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ABSTRACT

This work involves an experimental investigation of the defor-
mation and breakup of liquid drops as well as the instability of

liquid threads (both Newtonian and viscoelastic) in an extensional

TIow field.

For Newtonian systems,-it is found that Taylor's first order
theory works quite well over a wider range of deformation than ex-
pected, and Chaffey and Brenner's second order theory does not pro-
vide a better approximation than Taylor's theory. It is also con-
cluded that Barthes and Acrivos theory is good for systems with vis-
cosity ratio, defined ‘as A= ’ZD/?C (where le and )IC are the vis-
cosities of dispersed phase and-continuous phase}. A2 0.7, but fails
to describe deformétion for systems with small X . The pointed
end phenomenon associated with Newtonian drops-with )\5;0.5 was_élso
observed for viscoelastic drops, however in the 1after it was ob-
served when )\ < 11.2. |

| The breakup criterion for Newtonian drops is established and
eipfeséed in terms of two dimensionless groﬁps: Eq= Ebaqc/g‘ and

N = ’ZD/?C’ where )lD and ?C are the dispersed and the continuous
viscosities, EC/Q is the extensional rate at breakup, a is the drop
radius and & is the interfacial tension. The range 6f viécosity |
ratio within which drop breakup can occur in a plane hyperbolic flow
field is wider than that in a simple shear flow field,Aand ihe ratio
of EC in plane hyperbolic flow fields and EC in simple shear flow
fields is only about 1/3 at N\ = 1, and becomes smaller as A takes
values different from 1. As for the breakup of viscoelastic drops,

EC is found to increase with Deborah number up to about 10, and



then level off gradually as Deborah number increases further.

The bounds of validity of four limiting equations of Tomotika's
general theory for stationary liquid threads have been obtained in
terms of the appropriate dimensionless groups. These criteria pro-
vide bounds for applying the limiting equations of Rayleigh and
Tomotika.

The instability of stationary Newtonian threads is found td
follow Tomotika's theory quite well, and that of stationary visco-
elastic threads deviate from the Newtonian systems in a way which
seems to coﬁfirm qualitatively with Lee's theory on viscoelastic
 threads. |

The instability criterion, in terms of EDPC; CdDP?CAS (where
C is the extensional rate and dDP is the broken drop diameter) and
the viscosity ratio, of an extending Newtonian thread is also es-
'tablished, and it is found that the system with small A is more
unstable than the system with high N\ . -

The value of Epp. in case of an extending viscoelastic thread
is again found to increase almost linearly with Deborah number;vand
. the slope dépéndsvon the viscosity ratio; the smaller the viscosity
ratio, fhe steeper the slope. |

The measurements of the relative varicosity amplitude, Eié,
at various times before breakup reveal that the viscoelastic thread
V(both~stationary and extending) is more unstable than the Newtonian
thread with same viscosity ratio, interfacial properties, and kine-

matic conditions.
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CHAPTER I

INTRODUCTION

A characteristic response of all real fluids is the irre-
versible deformation resulting from the application of an even
infinitely small stress. In multiphase systems, besides the dy-
namic stresses arising from inertial and viscous interactions
between the phases, we also have interfacial forces arising from
the non-zero interfacial tension between the phases. Interfacial
tension usually tends to resist the increase of contact area be-
tween different immiscible phases. The interaction of these dy-
namic and interfacial forces plays a very significant role in dis-
persion processes of immiscible fluids. Practically, such pro-
cesses arise in the atomization of fuel in internal combustidﬁ
engines, aeration operations during fermentation, emulsification
processes,'as well as in the fiber'spinning of polymer melts, etc.

The baéic concerns in these problems are:

(1) What are the possible physical processes which may cause
“he dfop (or the thread) to break up?

(2) How do these physical processes proceed, and how do
fluid properties affect the nature of the dispersion

resulting from these processes?

Due to the importance of breakup of drops and threads in
many essential processes, it has captured the interests of sci-

entists and techonologists in various fiels for many decades.



Despite this, the complexity and uncertainty of these processes
still prevent convincing and sufficiently accurate results to be
‘obtained. Such results will be forthcoming only after we under-
stand single droplet(and thread) deformation and breakup in certain
flow field.

The dispersion of one immiscible fluid ih another usually
begins - with two originally irregular bulky fluids. The disinte-
gration process may occur only when the dynamic stresses induced
by certain devices are large enough. to overcome the static force
ofvinterfa¢ial tension which always resists deformation and dis-
persion by attempting to maintain minimum contact area between
the fluids., However, once the drop is extended into a thread,
~the interfacial tension is the agent promoting.the breakup via
capillary forces.

As thé disintegration process goes on, more arid more individual
drops are formed, and the drop‘size is gradually decreased., In
addition, the inertial forces diminish, and the interfacial and
'viscdps forces become dominant. Fﬁrther, the dropé tend to become
more regular in‘shape and the nature of the flow fields causing
the deformation and breakup can be clearly identified. In viscous
systems, it is these latter stages of dispersion which are of
principal interest since they govern the ultimate size and distri-
bufion of the droplets obtained. 7 |

The eventual equilibrium drop size depends not only on the
physical properties of the fluid system, -but also on the flow con-

ditions, i.e,, flow type, deformation rate, etec.. According to



Hinze's analysis (17), the flow patterns which may cause drop
breakup can be classified as:

(1) Parallel flow

(2) Couette flow

(3) Plane hyperbolic flow

(4) Biaxial hyperbolic flow

(5) Rotational flow

The flow field of any dispersion device can always be charac-:
terized as one or a combiration of these five elementary pafterns.
To date,.only Couette, parallel, and plane (uniaxial) hyperbolic
flow have been extensively studied with respect to deformation
and breakﬁp of drops., | |

G. I. Taylor (3%) firsf initiated the study of drbprdeformation
and breaku§ in viscous systems in 1934, Besides an experimental
inveétigation of the critical shear rate at breakup; he derived the
first equation relating the deformation of a drop to the physical
properties of fluids and the shear rate of flow field; Taylor's
theory was limited to small deformations and conditions of neg-
ligible inertial effects. This pioneering work has been modified
by a number of investigators— Chaffey and Brenner ( 5), Cox ( 7),
and Barthes and Acrivos( 8 ), among the others. However, their
works still can not explain the breakup process at large deformation.

Most of the earlier studies were mainly concerned with Newtonian
systems, especially in simple shear (or Couette) flow fields. However,
the plane hyperbolic flow field has been shown experimentally to be
a prefered flow type in dispersion devices, particularly with systems

with either high of low viscosity ratios. It is the purpose of this



L

work to conduct an experimental investigation of the deformation and
breakup of liquid drops in plane hyperbolic flow fields, and the in-=

stability of stationary and extending liquid threads. Both Newtonian

and viscoelastic fluids will be studied.



CHAPTER 2
THEORETICAL BACKGROUND

2-1. General Remarks

Increased viscosity and non-Newtonian effects such as visco-
elaéticity and shear dependent viscosity, are well-known phenomena
of dispersions, or emulsions when these systems undergo a hydro-
dynamic flow. Most of these phenomena result from the interaction
of the deformable and non-deformable parficles which make up the
dispefsion. From the point of view of hydrodynamics, the increased
viscosity of a dispersion may be considered as a consequence of the
perturbation of the continuous phase flow field around the suspended
particles or liquid drops. The degree of perturbation.which leads
to an increase rate of energy dissipation, of course, will be
closely related to the shape of particles present. Experimentally,
it has been found that the viscosity of suspensions is affected by
factors such as: the shape, size, internal flexibility, and ease of
deformation of the dispersed phase. Thus it is important to obtain
more precise information on the deformation of drops in various
flow fields. Such information is essential for the development of
theories to accurately describe the rheological behavior of disperse
systems. |

Considerable theoretical and experimental efforts have been
devoted to the study of drop deformation and breakup in simple
shear flows, beginning with G. I. Taylor's original small deform-

ation theory. Among these works, of particular importance are:
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The thorough study of Rumscheidt and Mason ( 28 ), who studied the
deformation, circulation, and breakup of ligquid droplets both in
plane hyperbolic and Couette flow fields; the theoretical analysis
of Chaffey and Brenner, which extended Taylor's theory to a second
order approximation in the deformation parameter; and the transient
analysis of Cox ( 7) who studied the time éffect on the deformation
and circulation. The most recent development in this area is that
due to Acrivos ( 8) who derived the time dependent equation for
deformation and also presented a theoretical way fo predict approxi-
mate conditions for breakup.

We now review the important aspects-of these studies in the

next section.

2-2 Deformation of a Single Droplet

2-2-1 Previous Theoretical Studies

- The two flow fields as chosen by G. I. Taylor in his studies

on the deformation and'breakup of liquid droplets can be written

as:
Plane hyperbolic flow: \jxa%x . Va_-.:.%.% -Vauo (2-1)
Uniform shear :f'low: Vé: -G-r'a-' ) V3'= VE’ = 0 (2-2)

Where G is the magnitude of the rate of strain in flow field. The
first flow field is irrotational, and the second is rotational. As
pointed out by Taylor (34), and Batrok and Mason, if the coordinate
axes X and Y of the plane hyperbolic flow field are rotated with a
cdnstant angular speed E/é, and if the coordinate axes X' and Y' of

the uniform laminar shear flow field lie instantaneously at 45° to



Y

Plane Hyperbolic Flow Simple Shear Flow

Figure 2-1. Coordinate Transformation of Plane Hyperbolib

Flow to Simple Shear Flow by Rotation of Axes




axes X and Y, then the two flow fields become identical at that
moment. The situation of transformation is shown on Fig. 2-1. 1In

this instance, the coordinates of these two flow fields are related

by: :
X' = 1/42(x + ¥)
Y = 14/2(X - Y)
¢ = - T4

Here the identity'of these two fieids is instantaneously only.
Therefore, effects which depend only on the instantaneous distri-
bution of velocity and are not affected by a rotation of the whole
system will be identical in the two fields; this applies tp internal
circulation in anundeformed fluid dfops. On the other hand, effects
which depend both on the instantaneous distribution and on the time
sequence of distribution of velocity will be very different in the
two. This occurs when fluid drops suffer large deformations.. The
 significance of these remarks has been demonstrated by Taylor-in
his original paper.

when a neutrally bouyant liquid drop is placed in the center
(or stagnant) point of a plane hyperbolic flow field,_the distur-
bance to the fluid motion surrounding this droplet will generaté
a stress field, which can be discomposed into tangential and normai-
componenfs acting.on the dfop surface. 1In the:case of a liquid
drop whose interface is not contaminated by any impurity or sur-
factanf, the tangential stresses are continuously frahsmitted across
the interface, so that a velocity gradient will be developed inside
the drop. The normal stresses, on theother hand, are discontinuous at

the interface and will generate a pressure difference which will be
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counterbalanced by the capillary pressure due to the interfacial
tension., The drop, therefore, assumes a shape which balances the
forces associated with the normal stresses and capillary pressurse.

As we know, the difficulties in an analytical formulation of
such a problem are almost insurmountable, partly because the correct
boundary conditions are not always known, and partly because the
interdependence of drop shape and velocity distributioniis unse-
parable. Taylor initiated the first attempt to make an approxi-
méte analytical formulation of this problem. 1In his hydrodynamical
analysis, Taylor made the following assumptions:

(1) There is no slip at the surface of the drop (velocity

componeﬁts are continudus across the interface).

(2) The drop is only slightly deformed from its spherical
equilibrium shape.

{3) The tangentialstress parallel to the surface is—continuous—
at the surface of the drop so that any film which may exist
between the two liquids merély fransmits tangential stress
from one fluid to the other.

(4) The normal stress is discontinudhs. and the difference is
balanced by capillary pressure, cf(l/Rl + 1/R2).

Where ¢ 1is interfacial tension and Ry and R, are the principal ra-
dii of surface curvature.

By using Lamb's general solution to the Navier-Stokes equation
for steady creeping flow, Taylor derived the velocity and pressure
distribution both in the drop and in the suspending fluid. From
these results, the respective normal stresses acting at the surface

vwere obtained, and expressed as:
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5/2 G VLC(;\+8/5)/()\+1) cos2¢ outside drop (2-3)
9/4 G ’z'c( X/(\+1)) cos2d inside drop (2-4)

With a resulting pressure difference across the interface given

Prr

Prr

by:
APy = Py, - Prp ==-4 BN (19 \+16)/(16 \+16) cos2d  (2-5)
Wherg:qcf'viscosity of continuous phase
A ¢ the ratio of viscosity of drop and outside fluid,
A Py: normal stress difference of inside and outside fluid
4>: polar angle of spherical coordiﬁate (Refer to Fig.2-1)
From Eq. (2-5), it follows that AP0 when - T/4< ¢ < Ty,
and the drop will be subjected to compressive stresses which tend
to contract the drop; and that A P,>0 when "/4< <3 T/, :and -
the drop will 5e sﬁbjected to tensilé stresses which tend to exténd
it. In addition, it can also be seen that 4Py has its maximum
and minimum values when<$ = TM/2(er 3TM/2), and 0(or ) respectively.
Based on these considerations, the shape of thé deférmed drop is
that givenrin Figure 2-2.
Then boundary condition (4) gives
€ (1/Ry + 1/Ry) = Py - Pp,. + constant (2-6)
or G(1/Rq + 1/R2) = ‘—45L(i9_)x+ 16) /(16 A+ 16) cos2¢ + constant
It can be seen from Eq. (2-6) that it is necessary to find the.
shape of a nearly spherical drop for which the variation in (1/R1+,
1/R2)'is proportional to cos2<¢. Taylor has verified that for

the surface whose equation is

. r= a(l-DIcosz4>)t (2-7)
1/R1+1/R2 will be proportional to coszq>, and can be expressed
as:

(2-8)
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1/Ry+1/R, = 2/a (1 - 2D;cos2d) (2-8)
Here DI is the deformation parameter in the equatorial X-Y plane.
For small deformation, it can be shown that

Dy =D = (L - B)/(L + B) (2-9)

Where L and B are the principal axes of the deformed ellipsoid drop.

