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ABSTRACT

Throughout history pandemics have been a constant threat for mankind. Still, the COVID-19

disease resulted in the worst health crisis in more than a century. This suggests that more tools are

needed to give adequate guidance for decision-making. Several epidemic models have been proposed

to understand and forecast the dynamics of spread of infectious diseases. Only a few, however,

account for the role of “essential” workers, who must keep interacting face-to-face with others

during a pandemic. In this work, we consider how these “essential” workers are disproportionately

affected by the pandemic, and how they may act as a reservoir for the disease. We further consider

the effect of non-pharmaceutical intervention policies (such as mask mandates and lockdowns),

incorporated in a model we term the Local-Policy SIR model. We assume mask mandates are

applied only at essential locations, whereas lockdowns function only at non-essential locations.

We find this model suggests mask mandates may not be effective without simultaneous lock-

downs as a result of the fast dynamics of non-essential risky workers at early stages of an outbreak.

We also find that essential workers may play a fundamental role in the dynamics because they may

act as reservoirs of the infection during periods of lockdowns. Our results also suggest that partial

lockdowns combined with a high mask mandate compliance may prevent an outbreak. We then

investigate the effect of delays in enacting these policies and found that even late implementations

benefit the entire population, but the benefit decreases for larger delays. Using a gradient descent

algorithm, we extracted the mobility for non-essential workers from active infection curves for New

York, Texas, and California. This permits an estimation of the share of each subpopulation in the

infection and the hazard ratio of essential vs non-essential workers as a function of time. We show

that “essential” workers are likely unfairly affected by the pandemic. The LP-SIR model is also

applied to neighborhoods composed of heterogeneous populations. We find evidence that a neigh-

borhood composed mainly of “essential” workers is at disadvantage with respect to a neighborhood

composed mainly of “non-essential” workers during an outbreak.
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1 Introduction

Infectious diseases have been a recurring issue in the history of mankind. Examples include out-

breaks of the bubonic plague, cholera, HIV, and several types of influenza. Despite the loss of

millions of human lives, the tools available to model and forecast their dynamics are still insuffi-

cient to contain the spread of the disease or, at least, prevent its adverse effects. A good case in

point is the Spanish flu pandemic outbreak in 1918-1919, which was likely caused by a zoonotic

infection with the H1N1 virus of avian origins. However, the exact host that introduced it to hu-

mans remains unknown [1]. Being a virus that crossed species, the population was caught by sur-

prise. The poor condition of the healthcare system and the unavailability of vaccines exacerbated

the consequences of the outbreak. Governmental efforts to contain the spread were constrained

to quarantines, social distancing, lockdown policies, mask mandates and similar measures, all of

which are known as non-pharmaceutical interventions (NPIs). In spite of this, the death toll of this

pandemic was approximately 50 million worldwide [2]. As we emphasize below, this case brings

startling similarities with the novel COVID-19 disease, which also resulted in a catastrophic health

crisis. The virus which originated the COVID-19 disease seems to have originated in bats [3]. Aside

from the zoonotic origin and the unavailability of a vaccine at the beginning of the pandemic, the

policy response resembled the response in 1918, with NPIs as the only feasible interventions at the

beginning of the outbreak.

In the early 20th century, the world was far less connected than it is today. However, in 1918

(due to World War I), there was a higher than normal mobility that may have contributed to

disperse the deadly influenza virus. The 1918 Spanish flu pandemic seems to have originated in

the Midwest of the United States, spread to other states and then to Europe [2]. The spread

was quick, and the disease had a high attack rate, causing a total of three waves with the last

causing most deaths. A peculiar factor of this virus was that it specially targeted healthy adults

(< 30 years) [4], instead of older adults or individuals with preconditions, which are commonly

hit harder by influenza viruses. Once a wave started, governments tried to limit the spread using

1



simple NPIs to mitigate the transmission. As the most common mode of transportation was by

ship, maritime quarantines were put in place in Australia and America Samoa[1]. The decrease in

the deaths associated with this pandemic, compared to places where no quarantine was enforced,

suggests that fully enforcing timely quarantines limited the casualties. Another policy implemented

by some authorities was mask usage. However, due to lack of data it remains unclear if and how

masks helped to mitigate the spread. Facemask protection effectiveness depends on several factors,

including how and when it is worn, the mask material, and the type of virus causing the disease

[1]. For the H1N1 virus, there is some evidence on facemasks protection [5], but for COVID-19

extensive studies have demonstrated their utility. It is clear, though, that low public compliance

significantly hinders the effectiveness of facemasks [1]. In the US, a major complication associated

to the transmission and analysis of the disease was the wildly varied response from states [6]. Some

adopted early social distancing, school closures, and limited gatherings whereas others delayed

setting up such policies [7]. Figure 1 shows the wide variation in the outcome for the states of San

Francisco, New York, and Philadelphia, with states that had early adoption and more consistent

policies less impacted. This story is reminiscent of the COVID-19 pandemic, which originated in

China, spread throughout the country, and then to the world. Older adults were highly impacted by

this disease. As a response to COVID-19, governments implemented different combinations of NPIs

to try to mitigate the transmission. In the US, the most common interventions were recommended

social distance, facemask usage, quarantines, and contact tracing. As in the 1918 pandemic, the

response on each state within the US varied considerably [8], [9]. The effectiveness of each policy

in containing the spread, thus, remains unclear.

As it is clear from the example above, there are several strategies to deal with an infectious

disease including prevention, medication, vaccination among other public health measures. Largely,

the response depends on the specifics of the virus or bacteria causing the disease. If a vaccine is

unavailable, once an outbreak has begun, governments are forced to take quick, untested decisions

to try to limit the consequences of the spread. As governments increase awareness and implement

2
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Figure 1: Deaths per 100,000 due to the 1918 pandemic in the US for the states of San Francisco,
New York, and Philadelphia. The wide difference in outcomes that results from a distinct set of
adopted policies and their timing is shown (NPIs were implemented in the highlighted region).
Data was extracted from [6]. Early relaxing or late adoption of policies led to higher excess deaths.

prevention strategies, they must balance important economic consequences of limiting social activ-

ities [10], [11] with health risks posed by the disease. Therefore, implementing policies to address

and lessen the impact on the population becomes troublesome. Even if the most feasible initial

response is through NPIs. It may take a long time from virus first detection to the widespread

availability of a vaccine. In the case of COVID-19, even if vaccines are already available, concern

remains due to the unknown impact of variants of the virus coupled with a lower than expected

rate of vaccination. Thus, it is essential to develop models that can forecast and quantify the

consequences of the disease. Specifically, it is important to quantitatively estimate the impact of a

given NPI policy to flatten the infection curve and to discern the driving parameters of the disease.

That is, to determine under which conditions an outbreak can be avoided or contained.

In 2020, the modern world had to endure the COVID-19 pandemic, one of the worst health crises

in more than a century. The SARS-CoV-2 virus, which causes the COVID-19 disease was initially

detected in Wuhan, China, at the end of 2019. Due to the globalization of our modern world,

the virus swiftly spread throughout Asia, Europe, North America, and the rest of the world. By

3



March 2020, it had been introduced into most countries, which were largely unprepared. The policy

response varied considerably depending on the country and local governments. In some countries,

the implemented policies and compliance led to a flatter infection curve, whereas in other locations

community spread and reinfections became a common issue. Data for active infections and deaths

for a few countries was taken from [12] to exemplify distinct types of outcomes. For instance,

in China and Singapore, the COVID-19 disease was contained by May 2020 and October 2020,

respectively. Figure 2 shows that, in China, the infection curve had only one peak, with only a

minor localized onset after it. Likewise, in Singapore, there was a peak corresponding to the initial

infection along with a few contained outbreaks. On the contrary, there are countries that are still
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Figure 2: Active infection curves for COVID-19 disease in a) China, b) Singapore, showing the
dynamics in countries that adopted a more stringent set of policies. The resulting dynamics show
one main peak with a few minor secondary peaks. The infection was controlled relatively quickly
and there is no reported sign of a further outbreak. Data taken from [12] .

struggling with the effects of the COVID-19 pandemic, e.g., Brazil, and India, where infections are

still high as of this writing. Figure 3 illustrates the active infection curves for these two countries,

which show complicated dynamics. This indicates they have struggled to contain the spread. As of

April 2021, more than a year after the pandemic began, containment is still a worldwide issue. As

it can be seen in Figure 4, the trend is still increasing. By the end of March 2021, the number of

total cases in the world was nearly 130, 000, 000 and the number of total deaths was approximately

2, 840, 000. While the impact of the recently developed COVID-19 vaccine is promising, several

communities worldwide have limited access to the vaccine, and within the US many communities

4
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Figure 3: Active COVID-19 infection curves in a) Brazil, b) India, where more lenient policies were
adopted. These countries are still struggling to contain the disease with a high number of active
infections as of this writing. Data taken from [12]. US infections are shown in Figure 5.

are resistant to receiving vaccination. This justifies the need for better tools to assess the spread

and quickly take action. Since the policy response varied by country, these tools should consider

the local environment of the policies to investigate their effect in the dynamics.
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Figure 4: a) Worldwide active COVID-19 cases as a function of time. b)Worldwide cumulative
COVID-19 deaths over time. The trends indicate that, in average, the world is still struggling to
contain the pandemic as of this writing. Data taken from [12].

In the US, as of March 31st, 2021, the total number of infections still exceeded 31, 000, 000 and

the death toll was approximately 567, 000. The total infections curve and the total deaths over

time are presented in Figure 5. The governmental response varied widely by state, which, probably,

complicated the dynamics and the containment efforts. Active infections began dropping when
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vaccination became widely available, with first shots distributed around December 2020 for front-

line healthcare workers and in January 2021 for other front-line workers and at-risk populations. It

(a)

US

Fe
b
20
20

A
pr
20
20

Ju
n
20
20

A
ug
20
20

S
ep
20
20

N
ov
20
20

Ja
n
20
21

M
ar
20
21

0

2×106

4×106

6×106

8×106

A
c
ti
v
e
c
a
s
e
s

Active COVID-19 cases in the US (b)

US deaths

Fe
b
20
20

A
pr
20
20

Ju
n
20
20

A
ug
20
20

S
ep
20
20

N
ov
20
20

Ja
n
20
21

M
ar
20
21

0

100000

200000

300000

400000

500000

600000

C
u
m
u
la
ti
v
e
d
e
a
th
s

Cumulative COVID-19 deaths in the US

Figure 5: a) Number of COVID-19 active cases as a function of time in the US. b) Cumulative
COVID-19 deaths over time in the US. The trends indicate that containment seems likely, probably
due to widespread vaccination. Data taken from [12].

must be acknowledged that COVID-19 vaccines were developed in record time, with initial doses

available in less than a year. In comparison, the previous record time was 4 years for the mumps

vaccine, achieved in the 1960s. This faster development was achieved in part thanks to extensive

research on associated viruses (e.g., SARS-COV, first detected in China at the end of February,

2003 [13]), and because of development of faster ways to manufacture vaccines [14]. For future

pandemics, a vaccine may also be able to be promptly developed, but there is no guarantee [14].

This point is even more important as there is evidence that suggest humankind will likely have to

face more pandemics in the near future [15], [16], and that novel, more resistant, virus and bacteria

may be expected to appear [17].

By this point, it hopefully has become clear to the reader that forecasting the dynamics of an

infectious disease is an extremely complicated task. There are several factors at play, including, but

not limited to, awareness in the community, local and federal policies imposed to the population,

behavioral changes in the population, the type and characteristics of virus, reinfections, availability

of a vaccine, etc. To add a further layer of complexity, one must account for the compliance with

the policies, stochasticity, and demographics of the population. Each one of these considerations
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add complexity to the model and increases the computational cost associated with forecasting. For

example, a feasible way to account for demographics is to consider the role of “essential” workers

(those who must interact with the public as part of an essential job). Gasoline, groceries, and

medical care are examples of such essential businesses, and these “essential” workers are therefore

more likely to interact with individuals than “non-essential” workers during a lockdown. For the

purpose of this work, we refer to essential workers as those individuals who must keep interacting

(face-to-face), with others during a pandemic due to the nature of their work and non-essential

workers as those who can work from home and suffer from limited economic hardship due to a

lockdown. It has been suggested that face-to-face workers are unfairly impacted by a pandemic

[18], [19]. Essential workers often continue to work at essential locations out of economic necessity.

Non-essential locations are public spaces and all other businesses that are able to conduct their

usual operations remotely. As a result of the economic impact of a pandemic, non-essential workers

may be laid off from their jobs, so they are at greater risk for eviction and may seek out existing

essential jobs. Thus, pandemic lockdowns may exacerbate economic disparities and simultaneously

put economically disadvantaged communities at greater risk of disparities in infection rates.

To better define the scope of this work, a brief discussion of the most common NPI policies

implemented in the US is included below. We explain the definition of each policy, how it aims

to reduce infections, and what possible population responses to these policies may exist. We also

specify the first two policies in the context of this work, as we only assess their impact onto the

dynamics of the infection in our model.

• Lockdown policies: A lockdown is a procedure that restricts the mobility of individuals

to avoid an immediate risk affecting all or some part of a population. In the context of a

pandemic, this policy is implemented to flatten the infection curve by reducing the number

of encounters between healthy and infected individuals. It is usually implemented at the

beginning of an outbreak to limit the number of infections in the population. However, not

all individuals are able or willing to abide to this policy. Our social system of organization

demands that some individuals keep working to provide essential services during a pandemic,
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e.g., grocery store workers who must interact with the public. Alternatively, others may

willfully decide to ignore lockdowns and congregate without regard for the disease. For the

purpose of this work, we consider only lockdown policies that restrict the interaction of non-

essential workers at non-essential locations, without change to the time spent at essential

locations.

