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Abstract 

 

Axial flow generated by turbulence on an initially two-dimensional vortex 

column, the Lamb-Oseen vortex, is studied theoretically and by direct numerical 

simulation of the Navier-Stokes equations. Azimuthally wrapped filaments of opposite 

circulations, discussed for the case of two oppositely oriented filaments, advect radially 

in opposite directions, leading to radial separation of the filaments and net axial flow on 

the vortex axis. Axial velocity is found to grow as t
5/2

 from the simulation results, closely 

matching the analytically determined growth rate. Derivation of the axial flow magnitude 

predicts the onset of instability due to axial flow via the q (≡peak azimuthal velocity/peak 

axial velocity) criterion. Simulation results show (limited) renewed growth when q 

decreases below the unstable limit, likely dominating the  previously discussed parent-

offspring hairpin vortex mechanism for regenerative growth and suggesting possible 

breakup of the initially normal mode stable vortex at higher vortex Reynolds number due 

to ambient turbulence.  

  



vi 

 

Table of Contents 

 

Abstract ................................................................................................................................v 

Table of Contents ............................................................................................................... vi 

List of Figures ................................................................................................................... vii 

Chapter 1: Introduction ........................................................................................................1 

Chapter 2: Methods ..............................................................................................................4 

Chapter 3: Motivation ..........................................................................................................6 

Chapter 4: Theory ................................................................................................................9 

Chapter 5: Physical Mechanism.........................................................................................10 

Chapter 6: Results & Discussion .......................................................................................19 

Chapter 7: Conclusion........................................................................................................33 

References ..........................................................................................................................37 

  



vii 

 

List of Figures 

 

Figure 1:  Velocity components (u, v, w) in cylindrical (r, θ, z) coordinates, and 

the mean velocity profile, V(r); (x, y, z) are Cartesian coordinates. The 

core radius, r0, denotes the radius of V0, the maximum of V. Note that 

core vorticity, +Ωz, is in +z direction. ................................................................5 

Figure 2: Profiles of mean axial velocity, W, at seven times for vortex-

turbulence interaction at Re=12 500; note that W(T=0)=0. W is 

approximately 100 times smaller than the W generated for the 

particular case (figure 10). .................................................................................7 

Figure 3: Evolution of peak mean axial velocity, Wmax, for vortex-turbulence 

interaction at Re=12 500; note that W(T=0)=0.  Wmax is approximately 

100 times smaller than the Wmax generated for the particular case 

(figure 11). .........................................................................................................8 

Figure 4: Example filament generating  with (a) ω'z>0, associated with 

u', and (b) ω'r<0, associated with w'. Note that ω'r and ω'z are not 

linked by mean strain, which means any combination of signs is 

possible (i.e., ω'r>0 and ω'z>0 or vice-versa). ...................................................9 

Figure 5:  Vortex filament segment defined by x(τ) = r(τ)r+z(τ)z with respect to 

the origin O sketched with tangent (t), normal (n) and binormal (b) 

unit vectors shown. ..........................................................................................11 

Figure 6:  Effect of mean strain on vorticity filaments shown in (a) an end view 

and (b) an oblique view. Also shown in (b) are (t, n, b) and the axial 

extent of the filament (Δz). ..............................................................................12 

0wu



viii 

 

Figure 7: Decomposition of t, n and b in (a) a θ-z plane (a cylinder coaxial with 

the vortex column); (b) in an r-θ plane (looking down the z axis); and 

(c) in an r-z plane. Note that n lies in the r-θ plane, with nθ omitted 

from (a) for clarity. ..........................................................................................13 

Figure 8: (a) Vorticity filament segment with Δr<0 and Δz>0 at t0 with (t, n, b) 

shown. Note that b is in (+r, +z) direction. (b) Advection of a filament 

at t1 with γ1>0 (upper), in the direction of the binormal, and γ2<0 

(lower), in the opposite direction of the binormal. ..........................................15 

Figure 9:  (a) Cross sectional sketch of two oppositely oriented filaments with 

+ω'θ and –ω'θ at the same radius, rc, and their induced flows at the 

axis. (b) Filaments’ positions at a later time, resulting in a net axial 

flow (the difference between the two arrows). ................................................16 

Figure 10: Profiles of W at six times for the perturbation at Re=10 000; note that 

W(t=0)=0, which is marked by the horizontal dotted line.  Between 

t=50 and 100, there is a decrease in W at the axis, likely due to 

distortion of the axis.........................................................................................21 

Figure 11: Log-log plot of |Wmax|, showing an early time trend of T
5/2

 and a late 

time trend of T.  ................................................................................................23 

Figure 12: Evolution of q=|Vmax/Wmax| at six Re (500, 1000, 2000, 2500, 5000, 

10000), with q=1.5 marked by the dashed horizontal line (q<1.5 is 

unstable).  At T=11, q<1.5, suggesting that the vortex becomes 

unstable. ...........................................................................................................24 



ix 

 

Figure 13: (a) An initially rectilinear vortex column is perturbed with a helical 

(m=1) perturbation. (b) The perturbation’s induced velocity displaces 

the axis, causing the vortex to become helical. ................................................25 

Figure 14: Evolution of the vorticity magnitude centroid relative to the initial 

position ( ) due to the helical perturbation, denoting the center of the 

vortex, at Re=10000.  Fluctuations in  cause fluctuations in Wmax 

(figure 11) and q (figure 12). ...........................................................................26 

Figure 15: Evolution of the volume integrated (normalized) turbulent kinetic 

energy for the particular case at six Re. Note that at T≈11 for Re=10 

000, the energy slightly increases, corresponding to the onset of 

instability in figure 12. .....................................................................................27 

Figure 16: Profiles of TKE at six times for the Re = 10 000 case during the late 

time period of regenerative growth (from T≈11 to T≈12 in figure 15). 

