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ABSTRACT

This dissertation considers fixed point theorems for set 

valued functions, F : X ■> X. The first part of this disserta­

tion extends the class of those set valued functions which in­

duce homomorphisms h : H* (X) H* (X) that satisfy the Lefschetz 

Fixed Point Theorem. An example is given of a collection of 

set valued maps on a 2-cell which are fixed point free. More­

over, the class of spaces X for which Fj'nduces h : H* (X) -> H* (X) 

is extended from polyhedra to ANR's and NR^'s.

It is also shown that the inverse limit of spaces with the 

fixed point property for set valued maps has the fixed point 

property.

Finally, the notion of contractive set valued functions 

is introduced and investigated for fixed point theorems.
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CHAPTER 1

Introduction

For each x e X, let F(x) be a closed subset of Y. Then 

F : X -> Y is called a set valued function on X to Y. For any 

A CY, define F~^ (A) = {x | F(x)/) A f <(>}. Then if'for every 

closed subset K (open subset 0) F-1 (K) (F-1 (0) ) is closed 

(open) in X, F is said to be upper semi-continuous, ,u.s_.£. (lower 

semi-continuous, 1_.£.£.) respectively. A function F : X Y 

that is both u_.s_.£. and is called a continuous set valued 
function, or simply a set valued map. Finally, let F : X -> X. 

Then x in X is a fixed point of F if x £ F(x).

This dissertation investigates fixed point theorems for 

set valued functions, F : X -> Y. Making use of the Vietoris 

Theorem, Eilenberg and Montgomery[5] proved a fixed point theorem 

for u.s.c. F : X X where for each x e X, F(x) is acyclic and 

X is a compact metric ANR. Later Barratt O’Neill[8] considered 

the case where F(x) consists of one or n acyclic components and 

X a polyhedron. With the further restriction to set valued maps 

F : X X, O'Neill proved not only fixed point theorems, but also 

that F induces a nontrivial homomorphism, h* : H*(X) -> H*(X) 

such that h* satisfies the Lefschetz Fixed Point Theorem.
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The first part of this dissertation (Chapter 2) extends 

the class of set valued functions which have fixed points and 

induce homomorphisms on the homology groups. In particular, 

a set valued function based on recent papers of D. G. Bourgin[3a,3b] 

is shown to have many of the properties of a single valued map. 

An example is given which shows that in general, some restriction 

on the number of acyclic components of F(x) must be made; other­

wise, F could be fixed point free. However, it is shown that 

with additional hypotheses on the map F : X -> X, F(x) can have 

1, 2, ..., n acyclic components and still behave like the func­

tions considered by O'Neill. In the final part of Chapter 2, 

the results are extended to compact ANR's and more generally to 

NRj's, spaces treated in an earlier paper by D. G. Bourginll].

In Chapter 3 it is shown that under certain conditions, the 

inverse limit of spaces having the fixed point property also has 

the fixed point property. This is not true in the case of single 

valued functions.

In the final chapter, the notion of contractive set valued 

functions is introduced. Here it is shown that contractive 

set valued functions indeed have a fixed point[4] although nothing 

can be said about the uniqueness of such points. Likewise the 

notion of a condensing function as introduced by I. N. Sadovskii[101 

is extended to the set valued case to obtain a fixed point theorem.
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Chapter 4 is concluded by two theorems comparing fixed point 

theorems for single valued maps versus set valued maps. In the 

first case, it is shown that there can be no contractive single 

valued map of a compact metric space onto itself. A simple 

example shows this to be otherwise for the set valued maps. 

In the second case, a theorem for unique fixed points is found 

to be true for both types of maps.

Unless stated otherwise, it is assumed throughout that:

(a) All spaces are compact metric.

(b) Only Cech homology over the field of rational 

numbers is used, i.e. H* (X) = H* (X, Q).

(c) Invariably, u.s.c. and l.s.c. will be used for 

upper semi-continuous and lower semi-continuous 

respectively.
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CHAPTER 2

Set Valued Functions that satisfy the Lefschetz Fixed Point Theorem

Definition 2.1. Given the set valued functions = F 

on X -> Y, then {Fpj -* F iff for every e > 0, there is an 

nCe) such that for all n = n(e), Fn(x)cN£(F(x)) for all 

x in X. The set N£(F(x)) is the open e neighborhood about F(x).

Proposition 2.2. A set valued function F : X -> Y is u.s.c. iff 

for every open N£(F(x)), there is a <5 > 0 such that 

F(N,(x)) CN (F(x)).O £

Proposition 2.3. Let F : X Y be a set valued function. Then

F is u.s.c. iff r(F) is closed in X x Y where r(F) is the graph 

of F in X x Y.

Definition 2.4a. [8]. Let A,B be chain groups with supports in

X, Y respectively, and let e > 0. A chain map 4>:A ■* B is accurate 

with respect to F : X -> Y provided |<j>(a)| C. F( |a|) for each a 

in A.

Definition 2.4b. [8]. Let <f> : A B, F : X -* Y as above. For 

each x, define e(x) = {x‘ | d(x,x') = e}. Then <j> : A B 
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is e-accurate with respect to F, provided 4, is accurate with 

respect to eFe : X -> Y.

Definition 2.4c. [8]. A homomorphism h: H*(X) -> H*(Y) is an 

induced homomorphism of a set valued function F : X -> Y, if for 

every e > 0, there is a chain map <f> : C*(X) ■* C*(Y) such that 

4 is e-accurate with respect to F and <|>* = h. Moreover, 

hQ : Hq(X) Hq(Y) is a non-zero homomorphism.

Theorem 2.5. Let F : X -> X be u.s.c. and let (F^)”  -j F 

where each F^ is u.s.c. and has a fixed point in X. Then

(a) F has a fixed point.

Moreover, suppose each F^ induces a h^ : H*(X) H*(X); then

(b) F induces an h : H*(X) ■* H*(X), provided H*(X) is 

finitely generated.

Proof

(a) The sequence {x }”  •. contains a subsequence {x j'T  •.
I I I I I II j 1

that converges to a point x in X.

Claim: The point x e F(x). Suppose not. Then d(x,F(x)) = n> 0.
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Let e = n/4. Since F is u.s.c. there is a 6 > 0 such that

6 < e and F(N6(x)) C N£(F(x)). There is a Jq such that for 

all J * Jq» Fn (x)c N£(F(x)) for all x and xn e N6(x).

Let iQ = n. . Then x. e F. (x. ) c N (F(x. )) <z N? (F(x)).U Jq 1q Iq £ 4£

Therefore d(x. , F(x)) < 2e < n/2.
10

Since d(x,x. ) < 6 < n/4 implies d(x,F(x)) < n, there is a 
0

contradiction. Thus x is in F(x).

(b) By hypothesis the set of homomorphisms of H*(X) H*(X)

is a finite dimensional vector space, L. Let A(s) be the collection 

of h in L that preserve the Kronecker index on Hg(X) -> Hq(X) 

and are induced by an £-accurate chain map <t>:C(X) -> C(X).