• Personal protection equipment (PPE) policies: A PPE policy is the requirement to

use personal protection equipment to reduce an immediate risk of infection. It is aimed at

reducing the probability of infection during an interaction between susceptible and infected

individuals, by means of a physical barrier that inhibits (partially or fully) the transmission of

the disease. When the virus is airborne, effective PPE choices include masks and face-shields.

As with lockdowns, not all people want or are able to abide to this policy. In this work we

consider the effect of mask mandates and their compliance onto the dynamics of infection,

assuming the policy requires all individuals to wear facemasks only at essential locations

(defined above).

• Social distancing policies: Social distancing is the requirement to maintain at least 6

ft (2 m) of physical distance between any pair of individuals at all times. This policy is

aimed to reduce the risk of contagion for diseases in which physical proximity increases the

probability of transmission. While people are more willing to abide to social distancing than

to lockdowns or mask policies, distancing is difficult to implement without a reduction in time

spent in crowded spaces. We thus focus on lockdowns rather than distancing in our model.

• Contact tracing: Contact tracing is a set of strategies aimed to interrupt chains of trans-

mission of the infectious disease. It involves keeping a registry of infected individuals’ close

contacts during the period in which they may have been infectious before being diagnosed

with the disease. Health authorities, then, contact all close contacts and alert them so they

can self-isolate and quarantine. This entire process may be conducted via phone calls or

mobile apps with location sharing. The effectiveness of contact tracing relies in the stage at
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which it is applied, the quality of the data acquired, and the enforcement of quarantine/self-

isolation requests. In the case of COVID-19, tracing had a small impact due to its rapid

spread.

Mathematical models often struggle to capture all the of these features, or they become too

complicated to be applicable to real situations. Any model must balance between complexity and

applicability. That is, one must choose between having a model that captures even intricate details

of the infection dynamics, and one that presents a coarse-grained approach but can be easily applied

to real life situations. This can be greatly helped by endowing the model with features that have a

physical meaning. This endowment simplifies the understanding, but it may be hard to achieve due

to the interdependence of the parameters on the dynamics. Historically, mathematical models have

been better as a retrospective analysis tool to fit real data and explain the dynamics of the spread.

But a significant gain can be expected with a model that offers insights on policy effectiveness in

a realistic scenario, and which is able to dissociate the roles of different groups into the outbreak.

Our proposed model is a modification of the SIR model that captures two fundamental fea-

tures of the population: whether individuals are essential workers (those that must interact with

the public, as defined above) or not and how risky their behavioral response to the outbreak is

(whether they adopt or resist mask-wearing). In addition, we included features that are directly

affected by lockdown or stay-home orders and mask usage: interaction time at essential locations

and time spent at non-essential locations. At non-essential locations, we assume interactions are

assortative: those that choose to wear masks avoid interacting with those who do not (referred

as assortativity). Since policies are usually implemented locally in a community, our model gives

insights on their effectiveness to contain the spread within the community. In Chapter 2, a qualita-

tive analysis is conducted to infer the effect of a given policy into the dynamics of infections using

different models. We describe simplified coarse-grained models for studying epidemic spreading

in a community beginning with the classic SIR model and culminating in the LP-SIR model that

accounts for assortativity, policies, and essential vs non-essential subpopulations. In Chapter 3, we

apply this model to qualitatively describe the effectiveness of lockdowns and/or mask mandates
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given the community assortative structure described above. Some of the main findings are that

mask mandates are not effective without lockdowns, lockdowns must be unrealistically perfect to

work without mask mandates, and that essential workers may play a significant role in spreading

and acting as a reservoir of the disease. We also show that the LP-SIR model can quantitatively

recover the total infection dynamics of large populations with disparate lockdown policies (New

York City, Texas, and California). We use this fitting to estimate the potential disparity between

essential and non-essential workers and find that essential workers are at significantly greater risk

of infection relative to non-essential workers for each region. This is particularly true for cautious

essential workers (those that would wear a mask out of caution) as opposed to risky essential work-

ers (those that only wear a mask if required by a policy). In Chapter 4, we study the implications

of neighborhoods with diverse populations of essential workers, some of whom commute from one

neighborhood to another. We find that an infection beginning in the neighborhood with fewer

essential workers affects both communities equally, whereas an infection that begins in the neigh-

borhood with more essential workers tends to have a significant impact on that community but a

limited impact on the community with fewer essential workers. In Chapter 5, we summarize the

work presented and discuss its implications.
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2 Methods: Modelling of infectious diseases

There are several approaches to modelling infectious disease dynamics, including compartmental,

stochastic, and network-based models, all of which can be tuned to add advanced characteristics

as spatial structure, heterogeneity, age structure, among others. None can perfectly describe and

predict the dynamics of an outbreak but instead can only be used to forecast or predict the effect

of policies or societal decisions. There is always a trade-off between models, with some offering

a simple qualitative description but overlooking many details, and others that can even achieve

quantitative forecasts but are more complex and rely on large and accurate databases. In this

section, some common types of models will be presented, including a brief description and their

strengths and weaknesses.

2.1 Compartmental models

2.1.1 SIR model

A common approach for studying the spread of an infectious disease is to divide the population

into compartments. The classical SIR model [20] divides the population into 3 compartments:

Susceptible (S), Infected (I) and Recovered (R). This model describes the dynamics of the spread

of the disease, which show an initial exponential increase in infections followed by a sudden decrease

when the susceptible population starts to fade out. All individuals in a subgroup are assumed to

behave identically, to have the same status, and to be subject to the same hazards. Another

assumption is that recovered individuals cannot get sick again. These features are what is seen

qualitatively in many real-world epidemics and are depicted in Figure 6, which also includes the

interaction parameters for each compartment.

Mathematically, the SIR model is given by the following set of coupled differential equations:

dS

dt
= −γSIR

SI

n
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dI

dt
= γSIR

SI

n
− δI

dR

dt
= δI

where n is the size of the population, S, I, and R represent the size at a given time of the susceptible,

infected and recovered populations, δ is the recovery rate and γSIR is the infectivity rate in the

SIR model. This system can be solved analytically under approximations, but it has no analytical

solution for the explicit time dependence of compartmental sizes [21]. It is worth noticing that the

size of each compartment changes with time according to S(t) +E(t) + I(t) +R(t) = n, so that the

population, n, remains constant.
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Figure 6: a) Compartments for the classic SIR model: Susceptible (S), Infected (I) and Recovered
(R). The infection rate is γSIR and the recovery rate is δ. b) Example of the dynamics in a typical
SIR model simulation with R0 > 1, showing the initial exponential growth followed by a slow down
to reach a peak, and a decrease whenever Reff drops below 1.

To get a better intuition on the dynamics of the classic SIR model, it is useful to understand

the physical processes described by each term. The factor SI
n represents the number of interac-

tions between the susceptible and infected compartments at a given time, normalized by the total

population, which gives an estimate on how many susceptible individuals are at risk of contagion.

If this factor is coupled with the infectivity rate, γSIR, the result is the number of new infections

at a given time. The underlying assumption is that there is a continuous population, which is a

reasonable approximation for large and well-mixed populations. The parameter δ can be recast as

δ = 1
τ , where τ is the average recovery time; that is, the time an individual takes since entering
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the infected compartment until fully recovering. As it was mentioned before, in the classic SIR

model, there is no chance of a reinfection: all individuals leaving the infected compartment enter

the recovered one.

A fundamental quantity, specific to a given disease, is the basic reproduction number, R0, which

is defined as the number of secondary infections arising from a single infected individual [22]. It is

given by R0 = γSIR
δ . This number alone determines if an emergent infection will grow or die out:

within the SIR model, if R0 < 1, the infection will die out, whereas if R0 > 1 it will grow. Notice

that this number only gives the initial behavior of the infection, it does not give information on the

dynamics at later stages.

In general, δ cannot be modified by behavioral policies, it solely depends on the specific disease

and the provided healthcare. Instead, behavioral changes modify γSIR. Lockdowns and mask

mandates produce a smaller effective infection rate due to either a reduction in the average amount

of time that susceptible individuals interact with infectious individuals, or to a reduction in the

infectivity per unit time of infectious individuals.

The basic reproduction number ignores the fact that the susceptible population is changing

over time, which means that the number of new infections should be time dependent as well. To

tackle this issue, an effective reproduction number can be defined: Reff = R0S(t)
N = γS(t)

δn . As it was

previously mentioned, the infection first undergoes a phase of exponential growth, then slows down

to reach a peak and finally decreases until it dies out. These stages in the dynamics correspond to

different values for Reff . If it is greater than 1, the infection grows, whereas if it drops below 1,

the infection will gradually decrease until dying out (this phase is usually called “herd immunity”).

At the peak of the infection curve Reff = 1.

The greatest advantage of the classic SIR model relies in its simplicity and low computational

demands. It helps to give a rough idea on how a particular disease would behave in a homogeneous,

well-mixed population, which is large enough to be treated as a continuous variable. However, there

are several limitations of this SIR model; the assumption of a homogeneous population, the lack of

flexibility to accommodate for demographics, and the fact that there are diseases for which more
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compartments may be necessary. In reality, any community is composed of heterogeneous individ-

uals, which complicates the dynamics. Additionally, there are infectious diseases that cannot be

accounted for by the 3 considered compartments. For instance, to accurately describe HIV infection

dynamics, it is necessary to add an asymptomatic compartment. For measles, there is an incubation

period before individuals become infectious, so one must add an exposed compartment. For other

diseases, such as influenza, reinfections need to be considered. There are more sophisticated vari-

ations of the SIR model that can account for diverse types of diseases, reinfections, demographics

and even stochasticity, some of which will be considered next.

2.1.2 SIS model

For some infectious diseases, reinfections need to be considered as recovered individuals do not

get long-lasting immunity, e.g. influenza and common colds. In this case, a model that considers

only the susceptible and infected compartments is more appropriate. Infected individuals become

susceptible again right after recovery. The equations for the model become:

dS

dt
= −γSI

n
+ δI

dI

dt
= γ

SI

n
− δI

The physical intuition behind the model is similar to the one for the classic SIR. The term γSI/n

gives the number of new infections at a given time, exactly as in the SIR model. The δI term still

represents the fraction of the population which has recovered. In this case, it reenters the susceptible

compartment instead of forming a separate one. The result is a model with two possible equilibria,

I = 0 and I = n(1− 1/R0), where R0 = γS(0)
δ is the basic reproduction number. As in the classic

SIR model, if R0 < 1 the infection never increases (i.e. I = 0 is the stable equilibrium), whereas

if R0 > 1, there is an outbreak and I = n(1− 1/R0) is the stable equilibrium. Figure 7 shows the

schematics for the SIS model alongside a simulation for the case R0 > 1. Notice that the infection

keeps going forever, as an equilibrium rate is reached, in which the same number of individuals are
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passing from S to I and backwards; that is, the rate of recovery matches the rate of infection.
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Figure 7: a): Compartments for the SIS model: Susceptible (S), and Infected (I); the infection rate
is γ, and the recovery rate is δ. b) Simulation showing SIS model dynamics with R0 > 1, where
the equilibrium is I = n(1− 1/R0).

2.1.3 SEIR model

The SEIR model accounts for diseases that have an incubation period by considering an additional

category, the Exposed (E) compartment. The differential equations describing the dynamics for

this model become:

dS

dt
= −γSI

n

dE

dt
= γ

SI

n
− σE

dI

dt
= σE − δI

dR

dt
= δI

where 1/σ is the average length of the incubation period and all other parameters are the same

than for the SIR model. In this framework, a susceptible individual becomes part of the exposed

group after having contact with any infected person; afterwards, the exposed individual transitions

to the infected group after the incubation period ends, when he becomes infectious. Notice that

any susceptible must pass through the exposed compartment to become infected and infectious.

Thus, the dynamics are similar to the SIR model but with a delayed peak, which depends on the
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incubation time 1/σ. Figure 8 shows a schematic design of the interactions between compartments

and depicts the dynamics of the SEIR model, which follows the same rise, slow down and fade

out pattern described for the classical SIR model but with the delayed peak due to the incubation

period of the disease.
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Figure 8: a) Compartments for the SEIR model: Susceptible (S), Exposed (E), Infected (I), and
Recovered (R). The infection rate is γ, the incubation period is 1/σ, and the recovery rate is δ. b)
Simulation showing the typical SEIR model dynamics with R0 > 1, showing similar behavior to
the SIR model but with a delayed peak due to the incubation period.

In the context of COVID-19, the SEIR model allows to account for the incubation period of the

COVID disease, which is estimated to be between 2-5 days after exposure [23]. By modifying the

SIR model to including the Exposed compartment, the predictions are expected to better resemble

real data by increasing the complexity, which also increases the computational cost. To achieve even

more resemblance to real data, it is possible to account for the effect of asymptomatic individuals in

the dynamics by introducing further compartments into the model, resulting in the so called SEAIR

model (where A stands for asymptomatic). However, for the level of approximation considered in

this work, modifying the SIR model suffices. The purpose was to understand the role of essential

and non-essential workers in the spread of the disease rather than make quantitative forecast.
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2.2 Stochastic compartmental models

One of the limitations of the conventional compartmental models is that they overlook noise effects

and fluctuations that become important when reconciling the model to real world data. Modifica-

tions can be introduced to simplistic compartmental models to account for statistical fluctuations

in several forms. The most common types are discrete Markov chain models, continuous Markov

chain models and stochastic differential equations models [21]. A Markov process is one in which

the state at time t′ = t + ∆t depends only in the state at time t. In the case of this models, the

states in question are I(t′) and I(t), whose relationship is defined in a probabilistic manner. One of

the biggest differences with deterministic compartmental models is their asymptotic behavior. In

stochastic models a solution converges to a disease-free state even if the basic reproduction number

of the infection is greater than 1 (i.e., R0 > 1). Recall that in deterministic models, if R0 > 1, an

outbreak begins and there are solutions with a non-zero equilibrium state. Another difference is the

smoothness of the solutions: deterministic models are of course smooth and well behaved, whereas,

as the name hints, stochastic processes have random fluctuations that reflect the statistical nature

of the parameters that determine the infection.