Inset shows the radial region where TKE increases, then peaks (at 

T≈11.5) and decay during this period. .............................................................28 

Figure 17: Postulated parent-offspring hairpin vortex mechanism from HPS. .................29 

Figure 18:  Meridional (z-x) plane contours of ωy (ωθ above the axis, -ωθ below 

the axis) before and during the regenerative growth in figure 16. 

Shaded regions denote negative ωy; level are plotted at |ωy|=[ωmin, 

ωmax, δω]=[0.1, 1, 0.1]. Ω=0.5 (red) indicates the core. ..................................31 

  

r

r



x 

 

Figure 19: Meridional (z-x) plane contours of ωx (ωr above the axis, -ωr below the 

axis) before and during regenerative growth in figure 16. Shaded 

regions denote negative ωx; two level ranges are plotted, one at 

|ωx|=[ωmin, ωmax, δω]=[0.02, 0.1, 0.02] and one at [0.1, 1.5, 0.1]. ...................32 

Figure 20: Vorticity generation due to (a) axial flow and (b) the related mean 

azimuthal vorticity (Ωθ). ..................................................................................32



1 

 

Chapter 1: Introduction 

 

Large-scale vortical motions known as coherent structures (CS) are now assumed 

to be present in turbulent shear flows, dominating flow dynamics such as momentum and 

energy transports, drag, heat transfer and aerodynamic noise generation.  Additionally, 

the presence of CS enable control of turbulent shear flow  through the interaction of CS 

with the ambient finer scale turbulence (such as in the case of turbulent boundary layers, 

shown by Schoppa & Hussain 2002), prompting the claim: no CS, no control (Hussain 

1986).  Interest here lies in understanding the CS’s response to the ambient turbulence 

and development of instability on the vortex column, hence possible transition to 

turbulence. To do this, the flow is idealized as a rectilinear column vortex embedded in 

homogeneous, isotropic, fine-scale turbulence. 

 The idealized vortex-turbulence interaction is also similar to several engineering 

applications, such as trailing vortices behind airplanes and blade tip vortices generated by 

wind turbines.  The passage of lifting surfaces (wings or blades) through the generated 

vortices induces significant lift loss and vibrations, increasing wear and fatigue, 

potentially leading to catastrophic failure. A safe separation distance, currently fairly 

conservative (Broderick 2008) due to the empirical models used (Spalart 1998), is 

required for the vortices to decay to a ‘safe’ intensity (i.e., swirl velocity).  Understanding 

vortex decay mechanisms, in particular triggering vortex breakup into turbulence, is vital 

to relaxing the separation distance and improving airport and wind farm efficiency.   

 An isolated rectilinear vortex column section is chosen as the idealized CS, which 

is free from the interactions of other similar sized structures (like reconnection or pairing) 
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and self-induction (coiling and uncoiling of vortex lines which generate meridional 

flows; Melander & Hussain 1994). Also, the section is free from the effect of strain 

(hence elliptic instability) from adjacent vortices; see Kerswell (2002).  The Lamb-Oseen 

vortex (hereinafter called the Oseen vortex) is selected as the CS model.  The Oseen 

vortex is the result of a viscously diffusing line vortex and closely approximates trailing 

vortices, of course without any axial flow, as is the reality in the far field.  Notably, the 

Oseen vortex is normal-mode stable, i.e., all eigenmodes exponentially decay in time 

(Fabre et al. 2006), though perturbations can grow temporarily via transient growth 

(Antkowiak & Brancher 2004, hereinafter AB04; Pradeep & Hussain 2006, hereinafter 

PH06; Antkowiak & Brancher 2007, hereinafter AB07).   

 Growth of fluctuations draws interest for the possible transition of the column to 

turbulence, a goal in alleviating air traffic concerns as well as a topic of fundamental 

interest in all transitioning turbulent flows. As an idealization of the large scale CS 

present in vortex-turbulence interaction, breakup of these filaments into finer scale 

turbulence represents one sustaining mechanism for turbulent flows; the other being the 

amplification of fine scale turbulence by strain. Idealization of the CS as an isolated 

vortex then identifies the influence of turbulence on the column without strain, which 

generates elliptic instability (Kerswell 2002) and leads to transition. 

 Finite amplitude, transiently growing fluctuations on a vortex column, extracted 

in the linear regime, have generated significant distortions of the vortex column, 

potentially leading to breakup of the column (Hussain, Pradeep & Stout 2011, hereinafter 

HPS). Transition of the column to turbulence in this manner is termed “bypass transition” 

as it bypasses normal mode instability thought to trigger transition to turbulence 
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(discussed by Morkovin 1969 in transitioning shear layers, but equally applicable here). 

However, these fluctuations are also known to generate a circulation overshoot, predicted 

by Govindaraju & Saffman (1971), confirmed by PH10 and further studied by HS, 

suggesting that turbulence also leads to instability of the vortex column and a second path 

to turbulence (a different bypass transition where the growing perturbation causes an 

instability, which then generates turbulence).  

 A second possible instability is due to axial flow on the vortex axis, which is 

similar to the Batchelor (or q, where q is the ratio of peak azimuthal to peak axial 

velocities) vortex. Inviscid instability is present when q is less than 1.5 (as shown by 

Lessen, Singh & Paillet 1974, amongst others), while slower growing viscous instabilities 

are possible for q less than 2.31 (Stewartson & Brown 1985). Generation of axial flow, 

discussed for an axially diffusing trailing vortex by Batchelor (1964), is unclear for a 

rectilinear column vortex embedded in turbulence. Note that any turbulent generation of 

axial flow is independent of the generation of axial flow due to the axial pressure gradient 

generated by viscous diffusion of the core in realistic (i.e., non-rectilinear) trailing 

vortices (Batchelor 1964).  