Claim: The set A(e) is not empty. For let Oq be such that for

all n = ng. Fn(x) C N /zl(F(x)) for all x. Now F n e/H- n induces

a : H*(x) H*(X). Thus there is a <j>: C*(X) -> C*(X)
n0

such that |<j>(a) | G |.F |( |a|) c | F | (|a|) cCeFe (|a|) 

for all a in C*(X).
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Now <j>* = h => hn e A(e). 
n0 n0

Claim: ^qA(e) f <|> , since n < e => A(n)C A(e) and A(e) is a 

variety. (See BourgintZl, p. 126) Let he {>qA(e) => h : H (X) -> 

H (X) is an induced homomorphism of F : X X.

Lemma 2.6.[8]. Let X be a compact polyhedron, F : X X 

an upper semi-continuous set valued function. If h is an induced 

homology homomorphism of F and the Lefschetz number L(h) = x(-l)^ 

trace h^ is not zero, then F has a fixed point.

Theorem 2.7.[8]. Let F be a set valued self-map of a compact 

polyhedron X such that if x e X, F(x) is homologically trivial 

or consists of n homologically trivial components. Then F has a 

nontrivial homomorphism h such that if L(h) f 0, F has a fixed 

point. If, further, X is homologically trivial, then F has a 

fixed point.

Corollary 2.8 Let X be a polyhedron: {F^} -> F on X -*■ X where 

each Fi : X ■> X is a map having 1 or n.. acyclic components for 

each x, and F is u.s.c. Then F induces

h : H* (X) -> H* (X) d if L(h) f 0, then F has a fixed point.
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Proof This follows from Theorem 2.7 and Theorem 2.5.

Theorem 2.9. [5]. Let X be a compact metric ANR. Suppose 

Suppose F : X + X is a u. s. c. set valued function such 

that for each x, F(x) is acyclic. Then there is induced 

a nontrivial homomorphism h* on H*(X) ■* H*(X) such that 

if L(h*) 4 0, then F has a fixed point.

As an application of what has been said, let X-be a compact 

metric ANR and F : X ■* X a u.s.c. set valued function such that 

for every e >0, there is a neighborhood N(x) about each x in X 

such that for all. but a finite number of points in N(x), F(N(x)) 

is contained in an open ball of radius e. (This function is 

motivated by recent papers of D.G.Bourgin [3a,3b].) From Theorem 

2.10 to the proof of Theorem 2.13 inclusive the spaces X,Y are 

assumed to be compact metric ANR's.

Theorem 2.10. Let F : X X be defined as above. Then F induces 

a sequence of functions (Fn}“  -j -> F on X to X and homomorphisms 

i :H.(X)-*H*(X) such that L(h.) / 0 implies F. has a 

fixed point.
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Proof a) It can be assumed that X is contained in some open 

subset U of a Hilbert cube where X is a retract of U;i.e., 

r : U -> X is a retraction map. Moreover it can be assumed that 

there is an n > 0 such that X is covered by a family of open convex 

balls of radius 7) and contained in U. Let 6 be the Lebesque 

number for this covering. Choose e where 0 < e < Then for 

each x, there is an N(x) such that except for a finite number of 

points in N(x), F(N(x)) is contained in an open convex ball of 

radius < e . This is by the assumption of the theorem.

b) Let (N(x^) | i = 1,..., r) be a finite cover of 

X and let [EL | i = 1  r} be the corresponding set of open

balls of radius < e . Also let Y = {y^ | j = l,...,s} denote

the set of points 5 F(yj) cannot be contained in any of the

*s. Suppose y^ e NCx^) say, then since F is u.s.c., FCy^)/) 4 <j>.

c) Define F^ : X -»■ X by:

F(x) = closed convex hull of F(x) for all x e X - Y.

F(y) = closed convex hull of F(y) fl where y is in N(xj).

If y is in several such N(Xj.), choose the smallest such j.

All this is possible since each Bj is contained in a convex 

open set of the cover of X.
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Now let

f r F(x) 

Fl(x) = j

V r F(y) respectively where

r : U -*■ X is the retraction map on U.

d) Claim: F^ : X X is u.s.c. and F^(x) is acyclic 

for all x e X. That F^(x) is acyclic follows from the fact that 

F(x) is. Now let F1(x)C V open. For x e X - Y, F(x) c F^(x) <2 V. 

Thus F(x) c r-1(V) and F(x) convex implies 3 an open convex set 

W about F(x) 3 F(x) G W c r”^(V). Since F is u.s.c. 3 open 0(x) 

such that F(0(x)) G W implies F(0(x)) C W C r-1(V) implies 

F^OCx))^ V.

For x e Y, assume x = y^ and F(y^) = closed convex hull 

of F(y^)/1 B1- As above, there is W 9 F(y^)c W G r ^(V).

Now 9 a neighborhood N(F(y1)) 3 N(F(y^))/O W. Take

OCyp G N(x1) 9 F(0(y1)) G NtF^)). Consider

01(y1) = 0(y1) - {y1........ y$} . Then

FCO^y^) G W => F^lcHCr’^V)



Thus F^(O^(y-j)) is contained in V.

e) By Theorem 2.9 F-j induces a homomorphism h^ on H*(X) 

so that if L(hp / 0, has a fixed point.

f) As in the previous, let en = 1/2 en_^ where e-j = e.

This gives the sequence : X -*• X and homomorphisms

{hn}” i : H* (X) -* H*(X) such that L(h-) / 0 implies F^ has 

a fixed point.

By definition {Fn> F.

Corollary 2.11. Let F : X -> X be a u.s.c. set valued function 

such that for every e > 0, there is a neighborhood N(x) about 

each x e X such that for all but a finite number of points in 

N(x), F(N(x)) is contained in a open ball of radius e. Then F 

induces h : H*(X) H*(X) that satisfies the Lefschetz Fixed

Point Theorem.

Proof This follows from the proceeding theorem and Theorem 2.5.
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In the following, it will be shown that the class of u.s.c. 

functions F : X -> Y described above are homotopic to a single 

valued map in a certain sense.

Definition 2.12. Let F : X Y be as above.

Then H : X x I -> Y is a homotopy if H(x,0) = F(x) for all x, 

H(x,l) = f(x), a single valued function on X -> Y, and for fixed t

H(x,t) is u.s.c. and satisfies the same conditions as F.

Theorem 2.13. Let F : X Y. Then 9 F* : X -> Y such that

F'(x) = F(x) for all but a finite number of x and F'(x) C F(x) 

otherwise. Then there is a homotopy H : X x I -> Y such that 

H(x,0) = F'(x) and H(x,l) = f(x), a single valued map on X -> Y.

Lemma 2.13a. Y C U open is contained in a Banach space.

Proof Since Y C U an open subset of a Hilbert cube, Q, and 

since Q is a metrisable space, it can be embedded in a Banach 

Space, B.

Lemma 2.13b. Let Y c u c. B and let a be a finite convex cover

of Y G U. Then there is F1 X -> Y such that F'(x) = F(x)

for all but a finite number of x and F'(x) G F(x) otherwise.
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Proof Since Y C U, there is a finite cover a of F(X) c U.

Let 6 be the Lebesgue number for this cover and 0 < e < ^6.

Then as in Theorem 2.10, one has {N(x^) | i = l,...,r} and 

{B.j | i = l,...,r} the corresponding set of open balls of radius 

less than e. Let a = {Bp. Let Xq = {y^ | j = l,...,s} denote 

the set of points such that F(yp cannot be contained in any of 

the B/s. Suppose y^ e NCx^) say, then since F is u.s.c., 

F(y^) B^ f (j). If y^ is in several Bj's, choose the" smallest 

such j.

