might be expected, however, since the inertial 

effect of the thread phase, neglected in Equation (5-3~3), is gett

ing more and more important as \ becomes smaller and smaller.
The numerical results from Equation (5-2-9) were added fork= 0.0083.

■aWavenumber data, X , for four polymer solutions are also plotted 
in Figure 5-6. The results with X<3.^(O.75^f and 1.5% Sep 

AP 30 solutions) were below the curve for Newtonian threads, and 

those with X= 11.2 (2% Sep AP 30 solution) were a little bit higher. 

This trend agrees qualitatively with the numerical results of Lee's 
theory (Figure 3-15 in his dissertation).
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X*

Liquid Threads in Liquid Media
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It is interesting to note that systems with high viscosity 

ratios always take longer periods of time to show unstable vari

cosities at the interface than those with smaller viscosity ratios. 

This may reveal that the viscosity of the dispersed phase may have 

a damping effect on the growth of unstable waves.

In order to compare the relative instability between Newton

ian threads and viscoelastic threads, the amplitude of the vari
cosity, 5 » at various times before breakup were measured on two 

individual systems with same viscosity ratios, one for a Newtonian 

system, and one for a viscoelastic system. The fluid systems are 

indicated on Figure 5-7• The results are plotted on a semi-log scale 
paper with ^/a and t as the co-ordinates, as shown in Figure 5-7• 

Here 5/a = 1 corresponds to the breakup point and t corresponds to 

the time before the breakup point. The comparison here shows that 

a viscoelastic thread is more unstable than a Newtonian thread 

except possibly for a short period before the breakup point. The 

almost linear relation for the'Newtonian thread agrees with Tomotika’s 

linear instability theory.

In most of the experiments here the breakup pattern was quite 

regular with the thread being broken into almost equal size drop

lets at equal intervals with some smaller satellite droplets between 

them. The ratio of diameters of the final main droplets and that 
of the thread ranged from 2.0 to 2.6 as shown in Appendix II (C-l). 

In some case, superimposed waves were observed during the breakup 

process; this might be due to some external mechanical vibration 

in the apparatus or due to a non-uniform interfacial tension distri-
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Figure 5-7• The relative Amplitude, ^/ae>vs. Time
for Stationary Threads
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bution caused by the impurity absorbed at the interface.

5-4-2. Experiments of the Breakup of a Liquid Thread under 

Extension

In this section some experimental results are presented on , 

the breakup of an extending thread; that is a thread being conti

nuously stretching out by the outside base flow field until break

up occurs. G. I. Taylor first, reported that the sizes of droplets 

formed by an extending thread were much smaller than those formed 
by a stationary thread. Later in 1936 Tomotika developed a theo

retical analysis of this phenomenon and found that the extension 

of the thread has a stabilizing effect in constraining the in

crease of any initial disturbance to a finite value. Besides this, 

the disturbances could occur at various stages during the elong

ation and it was shown that these wave disturbances could increase 

in very different proportions.

In order to reveal what these results imply, let us consider 

the mechanism for breakup problem. Here there are two main forces 

counteracting each other, i.e., the viscous stretching force tending 

to stablize the disturbances and the interfacial force tending to 

promote the disturbances. In our experiments, we maintain a con
stant stretching rate, C = 7T/2, and start with a thread of somewhat 

larger diameter than that which finally exists at the point of break

up. As time goes on, the thread diameter decreased and since the 

interfacial tension force is inversely proportional to the diameter, 

the interfacial forces increase and eventually dominate the viscous 
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forces- breakup then occurs. This suggests that there exists a 

critical thread diameter associated with each given extension rate, 
C = G/2. Therefore, an experimental correlation for this problem 

can be expressed as

dTH= 5c’ 5o*  (5-^-1)

where d^ is the critical thread diameter. Based on dimensional 

considerations, this relation can be transformed into the follow

ing dimensionless form:

ETHC CdTHlc//6' ETH^ ^/^C’ OhD ^ThId

(5-^-2)

In this study, all the fluid systems were with 1 and
small 0hD, and therefore Equation‘(5-^-2) can be simplified to

ETH()( (5-^-3a)

Assuming that the main droplet diameters and the thread di

ameter are in a nearly constant ratio, we can have

CdDP^c/s*  = EDPC^l/tc^ (5-^r3b)

Equation (5~^-3b) is used to analyze the experimental data, since 

the measurement of the final main drop diameter is easier and more 

definitive than the thread diameter. Here dpp is the final drop

let diameter.