2.3 Local Policy-SIR model

While the SIR model qualitatively captures some of the dynamics of an infectious disease spreading

throughout a community, a number of key features of real-world communities are not accounted for.

Specifically, the SIR model assumes that all individuals are identical and indistinguishable, whereas

real world communities are composed of heterogeneous individuals. The SIR model also assumes

that all interactions have the same likelihood of infection occurring, whereas in reality the likelihood

of infection will be reduced if the infected individual is wearing a mask. Thus, it is essential to add

these features to the model in order to understand the costs and benefits of public policies involving

non-pharmaceutical interventions (NPIs), such as total or partial lockdowns, quarantine, isolation,

social distancing, mask mandates, and travel restrictions. Moreover, in the US, policies are highly

heterogeneous, generally put in place by states or local governments, with only a few NPI policies
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enforced nationwide. This must be accounted for as well into the model.

In this section, we introduce a modification of the classic SIR model that accounts for local

policies in a community and its diverse behavioral characteristics, the Local Policy-SIR (LP-SIR)

model. Accordingly, the compartments from the classic SIR model are subdivided according to

the behavior of individuals towards mask usage and the essentialness of their jobs. In this work,

an individual is defined as “essential” worker if he/she must keep interacting face-to-face with

others during a pandemic. “Non-essential” workers are defined as the individuals who can easily

transition to working remotely from their homes. This is distinct from the legal definition of

essential and non-essential workers, where some workers (e.g., lawyers) may be legally essential

but work from home. The model also provides two kinds of locations at which interactions can

happen: essential locations (meaning business that cannot operate without face-to-face workers)

and non-essential locations (meaning businesses that can permit remote work). Essential locations

are the workplaces of essential workers (as defined above) where they keep interacting face-to-face

with other individuals. Non-essential locations are all the other businesses and public spaces where

interactions and infections may happen. This distinction enhances the model and allow a better

understanding of the dynamics of an infectious disease in a local community.

In the social model considered in this work, essential businesses are constrained to remain

open to the public during a pandemic regardless of the severity of the infection. Societal needs

such as energy, food, transportation, and healthcare cannot be adequately satisfied without some

economic sectors remaining open. Essential employees have thus to keep working regardless of the

circumstances. The requirement that a fraction of the population cannot reduce their interaction

with infected individuals may have important impacts on the dynamics of the disease. Essential

employees may represent a potential source for the epidemic to continue to spread (as they are forced

to interact with the potentially infected public) and are potentially at greater risk to contract the

disease for the same reason. Due to the nature of their work, essential employees interact on average

with more people and for longer periods than non-essential workers. For instance, a grocery store

employee is compelled to interact with more individuals during his shift than an employee who
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only does online meetings. Restaurant and bar workers represent a unique potential for exposure,

as while those businesses are open the customers cannot wear a mask while consuming the food

or drink served by the business. Accordingly, in the LP-SIR model, the population is divided into

compartments based on the type of job they have, their attitude towards mask usage, and their

infection status. Two types of jobs are considered: essential (E) and non-essential(N). Workers

are also divided in cautious (c) and risky (r) groups, depending on whether they are willing to wear

masks or not in non-essential public locations. In addition, the main compartments of the SIR

model: susceptible (S), infected (I), or recovered (R) are considered for the status regarding the

disease. Each main compartment is labeled using two subscripts: one for their type of job and the

other for their attitude towards mask usage. In total, there are 4 different subscripts (Ec, Er, Nc,

Nr) for each of the main compartments, giving a total of 12 groups within the population (Swm,

Iwm, and Rwm with w = E,N and m = c, r).

In the LP-SIR model, the spatial structure is given in the form of two kinds of locations at

which interactions happen: non-essential and essential locations. At non-essential locations, where

people can be selective, we introduced assortativity to reflect the tendency of people to interact

preferably with individuals sharing similar characteristics. At essential locations, interactions take

place between all groups in the population since everyone needs to visit essential locations to satisfy

basic needs. These features are a key component to reproduce real dynamics because NPI policy

decisions are generally applied to locations. Lockdowns can prevent anyone from entering a specific

store but generally cannot prevent people from interacting with one another on the street, whereas

a mask mandate can be set up at essential businesses, but they are generally not enforced outside

them or in open areas. Non-essential locations include public areas and workplaces consisting mainly

of non-essential employees (i.e. public and private companies which can arrange work from home

for their employees), whereas essential locations refer to workplaces that encompass a majority of

essential workers (e.g. grocery stores, hospitals, pharmacies, utility related facilities, etc.).

Due to the differences in interactions of individuals at essential vs non-essential locations, the

infectivity of the disease (γ) will depend on the context of both the people interacting, as well as the
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governmental policy that governs mask usage (which may be location dependent). Thus, the model

provides infectivity rates that reproduce these conditions. At non-essential locations, there is no

mask policy, so the infectivity depends on the intrinsic risk of each individual at contact: γr (γc) is

the infectivity for a contact between an infected risky (cautious) individual and a susceptible risky

(cautious) one. These two parameters are determined based on the inward and onward protection

facemasks offer against transmission. At essential locations, the mask policy decreases the risk of

contacts involving risky individuals according to the function γ
(p)
r = γr − µ(γr − γc), where µ is

the percentage of individuals complying with the mask policy. Figure 9 summarizes the possible

interactions at each type of location including the associated infectivity. At each contact one person

is susceptible and the other is infected, the arrow indicates the direction of the transmission.

Figure 9: a) Compartments for the LP-SIR model: Essential cautious (Ec), Essential risky (Er),
Non-essential cautious (Nc) and Non-essential risky (Nr). b) Possible interactions at non-essential
locations. Due to assortativity risky (cautious) people interact only with other risky (cautious)
individuals. There is assortativity but no mask mandate, so the infectivity for contacts between
risky individuals is larger than the one for contacts between cautious (i.e. γr > γc). c) Possible
interactions at essential locations. There are more possible interactions since there is no assortativ-
ity. Infectivity involving risky individuals is reduced according to the mask mandate compliance.
Arrow indicates direction of transmission.
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The model also features time-interaction parameters that control the strength of interaction as

a fraction of time (in a day) spent at a particular kind of location by a certain type of workers.

They are labeled by the type of location (α= non-essential locations, β=essential locations) and

have a sub-index for the type of workers they refer to (E=essential workers, N=non-essential work-

ers). There are four time-dependent parameters: αE , αN , βE , and βN . Essential workers spend

time proportional to βE at their workplaces and proportional to αE at public locations that are

not associated with their workplace (e.g. a bar or a public park). Non-essential workers spend

time proportional to βN at essential workplaces (e.g. the time spent grocery shopping) and time

proportional to αN at their own workplaces or in other non-essential locations (bars or public

parks).

The structure of the LP-SIR model naturally allows to implement two NPIs: lockdowns (mean-

ing business closures) and facemask mandates. αN and αE are affected by lockdowns, whereas βN

and βE are only affected by reduced operations. Likewise, mask mandates are modeled to decrease

the infectivity at essential locations (depending on the compliance, µ). We used the LP-SIR model

to understand the effect of different NPIs on the overall dynamics of the population, as well as to

forecast the differing effects these policies have on specific subgroups.

Intuitively, all these assumptions should reflect the location-associated dynamics of the spread.

Essential workers are expected to have a considerable influence spreading the infection because they

must still show up at their usual essential workplace [24]. Meanwhile, risky individuals should also

have a strong impact as the preference to not wear a mask carries an increased risk of contagion.

Within this context, we showed that indeed, the LP-SIR model predicts that essential workers are

at a higher risk of infection due to their workplace requirements, and that risky people are the

main drivers of the spread when no lockdowns on non-essential workers are imposed, even under

mask usage.

In summary, the structure of this model allows to consider the impact of initial conditions,

compartmental sizes, compliance with mask mandates, interactions at essential and non-essential

locations and assortativity between compartments on the infection dynamics. Assortativity is
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included by neglecting interactions between risky and cautious individuals at non-essential places.

This is a significant approximation of the likelihood of interaction between cautious and risky

individuals, but greatly simplifies the model. Two local policies are accounted for by adjusting the

location-dependent parameters: lockdowns at non-essential places and mask mandates at essential

locations. Lockdown policies are modeled by reducing αN and αE , the time-interaction at non-

essential locations. In particular, a total lockdown of non-essential workers can be analyzed by

choosing αN = 0. Likewise, the effect of a reduced shift policy for essential businesses can be

analyzed by reducing βE . At essential locations, mask policies reduce the infectivity of contacts

including an infected risky individual, from γr to γ
(p)
r = γr − µ(γr − γc), where µ is the degree of

compliance with the mask policy.

Mathematically, the LP-SIR model corresponds to a set of coupled partial differential equations

that can be solved numerically. The equation for the rate of change of the susceptible population

is:

Ṡwm = −Swm
[
αwγm(αEIEm + αNINm) + βwβE(γcIEc + γ(p)r IEr) + βwβN (γcINc + γ(p)r INr)

]
(1)

where w (w = E,N) labels the type of worker, with E indicating essential workers and N non-

essential workers, respectively), and m (m = c, r) designates behavior towards mask usage, with

c indicating cautious individuals who prefer to wear masks regardless of the local policies, and

r indicating risky individuals who prefer to wear masks unless required by local policy. Each

term in equation (1) can be physically interpreted as defining the interaction between two distinct

groups at a particular location for the typical duration of their interaction. For example, the

term SEc(t)αEγrαEIEr(t) considers interactions between susceptible cautious essential workers and

infected risky essential workers at non-essential locations with an infectivity γr (as the risky person

would not wear a mask at non-essential locations). Each term in equation 1 is isomorphic to an

SIR equation, which is easily seen by taking γSIR = αEγrαE , but the dynamics are complicated by

the interplay between terms. The equations for the infected and recovered populations are similar
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to the conventional SIR model:

İwm(t) = −Ṡwm(t)− δIwm(t) (2)

Ṙwm(t) = δIwm(t) (3)

which means that the dynamics for the transition from the infected compartment to the recov-

ered one will be SIR-like.

In following sections, we studied the dynamics of the model by varying the location dependent

parameters. We considered different policies by carefully selecting values for the time interaction

parameters, and we show how they change the overall dynamics of an outbreak.
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3 Results

In this chapter, the results of a series of simulations are presented, starting with the classic SIR

model, and adding complexity layers until developing the full LP-SIR model. The values for the

infectivity rate, recovery rate, and mask compliance were taken from data in the literature, as

explicitly indicated in each part. Normalization is carried over each compartment to avoid size-

related effects in the analysis unless explicitly noted.

3.1 Classic SIR model

For a classic SIR model, the infectivity is γSIR = α2γeff , with α the average fraction of time spent

by individuals interacting with others in a day. In this section, we assume a regular workday with no

lockdown protocols, with α = 8/24, which models the spread dynamics without any governmental

intervention. The value for γSIR has been estimated previously in [25] finding γSIR ≈ 0.456 at

the beginning of the infection, which results in γeff = 4.104. Other works find values in the

same ballpark as γSIR [26], [27]. The recovery rate was taken as δ = 1/14 1/days since the average

recovery time has been estimated as 14 days; according to the CDC [23], 95% of infected individuals

can no longer produce replication-competent virus after 15 days. Figure 10a shows the results for all

compartments for γSIR = 0.456, and I0 = 1× 10−6 in a population normalized to 1. The resulting

infection curve follows the dynamics of the classic SIR model with an exponential increase at first,

a slowdown to reach a peak, and a fading out region until the infection dies out. Notice that the

infection curve indicates that all population would be eventually infected, with more than half of

the population infected with COVID-19 at the peak. This follows from the assumption that no

policy is implemented by the government nor there are behavioral changes in the population, which

are both unrealistic assumptions. In a real situation, the infectivity and/or recovery rates change

due to several factors including, but not limited to, implemented policies, provided healthcare,

behavioral changes, among others. Nevertheless, the bare SIR model is still useful as it gives an

estimate on how the outbreak may look in the absence of interventions, which is very important
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at early stages of the outbreak where this assumption holds and quick policy decisions are needed.

In Figure 10b, we simulate the effect of a partial lockdown in the population by reducing α to

5/24. The peak value of the infection curve decreases significantly, and it is delayed, which is

expected, since this choice corresponds to simply reducing the infectivity. As we mentioned before,

a lockdown results in a reduction of the infectivity as the number of contacts that might result in

infections are lowered.
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Figure 10: Results for the classic SIR model with infectivity rate γSIR = 0.456 and recovery rate
δ = 14 1/days assuming: a) No interventions from the governments nor behavioral changes in
the population (α = 8/24), b) A partial lockdown of the population (α = 5/24). Note that the
infections are both significantly reduced, and the peak infections are delayed by many months.