Define F' : X -> Y by:

F1(x) = F(x) for x e X - Xq ;

F'(x) = F(x)A Bj for x e Xq .

That F' is u.s.c. is proved in the same way as in Theorem 2.10.

Lemma 2.13c. F, F', YCU, a as above. Then there is a single 

valued function <|> : X -> U such that for each x, <i>(x), F'(x) 

are in the same B^ e a .

Proof Let P = {p} be a partition of the identity based on 

{N(xpj such that £ p(x) = 1 and each p = 0 outside some N(x.).

For each p, suppose p = 0 on X - N(x1-). Then let y(p) e B^ 

where F*(N(x^))G B^.
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Define <j> : X -*■ U by

4>(x) = E p(x) y(p). Since the B.'s are convex, the function
P 1

<l> satisfies the lemma.

Lemma 2.13d. Let F, F1, X, U, a, <|> be as above. Then there 

is a homotopy H1 : X x I -> U 9 H'(x,0) = F'(x) and

H1 (x,l) = <f>(x).

Proof For each x, <f)(x) and F'(x) are in the same convex ball,

6^ say. For each y e F'(x), the straight line segment 

{t <|>(x) + (1 - t) y | t e [0,11} C Br

Define H1 : X x I + U by

H'(x,t) = VJ (t 4>(x) + (1 - t) y | t e[0,1]} . 
yeF-(x)

Proof of Theorem 2.13. Let r : U Y be the retraction map onto

Y. Then define H = rH', f = r <j>.

Remark The class of u.s.c. set valued functions considered from

2.10 to 2.13 inclusive, satisfy the Lefschetz Fixed Point Theorem 

and in the sense above, are homotopic to a single valued map.

Later it will be shown that if F induces h* : H* (X) ■* H* (Y) 
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and if H : X x I -> Y as in 2.12, then h* = f* where 

f : X -> Y is a single valued map homotopic to F.

In the next part of this chapter a set valued map F : X -* X 

is presented so that F(x) consists of 1, 2, or 3 points and F 

is fixed point free. Since X is a two cell, F cannot induce 

an h* : H* (X) -> H* (Y) although F can be shown to be homotopic 

to the identity.

EXAMPLE 2.14. Let X be the 2-cell, {(r,e) | 0 = r = 4, 

0 = 6 = 2ir .

It is possible to define a continuous set valued map, F : X -> X 

such that:

a) card F(x) e {n, n + 1, n + 2} for any fixed n and 

all x e X;

b) F has no fixed point.

Here the case for n = 1 is treated in detail and the direction 

for treating general n will be indicated.

Definition of F : X -> X

1. On the lines {(r,0) | 0 = r = 4, e = ir, ir} ,

F(x) = {(4, ^), (4, |T), (4, - 1)}. 

See Figure 1.
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2. F will be defined on the top section (I) of X; i.e.,

on {(r,0) | 0 = r = 4, = 6 = tt}. It can be similarly defined

on the other two sections of X.

See Figure 2.

a) {(r,6) | 0 = r = 1, j = 6 = |tt}.

i) F(r, it) = {(4, it - y tt), (4, r),

(4, - -g- + r)J for 0 = r = 1.

See Figure 3.

ii) For|= 6 =|tt, F(r,e) =.F(r, |ir).

... i - 3 < <5in) For ir = 9 = -g- tt.

f (4, -g- it - 4r ( g- it - e)) 

F(r, 6) = / (4, | - 4r ( jir - e))

(4, - -g- + 4r ( -g- ir - o)).

iv) Forpe^f
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r(4.^-4r(6 -|))

F(r, 0) = < (4, - 4r(e - | ))

I (4, - 4r(0 - | )).

b) {(r, 0) | 1 = r = 4, | tt = 0 = | tt } 

F(r, 0) = F(l, 0).

c) {(r, 0) | 1 = r = 2 and = 0 = it}.

■ \ r IT < „ < 31) For = 0 = tt

r(4, | it - | (r - 1) ( |tt - 0))

F(r, 0) = <

1(4, (r - 1) ( - 0))

See Figure 4.

Ti) Forp 0
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' ,(4. - 4r(e - |))

F(r, e) = < (4, - |+ 4r(e - j))

t (4, 4(2 - r) (6 - |)).

See Figure 5.

d) {(r, e) | 2 = r = 3, j = e = | k }

i) For | = e = | ir ,

/ (4, it - j ( |- ir - e))

F(r, e) = <

(4> f + "I ( 3 - r) ( it - e)

ii) Forpe^f

.(4, |)

F(r, e) = J (4, tt - 8 (e - |)

1(4, - |+4(4- r) (6-j))

See Figure 6.
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e) ' {(r, e) | 3 = r = 4, j = 0 = | tt}

• \ I- IT < <31) For 4 = e = 4 IT

f (4, 7T - 7T- 6))

F(r, e) = <

A (4, j)

ii) Forpe^J,

' (4, |)

F(r, e) - j (4, - 8(e - f))

(4, - f + (4 - r) (e - |)).

Continuity of F : X X

We make use of an equivalent definition of continuity (for 

compact, Hausdorff spaces) given by W. Strothers. [*?]

Definition 2.15. [3] A point y e Y is said to be in the 

cofinal limit (residual limit) of a sequence of sets (Y^}, 

indexed by a directed set D, if whenever V is an open set 

containing y there is a cofinal subset (residual subset)
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A C C such that V /I Yq f <#> for all a e A.

Proposition 2.16. A set valued function G : Y -> Y where Y

is a compact Hausdorff space is continuous iff for every {ynJ->y e Y, 

F(y) = cofinal limit {F(yn)} = residual limit {F(yn)}.

Theorem 2.17. F : X •* X is a continuous set valued map.

Proof As it is constructed, F satisfies the statement of Prop­

osition 2.16.

Theorem 2.18. F : X -> X has no fixed point.

Remark To define an F : X ■* X for general n, one need only 

divide X into n + 2 sections. Then F is defined on Section 1, 

making use of the two adjacent sections. Then one proceeds to 

Section 2 See Figure 7 where A, B replace (4, ir), 

(4, - -g- ) respectively.

Remark In [8] O'Neill mentions that there are a series of unpublished 

examples of self-maps F of a 2-cell that are without fixed points and 

such that the number of points in F(x) occurs in a particular finite 

set of integers.
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Figure 1
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u-)|u
d

Figure 3
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Figure 5
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Figure 7
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In the previous example it was shown that if a set valued 

map F : X -> X is such that F(x) has more than 1 or n acyclic 

components, then F need not have a fixed point. Moreover, this 

function cannot induce a nontrivial homomorphism on the homology 

groups.

However, it is possible that under certain conditions F(x), 

for each x, may have 1,- 2, ..., n acyclic components and still 

induce a nontrivial homomorphism on the homology groups.

Definition 2.19. Let F : X ■* X be a set valued map. Let 

Kj = {x : x e X and F(x) has 1 or j acyclic components}.