By combining Egs. (2-6) and (2-8), and equating the coefficients
of cosédb, Taylor finally obtained the followingvequationz |

D = (L9X+ 16)/(16X+ 16) Glpa/s | ~ (2-10)

Equation (2—10) reveals that for nearly spherical drops, the
deformation parameter, DI defined by Eq. (2495, is proportional to
a non-dimensional group, E = cha/k ’ which is a ratio of viscous:
forces, QQE’ to interfacial tension forces, QZa. The constant of
proportionality, (19A+ 16)/(16 A+ 16), varies from .1 to 1.875 when
A changes from 0 to vo. B

It should bé noted that Eéuation (2-10) stemmed from the velo-
éity field associated with a spherical drop, or rather a zero order
velocity field in DI' In order to obtain the drop deformation
with accuracy to second order in DI’ it is necessary to know the
fluid velocity both outside and inside the drop to first order in
DI' Chaffey and Brenner made such an effort and derived the first.
order velocity field and from this they found the equation giving
vthe drop shape to second order in DI for both uniform shear field

and plane hyperbolic field. Their equation for the plane hyperbolic
field is:(in XY plane):

r/a = 1—DIcosz¢ + D% (H'+(H/Llr)cos’+43 ] + O(D%) (2-11)
Where Di= Ga /g (19A+ 16)/(16\+ 16)
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H = 2(1171 A+ 656)/(19N+ 16) /27
H'=- (8383 A%+ 12543 A+ 3728)/ [(A+1) (19X + 16)])/630

According to Equation (2-9), the experimentally observed parameter

D = (L-B)/(L+B) is related to Dy by
D = (L-B)/(1+B) = D/ [1+D§(H'+H/4)) (2-12)

In the limit DIf’ 0, this equatioéon can be simplified to Taylor's
first order equation, i.e., Equation (2-10). HoWever, after compa-"
rison with experimental data in a uniforﬁ shear flow field, Turner
and Chaffey in 1969 concluded that the applicable range of Chaffey
and Brenner's second order theory is not significantly beyond that
of Taylor's first order theofy.

In 1969 Cox developed a first order theory expanding in term
of € , a small parameter representing the magnitude order of defor-
mation, to determine the transient shape of a fluid drop in both
simple shear and plane hyperbolic flow field. For steady state,
his equation reduced to Equation (2-10) for plane hyperbolic flow
field.

The most recent theoretical work on the deformation and break-
up of drops is due to Barthes and Acrivos (8 ). These investigators
expanded the solution to the creeping flow equations in powers of
- E', a small parameter representing the tendency of the drop to de-
form. They carried out the expansion solution to second order
in E'. Further, they applied the linear stability theory to pre-
dict the onset of burst.

As shown by Frankel and Acrivos (12) in 1970, the surface of
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the drop in a system of axes moving with the center of the particle

is defined by

XX 2.6 1 XXX
= 1+3E Flm(';'z—) + BN (T Fq #105F) o —,IM) + 0(3)

(2-13)

where r = (xlxl)%, and E' = Ga?C/ZS'.
The tensor Fij and Flalm
to any permutation of their indices and to have zero contraction.

are chosen to be symmetric with respect

Their expressions will depend on the dynamic behavior of the systenm,
i.e., on the type of the undisturbed creeping flow field.
" For a plane hyperbolic flow field,Barthes and Acrivos derived

the following expression 'for D

3 E'D + 105 E'2'D1111
2+ 3 E'S + B'%( 185%/5 + 65°/5 + 1055

D F (2-14)

1111)

where S = F,4 +,-F22, D = F11 - F

22
b ~b
.29 15 _2_
b o #3P1 = 9 Py
1111 35 bo 7 bo

Here'g'énd'ﬁ'are determined from the following equations at steady

state,

alg + %—'(azﬁ—aB(j-éz—ﬁz)/Z] + E'2§ [03(3§2+52)/2 +E(°1++°6/3) |
+c7/3 + 205] = 0
alﬁ + 2ao+E'-S-(a2+a35') + EB'2 [(2cl+c33)(3'§2+'132)/2 +c,_;f)2+

cg(3% D7) /2¢D(2c o t2e) ] = 0 (2-15)
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The coefficient agreecdg bo’bl’bz’cl' s+1Cyy are known rational
functions of A\, and their expression are given in Appendix I .

Solving numerically Equation (2-15) for various values of E',
we are able to construct the prediction curve, DI‘vs. E. The compa-
rison with experimental data will be shown in Chapter 4.

Before ending this section, we would like to point out the dif-
ferences between these theoretical works. There are various pertur-
bation approaches to the solution of this problem: 1) expansion in
terms of a drop deformation parameter, €, 2) expansion in terms of
dimensionless group E ='Ea?e/g y 3) expansion in tems of A . Taylor,'
Chaffey and Brenner, aﬁd Barthes and Acrivos used E as the expansion
'p_ara.meter; Taylor also used A\. On the otherj hand, Cox cbtained a
solution expanding in terms of €, by assuming only the. drop defor-

mation be small and of order €, where &<<1.
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2-2-2. Dimensional Approach For Viscoelastic Fluids

All of the equations described so far are only applicable to New-
tonian systems, and the results have been expressed in terms of Dy, E,
and viscosity ratio, ?D/np‘ However,for a viscoelastic drop, some addi-
tional groups are expected to arise in these problems which are due to
the complex rheological behavior of the fluid.

To date, theories for the deformation of non-Newtonian drops are
not available. Nevertherless, a dimensional analysis can be used to
identify the important characteristic groups once the rheological equa-
tion of state is specified. For this purpose, the modified férm of the
Bird-Carreau (1968) model was chosen to characterize the fluid rheolo-:

gical properties. According to this theory, the constitutive equation

is expressed as
t - . ‘
' o~ ’ €. = Ay RS ,
T =~ Ml-£,z))(+ $) Ty an - S F o]’ (216)
~vo

with memory function as:

"(t't’)/)\zp

- o N e
M-t )= & -

and finite strain tensor as:

_ o ; .y :
Py =400+ (7%%xm) CFaxm) 37" x) (2-18)
Ty (= § 0 - CX0%x) (27553 ) B CX) (2-19)

Where X4 xi : material coordinate of fluid element at time t and t°'

respectively

gtd, gij ° contravariant and covariant components of the metric

tensor
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II(t): second invariant of the rate of strain tensor
The material constants rzp, >\1p' and >\2p are related empirically
to other five parameters, which can be determined from simple vis-

cometric data. These parameters are defined by

‘ [ oL
= o ere- s A= M (2/HD) B, Ay = p(2/ (1) 2
Z Nig -
= (2-20)
where ylo’ zero shear viscosity

)\1, }\zs time constants

ol Kot slope parameters

Therefore, for a viscoelastic fluid drop in a plane hyperbolic
flow field of a Newtonian fluid, the physical parameters occuring in
the problem are the extensional rate E/z.(of the undisturbed flow), the
initial (undeformed) radius a of the drop, the intei‘facial tension g,
the viscosity of continuous fluid ?c' and the five parameters of drop
fluid, ijs}\l' )\2, 0(1, 0(2. Here we assume a neutrally buoyant drop.
Six dimensionless groups can be formed from these quantities: Ga’lc/s- ’

89/7(0’ NGy N/ N o0 &y OL,. The deformation is then

As reported by MacDonald, Carreau, and Bird, the ratios }\1/>\ .
: » 2

0k1/0(2 are more or less constant for a large number of viscoelastic
fluids. Assuming this to be the case, we can simplify Equation (2-21)

into:

D =P (Ea,z_c/ﬁ' ’ }zo{ YLC' >\16/a1c ’ ml) (2-22)
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This is the equation which will be used to analyze the experi-
mental data of viscoelastic fluid drop in Newtonian fluids, For a

Newtonian drop, )\1=‘ 0, '0<1= 1, Equation (2-22) becomes
D = I?(Eaﬂ,cAg- ' X)) _ (2-23°)

Comparing with Equations.(2-10) and (2-12), we find that the latter
result is consistent with the theoretical relations given previously;'~
In the case of a viscoelastic drop, the deformation depends not
only on E, \ , and,, but also on )\16‘/3, YLC=‘ T. Physically this
group )\16‘/a Yl_c can be cohsidered as the ratio 'bétween the characte-
‘ristic time )\1 of the viscoelastic fluid making up the drop and a Qc/',

-a characteristic relaxation time of the drop under deformation.

2-3. Breakup Of A Deformed Drop and The Deformation At Burst

The deformation of a suspended drop will increase gradually and
attain an equilibrium state, when the extension rate of the continuous
phése is increased until a critical wvalue 'éc/z is reached,. at which
point the drop will break. For Newtonian fiuids, this critical value

is a function of the viscosity ratio, \ , with the following important

properties:
if G < Ec ' stable deformation obtained
if G > Ec continuous deformation and breakup

To date, almost no theoretical equation exists to predict the
critical shearing rate for a given fluid system (both Newtonian and
non-Newtonian). However, an interpretation of this phenomenon can
be .obtained simply by using dimensional analysis, Here the critical

extension rate at which breakup of a deformed drop occurs can be ex-
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pressed as a function of all the physical parameters occuring in the

problem, i.e.,

GC = GC( PC’ PD' )lcl yl.D’ 2y G‘) (2-21:1’—3.)
for a Newtonian drop in a Newtonian continuous phase, and

Gc = G ( )20 ?OD’ eco va av )\19 )\zt 0(1 0(2 6') (2 21‘" b)

for v1scoelastlc drop in a Newtonian continuous phase. By apply:.ng

an-be—rewritten ass
Ecz"aca' ch/€ =E¢,( YI.D/'[c’ PD/Q c" gcazac/yl,c) (2-25-a)
and B = Bl e Pr/or Pea®Be/Mor Bokar Madhgr Xy O4/y) (2-25-1)

"Here, the éird—Carreau model ié .again used to vcharacteriz'eithé‘
properties of‘-the viscoelastic material. Neglecting inertial efv_’c‘ects‘ :
‘and gravity férces (2 neutrally buoyant drop), and making use of the.
constant ratio, 7\1/x2.'°<1/o<2, as reported by MacDonald etec.;.we can

simplify Equations (2-25-a) and (2-25-b) into

E

c Ec( QD/ YLC') | - , (2-26-a)

B = Ec(' ?.oD/VLc,’ Ec>‘1'.‘>(1 ) ' _ | B (2-26-D)

where Ec-*= '@Ca ch/G‘" ,ECAI is the "Deborah number", which, similar

'~ to the T dimensionless group in the correlation for VE drop defor-

_ mation, presents ‘the ra'tiq of >\1, the characteristic time of the VE-
fluid, and 1/50, the characteristic time of the flow field. |
Equation (2-26-b) will give Equation (2-26-a) as a special case
when )\1: 0 and ®,= 1, i.e., when the drop is Newtonian.
G, I. Taylor interpreted the critical condition of breakup as

the point when the maximum value of APy distributed over the drop .
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surface tending to disrupt the drop exceeds the force, due to surface
tension, tending to hold it together. Based upon this definition, and
- assuming that Equation (2-5) holds, Taylor indicated that the drop
will burst when-

(19A+ 16)
L (16 N+ 16)

Further,-if Equation (2-10) is used in this equation we obtain the

> 26/a | (2-2_7)

48N

critical deformation, i.e., the deformation at which the drop begins to

break. This is given by

D, = 1/2 ) 0 (2-28)

I

In using these last two results, it must be kept in mind that

they are based on a~émall,deformation theory.
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CHAPTER 3
EXPERIMENTAL APPARATUS, MATERIALS, AND PROCEDURES

3-1. Experimental Apparatus

Two four-roll devices, one built by W. K. Lee during his Ph. D.

work, the other built during this study, were alternatively used to

produce the plane hyperbolic flow field required in this experimental

——investigations— We will term these two devices respectively as "mo-
dified four-roll device" (MFRD, built by W.K. Lee), and "four-roll
device" (FRD, built in this study). The MFRD was built with the
four rolls mounted on the cornefs of a 4 X 3.inch rectangle in order
to obtain the best approximation to an uhiaxial extensional flow’
field along the Xéaxis. According to the ‘theoretical analysis of
Lee (20), the flow field produced by this device can also be ex-
pressed approximately by Equation'(é-i)-for~the area around the stag- -
nation point, i.e., X=0, Y=0. The details relating to the construc-
tion of the MFRD-was eXplained in Lee's dissertation.