It is important to remark that, using the classic SIR model, the effect of NPIs is averaged

over all population, failing to capture important details that arise from heterogeneities between the

groups. For instance, simulating a lockdown with this simple model would be misleading because,

in reality, not all individuals would be capable of (or willing to) reducing their interacting time to

the same degree, and interactions between all members of the population are assumed to occur at

the same location. Similarly, a mask mandate corresponds to a reduction in the infectivity, but

it would again be an averaged effect as it overlooks effects of masks incorrectly worn, and that of

individuals not willing to wear them unless required by law.
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3.2 SIR model with behavioral characteristics and spatial structure

From the previous results, it is clear that the assumptions in the classic SIR model are too coarse

to meaningfully describe the dynamics of transmission in a heterogeneous population. Several ways

of addressing this issue have been explored: considering different age groups [28], [29], adding

an incubation period [30], [31], adding exposed and asymptomatic individuals [32], [33]. In this

section, a more limited LP-SIR model was considered, where only spatial structure and mask usage

characteristics are considered. As far as we know, the distinction between cautious and risky

individuals has not been implemented before. By adding this layer of complexity to the classic SIR

model, heterogeneous characteristics are allowed onto the dynamics, and this serves as a mid-step to

building the full LP-SIR model. The advantage of this step-by-step building is that the effects of new

groups onto the dynamics can be better traced. In this section, spatial structure was implemented

into the model by providing two types of locations for people to interact: essential locations and

non-essential locations. Behavioral characteristics (m) were also added by considering cautious (c)

and risky (r) individuals. Thus, each of the main SIR compartments is divided in two, resulting in

a total of 6 groups: Sc, Sr, Ic, Ir, Rc, and Rr, where Sc is the population of cautious individuals

that are susceptible to the disease, Sr is the population of risky individuals that are susceptible to

the disease, Ic is the population of cautious that are infected with the disease, Ir is the population

of risky that are infected with the disease, Rc is the population of cautious that recovered of the

disease, and Rr is the population of risky that recovered of the disease. These assumptions result

in dynamics that differ depending to the location, where the key factor is relaxing the homogeneity

of the population. The equations for the susceptible groups (m = c, r) in this model are:

Ṡm = −Sm
[
α2γmIm + β2(γcIc + γ(p)r Ir)

]
(4)

The dynamics were numerically integrated with the population evenly divided between the

cautious and risky groups to avoid size effects into the resulting dynamics. As we discussed before,

in the classic SIR model, γSIR = 4.104 is the average infectivity of a contact between two individuals
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in the population. In this modified model, this value is the result of a weighted average of the

infectivities of cautious and risky populations. By considering that they interact at essential and

non-essential locations for the same amount of time, it is possible to determine the value of γr. To

calculate γc, the protection provided by facemasks was considered. Previous research suggests that

using facemasks reduces the transmission probability to 0-30% [34]. In this work, we considered

that masks reduce the probability of transmission to 20% (i.e., they are 80% effective). In [24], it

is pointed out that masks provide more outward than inward protection. This feature is accounted

for by γ
(p)
r , the infectivity under a mask policy at essential locations, and µ, the compliance with

the mask policy. So, the infectivity for contacts between an infected risky individual and any

other susceptible is taken as γ
(p)
r = γr − µ(γr − γc) whereas the infectivity for contacts between

infected cautious individuals and any other susceptible is taken as γc. At non-essential locations,

the infectivity of a contact between risky individuals is γr = 15.68, and the infectivity for contacts

between cautious individuals is γc = 0.04γr = 0.627 due to the mask usage, which drastically

reduces it. Notice that the compliance is embedded into the model through the parameter µ, which

was set as 85%. The initial conditions were set to I0 = 1× 10−4 for both groups, and the recovery

rate was δ = 1/14 1/days, as in the previous section.

Due to the spatial structure, there are two locations for interactions between cautious and risky

individuals. As a first approach, we considered scenarios where interactions happen only in one

of the locations. In the first scenario, all interactions happen at non-essential locations, where

assortativity is present, so a flattened infection curve for the cautious compartment is expected.

In the second scenario, where individuals interact only at essential locations, all compartments

should be impacted equally as a result of the mask policy. Indeed, Figure 11a shows the results for

the first scenario, with α = 8/24. There are striking qualitative differences between the infection

curves for risky and cautious individuals interacting only at non-essential locations. The peak for

the cautious compartment not only occurs later but it also almost vanishes; that is, being cautious

“flattens the curve”. The cautious population sees a greater benefit because of mask usage. In the

second scenario, we find that both the cautious and risky populations have the same infection curve
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due to the mask mandate. Thus, the mask requirement ensures that all compartments are exposed

to equivalent hazards as depicted in Figure 11b, where β = 8/24. Paradoxically, the equivalent

hazard comes at the expense of the cautious population, they see their hazard increase when they

visit essential locations (where there is no assortativity) and are forced to interact with the risky

population. As this model does not consider assortativity for essential locations, if the mask policy

is not enforced, the risk skyrockets, because of interactions between risky and cautious at a higher

risk, coming from the assumption that masks provide no inward protection. As for interactions

at essential locations, there is a homogeneous mixing coming from mask enforcement. If a large

fraction of individuals does not wear masks, the contacts leading to infections become extremely

high, which indicates the importance of complying to the mask policy.
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Figure 11: Results after adding the cautious/risky and the essential/non-essential locations distinc-
tion along with assortativity at non-essential locations. a) Interactions at non-essential locations
show the infection curve for cautious occurs later and is almost vanishing; clearly, being cautious
“flattens the curve”. b) Interactions at essential locations shows both risky and cautious indi-
viduals are exposed to the same hazards. “Null” model refers to a simple SIR model (without
cautious/risky subdivisions) with an infectivity γSIR = 4.104.

Both scenarios described above can be understood in terms of utopian policies. The first

scenario is equivalent to a policy closing all essential locations and letting people move freely at

non-essential places, where people self-organize and interact with alike individuals only. Cautious

individuals are almost unaffected and risky ones are penalized with a high outbreak. The second

scenario corresponds to closing all non-essential locations but allowing all people to interact at

essential ones under a mask policy for everyone, which results in a homogeneous mixing. In real
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life, not all people interact at essential businesses for the same amount of time. To illustrate this

point, consider the case of essential workers at a grocery store. Employees usually complete at least

an 8 h shift per day whereas shoppers spend at most a couple of hours at the store. This potentially

increases the risk of essential workers for infection in an inequitable manner, since essential workers

spend more time interacting with the population than a non-essential worker does.

Since the sizes for cautious and risky compartments may not be equal, numerical integration of

equations 2-4 with different percentages of cautious compartments was considered to analyze the

size effects onto the dynamics. Figure 12a-d, show the results when the fraction of risky population

is 25% and 10% respectively. At non-essential locations (Figures 12a,c), we found that sequentially

decreasing the risky fraction decreases the peak for risky people but increases it for cautious. This is

due to the increase in the fraction of population for cautious people, which increases Sc and results

in the increased and earlier peak. Conversely, at essential locations (Figure 12b,d), the peaks

monotonically decrease if the fraction of risky individuals is reduced. This is expected since, at

essential locations, there is no assortativity, so all individuals interact in the same manner giving a

homogeneous mixing with a reduced infectivity (that depends on compliance to the mask mandate).

The LP-SIR model also allows to combine interactions at both essential and non-essential loca-

tions, which better resembles a real situation. In this section, both cautious and risky individuals

were restricted to spend the same amount of time at each location. If this restriction is removed,

the expected dynamics would be a weighted average of the dynamics at each individual location

(weighted by the time spent at each kind of location), which does not offer new insights and is

therefore omitted.

The complexity of accurately modelling infectious disease dynamics should be clear given the

qualitative differences in the models considered in this section. By adding essential/non-essential

locations and cautious/risky distinctions, we gained a better understanding of the hazard ratio

between subpopulations and its dependence on the location of interactions, but analysis became

more cumbersome. A physically relevant meaning of the parameters of the model can help to better
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Figure 12: SIR-like model with behavioral characteristics and spatial structure. Dynamics for
different ratios of risky/cautious individuals by the type of location at which interactions take
place. a) 25% risky individuals and 75% cautious individuals interacting at non-essential locations.
Both groups do not mix due to assortativity. b)25% risky individuals and 75% cautious individuals
interacting at essential locations. Both groups mix homogeneously due to the mask policy. c) Same
as in a) for 10% risky & 90% cautious. d) Same as in b) for 10% risky & 90% cautious.

interpret the resulting infection dynamics and to have a better intuition on the dynamics of spread

of the infectious disease, particularly in the context of a heterogeneous population.

3.3 LP-SIR model: Adding Job Types

In the framework we considered here, essential businesses are constrained to function during a

pandemic at nearly normal hours. Otherwise, needs such as energy, food, transportation, and

healthcare could not be adequately satisfied. Essential employees must therefore keep working

regardless of the circumstances, so their role in the spread of the disease cannot be overlooked. The

population was subdivided into essential workers and non-essential workers, where each may spend
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different times at a particular kind of location. This provides a more realistic model, accounting for

the asymmetry between essential workers that need to attend their usual workplace, as well as non-

essential workers that can easily work from home. As a reminder, there are 4 subgroups for each of

the SIR compartments: Er, Ec, Nr, and Nc, which correspond to essential risky workers, essential

cautious workers, non-essential risky workers and non-essential cautious workers, respectively.

We first considered an LP-SIR model with even subdivisions for both cautious/risky and

essential/non-essential workers. In this first stage, the interactions had the same restriction as

in the previous section: essential (non-essential) workers are permitted to interact at essential

(non-essential) locations only. They all work their normal shifts of 8 h per day, so: αN = 8/24,

αE = 0, βN = 0, and βE = 8/24. This corresponds to the case of essential worker population work-

ing at their jobs for 8 h/day, the non-essential worker population working at their jobs 8 h/day, but

essential and non-essential workers never interacting. As in the previous section, the infectivity was

chosen as γr = 15.68 for contacts between risky individuals at non-essential locations, γc = 0.627

for contacts between cautious individuals at non-essential locations (lower due to mask usage), and

γ
(p)
r = γr−µ(γr−γc) for contacts involving a risky individual at essential locations, with µ = 0.85.

The recovery rate was set to 1/14 1/days, and the initial infections I0 = 1 × 10−6 for each com-

partment. Figure 13 shows that an infection appears only for non-essential risky (Nr) individuals.

Notice that this is consistent with the situation in which people interact only at non-essential loca-

tions presented in the previous section, and thus, the infection does not spread to essential workers

(see for example Figure 11a). This latter result was traced back to a high mask compliance of

µ = 0.85. If µ is decreased below 80%, then infections happen for all but the Nc compartment as

shown in Figure 14 for the particular case µ = 0.65. This means that mask usage, in fact, flattens

the curve. It also emphasizes the importance of complying with the mask policy.

A key observation from results in Figure 14 is that the infection for the Nr compartment has

fast dynamics whereas both the Ec and the Er groups have slower dynamics (also, Ec and Er have

the same infection curve, as expected, from them interacting only at essential locations). As in

the previous section, this arises due to the mask policy and the restriction in the locations for
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Figure 13: LP-SIR model with even subdivisions of compartments with compliance µ = 0.85,
normalized by a) each compartment and b) the total population. αN = 8/24, αE = 0, βN = 0
and βE = 8/24 indicating essential (non-essential) workers interact only at essential (non-essential)
locations. Due to the mask policy, only the Nr compartment shows an outbreak (the Nc group
does not due to properly wearing a mask), which leads to no outbreak at essential locations.

interactions. Facemasks reduce the risk at essential locations, whereas restricting cross interactions

between essential and non-essential workers reduces the number of contacts that potentially lead

to infections. By looking at the total infection curve in Figure 14b, it is clear that this model is

able to explain the presence of two peaks in the curve by means of the differing types of dynamics.

This is a feature observed in real infection curves for COVID-19 in many states within the US.
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Figure 14: LP-SIR model with even subdivisions of compartments with µ = 0.65. αN = 8/24, αE =
0, βN = 0 and βE = 8/24 indicating essential (non-essential) workers interact only at essential (non-
essential) locations. If µ < 0.80, all but the Nc group have infections, indicating the importance
of mask policy compliance. Essential compartments show equal dynamics, as expected. The Nc

compartment does not show an outbreak as a result of assortativity at non-essential locations.
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We performed a second calculation, intended to relax the previous restrictions on where interac-

tions happen. In this analysis, the parameters were chosen as: αN = 8/24, αE = 1/24, βN = 1/24,

and βE = 8/24, which represents a situation in which non-essential workers spend 1 h at essential

locations and essential workers spend 1 h at non-essential locations while doing their regular 8 h

shift at their corresponding jobs. The resulting dynamics, plotted in Figure 15, show that each

of the compartments have different infection curves and do not display the purely bimodal peaks

found in Figure 14. Risky workers are more affected than cautious (consistent with findings in the

previous section). Since αN � βN , the infection curve for non-essential workers closely resembles

the case in which interactions happen only at non-essential locations. There is, an averaging effect

between Nc and Nr due to the 1 h they spend at essential locations, which increases the infection

for the Nc group. Conversely, the infection curves for essential workers look closer together than

non-essential workers. This is consistent with the expectation of equal curves for interactions at

essential locations, which is due to the mask policy averaging the infectivity. The higher peak for Er

is a result of setting αE = 1/24 6= 0 (i.e. essential workers interacting at non-essential locations for

1 h), which breaks the symmetry between Ec and Er, and gives a higher peak to risky individuals

because they do not wear masks.
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Figure 15: LP-SIR model with even subdivisions of compartments with µ = 0.85. αN = 8/24,
αE = 1/24, βN = 1/24, βE = 8/24 indicating essential (non-essential) workers spend 8 h working
at essential (non-essential) locations plus an additional hour at non-essential locations (essential
locations). By adding an hour of interaction in non-essential locations, all populations are sig-
nificantly affected, but have roughly the same peak time (although at different infection peak
strengths).
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A lockdown of non-essential businesses that accounts for non-compliance can be considered by

setting αN = 1/24, αE = 1/24, βN = 1/24, and βE = 8/24 in the LP-SIR model. This choice

reflects a setting in which essential workers perform their usual 8 h shift (βE = 8/24). All groups

spend 1 h at non-essential locations, reflecting the fact that non-essential workers may still interact

with one another, either by ignoring lockdown restrictions or by interacting in crowds outside a

business (αN = 1/24, αE = 1/24). βN = 1/24 indicates that non-essential individuals must spend

some time at essential businesses to satisfy basic needs. The mask compliance was kept at µ = 0.85

to allow comparisons with results in previous sections. Figure 16 shows the infection curves for

all compartments using this set of parameters. The dynamics for every compartment are clearly

slower than the ones for Nr individuals obtained in all previous simulations in this section. This is

reasonable as the effect of a lockdown is to drastically reduce interactions between all non-essential

workers at non-essential places (αN goes from 8 h to 1 h). The fast outbreak for the Nr group seen

under no lockdown policies (see Figures 13-15) is no longer present due to the low interaction time of

Nr workers at non-essential locations (αN = 1/24), meaning that interactions between individuals

within this group were driving the outbreak. In this situation, the population dynamics become

dominated by essential workers, as can be expected from the severe restrictions on non-essential

interactions that are not applicable to essential workers. These results show that the LP-SIR model

can be used as a tool to assess the effect of NPI policies, which is presented in more detail in the

next sections.

