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ABSTRACT

This dissertation considers fixed point theorems for set
valued functions, F : X -~ X. The first part of this disserta-
tion extends the class of those set valued functions which in-
duce homomorphisms h : Hy (X) - H, (X) that satisfy the Lefschetz
Fixed Point Theorem. An example is given of a collection of
set valued maps on a 2-cell which are fixed point free. More-
over, the class of spaces X for which F_induces h : H, (X) > H, (X)
is extended from polyhedra to ANR's and NRG's.

It is also shown that the inverse Timit of spaces with the
fixed point property for set valued maps has the fixed point
property.

Finally, the notion of contractive set valued functions

is introduced and investigated for fixed point theorems.
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CHAPTER 1

Introduction

For each x € X, let F(x) be a closed subset of Y. Then

F: X~>Y is called a set valued function on X to Y. For any

A CY, define Frl (A) = {x | F(xX) YA F ¢}. Then if for every
closed subset K (open subset 0) Frl (K) (F'1 (0) ) is closed

(open) in X, F is said to be upper semi-continuous, u.s.c. (lower

semi-continuous, 1.s.c.) respectively. A function F : X » Y

that is both u.s.c. and 1.s.c. is called a continuous set valued
function, or simply a set valued map. Finally, let F : X > X.

Then x in X is a fixed point of F if x e F(x).

This dissertation investigates fixed point theorems for
set valued functions, F : X > Y. Making use of the Vietoris
Theorem, Eilenberg and‘Montgomehy[S] proved a fixed point theorem
for u.s.c. F : X > X where for each x ¢ X, F(x) is acyclic and
X is a compact metric ANR. Later Barratt 0'Neill1[8] considered
the case where F(x) consists of one or n acyclic components and
. X a polyhedron. With the further restriction to set valued maps
F: X~>X, 0'Neill proved not only fixed point theorems, but also
that F induces a nontrivial homomorphism, h, : H.(X) - Hg(X)

such that h, satisfies the Lefschetz Fixed Point Theorem.



The first part of this dissertation (Chaﬁter 2) extends

. the class of set valued functions which have fixed points and
induce homomorphisms on the homology groups. In particular,

a set valued function based on recent papersof D. G. Bourgin[3a,3b]
is shown to have many of the properties of a single valued map.
An example is given which shows that in general, some restriction
on the number of acyclic components of F(x) must be made; other-
wise, F could be fixed point free. However, it is shown that
with additional hypotheses on the map F : X - X, F(x) can have

1, 2, ..., n acyclic components and still behave like the func-
tions considered by 0'Neill. In the final part of Chapter 2,

the results are extended to compact ANR's and more generally to

NRd's, spaces treated in an earlier paper by D. G. Bourgin[1].

In Chapter 3 it is shown that under certain conditions, the
inverse limit of spaces having the fixed point property also has
the fixed point property. This is not true in the case of single

valued functions.

In the final chapter, the notion of contractive set valued
functions is introduced. Here it is shown that contractive
set valued functions indeed have a fixed point[4] although nothing
can be said about the uniqueness of such points. Likewise the
notion of a condensing function as introduced by I. N. Sadovskii[1l0l

is extended to the set valued case to obtain a fixed point theorem.



Chapter 4 is concluded by two theorems comparing fixed point
theorems for single valued maps versus set valued maps. In the
first case, it is shown that there can be no contractive single
valued map of a compact metric space onto itself. A simple
example shows this to be otherwise for the set valued maps.

In the second case, a theorem for unique fixed points is found

to be true for both types of maps.

Unless stated otherwise, it is assumed throughout that:

(a) A1l spaces are compact metric.

(b) Only Cech homology over the field of rational
numbers is used, i.e. H, (X) = H, (X, Q).

(c) Invariably, u.s.c. and 1.s.c. will be used for
upper semi-continuous and lower semi-continuous

respectively.



CHAPTER 2

Set Valued Functions that satisfy the Lefschetz Fixed Point Theorem

Definition 2.1. Given the set valued functions'{Fi}? =1 F
on X -+ Y, then {Fi}i + F iff for every ¢ > 0, there is an
n(e) such that for all n 2 n(e), Fn(x)c:NE(F(x)) for all

X in X. The set Ne(F(x)) is the open ¢ neighborhood about F(x).

Proposition 2.2. A set valued function F : X - Y is u.s.c. iff
for every open NE(F(x)), there is a & > 0 such that
FINS(x)) € N_(F(x)).

Proposition 2.3. Let F : X > Y be a set valued function. Then
F is u.s.c. iff r(F) is closed in X x Y where r(F) is the graph
of Fin X x Y.

Definition 2.4a. [8]. Let A,B be chain groups with supports in
X, Y respectively, and let € > 0. A chain map ¢:A » B is accurate
with respect to F : X > Y provided |¢(a)| < F(|a]) for each a

in A.

Definition 2.4b. [8]. Let ¢ : A>B, F: X+ Y as above. For
each x, define e(x) = {x' | d(x,x') 2¢}. Then ¢ : A > B



is e-accurate with respect to F, provided ¢ is accurate with

respect to eFe : X - Y.

Definition 2.4c. [8]. A homomorphism h: H,(X) - H,(Y) is an

induced homomorphism of a set valued function F : X > Y, if for

every € > 0, there is a chain map ¢ : C,(X) » C.(Y) such that
¢ is e-accurate with respect to F and ¢, = h. Moreover,

hO : HO(X) -> HO(Y) is a non-zero homomorphism.

Theorem 2.5. Let F : X > X be u.s.c. and 1ét {Fi}? =1 F

where each Fi is ﬁ.s.c. and has a fixed point X; in X. Then

(a) F has a fixed point.

Moreover, suppose each Fi induces a hi : H (X) > H.(X); then

(b) F dinduces an h : H,(X) > H,(X), provided H,(X) is

finitely generated.

Proof

(a) The sequence {x,}, = 7 contains a subsequence {xnj}j =]

that converges to a point x in X.

Claim: The point X ¢ F(x). Suppose not. Then d(x,F(x)) = n> 0.



Let € = n/4. Since F is u.s.c. there is a 6§ > 0 such that

§ < ¢ and F(Na(i)) C NE(F(R)). There is a j, such that for

all j = Jo» Fn.(x)¢: NE(F(x)) for all x and xn.'e NG(R).
J J

Let io = njo. Then x1.o € Fio(xio) C NE(F(xiO))c: NZs(F(X))'

Therefore d(>'<,i » F(X)) < 2¢ < n/2.
0 .
Since d(i,xi ) <6 < n/4 implies d(Xx,F(x)) < n, there is a

0
contradiction. Thus X is in F(X).

(b) By hypothesis the set of homomorphisms of H,(X) - H.(X)
is a finite dimensional vector space, L. Let A(e) be the collection

of h in L that preserve the Kronecker index on HO(X) -+ HO(X)

and are induced by an e-accurate chain map ¢:C(X) - C(X).
Claim: The set A(e) is not empty. For let no be such that for

>

all n = ngys Fn(x) C N€/4(F(x)) for all x. Now FnO induces

a hno : Ho(X) » H.(X). Thus there is a ¢: C,(X) » Ci(X)

such that [¢(a)] < ﬁ.Fno-ﬁ(lal) c 5 F 3 (la]) ceFe (a])

for all a in C,(X).