Theorem 2.20.  Suppose Kp K^, are nonempty polyhedra in X 

and X = Kn. Then F : X -> X induces a nontrivial homomorphism

h : H* (X) H* (X) such that if L(h) I 0, then F has a fixed

point.

EXAMPLE. Consider the case X = K2 U Kg .
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Lemma 2.20a. Consider the diagram

4>
A ----------- v---------- >- B

'1 '1
C ---------- > W --------- > D

a

(where Im <L ker ip and Im <|>^c ker ip^).

of vector spaces over the rationals and linear transformations.

Then 3 : V -> W such that both squares conmute iff a : ker <p ■* ker <p^

and B : Im <|> Im ip^

Proof of lemma. Straightforward.

Proof of the theorem

Let h*(m) : H*(Km) -> H*(X) and h*(n) : H*(Kn) -> H*(X) be the 

nontrivial homomorphisms induced by F on Km, Kn respectively. 

Thus for every e > 0, 3 <P^(j) : C*(IG) ■* C*(X) e-accurate 

with respect to F, and <P*(j) = h*(j) for j = m,n. Consider

o -> C*(K1)------ C*(Km) © C*(Kn)------------1U c*(x) -> 0

\a
\ 1

1
0 ■> C*(X)--------- > C*(X) * 0

where ij/(m) : C*(K1) -> C*(K ) is the inclusion homomorphism ir A in
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Now let i# : C*(Km) (+) C*(Kn) be defined by

- i#(n) c*^)).

Also »#(c*(Km), c*(Kn)) = c*(Km) + c*(Kn).

Thus ker = Im

Define a : C*(Km) Q C*(Kn) -> C*(X) by

“(c*(Km)» c*(Kn)) = n<|>#(m) c*(Km) + m<j>#(n) c*(Kn). '

Then a : ker -* 0. For instance, »

Let Vq e CqCK^). Then since <j>^(m) i^(m) Vq = mvg, by combining 

terms it follows that 

a(i#(m)v0, - i#(n)vQ)

= n<t>#(m) i#(m)v0 - m<j>#(n) i#(n)vQ

= nmvg - mnvg =0.

By the lemma 3

Y : C*(X) -> C*(X), which is e-accurate with respect to F since 

^(n), <|>^(m) are, and yg = nhg(m) + mhg(n) implies y0 is nontrivial.

Theorem 2.21.  Let F : X -> X and let K^, Kfi be polyhedra

where X = K2 ... V Kn and in particular | <|>. Then F 

induces a nontrivial homomorphism.



28

Lemma 2.21a. Suppose X = Kpl/ Kg U Kfi where 1 < p < q < n and 

nonempty. Then 3 a : C*(KpU Kq) (+) C*(Kn) ■* C*(X) in the 

diagram that maps : ker -> 0 e C*(X).

. * 1
o - C*(KX) —-L C*(K V K ) Q C.(Kn) —C*(X) » 0

/
o c*(x) — C*(X) -* 0

Proof of lemma From the previous theorem there is the diagram:

0 •» C.fxp-X C.(Kp) ® C*(Kq) -X C.lKpV Kq) » 0 

/ "I

0 -> C*(X) = c*(x) -> 0

where @ : C*(KpUKq) ■* C*(X) exists from the first lemma.

Let j : C(K^) -> C(KpU Kq) be the inclusion homomorphism and 

consider the commutative diagrams:

J
4-

C»(Kp) 0 C*(Kq)-i> e,(KpVKq) » 0 

a B

C*(x) = C*(X)

where s(C(K^)) = (0, i2(C(K1)) and j = ip s.
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Let Vq be a O-chain in ^(K^. Then B ip s(vQ) = a s(vQ) = 

“(0,i2(v0)) = P4>(q) i2(v0) = pq(vQ).

Since is a closed polyhedron in X, and since each <#>(j) 

is allowable, <(>(q) = 4>(q)^ . Thus if e^ = (v°v^) is an 

elementary 1-chain in C*(K^), <j>(q) e^ = 4>(q)(v^ - v^) = qCv1 -v^). 

Thus 4>(q) e = q e^ in C*(X). Similarly for each elementary n-chain. 

In like manner, Bj(e0) = pq(eQ) in CQ(X), 3j(en) = pq en e Cn(X).

Now define: a'' : C*(Kpl/ K ) © C*(Kn) C*(X) by

a : (c*(K UK ), c*(k ))-»- nB(c*(K UK )) + pq<|>(n) (c*(K )] 
PM 11 PM

Let 6q e CqCK^). Then 

a(j(e0), - i2(e0)) = npqe0 - pqneQ = 0 

Thus a : ker 0 by previous discussion.

Proof of Theorem 2.21. This follows by induction on Lemma 

2.21a.

Theorem 2.22.  Let X = K^ U K2 u... u Kn where Kfi is not empty, 

and F : X X the set valued map that defines the K^. Then F 

induces a nontrivial homomorphism, h : H(X) -> H(X) such that 

if L(h) f 0» then F has a fixed point.

Proof This theorem fol lows from Theorem 2.21 and Lemma 2.6.
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. t •

Extension of Spaces on which F : X -> Y Induce Homomorphisms 

and Satisfy the Lefschetz Fixed Point Theorem

Definition 2.23. [1]. Let {X1, Pj1)' be an inverse system of 

finite polyhedra ordered by inverse inclusion in some parallel­

otope P and r(p) : U -> Xp is the retraction map.

Then X = L{X1, Pj1'}" = HX1 is an NR6 where there are-maps t^: X1 X 

for each i as well as inclusion maps j1 : X ■* X1.

Thus i < j iff XJ <L X1 and 

r1, = r(j)r(1).

Lemma 2.24. Let X = /^ X1 be an NRr as in the definition.
i 6

Let F : X -> X satisfy Theorem 2.7. Then for each i, there is a 

set valued map F1 : X1" -> X1' that induces h^on H*(X^) ^L(h^) f 0 => F^ 

has a fixed point, x^.

Proof F1 is defined from

X1 —x’

X —-—>■ X where F1 = j1 F t1 so that each F1 satisfies

Theorem 2.7 and so induces h1 : H^CX1) ■* H*(X1).
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Theorem 2.25.  Let X = X1, , h1", F be as above. Then:

(a) If tv rPv = tp, there is induced h : H*(X) ■* H*(X) 

such that Lh = Lhp for p > pg.

(b) If moreover, for every covering a of X, there is p(a) 

such that for all p > p(a), (x, tp(x)) e a x a, then L(h) 4 0 

implies F has a fixed point.

Lemma 2.25a. If X -> Y ■* Z where H, G, are u.s.c. set valued 

functions with induced homomorphisms h^, hg respectively, then 

hgh^ is an induced homomorphism of GH.

Lemma 2.25b. Let H : Z x I + Y where Z, Y are compact polyhedra, 

and H(z, t) consists of 1 or n acyclic components for all z e Z

and t in I. Then Hq* = : H*(Z) ■* H(Y) where Hq(Z) = H(Z,O),

and H^Z) = H(Z, 1).

Proof of Lemma 2.25b. H induces k* 4 0 such that k* : H(Z x I) -* H(Y).

Let g. : Z+ Z x I, i = 0,1 be defined by g^z) = (z,i) i = 0,1.