The two key findings from this section are: interactions at non-essential locations may be

responsible for the asymmetry in the infection curves for each subpopulation, and essential workers

may play a significant role in the infection dynamics if a lockdown is implemented. These features

were observed in the last section as well, where the speed of the infection was associated to the

location at which interactions happen. The high peak for the Nr compartment, even under a mask

policy suggest that, at the beginning of the COVID-19 pandemic, Nr workers may have driven the

infection. The infection curves for essential workers during lockdowns suggests that, during the

COVID-19 pandemic outbreak, essential workers may have played an important part in driving the
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Figure 16: LP-SIR model with even subdivisions of compartments with µ = 0.85. αN = 1/24,
αE = 1/24, βN = 1/24, βE = 8/24 modelling a realistic lockdown in which essential workers keep
their usual shift at essential locations. All groups interact 1 h at non-essential locations and non-
essential workers spend 1 h at essential locations. The resulting dynamics for Nr are slower than
without lockdown, indicating the effectiveness of the policy on that population group. However,
contagions of essential workers remain high.

infection during the periods at which lockdowns were imposed.

3.4 Assessing the efficacy of mask and lockdown policies with the LP-SIR model

A critical feature of the LP-SIR model is the incorporation of parameters that model two NPIs:

mask mandates on essential businesses and lockdowns at non-essential locations. In the last section,

we gained some insight by considering the case of an imperfect lockdown, which resembles a realistic

scenario. This section focuses on understanding the effect of different sets of policies in the dynamics

of the disease. Throughout this section the initial conditions were fixed as I0 = 10−6 for all groups

and the recovery rate was set to δ = 1/14 1/days. The infectivities were taken as in the previous

section: γr = 15.68 and γc = 0.627. We considered a population of 75% cautious individuals and

an even division between essential and non-essential workers.

3.4.1 Mask mandates at essential locations under no lockdown

Mask policies are one of the easiest NPIs to implement as a response to an outgoing outbreak when

the disease is airborne. Beyond individual inconvenience, there is minimal economic impact on the

population due to mask usage. Facemask are considered to be efficient to prevent the transmission
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of airborne infectious diseases, but effectiveness on protection for the wearer is still disputed [34],

[24]. In a real situation, the efficiency depends on factors as the type of mask, the fit, and most

importantly on compliance with the policy [35]. In this part, we consider the overall influence of

compliance with mask usage on the outbreak using the LP-SIR model. The compliance level was

varied to understand how the dynamics change, and to infer if the subpopulations that drive the

infection change for different µ.

Each of the Figures 17-19 show the resulting infection curves, normalized both by compartment

and by the total population, when varying the compliance levels to µ = 0%, µ = 50%, and µ = 95%,

with the other parameters held fixed (αN = 8/24, αE = 1/24, βN = 1/24, and βE = 8/24). This

choice simulates a scenario in which there is a mask mandate, but no lockdown policy has been

set. By comparing the extreme cases in which no mask is used by anyone (µ = 0) with universal

mask usage (µ = 95%), it is clear that this model predicts that compliance with the mask policy

has a strong influence on the outcome of the outbreak for essential workers and Nc workers. It

also predicts that its impact on the Nr compartment is minimal compared to the impact on other

groups. This result is reasonable, as the mask policy only works at essential locations, thus, ensuring
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Figure 17: Infection curves normalized by a) each compartment, and b) the total population, for
the case of imposed mask mandate but no lockdown policy( αN = 8/24, αE = 1/24, βN = 1/24,
and βE = 8/24) for a compliance µ = 0. The dynamics show that the Nr, Er and Ec have high
peaks at nearly the same times, but it is the Ec group that drives the infection due to the size of
cautious compartments. This is expected when no risky person wears a mask.

a homogeneous mixing with low (high) infection risk when there is a low (high) mask compliance.
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Nr workers, instead, in this scenario interact 8 h at non-essential places and 1 h at essential places.

Their higher hazard, thus, comes from interactions at non-essential locations, where they only meet

other risky people.
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Figure 18: Infection curves for the case of imposed mask mandate but no lockdown policy( αN =
8/24, αE = 1/24, βN = 1/24, and βE = 8/24) for a compliance µ = 50%. It can be seen in a) that
essential workers have their peak decreased and delayed thanks to the increase in compliance, but
the Ec group is still the main driver of the disease.

The plots that are normalized by the total population indicate the populations that drive the

disease. For µ = 0 (Figure 17) the disease is mainly driven by the Ec group. As µ increases, the

infections in Nr start taking over as the main driver of the outbreak. When universal mask usage

is reached (Figure 19) the Nr group becomes the main driver of the disease but there is still some

influence from essential cautious workers, which indicates that essential workers benefit from a high

compliance with the mask mandate. This has been suggested previously in [36]. Finally, notice

that the LP-SIR model predicts a benefit not only for essential workers but also for the population

as a whole, shown as a fourfold reduction in the peak for the total population when comparing the

scenarios for no mask usage and universal mask usage. Hence, our model predicts a mask policy to

be effective in reducing infections and avoiding a scenario in which more than half of the population

is simultaneously infected (as in the classic SIR model under no interventions). However, the peak

with universal mask usage is still around 7%, which is still too high. This indicates that a mask

mandate alone may not prevent an outbreak, it may only reduce its adverse effects.
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Figure 19: Infection curves for the case of imposed mask mandate but no lockdown policy( αN =
8/24, αE = 1/24, βN = 1/24, and βE = 8/24) for a compliance µ = 95%. When universal mask
usage is reached, the Nr group becomes the main driver of the disease, whereas essential workers
have drastically reduced their peaks compared to no mask usage (Figure 17). This indicates that
mask mandates affect essential workers and Nc in a higher degree. The peak for the total population
is around 7%, which is still too high and suggests that mask policies alone are unable to prevent
an outbreak but serve to limit its adverse effects.

3.4.2 Lockdown at non-essential locations under no mask policies

Mask usage is not the only approach to prevent an outbreak. Another policy that has been com-

monly implemented is a lockdown of non-essential workers. In the LP-SIR model, lockdowns of

different types can be considered thanks to the spatial structure, which provides two kind of lo-

cations: essential and non-essential locations. In this section, lockdowns at non-essential locations

without a simultaneous mask mandate are considered. In this way, it is possible to decouple the

effect of lockdowns from that of mask policies. This is important because the economic impact of

lockdowns is much bigger than the one for mask mandates.

A lockdown at non-essential locations can be modeled by reducing the time-interaction pa-

rameters αN and αE , while keeping βN = 1/24 and βE = 8/24 fixed. A partial lockdown can

be thought of as an scenario in which αN and αE are reduced 50%, whereas a total lockdown is

represented by choosing αN = 0 = αE . Figures 20 and 21 show the dynamics for scenarios in which

a partial lockdown and total lockdown for non-essential locations were implemented, but no mask

policy was in place. The dynamics for the case in which no lockdown was imposed (αN = 8/24,
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αE = 1/24, βN = 1/24, and βE = 8/24) was already shown in Figure 17, where a large infection

curve is obtained for all but the Nc compartment. If αN and αE are sequentially reduced, the

biggest benefit is for the Nr compartment for the same reason discussed before: interactions at

non-essential locations for risky people involve a high risk due to assortativity.
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Figure 20: Infection curves for the case of a partial lockdown policy (αN = 4/24, αE = 1/48,
βN = 1/24, and βE = 8/24) with no mask mandate (µ = 0%). By comparing this to Figure 17,
it is clear that a partial lockdown affects mainly to the Nr compartment. The main driver of the
disease is the Ecgroup, suggesting that essential workers may play a significant role in the infection
when lockdowns are in place.

By comparing Figures 17 and 21, it can be seen that a reduction of more than 30% in the

infection peak for Nr workers is achieved due to the lockdown. The peak for essential workers,

however, does not change significantly, with a reduction of less than 6% in the peak. This follows

from the nature of essential workers jobs: even under a lockdown policy, they must keep working at

their usual workplaces. The reduction in the infection peak for the total population under a total

lockdown policy at non-essential locations is around 10%, compared to a reduction of nearly 30%

under universal mask usage found in the previous part. In fact, if one focus on essential workers,

it can be seen that there is almost no reduction in their peaks when lockdowns at non-essential

locations are implemented, they always drive the infection. It follows that, according to the LP-SIR

model, implementing a lockdown policy at non-essential locations alone is not an effective strategy if

it is not coupled with a mask mandate. Interestingly, though, a lockdown at non-essential locations

benefits the compartment for which the mask policy was almost irrelevant, the non-essential risky
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(Nr). This provided two key insights: i) Essential workers may be an important reservoir for the

infection if a mask policy is not present, and ii) A better outcome may be achieved by combining

mask and lockdown policies together, which we explored next.
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Figure 21: Infection curves for the case of a total lockdown policy (αN = 0, αE = 0, βN = 1/24,
and βE = 8/24) with no mask mandate (µ = 0%). There is further reduction in the peak for the Nr

group, but the essential workers infections remain almost invariant. This confirms that lockdowns
at non-essential locations affect Nr individuals to a higher degree, and it suggests that essential
workers may be an important reservoir of the infection when there are lockdowns but no mask
policies in place.

3.4.3 Lockdown at non-essential locations under a mask mandate at essential loca-

tions

In this section, the effect of simultaneously applying a mask mandate at essential locations with a

lockdown policy at non-essential locations is considered. We studied the cases of a partial lockdown

where mask compliance is 75% and 95% and the case of a total lockdown at a mask compliance of

85%. In the case of the partial lockdown, it was found that a 75% compliant mask policy would not

suffice to prevent an outbreak but would reduce its intensity and delay it, which is shown in Figure

22. More interestingly, by combining the partial lockdown with universal mask usage, the LP-SIR

model predicts that there would not be an outbreak, as it is shown in Figure 23. By comparing

this to Figure 20, the effect of combining the two policies revealed astonishing. It is clear that the

peaks for all populations are strongly reduced, and that there is a large delay for the peak to occur,

40



shifting from around t = 60 days to t = 550 days. If a total lockdown at non-essential locations
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Figure 22: Infection curves for the case of a partial lockdown policy (αN = 4/24, αE = 1/48,
βN = 1/24, and βE = 8/24) with a mask mandate where µ = 75% of individuals are compliant.
The dynamics show that this combination of policies is insufficient to prevent an outbreak, but it
serves to decrease the peak and delay it for more than a year, which would buy precious time until
pharmaceutical interventions become available.
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Figure 23: Infection curves for the case of a partial lockdown policy (αN = 4/24, αE = 1/48,
βN = 1/24, and βE = 8/24) with a mask mandate where µ = 95% of individuals are compliant.
This result is encouraging as it suggests there is a threshold for mask compliance at which it would
be possible to prevent an outbreak without requiring total lockdowns.

is applied, the compliance needed to prevent an outbreak reduces to µ = 85%, as it is shown in

Figure 24.

At first sight, these results seem encouraging, since they suggest that if mask compliance is

high enough, total lockdowns might not be necessary. However, it is important to emphasize that

this result assumes that masks provide 80% of outward protection and that policies are constant
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Figure 24: Infection curves for the case of a total lockdown policy (αN = 0/24, αE = 1/48,
βN = 1/24, and βE = 8/24) with a mask mandate where µ = 85% of individuals are compliant.
This result suggests that there is a trade-off between the levels of mask compliance and the degree
of lockdowns needed to prevent an outbreak. A fundamental assumption is that policies are set up
from the beginning of the infection, which is relaxed in next section.

over time. That is, in order to prevent an infection, the policies must have been present since the

beginning of the infection. In addition, the outcome depends on the ratio between essential/non-

essential populations and cautious/risky, which would have to be adapted to the specific local

community, and it would also depend on the specifics of the disease (γ, δ, etc.).

The main result from this section is that by combining a lockdown policy at non-essential lo-

cations with a mask mandate at essential locations, it may be possible to prevent an outbreak

without requiring a total lockdown. There are, however, conditions on the values of mask com-

pliance, the percentage of essential workers and the percentage of risky individuals. There is a

trade-off between these values in determining the outcome of an outbreak. For the case of a total

lockdown, the infection is dominated by essential workers, so increasing the fraction of essential

workers increases the number of infections over time. This can be compensated either by reducing

the fraction of risky workers in the population or by increasing the mask compliance. For the case

of a partial lockdown, the infection is driven by the non-essential risky compartment. In this case,

increasing the fraction of essential workers in the population decreases the infections, since risky

individuals must wear masks at essential locations, reducing the likelihood of spreading the disease.

A similar interplay occurs if we consider other diseases with different basic reproduction numbers
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R0, indicating that our model could be applied for a variety of diseases for which the conditions to

prevent an outbreak could be identified.