Now ¢, =h_ => h_ e Ae).
* g o

Claim: l:loA(e) + ¢ , sincen<e = A(n)c A(e) and A(e) is a

variety. (See Bourgin(2], p. 126) Let he éloA(e) => h : H (X) »

H (X) is an induced homomorphism of F : X » X.

Lemma 2.6.[8]. Let X be a compact polyhedron, F : X » X
an upper semi-continuous set valued function. If h-is an induced
homology homomorphism of F and the Lefschetz number L(h) = z(-1)9

trace hq is not zero, then F has a fixed point.

Theorem 2.7.[8]. Let F be a set valued self-map of a compact
polyhedron X such that if x € X, F(x) is homologically trivial
or consists of n homologically trivial components. Then F has a
nontrivial homomorphism h such that if L(h) # 0, F has a fixed
point. If, further, X is homologically trivial, then F has a

fixed point.

Corollary 2.8 Let X be a po]yhedron:'{Fi} + F on X + X where

each Fi : X+ X is a map having‘l or n, acyclic components for

each x, .and F is u.s.c. Then F induces

h : H, (X) > H, (X) >1f L(h) # 0, then F has a fixed point.



Proof This'follows from Theorem 2.7 and Theorem 2.5.

Theorem 2.9. [5]. Let X be a compact metric ANR. Suppose
Suppose F : X+ X is a u. s. c¢. set valued function such’
that for each x, F(x) is acyclic. Then there is induced

a nontrivial homomorphism h, on H,(X) -+ H,(X) such that

if L(h,) # 0, then F has a fixed point.

As an application of what has been said, let X.be a compact
metric ANR and F : X > X a u.s.c. set valued function such that
for every ¢ >0, there is a neighborhood N(x) about each x in X
such that for all but a finite number of points in N(x), F(N(x))
is contained in an open ball of radius e. (This function is
motivated by recent papers of D.G.Bourgin [3a,3b].) From Theorem
2.10 to the proof of Theorem 2.13 inclusive the spaces X,Y are -

assumed to be compact metric ANR's.

Theorem 2.10. Let F : X »~ X be defined as above. Then F induces

a sequence of functions'an}: =1 F on X to X and homomorphism§
{hn}n = 1
fixed point.

[e.]

H, (X) = Hy(X) such that L(hi) # 0 dmplies Fs has a



Proof a) It can be assumed that X is contained in some open
subset U of a Hilbert cube where X is a retract of U;i.e.,

v : U~ X is a retraction map. Moreover it can be assumed that
there is an n > 0 such that X is covered by a family of open convex
balls of radius w and contained in U. Let § be the Lebesque

number for this covering. Choose € where 0 < € < %§. Then for
each x, there is an N(x) such that except for a finite number of
points in N{x), F(N(x)) is contained in an open convex ball of

radius < ¢ . This is by the assumptign of the theorem.

b) Let'{N(xi) | i=1,..., r} be a finite cover of "

X and ]et’{Bi | i =1,..., r} be the corresponding set of open
balls of radius < e . Also let Y ='{yj | 3 =1,...,s} denote
the set of points 3 F(yj) cannot be contained in any of the

Bi's. Suppose y; e N(xl) say, then since F is u.s.c., F(yl)IW Bl $ 6.

c) Define F, : X~ X by:

1
E(x) = closed convex hull of F(x) for all x e X - Y.
F(y) = closed convex hull of F(y)N Ej where y 1is in N(xj).

If y is in several such N(xj), choose the smallest such j.

A11 this is possible since each Ej is contained in a convex

open set of the cover of X.
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Now let

r F(y) respectively where
r : U=+ X is the retraction map on U.

d) Claim: Fi i X~ X is u.s.c. and Fl(x) is acyclic
for all x ¢ X. That Fl(x) is acyclic follows from the fact that
l;(x) is. Now let Fl(x)c Vopen. For xe X-Y, F(x)c Fl(x)c V.

Thus E(x) C r'l(v) and l?(x) convex implies J an open convex set
W about I~=(x) SF(x)cWe r'l(V). Since F is u.s.c. 3 open 0(x)
such that F(0(x)) < W implies E(O(x)) cWC r-l(V) jmplies

F (0(x)) € V.

For x € Y, assume X = 2 and lz(yl) = closed convex hull
of F(yl)/) —Bl' As above, there is W > l;(yl)c W< r—l(v).
Now 3J a neighborhood N(F(yl)) > N(F(yl))f) Elc W. Take
O(yl) c N(xl) 5 F(O(yl)) C N(F(yl)). Consider

0,(y;) = 0(yy) = "{yqs--vs¥g} « Then

FO,(y))) €W = F(0,(y;)) ¢ W er H(y)
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Thus F](O](y])) is contained in V.

e) By Theorem 2.9 F induces a homomorphism h. on H,(X)

1
so that if L(h]) #0, F] has a fixed point.

f) As in the previous, let eq = 1/2 €n1 where ey = e-

This gives the sequence {Fn}: =1 X > X and homomorphisms

[+ -]

{hn}n =1

a fixed point.

: He (X) > H*gx) such that L(hi) # 0 implies F, has '
By definition {Fr;} > F.

Corollary 2.11. Let F : X -+ X be a u.s.c. set valued function
such that for every e > 0, there i; a néighborhood N(x) about
each x € X such that for all but a finite number of points in
N(x), F(N(x)) is contained in a open ball of radius e. Then F
induces h : H,(X) > H,(X) that satisfies the Lefschetz Fixed

Point Theorem.

Proof This follows from the preceeding theorem and Theorem 2.5.
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In the following, it will be shown that the class of u.s.c.
functions F : X > Y described above are homotopic to a single

valued map in a certain sense.

Definition 2.12. Let F : X = Y be as above.
Then H : X x I ~ Y is a homotopy if H(x,0) = F(x) for all x,
H(x,1)} = f(x), a single valued function on X » Y, and for fixed t

H(x,t) is u.s.c. and satisfies the same conditions as F.

Theorem 2.13. Let F : X » Y. Then 3 F' : X - Y such that
F'(x) = F(x) for all but a finite number of x and F'(x) € F(x)
otherwise. Then there is a homotopy H : X x I - Y such that

H(x,0) = F'(x) and H(x,1) = f(x), a single valued map on X -~ Y.
Lemma 2.13a. Y <€ U open is contained in a Banach space.

Proof Since Y € U an open subset of a Hilbert cube, Q, and
since Q is a metrisable space, it can be embedded in a Banach

Space, B.

Lemma 2.13b. Llet Y €U B and let a be a finite convex cover
of Y C U. Then there is F' : X - Y such that F'(x) = F(x)

for all but a finite number of x and F'(x) € F(x) otherwise.
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Proof Since Y € U, there is a finite cover a of F(X) < U.

Let 6 be the Lebesgue number for this cover and 0 < e < %6.

Then as in Theorem 2.10, one has {N(x;) | i = 1,...,r} and

'{Bi | i =1,...,r} the corresponding set of open balls of radius
less than e. Let o = {B,}. Let X, ='{yj | j = 1,...,s} denote
the set of points such that F(yj) cannot be contained in any of
the Bi's. Suppose Yy e N(Xl) say, then since F is u.s.c.,

F(yl)/1 B, 9. If yq is in several Bj's, choose the smallest

such j. -
Define F' : X -+ Y by:
F'(x)
F*(x)

F(x) for x e X - Xy 3

F(x)N Bj for x e X; .