 Here the mechanism for generation of axial flow is determined both from analysis 

of the Reynolds averaged and from the physical evolution of the turbulent field. Then, the 

implications of axial flow are considered, including whether axial flow is generated on a 

turbulent vortex column and whether the axial flow leads to instability.   
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Chapter 2: Methods 

 

The velocity (u, v, w) and vorticity ω = (ωr, ωθ, ωz) components are studied in 

cylindrical coordinates (r, θ, z), as shown in figure 1. The Cartesian coordinates (x, y, z), 

used for Fourier transforms (to avoid singularity issues at the axis for the cylindrical 

coordinates), are also shown. Uppercases denote mean quantities - averaged over all θ 

and z at each time - like mean azimuthal velocity, V, and mean axial vorticity, Ωz, while 

primes, e.g., ω'r, denote fluctuation quantities. Perturbation energy, E 

=.5∫(u'
2
+v'

2
+w'

2
)dƲ, is normalized by the computational volume (Ʋ). The average of a 

quantity over θ and z is denoted by an over-bar, e.g., ''vu . The vortex Reynolds number, 

Re ≡ circulation/viscosity=Γ∞/ν, studied herein ranges from 500 to 12500, where the 

column circulation (Γ∞) is that at infinite radius – area integral of axial vorticity in a plane 

perpendicular to the column axis.  

The simulation method uses a highly accurate pseudospectral method to correctly 

simulate an isolated vortex column (detailed in Pradeep & Hussain 2004). The flow is 

assumed to be periodic in the axial direction and is unbounded in the radial direction. 

The model vortex is an Oseen vortex with mean axial vorticity: 

 Ωz = Ω0 exp(–(r/r1)
2
), (1) 

where Ω0=2 is the peak mean axial vorticity and r1=1 is the initial radius describing the 

core; this profile has a peak azimuthal velocity, V0, of 0.63, a core radius, r0, of 1.12, and 

a turnover time T'=2πr0/V0, of 11, where the turnover time is the time it takes a fluid 

particle at the core radius to circle the core once.  Time is nondimensionalized by the 

turnover time as T=t/T'. 
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Figure 1:  Velocity components (u, v, w) in cylindrical (r, θ, z) coordinates, and the mean velocity 

profile, V(r); (x, y, z) are Cartesian coordinates. The core radius, r0, denotes the radius of V0, 

the maximum of V. Note that core vorticity, +Ωz, is in +z direction. 

 

The turbulence is a random fluctuation field generated using the Mansour & Wray 

(1994) spectrum, with an initial amplitude, û
2
(=∫(u'

2
+v'

2
+w'

2
)dƲ, normalized by V0, 

where Ʋ is volume of the computational domain) of ~20%. The large initial amplitude is 

chosen so that the fluctuations survive the initial dissipation and evolve into late time. 

The particular perturbation used to idealize the axial flow mechanism is a helical 

(azimuthal wavenumber m=1) transient growth mode, determined using the method 

detailed in PH06.  The initial amplitude is approximately 8%. The computational domain 

and mesh sizes for the turbulent case are 10√2×10√2×14π and 192×192×512; the domain 

and mesh sizes for the particular case are 10√2×10√2×2π/1.4 and 384×384×128. 
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Chapter 3: Motivation 

 

 To explore the development of instabilities during vortex-turbulence interaction, 

consider a simulation of the Oseen vortex embedded in fine-scale turbulence at Re=12 

500.  The dynamics of vortex-turbulence interaction are briefly reviewed (discussed at 

length in PH10), culminating with evidence that the turbulent field alters the mean flow. 

 The initial turbulent vorticity field is wrapped by the mean swirl around the 

column axis, forming azimuthally wrapped vorticity filaments (PH10). Over time, the 

wrapped filaments undergo pairing into larger filaments and self-advect axially, 

eventually forming dipoles with oppositely oriented filaments.  These filament dipoles 

experience enhanced cross-annihilation and eventually die out, leaving only a few 

filaments which did not form dipoles.  

Concurrent with the generation of the filaments, mean axial flow (W) is found to 

develop throughout the evolution of vortex-turbulence interaction, shown in the W 

profiles (figure 2). The initial axial velocity is assumed to be zero everywhere. 

Generation of mean axial flow means that the turbulent fluctuations intensify such the 

initially equal magnitudes of positive and negative perturbation azimuthal vorticity (ω'θ) 

at each radius become unequal, either by a difference in generation or by radial advection 

of azimuthally oriented filament (i.e., ω'θ dominated filaments).  The evolution of the 

largest (magnitude) axial flow, Wmax, at each time (figure 3) indicates that there are two 

general periods for the generation of axial flow, an initial developmental period and a 

steadier late time period. As the initial turbulence is wrapped to form vorticity filaments  
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Figure 2: Profiles of mean axial velocity, W, at seven times for vortex-turbulence interaction at Re=12 

500; note that W(T=0)=0. W is approximately 100 times smaller than the W generated for the 

particular case (figure 10). 

 

via mean straining (PH10), the axial flow unsteadily increases in magnitude (though 

negative due the generation mechanism, discussed below). These fluctuations are due to 

topological changes of the filaments such as filament pairing of adjacent, same-signed 

filaments and viscous cross-annihilation of adjacent oppositely oriented filaments. After 

this initial period (T>8), Wmax slowly decreases over time as the filaments generating 

axial flow viscously diffuse and cross-annihilate.  