Then H g. = H.. Now gQ* = g^ and thus HQ* = g0* = ^g^ = H^. [61

Corol 1 ary 2.25c. If G - K : Z -> W by the homotopy H : Z x I ■* W 

in the lemma, then the induced homomorphisms

k* = g* : H*(Z) -H*(W).
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Proof of Theorem 2.25.

To show there is an h : H(X) -> H(X), it must be shown that the 

diagram

H(xp) —> H(XP)

P P P P
p 1 hu p

H(XP) — ----- >- H(XP) commutes for y < p .

Now tp rp - tp implies Fp - p p Fp rp implies Fpp p - p p Fp 
p p p p y

in the sense of Lemma 2.25b. By Corollary 2.25c, 

hp p^*p = p^*p hp. Thus the diagram commutes to give

h : H(X) = LH(XP).

That Lh = Lhp for all p > pQ would be proven in exactly the same 

manner as is done in [1] by making use of essential cycles.

The proof of (b) will follow a proof in Bourgin [11. Assume 

x | F(x). Then there are open neighborhoods U, V of x, F(x) 

respectively such that U A V = <j> and F(U)c V. Choose a cover 

a of X such that St(St(x,a),a)c U. Select p so that 

X, t X e a X a.
o

(Here a x a or a will denote the set of A., x A., where AJs 

are in a.)
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For some v > p, xy and x e , say, of a. Then x, tvxv e

implies tvx e U. Thus V D Ftv(x ). But x e Fv(x ) eV and 
v v v v

x e U. Contradiction, v
Thus x e F(x).

Remark In this section it is possible that X is not a metric 

space even though each Xp is.

Theorem 2.26.  Let P be a finite polyhedron; Y a compact metric 

ANR. Let F : P -»■ Y satisfy the statement of Theorem 2.7. Then 

F induces a homomorphism h : H*(P) -> H*(Y).

Theorem 2.27.  Let X = P x Q where P is a finite polyhedron, and

Q is a Hilbert cube. Let F : X -> X. Then F induces a homomorphism

(a) h : H (X) -> H (X) such that

(b) L(h) f 0 implies F has a fixed point.

Lemma 2.27a. Let F, P, Q, X be as in the theorem. Then there 

is a family of u.s.c. functionsIFp : X -> X such that 

lFi>1 = l’F-

n .1 1
Proof Let Q = Qn x Rn where Qn = n [ i , i ] and
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R = n [~i , i ] . Let be the zero of R. Let n i=n+1 , .n n .

Pj = P x Q^. x R? and : X -»■ P^ the projection onto P^.

Let £ > 0 be given. Then since F is u.s.c., there is a

6 > 0 so that F(N6(x)) c e/4 F(x). The compactness of X
I I / »• I 1

implies there is a 6n so that F(N (x)) C e/4 F(x). Since 
u °0

lim d(7r^(x), x) -> 0 uniformly, there is an ig so that for all 
1-h»

i = ig. Tr^ F iri (X) C E F(x).

Let F^ Ftt^ . Thus, (F^} ■* F.

Lemma 2.27b. Let F, X, P, Q, F^ be as given above. Let f4 = Fir^ 

Then {fJ} induces {h.} : H(X) H(X) and also h : H(X) H(X).

Proof Let ji : P^ -> X be an inclusion map. Then Fj^ : P^->X 

induces an s^* : H^CP^) H*(X). Let h^* = : H*(X) -> H*(X)

where h^* is induced from the map Fj^ir^ : X -> X. Since {Fj^ir^} •* F 

as in the previous lemma, a previous result implies F induces 

h : H(X) H(X)

Proof of theorem

(a) follows from the lemmas.

(b) hj1w : lUfPp »



Since : H*(Pi) -> H (P ), and since

7r.j* : H*(X) -*■ H*(P..) is an isomorphism where .

Thus with Trace h = trace 7r.*hj.*, Lh = Lir^*hj^*. But

L(h) £ 0 implies has a fixed point for each i.

Thus xi e TTjFj^xp = ir^FTr.j.(x^. Since {ir^Firp ■* F by 

a previous lemma, F has a fixed point.

Theorem 2.28.  Let X be a compact metric ANR and F : X ->■ X 

as before.

Then F induces

(a) h : H(X) ■* H(X) such that if

(b) L(h) f 0, F has a fixed point.

Proof

(a) Let Z = P x Q such that

1
X-------->X

A/- 
z

commutes. Then Fr : Z -* X is such that for all x, Fr(x) consists 

of 1 or n acyclic components and thus induces t* : H(Z) ■> H(X). 

Let h = t*j* : H*(X) -> H*(X).
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(b) Let A, B be n x m, m x n matrices respectively. Then 

Trace AB = Trace BA shows that Trace t*j* = Trace j*t*. Now 

L(h) f 0 => L(j*t*) f 0 where j*t* : H(Z) -* H(Z). From the 

previous iFr : Z ■* Z has a fixed point x. But x e iFr(x) => 

x e X and x e F(x).

Corol 1 ary 2.29. Let X be an ANR, {F^} •* F : X -> X where each

F.j : X ■* X is a continuous set valued map such that F^(x) consists 

of 1 or n acyclic components. Then if F is u.s.c., F induces an

(a) h : H(X) ■> H(X) such that

(b) L(h) f 0 => F has a fixed point.

Corol1 ary 2.30. Let {Xp, pvP) ~ be an inverse system of ANR's 

ordered by inverse inclusion. Let X = fX Xp be an NR.. Then p 0
the results of Theorems 2.23 - 2.25 still follow.
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CHAPTER 3

Inverse Limits and the Fixed Point Property for Set Valued Maps

In this chapter, it is shown that the fixed point property 

is invariant for inverse limits if the bonding maps are sur­

jections e This is not true for the single valued case.

Definition 3.1.

(a) Let cov^ (X) be the cofinal family of finite open 

covers of X.
■f

(b) Let a, g e cov (X). Then a > g means
*

a ref1nes g and a > g means star refines g in the sense that 

for every A e a , St(A,a) = l/A1 (where A' e a and 

A1 A f <j>) G B for some Beg.

(c) If a e COV^ (X), a = (A | A e a} •

Theorem 3.2. Let X = L{Xx : p x ; D}" be an inverse limit where

• (a) X, {Xx}, n are compact metric spaces;
A e U

(b) p x : Xx -> Xp are surjections;
ry

(c) Each Xx has the fixed point property for set valued maps. 

Then if F : X -> X is a set valued map, F has a fixed point.
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Outline of the Proof

Step 1. Assume F has no fixed point. Then there is an

e, 6 such that = {N (x.) such that N (x.)/) N. F(x.) = <b 
k El 1-1 El 0 1

and FN£(x..)C NgF(x.). Let , e, 6 be denoted as?^, eq, 6q 

respectively. Define En < e/211, etc., and take refinements

n >^n-l of diameters < En-

Step 2. A sequence {Fn}Q : X -> X is defined such that for

each n, Fn = L{F^ | DnJ* where Dn is cofinal in and

Dq = D. Moreover, F^ : Xx -> Xx is a set valued map and has a 

fixed point xx. Let xn = L{xx | px ; DnJ. Then 

x„ e Fn(x„).n n' n

Step 3. For each x e X, Fq(x)T> F^(x)3> ... Fn(x)^ ...
\/ co

Thus by the finite intersection property, F(x) = *

can be defined.