That F' is u.s.c. is proved in the same way as in Theorem 2.10.

Lemma 2.13c. F, F', YC U, o as above. Then there is a single
valued function ¢ : X = U such that for each x, ¢{(x), F'(x)

are in the same Ei € a .

Proof Let P = {p} be a partition of the identity based on
'{N(xi)} such that E p(x) = 1 and each p = 0 outside some N(xi).

For each p, suppose p = 0 on X - N(xi). Then let y(p) € B;

where F' (N(xi)‘) c §1..



14

Define ¢ : X > U by
o(x) = E p(x) y(p). Since the Ei's are convex, the function

¢ satisfies the lemma.

Lemma 2.13d. Let F, F', X, U, a, ¢ be as above. Then there
is a homotopy H' : X x I » U 3 H'(x,0) = F'(x) and
H'(x,1) = ¢(x).

Proof For each x, ¢(x) and F'(x) are in the same convex ball,
B, say. For eachy e F'(x), the sfraight Tine segment
(t o(x)+ (1-t)y | teb,} <B.

Define H' : X x I - U by

Hx,t) = Ut o(x) + (1-1t)y | tel0,1]} .
yeF' (x)

Proof of Theorem 2.13. Let r : U > Y be the retraction map onto

Y. Then define H = rH', f = r 9.

Remark The class of u.s.c. set valued functions considered from
2.10 to 2.13 inclusive, satisfy the Lefschetz Fixed Point Theorem
and in the sense above, are homotopic to a single valued mép.

Later it will be shown that if F induces h, : H, (X) > H, (Y)



and if H : X x I »Y as in 2.12, then h, = f, where

f : X->Y is a single valued map homotopic to F.

In the next part of this chapter a set valued map F : X » X
is presented so that F(x) consists of 1, 2, or 3 points and F
is fixed point free. Since X is a two cell, F cannot induce
an h, : H, (X) = H, (Y) although F can be shown to be homotopic
to the identity. ' )

A

EXAMPLE 2.14. Let X be the 2-cell, {(r,e) | 0 %

n
1

050 Son.
It is possible to define a continuous set valued map, F : X > X
such that:
a) card F(x) e {n, n+ 1, n + 2} for any fixed n and
all x e X;
b) F has no fixed point.
Here the case for n = 1 is treated in detail and the direction

for treating general n will be indicated.

Definition of F : X > X

1. On the lines {(r,8) | O 2y

Fx) = {4, 5, (4, Ln), (4, - PI.

See Figure 1.
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2. F will be defined on the top section (I) of X; i.e.,

on {(r,8) | 05 r%ag, %—§ 8 = %-n}. It can be similarly defined
on the other two sections of X.
See Figure 2.
a) {(r0) |05r%1, 20520
i) Frn2a) = ¢, Ln-% w), (4,5 -Lr),
(4, -F+3r)} foro 2 .
See Figure 3.
ii) For-% 2g% T F(r,e) =.F(r, %—n)
ii1) For3 w2 %2m,
(4,%'"-4?(%11-6))
- T S
F(r, 0) = (4, 3 br (g m-0))
n 5
(4,'€+4Y‘(6ﬂ-e))
; TS,
iv) For g=0 =7



17

F(r, ) = (4, 5 - 4ar(e - F))
(4, - Z+4r(e - T))
R b)'{(rse)|1§r§4,§née§§-ﬂ}
4 6
F(r’ e) = F(l, e).
c) {(r, 6) | 13 % 2and%§e§%“}
- mTLg%3
i) Forz =6 =7

(4, 2n-%(r-1) (F7- 0)

F(r, 8) =

See Figure 4.

b

HA

) T T
i) Forg=e 27
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(4, Lo - ar(e - F))

oA

F(r, 0) = 4 (4, -+ 4r(o - ¢))

o=

. - I
(4, 7 - 4(2 - r) (o - D).
See Figure 5.

d) {(r,e8) | 25rZ3,

A

i) For

ISE

(495""'"

wiro
~~
£l w
=
'
[an]
S
S

F(r, 8) =

(4,

+
wir
Pam]

3-r‘)(%1r-e)

A

ESE

#1) For%

F(r, 0) = ¢ (4,

See Figure 6.
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) {(r,e8) [35rg,T2053
i) Forz20% %—n
(4, 37 -5 (2a-0))
F(rs 6) =
(4, )
P T < < T
ii) For Ee =7,
(4, )
Firy 0) = { (4, Ln-8(s-1)
’ 3 3

Continuity of F : X > X

We make use of an equivalent definition of continuity (for

compact, Hausdorff spaces) given by W. Strothers.[9]

Definition 2.15. [9] A point y € Y is said to be in the

cofinal 1imit (residual 1imit) of a sequence of sets '{Yd};

indexed by a directed set D, if whenever V is an open set

containing y there is a cofinal subset (residual subset)
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A € C such that VnYa+¢foraH aceA.

Proposition 2.16. A set valued function G : Y - Y where Y
is a compact Hausdorff space is continuous iff for eveny'{yn}—>y e Y,

F(y) = cofinal limit '{F(yn)} = presidual limit'{F(yn)}.
Theorem 2.17. F : X - X is a continuous set valued map.

Proof As it is constructed, F satisfies the statement of Prop-

osition 2.16.
Theorem 2.18. F : X = X has no fixed point.

Remark To define an F : X - X for general n, one need only
divide X into n + 2 sections. Then F is defined on Section 1,
making use of the two adjacent sections. Then one proceeds to

Section 2, .... See Figure 7 where A, B replace (4, %-w),

(4, - ) respectively.
6

Remark In [8] 0'Neill mentions that there are a series of unpublished
examples of self-maps F of a 2-cell that are without fixed points and
such that the number of points in F(x) occurs in a particular finite

set of integers.
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Figure 2

Figure 3

(1, 0)

(2, 0)

(3, 0)

m

)



23

Figure 4

Figure 5
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Figure 6

Figure 7
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In the previous example it was shown that if a set valued
map F : X = X is such that F(x) has more than 1 or n acyclic
components, then F need not have a fixed point. Moreover, this
function cannot induce a nontrivial homomorphism on the homology
groups.

However, it is possible that under certain conditions F(x),
for each x, may have 1, 2, ..., n acyclic components and still

induce a nontrivial homomorphism on the homology groups.

Definition 2.19. Let F : X -~ X be a set valued map. Let

Kj = {x : x e X and F(x) has 1 or j acyclic components}.

Theorem 2.20. Suppose Kl’ Kn’ Kn are nonempty polyhedra in X
and X = ﬁnl/ Kn. Then F : X » X induces a nontrivial homomorphism
h : H, (X) > H, (X) such that if L(h) ¥ O, then F has a fixed

point.

EXAMPLE. Consider the case X = K, v Ky -
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Lemna 2.20a. Consider the diagram

¢ G
A ' B
!
o :ﬂ,‘ B
ot
> W

(where Im ¢ < ker v and Im 9, < ker wl).
- of vector spaces over the rationals and linear transformations.

Then 3 ¥ : V + W such that both squares commute iff « : ker ¢ - ker N

and 8 : Im ¢ > Im wl

Proof of lemma. Straightforward.