The same viscoelastic fluid systems studied in the stationary 

thread case were also tested here. The correlation function,
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similar to that in viscoelastic drop breakup, is

VDpC/<$- = Edpc( >2oD^c, De = CXp otp

Before presenting any experimental data on extending threads, 

we have to establish the relation between the actual extension 
rate of the thread and that of the external flow field (G/2). For 

this purpose, the change of thread diameter with time for three 

cases ( one Newtonian thread and two viscoelastic threads) were 

measured. The instantaneous axial extension rate of the thread 

was calculated from the instantaneous diameter dmTr from

1 dL = o 1 d^dTH^ 
L dt dTH dt (5-^-5)

The above equation was derived with the condition of cons

tant thread volume for an incompressible fluid. In particular, 

for a long thread, the volume is

^dTH
V = —---  L = constant

2
and dV  XTa dTH dL  n 

dt 21,aTH dt S dt u
2 TV LdJH

Dividing the above equation by —--- , we obtain Equation (5-^-5)•

The measurements of d^ as a function of time for the three 

systems studied are plotted in Figure 5-8. The data reveal that 
the threads were extending at a constant rate, defined as C = T^-, 

and the extension rates as calculated by Equation (5-^-5) were 

quite close to those for the basic flow field calculated by Eq. 

(3-3a)« This observation seems to imply that for the systems 

studied, the viscous forces in the thread which resist the exten

sion are small compared with the forces of the continuous phase
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which act at the thread surface and cause the extension of the 

thread.

If the extending threads are allowed to continually extend 

at a given rate, they will eventually breakup. This breakup pro

cess was photographed with a movie camera, the conditions being
the same as before ( T = 2^.5°C ). In addition to measurements 

of EDPC we also measured the critical wavenumber, X , The re

sults are shown in Figure 5~6. Here we found that all of the 

data fell below the curve of a stationary thread. This seems 

contrary to what Lee reported in his dissertation that the ex

tending critical wavenumbers are similar to those in the case 

of a stationary thread. However most of his data were also be
low the curve of the stationary case (refer to Fig. U—5 in his 

dissertation).

The data of E^pQ on Newtonian threads are plotted, according 
to Eq. (5-^~3b), on Figure 5-9 with viscosity ratio, X , ranging 

from 0.008 to 10. It is seen that the value of E^p^ increases 

as the viscosity ratio decreases; and the slope is higher and 

higher as X becomes smaller and smaller. This implies that the 

higher the viscosity relative to the surrounding media, the smaller 

the diameter of the thread before breakup occurs. In other words, 

we can obtain smaller drops and finer dispersions in such systems 

than with systems with smaller viscosity ratios, all other condi

tions being the same.

In Figure 5-10, we plotted the values of (Epp^)^ in term 

of De = GX^/2, for three Sep AF 30 solutions according to Eq. (5-^-^)• 

In all cases, the values of (E^p^Jyg increase more or less linearly



Under Extension
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Figure 5-10. The effect of Deborah Number on
for Viscoelastic Threads Under Extension
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with De. The corresponding values of EDpC for Newtonian cases are 
also shown on Figure 5-10. In all three cases, (Edpc^ve^^dPC^N

are always greater than 1, under similar conditions. If we con
sider the same values of CT, C, and for the comparable systems,
the ratio, (EDpG)yE/(EDp^)N, would be equivalent to the ratio.of 

the broken main droplet sizes. This seems to imply that the ex

tending threads of polymer solution are more unstable than the cor

responding- Newtonian threads under similar kinematic conditions.
In order to substantiate this, the measurements of S"(t)/a(t) 

at various times up to breakup were taken on two comparable systems 

with the same extension rate, C. The Newtonian thread, used here, 

with lower viscosity and higher interfacial tension than the polymer 

thread should be more unstable than a Newtonian thread with same values 

of and 5* as the polymer thread. But the results shown on Figure 

5-11 still indicate the the Newtonian extending thread is more stable 

than the polymer extending thread, when both threads are extending 

at the same rate.
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Figure 5~H The Relative Amplitude, S/a (t), vs. Time 
for Extending Threads
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CHPATER 6