Studies of vortex-turbulence interaction have focused on the self-induced axial 

advection of vorticity filaments due to the azimuthal wrapping of the filaments and the 

radial advection due to mutual induction of a filament dipole (PH10). By approximating  
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Figure 3: Evolution of peak mean axial velocity, Wmax, for vortex-turbulence interaction at Re=12 500; 

note that W(T=0)=0.  Wmax is approximately 100 times smaller than the Wmax generated for the 

particular case (figure 11). 

 

the vorticity filaments as vortex rings to understand such motion, the effect of the radial 

and axial components of the filament is ignored, especially for the self-induced motion of 

the filaments. Note that the axial component of the vorticity filament (i.e., axial 

perturbation vorticity, ω'z, plus the mean axial vorticity, Ωz) plays no role in the vorticity 

generation due to mean strain. The radial component of the self-induced motion of 

filaments, related to the radial and axial extent of the filament, is found to drive the 

generation of axial flow. 
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Chapter 4: Theory 

 

As a preface, the axial Reynolds-averaged Navier-Stokes equation, 

 
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show that W develops due to the wu   generated by a vorticity filament (shown in figures 

4a-b). Growth of u' is physically due to the tilting of radial perturbation vorticity into the 

azimuthal direction, i.e., mean shearing of the vorticity field, and thus there wu   

increases. Note that, unlike vu   associated with energy growth, there is no coupling 

between u' and w' generation except through continuity ( 0 u ). The physical structure 

of the filament then dictates the sign of wu   generated, not a physical phenomenon such 

as mean straining of the filament. Vorticity filaments then generate axial flow until 

limitation by viscous diffusion or nonlinear effects, such as self-induced tilting. Hence, 

axial flow is due to azimuthally wrapped filaments with radial and axial components; the 

physical mechanism for axial flow is discussed next.  

 

Figure 4: Example filament generating     ̅̅ ̅̅ ̅̅    with (a) ω'z>0, associated with u', and (b) ω'r<0, 

associated with w'. Note that ω'r and ω'z are not linked by mean strain, which means any 

combination of signs is possible (i.e., ω'r>0 and ω'z>0 or vice-versa).   
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Chapter 5: Physical Mechanism 

 

Jet-like axial flow (like that seen in figure 2) is intrinsically linked to mean 

azimuthal vorticity (Ωθ), which arises when initially equal magnitudes of perturbation 

azimuthal vorticity, ω'θ, become unequal. For this to occur, either the generation of 

oppositely signed ω'θ must become different (resulting in a difference between the 

magnitudes of ω'θ>0 and ω'θ<0) or filaments of oppositely signed ω'θ advect radially in 

opposite directions, resulting in radial separation of ω'θ. However, changes to the 

generation of ω'θ would result in the generation of meridional circulation, which is 

initially zero, resulting in a violation of conservation of circulation. On the other hand, 

radial advection of filaments is a spatial reorganization of the turbulent field with regions 

of oppositely oriented axial flow developing (discussed further later), maintaining 

meridional circulation at zero. Radial advection, as briefly mentioned above, is expected 

of the azimuthally wrapped filaments by the self-induced motion of the filament. 

The self-induced motion of the filament is given by  

us(x)=γκ/(4π)ln(L/a)b,      (3) 

where γ is the filament’s circulation, κ is the curvature of the filament (i.e., the inverse of 

the radius of curvature), L is the length of the filament segment considered and a is the 

core radius of the filament, where ln(L/a)=A is assumed to be constant (Callegari and 

Ting 1978, Ting and Klein 1991). The two controlling factors for the direction of self-

induced advection are γ, which for oppositely oriented filaments would be oppositely 

signed, and b, which is determined by the curve x(τ) and would be the same for  
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Figure 5:  Vortex filament segment defined by x(τ) = r(τ)r+z(τ)z with respect to the origin O sketched 

with tangent (t), normal (n) and binormal (b) unit vectors shown.  

 

oppositely oriented filaments since x(τ) is determined by the orientation of the curve and 

not its circulation. Note that b and curvature are independent of γ, and are the same for 

filaments with opposite circulation. 

To determine the binormal vector (b), take x(τ) = r(τ)r+ z(τ)z, where r depends on 

r(τ) and θ(τ), as shown in figure 5, and expand each term: r(τ)=r0+Δrτ+O(τ
2
), θ(τ)= 

θ0+Δθτ+O(τ
2
) and z(τ)=z0+Δzτ+O(τ

2
), where (r0, θ0, z0) are the initial position of the 

filament relative to the origin O, and (Δr, Δθ, Δz) are the first order variations of the 

filament curve (shown in figures 7a-c).  Note that the due to the radial variation of the 

mean azimuthal velocity, V, the radial extent of the filament Δr results in an additional 

azimuthal wrapping of the filament around the column Δθs=SΔrt, where S is the mean 

strain rate (sketched in figure 6), in addition to the initial Δθ, Δθ0; hence Δθ=Δθ0+ Δθs. 

Note that S is negative and thus Δθs is oppositely signed to Δr, just like the relation  
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Figure 6:  Effect of mean strain on vorticity filaments shown in (a) an end view and (b) an oblique view. 

Also shown in (b) are (t, n, b) and the axial extent of the filament (Δz).  

 

between radial perturbation vorticity and mean strain generated azimuthal perturbation 

vorticity (PH06).    