Proof of the theorem

Let hy(m) ¢ Hy(K ) > Hy(X) and hy(n) : Hy(K ) > H(X) be the

nontrivial homomorphisms induced by F on Km’ Kn respectively.
Thus for every ¢ > 0, 3 ¢#(j) : C*(Kj) > Ci(X) e-ac;urate
with respect to F, and ¢,(j) =_h*(j) for j ; m,n. Consider
14 | by
0 » CylKy)— €, (K ) @ Calk F—— Cu(X) > 0
. . e .

| K 1
0+ CulX) —— Cu(X) >0

where 1#(m) : C*(Kl) - C*(Km) is the inclusion homomorphism
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Now Tet i, : Cu(K;) » Cu(K ) (£ C(K)) be defined by

iy(cu(Ky)) = (ig(m) cp(Kp)s - 14(n) ci(Ky)).
Also w#(c*(Km), c*(Kn)) = C*(Km) + c*(Kn)'

Thus ker Yy = Im i#.

Define a : Cy(K ) (£) CulK ) > Cu(X) by

a(Cy(Ky)s calK)) = noy(m) co(K)) + mpy(n) cu(K ).

Then o : ker w# +~ 0. For instance, .

Let vy e CO(Kl). Then since ¢#(m) i#(m) Vo = ™gs by combining °

terms it follows that

a(i#(m)vo, - 1#(n)v0)

n¢#(m) i#(m)v0 - m¢#(n) i#(n)v0

nmv0 - mnvy = 0.

By the lemma J

Y :.C*(X) + C,(X), which is e-accurate with respect to F since

¢#(n), ¢#(m) are, and Yo = nho(m) + mho(n) implies Yo is nontrivial.

Theorem 2.21. Let F : X » X and let K K2""’ Kn be po]yhedfa

l’
where X = K,V K;U... UK and in particular K; § ¢. Then F

induces a nontrivial homomorphism.
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Lemma 2.21a. Suppose X = Kpl/ qu/ K, where 1 < p <q<nand
nonempty. Then 3 a : Cy(k V k) (D) CulK) > ColX) in the

diagram that maps : ker by >0 e C,(X).

{ [

i v
0+ CylKy) — Clk U k) D CulK) —4, ¢, (X) + 0
‘!

7
v

0 » Cu(X) === C,(X)>0

Proof of Temma From the previous theorem there is the diagram:

-

Yy
p) @ C*(Kq) —, c*(va Kq) + 0

/ 'l

0 » Ci(X) Ce(X) =~ 0

i
0 ColKy) —E (K

where B8 : C*(Kp\/Kq) + C,.(X) exists from the first lemma.

Let j : C(Kl) -> C(Kle Kq) be the inclusion homomorphism and
consider the commutative diagrams:

CalKy)

S .
v

cf(Ip) ® c,.,(Kq)—‘l-».c,é([pu Ky) > 0

Cal(X) Ci(X)

where §(C(K1)) = (0, iz(C(Kl)) and j = ¢ S.
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Let v, be a O-chain in C*(Kl). Then B ¥ §(v0) = a §(v0) =

a(0,1,(vg)) = pe(q) i,(vg) = palvy).

Since K1 is a closed polyhedron in X, and since each ¢(j)
is allowable, 94(q) = ¢(q)d. Thus if e; = (vovl) is an

.. ~ ‘vl Oy _ =1 =0
elementary l-chain in C*(Kl), ¢(q) ey = o(q)(v: = v') = q{v: -v").

Thus ¢(q) e =g él in C,(X). Similarly for each elementary n-chain.

-

In like manner, Bj(eo) = pq(éo) in CO(X), Bj(en) = pg én € Cn(X).
Now define: o’ : C;(Kpl/‘Kq) (:)AC*(Kn) + C,(X) by
ol s (c*(KpL/Kq), c*(Kn)) - nB(c*(Kle Kq)) + pq¢(n)[c*(Kn)]

Let e, € CA(K Then

0 0 1)'
O‘l(j(eo)’ - 12(80)) = npqéo - pqnéo =0

Thus a : ker by > 0 by previous discussion.

Proof of Theorem 2.21. This follows by induction on Lemma

2.21a.

Theorem 2.22. Let X = K,V K, U...uK where K is not empty,

and F : X >~ X the set valued map that defines the Ki‘ Then F
induces a nontrivial homomorphism, h : H(X) » H(X) such that

if L(h).¥ 0, then F has a fixed point.

Proof This theorem follows from Theorem 2.21 and Lemma 2.6.



Extension of Spaces on which F : X »~ Y Induce Homomorphisms

and Satisfy the Lefschetz Fixed Point Theorem

Definition 2.23. [1]. Let'{xi, pji}' be an inverse system of
finite polyhedra ordered by inverse inclusion in some parallel-
otope P and r(p) : U~ X° is the retraction map.
Then X = E{Xi, pji}' = f\Xi is an NR, where there are maps th x¥ > x
for each i as well as inclusion maps ji X > Xi.
Thus i < j iff X3 < X' and
i

ry = r(j)r(i).

Lemma 2.24. Let X = /;\ Xi be an NR& as in the definition.

Let F : X > X satisfy Theorem 2.7. Then for each i, there is a
set valued map Fi : Xi > X1 that induces hlon’H*(XI) > L(hi) 30 => F!

has a fixed point, X;e

Proof Fi is defined from

X __EI_+ xi
ti l IJ1
X L. X where Fi = j1 F t' so that each F' satisfies

Theorem 2.7 and so induces hi : H*(X1) -+ H*(X1).
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Theorem 2.25. Llet X = /? Xi, Fi, hi, F be as above. Then:

(a) If t” r® = t°, there is induced h : Hy(X) » Hy(X)
. FAYT o ' ’ { " : - ‘
such that Lh = Lh® for o >

po'
(b) If moreover, for every covering a of X, there is p(a)
such that for all p > p(a), (x, t°(x)) € a x o, then L(h) 4 0

implies F has a fixed point.

H G
Lemma 2.25a. If X - Y - Z where H, G, are u.s.c. set valued
functions with induced homomorphisms hH’ hG respectively, then

hGhH is an induced homomorphism of GH.

Lemma 2.25b. Let H : Z x I -+ Y where Z, Y are compact po]yhédra,
and H(z, t) consists of 1 or n acyclic components for all z ¢ Z
and t in I. Then Hy, = How He(Z) = H(Y) where HO(Z) = H(Z,0),
and H(Z) = H(Z, 1).

Proof of Lemma 2.25b. H induces k, # O such that ky : H(Z x I) = H(Y).

let g; : Z>Zx I, 1=0,1be defined by g;(z) = (z,i) i = 0,1.

Then H g; = H;. Now gpu = g4 and thus Hg, = ke 9ox = KuGqx = Hl*.[6]

Corollary 2.25c. If G =K : Z -~ Wby the homotopy H: Z x 1+ W

in the lemma, then the induced homomorphisms

ke = gx & Hy(Z) +.H*(N).



Proof of Theorem 2.25.
To show there is an h : H(X) - H(X), it must be shown that the

diagram

p

HO®) — s H(xP)
p

u . Py
H(X™) _h H(X") commutes for u < p .

p p

(< T | SN ¥ W, g PEP WM sTs U P P P
Now t" r 0 t" implies F pu FFor 0 implies F p]Jl pu F
in the sense of Lemma 2.25b. By Corollary 2.25c,

p

h¥ pu*p = pu*p h°.  Thus the diagram commutes to give

h : H(X) = ku(xp).