CONCLUSIONS

The drop deformation and breakup as well as the instability 

of liquid threads (both Newtonian and viscoelastic fluids) have 

been studied experimentally in this thesis. Here, we summarize 

the main conclusions in this work as follows:

I. The second order theory developed by Chaffey and Brenner 

does not seem to provide a better approximation than the 

first order theory of Taylor in predicting the drop defor

mation in Newtonian systems. Taylor's theory (Eq. (2-10)) 
works fairly well as D = (L-B)/(L+B) goes up to about 0.2 
for \(=,?d/^q) = 3»^2 and about 0.35 for X = 0.006. Where 

L and B are the major and minor axes of the deformed drop, 

and and are the dispersed phase and the continuous 

phase viscosities. Barthes and Acrivos' theory is quite 

good when X 0.7, but fails to describe the deformation 
for systems with small X • The drop breakup occurs approxi 

mately when D = 0.35^^055  for X changing from 0.0189 to 

3»^2, and about 0.6'>-0.7 for X= 0.006. Therefore, the 

value Dq = 0.5 which was estimated by Taylor is approxi

mately. correct.

*

II. The range of viscosity ratio within which the drop breakup 

can occur in a plane hyperbolic flow field is wider than 

that in a simple shear flow field. The system with X be

tween about 1 and 2 seems to be the most favorable system 
for dispersion processes. The ratio of E^G^a^/(where
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is the rate of strain at burst, a is the drop radius, 
and is the interfacial tension) obtained here to that 

in a simple shear flow field is only about 1/3 at X = 1, and 

becomes even smaller as the viscosity ratio takes values dif

ferent from 1. Thus, for the same value of G, the plane hy

perbolic flow field seems to be more effective in drop break

up and dispersion than the simple shear flow field.

III. In the case of viscoelastic drops, Eg increases with Deborah 

number up to.about 10, and then goes gradually into an asymp

totic constant value as De increases further.

IV. The applicable range of four limiting equations derived from 

Tomotika's general theory for stationary liquid threads have 

been obtained and expressed in terms of appropriate dimension
less groups, i.e., density ratio, viscosity ratio, Ohc=(d^^g

- » —^)2/>!c * 311(1 OhD= (dTH<) ^^Ad * where dTH is the thread 

diameter. These bounds have been shown to provide more gen

eral criteria for the applicability of the limiting equations 

of Rayleigh and Tomotika.
* / /V. The experimental critical wavenumbers, X = "W dTH/Xw (where 

\w is the wave length), for Newtonian threads are found to 

agree fairly well with Tomotika's linearized stability theory 

for a stationary liquid thread, and those for viscoelastic 

stationary threads deviate from the Newtonian systems in a 

way which seems to confirm qualitatively Lee's theory, that 
is, (X )VE< (X )N when \<1 and (X )VE> (X )K when X> 1.

VI. An extensional base flow has a stabilizing effect on the in

stability of an extending liquid thread, therefore threads
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of very small diameter can be maintained before the final

breakup occurs. The system with low viscosity ratio is more

unstable than a system with higher viscosity ratio.

VII..  The value of EDpG= 6" (where d^ is the broken drop
diameter) in viscoelastic threads is again found to increase

almost linearly with Deborah number and the slope depends on 

the viscosity ratio, "the smaller the viscosity ratio
, the steeper the slope . The ratio of (eppc^ve/(eppq)n 

always greater than 1 for systems with the same viscosity 

ratio, that is, an extending viscoelastic thread will re

sult in larger broken droplets than an extending Newtonian 

thread.
VIII. Measurements on the relative varicosity amplitude, $/a, at 

various times before breakup indicate that the viscoelastic 

thread (both stationary and extending ) is more unstable than 

the Newtonian thread with the same viscosity ratio, inter

facial properties, and kinematic conditions.