Defining x(τ) at each point along it are the triad of unit vectors: the tangent vector 

t, which points in the direction of the filament or in the direction that x(τ) varies; the 

normal vector, which points towards the center of curvature for the filament; and the 

binormal vector, which is t×n and forms a right-handed set of vectors with the tangent 

and binormal (sketched in figure 5).  Physically, b is the normal vector for the plane 

defined by t and n, and is angled with respect to the column axis for the curve x(τ). For 

example, the tangent vector t for a vortex ring is in the azimuthal direction, n points 

towards the vortex axis (–r direction) and b is in the axial direction, depending on the 

direction of t. With the addition of axial dependence, i.e., for a helical vortex line, t has 

azimuthal and axial components, n remains unchanged, and b has azimuthal and axial 

components. Finally, for a filament with radial, azimuthal and axial variations, as 

described above, each unit vector (t, n, b) has components in (r, θ, z), as shown in figure 

7.  
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Figure 7:  Decomposition of t, n and b in (a) a θ-z plane (a cylinder coaxial with the vortex column); (b) 

in an r-θ plane (looking down the z axis); and (c) in an r-z plane. Note that n lies in the r-θ 

plane, with nθ omitted from (a) for clarity. 

 

Calculating n from x(τ), its second derivative, gives the curvature κ~[rc(SΔrt)
2
]

-1
, 

where rc is the initial radius of the filament.  Deriving the three components of b using t 

and n (the individual components of (t, n, b) are sketched in figure 7) gives  

b∙r = -ΔrΔz(SΔrt)/|b|,        (4.1) 

b∙θ = (rc+Δrτ)(SΔrt)
2
Δz/|b|, and      (4.2) 

b∙z = [2Δr
2
(θ0+SΔrtτ)-(rc+Δrτ)

2
Δθ

3
]/|b|,    (4.3) 

where |b|≈rc
2
(SΔrt)

3
, based on order of magnitude approximations. From (4.1), the self- 
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induced radial velocity of the filament, (3), then becomes  

us∙r = γAΔzΔr/[2πrc
3
(SΔrt)

4
],      (5) 

where Δθ0 is assumed to be negligible compared to the mean straining term.  

Integration of (5) in time and expanding the t
-3

 term gives  

rf
 
≈ rc + γAΔrΔzt

3
/[6πrc

3
(SΔrt0)

4
],     (6) 

indicating a cubic dependence in time for the radial shift of the filament, where t0 is an 

artificial origin such that rf=0 at t=0. To illustrate this, consider a space curve, x(τ), as 

shown in figure 8(a). For a filament with γ>0 (figure 8b, top filament), the filament 

radially advects outward (as well as in the +z direction) from t0 to t1, as expected from 

eqn. (6); similarly, a filament with γ<0 (figure 8b, bottom filament) radially advects 

inward (and in the –z direction).  

Note that Δz is assumed to be positive, as the mean axial vorticity, Ωz, is positive 

outside the core for the Oseen vortex. However, there are instances, such as outside a 

Rankine vortex, where Ωz=0 and the space curve is described by the fluctuation axial 

vorticity ω'z, and for a circulation overshoot, where Ωz is negative, that Δz may be 

negative.  

The axial velocity induced by the filament (approximated as a ring), Wf, is given 

by  

Wf=γ/(2rf).          (7) 

Inserting rf, eqn. (6), into eqn. (7) gives 

Wf ≈ γ/{2rc + γAΔrΔzt
3
/[6πrc

3
(SΔrt0)

4
]}.    (8) 
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Figure 8: (a) Vorticity filament segment with Δr<0 and Δz>0 at t0 with (t, n, b) shown. Note that b is in 

(+r, +z) direction. (b) Advection of a filament at t1 with γ1>0 (upper), in the direction of the 

binormal, and γ2<0 (lower), in the opposite direction of the binormal. 

 

Two oppositely oriented filaments, with circulations γ1=CΓ and γ2=-CΓ where C 

is the ratio between the filaments’ individual circulation to the column’s circulation, the 

total induced axial velocity of the two filaments, Wf1 and Wf2, is 

Wtot=-γ
2
AΔrΔzt

3
/[6πrc

5
(SΔrt0)

4
].     (9) 

The effects of strain, seen in the curvature and binormal vector, would dominate the 

growth of Wtot at early times; note the cubic rate matches the linear analysis extended 

from Pradeep & Hussain (2006).  As nonlinear effects influence the filament evolution 

(discussed later), the cubic growth ends and the linear in time term dominates growth of 

Wtot, which matches the trends in the simulations, discussed later (§6, figure 12). 
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Figure 9:  (a) Cross sectional sketch of two oppositely oriented filaments with +ω'θ and –ω'θ at the same 

radius, rc, and their induced flows at the axis. (b) Filaments’ positions at a later time, resulting 

in a net axial flow (the difference between the two arrows). 

  

Note that eqn. (6) for filaments with (oppositely signed) γ1 and γ2 (with Δr<0 and 

Δz>0, as shown in figure 8) gives opposite changed to rf due to the opposite sign of γ (as 

shown in figure 9 where azimuthal vorticity, ω'θ, indicates the circulation), hence W 

generated by filament 1 (with positive γ and radial advection outward, shown between 

figures 7b-c) would decrease, and W generated by filament 2 would increase. 

Furthermore, the direction of each Wf is entirely contained within the first two terms of 

the right hand side of (8), which means the net direction of Wtot must be determined by 

which filament is closer to the axis (hence stronger Wf generated). From (6), the filament 

with γ=-CΓ (i.e., filament 2) moves closer to the column and gives the direction of Wtot as 

negative. Physically, the self-induced velocity of the filaments leads to filaments initially 

at the same radius moving radially apart, generating a mean axial flow on the axis.  