That Lh = Lh® for all p > Py would be proven in exactly the same

manner as is done in [1] by making use of essential cycles.

The proof of (b) will follow a proof in Bourgin [1]. Assume

X ¢ F(X). Then there are open neighborhoods U, V of X, F(x)
respectively such that UNV = ¢ and F(U) ¢ V. Choose a cover
o of X such that St(St(X,a),a)< U. Select p so that

X, t° X € a X a.

(Here o x a or az will denote the set of Ai X Ai where Ai's

are in a.)
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For some v > »p, X, and X ays SAY» of a. Then X, t“xv € a2

implies t"xv e U. Thus VD Ft"(xv). But x e F”(xv) < V and
X, € U. Contradiction.

Thus x ¢ F(X).

Remark In this section it is possible that X is not a metric

space even though each X° is.
Theorem 2.26. Let P be a finite polyhedron; Y a compact metric

ANR. Let F : P - Y satisfy the statement of Theorem 2.7. Then

F induces a homomorphism h :.H*(P) + H.(Y).

Theorem 2.27. Let X = P x Q where P is a finite polyhedron, and

Q is a Hilbert cube. Let F : X~ X. Then F induces a homomorphism
(a) h : H (X) > H (X) such that
(b) L(h) ¥ O implies F has a fixed point.

Lemma 2.27a. Let F, P, Q, X be as in the theorem. Then there
is a family of u.s.c. functions{F;} : X - X such that

{Fi}i =1">Fo

L= |

] and

Proof Let Q = Qn X Rn where Qn =1
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(-
=

R, = T [T,71. Let Rg be the zero of R . Let
i=ntl ’ o '
Pi =P x Q% x;R? and n{‘: X ;'Pi the projection onto Pi'

Let ¢ > 0 be given. Then since F is u.s.c., there is a

§ > 0 so that F(Na(x)) C ¢/4 F(x). The compactness of X

’

implies there is\é GOISO that F(N6 (x)) € e/4 F(x): Since
0

Tim d(ni(x), Xx) - 0 uniformly, there is an io so that for all
oo -

>

iz 10’ ms F s (x) ¢ € F(x).

Let F'i = Fﬁi. Thus, {F'i} - F.

Lemma 2.27b. Let F, X, P, Q, Fi be as given above. Let F% = F"i

Then {F}} induces’ thy} : H(X) > H(X) and also h : H(X) > H(X).

Proof Let ji : Pi - X be an inclusion map. Then Fji : Pi-+X
induces an sy : H*(Pi) + He(X).  Let hiw = Siamix ° He (X) -+ H,(X)
where hi* is induced from the map Fji"i : X = X Since {Fji"i} + F
as in the previous lemma, a previous result implies F induces

h : H(X) -+ H(X)

Proof of theorem

(a) follows from the lemmas.

() miy hige @ Hu(Ps) > Hy(P).



Since Tigdsu = lix ¢ H*(Pi) +~ H (P ), and since

mox ¢ He(X) > He(P3) is an isomorphism where jiy = miy .

Thus with Trace h = trace “i*hji*’ Lh = L“i*hji*' But
L(h) £ O implies m:Fj; has a fixed point x; for each i.
Thus x; € ﬂ_iFj.i(X]-) = n_iFTr_iji(xi). Since .{T\’,iF'ﬂ'.i} -+ F by
a previous lemma, F has a fixed point.

Theorem 2.28. Let X be a compact metric ANR and F : X »~ X
as before.
Then F induces

(a) h : H(X) > H(X) such that if
(b) L(h) % 0, F has a fixed point.

Proof

(a) Let Z =P x Q such that

1
X— X
J \\v //7;
YA
commutes. Then Fr : Z - X is such that for all x, Fr(x) consists

of 1 or n acyclic components and thus induces t, : H(Z) - H(X).

Let h = t, . @ Hi(X) > Hy(X).
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(b) Let A, Bben xm, mx n matrices respectively. Then
Trace AB = Trace BA shows that Trace t,jx = Trace j,t,. Now
L(h) £ 0 => L(j*t*)'+ 0 where j,t, : H(Z) » H(Z). From the
previous iFr : Z > Z has a fixed point x. But x e iFr(x) =>

x e X and x € F(x).

Corollary 2.29. Let X be an ANR, {F;} > F : X > X where each
F; + X > X is a continuous set valued map such that F;(x) consists
of 1 or n acyclic components. Then if F is u.s.c., F induces an

(a) h : H{(X) > H(X) such that
(b) L(h) # 0 => F has a fixed point.
Corollary 2.30. Let {X°, pvp} " be an inverse system of ANR's

ordered by inverse inclusion. -Let X = /;\Xp be an NR6. Then

the results of Theorems 2.23 - 2.25 still follow.
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CHAPTER 3

Inverse Limits and the Fixed Point Property for Set Valued Maps

In this chapter, it is shown that the fixed point property
is invariant for inverse limits if the bonding maps aresur-
jections | This is not true for the single valued case.
Definition 3.1.

(a) Let covf.(x) be the cofinal family of finite open
covers of X.

(b) Let a, B € cov’ (X). Then a > B means

* .
a refines 8 and o > g means star refines g in the sense that

for every A e « , St(A,a) = VA" (where A' ¢ o and
A'NAF ¢)C B for some B ¢ 8 .
(c) If ae covl (X), 5= (A | Aeal.

A

Theorem 3.2. Let X = <L_{XA : pu ; D} be an inverse limit where

c(a) X, M are compact metric spaces;
“xeD

(b) puk : X* > X¥ are surjections;

(c) Each X* has the fixed point property for set valued maps.

Then if F : X > X is a set valued map, F has a fixed point.
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Qutline of the Proof

Step 1. Assume F has no fixed point. Then there is an
n
= 0 =
e, & such that ﬂ = {N_ (Xi) };o; such that Ne(xi)/7 N, F(xi) = ¢

and FNE(xi)C NGF(X'i)' Let°7z , €5 6 be denoted as 9?0, eg> 8o

respectively. Define e, < e/2n, etc., and take refinements

N >9Zn_1 >...>9] ; of diameters < ¢ .

Step 2. A sequence'{Fn}g : X > X is defined such that for

_ i - . . .
each n, F = L{Fy | D}~ where D is cofinal in D__; and

A

n G x* = x* is a set valued map and has a

D0 = D. Moreover, F

. A T S
fixed point x.. Let x = *l:{xn | p, s Dy}. Then

X € Fn(xn).

Step 3. For each x ¢ X, Fo(x)D Fl(x)D oD Fn(x)7

v 00
Thus by the finite intersection property, F(x) = 620 Fn(x) $ ¢

can be defined.