A
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NOMENCLATURE

a radius of the undeformed liquid drop

a^, coefficients defined in Appendix I 
and c^

B length of minor axis of a deformed drop

C extension rate in plane hyperbolic flow field
D apparent deformation (= (L-B)/(L+B))

Dj deformation parameter defined in Eq. (2-10)

D defined in Eq. (2-14) 
^1111

<Q. differential operator defoned in Equation (5-2-2) 
De Deborah number (= C X| or GX^/2)

dDp diameter of the broken droplets from extending (or stationary) 
r liquid threads

dTH critical diameter of extending liquids threads, or diameter 
of stationary liquid threads

E , E’ dimensionless group defined as (E  = E/2)*

Epp dimensionless breakup group for extending threads CApp )

E^^ dimensionless breakup group for extending threads ̂C^LthTc

Fj» Fp, 
p p Functions defined in Equation (5-2-9)

4 

^11’^22 'tensors defined in Equation (2-13)

F Z X1111 tensors defined m Equation (2-13)
F 2222

G strain rate

critical strain rate for drop breakup 

G density ratio (. 5p/^c)
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6 ’gij contravariant and covariant components of the metric 
tensor

H* , H functions defined in Equation (2-11)
p p
1*  2 functions defined in Equation (5-3-3)

G3*  GzJ-

I ( X1ps * modified Bessel functions of order p with argument x 
Kp(x)

I*  *P
K’ * P

TP

KP
derivatives?of I (x) and K (x) with respect to x

i

IP = w
= (-1)1

II(t) second invariant of the rate of strain tensor

S ■ =-'Kp(xc>

k wave number

L lengths of the major axis of a deformed drop
i = (k2+ -/vj, )*

9 ■3=.m = (kz+ )2

in memory function defined in Equation (2-1?)

Oh Ohnesorge number (a

^rr- ^rr norraal stresses in the dispersed and continuous phases

a Pp. pressure differences generated by normal stresses

Rl’ R2 principal radii of curvature 

(R, 0 ,Z) cylindrical coordinates 

Re( ) real part of ( )
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S dimensionless growth rate ( = b< 9 )

S

T

function defined in Equation (2-1^)

Deborah Group, 
stationary threads)

for viscoelastic drops (orfor

t* , t time, present time

u velocity in X-direction

U viscosity ratio

v velocity in Y-direction

w velocity in Z-direction

x., x! material coordinate of fluid element at time t and t*  1 Al

X, X wavenumber and critical wavenumber
Xn, Xn modified wavenumber defined in (5-2-9)

(X,Y,Z) the cartesian coordinates

SUBSCRIPTS

C quantities in the continuous phase

D quantities in the dispersed phase

I inertial effect

V viscous effect

GREEKS

dimensional growth rate

slope parameters in Bird-Carreau Model

i*  shear rate
£ amplitude of interfacial varicosity
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viscosity

zero shear viscosity
G characteristic time defined in Table 5-1

X viscosity ratio (equivalent to U)

X|, Xi characteristic time in B-C model

Xip, Xip characteristic time defined in Equation (2-20)

Y*  kinematic viscosity

dimensionless groups in Table 5-1 

5
<f

density

interfacial tension 

shear stress

polar angle in X-Y, X’-Y*  coordinate system

stream function
n» strain tensor defined in Equations (2-18) and (2-19)llj. '*)
r a small parameter represent the magnitude order of drop
~ deformation

twice the ratio T33 I - ^02 ) in steady simple 
shear flow ■L1
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Appendix I

The coefficients a^, b^, and c^ in Equations (2-14) and (2-15) 

are all rational functions of \ which, as shown by Barthes-Biesel 

(1972), are given by

‘ a _____ 5___
ao 3(2X+3)

 - 40(\+l)
al"(2X+3)(19A+16)

=1014X_-9)_
a2 7(2\+3)2

288(137 X3+624X2+741K+248)
1 7(2 X+3)2(19X+16)

^-2(11172 x\18336X34-1744o X2+3499X-7572) 
49(2A+3)3(19X+16)

:=-2(X-l)(22344X3+52768X24-45532A+19356)
' 49(2\+3)3(19M16)

a _______________ -48P(X )__________________
6 49(2X4-3)3(19X+16)3(10X+ll) (17X+16)

=48(\ -1)(2793 X3+7961X2+8474X+3522)
49(2\+3)3(19X+16)

a ^00(^3 X2+79X+53)
8 3(2X+3)2(19\+16)

=_____________ 80Q(x )__________________
9 (2Xb+3)2(19X+16)2(lOX+ll)(17\+16)

where
P(X )= 2127976X7-16341920X6-38494964x3+122942551XZi'

q p-r^7^C6c311 X>+59151568oX +33212313^X+?1700480,
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Q( X)= 405260 X5+236696o A^+9142173 ^3+859596?A2+333416o \ 