 A second physical interpretation can be derived from helical wave decomposition 

(Melander & Hussain 1993).  From analysis of the vorticity field in MH93, right-handed 
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vorticity tends to be dominated by vorticity filaments with positive azimuthal vorticity 

(ω'θ>0) while left-handed filaments are dominated by ω'θ<0.  Note that right-handed 

vorticity naturally generates left-handed vorticity, and vice-versa, so no filament is ever 

purely in a single handed direction. The self-evolution of a polarized vorticity field is 

found to be one of the driving factors for the polarized vorticity field evolution, on par 

with the transport due to the opposite polarity vorticity field; in the case of a filament 

dominated by a single polarity where the opposite polarity vorticity is negligible, self-

induced motion of the polarized vorticity dominates. If sections of these filaments are 

idealized as sections of circular vorticity filaments, their self-induced velocities are in 

opposite directions, leading to radial separation, as discussed before.  The result of this 

self-induced motion is a polarization of the vorticity field, with alternating layers of left- 

and right-handed vorticity coaxial with the vortex core. Since axial flow on a vortex 

column, for instance in a Batchelor vortex, is due to polarized vortex lines, layering of 

polarized (fluctuation) vorticity fields outside the core naturally leads to axial flow. 

The assumptions made in the derivation of eqn. (9) are briefly discussed here. 

First, in determining the tangent, normal and binormal unit vectors to the filament, the 

mean strain, S, is assumed to be a constant for the segment of the filament. Since S~r
-3

 in 

the potential region outside the vortex column and the radial variation (Δr) and radial 

shift, the second term in (6), are small, this is a valid assumption until the radial shift 

becomes significant. Additionally, movement of the filament radially inward towards the 

column will eventually be inhibited by the column, which acts like a deformable surface. 

This would accelerate the shift in the tangent towards the azimuthal direction and move 
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the binormal towards the axial direction, ending the radial movement of one of the 

filaments and slowing the generation of Wtot.  

Also, the components of b (4.1-4.3) are simplified using their magnitude, and Δθ0 

may be significant, particularly in the turbulent case.  However, the assumptions hold at 

later times, when the mean straining term dominates the θ term.  Finally, these 

assumptions hold true when the self-induced velocity is a dominant term for the total 

velocity of the filament, which includes the mean azimuthal velocity and the velocity 

generated by adjacent filaments. For a filament dipole formed from two oppositely 

oriented filaments, the mutually induction of the two filaments eventually dominates the 

self-induced motion of each individual filament, leading to radially outward advection 

(PH10 and others). Dipole formation limits the generation of axial flow once the mutual 

induction of two adjacent filaments with small (and decreasing) separation, prior to that, 

the self-induction dominates, leading to the differing radial advection discussed above. 
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Chapter 6: Results & Discussion 

 

To validate eqn. (9), briefly consider the effects for two oppositely oriented 

filaments outside the column with γ1 = 0.1Γ and γ2 = 0.1Γ at a radius of rc = 1.5r0 and a 

segment with radial and axial length Δr = Δz = 0.01r0, where r0=1 is the vortex core 

radius. As the filament is outside the core, S ≈ –Γrc
-2

.  

Evaluate t0 and insert into eqn. (9), Wtot ≈ γ
2
AΔrΔzt

3
/[6π rc

5
(SΔrt0)

4
]; let t0=T, to 

account for the initial wrapping of the filament, and A = ln(L/a)~10, i.e., the filament 

length is much longer than the filament’s core radius due to the mean straining effect. 

Taking Γ=1, Wtot(t=1)=0.0122 and Wtot(t=2)=0.0978, after which the assumption of small 

radial separation no longer holds though axial flow continues to be generated. Since 

Vmax=Γ/r0=1, q=Vmax/Wmax, where Wmax=Wtot, has dropped from infinity to 10.2 at t=2, 

with q continuing to decrease towards 1.5, the unstable value. Note that t0, A, and γ are 

estimated (with γ based on the observed values in PH10). Viscous effects, which would 

eventually limit the filaments’ self-induced radial advection and the generation of axial 

flow by diffusing the filaments, limit the decrease in q.  

The above analysis assumes two thin cored vortex filaments, and that for the case 

of larger filaments (or multiple filaments), the value of Wtot would further increase, hence 

an even lower q.  In the case of vortex turbulence interaction, θ0 and the time it takes 

mean straining to dominate the structure of x(τ) delays the development of Wtot as not all 

filaments begin to radially advect at the same time. Furthermore, dipole formation and 

viscous cross-annihilation reduces (though not completely eliminating, as seen in PH10) 

the number of filaments which generate axial flow over time, also limiting Wtot generated.  
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Briefly note that for axial flow to be generated, there must be a difference in the 

number of γ>0 filaments advected inward and the number of γ<0 filaments advected 

inward (and vice-versa), i.e., a different number of filament pairs spiraling upward versus 

spiraling downward. In the case of an infinitely long vortex column embedded in a 

random turbulent field, this is not possible, as there are an infinite number of filaments of 

either orientation (left-handed spiraling or right-handed spiraling) and either circulation. 

However, for a long but finite vortex, the initial turbulent field consists of a number of 

filaments, which can then undergo radial advection and lead to axial flow. Hence, the 

infinitely long vortex column would have local axial flows due to segments of the 

column, indicating the development of stagnation points and possible vortex breakup in 

the infinitely long case. 

To illustrate the mechanism, consider the development of mean axial flow for a 

transiently growing helical (azimuthal wavenumber m=1) perturbation (PH06) at Re=10 

000. The perturbation selected is the Re=5 000 transient growth optimal perturbation, 

which means it is the largest growing perturbation possible at Re=5 000 in the linear 

regime. The perturbation is selected as a long lived helical perturbation, which is due to 

its transient growth, not because it is a transient growth optimal perturbation. Mean 

straining of the perturbation generates initial growth, as discussed above for figure 6(a), 

before growth is limited by the effect of mean axial vorticity, i.e., core dynamics, and the 

perturbation viscously decays (PH06). 
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Figure 10: Profiles of W at six times for the perturbation at Re=10 000; note that W(t=0)=0, which is 

marked by the horizontal dotted line.  Between t=50 and 100, there is a decrease in W at the 

axis, likely due to distortion of the axis. 