Step 4. Let {x }mj=f: {x,}. Let X be the limit point of
J

{x, } . Then x e F(X).
J

Step 5. - Show X € F(x). This contradicts the assumption in
Step 1. '
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Proof

Step 1. Assume for each x, x ¢ F(x). Then J eps 8 > 0,
n
= 0 £ .
‘9?0 = {Neo(xi)}].=1 e cov (X) such that Neo(xi)/W NaoF(xi) is
empty and F(N_ (x.)) <N, F(x.), i =1, ..., n,, and for each
80 1 50 i 0
x'" in N (x;), F(x;) €N (F(x')). These follow from the fact
€0 1 1 60/2 .
that F is both u.s.c. and 1.s.c. Now find covers YO”BO € covf(X)
* - U
such that Y9 > Bg > B > 970. Then 3 Mg € D, % € covf(X 0)

such that p;;(ao) > ¥g [6].

H
Define r X 0

ENPYURCS PR |
" + X by r‘uo(x ) = St(puo(x )s puo(éo)),

Then r is a set valued map.
0

(a) r, {x') is closed for each x'.
0

(b) Let U be open in X. Then r;l(U) = {z | ruo(z)/\ U ¥ ¢}
0

Suppose z & {Ag, +..s A} C oj. Then dv CAln coo VA such

that for any w e V, p;l(w)ﬂ U4 o . Thiswill follow from the
0

. Yo o
fact that p = : X » X ~ is a closed map.
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(c) Let C be closed in X. Then ral(c) = {z | v, (z)N C % ¢}.
0 0

Let z be a Timit point of r;l(c). Then '{zn} ~+ z such that
0

r, (z )N Cté . Asin (b) above, z can be assumed to be in
0

nyvy

VCAN ... NA.. Then 3 Ny such that n

r N0 => zn e V and

thus r (z.) = r (z). Therefore r'l(c) is closed.
UO n UO UO

u u H u
0 X 0 > X 0 FOO is continuous and has

Define F m Fr
AR ELELLN 0 “0

UO )

"o
a fixed point Xg -

‘ (a) Let D0 C D where D0 ={x | A >u } and is cofinal in

D. Then define Fy : X* > X" by
A AL A A s . . A
F0 —.nx Fr“op“O : X* » X" which has a fixed point, X9

CLeA L ivA AL - LW\, -
(b) {Foly . D X P Dyt > X" Dy} induces

F0 : L{XA H DO} > L{XA 5 DO}. Commutativity easily follows as
-+ -«

is obvious from the diagram:



41

Fo
R
u ' u
Pr 4 FS 1 P
-XA XA
A v
p .0 1
UO "uo Fo uo Pu
XY —— X
o] T
%o F Yo

Since X - L (x*

PR

3 DO}_ one can assume FO : X > X with fixed
. e
point Xg = {xo} .

Step 2. Let97]-> p;l(ao) where diam 971 < g/2 = £g and

Nel(x') € 92 1 = FNel(x')Cilmle(x'), for each x" in
N (x'), F(x")C Ny (F(x")), and N_ (x')N Ny F(x') = .
1 1/2 1 1

Again‘3 Y 61
1

*

- £, '
Y] > By > By >€Y1. Aso 3 uy € D0 and ay € COV (X *) such that

-1 | L L L |
pul(al) > ¥y Moreovef, r“l : X+ X and F1 c X T+ X

Mq o
with fixed point xll. Let D, = {de Do | A > ul}cofina1 in D.



Thus there is induced F1 : X > X with fixed point Xy

Claim Fl(x) (- Fo(x) for all x e X.

/

o .A . -
Let A e D;. Now Fl(x) = *L_{F1 PA(X) | Dy }.
S "1
incep =p P
0 Yo M
-1
-1 -1 M -1
puo (ao) pul Puo (ao) < 31 < pul (al)
r
"1

A(X

Then it can be shown that ry . N

- |
pul(.xl) < "o

1

42

where'xk =.pl(x).



A -1 A -1
Now r, p, “(x)) St(p“1p“1 (x,) Py, (ag))

1"
= st(plt (p, (x)), Py (og))
LS T "1
-1 -1
C St(puO p“o(x)’ puO(ao)) = r“o(p“O(X))
- A .
= ruopuo (xx). since
p lx Yepto M (x )=p tp (x)
Ul Ul Ul UO pl-lo 111 UO ppo

Then it follows that le(xk)<: FOA(XA) for all A e D;.

This gives Fl(x)<: Fo(x); and in particular Xy € Fl(x1)<:.Fo&1).

43
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-1 * -
In general, let %nﬂ > p”n (an) and Y1 > Bptl > Bht1 >07n+1'

As before, an FnJr1 : X > X is induced with fixed point Xn+1*

Since for every x, Fy(x)> Fi(x)2 ... D F ,;(x),

. <
X+ € Fi(xn+1)’ i = n+l.

o«

v .
Step 3. For each x € X, define F(x) = rQOFn(X) which is

non-empty by the finite intersection property.

Step 4. There is X 3 x e F(x). Now {x } contains a subsequence

v
'{xn } > x. Let d(x, F(X)) = 6'. Let n = 6'/8. There is an
j

v
n, such that for all n 2 ngs Fn(i) C Nn(F(i)). Assume {xnj} C Nn(i).

v
> -
Then for N5(n) = Ms Fn(xnj(n) ) < NnF(x). Then

X e F (x ) C F (x
i) "in) ") " Mi(n)

d(%, F(X))

). This implies

nA

d(x, Xp : )) + 0 + n —x— therefore X ¢ F(i).
jtn

Step 5. Xx e F(x). By assumption x ¢ F(X) and this implies d
A _pA(‘i) #»pAF(i). Let ‘ik = .pA()-() e Uy and 'pAF(i)C v >

Uu.N v, = 4. NowganANs (F(X))C V.. Letv> u
: n

A S oy nt1> A



Then X e .p;\’ -1(,U;\)’ p,(F(X)) C‘p;\’ -1(_\’;\)9?;‘_1(”?\) N .p;: -1(-V)\) = ¢.

' \ '

yA
PAV////ﬂ R\\\EA
XV X -
U
puv \\\\\9 z’//; "
ntl

Xun+1 -

Now r P (X )N
“nel MPpel VY €

(x') e 776

ntl ntl ’

Then Fr.  p° (X )CN

F(x') € N, F(X) where
LI L § 8

ntl n

§ > 28

. s . Vv - < v -1
o n+1- This implies F (X)) < p"N‘SnF(X) <Py (‘VA)

where p:pv =p,.

v
But in Step 4, it was shown that x e F(x) which shows that

- - - v -y~ v -1
X € Fn(x) for all n. Thus X, € Fn+1(xv)<: vaGnF(x)c:.pA (VA).

This contradicts the assumption in Step 1. Thus X e F(X).



CHAPTER 4

Contractive and Non-Expansive Set Valued Functions

Let (X, d) be a metric space with metric d. (X need not

i )
be compact.).

Definition 4.1. Let D(A, B) be the Hausdorff metric defined

on all closed and bounded subsets of X.

Theorem 4.2. Suppose (X, d) is a complete, metric space and
F : X > X where each F(x) is compact. Then if for every
(a, b) € X x X, D(F(a), F(b)) Sk d (a, b) where 0 < k < 1,

there is a £ € X such that ¢ ¢ F(g).

Proof Suppose F has no fixed point. Then for any x, let
d(F(x), x) = min d{y, x) = € > 0.

y e F(x)
Now F(x) compact implies 3 Xy € F(x) such that d(xl, X) = e.
By assumption D(F(xl), F(x)) £k e.

The compactness of F(xl) implies there is x, ¢ F(xl) so that

dlxys %,) € D(F(x)), Fx) Sk .