The four-roll device built in this study is similar to the MFRD,
with a change in the driving machanism and the location of the rollers.
It consists of four identical plexi-gléss cyiihders. 1%&" diameter and
‘32" high, which were mounted at the corners of 4X UL inch.recténgle,
as shown in Figure 3-1. These cylinders are immefsed in the conti-
nuous phaseg_ﬁhibh was floated oh3a heavier:low viscosity fluid'and
contained in a 13X 13X 4% inch plexi-glass box with a rémovable cir-
cular cover at the top. Each cylinder was mounted in the box with a
teflon bearing installed in the top plate to hold the upper end in

position, and with a sealed ball bearing at the bottom plate to su-

pport the shaft which extends through the bottom plate and connects
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to the drive system below (see Figure 3-2, 3-3).

Figure 3-1 shows schematically the FRD built here to experi-
mentally examine the drop behavior. The four rolls are driven by
two separate variable speed motors, one driving rolls one and two
and the second deriving rollé three and four. The flow field pro-
duced is ayplane hyperbolic flow field in which the velocity com-

ponents in the X and Y directions are given bys

A\ EX“ b V== y Vv, = 0% > —(2=1)
‘Where G/2 is the extension rate.

Photographs of the four-roll apparatus are shown in Figures33z2
and 3-3. As shown, the four rollers are driven by two'mptors mounted
"behind the bbttom plate of the box. Here a no-slip-éiéétic'belt>and
~ gear pulley system is used in the drive mechanism. The speed of
these two variable drives are controlled by an electric controller
in.which two speed adjustments are possible, one reguiatingvtﬁeispéed
of both motors together, the other regulating the speed of. one motor
reiative to the other. By adjusting these two control‘knobs y wWe
could easily match the motor speeds and control the drop at the stag-
nation point. The speeds of fhe motérs are deterﬁined directly from
the reading shown on the digital voltmeter which is connected to the
outputs of two tachometers installed inside the motors. The actual

roll speed and the meter reading are related by

i

W (RPM) = 1.75xvolt for 100-1 ratio gear box

W (RPM) 17.5%xvolt for 10-1 ratio gear box

for both tachometers.
According to W. K. Lee (20), the extension rate, G/2, in the
four-roll device should be equal to a constant times the roller speed.

However, we found that the accuracy of this statement depends on the
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Figure 3-2. Thg Four-Roll Apparatus (Front View)‘
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viscosity of the fluid used as the continuous phase. Two series
of velocity measurements of tracer particles dispersed in two dif-
ferent continuous phase (80% glycerine solution (low viscosity) and
Dow Corning 0il 510 with ’lC= 300 poise) were carried out to esta-
blish the relation between W_and G. The velocity fields corres-

" ponding to different roller speeds were determined from motion_ picture

of the movement of aluminium tracer particles in the fluid. Also,

small air bubbles were used for tThe same purpose. The exitension rate,

uaﬁfbr-eachfroller_speed was calculated from the following equations:

G = 21n(x2/xl)/(t2-t1) 4 (3—2-a)

G =-21n(Y,/7,)/(t,-t,) | (3-2-b)

By measuring the time elapsed for a particle to move between
tﬁo different X (or Y) positions, we could determine.ﬁﬁfor each
roller speed. The accuracy of Equation (2-1) in describing the
flow field near the stagnant (observation) point 0 in Figure 3-1
is confirmed from such experiments (see data in Appendix II). The
Vreéults are plotted in Figures 3-4 and 3-5-for the 80% glycerine
solution and the siliéone oil ( QC= 300 poise), respectively.

‘The data for the glycerine solution deviates from a straight
;ine as W reaches about 15 RPM and higher. On the other hand, the
data tor the silicone o0il fall approximately on a.straightriiné‘
for'roller spéédé'up to 50 RFM. The deviation from a'straight line.-
'we believe, is dué to the increasing inertial effects as the épeéd
is increased. Since the viscosity of the silicone o0il is about 100

— times greater than that of the glycerine solution, it is expected

that the linear relation between G and W will hold for roller speeds
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significantly higher than even the 50 RPM measured here.

In fhis study, silicone oils with n%= 103 poise and 300 poise
were used as the continuous phases. The relationships between the
roller speed, W.(RPM), and the magnitude of the extension rate, E/i,

are taken as:

G (sec-l) = 0.0556W Four-roll device " (3-3-a)

Equation (3-3-b) was derived and experimentally verified by
Lee in his dissertation (20). Extension rates from 0.0048 sAec"1
to 21 sec™! can be obtained with the FRD.
The continuous phase was floated on a heavier, low visceésity

| fluid (a water-glycerine solution) for the purpose of réducing the
end effects of bottom wall., The drop was introduced into the con-
tinuous phase by injection from a syringe through the éircular win-
dow at the center of top wail. By regulating the speed of two

drive motors, the drop could be adjusted to the center of the appa-

ratus, whith was also the stagnation point of the flow field; The
behavior of the drop was observed through a Wild-M? microscope, which
gives a magnification up to 124 times. Photographs were taken with

a Nikon PFM still camera connected to the microscope.

3-2. Material
Tables 3-2-1 to 3-2-3 show the properties of the fluid systems

used in this experimental study. Silicone 0il 510 and 200 were used

as the continuous phase. Various fluaids, including glycerihe-water

solutions, syrup, molasses, and polymer solutions (Separan AP 30 in
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Properties of Fluid Systems (Newtonian Systems)

Continuous Phases Silicone 0il 200F
7 ?;f= 103 poise, Re = 0.97 g/c.c.
systen | 2o | Mo Nyl e o
paise Ne| dyne/cm g/c.c.

1 Molasses 2828 2746 38.8 o 1.45
2 " 353 3.42 34.6 i -

" 232 2.25 | 33.8 | 1.43

4 " 72.8 0.707 33.5 ¥#|. 1.41

5 " | 42,5 0.413 35.0 T7 1,40

6 " 30.7 0.298 37.0 **|  1.39

7 Syrup 8.8 0.085 33.7 * 1.36

8 " 3.4 0.033 32.0 ¥ | 1.3%

9 glycerol 2.59 0.025 28.5 1,04

10 " 1.95 0.0189 29.0 ¥ | 1.2

11 " 0.62 0.006 26.2 ° | 1.22

* Drop Deformation Method
¥# Pendant Drop Method
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Table (3-2-2). Properties of Fluid Systems (Newtonian Systems)

Continuous Phase: Silicone 0il 510F
Yc = 300 poise, gc = 1.0 g/ec.c.
Fluid ", s * )
D = D
System | rnread pggse N ./{o dyne/cm g/c.c.
12 Molasses | 2828 9.42 | 26.80 * | 1.45
3
13 " 382 12.73 | 28.4 1.44
14 " 232 0.77 | 28.5 * 1.43
15 " 72.8 o.2% | 26.5 * | 1.4
16 " 30.7 0.10 | 26.0 * | "1.39
3*
17 Syrup 8.8 0.03 | 29.5 1.36
3
18 Glycerol | 2.59 0.0086 20.6 1.24

* Drop Deformation Method

Table (3-2-3). Properties of Fluid Systems (Viscoelastic Dispersed Phase)

Continuous Phase:

Silicone 0il 510F

Qg= 300 poise, :§C = 1.0 g/c.c.

. _ *x
e | o |l bl M| BE | s | e LT
Sepzég%zog 1,066 | 3364 | 11.2 | 49.5 | 66.5 | 3.08 | 2.71 | 18.5
1.5% 1.058 | 1013 3.4 | 35.5 | 30.9 | 2.68 | 2.18 | 22.5
1.0% 1.056 381 1.27 | 21.0 22.0 2.56 2.10 25.0
0157 1.056 159 | 0.53 | 11.1 | 6.9% | 2.48 | 1.78 | 26.0
¥ In 80-20 Water-Glycerine Solution

“## Pendant Drop Methed
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20-80 glycerine-water solution) were used as the dispersed phase.

The viscosities of the Newtonian fluids were measured with a
Weissenberg Rheogoniometer with the temperature controlled at 2415°C.
which was the temperature of the laboratory where the éxperiments
were conducted. The data checked very well with separate measure-
ments usiﬁg the falling ball method.

The polymer solutions were characterized by the modified Bird-

Carreau model (1968), involving 5 parameters, i.e., Qo’ Nys xz,(xl'
Xy The physical interpretation of these parameters has been ex-
plained in the last chapter. This model was used successfully by
Flumerfelt (10) in a study of drop breakup of .viscoelastic fluids
in a simple shear field.

In order to characterize all five material parameteérs, visco-
sity-sh;ar rate and normal stress-shear rate data were obtained with
the Weissenberg Rheogoniometer with the temperature controlled at
24-5b- Generally,the lowest shear rate obtainable with this equip-
ment isAnot low enough to deterhine Qo‘ Consequently, the zero-
shear viscosities, Qo. of the polymer solution were all measured
with the falling ball tests with different diameter balls (31).
Thé parameters were then determined by a computer fitting of the
B-C model to experimental data. These data and the predicted curves
are plotted in Figures (3-6). and (3-7) .; the fitted parameters
are shown in Table .(3-2-3).

The interfacial tensions for the Newtonian systems were measured
by the drop deformation method (assuming Taylor's Equation (2-10)
holds when DI is small). 1In checking with pendant drop data ob-

tained as a function of contact time of the phases, it was found
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that the initial contact time value of & should be used, in stead
of the final equilibrium value of 6 (as t,~w0) in the calculation
of the dimensionless group E = Eéqc/cr + The reliability of the defor-
mation method, based on Taylor's theory of small deformation, has' been
established by Rumscheidt and Mason (28).

For the non-Newtonian systems, the interfacial tensions at various
contact times were also measured. The interfacial tension value used

will be dependent on the contact time of the drop innersed in continuous

phase.. The G - t data are shown in Figure 3-8. - The value corres-
ponding to initial(5 min)contact time was used in the work here. The
use of the latter was Dbased on the estimated time which the drops

spent in the continuous phase before the breakup experiment was com-

pleted.

3-3. Experimental Procedures

Figure 3-9. shows schematically the arrangement of the appara-
tus used to experimentally examine the drop behavior. The microé—
cope and camera (still or motion) were mounted above the center of
apparatus. A lamp was>§ut below the bottom plate to provide the
proper illumination. With this arrangement, the drop could be viewed
from the top or side. The initial drop size were measured with a ca-
thetometer when § = 0. |

After locating the drop at the center. of the apparatus, with the
roller speeds being such that EL<Ek, the drop was seen to be deformed.
into a steady ellipsiod shape oriented along X-axis. Every effort
was taken to keep the drop at center as long as possible. The drop

shape was then photographed with the still camera connected to the
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Figure 3-9. The arrangement of Experimental Apparatus
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microscope. In Newtonian system, different drop sizes at different
extension rates were examined to determine the deformation curves.
On the other hand, in non-Newtonian systemm the deformation curves
were obtained from measurements on a single drop size only, since,
as pointed out in the last chapter, the deformation of viscoelastic
drops depends on the T group, which for a given fluid system depends
only on the drop size. By holding the diameter constant, we can

hold T group constant, and can then determine the deformation as a

function of E,
The critical extension rate was determined by inserting a drop
-into continuous phase, and then gradually increasing the roller

speed until the drop became unstable.
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CHAPTER 4
EXPERIMENTAL RESULTS

L4-1, Deformation

Drop sigzes ranging from 0.05 cm to 0.3 cm were used in the
experimental study of drop behavior. All Newtonian data were taken
with the modified four-roll apparatus (MFRD); the data for the vis-

coelastic systems were taken with the four-roll apparatus (FRD).

I this section, deformation data Tor a number of Fluid sys-
tem, both Newtonian and non-Newtonian, will be presented and com-
pared with the theoretical equations of G. I. Taylor, Chaffey and

Brenner, and Barthes and Acrivos, in order to check the relative

accuracy and range of applicability of these theories. Where po-
ssible, the relative effects of the physical properties will be
specified and demonstrated.