 

Profiles of the mean axial velocity (figure 10) confirm the development of 

significant axial flow at the vortex axis (r=0), a result of the organization of the small 

scale fluctuations. Since the meridional circulation remains zero, there is a region of 

oppositely-oriented axial flow corresponding to layers of oppositely-oriented Ωθ 

encircling the vortex axis, generated by the imbalance in the filaments’ strengths radially 

transporting the filaments. Note that the profiles near the axis appear almost Gaussian, 

though, near r≈1.5, the transport by the filaments distorts the profile. Continued 

generation of axial flow would lead to instability unstable, a topic for further research.   

Note that the profiles for the m=1 perturbation and the turbulent case are similar. 

For example, the radius where the profile crosses W=0 for the turbulent (r≈2.5, figure 2) 
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and m=1 (r≈2.5, figure 10) cases are approximately equal.  Additionally, the Gaussian 

shape near the axis for the two cases are similar, though different magnitude. The similar 

structures mean that the profiles are likely driven by the same fundamental dynamics – 

transient growth of helical perturbations (discussed in HPS). 

The peak axial velocity (figure 11) for the given perturbation also increases with 

increasing Re, due to decreasing viscous diffusion of the filaments driving growth. Note 

that W~t
5/2

, which matches the rate predicted by eqn. (9). At late times, W grows linearly 

as the assumptions in the derivation of eqn. (9) no longer hold, as the assumption of small 

radial advection is violated. Additionally, the filaments do not undergo purely self-

induced advection as additional filaments are present around the column and generate 

radial flow, potentially even forming a vorticity filament dipole at later times. The 

individual filaments are also not thin-cored, and begin to distort due to the velocity field 

induced by the adjacent filament, as well as their own self-induction. The late-time linear 

growth of W at high Re suggests that the generation of axial velocity does continue 

similar to the idealized case above, though finite filament size and mutual interaction of 

the filaments play an increasingly large role in W. 

For the turbulence case (figure 2), the profiles drastically evolve from the early 

times, specifically the radial oscillations at T=2.4.  These initial distortions arise from the 

varying concentration of fluctuation vorticity, which after mean straining, results in 

slightly different filament magnitudes.  Over time, the stronger filament self-advection in 

the particular case generates greater W at the vortex axis (and the regions of oppositely 

oriented flow at large radii to maintain zero meridional circulation).  Self-advection is 

clearer in the particular case (figure 10), where the initial vorticity distribution is  
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Figure 11: Log-log plot of |Wmax|, showing an early time trend of T

5/2
 and a late time trend of T.  

 

localized in two oppositely oriented filaments, thus the removing random initial 

azimuthal amplitude in the turbulent case that is ignored in eqn. (5).  

In the particular case above, the filaments are five times as strong and located at 

rc=2.7r0, thus the estimation of Wtot and q from eqn. (9) shows the value of q decreases 

below the unstable limit, confirmed in figure 12, the time evolution of q. This is notable 

given the axial flow in vortex-turbulence interaction, which would continue to increase at 

higher Re as the filaments last longer to generate greater W. Additionally, the 

perturbation in the particular case idealizes the structure with the largest energy found in 

vortex-turbulence interaction, the optimal transient growth perturbation (HPS), 

suggesting that at late times, the axial flow will further increase as the optimal mode 

comes to dominate the flow. 
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Figure 12: Evolution of q=|Vmax/Wmax| at six Re (500, 1000, 2000, 2500, 5000, 10000), with q=1.5 

marked by the dashed horizontal line (q<1.5 is unstable).  At T=11, q<1.5, suggesting that the 

vortex becomes unstable.  

 

Fluctuations in q (figure 12), especially at higher Re, are due to helical (azimuthal 

wavenumber m=1) distortion of the core, sketched in figure 13. The radial velocity 

induced by helical filaments outside the column at the axis radially displaces the axis. 

Once the axis is displaced, the cylindrical averages used here then no longer correspond 

with the coordinate system of the vortex column. For instance, the total flow along the 

helically displaced vortex axis is only partially captured by the average of the z 

(cylindrical coordinates) component of the velocity field. Comparing the evolution of the 

radial displacement (figure 14), measured by the radial position of the vorticity 

magnitude centroid, r , taken to be the centroid of all vorticity which is above 75% of the  
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Figure 13: (a) An initially rectilinear vortex column is perturbed with a helical (m=1) perturbation. (b) 

The perturbation’s induced velocity displaces the axis, causing the vortex to become helical. 

 

maximum vorticity, to the evolution of q shows that the fluctuations in q correspond to 

increased distortion of the vortex axis. Hence, q consistently decreases towards the 

unstable range, even as the vortex column is distorted helically. 

 To investigate whether the decrease in q leads to instability and perturbation 

energy growth, the evolution of the volume-integrated turbulence kinetic energy, E(T)(= 

0.5∫(u'
2
+v'

2
+w'

2
)rdrdθdz, normalized by 2πrlzl, where rl and zl are the radial and axial 

lengths of the computational domain, figure 15) is examined for energy growth when 

q<1.5 at T~11 (figure 12). Evolution of E(T) is dominated by the initial energy growth, 

which increases with increasing Re, and is a result of transient growth (noted before). At 

Re=10 000, when q decreases below 1.5, E(T) increases slightly before decreasing again, 

suggesting instability. Examination of the turbulent kinetic energy profiles, E(r, T) (= 

0.5∫(u'
2
+v'

2
+w'

2
)rdθdz), for the Re=10 000 case between T≈11 and 12 show a region of 

energy growth between r≈0.5 and r≈1.5 (figure 16, with the region of interest shown in 

the inset). Note that the distortion of the vortex axis during this time is increasing, and  
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Figure 14: Evolution of the vorticity magnitude centroid relative to the initial position ( ̅) due to the 

helical perturbation, denoting the center of the vortex, at Re=10000.  Fluctuations in  ̅ cause 

fluctuations in Wmax (figure 11) and q (figure 12). 