3.5 Effect of time dependence in the effectiveness of policies

One of the limitations in the previous results is that the parameters modeling lockdowns and mask

mandates are kept constant over time. This served to model policies that went into effect as soon

as infections started. This constraint, however, is unrealistic as people’s reaction to an imposed

policy and policies themselves vary over time. By allowing time dependence for the time interaction

parameters (αN , αE , βN , and βE) and the mask compliance (µ), the aim was to understand the

effect of the timing of lockdown and mask mandate policies onto the dynamics of an infectious

disease. In particular, the interest was to understand the influence of late adoption of lockdowns

and mask policies into the dynamics, and also to discern if there is still a benefit for the population

in spite of late adoption. In this section, we built on results from the previous section by modifying

the model to include temporal dependence for the parameters. Logistic functions were used to

simulate the changes in policies and/or the behavior of the population in response to them, with

αN (t) =
∑

i aif((t− ti)/τi).

The effect of late adoption of a mask policy at essential locations was analyzed to account for

the delay between the enactment of the policy and its adoption. The mask policy is assumed to be

implemented at essential locations by the government at a certain day after the initial infections

were detected. It is also assumed to be quickly adopted by the population. We considered the same

scenario as in Figure 22 (a partial lockdown for non-essential workers from the beginning of the

outbreak) but with the mask policy adopted 35 and 60 days after the initial cases. These choices

reflect the timeframe it took for most local governments in the US to implement a mask policy.

The maximum compliance was set to 75%, reached a few days after the policy was enacted. Figure

25 show the results for a delay of 35 days. It can be seen that the infection happens a lot earlier,

but the peak is negligibly higher than in the case in which the mask policy was set from the start.

If the delay for setting up the mask policy is 60 days, which is shown in Figure 26, the infection
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Figure 25: Infection curves for the case of a partial lockdown policy (αN = 4/24, αE = 1/48,
βN = 1/24, and βE = 8/24) with a mask mandate that is delayed for 35 days and reaches a
compliance of µ = 75%. By comparing this to Figure 22, it can be seen that the peak happens a
lot earlier (almost half of the time), but it is only negligibly higher. This indicates that delaying
the enactment of the mask policy worsens the infection by making it faster.

happens even earlier, and the peak almost duplicates in value. This highlights the importance of

the mask policy: the timing and the level of compliance could heavily influence the prevalence of

the infection. Notice that essential workers drive the infection in both cases, which is consistent

with our previous findings because a partial lockdown decreases the infections in compartments

involving non-essential workers, whereas infections for essential workers increase during the period

where a mask policy is absent.

An important remark is that for any given disease, there is a characteristic timescale dictated by

both the infectivity and the recovery rate, which are often encompassed in the effective reproduction

number (R0). Accordingly, if the characteristic timescale of the disease is shorter than the delay

period, no effect will be seen due to the delay. Conversely, if the timescale of the disease is larger

than the delay period, there will be an exponential increase in the infection. That is, during

the delay period, the dynamics will be in agreement with the evolution of the outbreak under no

interventions.

The effect of late adoption of a lockdown policy at non-essential locations was also analyzed.

The lockdown policy is assumed to be implemented by the government at a certain day after

the initial infections were detected. It is also assumed to be quickly adopted by the population
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Figure 26: Infection curves for the case of a partial lockdown policy (αN = 4/24, αE = 1/48,
βN = 1/24, and βE = 8/24) with a mask mandate that is delayed for 60 days and reaches a
compliance of µ = 75%. By comparing this to Figures 22 and 26, it is clear that the peaks happen
a lot earlier and almost double in value. This suggests that both the timing of and the level of
compliance with the mask policy heavily influence the dynamics of the infection.

ending in a total lockdown scenario. Previously, it was found that for a total lockdown policy, 85%

compliance resulted in no outbreak (see Figure 24). Figure 27 shows the results when the total

lockdown policy is delayed for 60 days from the first infections. As it can be seen, the infections

in the non-essential risky group (Nr) grow until the lockdown policy is imposed. Thus, a delay in

setting up the lockdown policy results in larger infections for the Nr group. If the mask compliance

is low, this can function as a precursor of a bigger infection as members of the Nr group spread it

to other groups at essential locations. This is consistent with our previous findings that a lockdown

especially affects to non-essential risky workers.

The results in this section suggest that even delayed NPIs offer substantial benefits for the

population. Nevertheless, the benefit decreases for longer delays. This indicates that the timing of

the policies is also a crucial factor to consider when an outbreak is ongoing. Our results also suggest

that by combining focused lockdowns for non-essential workers with a mask mandate at essential

locations, it may be possible to control an infectious disease and prevent an outbreak given that

the facemasks provide enough protection, compliance with the policies is high and the policies are

implemented in a timely manner.
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Figure 27: Infection curves for the case of a total lockdown policy (αN = 0, αE = 0, βN = 1/24,
and βE = 8/24) that is delayed for 60 days and a mask mandate with µ = 85% compliance.
The dynamics clearly show that delaying the lockdown policy exacerbates the infection in the Nr

group, which is consistent with our previous results indicating that lockdowns affect primarily to
Nr workers (see Figures 20 and 21). The high peak for the Nr compartment, when the lockdown
policy is delayed suggest that, at the beginning of the pandemic, Nr workers may have driven the
infection, as lockdown policies were not implemented immediately after detecting the first cases.

3.6 Assessing the LP-SIR model with real data

A direct way of assessing the performance of the LP-SIR model in real infections would be to

use mobility data structured according to whether a worker is essential or not. However, we were

unable to find this type of data, so we resorted to an indirect assessment by estimating the time

spent by non-essential workers at non-essential locations. Replacing the time spent at non-essential

locations α (a constant) with α(t) (a function of time) gives a continuous degree of freedom, which

would allow any infection dynamics to be recovered.

In this section, the gradient descent algorithm was applied to the SIR model to determine the

infectivity that would best fit real infection curves at the beginning of the pandemic, where NPI

policies were not yet implemented. We also used a set of times {ti} that correspond to policy

decisions enacted in disparate regions of the US (specifically Texas, California, and New York)

to shape αN (t). By fitting the observed infection statistics in these regions to a time-varying

mobility αN (t), we demonstrate the LP-SIR model can be applied to real world data (as can

potentially be true for any infection model). We use this fitting to infer the elevated hazard

experienced by essential workers in each of these regions. The time-interaction parameters for
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essential locations, βN (t) and βE(t) were inferred from Walmart’s reduced hour policy [37], which

is summarized in Table 1. Both functions were modeled as shown in Figure 28 using logistic

functions β(t) =
∑

i bif((t− ti)/τi).

Table 1: Timeline for Walmart reduced hour policy for most of their retail stores [37], which was
used to define βN (t) and βE(t)

Policy from to

Reduced hours to 11.5h March 19, 2020 August 14, 2020
Reduced hours to 13h August 15, 2020 November 13, 2020
Reduced hours to 14h November 14, 2020 -

Mask policy for employees April 20, 2020 -
Mask policy for shoppers July 20, 2020 -

Walmart reduced hours
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Figure 28: Walmart reduced hours policy implemented due to COVID used to define βN (t) and
βE(t).

3.6.1 Extracting the infectivity rate from the New York infection curve

We first used real data for CoVID-19 active infections extracted from ref. [12]. The state of New

York (NY) was selected to find the value of the infectivity and compare it with the value we used

for the classic SIR model. Choosing NY follows from the timeline at which NPI policies were

implemented by the government. At NY, the first case was detected in March 1st, 2020. The first

request to social distance and avoid densely packed areas came in a week later. The first closures

began 15 days after the first case was found, whereas the first lockdown policies were implemented

21 days later. Given these considerations, we chose to treat the first 10 days on infections at NY
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using the classic SIR model to extract the value for the infectivity under no implemented policies.

These assumptions are reasonable since within those 10 days, the government was deciding which

are the right measures to implement and people were still adopting a corresponding behavioral

response, so the expectation of a well-mixed homogeneous population should hold.

The gradient descent algorithm was used to generate a best fit for the infectivity of a classic SIR

model. The resulting value was γopt = 4.0954 with an error of the order of 10−6. Figure 29 shows

the fitted curve and the infection data for the state of New York, which shows the same exponential

growth as the real infection, but overlooks fluctuations and other stochastic effects that give raise

to the small deviations. As we discussed before when presenting results for the classic SIR model

this is consistent with the averaging effect due to the coarse assumptions of this model.
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Figure 29: Real infection curve for the state of New York. The gradient descent algorithm using
an SIR model was applied to find the infectivity that generates a best fit during the timeframe
when no interventions were in place, which correspond to a classic SIR model. The best fit value
resulted γ = 4.0954, which closely matches previously reported data. The small deviations are due
to heterogeneity, fluctuations and stochastic effects that are overlooked by the classic SIR model

3.6.2 Using the LP-SIR model to extract mobility data for non-essential workers

Mobility data at non-essential locations for non-essential workers was extracted using the LP-SIR

model from real infection curves for three states within the United States: New York, Texas, and

California. Mask usage was extracted from [12]. The initial conditions were extracted from [12]
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and the ratios cautious vs risky and essential vs non-essential were extracted from data provided

by [38] for New York, [39] for California and [40] for Texas. The recovery rate was 1/14 1/days (a

2 week recovery period) as in previous sections. The infectivity for risky individuals was calculated

as a weighted average of a population composed of 65% of cautious individuals and 25% of essential

workers. The resulting infectivity was γr = 31.9. As in previous sections γc = 0.04γr = 1.28, which

indicates that cautious individuals have a lower probability of transmitting the disease than risky

ones due to their mask usage.

We originally intended to utilize mobile phone data [41], [42], [12] to model the mobility of

the non-essential compartment, but we found that the data suggested an increase in mobility

before lockdown policies were relaxed. In other words, there was an increase in the mobility of New

Yorkers during the most restrictive lockdown according to [12]. We thus decided to use non-essential

mobility as a fitting parameter, given the timing of local lockdown policies. To find the mobility for

non-essential workers at non-essential locations, αN (t), the gradient descent algorithm was applied

to minimize the error between a real infection curve and the output of the LP-SIR model. We used

logistic functions centered at specific times at which a policy affecting the mobility of non-essentials

workers was imposed, that is, with the same structure as before: αN (t) =
∑

i aif((t − ti)/τi).

Replacing α (a constant) with α(t) (a function of time) gives a continuous degree of freedom, which

would allow any infection dynamics to be recovered. In this section, we will focus on a set of

times {ti} that correspond to policy decisions enacted in disparate regions of the US (specifically

Texas, California, and New York). By fitting the observed infection statistics in these regions to a

time-varying mobility α(t), we demonstrate the LP-SIR model can be applied to real world data

(as can potentially be true for any infection model). We use this fitting to infer the elevated hazard

experienced by essential workers in each of these regions. The initial amplitudes and strengths for

the logistic functions were manually selected and later optimized using a gradient descent algorithm.

Figure 30 shows the results for the state of New York. By comparing this mobility data with the

imposed policies shown in Table 2, it can be seen that there is a correlation between the types of

policies that were implemented and increases/reductions in non-essential mobility at non-essential
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locations.
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Figure 30: a) Fit to real NY infection curve using a gradient descent algorithm and initial conditions
for the centers of the logistic functions manually set. b) Resulting non-essential workers mobility
at non-essential locations αN (t) and cellularmob(t) showing real mobility data extracted from [12].
Background colors indicate the expected effect of the policy in the mobility. Green indicate strict
measures, including lockdown, closures, and limitations on gatherings. Orange indicates some
measures begin to be relaxed. Red indicates further relaxation of policies. Light blue represents a
travel advisory requiring travelers to self-quarantine. Blue indicates schools turned all operations
remote and suspension of interior dine-in.

Table 2: Timeline of applied policies at New York

Policy from to

Reduced mobility recommendations March 7, 2020 March 22, 2020
Lockdown on non-essentials March 22, 2020 May 15, 2020

Non-essential gatherings forbidden March 24, 2020 May 31, 2020
Relaxed lockdown May 29, 2020 June 16, 2020
Further relaxations June 2, 2020 June 23,2020

Travel advisory June 24, 2020 October 31, 2020
Restaurants at 75% September 17, 2020 -

Non-compliant businesses closed October 23, 2020 November 11, 2020
No indoor dine-in December 14, 2020 -

Based on the αN (t) extracted using the LP-SIR model, we can potentially use the dynamics to

infer the subpopulations that are driving the disease at any point in time. Figure 31 shows that

essential workers drive the disease during various periods and act as a reservoir during others. This

is consistent with what was found in previous sections, and it likely results from the interplay of

low mask usage (for the first period) and the increase in mobility (for the last peak). This also
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indicates that differentiating between essential and non-essential workers in reported infection data

could provide an important pathway to controlling or preventing the outbreak. Previously, we

concluded that lockdown policies do not have a strong impact on essential workers and that mask

policies do not have a strong impact on non-essential risky workers. Given that these subpopulations

are driving the disease, a higher mask compliance at the beginning might have reduced the first

peak, whereas maintaining a lower mobility might have prevented the latest increase in infections.
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Figure 31: a) Infections for the Er, Ec, Nr, and Nc compartments normalized by subpopulation in
NY state, which show that essential workers are more affected than non-essentials within their own
communities. b) Same as in a) but normalized according to the total population. Non-essential
workers drive the disease at the beginning, at the middle and at the end of the timeline, when
mobility of non-essential workers at non-essential locations increases.

It is also possible to estimate whether or not a given subpopulation is at an increased risk

compared to others by calculating the ratio between infections. In this way, we found that essential

workers are exposed to a higher hazard throughout the infection, except for brief periods of time.

In the literature, it has been suggested that essential workers may be exposed to a higher risk due

to work-related system-level failures [19]. Figure 32 shows comparisons for the essential vs non-

essential subpopulations and for the cautious vs risky subpopulations. The risky subpopulation

drives the disease almost exclusively, except for a brief period of time (around 170-230 days).

Similarly, essential workers drive the disease except for a 3-week period at the beginning of the

outbreak and a 1-week period around 290 days.
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Figure 32: a) Hazard ratio of essentials vs non-essential workers at NY. It is shown that essential
workers drive the disease most of the time, except at the beginning and at the end. b) Hazard ratio
of the cautious vs risky subpopulations at NY. It is shown that risky individuals drive the disease
in most of the shown timeline.