A drop when suspended in the center of a hyperbolic flow fi-
eld will be distorted into an ellipsoidal shape when viewed along
the Z-axis, and its major axis will be along the X-axis and its
minor axis along the Y-axis. In a simple shear field (VX = EY),
the major and minor axes are rotated 450 from the orientation in
the plane hyperbolic flow field. The deformation defined by Equa-
tion (2-9), increases with extension rate, G/2, until a sharply
defined critical valﬁé, Eb, is reached, above whiéh the drop bursts.
Different drop deformation and breakup mechanisms were observed
with Newtonian systems of different‘viscosity ratios. When'a:>ab

and A<0.5, the ends of the drop drew out into sharp points from

which small droplets of disperse phase were released. When'azfgc
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and A»0.5, in stead of developing pointed ends, the drop was
pulled out into a thread, which increased in length until its dia-
meter reached the order of 10"3 cm. However there is no sharp
boundary between these two cases (Fig. 4-1). The deformation

of a viscoelastic drop is similar to that of a Newtonian drop,

but the mechanism of bursting into thread is somewhat different.
The pointed end phenomenon was also observed in case of visco-

_ elastic drops, however it happened even when A= 11.2 (2.0% Sep—
AP 30 solution), and , insteadrof releasing droplets from the
pointed ends, the drop increased its length until the onset of
burst. This is quite different from a Newtonian drop. Figure

(4-2). shows the deformation of a viscoelastic drop (2.0% Sep AP

30 solution) under various extension rates up to breakup.

4L_-1-1., Deformation of Newtonian Drops

Quantitative measurements of deformation of six fluid systems
were taken, and the results were represented in terms.of the de-

formation parameter, D = (L-B)/(L+B), and the dimensionless group, E.

Figures (4-.3) to (4- 8) show the experimental deformation
data of six systems. A linear relation between D and E were observed
in each case when D small, i.e., at small extension rates. If we
assume Tayior's linear equation holds in this region, then the
'interfaciél tension can be determined from the slope of the.linear
portion by means of Equation (2-10). This method has béen shown
reliable by Rumscheidt and Mason (1966).

In order to show the reliability of this method, interfacial
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tensions of two fluid systems at various interphase contact times
were measured using the pendant drop method. - The drop shape was
photographed with the system described in the last chapter. The
resulting slides were then projected on a wall to make accurate
determinations on drop shape; the magnification was in the order
of 60 to 80, The interfacial tension values obtained with the
deformation method are shown in Fig. (4-9). . As seen, the ini-

tial contact values from the pendant drop method agree quite well

with those from the deformation method.
‘The cireled dots in Figures (4-3) . to (4-.8) show the de-
formation results calculated with the interfacial tensions éorr—

esponding to zero contact time. Curves corresponding to Equation

(2-10), (2-12), and (2-14) are also shown on each plot. It can
be seen that the experimental.data ﬁatch vefy well with these
theoretical curves for small values of E, but deviate away from
the curves of Taylor, and of Chaffey and Brenner as E. gets higher,
and in fact in a reverse trend from that predicted by Chaffey and
brenner. The agreement with Acrivos' theory depends on the fluid
systems, i.e., on the viscosity ratios. The agreement is good
- for systems 2 and & (A= 3.4 and 0.707). However, the deviations
are quite significant for systems 7, 8, 10, and 11, where E can
become quite large.

To summarize,the second order theory developed by Chaffey
and Brenner does not appear to provide a better approximation
than the first order theory of Taylor. Acrivos' theory is quite
good when A» 0.7, but completely fails to describe the deformation
for systems vith small N or alternately, in systems where large E

values are required before significant deformation occurs.
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It is quite interesting to find that Taylor's Eguation (Eq.
(2-10)) works fairly well as D goes up to about 0.2 for N\= 3.42
and about 0.35 for A~= 0.006, although this theory was derived
for small deformation of nearly spherical drops.

There is a steep increase of the deformation group D, which
occurs approximately when D = 0.35~~ 0.55 for A, changing from
0.0189 to 3.42, and about 0.6 ~0.7 for A = 0.006. Therefore,

the value Dc= 0.5, which was estimated by Taylor is not strictly

correct; however, it is surprisingly good considering it results

from a small deformation theory.

.

L-1-2, Deformation of Viscoelastic Drops

No theoretical relation has been derived for the deformation
of viscoelastic drops. In this case, we use the dimensionless

representations given in Chapter 2. 1In particular, we have

D= D(&a’u/" ’bob/,bc , a’Lc , o)

oA\

For a given fluid system, 'L°%L°, ‘X‘ are fixed, and E and Y

will depend on the experimental conditions, that is, the exten-

sion rate and drop diameter. Consequently, the deformation data

for the viscoelastic drop case shall be given with both E and {{%}

specified in each case. “
The interfacial tension corresponding to initial contact

time was used in each case, and thé experimental data are shown

on Figures (4-10) . to (4-12). . In each Figure, two deformation

curves with different %?g»values are shown. It is worthwhile to

<
point out that, in all three fluid systems shown, data with di-
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A
&Q}
linear line when the dimensionless group, E, is small, especially,

fferent , i.e., with different drop sizes, fall on the same
for the 0.75% and 1.0% Sep AP 30 solution cases. This seems to
indicate that within this range of E, the non-Newtonian effects

are negligible. In other words, Taylor's linear equation for
Newtonian systems would be gpplicable in this range, with A= OD/QC'
With this in mind, Equation (2-10) was also shown in each plot.

The comparison between the data and the curve seems to confirm

what we expected. As EQca/k gets large, the data , corresponding
to different Tf=-%%%i values, start to depart slightly from each
other in each system. This effect can also be demonstrated in

the breakhp experiment, as will be shown in the next section.

The value of deformation where the breakup process begins is

- generally in fair agreement with Dc= 3 given by Taylor's ana-

lysis for Newtonian systems.

L-2, Drop Breakup Results

L_.2-1., Newtonian Systems

It had been shown both theoretically and experimentally that
deformation of a Newtonian system depends upon X and E only, and
increases sharply as E approaches a certain value. Therefore,
for a given fluid system with a fixed viscosity ratio, there must
be a critical value of E, say Ec’ above which the unstable condi-
tion in drop deformation will consequently result in breakup of
the drop. Remenbering that E is the ratio of viscous forces to
interfacial forces, we, therefore, expect that large drop size,
high continuous phase viscosity, high extension rate, gﬁ,and small

interfacial tension, &, will be associated with an easily dispersed



system. This can be explained and confirmed with the experimental
results which gave an almost constant critical Ec with different
drop diameters for given fluid systems. Figure 4-13. shows the
constancy of Ec with various combinations of drop sizes for fluid
system 4.

All of the breakup results with the 11 fluid systems are

given in Table 4-2-1 and plotted in Figure 4-14 in accordance

- with Equation (2-26-a) in chapter 2. The critical value, Eg»

shown here for each system is an average value of several experi-
mental data like those illustrated in Figure 4-13.. The average
percent deviations from the mean value are also shown in the Table,
the laterrbeing calculated from

&
VAL P

where N is the number of individual experimental points taken,
and Eci’ the critical E corresponding to each point, and Ec the
14

average value of Eci

The results are also plotted in Figure 4-14 . on a log-log
scale with Ec and A = ‘7&433 coordinates. The few data points
taken by G. I. Taylor and by Rumscheidt and Mason are. also added
on this plot. These data fall on a curve, which shows a minimum
in EC at viscosity ratio somewhere between 1 and 2, with a slow
increase in Ec as AN is decreased from 1 down to 0.006, and a si—’
milar slow increase in Ec as N is increased from 2 or up. The
minimum value of E, according to Figure 4-14  is approximately

equal to 0.22. In order to compare these data, the corresponding
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Table 4-2-1,

58

Experimenatal Data of Drop Breakup of Newtonian

Fluid Systems

zluid X EC Deviation Rgnge of
ystem % D%%%?ter
1 27.46 0.263 2.2 0.09-0.14
2 3.42 0.241 2.0 0.10-0.15
3 2.25 0.233 2.8 Ao.o7—o;14
4 0.707 0.249 2.5 | 0.11-0.16
5 0.413 0.237 1.8 0.12fo.17’
é 0.298 0.243 2.3 0.11-0.18
7 0.085 0.326 1.6 0.12-0.16
8 0.033 0.362 1.7 0.13-0.18
9 © 0.025 0.430 2.5 0.11-0.20
10 0.0146 0.445 1.9 0.13-0.18
11 0.0060 0.493 1.1 0.13-0.22
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experimental curve obtained by W. K. Lee (1972) is also shown in
Figure 4-14,, TLee's data fall onto an envelope curveAabove that
obtained in this study, and show a minimum Ec (about 0.35 at the
range of )\ from 0.1 to 1, with higher increase rate in Ec at

both high and low ends of ) . This difference , I believe, is

due to the end effect, since Lee did not float his quite high vis-
cosity (100 ~ 300 poise) continuous phase on a heavier low visco-

sity fluid to reduce the wall effect caused by the bottom plate.

Similar experimental data, but in a simple shear flow field,
has been reported by several investigators. A comparison is shown
in Figure 4-15.. It is interesting to note that the minimum value
of Ec %n a plane hyperbolic flow field is only one-third of that
(about 0.6) observed in a simple shear field, and that there is
a limitation of the range of n&ﬂ# for possible drop breakup in
simple shear fields (AN < 3.5). Thé ratio of E, in a plane hy-
perbolic flow field to that in rotational flow field becomes even
smaller as the viscosity ratio , )\, moves away from the minimum
point (about A =1) in either direction. Thus, for same mag-
nitudés of G, the plane hyperbolic flow field seems to be more
effective in drop breakup and dispersion than the simple shear

field.

L_-2-2, Viscoelastic Systems (VE Drop Phase - Newtonian Continuous

Phase)

The relation for E, in this case in quite different to that

for Newtonian systems. In accordance with the analysis in chapter 2,

the breakup data on viscoelastic systems can be described by:
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E = EC( ,LOD/LC, CC )\‘ y X, ) (2-26-1 )

C

where Cc = EC/Z. Here the Bird-Carreau model was used to char-
acterize the polymer solutions.
Four fluid systems were examined here (see Table 3-2-3 for

physical properties), and the results are shown in Figures #-16

to 4-19.. The curves for each system were constructed by taking
data with different drop sizes. It is quite interesting to find
that the critical value of E increases almost linearly with De-
borah number, up to about De = 10, and then goes gradually into an
asymptotic constant value as De increases further. This can

be seen from theée figures, especially in the cases involving

the 1.5% and 2.0% Sep AP 30 solutions, where De values up to 22
were obtained.

Similar experiment;l data in a simple shear flow field have
also been reported by Tavgac in 1972. However, in his experiments,
the linear increase of E, with De was observed over the full range
of De number studied, about 2 <De< 250.

Thus, the plane hyperbolic flow field seems to be attractive
in the design of dispersion devicesfor VE materials in view of
the leveling off of EC as De gets large, since +this may give a
smaller E = E;a\zc/g- which means & smaller drop size can be:
obtained for a given E;.

If we extropolate the linear portion of E, vs.. De to
De = 0, we will obtain a limiting value of E_ which should be
equal to that of Newtonian system with X = Q?ﬁs. As shown on

these figures, the extropolated values of EC for the 1.5% and
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Figure 4-17. Effect of Deborah Number on EC Required for Breakup
of 1.0% Sep AP 30 Drop - Silicone 0il
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2.0% Sep AP 30 agree fairly well with the corresponding Ec in New-
tonian system with A= , but about 10% deviation were observed

for 0.75% and 1.0% Sep AP 30 solutions.
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CHAPTER 5
THE INSTABILITY OF LIQUID THREADS

IMMERSED IN ANOTHER LIQUID PHASE

5-1. Introduction

The breakup of liquid drops in viscous systems consists of
two distinct machanisms: 1) the breakup of the liquid drops into
a cylindrical liquid thread,and 2) the breakup of the liquid
thread into a number of smaller droplets.. The former process
depends on the ratio of the viscous and interfacial forces for a
given Newtonian fluid system as shown in previous chapters; the
latter process depends on the stability of the thread to inter-
facial wavy disturbances caused by certain external factors such
as the mechanical vibration in the apparatus and fluctuation of
pressure in the ambient fluid,

The breakup of liquid threads or jets has attracted the atten-
tion of scientists for ovef a century, and is one of the most im-
portant problems in capillary hydrodynamics. Practically, such
problems are encountered in fiber spinning operations, internal
combustion engines, and many emulsification and dispersion pro-
cesses. |

From considerations of minimum surface area (or surface po-
tential energy), Plateau (23) in 1873 established that a cylin-
drical liquid thread subject to surface tension will become un-
stable if its length exceeds its circumference. By considering
the stability of the disturbancewave imposed upon the thread sur-

face, Lord Rayleigh (25) reached a similar conclusion in 1879, i.e.,



69

the disturbancewave will be unstable if Ay> 2Ta. This can also

be revealed quite easily by considering the variation in capillary
pressure due to the wavy motion on a cylindrical interface. Imagine
an axisymmetrical capillary wave with length )\w in the surface of

a stationary thread (see figure 5-1).
§ = §.Cos (A2 W) | (5 -1-1)

Then the pressure due to surface tension & for an undistorted

thread is:
Po= S ( J4) (5-1-2)

and the pressure for the surface with axisymmetrical distortion §

as described by Eq. (5-1-1) is:
")

i ~ ! & ﬁ
P=6[Qfs—¢zx}=c ® T o T X : _-—(5_1_3)

Hence the change of pressure due to distortion, after using

T
AP=P-PO=-%§[\—(%) ] (5-1-4)
(

Now it is obvious that a wavelength greater than the peri-
meter of undistorted thread will produce an increase in pressure
in the nodes ( §<0) and a decrease in the peaks ( § > 0). Conse-
quently this will lead to an increasing distortion and finally to
the breakup of the thread when §, = a. When Ny is less than
2Ta, the wave disappears according to Eq. (5-1-4).