+693760,

b - -360(A+l)
o^(17A+16) (10\+ll) ’

16(-14\3+207A2+431\ 4-192)______

21(2X4-3) (19X+16) (17X+16) (10X4-11)

and
39 a8b2 3 a9bi

C1 a4" 35 bo " 14 b0 *

c = , c2 70 b0

18 a8bl 
c7" 7 bQ .
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APPENDIX II

EXPERIMENTAL DATA

A. Deformation Data

A-l. Newtonian drops in Newtonian Continuous Phase

(X=3.42)Fluid System 2

Drop Diameter (cm) Ga *? c (cm/dyne) Deformation
0.1045 4.813 0.162
0.770 3.674 0.113
0.0576 2.771 0.092
O.O665 3.186 0.108
0.0720 3.463 0.116
0.1176 5.703 0.217
0.0940 4.633 0.148
0.0924 4.409' 0.1422
0.1117 5.373 0.179
0.0758 3.724 0.128
0.1103 5.392 0.181
0.1270 6.204 0.227
0.1150 5.768 0.207
0.1469 7.363 0.277
0.1345 6.798 0.236
0.1533 7.882 0.138
O.1363 6.948 0.262
0.0919 4.685 0.1621

Fluid System 4 ( X = 0.707)

Drop Diameter (cm) Ga’lc (cm/dyne) Deformation
0.0822 4.069 0.132
0.1104 5.397 0.194
0.1154 5.688 0.198
0.0718 3-584 0.116
0.0782 3.871 0.127
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Fluid System 4 (X= 0.707)

Drop Diameter (cm) Gale (cm/dyne) Deformation
0.0645 3.179 0.100
0.0510 2.567 0.082
0.0960 4.822 0.161
0.1059 5.422 <; : 0.185
0.1294 6.7111 0.263
0.1038 5.159 0.174
0.1330 6.828 0.270
0.1460 7.256 0.280
0.1530 7.573 0.282
0.1320 6.680 0.244

Fluid System 7 (X = 0.085)

Drop Diameter (cm) Gale (cm/dyne) Deformation
0.1568 8.350 0.281
O.IO56 5.476 0.177
O.O879 4.639 0.139
0.0781 3-787 0.117
O.O635 3.293 0.103
O.O635 3.293 0.103
0.0599 2.880 0.086
0.1016 5.109 0.160
0.1045 5.345 0.166
0.1070 5.602 0.180
0.1346 6.951 0.226
0.1684 8.734 0.311
0.0611 3.225 0.101
0.1394 7.457 0.247
0.1273 6.720 0.211
0.1052 5.456 0.1672
0.1562 8.318 0.295
0.1382 7.850 0.248
0.1344 7.937 0.256
0.1900 9.604 O.386



Fluid System 8 (X= 0.033)

Drop Diameter (cm) Ga^g (cm/dyne) Deformation
0.1757 8,451 0.2760
0.1007 4.824 0.160
0.0705 3.460 0.109
0.08^1 4.145 0.131
0.0841 4.215 0.134
0.0477 2.422 0.082
0.0821 4.064 0.123
0.0782 3,919 0.123
0.0568 2.823 0.093
O.O56O 2.783 0.093
0.1010 4.938 0.153
0.1283 6.3241 0.198
0.1690 8.330 0.285
0.1500 7-333 0.239
0.1233 6.028 0.185
0.1386 6.860 0.216
0.1025 5.032 O.I56

Fluid System 10(X = 0.018)

Drop Diameter (cm) Gafr (cm/dyne) Deformation
0.1071 C 5-413 0.194
0.0705 3.635 0.124
0.0950 4.822 0.169
O.O658 3.35^ 0.123
0.0458 2.335 0.089
0.1087 5.560 0.206
0.1266 6.566 0.253
0.1429 7.073 0.264
0.1248 6.329 0.222
0.1375 7.009 0.257
0.1428 7.248 0.274
0.0609 3.105 0.099
0.2063 10.737 0.438
0.1584 8.144 O.3O6
0.0930 4.757 0.164



m

Fluid System 11 ( X= 0.006)

Drop Diameter (cm) Ga%P (cm/dyne)
0.0779 4.005
0.0918 4.563
0.1195 5.939
0.1168 5.781
0.1329 6.984
0.1524 7.769
0.1425 7.172
0.1404 7.127
0.0503 2.573
0.1760 9.088
0.1243 6.589
0.1195 6.040
0.0871 4.478
0.1482 7-587
0.1625 8.178
0.2350 11.632
0.0450 2.255