A similar procedure was followed for the states of Texas and California, as shown in Figures 33-

36. Results mimic the behavior observed for New York with a main difference: the first peak on the

infection is not present anymore. This is likely due to mobility restrictions imposed coupled with

less infected individuals in the population (I0 = 10−6 for TX, I0 = 5× 10−6 for CA,I0 = 2× 10−5

for NY) and the provision of PPE for essential workers as well as the tax removal on PPE for

CA. Also, non-essential risky workers drive the infection only during the first period at which

measures were relaxed. In NY, Nr workers always drove the infection. This suggests that it may

be important to ensure that enough compliance with the mask policy has been achieved prior to

relaxing lockdown measures. During the period of first relaxations mask compliance was 56− 75%

for TX and 67− 78% for CA [12], which may have not been enough to prevent transmission from

non-essential risky individuals to essential workers.

Results for TX are shown in Figures 33-35. By using Table 3 and the color coding in Figure 33,

notice that there is a correlation between imposed policies and increases or decreases in mobility

except for the last period after 250 days. Beyond these 250 days, pharmaceutical interventions,

including the newly distributed vaccinations affected the number of infections, as they were not as

high as it would be expected from the imposed policies.

Texas started with the lowest number of infections; thus, it is possible that lockdown policies
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Figure 33: a) Fit to real TX infection curve using a gradient descent algorithm and initial conditions
for the centers of the logistic functions manually set. b) Resulting non-essential workers mobility at
non-essential locations. Background colors indicate the expected effect of the policy in the mobility.
Green indicate strict measures, including lockdown, closures, and limitations on gatherings. Orange
indicates some measures begin to be relaxed. Red indicates further relaxation of policies. Blue
represents stricter measures put back in place.

Table 3: Timeline of applied policies at Texas

Policy from to

Bar closures, no dine-in March 16, 2020 March 31, 2020
Stay home order March 24, 2020 April 30, 2020

Wedding, personal care reopen May 6, 2020 May 8, 2020
Further reopening May 22, 2020 June 23, 2020

Stricter measures back in place June 24, 2020 September 17,2020
Restaurants at 75% September 17, 2020 -
Bars reopen at 50% October 14, 2020 -

managed to inhibit infections for non-essential risky workers, explaining why infections in the Nr

compartment die out after an initial increase. Conversely, infections for essential workers never

decrease, which may be explained by an insufficient value of mask compliance in the first stage of

the outbreak. During the period of relaxation of lockdown policies, non-essential risky individuals

drive the infection, which in turn increases the infection for essentials. This is consistent with the

dynamics of the infection shown in Figure 34. Figure 35 shows the hazard ratios for cautious vs

risky and essential vs non-essential. In this case essential workers drive most part of the infection

as well, with brief periods in which essential risky workers drive the infection. These periods are

related to relaxation of imposed policies.
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Figure 34: a) Infections for the Er, Ec, Nr, and Nc compartments normalized by subpopulation
in TX, which show that essential workers are more affected than non-essentials within their own
communities except at the middle of the infection curve. b) Same as in a) but normalized according
to the total population. Non-essential workers drive the disease at the only at the middle, when
mobility of non-essential workers at non-essential locations increases due to relaxation in policies.

We then reproduced the computations for the state of California, which resulted in very similar

trends than the infection in Texas, but with a higher percentage of infected population. This is

likely due to a higher number of initially infected individuals than in TX (but still lower than in

NY). The gradient descent fit and the extracted mobility αN (t) are considered in Figure 36. Again,

by matching this mobility to the policy timeline for the state shown in Table 4, it can be seen

that there is good agreement between policy changes (inception and relaxation) and non-essential

mobility at non-essential locations. Since, there are no significant differences in the dynamics for

subgroups and the hazard ratios, they were omitted.

Table 4: Timeline of applied policies at California

Policy from to

Call for bars’ closures March 15, 2020 -
Lockdown on non-essentials March 19, 2020 May 15, 2020

1st stage reopening May 8, 2020 June 30 ,2020
Ban on indoor services Jul 1, 2020 August 31, 2020

Stricter measures reimposed November 16, 2020 -
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Figure 35: a) Hazard ratio of essentials vs non-essential workers at TX. It is shown that essential
workers drive the disease most of the time, except at a brief period in the middle of the outbreak.
b) Hazard ratio of the cautious vs risky subpopulations at TX. It is shown that risky individuals
always drive the disease.
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Figure 36: a) Fit to real CA infection curve using a gradient descent algorithm and initial conditions
for the centers of the logistic functions manually set. b) Resulting non-essential workers mobility at
non-essential locations. Background colors indicate the expected effect of the policy in the mobility.
Green indicate strict measures, including lockdown, closures, and limitations on gatherings. Orange
indicates some measures begin to be relaxed. Red indicates further relaxation of policies. Blue
represents stricter measures put back in place.

It is important to emphasize that, in this section, we are assuming that all essential workers

(or non-essential workers) behave and interact in the same way within a community, which is not

extrictly valid in a whole state due to the differences between cities or countryside and metropolis

(e.g. when we applied the LP-SIR model to TX, NY and CA). We are also assuming that all essential

workers (even for different cities within a state are well-mixed), which is clearly not true. Data for

55



active infections at county level is available, but other information, such as policies implemented

in a specific county or the mask compliance by county is harder to get. These approximations hide

out some details about heterogeneity of the population by averaging them over each state. By

obtaining data for all time-dependent parameters at the county level and using the LP-SIR model

to get predictions about the outbreak in each community, the performance of the LP-SIR model

could be better assessed.
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4 Transmission between heterogeneous neighborhoods with LP-

SIR model

Results from previous sections indicate a difference in the dynamics of infection when subpopula-

tion sizes are changed. One key insight was that essential workers are an important reservoir for

the infectious disease during the lockdown periods due to their disproportionately high interaction

time compared to non-essentials workers. In this section, we consider a model with two hetero-

geneous neighborhoods. Neighborhoods were labeled as Heavily Essentials-Neighborhood (HEN)

and Heavily Non-Essential Neighborhood (HNN) to facilitate the discussion. The former is com-

posed mainly of essential workers and the latter is mainly inhabited by non-essential workers. The

structure of the LP-SIR model was maintained in both neighborhoods, with an assumption that

the populations within neighborhoods preferentially interact within their neighborhood. This is

an additional level of assortativity in the model, consistent with the behavior observed in social

networks [43]. We continue to assume an assortativity within the cautious and risky subpopulations

in each community. The assortativity within a neighborhood is broken for essential workers that

must commute from one neighborhood to the other for their required jobs. In this section, we

assume that one neighborhood has a greater number of essential workers while the other neighbor-

hood has a greater number of essential jobs. This may be a plausible representation of low-income

neighborhoods commuting to wealthier neighborhoods to perform essential jobs.

In this section, we considered a series of simplifying hypothesis. The main assumption was that

only a fraction of essential workers commutes between neighborhoods to go to their workplace.

This is a reasonable approximation since most people commute from home to work on a daily basis

and prefer to live close to their workplace (if economically possible). The second assumption is that

essential workers live day to day and cannot afford to switch jobs suddenly. A third assumption

is that the non-essential population is composed mainly of individuals that can work remotely or

can switch jobs to one that allows it. Combined, these assumptions imply that the categories of

essential vs non-essential workers in each neighborhood are fixed during the pandemic, and the only
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possibility of infection between the two neighborhoods is through the essential workers commuting

between neighborhoods.

4.1 Transmission of an outbreak starting at Heavily Essential Neighborhoods

A scenario in which the disease starts at a Heavily Essential Neighborhood (neighborhood 1) and

transmits to a Heavily Non-Essential Neighborhood (neighborhood 2), was considered by choosing

a set of parameters as shown in Table 5. All compartments except for the commuters have an

initial fraction of infected people 10−5. The time interaction parameters were chosen to reflect a

lockdown at non-essential locations: αE = 0 = αN , βN = 1/24, βE = 8/24, the mask compliance

was µ = 0.85, the recovery rate was 1/14 1/days, and the effective infectivity γr = 31.9, as in the

previous section. The results are shown in Figure 37. Clearly, the infection happens for all groups at

HEN, whereas at HNN it only happens for commuting essential workers that travel to HEN (E2→1)

and get infected there. This indicates that under a lockdown at non-essential places (where non-

essential workers are only allowed 1 h for shopping essentials), the disease is transmitted between

neighborhoods only through E2→1 workers. Both subgroups, E2→1,c and E2→1,r, are interacting at

essential locations, so their dynamics show the expected homogeneous mixing.

Table 5: Parameters for neighborhoods transmission simulations

Neighborhood % essentials % risky % commuters I0
S0

(non-commuter) I0
S0

(commuter)

HEN 80 35 25 10−5 0
HNN 10 35 25 0 0

We further considered lockdowns at non-essential locations targeted only to either essential

workers (case 1) or non-essential workers (case 2). In case 1, where essential workers are not allowed

at non-essential locations (αE = 0), we found that increasing αN affects only non-essential groups

at HEN, with the Nr group affected to a higher degree. For αN = 8/24, the peak in infections for

the Nr group is almost doubled compared to the one for αN = 0, whereas it increases in less than

4% for Nc. The infections for essential populations are almost invariant with the increase in αN .

These results are shown in Figure 38. In this situation, it is clear that the Nr group drives the
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Figure 37: Infection curves at the two neighborhoods when infections start at HEN, with αN = 0,
αE = 0, βN = 1, βE = 8. If essential workers are not allowed to interact at non-essential locations,
spread at HNN neighborhood is limited to commuters.

infection at HEN alongside essential workers. In the HNN, the infection is still driven by essential

commuters only. In case 2, where non-essentials are banned from non-essential locations, however,
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Figure 38: Infection curves at the two neighborhoods when infections started at HEN, with αN = 8,
αE = 0, βN = 1, βE = 8. If essential workers are not allowed to interact at non-essential locations,
spread at HNN is limited to commuters. By increasing αN , the only noticeably increase in infections
happens for non-essentials compartments at HEN. HNN groups are almost unaffected.

a minor increase of αE from 0 to 1/24 already causes infections for all HNN non-commuters. Thus,

at HNN, initially, the infection is carried by workers commuting to HEN. It then spreads through

contacts at non-essential locations and causes an outbreak for all HNN populations. These results

are shown in Figure 39. In this case, it is obvious that essential workers drive the infection at both

neighborhoods.
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Figure 39: Infection curves at the two neighborhoods when infections started at HEN, with αN = 0,
αE = 1, βN = 1, βE = 8. If essential workers are allowed to interact at non-essential locations,
spread at HNN happens for all groups but delayed with respect to infections at HEN.

Size effects make it overly complicated to infer the total infection curve from the data presented

above. To understand the effect on the total population, the total infection was calculated by

normalizing over the total neighborhood population. Figure 40 shows that under a perfect lockdown

(αN = 0 = αE) the total infection barely hits the HNN. By setting αE = 1/24, there is a noticeable

increase in the peak, but there is also a delay. For the scenarios where a perfect lockdown at

non-essential locations is applied, at the HNN, infections occur for essential commuters only, which

saturates as the corresponding susceptible compartment depletes. Notice that with 10% essential

workers and 25% of them commuting, there are only 2.5% of commuters in that neighborhood.

When αE = 1/24, however, the infection hits all groups which explains why the peak occurs later,

but it is also higher.

A dominant feature in the simulations above is that the dynamics of commuter essential workers

resemble that of people working at the same location, that is, non-commuter essential workers.

This is the expected homogeneous mixing behavior for interactions at essential locations only, and

it remains true as long as essential workers are not allowed to interact at non-essential locations.

In the case they are allowed to interact at non-essential locations, that is, αE 6= 0, this symmetry

is broken due to the higher risk at which the risky subpopulation is exposed.
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Figure 40: Total infections by neighborhood when the infection starts at HEN and transfers to
HNN through commuter workers, with a) αE = 0. b) αE = 1/24. It is clear that changing αE has
negligible effect on the HEN, and a small impact on the HNN.

4.2 Outbreak starting at Heavily Non-Essential Neighborhoods

In this section, we explored the dynamics of an infection that starts at HNN, and transfers to an

HEN only through commuters from the HNN. In Figure 41, the results for a perfect lockdown at

non-essential locations (αN = 0 = αE) are presented. The peak is not only delayed but it is also

smaller in value than in the case where the disease starts at HEN and transfers to HNN through

commuter workers (see Figure 37). This result follows from the smaller number of susceptible

essential individuals at HNN compared to HEN. A smaller susceptible population implies there are

fewer interactions, which delays the peak of infection.
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Figure 41: Infection curves at the two neighborhoods when infections started at HNN, with αN = 0,
αE = 0, βN = 1, βE = 8. If essential workers are banned from non-essential locations, spread at
HEN is limited to commuters. Infections are lower and delayed than in reverse transmission.
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We again considered lockdowns at non-essential locations that are targeted only to either es-

sential workers (case 1) or non-essential workers (case 2). In case 1, if αN > 4/24 (the time spent

by non-essential workers at non-essential locations), the peak in the infections for the Nr group

surpasses the one for essential workers. This means that the main drivers of the infection are the

infected Nr workers. Figure 42 shows the results for αN = 3/24 and αN = 8/24. For αN = 3/24,

at HNN, the infections for non-commuting essentials (Ec, Er) and Nr are balanced, whereas for

αN = 8/24 the infections in the Nr compartment dominate over all others. This behavior is the

result of the large population size of non-essential workers at HNN. Allowing them to interact at

non-essential locations would, thus, cause a larger outbreak driven by essential workers at HEN.