Since viscosity can be considered a damping factor for the
amplitude growth, the capillary breakup process will occur more
rapidly in liquids of low viscosity; this will be confirmed by

experimental breakup data in Section 5-4,
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Figure 5-1. Parameters of Surface Varicosity on liquid
Threads

Most of the previous theoretical studies of this problem were

restricted to different limiting situations by either eliminating

viscous effects or inertial effects in the continuous or disperse

phase. 1In 1935 Tomotika, using linearized stability theory, ob-

tained a relation which included the viscous and inertial effects

in both fluid media. The previous works of Rayleigh (26, 27) and the

later work of Christiansen (6 ) are limiting cases of Tomotika's

general solution. The complete solution structure of such problems

in terms of the characteristic dimensionless parameters has re-
cently been given by Lee (20). W. K. Lee and Flumerfelt has re-
considered this problem and obtained a more goneral relation in
terms of dimensionless growth rate, wave number, density ratio,
viscosity ratio, and Ohnesorge number. From this the different
limiting cases considered previously by Rayleigh, Weber, and
Christiansen were also derived. Unfortunately they did not se-
lect the applicability criterion in terms of the independent
dimensionless variables.for the limiting equations.

In the present work, we present a brief review of this work

3
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with particular emphasis on the approach used by Lee. In addi-

tion, the applicable ranges of various limiting equations are ob-

tained as well as some experimental results on the breakup phe-

nomena associated with stationary and extending threads.. A histo-

ric survey of this problem can be found in Lee's Ph. D. disser-

tation (20).

5-2.

wave

Here
Note

have

Basic Equations~— A Stationary Viscous Thread In Another

Viscous Fluid

By following Lee, the equation of motion for the axisymmetric

can be written in vectoral form as:

3{;__ -;L @ | 5_D.1
<F = e'VP-&-\{VV . (5?1)

cylindrical co-ordinates (r, e, z) are used, and V = (U, 0, W).
that the non-linear inertial effects and body force effects

been neglected.

By introducing the stream function 1y and by eliminating

pressure terms, Equation (5-2-1) can be combined into one dif-

ferential equation as:

(cg--“,g.i)og\p = 0 (5-2-2)

a* 19 at
where a@ = (S—T-" Y + "S"g'i)

As shown by Tomotika, the above equation can be satisfied

by the following relation:

\P::

Rgi[ArLHzm Bri,kr+Crinn+ DrEk(nr)]exp(xk+ iﬁ})}
(5-2-3)



Where oA is the wave growth rate; k is the wave number; n is de-
fined as (k2+ “7? )%, Ip and kp are Bessel and modified Bessel
functions of order p, and A, B, C, D,are arbitrary constants to
be determined by the boundary conditions.

The finiteness of physical motions at r = 0 and r =9 gives

the following stream functions for the inside and outside fluids,

respectively.
Y, = [AprI.(’kr) +CprI (4 r)] exp(xkriky) (5-2-4)
and "{’C_ = [BCY ki(k N+ Dcrk‘(mﬂ] QX‘? (xk +AR }\ (5-2-5)

1
2

where & = (k2+ °995)- and m = (k2+ “VVL)

1
2

The boundary conditions at the interface between the two
phases are:

(1) The velocity is continuous at the interface,
(up.:UQ]r;o\ , [wb.::wC]r:& (5-2-6a, b)

(2) The shear stress is continuous at the interface,

[((Cr})p = (‘tv}) c_] r=a (5-2-7)

(3) The difference in the normal stress across the interface

is due to the interfacial tension,

- L L Ly SERR=1) (en
(T )= s gt )= _(F"l (5-2-8)

Where R1 and R2 are the principal radii of curvature at the inter-

face.
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These boundary conditions give four linear homogeneous alge-
braic equations in terms of Ap» Bas Cpy Dge Nontrivial solutions
exist only if the determinant of the coefficient matrix vanishes

and thus we obtain the frequency equation as

Ty I Ky Ky
XI, X -XK XK, _
=0 (5-2-9)
20x°1,  U(GEHAT, 2wk, (xExP)E,
F, F,, Fy F),
with Fy= 2 T pX(XI -T, )+ T, T +X(x?-1)1,
Fy= 2 Wy pX(XpTp-T )+X(x2-1)T,
F3= - 21TiCX(XKo+K1)+ T 5K,
Fy= - 21rlcx(xcﬁo+ﬁl)
Where X = Xka, U= yLD/y(C
Xszaz (x%+ :iif S)%. X =ma= (X2+22€i.8)%
1= Ip(X). TP= IP(XD), K= Kp(X), Kp= KP(XC)
2D=(%?;2>s2. v2C=(§j-369>s2. v1D=<%%J4 s 'Wm'—‘(%%g)S

Here a characteristic time § is used to define the dimensionless
grovth rate S =«E§.

The above equation gives the relationship between X and S.
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For various characteristic times, it can be expressed in terms

of the following dimensionless groups:

the viscosity ratio U,

the density ratio G (=8D/$C), the ohnesorge numbers defined as

1 3 .
OhD=(ag‘-gD)2/ 1p and Oh.=(a€ SC)""/ e 'E:he dimensionless growth

rate S,

and the wavenumber X.

In order to obtain:-a complete solution structure, it is ne-

cessary to define a number of different characteristic times (

see Lee (20)).

These characteristic times are listed in Table 541

along with the various dimensionless groups which can arise in

the problem.

Table 5-1. The Characteristic Times and the Dimensionless

Parameters

q, = (0

0= (‘%&j(

P~ (EE-'L'E)

gvcg(fkmxx

a
S
o

2]

“T s
o3 0p 2
—e;—g,z, \ q oh§ U ohy
< fe ' Oh2 2
o*c }elr | %r Ohe
a'ly |

o0 Aghp t%;hc' ‘ U

o le ‘ | l

o & U ohy /ohe A '
:,L‘; ~ ©hp Ghohy | oh? U oh3
2 ) Oh%g}'z. Ohe Oh/:_, 0}12;
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Note that the relation between the two Ohnesorge numbers
is
1
2 = — -
G*0h,= U OhD- (5-2-10)
Now it is clear that the whole problem can be expressed in terms

of any three combinations of the quantities, U, G, OhD,.and OhC

with S and X as dependent variables.

5-3. Limiting Cases and Bounds of Applicability

In this section various limiting cases of Equation (5-2-9)
will be cited and criteria for their applicability will be indi-
cated.

The important characteristics of thread breakup are the rate
of the breakup process and the size of the droplets formed after
breakup. Experimentally, the maximum-wave growth rate, S*, and
the corresponding wave number, X*, are the direct measurements
of these two characteristics. The selection of a criterion of
appliéability in each 1imiting case is obtained by'considering
the variation of S* and X* with the independent dimensionless pa-

rameters as they approach the limiting values.

(A) Dominant Inertial Effects

Two cases can be considered in this category.

S
(A-1) Ohc—'foo ' GEOhD"" R, G—=>0 (Implicit: U->0)

3 1
By using SIC= (e'—g-c-'--)2 as the characteristic time and re-
ferring to Table 5-1, we found that a dominant inertial effect

2
implies Oh ~> W and G20h, —™ 0,

D
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1
With Ohc"?"o ’ G?TOh.D —% , G —» 0, Lee has derived the

limiting equation as

2 _ 2
sTe = X(1-x")K, /K (5-3-1)
witﬁ S;C = 0.819 and X*= 0.485 being the maximum growth rate -and

the corresponding wave number, respectively.

1 : 1
Note that U = GOhc/OhDG?-, i.e., U is equivalent to 1/G20hD

for given values of G and OhC. By substituting various values of
' 1
Ohc' G, U (corresponding to G20hD) into Equation (5-2-9) and
¥* ¥*
numerically solving for S and X , it is possible to determine

near the limit. i.e., Oh, —>Vv9

1
the effects of Ohc’ G, and G=0h c

D
G%OhD"*"" , and G —» 0.
Thesevnumerical results are shown in Figures (5-2) ~ (5-5)
for this particular case. Figure (5-2) shows generaily the ef-
fect of G, Oh_, and G%OhD on S°. TFigures (5-3) ~ (5-5) show the
individual effect of each parameter on S* and X* with the other
two being fixed at various values close to the limifing valueé.
It is clear from these results that the effects of G and OhC on

* 3* i
S and X are quite strong and that of G®0Oh, is quite small when

D
close to the limit.
. 3* * . =Y
Expanding S (or X ) in terms of G, 1/bhc, 1/C20hD ayrround
the 1limit point (0, 0, 0), we obtain the following expression of

s* (or X*),

& = S'(e,0,0) + QBX\ “T(a)(z_) X, + QBX;AXB + Hjh% oL Keywms

o S*(o,o,o){s\“- S* o, ) N (as’*)

(o o 0) J R) S X ( \X3 + H\:)\'\u avdis 9(2'(\\\3'

().
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1
Where X,= G, X 1/OhC, X.= 1/G20h

2: 3= D R
*
An approximate conservative criterion for 5% deviation in S
3
(or X ) can be defined as

S (0 0,0)(5%) ;;. 1X1+K2X2+K3X3

where K.= [(a%xgo/ﬁ SZ )‘:\S,flaglw1th1n (0, 0, 0) and. (Xl’ X5 XB)

for 5% deviation.

Since X, has the smallest effect on S-’;e (or X*), we choose
SuP(IaXJ) and Sup(l \) in (Xl' X
and 5-4.

o 0.0005) as in Figures 5-3
- N [ [ - * . *
Based on this approach, for 5% deviation in S and X , Equa-

tion (5-3-1) is limited to the following conditions,

R4S T8 e t 73 fhop, <1 For S* (53410
11566 -44.8 5p + |o.3/&&°hp | <V Fee X¥  (5-3-1b)

2%
Also for 5% deviation in S, Meister and Scheele (21) ottained

Ohe > 36

"as the restriction on Equation (5-3-1) for the case of a gas jet

in a low v130031ty liguid by simply neglecting the effects of G

and 1/G Ohy.

However, with typical values of 0.005 g/c.c. for gas and
1
1.0 g/c.¢. for aqueous liquids, and with negligible effect of GEOhD,
Equation (5-3-1a) requires that

ohe7 48
Therefore, simply neglecting the effect of G even in the case

of gas jets in low viscosity liquids is not strictly correct.
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1
(A-2). Ohy—>ovo, OhC/G‘?--) oo » G—> 99 (Implicit U—>w9),

By taking GID as the characteristic time, it can be seen
1
that dominant inertial effects imply that Ohj~> ¥ and OhC/G‘?--) .
1
Note also here that U is equivalent to OhC/G2 for given OhD and G.

The limiting equation is:
= 2 -
S1p= X(1-X°)I,/T (5-3-2)

with S:3= 0.344, X: = 0.696 as the critical growth rate and wave-
number.

The most sensitive parameter in this case turns out to be OhD.
For 5% deviation in S§D and X*; Equation (5-3-2) is limited to

conditions where

For Syt 3&8/0},1, + o8 4 + ‘“5"‘(%) <| .(5—3-éa)

For X i io.séhp + 0‘86/6.1- O.KZ‘Q%I)C)<‘ (5-3-2b)

Using the same typical values of density for gas and agueous
* *
solutions, we found that errors in S and X assiciated with G and
2 .
Ga/'OhC are almost negligible. Therefore, for a low viscosity liquid

Jjet in a gas, the restrictions can be rewritten ass
* L}
For Sqp Ohy > 39 (5-3-2a')

3
For X~ _ Ohy, > 20 (5-3-2b")

(B). Negligible Inertial Effects as Compared with Viscous Effects

In this case we have 2 X
U<l , oh=>0  UOhy—0,

and V>l ,0h=>0, ohi/s=0,



By expanding the functions in the second and fourth column
of Equation (5-2-9) in ascending powers of Oh, and UOhS (or Ohp
and Ohi/U for U > 1), and then letting these two parameters pass
to zero, we can obtain Tomotika's special equation corresponding

to negligible inertial effects as

I, XI -1, K, -XK - K, T
I, XI,-I_ K, XK, - X,
' = 0 (5-3-3)
U1, UXT K, -XK |
| Gy G, Gy Gy,

PN ¢ SO

-UI,S +
ST o

where G1

,
'} o” (X - 1)11
2( ==t )
0
I
G3— K1 S
_ ! "
G,= (K1+ XK1+ KO)S

Here 9VD was used for the case U>1 and eVC used for U £ 1.
We will not consider the bound criterion for this equation, since
it is still quite complicated and not convenient for simple appli-

cation. Two limiting equations can be derived from Equation (5-3-3).