46



Now D(F(xzf; F(xl)) S8 .. In genéra] one finds
X4 € F(xn) so that
. s : < LN
d(xpqs X,) = DOF(x)s F(x._1)) 2 k° e

and )

<
D(F(xp41)> Fx)) = k d(x 415 )
Since {x }, is a Cauchy sequence,'{xn} + £ say.

Claim £ ¢ F(g). Suppose d(F(g), £ ) = min d(z, &) = ¢ > 0.
z e F(g)
Then 3 £' € F(¢g) where d(g, £') = «.

For each j there is Y5 in F(g) so that

d(x5p10 ¥347) = D(F(x;), F(€)) =k dlx5 )

Since d(xj, £ )>0as j+ e~ , implies 1im d(xj, F(g)) =0

Joeo

Thus £ = €' ¢ F(g).

Proposition 4.3. Let F : X » X where D(F(x), F(y)) < d(x, y)
for all x # y. Then this implies that F is a set valued map.

47
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Proof That F is u.s.c. is obvious. That F is l.s.c., assume

that Ix, z e F(x) and a sequence {y } + x where d(yn, x) <%

and for some open set V of z, F(yn) C X —V. However this con-
tradicts the assumption that

D(F(y,)s F(x)) < d(y . x) >0 as n >,

Theorem 4.4. Let (X, d) be a metric space and F : X -~ X such

that
(a) D(F(x), F(y)) < d(x, y) for all x % y;

(b) J x> X; € Fi(x) and

{Xi} > {x1. }>£ . Also {Xi} are such that
r

d(xy,q5 ;) 2 D(F(x,), F(x;_4)). Then £ e F(&).

Proof of Theorem. The following lemmas are needed.

D(F(x), Fly)).

Lemma 4.4a. Define o : X x X » reals by o(x, y)

Then ¢ is continuous on X x X.

Proof of lemma. Suppose o(x, y) = D(F(x), F(y)) Let

1]
(L]
.

Sn(e) be. an open n interval about ¢; ie.

I~
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Claim There is an open set U x V containing (x, y) such
that o(U x V)CSn(e). Let § < n/8 and NGF(x), NGF(y) be
open §-neighborhoods about F(x), F(y). Since F is u.s.c.,

there is a Uys V; open about x, y 2 F(U1)<: NSF(x) etc.

Let {Sa(xi)},'{sé(yj)} be a finite open cover of F(x),

F(y) respectively.

. . _ -1 _ -1
Then since F is 1.s.c. U, = /?\ F Ss(xi)’ v, = (;) F Ss(yj)

are open neighborhoods of x, y respectively. Let U = Ulf\ U2
and V = V1/7 V2. Then for any u € U, o(u, x) =

D(F(u), F(x)) < 26.
Similarly for any v ¢ V, o(y, v) < 26. To show this, Tet
T U1/1 Uy. Thus u e Uy implies F(u)< NG(F(x)). Also

uedl,= /)F'lsd(xi) jmplies F(x) C NZGF(U) since u' ¢ F(u) =»

u' e Sé(xl) say, and Sé(xl)ci 526(u|)' Here as elsewhere Sza(u')

means the sphere of radius 26 about u'.

For any (u, v) e U x V,

D(F(u), F(v))

fIA

a(u, v) D(F(u), F(x)) + D(F(x), F(y)) + D(F(y), F(v))

26 + ¢ + 28 < g+ 1.

NA
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Also o(x, ¥) 2 olx, u) + olu, ¥) + olvs ¥) => e ~n < olu,y).
Thus ¢ = n < ofu, v) < e + ¢ for all (u, v) ¢ U x V.
Lemma 4.4b. F : X - Y a continuous set valued map implies that
if'{xn} + X, then F(x) is a cofinal and residual 1imit of

{F(x )}

Proof of Theorem  Assume d(g¢, F(g)) = & . Letn <~%— and

consider W = Sn(g) X Nn(F(g)). From the previous lemma there

is a U x V containing £ x F(g) and U x V< W such that
ofus, v) 2 ad(u, v), 0 <a <1 forall (u, v) e U x V.

From the second lemma, it can be assumed that{xn_}:=1<: U, and
i

{F(xni)}i=1<: V. Thus

D(F(an), F(an+1)) éad(xn13 xn1+1)°

R b
By assumption d(xn1+1, xn1+2) = D(F(an), F(an+1))

nA

Similarly d(x_ ., x ) = D(F(x_ _,), F(x_ _.))<d{x _,, x _.).
n,-1> "n, no-2 n,-1 ny=2° “n,-1

D(F(x )» F(x, ,1)) Sadix , x ..) <o2dlx. , x. ..)
_%2 n,+1 Ny “n,+l ng® *no+l



Hu, )

This gives d(xn +1° %y +2) < uzd(Xn > Xq +1) and
2 2 1 1
I

2
d{x_, x ) < a“d(x_ , x ).
ng n3+1 nq n1+1

In general d(xn . X ) < ar'ld(xn

) > X +1) >0asr-ow,

2 1

/

+
n. 1

This contradicts the assumption that'{xn }< U and
.i

| A [

(F(x, )y v where U x V&S _(£) x N_(F()).
i n n

! i

51

As a corollary to what has been said, let X =L {XA, pux, D}~

-

be the inverse 1limit of compact metric spaces, XA, with metric
. Suppose there is a u.s.c. set valued function F : X » X
such that for each A e D, the function

A 1

A =p* Fpr 7t ¥t 5 X} satisfies for each

K x yx e Xt xx* -2

-DX(FA(XA), Fx(yk)) < dx(xx, yx) where D* is the Hausdorff metric

induced by d*.

A L=

Theorem 4.5. Let F: X->X=1L {X*}

<~
be as stated above. Then F has a fixed point.



Proof By the previous theorem for each A, F has a nonempty
set of fixed points YA<:-XA. Since each YA s closed and so
compact, and since {Y*, puA | Y}~ is an inverse system

Y = L{YA} is not empty.

<

Claim Fory e Y, y € F(y). Suppose not. Then for some u ¢ D,

y" 4 p;F(y). Let U", V¥ be disjoint open neighborhoods of
¥, qu(y) respectively. Also let U, V be disjoint open
neighborhoods of y, F(y) respectively such that F(U) < V and
p (WU, p (V)< VH.

Byl6] T o> u, alo) e cov' (X°) such that p_ "H(alo))
refines a = {U, V, X -{y} V {F(y)}}.

Let y° = pc(y) e Ae alog). Then

p, MR € U= p T1°)c U, Then

-1, 0 M
pFp, “lcp VeV
o -1 -1, 0 o=1/yu
Also p pFp, e, (V).
- - - -1
Now y° e p,F p, h () e p,’ Thp F a0 @R TTHVY).

But y° P pET(IL p—

Therefore y ¢ F(y).



I

Remark In the case of contractive set valued maps,
nothing can be said about the uniqueness of the fixed

point of the map F : X » X.
Example Let X be the positive reals, R,

Let F : R' + R" be defined by F(x) = [4%, ¥+ % x] . The

Ny

F is a contractive, set valued map where D(F(xl), F(xé)) =

% | x; - x, | . Then every point on the interval [%, %] fis
fixed point of F.
Y
/+/
37 d
e
// ‘ i F(Xl)
| i
‘ | ! 1
—
/
- X
’ X,

a
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In[10] B. N. Sadovskii introduced the notion of a
condensing operator from a Banach space B to a Banach
space Y. This notion will be applied to set valued

functions.