Deformation
. 0.151
0.159
0.212
0.211
0.277
0.311
0.275
0.278
0.105
0.371
0.257
0.237
0.178
6.311
0.333
0.^99
0.093
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A-2. Viscoelastic Drops in Newtonian Continuous Phase

Continuous Phase: Silicone Oil, t = 300 poise

Drop Phase: 0.75$ Sep Ap 30 Solution
i = F4 = 1'3.45 m 6" Xl

T = -- = 6.95»a?c a>lc
G/2 (sec~^) Deformation G/2 (sec-1) Deformation

0.0296 0.060 0.0180 0.075
0.0388 0.083 0.0249 0.10?
0.0505 0.112 0.0320 0.144
0.0623 0.148 0.0367 0.175
0.07^1 0.184 0.0437 0.221
0.083^ 0.218 0.0505 0.280
0.0952 0.263 0.0531 0.319
0.104? 0.315 0.0555 0.377
0.1165 0.434 0.0581 0.5^3

Drop Phase: 1.0$ Sep AP 30 Solution
m Xl
1 - a t= ' 30.48

a?c
12.37

G/2 (sec-1) Deformation G/2 (sec-1) Deformation

0.0320 0.061 0.0178 0.089
0.0390 6.076 0.0249 0.12?
0.0507 0.105 0.0294 0.161
0.0603 0.128 0.0341 0.191
0.0721 O.I63 0.0387 0.221
O.O836 0.201 0.0434 0.258
0.0906 0.219 0.0506 0.341
0.0976 0.251 0.0550 0.505
0.1139 0.329
0.1266 0.412
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Continuous Phase: Silicone Oil, tc = 300 poise
Dppp Phase; 2.0% Sep AP 30 Solution ( \= 11.2)

m *1 52.50 T"atc ’ 23.86

— -1G/2 (sec ) Deformation G/2 (sec Deformation

0.0298 0.064 0.0152 O.O83
0.0391 0.08? 0.0199 0.111
0.0506 0.114 0.0247 0.143
0.0611-6 0.153 0.0295 0.171
0.0789 0.188 0.0342 0.205
0.0905 0.234 0.0413 0.263
0.1005 0.276 ' 0.0504 0.367
O.IO96 0.307 0.0553 •0.455
0.1189 0.401

B. Drop Breakup Data

B-l. Nev/tonian Drops in Newtonian Continuous Phase

Fluid System 2 (X= 3.42) Fluid System 1 (X.= 27,46. )
EDrop Diameter(cm) C Drop Diameter(cm) EC

0.1090 0.2505 0.1421 0.2676
0.1263 0.2459 0.1249 0.2728
0.1371 O.2363 0.1181 0.2650
0.1230 0.2355 0.1005 0.2573
0.1222 0.2366 0.0997 0.2593
0.1455 0.2411 0.1210 0.2542
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Fluid System 3 (X=2.25) Fluid System 4 (X = 0.707)

Drop Diameter ( cm) Drop Diameter ( cm) 0
0.0742 0.2204 0.1479 0.2627
0.1091 0.2265 0.1584 0.2535
0.1432 0.2384 0.1368 0.2464
0.1287 0.2365 0.1318 0.2423
0.1267 0.2484 0.1231 0.2434
0.1315 0.2320 0.1177 0.2528
0.1305 0.2374
0.1109 0.2249
0.1125 0.2308

Fluid System 5 (X = 0.413) Fluid System 6 (X= 0.298)

Drop Diameter ( cm) EC Drop Diameter ( cm) Ec
0.1484 0.2341 O.I633 0.2579
0.1412 0.2406 0.1507 0.2430
0.1468 0.2371 0.1674 0.2409
0.1665 0.2478 0.1605 0.2417
0.1249 0.2323 0.1492 0.2416
0.1245 0.2331 0.1835 0.2506
0.1362 0.2351 0.1261 0.2369
0.1428 0.2351 O.II67 0.2334

Fluid System 7 (X= 0.085) Fluid System 8 (X = 0.033)