(B-1). U=>0, Ohg,-—é 0, UOhIZ) - 0

In this case, Equation (5-3-3) can be simplified to



8k

5 -[ (1-x%)/2 ] (5-3-4)
ve 1+X2—(XK°/K1)2

¥* *
with S = 0.5 and X = 0.0.
o 0
The numerical results for this case indicate a dominant
*
dependence of S on U, a slight dependence on Ohc' and very
little dependence on UOhS (equivalent to G). This situation
actually is a result of the assumption that the viscous effect
is dominant in this limiting case.
. | .
The slope of SVC vis., U with Ohé and UOhg —> 0 increases
quickly as U -» 0. As an approximation, an average slope was

chosen to set up the criterion. The restriction in this case

3*
for 5% deviation in S is:

14000U+8. 00h%+0. 08U0hZ

Z <1 (5-3-ka)

The large coefficient of U is quite reasonable since Equa-
tion (5-3-4) was derived by Tomotika for the system of a "vacuum”

jet in a low density viscous medium.

(B-2). OnZ2

2~ o, Ohg/U — 0, U—> 0

The limiting equation now becomes (using QVD as the char-

acteristic time)
(x%-1)/2
S = - e
VD [ 1+x2-(x10/11)2 ] (5-3-5)

#* 3
with So= 0.166 and Xo= 0.0.

The same type of dependence on U, Ohg, and Ohg/U was observed

as in (B-1). According to the numerical results, the applicabi-
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lity restriction on Equation (5-3-5) is
903/U+8k4. 30h§+o.u20;}§/u < 1 (5-3-5a)

This case corresponds to that considered by Rayleigh for a

low density viscous jet in a "vacuum" medium.

5-4., Experimental Studies

In his experimental studies on the breakup of a liquid drop
in an extending flow field in 1934, G. I. Taylof came across two
interesting and essential observations which initiated +two papers
by Tomotika (35,36) concerning the instability of statidnary and

extending threads. G. I. Taylor observed that when a drop of

black lubricating oil was surrounding by syrup, the thread formed
by ¢ontinuqusly stretching'out of the deformed drop did not at
once break :up into small drops but remained cylindrical for some
time and finally broke up into many tiny droplets after being
stretched into a quite thin thread. On the other hand,

if the flow field was abruptly stopped at some stage, the thread
gradually broke into a number of small drbps spaced at nearly
regular intervals, although it had seemed quite stable while the
surrounding fluid was in motion.

As mentioned by Tomotika, the base flow in the surrounding
fluid may have a stabilizing effect which suppresses the break-
up of the thread. This can be visualized in the following way.
As the thread is draw out by the motion of the surrounding fluid,
any varicosity formed at the interface would have its wavelength

increased. That is, even though a disturbance wave at the inter-
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face of the thread might have the fendency to amplify, the base

flow associated with the thread diminishes this effect by "stre-

tching out" the wave and as a result delays the ultimate breakup.
The formation of liquid threads in -other liquid media is
quite important in the formation and extrusion of synthetic fibres.
In particular, such processes are encountered in wet spinning
processeés where the liquid polymer thread is extruded and drawn
in a liquid bath.
Experimental data on thread breakup under both conditions,
stationary and extehding, will be presented in this section and
compared with Tomotika's theory of stationary liquid threads in

liquid media.

5-4-1, Experiments on the Instability of Stationary Liquid Threads

The experiments were conducted in the four-roll apparatus
described previously and the conditions similar to those employed
in the study of deformation and breakup of liquid drops. Stationary
liquid threéds were obtained by instantly stopping the flow field
which had pulled the liquid drops into cylindrical threads. The
whole process was photographed with a movie camera and then the
dominant wavenumber X*= ZTra/)\w was calculated by measuring the
thread diameter and wavelength )\W.

Silicone oil F510 ( QC= 300 poise) was used as the continuous
phase and different syrup, molasses, glycerol solutions, and seve-
ral polymer solutions as the dispersed phases covering 1@AL¢ from
0.008 to 10.

The key dimensionless parameters in case of polymer threadg

can be expressed as, according to Led's analysis,



S =8(X, U, G, %,, T’ =——G—.——>—‘—'——)~- (5-4-1)

17 driloD

- * *
therefore, the dominant wavenumber, X , is:

* * ' T A
X =X (U,,G, y T == (5-4-2
( ! Irlon (5he2)

Here the effects of OhD

case of a liquid thread immersed in a liquid medium these two pa-

and OhC have been neglected, since in the

rameters are usually very small. Moreover the density ratio can
also be considered as a minor factor and neglecfed.-

The measured daté on the dominant wavenumber, X*, are plotted
on Figure 5-6 (including some'dafa points for extending threads)
with =’2D/’1C as abscissa. Data for the polymer threads were speci-
fied with the corresponding values of‘xl’anddgsi;., Thg numerica;
results for Tomotika's theoretical equation for negligible iner-

tial effects, i.e., Equation (5-3-3), are also shown in Fig. 5-6.

The experimental results are in fairly good agreement with

the theoretical curve from Equation (5-3-3), except possible for
those data with A = 0.0083 which show some deviation from the theo-
retical curve. This might be expected, however, since the inertial
effect of the thread phase, neglected in Equation (5-3-3), is gett-
ing more and more important as A becomes smaller and smaller.

The numerical results from Equation (5—2—9) were added for N\= 0.0083.
Wavenumber data, X*, for four polymer solutions are also plotted

in Figure 5-6. The results with A <3.4(0.75%, 1%, and 1.5% Sep

AP 30 solutions) were below the curve for Newtonian threads, and
those with A= 11.2 (2% Sep AP 30 solution) were a little bit higher.
This trend agrees qualitatively with the numerical results of Lee's

theory (Figure 3-15 in his dissertation).
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It is interesting to note that systems with high viscosity

-ratios always take longer periods of time to show unstable vari-

cosities at the interface than those with smaller viscosity ratios.
Thié may reveal that the viscosity of fhe dispersed phasé hay have
a damping effect on the growth of unstable waves.

In order to compare the relative instability between Newton-
jan threads and viscoelastic threads, the amplitude of the vari-
cosity, § , at various times before breakup were measured on two
individual systems with same viscosity ratios, one for a Newtonian
system, and one for a viscoelastic syétem. The fluid systems are
indicated on Fiqure 5-7. The results are plotted on a semi-log scale
paper with S/a and t as the co-ordinates, as shown in Figure 5-7.
Here 'S/é = 1 corresponds to the breakup point and t corresponds to
the time before the breakup point., The comparison here shows that
a viscoelastic thread is more unstable than a Newtonian thread
except possibly for a short period before the breékup point. The
almost linear relation for the’ Newtonian thread agrees with Tomotika's
linear instability theory.

In most of the experiments here the breakup rattern was quite
regular with the thread being broken into almost equal size drép-
lets at equal intervals with some smaller satellite droplets between
them. The ratio of diameters of the final main droplets and that
of the thread ranged from 2.0 to 2.6 as shown in Appendix II (C-1).
In some case, superimposed waves were observed during the breakup
process; this might be due to some external mechanical vibration

in the apparatus or due to a non-uniform interfacial tension distri-
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bution caused by the impurity absorbed at the interface.

5-k-2. Experiments of the Breakup of a Liguid Thread under

Extension

In this section some experimental results are presented on .
the breakup of an extending thread; that is a thread being conti-
nuously stretching out by the outside base flow field until break-~
up occurs. G. IF Taylor first reported that the sizes of droplets
formed by an extending thread were much smaller than those formed
by a stationary thread. ILater in 1936 Tomotika developed'a theo-
retical analyéis of this phenomenon and found that the extension
of the thread has a stabilizing effect in constraining the in-
crease of any initial disturbance to a finitevalue. Besides this,
the disturbances could occur at various stages during the elong-
ation and it was shown that these wave disturbances could increase
in very different proportions. |

In order to reveal what these results imply, let us consider
the mechanism for breakup problem. Here there are two main forces
counteracting each other, i.e., the viscous stretching force tending
to stablizé the disturbances ahd the interfaciai force tending to |
promote the disturbances. In our experiments, we maintain a con-
gtant stretching rate, C =‘§72, and start with a thread of somewhat
larger diameter than that which finally exists at the point of break-
up. As time goes on, the thread diameter decreased and since the
interfacial tension force is inversely proportional to the diameter,

the interfacial forces increase and eventually dominate the viscous
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' forces. - breakup then occurs. This suggests that there exists a
critical thread diameter associated with each given extension rate,
C = 6/2. Therefore, an experimental correlation for this problem

can be expressed as

dTl’}.= dTH(’zC' ’le gC' SD' 61 C) (5"’"""1)

where dTH is the critical thread diameter. Based on dimensional
considerations, this relation can be transformed into the follow-

ing dimensionless form:

]
Erpe™ Clryle/s = Eryl QD/ Tor Sp/8or Onp= (agy$ )2/
_ (5-4-2)
In this study,, all the fluid systems were with‘sb/sc= 1 and

small OhD, and therefore Egquation {5-4-2) can'be.Simplified tq
carle/s = Epol Lo/l (5-4-3a)

Assuming that the main droplet diameters and the thread di-

ameter are in a nearly constant ratio, we can have

caple/s = Eppel Lp/le) (5-4=3b)

Equation (5-4-3b) is used to analyze the experimental data, since
the measurement of the final main drop diameter is easier and more
definitive than the thread diameter. Here dpp is the final drop-
let diameter. '

The same viscoelastic fluid systems studied in the stationary

thread case were also tested here. The correlation function,
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similar to that in viscoelastic drop breakup, is

'LdDPc/s = Eppe( ‘ZoD/’Zc' De = Ch, &) (5-L-4)
Before presenting any experimental data on extending threads,
we have to establish the relation between the actual extension
rate of the thread and that of the external flow field (572). For
this purpose, the change of thread diameter with time for three
cases ( one Newtonian thread and two viscoelastic threads) were
measured. The instantaneous axial extension rate of the thread

was calculated from the instantaneous diameter d from

TH
g 4ldpy)

dL
(5-4-5)
g Gt

—— =_2

Q
|
HIHJ\
ot

da

The above equation was derived with the condition of cons-
tant thread volume for -an incompressible fluid. In particular,

for a long thread, the volume is

2
W dpy
V = ——ﬂf——-L = constant
a(d,..) a2
and VA, N T’ WTmH dL _
dt - 27°TH dt L at
2
T Ldgy

Dividing the above equation by —— » We obtain Equation (5-4-5).
The measurements of'dTH as a function of time for the three

systems studied are plotted in Figure 5-8. The data reveal that

aL
Lat °*

and the extension rates as calculated by Equation (5-4-5) were

the threads were extending at a constant rate, defined as C =

quite close to those for the basic flow field calculated by Eq.
(3-3a). This observation seems to imply that for the systems
studied, the viscous forces in the thread which resist the exten-

sion are small compared with the forces of the continuous phase
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which act at the thread surface and cause the extension of the
thread.

If the extending threads are allowed to continually extend
at a given rate, they will eventually breakup. This breakup pro-
cess was photographed with a movie camera, the conditions being
the same as before ( T = 24.5°C ). In addition to measurements
of EDPC’ we also measured the critical wavenumber, X*, The re-
sults are shown in Figure 5-6. Here we found that all of the
data fell below the curve of a stationary thread. This seems
contrary to what Lee reported in his dissertation that the ex-
tending critical wavenumbers are similar to those in the case
of a stationary thread. However most of his data were also be-
low the curve of the stationary case (refer to Fig. 4-5 in his
dissertation).

The data of EDPC on Newtonian threads are plottéd, according
to Eq. (5—4-3b), on Figure 5-9 with viscosity ratio, N , ranging
from 0.008 to 10. It is seen that the value of Eppe increases
as the viscosity ratio decreases; and the slope is higher and
higher as AN Dbecomes smaller and smaller. This implies that the
higher the viscosity relative to the surrounding media, the smaller
the diameter of the thread before breakup occurs. In other words,
we can obtain smaller drops and finer dispersions in such systems
than with systems with smgller viscosity ratios, all other condi-
tions being the same.

In Figure 5-10, we plotted the values of (EDPC)VE in term
of De = Ekl/Z, for three Sep AF 30 solutions according to Eq. (5-4-4).

In all cases, the values of (EDPC)VE increase more or less linearly
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with De. The corresponding values of Eppe for Newtonian cases are

also shown on Figure 5-10. In all three cases, (EDPC)VE/(EDPC)N

are always greater than 1, under similar conditions. If we con-
sider.the same values of §, C, and‘zC for the comparable systems,
the ratio, (EDPC)VE/(EDPC)N’ would be equivalent to the ratio of

the broken main droplet sizes. This seems to imply that the ex-
tending threads of polymer solution are more unstable than the cor-
responding Newtonian threads under similar kinematic conditions.