Step 4. Let (xn {xnJ. Let x be the limit point of 

{xn } . Then x e F(x).

Step 5. • Show x e F(x). This contradicts the assumption in 

Step 1.
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Proof

Step 1. Assume for each x, x F(x). Then 3 eq, 6q > 0, 

_ firt £
77n = {N (x.)}.., e covT(X) such that N (xjf) N. F(x.) is 

Eq 1 1-1 Eq Oq i

empty and F(N (x,))CN, F(x.)» i = 1, .... nn, and for each 
e0 0 1

x1 in N (x.), F(x.) G N. (F(x')). These follow from the fact Eq 1 1 6q/2

•f 
that F is both u.s.c. and l.s.c. Now find covers Yq> 3q e gov (X)

* — ’y f ^0such that Yq > Sq > Pq > ^q. Then □ pq e D, aQ s cov (X ) 

such that p-1(an) > yn [61.

Pn _ I _1
Define r : X X by r (x1) = St(p 1(x'); p (aQ)). 

yo p0 p0 p0

Then r is a set valued map.
p0

(a) r (x1) is closed for each x1.
p0

(b) Let U be open in X. Then r"^(U) = {z | r (z)/3 U f 4>>.
p0 p0

Suppose z e {Ap ...» ArJ G Qq. Then V C A^ ... /T A^ such

that for any w e V, p"1(w)0 U <t> . This will follow from the 
p0

• po po 
fact that p : X -> X is a closed map.
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(c) Let C be closed in X. Then r”1(C) = {z | r (z)/3 C <}>}. 
p0 p0

Let z be a limit point of r~^(C). Then {znJ •* z such that

r (z 1 H C + <f> . As in (b) above, z can be assumed to be in Pq n 1

V CAnn ... Ak. Then 3 Nn such that n = Nn => zM e V and 
1 r u u n

thus r (z„) = r (z). Therefore r”^(C) is closed.
^0 n M0 p0

Pq Pq Pq Pq
Define Fn = ir Fr : X -* X . Fn is continuous and has ----------  0 p0 0

p0 a fixed point xQ .

(a) Let Dq C D where Dg = {x | x > p } and is cofinal in

D. Then define Fg : Xx ■* XA by

F„ = tt, Fr p x : XA Xx which has a fixed point, x^ 
0 ■ x p0 0

(b) {Fg}x e D: {Xx I p^ ; Dg}"-> {Xx; Dg}" induces

Fg : L{Xx ; Dg} -> L{Xx ; Dg}. Commutativity easily follows as

is obvious from the diagram:
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Since X 2 L {XA ; Dq) one can assume Fq : X •* X with fixed 

point xQ = (Xq) .

Step 2. Let 9^^ > P~\aQ) where di am 9^^ < e/2 = and

N (x‘) e 97 i => FN (x1)<C Na F(x'), for each x" in 
el 11 el

N£ (x1), F(x') C N6 (F(x")), and N£ (x1) ft N6 F(x') = <j>.

Again 3 y > 3
1

Yj > 3]^ > 3j > J(y. Also a Pj e Dq and e cov (X 1) such that

P 1(ai) > Yt Moreover, r : X 1 ■* X and F,1 : X x -> X 1
1 '1 pj 1

Pi
with fixed point x^ . Let = {A e Dq | x > p^cofinal in D.
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Thus there is induced : X ■* X with fixed point x^.

Claim F|(x) C Fq(x) for all x e X.

Let X e Dr Now F^x) = UF^p^Cx) | D1

P1 Since p = p 
“O “0 P"!

1 -1Pu = Pu Pu (ao) < 81 < Pu
Pn v Pq u 1 P| 1

Then it can be shown that r p X(x, )c r, p„A(x,)
U1 U1 . A Uo U0 . A

where xx = px(x).
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Now r p A(x.) = StCp"1?,, X(x ), p I(a1))
U1 P1 X P1 P1 ■ P1 1

= Stlp^ (P^lx)), (aj))

c Stlp^'p^tx), P;\a0)) - rUo(PPo(x))

= r p A(xJ, since
PoPpo x

<i1(x"i) c s1 pC 1 = s1 %(x)

Then it follows that F^A(x^) <Z FqA(xx) for all x e D^.

This gives F1(x) <2 FQ(x); and in particular x1 e F1(x1) O Fq^).
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ln general, let ^n+1 > and Yn+1 ? Bn+1 > B„+1 > ^n+r

As before, an Fn+^ : X -> X is induced with fixed point xn+^.

Since for every x, FQ(x)r> F^x)^ ... D Fn+1(x),

xn+l e Fi^xn+1^ 1 = n+1*

Step 3. For each x -£X, define F(x) = ^qF (x) which is 

non-empty by the finite intersection property.

Step 4. There is x 9 x e F(x). Now {xn) contains a subsequence

v 
{x } ■* x. Let d(x, F(x)) = 6'. Let n = S'/S. There is an 

J
V

nQ such that for all n = n0» Fn(x) C N^CFCx)). Assume <xn } C Nn(x).

Then for n^nj = n, Fn(xn ) c NnF(x). Then

x eF (x ) C F(x ). This implies 
nj(n) nJ(n) nj(n) n nj(n)

d(x, F(x)) = d(x, x„ ) + 0 + n -x- therefore x e F(x). 
nj(n)

Step 5. x e F(x). By assumption x | F(x) and this implies

X 9 p (x) | p.F(x). Let x = p (x) e U and p F(x) G V
A . A A A A A A

U n V = <j>. Now 1 n 5 p N (F(x)) C V . Let v > p , X.
A A A A il’J. 'n
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Then xu e -1(U ), p (F(x)) C ^(V ) 3p^.) n p^ ”X(V ) = 4>. 
V A A v A A A A A A

Now r
pn+l n+1

(x)CNe (x')e^ 
v en+l en+l

Then Fr pv (x )C N, F(x') C N, F(x) where 
pn+l Mn+1 v %+l n

6n > 25n+r Th1s 1mplies Fn+l(’xJ c PA F(x) c px "1(vx) 
n

where p^p = p,. 
rArv rX

v
But in Step 4, it was shown that x £ F(x) which shows that

x e F (x) for all n. Thus x e F^ Jx )c PuN- F(x)<2p^ "1(Vj.
ll V ilTA v v A A

This contradicts the assumption in Step 1. Thus 5< e F(x).
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CHAPTER 4

। Contractive and Non-Expansive Set Valued Functions

Let (X, d) be a metric space with metric d. (X need not 
* ■ * • ■ - i i

be compact.).

Definition 4.1. Let D(A, B) be the Hausdorff metric defined 

on all closed and bounded subsets of X.

Theorem 4.2. Suppose (X, d) is a complete, metric space and 

F : X -> X where each F(x) is compact. Then if for every 

(a, b) e X x X, D(F(a), F(b)) = k d (a, b) where 0 < k < 1, 

there is a 5 e X such that e, e FU).

Proof Suppose F has no fixed point. Then for any x, let 

d(F(x), x) = min d(y, x) = e > 0.

y e F(x)

Now F(x) compact implies x^ e F(x) such that d(x1> j<) = e. 

By assumption D(F(x^), F(x)) = k e.