Drop Diameter ( cm) Eq Drop Diameter ( cm)
0.1475 0.3390 0.1726 0.3631
0.1407 0.3275 0.1750 0.3689
0.1545 0.3216 0.1642 0.3687
0.1528 0.3237 0.1471 0.3673
0.1504 0.3268 0.1387 0.3578
0.1238 0.3174 0.1723 0.3490
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Fluid System 9 (X = 0.025) Fluid System 10 (X = 0.018)

Drop Diameter (cm) Drop Diameter (cm)

0.1475 0.4409 0.1621 0.4384
0.1714 0.4269 0.1529 0.4490
0.1180 0.4378 0.1401 0.4404
0.1570 0.4380 0.1804 0.4326
0.1790 0.4255 0.1600 0.4568
0.1462 0.4470 0.1301 0.4547
0.1912 0.4304
0.1731 0.3958

Fluid System 11 (X= 0.006)
Drop Diameter (cm)

0.1502
0.1317
0.2152
0.1286
0.1540
0.1413

Ec
0.4884
0.4833
0.4909
0.5036
0.4985
0.4918

B-2. Viscoelastic Drops in Newtonian Continuous Phase
Continuous Phase: Silicone Oil, tp = 300 poise

Drop Phase: 0.75% Sep AP 30 Solution (X= 0.53)

Drop Diameter (cm) Gc/2 (sec-1)
O.O6690.2439

0.1746
0.1260

0.0956
0.1343

0.1200 0.1412
0.0702 0.2454
0.0540 0.3194
0.0935 0.1874
0.0457 0.3829
0.1350 0.1283
0.0742 0.2278
0.0576 0.3024
0.1937 0.0886
0.1380 0.1226
0.2770 0.0594
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Drop Phase: 1.0# Sep Ap 30 Solution (1.27)

Drop Diameter (cm) GC/2 (sec"1)

0.2270 0.0675
0.190^ 0.0794
0.1310 0.1217
0.0878 0.1825
0.0532 0.3154
0.04-25 0.3979
0.1000 0.1596
0.0890 0.1813
O.O65O 0.2512
0.04-50 0.3744
0.114-0 0.1441
0.24-70 0.0633
0.2828 0.0550
0.114-8 0.1397

Drop Phase: 1.5% Sep AP 30 Solution (X= 3.^)

Drop Diameter (cm) Gn/2 / -Is
C' (sec )

0.2360 0.0676
0.2844 0.0550
0.1574 0.0974
0.2196 0.0755
0.0942 0.1704
0.0832 0.2166
0.0449 0.4031
0.0930 0.1898
O.O656 0.2799
0.0900 0.1816
0.2916 O.O556
0.0600 0.2950
0.0470 0.3773
0.0496 0.3578
0.0634 0.2872
0.1354 0.1280
0.0500 0.3400
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Drop Phase: 2.0% Sep AP 30 Solution (X= 11.2)

Drop Diameter (cm) GC/2 (sec'1)

0.1430 0.1120
0.8?40 0.1984
0.2894 0.0523
0.1224 0.1346
0.3522 0.0426
0.0820 0.2054
0.0404 0.4352
0.0762 0.2235
0.0676 0.2580
0.0542 0.3184
0.0462 0.3787
0.1400 0.1183
0.1114 0.1485
0.2738 0.0574
0.2059 0.0794
0.1760 0.0956

C. Breakup Data of Liquid Threads

G-l. Stationary Liquid Threads

C-1-1. Newtonian Threads in Newtonian Continuous Phase

Fluid System dTH (cm) (cm) dDP (cm) dDp/dTH

12 0.0088 0.0600 0.0193 2.19
0.0208 0.1470 0.0430 2.06
0.0109 0.0810 0.0253 2.32
0.0092 0.0701 0.0215 2.34

13 fl 0.0098 0.0608 0.0216 2.20
0.0079 0.0493 0.0178 2.26ft 0.0129 0.0721 0.0274 2.12

1" 0.0244 0.1446 0.0515 2.11
14 0.0103 0.0580 0.0205 1.99

0.0109 0.0608 0.0217 1.99
0.0178 0.0962 0.0385 2.16

15 0.0125 0.0666 0.0245 1.96<1 0.0167 0.0903 0.0331 1.98•1 0.0118 0.0632 0.0238 2.02
16 0.0198 O.IO89 0.0411 2.07tl 0.0138 0.0808 0.0276 2.00ft 0.0170 O.O966 0.0355 2.09
18 0.0171 0.1576 0.0408 2.38