In order to substantiate this, the measurements of 5('t)/a(t)

at various times up to breakup were taken on two comparable systems
with the same extension rate, C. The Newtonian thread, used here,
with lower viscosity and higher interfacial tension than the polymer
thread -should be more unstable than a Newtonian thread with same values
of YLD and § as the polymer thread. But the results shown on Figure
5-11 still indicate the the Newtonian extending thread is more stable
than the polymer extending thread, when both threads are extending

at the same rate.
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CHPATER 6

CONCLUSIONS

The drop deformation and breakup as well as the instability

of liquid threads (both Newtonian and viscoelastic fluids) have

been studied exﬁerimentally in this thesis. Here, we summarize

the main conclusions in this work as follows:

I.

II.

The second order theory developed by Chaffey and Brenner
does not seem to provide a better approximation than the
first order theory of Taylor in predicting the drop defor-
mation in Newtonian systems. Taylor's theory (Eq. (2-10))
works fairly well as D = (L-B)/(L+B) goes up to about 0.2
for N\(="p/;) = 3.42 and about 0.35 for N = 0.006. Where
L and B are the major and minor axes of the deformed drop,
and.yl__D and qC are the dispersed phase and thé continuous
phase viscosities. Barthes and Acrivos' theory is quite
good wvhen A 2 0.7, but fails to describe the deformation
for systems with small A . The drop breakup occurs approxi-
mately when D = 0.35~~0.55 for AN changing from 0.0189 to
3.42, and about 0.6 ~ 0.7 for N = 0.006. Therefore, the
value DC = 0.5 which was estimated by Taylor is approxi-
mately correct.

The range of viscosity ratio within which the drop breakup
can occur in a plane hyperbolic flow field is wider than
that in a simple shear flow field. The system with A be-
tween about 1 and 2 seems to be the most favorable system

for dispersion processes. The ratio of EC=GCa?C/}§ (where
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Iv.

VI.
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E& is the rate of strain at burst, a is the drop radius,
and & is the interfacial tension) obtained here to that
in a simple shear flow field is only about 1/3 at AN =1, and
becomes even smaller as the viscosity ratio takes values dif-
ferent from 1. Thus, for the same value of 5. the plane hy-
perbolic flow field seems to be more effective in drop break-
up and dispersion than the simple shear flow field.

In the case of viscoelastic drops, EC increases with Deborah

"number up. to.about 10, and then goes gradually into an asymp-

totic constant value as De increases further.

The applicable range of four limiting equations derived from
Tomotika's general theory for stationary liquid threads have
been obtained and expressed in terms of appropriate dimension-

less groups, i.e., density ratio, viscosity rgtio, Ohc=(dTH€%

1 X
2 . 2 3
6)%/1, + and Ohp= (dTHgDs) /Mp » where dpy is the thread
diameter. These bounds have been shown to provide more gen-
eral criteria for the applicability of the limiting equations
of Rayleigh and Tomotika.
- [ - *

The experimental critical wavenumbers, X = WYdTHAkw (where
)'w is the wave length), for Newtonian threads are found to
agree fairly well with Tomotika's linearized stability theory
for a stationary liquid thread, and those for viscoelastic
stationary threads deviate from the Newtonian systems in a
way which seems to confirm qualitatively Lee's theory, that
. * * * ¥*
is, (X )VE< (X )N when A<l and (X )VE7 (x )N when A 1.
An extensional base flow has a stabilizing effect on the in-

stability of an extending liquid thread, therefore threads
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of very small diameter can be maintained before the final
breakup occurs. The system with low viscosity ratio is more
unstable than a system with higher viscosity ratio.

VII..The value of Ejp,= CdDPQC/C;-(where dyp is the broken drop
-diameter) in viscoelastic threads is again found to increase
almost linearly with Deborah number and the slope depends on
the viscosity ratio, QoD/&C’ the smaller the viscosity ratio
» the steeper the slope . The ratio of (EDPC)VE/(EDPC)N is

always greater than 1 for systems with the same viscosity

ratio, that is, an extending viscoelastic thread will re-

sult in larger broken droplets than an extending Newtonian
thread.

VIII. Measurements on the relative varicosity amplitude, S/é, at
various times before breakup indicate that the viscoelastic
thread (both stationary and extending ) is more unstable than
the Newtonian thread with the same viscosity ratio, inter-

facial properties, and kinematic conditions.
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NOMENCLATURE

radius of the undeformed liquid drop

coefficients defined in Appendix I

length of minor axis of a deformed drop
extension rate in plane hyperbolic flow field
apparent deformation (= (L-B)/(1L+B))

deformation parameter defined in Eq. (2-10)

defined in Eq. (2-1k)

differential operator defoned in Equation (5-2-2)
Deborah number (= C )\1 or EAi/z)

diameter of the broken droplets from extending (or stationary)
liquid threads

X

critical diameter of extending liquids threads, or diameter
of stationary liquid threads

dimensionless group defined as 'EQJLC/Qy (E' = E/2)
dimensionless breakup group for extending threads ( Cdpp ’LVS.)
dimensionless breakgp group for extending threads (C‘LTH 7.0/5—3
Functions defined in Equation (5-2-9)

tensors defined in Equation (2-13)

tensors defined in Equation (2-13)

strain rate

critical strain rate for drop breakup

density ratio ( ‘gp/.gc)
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contravariant and covariant components of the metric
tensor

functions defined in Equation (2-11)

functions defined in Equation (5-3-3)
modified Bessel functions of order p with argument x

derivatives:of Ip(x) and Kp(x) with respect to x

I (%p)

(-1)%

second invariant of the rate of strain tensor
='Kp(xc)
wave number

lengths of the major axis of a deformed drop
a

= (k% /vy )®
1

(k% o¢/yg )*

menory function defined in Equation (2-17)
i
Ohnesorge number (a R 5‘)2/)1,

normal stresses in the dispersed and continuous phases
pressure differences generated by normal stresses
principal radii of curvature

cylindrical coordinates

real part of ( )
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S dimensionless growth rate ( =&X© )

S function defined in Equation (2-14)

T Deborah Group.'%l% » for viscoelastic drops (ori“w for
stationary threads) ™ Lep

t', t time, present time

u velocity in X-direction

U viscosity ratio

v velocity in Y-direction

w velocity in Z-direction

X5 §i material coordinate of fluid element at time t and t'

X, X* wavenumber and critical wavenumber

Xy Xg modified wavenumber defined in (5-2-9)

(X,Y,2) the cartesian coordinates

SUESCRIPTS

C quantities in the continuous phase
D quantities in the dispersed phase
I inertial effect

v viscous effect

GREEKS
0.4 dimensional growth rate

K, ,0{s slope parameters in Bird-Carreau Model

Y shear rate

Y amplitude of interfacial varicosity
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viscosity

zero shear viscosity

characteristic time defined in Table 5-1
viscosity ratio (equivalent to U)
characteristic time in B-C model
characteristic time defined in Equation (2-20)
kinematic viscosity

dimensionless groups in Table 5-1

density

interfacial tension

shear stress

polar angle in X-Y, X'-Y' coordinate system
stream function

strain tensor defined in Equations (2-18) and (2-19)

a small parameter represent the magnitude order of drop
deformation

twice the ratio (Q,,- 74 - ) in steady simple
shear flow 'sz ‘Z33 rtll TZZ
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Appendix I

The coefficients ai"bi’ and c; in Equations (2-14) and (2-15)
are all rational functions of N\ which, as shown by Barthes-Biesel

(1972), are given by

. S
o 3(2A+3)

- BO(A+1)
2172~ +3) (19 A +16)

10(LA -
ax= 7(2>\+3§%
. =.288(137 AN3+624 N 2irL1 N +248)
3 72(2 A+3)2 (19N +16)

_—2(11172 A +183367\3+1zl+’+0 A213499 A -7572)
W B9(2A+3) (19 +16)

. _—2(A- 1)(223447\3+527687\ +45532 A +19356)
%5 49(2 N+3) 2 (19N +16)

. _48P(A )
6 g 2n+3) 0 (19m+16) (10N +11) (17 +16)

_48(A -1) (2793 A +7961 AP+8L7LA +3522)
4 49(2A+3)(19A+16)

a

_-b00(43A2+79 N +53)
3(2 A+3)2(19 A+16)

80Q(>\)
9" (2A+3)2(19 A+16)2(10A+11) (17 A+16)

where

6

P(A )= 2127976 7\7-16341920 N -3849u96u7\5+122942551 7\“

FL7LGECIIL AP 59151 5650 AZ+332123136 N+717004 80,
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Q( A)= 405260 No+2366960 A*+9142173 A2+8595967 A 243334160 A
+693760.
o ___-360(A +1)
O (17A +16)(10A+11)
b1=———l——— .
7(2A +3)
o o 16(-14 AJ+207 A 4431 A +192) ,
2 21(2A+3) (19A+16) (17 A+16) (10 A +11)
and
b a.b
- . _ 39%8°% 29°1
€17 3~ 35 b, ‘TE b,
oo 3 28%
2~ 770 o,
. sk BgPp
°37 %67 35 o,
3 a8b2 a b1
CL"" as - 3 D - '7_3 _';L ]
(o} (o}
_ agby
€™ ’T’% b,
6 2gP2 18 2gPq
06— 8.7 + '2—,7' b - -—?— b N
0 (o]
o= . 1828%
7 7 b. .



A, Deformation Data

APPENDIX 11

EXPERIMENTAL DATA

A-1. Newtonian drops in Newtonian Continuous Phase

Fluid System 2 (N=3,42)

Drop Diameter (cm) Gal (em/dyne)

0.
0.
0.
0.
.0720
1176
.0940
.092L4
L1117
.0758
.1103
.1270
1150
. 1469
.1345
.1533
.1363
.0919

0

O O O O O O O O O O O O O

1045
770

0576
0665

Fluid Svstem & (A= 0.707)

Drop Diameter (cm)

0.
<1104
L1154
.0718
.0782

o O O O

0822

Deformation
L,813 0.162
3.674 0.113
2.771 0.092
3.186 0.108
3.463 0.116
5.703 0.217
L.633 0.148
L ,Log 0.1422
5.373 0.179
3.724 0.128
5.392 0.181
6.204 0.227
5.768 0.207
7.363 0.277
6.798 0.236
7.882 0.138
6.948 0.262
L,685 0.1621
Ga'le (cm/dyne) Deformation
L,069 0.132
5.397 0.194
5.688 0.198
3.584 0,116
3.871 0.127

111



112

Fluid System 4 (A= 0.707)

Drop Diameter (cm) gale (cm/dyne) Deformation
0.0645 3.179 0.100
0.0510 2.567 0.082
0.0960 L,822 0.161
0.1059 5.422 ¢ 0,185

1 0.1294 6.7111 0.263
0.1038 5.159 0.174
0.1330 6.828 0.270
0.1460 7.256 0.280
0.1530 t7.573 0.282
0.1320 6.680 0.244

Fluid System 7 (N = 0.085)

Drop Diameter (cm) Ga'lle (cm/dyne) Deformation
0.1568 8.350 0.281
0.1056 5.476 0.177
0.0879 4.639 0.139
0.0781 3.787 0.117
0.0635 3.293 0.103
0.0635 3.293 0.103
0.0599 2.880 0.086
0.1016 5.109 0.160
0.1045 5.345 0.166
0.1070 5.602 0.180
0.1346 6.951 0.226 -
0.1684 8.734 0.311
0.0611 3.225 0.101
0.1394 7.457 0.247
0.1273 6.720 0.211
0.1052 5.456 0.1672
0.1562 £.318 0.295
0.1382 7.850 0.248
0.1344 7.937 0.256

0.1900 9.60L 0.386



Fluid System 8 (A= 0.033)

Drop Diameter (cm) Ea’ze (em/dyne) Deformation
O 0.1757 8,451 0.2760
0.1007 L ,824 0.160
0.0705 3.460 0.109
0.0841 L.,145 0.131
0.0841 L,215 0.134
0.0477 2.422 0.082
0.0821 L,o64 0.123
0.0782 3,919 0.123
0.0568 2.823 0.093
0.0560 2.783 0.093
0.1010 | 4.938 0.153
0.1283 6.3241 0.198
0.1690 8.330 0.285
0.1500 7.333 0.239
0.1233 6.028 0.185
0.1386 6.860 0.216
0.1025 5.032 0.156

Fluid System 10(A= 0.018)

Drop Diameter (em) Gal (c¢m/dyne) Deformation
0.1071 7 5,413 0.194
0.0705 3.635 0.124
0.0950 L,822 0.169
0.0658 3.354 0.123
0.0458 2.335 0.089
0.1087 5.560 0.206
0.1266 6.566 0.253
0.1429 7.073 0.264
0.1248 6.329 0.222
0.1375 7.009 0.257
0.1428 7.248 0.274
0.0609 3.105 0.099
0.2063 10.737 0.438
0.1584 8. 144 0.306
0.0930 L.,757 0.164
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Fluid System 11 (A= 0.006)