The compactness of FCx^ implies there is x2 e FCx^) so that 

d(x2, xp = D(F(x1), F(x)) = k e.



'* < *2. 'Now D(F(x2), F(x^)) = k e. In general one finds 

xn+l e F(xn) so that

d(xn+i’ xn> D(F(xn), F(xn_1)) = kn e

and J

D(F(xn+i). F(xn)) 5 k d(xntl. xn).

Since (x^q is a Cauchy sequence, {xnJ ■* say.

Claim E, e F(O" Suppose d(F(s), e, ) = min d(z, 5) = s > 0. 

z e F(5)

Then 3 £' e F(?) where d(g, £')=£.

For each j there is y. in F(^) so that

d(xj+l> yj+1) = D(F(xj), F(e)) = k dCxj, )

Since d(x., e, ) -* 0 as j ■* « , implies Tim d(x., F(^)) = 0
J j^oo J

Thus e, = s' e F(e).

Proposition 4.3. Let F : X -> X where D(F(x), F(y)) < d(x, y) 

for all x f y. Then this implies that F is a set valued map.
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Proof That F is u.s.c. is obvious. That F is l.s.c., assume 

that 3x, ze F(x) and a sequence {ynJ x where d(yn> x) < 

and for some open set V of z, F(yn) G X — V. However this con­

tradicts the assumption that

D(F(yn), F(x)) < d(yn, x) ^0 as n+».

Theorem 4.4. Let (X, d) be a metric space and F : X -> X such 

that

(a) D(F(x), F(y)) < d(x, y) for all x f y;

(b) 3 x 5 x. e F^(x) and

{x^} {x. } -> e, . Also {x..} are such that

d(xi+1, xp = D(F(xi), F(x._1)). Then ? e F(^).

Proof of Theorem. The following lemmas are needed.

Lemma 4.4a. Define o : X x X -»■ reals by a(x, y) = D(F(x), F(y)). 

Then a is continuous on X x X.

Proof of lemma. Suppose a(x, y) = D(F(x), F(y)) = e. Let

S (e) be. an open n interval about s; ie.
n ----(--- 1--- )-----

e - n e e + n
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Claim There is an open set U x V containing (x, y) such 

that a(U x V) C. S^e). Let 6 < n/8 and N6F(x), N6F(y) be 

open 6-neighborhoods about F(x), F(y). Since F is u.s.c., 

there is a U^» open about x, y 5 F(U^)dL N5F(x) etc.

Let {S.(x1-)}, {Sr(yn-)} be a finite open cover of F(x), 0 1 0 J
F(y) respectively.

Then since F is l.s.c. U2 = F"1S6(xi.), V2 = /j) F~1S6(yj.)

are open neighborhoods of x, y respectively. Let U = U^/lu2 

and V = Vg. Then for any u e U, a(u, x) = 

D(F(u), F(x)) < 26.

Similarly for any v e V, o(y, v) < 26. To show this, let 

u e U2. Thus u e U1 implies F(u)C N6(F(x)). Also 

u e U2 = /lF"1S6(xi) implies F(x)6 N26F(u) since u' e F(u) => 

u' e S6(x1) say, and S^Cx^)C. S25(ul). Here as elsewhere S25(u') 

means the sphere of radius 26 about u'.

For any (u, v) e U x V, 

a(u, v) = D(F(u), F(v)) = D(F(u), F(x)) + D(F(x), F(y)) + D(F(y), F(v))

•= 26 + e + 26 < e + n-
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Also a(x, y) - a(x, u) + a(u, y) + aCv, y) => e - n < o(u>v).

Thus £ - n < a(u, v) < e + n for all (u, v) e U x V.

Lemma 4.4b. F : X -> Y a continuous set valued map implies that 

if {xn> -> x, then F(x) is a cofinal and residual limit of 

(F(xn)>.

Proof of Theorem Assume d(?, F(s)) = 6 . Let n < ^- and 

consider W = S^(s) x Nri(F(^)). From the previous lemma there 

is a U x V containing ? x F(?) and U x V <L W such that 

a(u, v) = a d(u, v), 0 < a < 1 for all (u, v) e U x V.

From the second lemma, it can be assumed that{xn,}7_^c U, and 

{F(xn_)}^=1C V. Thus

D(F(xn1)’ F(xn1+1» S“d(xn1’ xn1+l>-

By assumption d(x +1, x +9) = D(F(x ), F(x +1
11 • Ji 11^

Similarly d(xn xn ) ~ D(F(x 2)» ^(xn -j)) ^“^^xn -2* xn -P’ 
ii^ *2 * 2 **2 *

F(x„2+1)) £ « dfx^, x,,^)
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l(u, . )

This gives d(x ,, x 2) < a2d(x xn1+l) and

o 
d(xn3’ xn3+l> ‘ ° “(’’nf

In general d(xfi , < "-r"ld(xn2 xn1+l> -> 0 as r .

This contradicts the assumption that {xn }<U and 

{F(xn )} <2 V where U x VCS^) x N (F(^)).

As a corollary to what has been said, let X = L {Xx, p^, D} 

be the inverse limit of compact metric spaces, Xx, with metric 

d* . Suppose there is a u.s.c. set valued function F : X ■* X 

such that for each x e D, the function

Fx = pA F pA -1 : Xx -> XA satisfies for each

xA x yx e XA x XA - A

Da(Fa(xa), FA(yA)) < dA(xA, yA) where Dx is the Hausdorff metric 

induced by dA.

Theorem 4.5. Let F : X -> X = L [XA }"

be as stated above. Then F has a fixed point.
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Proof By the previous theorem for each x, FA has a nonempty 

set of fixed points YX<2 Xx. Since each YA is closed and so 

compact, and since (Yx, p^A | Yx}" is an inverse system 

Y = L{Ya} is not empty.

Claim For y e Y, y e F(y). Suppose not. Then for some u e D, 

yp | PpF(y). Let Up, Vp be disjoint open neighborhoods of 

yP» Pj/Cy) respectively. Also let U, V be disjoint open 

neighborhoods of y, F(y) respectively such that F(U) <z V and 

pp(U)<.u\ Pp(V)cLVp.

By^ei *3 a > u, a(a) e covf(Xa) such that pa "1(a(a)) 

refines a = {U, V, X -{y} u (F(y)}}.

Let y° = Pa(y) e A e a(a). Then 

Pa -1(A)C U => pa ■1(ya)<^ U. Then 

p/ pa ’^y0)^ ppv c vy.

Also py° PpF pa ^(y0)^ p/ _1(Vy),

Now ya e paF pa _1 (ya) c Ppa -1 PyF p/^y0) C Ppa-1(Vy).

But ya e ppff "1(U1J). -x-

Therefore y s F(y).



53

Remark In the case of contractive set valued maps, 

nothing can be said about the uniqueness of the fixed 

point of the map F : X ■* X.

Example Let X be the positive reals, R+.

Let F : R+ ■* R+ be defined by F(x) = x] . The

F is a contractive, set valued map where D(F(x1), Ftx^)) =

| x1 - x2 | . Then every point on the interval [^, hA is a 

fixed point of F.
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In[103 B. N. Sadovskii introduced the notion of a 

condensing operator from a Banach space B to a Banach 

space Y. This notion will be applied to set valued 

functions.