Definition 4.6. Let Ac B and A bounded in B.
Q(A) = { € | A has a finite e-net}.
Then x(A) = inf Q(A). e

Definition 4.7. A set valued function F : B+ Y is a
condensing operator if for every bounded subset A C B,
x(F(A)) = x(A) and if x(A) > 0, then x(F(A)) < x(A).

Proposition 4.8. Let F : B >~ Y be a condensing operator.

Then F(x) is compact.

Theorem 4.9. Let T be a closed and bounded convex subset

of B. Let F : T~ T be a set valued condensing map such
that for each x ¢ T, F(x) is a convéx subset of T. (In

the case that B is a separable Banach space F(x) may consist

of 1orn acyclic'components.) Then F has a fixed point.

Lemma 4.9a. If co(A) is the closed convex hull of the set A,

thenx(co(A)) = x(A).
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Proof of the lemma. This is proven in[10]. There it is

shown that Q(A) < Q(co(A)).

(o
Lemma 4.9b. Under the conditions of the theorem there is a

nonempty compact subset K T which satisfies F(K) = K.

Proof of Lemma For any x ¢ T, let M = éga F'(x) which is

bounded since T is. Let M1 = F(M) and since M - M1 is x or
is the empty set, it follows that X(Ml) = x(M) = 0. Thus

M, M; are compact. Now let K= {y | y is a limit point of M}.
Claim: K = F(K).

(a) Let y ¢ K. Then there is a sequence {x }:_
nk "1

n -1
such that 1im x_ =y. Let z e F k (x) where

x ¢ F(z ). Let {z.. ,} be a convergent subsequence of
Ny el nel

{z } where 1im z_, , =w. Since F is u.s.c., this implies
nk—l nk-l

y e F(w) or y e F(K).

(b) Lety e F(K). Then this implies there is a sequence

such that Tim X, =12 and y ¢ F(z). But since M is compact
k
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and Hausdorff, F(z) = cofinal limit (F(xn }) = residual
. : k .
Timit F(x. ). Thus y e K.
Nk

Lemma 4.9c. There is a compact, convex subset X< T

such that X = co f(X).

)

Proof of Lemma Let F be a collection of subsets X'_of T such

that X' is closed and convex, F(X') €X' and K< X'. Let F
be ordered by inverse inclusion. By Zorn's Lemma,'gfhas.a‘sma11est
element, X. |

Now F(X) € X and since X is minimal co F(X) = X.

Proof of Theorem 4.9. By the lemmas x(X) = x(co (F(X))) = x(F (X)),

it follows that X is a compact convex subset of T so that F : X + X
has a fixed point by a Theorem of Kakutani[5] or in the second

case by Theorem 2.28. In the latter case X is a compact ANR.

Another difference between single-valued and set valued
maps of the simplest type can be brought out in the following

theorem.

‘Theorem 4.10. Let f : X > X be a single-valued map of a compact

metric space, X onto itself, such that for each



<

X, x' € X 3 d(x, x') < e, then d(f(x), f(x')) = d(x, x').

Then there can be no pair of points X1s Xp 3 d(f(xl), f(xz)) <

d(xl, XZ)'

Before proving this theorem a counterexamp]e for the set
valued case can be given where the Hausdorff metric D replaces

d. Thus Jet X = [0, 1] and F : X =+ X defined by

F(x) = {%x, % + %x} . Then
D(F(x), F(x')) <% | x - x' | and the graph of F, I'(F) is

given by

Proof of Theorem

(a) Suppose there is X{» X5 such that d(f(xl), f(xz)) <

d(xl, XZ)‘ Then the continuous function
o(x', y') = d(f(x'), f(y')) /d(x', y') defined on X x X - &
implies 3 eq > 0 such that



d(f(x'), f(y')) 2k d(x', y') for all

(x's y') e Sel(xl) X Ssl(xz) where

0 <k<1and Se (xi) is a closed ball of radius g about
1

(b) Choose an n < 1/8 min '{d(xl, x2), €, el}ﬁ

N
1=

Let‘{Sn(xi)}. 1 be an open irreducible cover for X. Also

since diameters do not increase,

fr(Sn(xi))<: Sn(fr(xi)), i=1, ..., N for all r, and

'{fr(sn(xi))}?=1 is a closed cover of X for all r.

(c) Case 1. Suppose X; = f(xi), i=1,2.

Let d(il, &1) =min {d(x', y') | (x', ¥') € Sn(xl) X Sn(xz)}

2

Futhermore d(fr(il), f”(yl)) =k’ d(il, il) and

(xg5 %p)- € £7(5, Tx)) x £7(5 000 € §(x7) xS (x;). Thus
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dix)s %) & d(xg, (%) + d(£7(x)), £1(F) + d(F(F), x,))

A

20+ K d(xp, §,)

A

3 n for large r ,

A

d(¥1’ Xo)- -

ase g, In general since'{fr(sn(xi))}':=l is a closed

cover of X for r = 1,2, ..,. there is a subsequence'{rn}:=1 <

'{r}:_l such that for a fixed x, and all p, .
= 10

r ———
Xq € f n(Sn(xiO))c: Sel(xl).

Similarly 3 a subsequence {rnj}j=1<: {rn}n=1
o L
N N J (S ix.
Xy X X € f (Sn<xi0)) x f (Sn(xil))(: Sel(xl) X Sel(xz)

where i, 3 iy and both are fixed for all j.

Let (X

r r
- n Y B n e A" - - _
1’ yl) e Tl (Sn(xio)) xf 1 (Sn(xil)) where d(xl, yl) =

min distance between these two compact sets.
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Then d(f(x;), (7)) = k (X, ¥;)-
d(F2(%,)s F25, ) Sk d(Rps §y)

letm,=r_ < r + 1. Then -
N, ny

d(f"(%,), (7)) 2K d(kps 5.

-

Thus as'j + = , let m. r = r +A1, and by assumption L
S T

1

I+l d(x;s §) > 0

A

mj‘_ ‘ mj _
d(f I(x), £ I(7,))
The proof is completed as for Case 1.

On the other hand, there is a type of theorem
that is common to both single-valued and set valued functions.
The proof for the set valued case is given, and the correspond-

ing one for the single-valued function is as easily proved.

Theorem 4.11. Suppose F : X - X is a u.s.c. set valued function
with a unique fixed point x. Then for every ¢ > 0, there is a

& > 0 such that d(x, x) > ¢ implies d(F(x), x) > § .



Proof Suppose for some ¢ > 0, there is a sequence

1A

{xn}n=1 so that d(x,xn) > ¢ but d(xn, F(x_))

1
n n’

Then the sequence {xn} contains a subsequence {xn }
J

converging to a y, say.

Claim y e F(y). Otherwise let d(y, F(y)) = n > 0.
Take n/2 neighborhoods U, V about y, F(y) respectively
such that F(U) V. However, by hypothesis

Tim d(xn, F(xn)) = 0. Contradiction. Thus y e F(y).
n-o

However, since X is unique, y = X ; but ¥ is outside an
e-neighborhood of x. This leads to another contradiction

and so implies the theorem.
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