Drop Diameter (cm) Gale (cm/dyne) Deformation
0.0779 4,005 . 0.151
0.0918 4,563 0.159
0.1195 5.939 0.212
0.1168 ' 5.781 0.211
0.1329 6.984 0.277
0.152L 7.769 ' 0.311
0.1425 7.172 : 0.275
0.1404 7.127 0.278
0.0503 2.573 0.105
0.1760 9.088 0.371
0.1243 6.589 0.257
0.1195 6.040 0.237
0.0871 : L, 478 0.178
0.1482 7.587 0.311
0.1625 8.178 0.333
0.2350 11.632 0.499

0.04350 2.255 0.093
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. Viscoelastic Drops in Newtonian Continuous Phase

Continuous Phase: .Silicone 0il, zh = 300 poise

Drop Phase: 0.75% Sep Ap 30 Solution

G/2 (sec”

T

_GA

~kal,
1

0.0296
0.0388
0.
.0623
L0741
.0834
.0952
L1047
1165

o O O O O O

0505

13,45

Deformation

0.060
0.083
0.112
0.148
0.184
0.218
0.263
0.315
0.434

Drop Phase: 1.0% Sep AP 30 Solution

T = S M = 30.48
C
G/2 (sec_l) Deformation
0.0320 10.061
0.0390 0.076
0.0507 0.105
0.0603 0.128
0.0721 0.163
0.0836 0.201
0.0906 0.219
0.0976 0.251
0.1139 0.329
0.1266 0.412

T = Sa?\1 = 6.95

G/2 (Sec—l) Deformation

 0.0180 0.075
0.0249 0.107
0.0320 0.144
0.0367 0.175
0.0437 0.221
0.0505 - 0.280
0.0531 0.319
0.0555 0.377
0.0581 0.543
p=SM_ 125

c

G/2 (sec_}) Deformation
0.0178 0.089
0.0249 0.127
0.0294 0.161
0.0341 0.191
0.0387 0.221
0.0434 0.25¢8
0.0506 0.341
0.0550 0.505



116

Continuous Phase: Silicone 0il, Qc = 300 poise

Drop Phase: 2.0% Sep AP 30 Solution (A= 11.2)

7= SM _ 5550 p = CM _ 2386
af, 2l
. 572 (sec—l) Deformation G/2 (sec—i) Deformation
- 0.0298 0.064 0.0152 0.083
0.0391 0.087 0.0199 0.111
0.0506 0.014 0.0247 0.143
0.0646 0.153 0.0295 0.171
0.0789 0.188 0.0342 0.205
0.0905 0.234_ 0.0413 0.263
0.1005 0.276 0.0504 0.367
0.1096 0.307 0.0553 0.455
0.1189 0.401
B. Drop Breakup Data
B-1. Newtonian Drops in Newtonian Continuous Phase
Fluid System 2 (A= 3.42) Fluid Systeml (A=27,46)
Drop Diameter(cm) Eg Drop Diameter(cm) EC

0.,1090 0.2505 0.1421 0.2676
0.1263 0.2459 0.1249 0.2728
0.1371 0.2363 0.1181 0.2650
0.1230 0.2355 0.1005 0.2573
0.1222 0.2366 0.0997 0.2593
0.1455 0.2411 0.1210 0.2542



Fluid System 3 (A =2.25)

E
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Fluid System 4 (A= 0.707)

E

Drop Diameter (cm) c
0.1479 0.2627
0.1584 0.2535
0.1368 0.2464
0.1318 0.2423
0.1231 0.2434
0.1177 0.2528

Fluid System 6 (A= 0.298)

Drop Diameter (cm) C
0.0742 0.2204
0.1091 0.2265
0.1432 0.2384
0.1287 0.2365
0.1267 0.2484
0.1315 0.2320
0.1305 0.2374
0.1109 0.2249
0.1125 0.2308

Fluid System 5 (M= 0.413)

Drop Diameter (cm) EC
0.1484 0.2341
0.1412 0.2406
0.1468 0.2371
0.1665 0.2478
0.1249 0.2323
0.1245 0.2331
0.1362 0.2351
0.1428 0.2351

Fluid System 7 (A= 0.085)

Drop Diameter (cm) EC
0.1475 0.3390
0.1407 0.3275
0.1545 0.3216
0.1528 0.3237
0.1504 0.3268
0.1238 0.3174

Drop Diameter (cm) Eo
0.1633 0.2579
0.1507 0.2430
0.1674 0.2409
0.1605 0.2417
0.1492 0.2416
0.1835 0.2506
0.1261 0.2369
0.1167 0.2334

Fluid System 8 (A= 0.033)

Drop Diameter (cm) EC
0.1726 0.3631
0.1750 0.3689
0.1642 0.3687
0.1471 0.3673
0.1387 0.3578
0.1723 0.3490



Fluid System 9 (A= 0.025)

Drop Diameter (cm)

B

0.

1475

0.1714

o O O O O O

Fluid System 11 (A= 0.006)

.1180
+1570
.1790
L1462
.1912
1731

0.4409
0.4269
0.4378
0.4380
0.4255
0.4470
0.4304
0.3958
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Drop Diameter (cm) EC
0.1502 0.4884
0.1317 0.4833
0.2152 0.4909
0.1286 0.5036
0.1540 0.4985
0.1413 0.4918

B-2. Viscoelastic Drops in Newtonian Continuous Phase

Fluid System 10 (A = 0.018)

Drop Diameter (cm) EC
0.1621 0.4384
0.1529 0.4490
0.1401 0.4404
0.1804 0.4326
0.1600 0.4568
0.1301 0.4547

Continuous Phase: Silicone 0il, 73 = 300 poise

Drop Phase: 0.75% Sep AP 30 Solution (A= 0.53)

Drop Diameter (cm)

.2439
L1746
.1200
.0702
.0540
.0935
.04 57
.1350
0.1937
0.1380
0.2770

OCOOOOO0OOOOOO

»

G./2 (sec”

0.
o.
O.
0.
Ol
0.
0.
O.
0.
0'
O'
0.
0.
O‘

0669
0936
1333
1412
24 54
3194
1874
3829
1283
2278
3024
0886
1226
0594



Drop Phase: 1.0% Sep Ap 30 Solution (A= 1,27)

Drop Diameter (cm) G’C/2 (sec—l)
0.2270 0.0675
0.1904 0.0794
0.1310 0.1217
0.0878 0.1825
0.0532 0.3154
0.0425 0.3979
0.1000 0.1596
0.0890 0.1813
0.0650 0.2512
0.0430 0. 374k
0.1140 0.1441
0.2470 0.0633
0.2828 0.0550
0.1148 0.1397

Drop Phase: 1.5% Sep AP 30 Solution (N= 3.4)

Drop Diameter (cm) GrC/2 (sec-l)
0.2360 0.0676
0.2844 0.0550
0.1574 0.0974
0.2196 0.0755
0.0942 0.1704
0.0832 0.2166
0.0449 0.4031
0.0930 0.1898
0.0656 0.2799
0.0900 0.1816
0.2916 0.0556
0.0600 0.2950
0.0470 0.3773
0.0496 0.3578
0.0634 0.2872
0.1354 0.1280
0.0500 0.3400
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Drop Phase: 2.0% Sep AP 30 Solution (A= 11,2)

Drop Diameter (cm)

0.1430
0.8740
0.2894
0.1224
0.3522
0.0820
0.0404
0.0762
0.0676
0.0542
0.0462
0.1400
0.1114
0.2738
0.2059
0.1760

C. Breakup Data of Liguid Threads

€-1. Stationary Liguid Threads

GC/2 (sec-i)

0.1120
0.1984
0.0523
0.1346
0.0426
0.2054
0.4352
0.2235
0.2580
0.3184
0.3787
0.1183
0.148

0.057¢

0.079k
0.0956

C-1-1. Newtonian Threads in Newtonian Continuous Phase

Fluid System doy (cm) Ny {cm) dpp (cm) dDP/dTH
12 0.0088 0.0600 0.0193 2.19
" 0.0208 0.1470 0.0430 2.06
" 0.0109 0.0810 0.0253 2.32
" 0.0092 0.0701 0.0215 2.34
13 0.0098 0.0608 0.0216 2.20
" 0.0079 0.0493 0.0178 2.26
" 0.0129 0.0721 0.0274 2.12
i 0.0244 0.1446 0.0515 2.11
14 0.0103 0.0580 0.0205 1.99
" 0.0109 0.0608 0.0217 1.99
" 0.0178 0.0962 0.0385 2.16
15 0.0125 0.0666 0.0245 1.96
" 0.0167 0.0903 0.0331 1.98
" 0.0118 0.0632 0.0238 2.02
16 0.0198 0.1089 0.0411 2.07
" 0.0138 0.0808 0.0276 2.00
" 0.0170 0.0966 0.0355 2.09
18 0.0171 0.1576 0.0408 2.38
" 0.0246 0.2169 0.0661 2.69
" 0.0127 0.1204 0.0307 2.41
" 0.0239 0.2051 0.0611 2.56
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C-1-2. Viscoelastic Threads in Newtonian Continuous Phase

Continuous Phase: Silicone 0il, QC = 300 poise

=%
% of Sep AP 30  9PH (em) X dpp (em)  %pp/Yry
0.75 0.0306 0.542 0.0624 2.04
" 0.0175 0.54k4o 0.0371 2.13
1.0 0.0133 0.410 0.0284 2.13
" 0.0137 0.449 0.0322 2.35
1.5 0.0173 0.432 0.0367 2.12
L 0.014% 0.398 0.0321 2.23
2.0 0.0171 0.k359 0.0361 2.11
" 0.0104 0.415 0.0226 2.17
" 0.0202 0.453 0.0425 2.20

C-2. Breakup Data of Extending Liquid Threads

C-2-1.Newtonian Threads in Newtonian Continuous Phase

- #*
Fluid System G/2 (sec 1) Aoy (cm) X dDP(cm) dDP/dTH

12 0.1983 0.0026 0.118 0.0061 2.34

" 0.2928 0.0013 0.148 0.0033 2.54

" 0.1432 0.0032 0.135 0.0070 2.19
13 0.2120 0.0036 0.224 0.0069 1.92

" 0.1640 0.0046 0.203 0.0083 1.80

" 0.2492 0.0042 0.194] 0.0064 1.52
ih 0.2262 0.0064 0.227 0.0138 2.15

" 0.2790 0.0025 0.183 0.0070 2.80
i5 0.1958 0.0102 0.233 0.0214 2.49

" 0.2410 0.0075 0.366 0.0151 2.01

" 0.2668 - - 0.0138 -
16 0.2830 0.0087 0.288 0.0183 2.10

" 0.2497 0.0079 0.296 0.0182 2.30

" 0.1640 . - - 0.0303 -
17 0.3604 ~ - 0.0184 -

" 0.2668 - - 0.0271 -

" 0.2668 - - 0.0278 -
18 0.2311 - - 0.0345 -

" 0.3178 - - 0.0342 -

" 0.2115 0.044L



or

i22

C-2-2. Viscoelastic Threads in Newtonian Continuous Phase

Continuous Phase: Silicone OilL,QC = 300 poise

- - 3*
% of Sep AP 30 G/2 (sec”d) d7H (em) X dpp (em)  Ypp/97y
0.75 0.2380 0.0114 - 0.0269 2.36
" 0.1620 - 0.0152 0.204  0.0363 2.38
" 0.4015 0.0076 0.224  0.0201 2,64
" 0.2888 0.0102 0.265  0.0221 2.16
1.5 0.1381 0.0125 0.182  0.0278 2.22
" 0.2208 0.0088 0.198  0.0190 2.16
. 0.3180 0.0069 0.186  0.0155 2.26
" 0.h14s5 0.0057 0.226  0.0138 2.42
2.0 0.1268 0.0073 0.2325 0.0172 2.35
" 0.28615 0.0050 0.1653 0.011k  2.28
" 0.195L 0.0072 - 0.01kk 2.00
" 0.4015 0.0036 0.2304 0.0087 2.45

D. Experimental Data of The Apparatus Flow Field

Diameter of Rollers = 1.5"

u=6X/2, v=-GY/2, w=0

T/2 = (X, /%)) /(bymt,) (sec™™) (D-1)
— "1
G/2 = -An(Y,/Y,)/(t,-1,) (sec ) (D-2)
Roller Speed(RPM) G/2 from (D-1) G/2 from (D-2)
(Glycerine Solution)
9.8 0.2556 0.2589
13. 0.3211 Z
14.1 0.3525 0.3625
15,7 0.3821 | -
18.0 0.4402 0.4429
20.8 0.4926 0.5036
24,0 0.5530 0.5608
27.2 0.6079 -
2.4 0.0585 -
5.1 0.1351 0.1341
7.5 0.1798 0.1832
(Silicone 0il)
5.5 0.1442 -
8.9 0.2419 -
13.8 0.3839 -
14.7 0.4150 -
27.0 0.7348 -
34.5 0.9460 -
37.5 1.0803 -
43.6 1.2468 -