Definition 4.6. Let A c B and A bounded in B. 

Q(A) = { e | A has a finite e-net).

Then x(A) = inf Q(A).

Definition 4.7. A set valued function F : B -> Y is a 

condensing operator if for every bounded subset A C B, 

x(F(A)) = X(A) and if X(A) > 0, then x(F(A)) < X(A).

Proposition 4.8. Let F : B ■* Y be a condensing operator. 

Then F(x) is compact.

Theorem 4.9.  Let T be a closed and bounded convex subset 

of B. Let F : T -> T be a set valued condensing map such 

that for each x e T, F(x) is a convex subset of T. (In 

the case that B is a separable Banach space F(x) may consist 

of 1 or n acyclic components.) Then F has a fixed point.

Lemma 4.9a. If co(A) is the closed convex hull of the set A, 

thenx(co(A)) = X(A).
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Proof of the lemma. This is proven in[10]. There it is 

shown that Q(A)C Q(co(A)).

( I

Lemma 4.9b. Under the conditions of the theorem there is a 

nonempty compact subset K—T which satisfies F(K) = K.

Proof of Lemma For any x e T, let M = Fn(x) which is 

bounded since T is. Let = F(M) and since M - is x or 

is the empty set, it follows that x(M^) = x(M) = 0- Thus 

M, are compact. Now let K = {y | y is a limit point of M}.

Claim: K = F(K).

(a) Let y e K. Then there is a sequence {x
nk K"1

ry1 x
such that lim x^ = y. Let , e F (x) where 

nk "k-1

Xr> e F(zn i)- Let {z„i .} be a convergent subsequence of 
nk ■ nk-1 nk-1

{z„ ,} where lim z , , = w. Since F is u.s.c., this implies 
nk"1 nk"i

y e F(w) or y e F(K).

(b) Let y e F(K). Then this implies there is a sequence 

such that lim xn = z and y e F(z). But since M is compact
nk
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and Hausdorff, F(z) = cofinal limit (F(x„ )) = residual 
k ■

limit F(xn ). Thus y e K.
k

Lemma 4.9c. There is a compact, convex subset XC T 

such that X = co f(X).

)
Proof of Lemma Let jF be a collection of subsets X1 of T such 

that X1 is closed and convex, F(X') CX1 and K<zX'. Let 

be ordered by inverse inclusion. By Zorn's Lemma,has a smallest 

element, X.

Now F(X) CX and since X is minimal co F(X) = X.

Proof of Theorem 4.9. By the lemmas x(X) = x(co (F(X))) = x(F (X)) 

it follows that X is a compact convex subset of T so that F : X -> X 

has a fixed point by a Theorem of Kakutani[5] or in the second 

case by Theorem 2.28. In the latter case X is a compact ANR.

Another difference between single-valued and set valued 

maps of the simplest type can be brought out in the following 

theorem.

Theorem 4.10.  Let f : X -> X be a single-valued map of a compact 

metric space, X onto itself, such that for each 
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x, x1 e X 3 d(x, x1) < e , then d(f(x), f(x')) = d(x, x').

Then there can be no pair of points Xp x2 5 d(f(x^), f(x2)) < 

d(x1, x2).

Before proving this theorem a counterexample for the set 

valued case can be given where the Hausdorff metric D replaces 

d. Thus let X = [0, 11 and F : X -*-> X defined by

F(x) =' {^x, H + ^x} . Then

D(F(x), F(x')) < S5 | x - x' | and the graph of F, r(F) is 

given by

Proof of Theorem

(a) Suppose there is x^, x2 such that dCfCx^), f(x2)) < 

d(xp x2). Then the continuous function

p(x', y*) = d(f(x'), f(y1))/d(x', y‘) defined on X x X - A 

implies 3 > 0 such that
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d(f(x'), f(y')) = k dU1, y') for all 

(x1, y') e S£ (x1) x Se (x2) where

0 < k < 1 and S (x.) 
el 1

is a closed ball of radius about

x.., i = 1,2.

(b) Choose an n < 1/8 min {d(xp e, e^}.'

. N
Let {Sr)(xi)}i=1 be an open irreducible cover for X. Also 

since diameters do not increase, 

fr(Sr)(x1.)) <_ STi(fr(xi)), i = 1 N for all r, and

-[fr(S (x^))lj=1 is a closed cover of X for all r.

(c) Case 1. Suppose x^ = fCx^), 1 = 1,2.

Let d(x1, yT) = min {d(x', y') | (x*, y') e Sn(x1) x Sn(x2)}

and d(f(x1), fC^)) = k dCx^ y1).

Futhermore d(fr(x^), fr(y1)) = kr dtxp y^) and

(xp x2). e fr(Sj^) x fr(S”(^))C S^) x Sn(x2). Thus
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' \ . I

dtxp x2) = d(x1, + d(fr(x1), fr(y1)) + d(fr(y1), x2) 

= 2 n + kr d(x1, yT)

< 3 n for large r

< d(x1, x2). -^e-

Case 2. In general since {fr(STi(x^))}^_1 is a closed 

cover of X for r =1,2,, there is a subsequence

{r}“ , such that for a fixed x. and all n» .
r i i0

x, e frn(S (x. ))C S (xj.
i n i q e i

Similarly 3 a subsequence (rn {rn^=i

r . rn.  ’n. 
x. x Xq e f J (S (x. )) x f J (S (x. ))GS (xj X S (x2)

1 C T| |q T| I Ej, -L Ej^ L 

where i^ f ig and both are fixed for all j.

Let (x,, y,) e f nl (S (x. )) x f nl (S (x. )) where d(x1, yJ = 
ii n i q n i i i

min distance between these two compact sets.
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Then d(f(x1), fC^)) = k d(x1> y1).

d(f2(x1), f2(y1 )) = k d(x1, y^

Let m, = r J r +1. Then '1 n£ n^

d(fm(x1), fm(y1)) = k2 d(xp y1).

Thus as j , let m.+1 = r - r +1, and by assumption , 
3 1 nj+2 nj>i

m.' m. -j.1 ' 'd(f 3(x1), f J(y1)) = k3 1 d(x1, yx) -> 0

The proof is completed as for Case 1.

On the other hand, there is a type of theorem 

that is common to both single-valued and set valued functions. 

The proof for the set valued case is given, and the correspond­

ing one for the single-valued function is as easily proved.

Theorem 4.11.  Suppose F : X ■* X is a u.s.c. set valued function 

with a unique fixed point x. Then for every e > 0, there is a 

6 > 0 such that d(x, x) > e implies d(F(x), x) > 6 .
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Proof Suppose for some e > 0, there is a sequence

{x , so that d(x,x ) > e but d(x , F(x )) = — . n n=l x n' x n n/z n

Then the sequence {xn) contains a subsequence <xn } 

converging to a y, say.

Claim y e F(y). Otherwise let d(y, F(y)) = n > 0.

Take n/2 neighborhoods U, V about y, F(y) respectively 

such that F(U) V. However, by hypothesis

lim d(x , F(xn)) = 0- Contradiction. Thus y e F(y). 
n->-oo

However, since x is unique, y = x ; but y is outside an 

E-neighborhood of x. This leads to another contradiction 

and so implies the theorem.
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