0.0246 0.2169 0.0661 2.69
0.0127 0.1204 0.0307 2.41
0.0239 0.2051 0.0611 2.56
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C-1 -2. Viscoelastic Threads in Nev/tonian Continuous Phase
Continuous Phaset Silicone Oil, *tc  = 300 poise

% of Sep AP 30 dTH (cm) «• 
X dDP (cm) ^p/^TH

0.75 0.0306 0.542 0.0624 2.04ft 0.0175 0.440 0.0371 2.13
1.0 0.0133 0.410 0.0284 2.13II 0.0137 0.449 0.0322 2.35
1.5 0.0173 0.432 O.O367 2.12•I 0.0144 O.398 0.0321 2.23
2.0 0.0171 0.459 0.0361 2.11•1 0.0104 0.415 0.0226 2.17II 0.0202 0.453 0.0425 2.20

C-2. Breakup Data of Extending Liquid Threads

C-2-1.Newtonian Threads in Newtonian Continuous Phase

Fluid System G/2 (sec~l) dTH (cm) *X__ dDP(cm) dpp/dTH

12 0.1983 0.0026 0.118 0.0061 2.34II 0.2928 0.0013 0.148 0.0033 2.54M 0.1432 0.0032 0.135 0.0070 2.19
13 0.2120 0.0036 0.224 0.0069 1.92

0.1640 0.0046 0.203 0.0083 1.80
0.2492 0.0042 0.194. 0.0064 1.52

14 0.2262 0.0064 0.227 0.0138 2.1511 0.2790 0.0025 0.183 0.0070 2.80
15 0.1958 0.0102 0.233 0.0214 2.49

0.2410 0.0075 O.366 0.0151 2.01
0.2668 — — 0.0138

16 0.2830 0.0087 0.288 0.0183 2.10II 0.2497 0.0079 0.296 0.0182 2.30II 0.1640 — — 0.0303 —
17 0.3604 — — 0.0184 —If 0.2668 — — 0.0271 —If 0.2668 — . — 0.0278 —

18 0.2311 — 0.0345 —If 0.3178 — — 0.0342 —II 0.2115 — — 0.0444 —
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C-2-2. Viscoelastic Threads in Newtonian Continuous Phase

Continuous Phase: Silicone Oil, CO = 300 poise

£ of Sep AP 30 G/2 (sec J') dTH (cm) *
X dDP (cm) dDp/dTH

0.75 0.2380 0.0114 0.0269 2.36
If 0.1620 0.0152 0.204 O.O363 2.38
•I 0.^015 0.00?6 0.224 0.0201 2.64
11 0.2888 0.0102 0.265 0.0221 2.16

1.5 0.1381 0.0125 0.182 0.0278 2.22
II 0.2208 0.0088 0.198 0.0190 2.16
II 0.3180 0.0069 0.186 0.0155 2.26
11 0.41^5 0.0057 0.226 0.0138 2.42

2.0 0.1268 0.0073 0.2325 0.0172 2.35
11 0.2815 0.0050 0.1653 0.0114 2.28
If 0.195^ 0.0072 — 0.0144 2.00
11 0.4015 O.OO36 0.2304 0.0087 2.45

D. Experimental Data of The Apparatus Flow Field

Diameter of Rollers = 1.5"
u = GX/2, v = -GY/2, w = 0
G/2 = Sn(X2/X1)/(t2-t1) (sec"1) (D-l)

or G/2 = -jln(Y2/Y1)/(t2-t1) (sec"1) (D-2)

Roller Speed(RPM) G/2 from (D-l) G/2 from (D-2)
(Glycerine Solution)

9.8 0.2556 0.2589
13.2 0.3211 —

14.1 0.3525 0.3625
15,7 0.3821 —
18.0 0.4402 0.4429
20.8 0.4926 0.5036
24.0 0.5530 O.56O8
27.2 0.6079 —
2.4 0.0585 —
5.1 0.1351 0.1341
7-5 

(Silicone Oil)
0.1798 0.1832

5.5 0.1442 —
8.9 0.2419 —

13.8 O.3839 — •
14.7 0.4150 —
27.0 0.7348 —

34.5 0.9460 —

37.5 1.0803 —
43.6 1.2468 —
50.0 1.4430 —