At HNN, however, the outbreak is initially driven by Nr workers with essential workers driving the

infection later on.
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Figure 42: Infections at the two neighborhoods for the cases αE = 0, βN = 1, βE = 8 and a)
αN = 3 and b) αN = 8. The plot shows that as αN increases, the infections for Nr at HNN become
dominant, but essential workers still contribute significantly to the transmission of the disease.
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In the previous section, when we analyzed the case 2, where non-essentials are banned from non-

essential locations, we found that varying αE from 0 to 1/24 had a big impact on the dynamics at

HEN, causing all groups to have an outbreak. Likewise, if the infection starts at HNN, the functional

form of the infection curves remains almost the same as in Figure 39 for all compartments. The

only difference is a small delay in reaching the infection peak for all subpopulations. Results are

shown in Figure 43. This feature indicates that the timing of the peak depends on the origin of the

infection, which suggest again that essential workers may play a major role in the transmission of

an infectious disease.
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Figure 43: Infections at the two neighborhoods with αN = 0, αE = 1/24, βN = 1/24, and
βE = 8/24. If essential workers are allowed to interact at non-essential locations, spread at an
HEN happens for all groups but delayed with respect to an HNN.

To understand the impact of the disease in each neighborhood, it is important to normalize

the infections curves with respect to their total population. Results are shown in Figure 44. By

comparing this results to the ones in Figure 40, it is clear that if αE = 0, there is a significant

outbreak only if transmission goes from an HEN to an HNN, whereas if αE = 1, an HEN is always

affected more than an HNN, regardless of where the infection started. Strikingly, even if αE is set

as low as 0.01, the only effect is a delay on the peak but the impact on essential workers remains

almost unchanged, as shown in Figure 45. This suggest that in a real situation, where lockdowns

are imperfect (and thus αE > 0) the population of an HEN is at a greater risk of contracting

the disease due to their intrinsic composition. This also suggests that perfect compliance with a
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lockdown policy is needed from essential workers in order for it to be effective, which confirms that

they may have a significant role in the transmission of infectious diseases.
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Figure 44: Total infections by neighborhood when the infection starts at HNN and transfers to
HEN through commuter workers, with a) αE = 0, b) αE = 1/24. It is clear that changing αE has
negligible effect on the HNN, and an enormous impact on the HEN. If essential workers are allowed
at non-essential locations for 1 h (αE = 1), the initial location of the disease becomes irrelevant,
the HEN is always more heavily impacted than the HNN (compare Figures 40b and 44b).
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Figure 45: Total infections by neighborhood when the infection starts at HNN and transfers to
HEN through commuter workers, with αE = 0.01/24. It is clear that, even for this small value of
αE , the effect on the HNN is negligible, and it is huge on the HEN. This means that population
of an HEN are at a higher risk if lockdowns of essential workers at non-essential locations are not
perfect (compare this result with Figure 44b).
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5 Conclusions and Outlook

In this work, we proposed the LP-SIR, which is a modification of the classic SIR model that

accounts for demographics in the form of “essential” (those that must interact face-to-face) and

“non-essential” (those than can work from home) workers, and the behavioral response of the pop-

ulation to mask policies implemented by local governments to address an outbreak of an infectious

disease. This model overcomes many limitations of the classic SIR model by adding features that

account for heterogeneity in the population and enable a physical interpretation of the parameters

in the model. For instance, time interaction parameters allow essential and non-essential workers to

interact for different times (given as fractions of the daily time spent) at essential and non-essential

businesses.

The distinction between cautious and risky workers and the division of locations into essential

and non-essential businesses result in two types of dynamics. When interactions happen at non-

essential locations, infections are slower for cautious individuals and faster for risky people. This

may serve to explain the double peaks observed in infection curves for many states in the US. When

interactions happen at essential locations, a homogeneous mixing is obtained due to the mask policy.

In a real situation, there would be an averaging of these two situations, as interactions happen at

both kind of locations.

By adding a further subdivision of essential and non-essential workers, it was possible to assess

the effectiveness of mask mandates at essential locations and lockdown policies at non-essential

locations. We found that mask usage can be effective in reducing the impacts of an outbreak

by reducing contagions at essential locations, provided that facemasks are worn by almost all the

population (mask compliance). We also found that lockdown policies at non-essential locations

are particularly important for the non-essential risky population. This is especially important at

the beginning of an outbreak as we showed that delays in implementing the policies fade out the

potential benefits to slowdown or eradicate the infection.
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The LP-SIR model predicts that essential workers have a central role in transmitting an in-

fectious disease and suffer disproportionately from it. The results showed that they can act as

reservoirs for the disease during periods in which lockdowns for non-essential workers are imple-

mented. We also found that essential workers have a higher benefit than non-essential workers

when compliance with mask mandates at essential locations is high. Given these findings, the role

of essential workers should not be overlooked. Data that provides statistics for essential workers

alone would allow to test some of these predictions. In case these findings are confirmed, testing

essential workers may prove to be a viable strategy to contain the disease.

It must be emphasized that the LP-SIR model considers a series of simplifying assumptions

that make the model computationally tractable. The most stringent assumption is that all com-

partments are considered as monolithic groups. This means that all individuals in a particular

group behave homogeneously and have a rigid behavior towards policies. For instance, no risky

individual interacts with a cautious one at non-essential locations. It also implies that all essential

workers (or non-essential workers) behave and interact in the same way within a community, which

is not strictly valid in a state due to the differences between urban and rural areas (e.g. when we

applied the LP-SIR model to TX, NY and CA). That being said, there is always trade-off between

the complexity of the model and the level of detail it includes. Our results suggest that the char-

acteristics we chose to account for heterogeneities in the population are indeed important when

deciding the set of policies to respond to an outbreak. Another limitation of our model is that it

does not consider stochasticity. So, the LP-SIR model cannot account for effects that are statistical

in nature, such as superspreaders or contagions, or within a family that may occur at home, with

a specific set of individuals.

The LP-SIR model can be used to analyze transmission between heterogeneously composed

communities. We found that the composition of a neighborhood may determine the outcome of an

outbreak of an infectious disease. In particular, when analyzing two interacting neighborhoods, we

found that essential workers commuting from one neighborhood to others play an important role as

drivers of the disease. It was also found that the percentage of essential workers in a neighborhood
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determines the outcome of the infection. In neighborhoods with a prevalence of essential workers,

the impact is higher than in neighborhoods where non-essential workers dominate, given that

essential workers are allowed to interact at non-essential locations. Strikingly, this was always true

except when they were completely locked out of non-essential locations, which is unrealistic since

they move through non-essential locations to go to work.

As of this writing, vaccines for COVID-19 are available and they have helped to reduce or contain

the spread in several countries. Their effect on the dynamics could, in principle, be included in

the LP-SIR model. The only caveat is that a mindful choice of the parameters to add must be

made. There are many different vaccines (with more to come), so modelling vaccine efficacy is a

huge challenge on itself. There may also be a link between mask avoidance (risky behavior) and

vaccine avoidance that is not easily modeled. A thorough consideration must be made between

adding vaccination or working towards understanding the dynamics of a new disease. Both paths

seem worthwhile at the moment, with variants of the COVID-19 disease still surrounding us and

with the expectation of new and more resistant virus and bacteria to come (which increases the

likelihood of new pandemics). This work focuses solely on the infection dynamics controllable solely

via NPIs.

A potential research direction would be to determine the mobility of essential and non-essential

workers from cellular and GPS databases by correlating the time spent at essential locations (deter-

mined by the GPS) to the type of worker, essential workers must spend their 8 h shift at essential

locations. With this segregated data, predictions of the LP-SIR model can be better tested. In

particular, it would become possible to determine with certainty if essential workers are exposed to

a higher risk than non-essential workers. This may prove of great importance in determining the

policies to contain an infectious disease, as one could do a targeted testing and quarantine/isolation

of essential workers instead of focusing in the entire population.

More research is needed to determine the exact effect of compartmental sizes on the LP-SIR

model. Since these values vary from one local community to others, it is paramount to fully

understand the size effects onto the infection. One example of size effects affecting the dynamics is
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that if a community managed to reduce their percentage of risky people, then extended lockdowns

could possibly be avoided.

68



Bibliography

[1] Kirsty R. Short, Katherine Kedzierska, and Carolien E. van de Sandt. “Back to the Future:

Lessons Learned From the 1918 Influenza Pandemic”. In: Frontiers in Cellular and Infection

Microbiology 8.343 (Oct. 2018), pp. 1–19.

[2] John M. Barry. “The site of origin of the 1918 influenza pandemic and its public health

implications”. In: Journal of Translational Medicine 2.1 (Jan. 2004), pp. 1–4.

[3] Kristian G. Andersen et al. “The proximal origin of SARS-CoV-2”. In: Nature Medicine 26.4

(Apr. 2020), pp. 450–452.

[4] Brian L. Hoffman. “Influenza activity in Saint Joseph, Missouri 1910-1923: Evidence for an

early wave of the 1918 pandemic”. In: PLoS Currents 2 (2011).

[5] B. J. Cowling et al. “Face masks to prevent transmission of influenza virus: a systematic

review”. In: Epidemiology and Infection 138.4 (Apr. 2010), pp. 449–456.

[6] Howard Markel et al. “Nonpharmaceutical interventions implemented by US cities during the

1918-1919 influenza pandemic”. In: Journal of the American Medical Association 298.6 (Aug.

2007), pp. 644–654.

[7] Richard J. Hatchett, Carter E. Mecher, and Marc Lipsitch. “Public health interventions

and epidemic intensity during the 1918 influenza pandemic”. In: Proceedings of the National

Academy of Sciences of the United States of America 104.18 (May 2007), pp. 7582–7587.

[8] Husch Blackwell. State-by-State COVID-19 Guidance. url: https://www.huschblackwell.

com/state-by-state-covid-19-guidance.

[9] Savannah Bergquist, Thomas Otten, and Nick Sarich. “COVID-19 pandemic in the United

States”. In: Health Policy and Technology 9.4 (Dec. 2020), pp. 623–638.

[10] Muhammad Farhan Bashir, Benjiang Ma, and Luqman Shahzad. “A brief review of socio-

economic and environmental impact of Covid-19”. In: Air Quality, Atmosphere and Health

13.12 (Dec. 2020), pp. 1403–1409.

69



[11] Jasper Verschuur, Elco E. Koks, and Jim W. Hall. “Global economic impacts of COVID-19

lockdown measures stand out in highfrequency shipping data”. In: PLoS ONE 16.4 April

(Apr. 2021), e0248818.

[12] The Institute for Health Metrics and Evaluation (IHME). COVID-19 Data and Projections.

url: https://covid19.healthdata.org/global.

[13] World Health Organization (WHO). Severe Acute Respiratory Syndrome (SARS). url: https:

//www.who.int/health-topics/severe-acute-respiratory-syndrome#tab=tab_1.

[14] Philip Ball. “The lightning-fast quest for COVID vaccines - and what it means for other

diseases”. In: Nature 589.7840 (Jan. 2021), pp. 16–18.

[15] Walter Dodds. “Disease Now and Potential Future Pandemics”. In: The World’s Worst Prob-

lems. Springer International Publishing, 2019, pp. 31–44.

[16] Rory Gibb et al. “Zoonotic host diversity increases in human-dominated ecosystems”. In:

Nature 584.7821 (Aug. 2020), pp. 398–402.

[17] David M. Morens and Anthony S. Fauci. “Emerging Pandemic Diseases: How We Got to

COVID-19”. In: Cell 182.5 (Sept. 2020), pp. 1077–1092.

[18] Long H Nguyen et al. “Risk of COVID-19 among front-line health-care workers and the

general community: a prospective cohort study”. In: The Lancet Public Health 5.9 (2020),

pp. 475–483.

[19] Joanna Gaitens et al. “Covid-19 and essential workers: A narrative review of health outcomes

and moral injury”. In: International Journal of Environmental Research and Public Health

18.4 (Feb. 2021), pp. 1–16.

[20] W Kermack and A Mckendrick. “A contribution to the mathematical theory of epidemics”. In:

Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical

and Physical Character 115.772 (Aug. 1927), pp. 700–721.

70



[21] Fred Brauer, Pauline van den Driessche, and Jianhong Wu. Mathematical Epidemiology.

Vol. 1945. Lecture Notes in Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg,

2008.

[22] Fred Brauer, Carlos Castillo-Chavez, and Zhilan Feng. Mathematical Models in Epidemiology.

Vol. 69. Texts in Applied Mathematics. New York, NY: Springer New York, 2019.

[23] Centers for Disease Control and Prevention. Interim Guidance on Duration of Isolation and

Precautions for Adults with COVID-19. url: https://www.cdc.gov/coronavirus/2019-

ncov/hcp/duration-isolation.html.

[24] Steffen E. Eikenberry et al. “To mask or not to mask: Modeling the potential for face mask use

by the general public to curtail the COVID-19 pandemic”. In: Infectious Disease Modelling

5 (Jan. 2020), pp. 293–308.

[25] Giulia Giordano et al. “Modelling the COVID-19 epidemic and implementation of population-

wide interventions in Italy”. In: Nature Medicine 26.6 (June 2020), pp. 855–860.

[26] Li Zhang et al. “Optimal parameterization of COVID-19 epidemic models”. In: Atmospheric

and Oceanic Science Letters 14.4 (Dec. 2021), p. 100024.

[27] Kian Boon Law et al. “Tracking the early depleting transmission dynamics of COVID-19 with

a time-varying SIR model”. In: Scientific Reports 10.1 (Dec. 2020), pp. 1–11.

[28] Fadoua Balabdaoui and Dirk Mohr. “Age-stratified discrete compartment model of the COVID-

19 epidemic with application to Switzerland”. In: Scientific Reports 10.1 (Dec. 2020), pp. 1–

12.

[29] Rinaldo M. Colombo et al. “An age and space structured SIR model describing the Covid-19

pandemic”. In: Journal of Mathematics in Industry 10.1 (Dec. 2020), pp. 1–20.
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