 

has an average position near r=0.5, suggesting that this growth is within and on the edge 

of the core.  Between T=10.9 and 11.6, there is notable increase in energy at r=1, at the 

core edge, where W(r) generates significant strain (the radial gradient of W, seen in figure 

10), hence energy production. Over time, the viscous decay of W means less energy 

production and the onset of decay, with decay beginning at T=11.8 (figure 16). Note that 

the energy increase shown in the inset of figure 16 is balanced out by the decay of the 

energy peak at r≈0.25, i.e., decay of core fluctuations.  

 Similar regenerative energy growth was observed in HPS, and described using a 

parent-offspring hairpin vortex mechanism for renewed vorticity generation and  
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Figure 15: Evolution of the volume integrated (normalized) turbulent kinetic energy for the particular 

case at six Re. Note that at T≈11 for Re=10 000, the energy slightly increases, corresponding 

to the onset of instability in figure 12. 

 

perturbation growth. According to HPS, a mean vortex line which has been radially 

perturbed (figure 17a), is wrapped azimuthally by the mean strain to generate an 

azimuthally oriented vorticity filament (the parent hairpin, figure 17b) which tilts axial 

vortex lines radially (shown as the perturbed vortex line in figure 17b). The newly 

perturbed vortex lines are then wrapped by the mean strain to generate a newly 

intensifying filament, hence renewed energy growth. To illustrate this, ωy contours in a 

meridional (z-x) plane (figure 18), which corresponds to ωθ above the axis and -ωθ below 

the axis, are shown before and during the regenerative growth period seen in figure 15.  

Note that the axial flow is in the –z direction (right to left). As the hairpin 

mechanism depends on azimuthally wrapped filaments, tilting of vortex lines occurs 
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Figure 16: Profiles of TKE at six times for the Re = 10 000 case during the late time period of 

regenerative growth (from T≈11 to T≈12 in figure 15). Inset shows the radial region where 

TKE increases, then peaks (at T≈11.5) and decay during this period.  

 

throughout the evolution of the flow, and generates offspring filaments from the onset of 

the flow; confirmed by meridional plane contours of ωx (figure 19; corresponding to ωr 

above the axis and -ωr below the axis) which show that the parent filament (marked by 1 

in figures 18 and 19) generates ωr radially inward. Note that the offspring vortex is 

generating ωx (i.e., ωr) at T=10.5 (figure 19a, marked by 2), before regenerative growth 

occurs, and these four regions (two below each leg of the hairpin, due to the tilting by 

each filament) remain approximately constant both in ωx and ωy (compare regions 1-1'''', 

the parent hairpin, and 2-2'''', the offspring hairpin, in figures 19 and 18 respectively). For 

regenerative growth to occur the tilting of vortex lines by the parent filament must exceed 

the diffusion of the offspring filament’s vorticity, which would not occur as both the 
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Figure 17: Postulated parent-offspring hairpin vortex mechanism from HPS. 

 

initial and offspring filaments decay; hence the hairpin mechanism cannot result in 

amplification of the offspring filament at late times.  

Generation of axial flow depends on the radial separation of the filaments and 

their circulations, and thus occurs even as the filaments decay as long as their radial 

separation increases. Contours of ωy show a sheath of same-signed ωθ around the core, as 

expected for the axial flow present. The region of energy growth seen in figure 16, near 

the core axis (confirmed by the intensifying contours near the axis in figure 18), indicates 

that the offspring mechanism is not the source, as the original filaments, seen at the peak 

near r=4, and the offspring, seen near r=2, both are unamplified during the regenerative 

period. Note that the filaments at r>1.5, i.e., the “parent” and “offspring” filaments from 

HPS, remain approximately constant. These radial locations are confirmed by the 

contours in figures 18(a-e), where the initial filaments have formed a dipole indicated by 

1-1'''' in figures 18(a-e) and the offspring filaments, which are composed of oppositely 

signed vorticity and lie radially inwards of them, are indicated by 2-2'''' in figures 18(a-

e). Given that the second offspring filaments (marked by 3-3'''') re-intensifies after 

decaying, while the parent filaments (in this case 2-2'''') also decay (hence their vorticity 
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production also decreases), the hairpin mechanism cannot lead to the regenerative 

growth.  

Instead, consider the effects of a perturbation to a Batchelor vortex from the 

linearized perturbation vorticity equations: 
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where S=r∂(V/r)/∂r is the strain due to the mean azimuthal velocity and 

D(∙)/Dt=∂(∙)/∂t+U∂(∙)/∂r+(V/r)∂(∙)/∂θ+W∂(∙)/∂z. In cases where W(r)= Ωθ(r)=0, eqn. (10) 

recovers the equations for perturbations to the Oseen vortex (PH06). The additional 

terms, the first term on the right hand side of the three component equations and the last 

term for the ω'θ and ω'z equations, due to the mean axial flow and mean azimuthal 

vorticity identify the mechanism of instability for a Batchelor vortex. Mean axial flow 

generates ω'z from ω'r by ω'r∂W/∂r, as sketched in figure 20(a). Initially, a filament 

composed of purely ω'r is tilted into ω'z by the radial gradient of W, i.e., mean strain 

associated with axial velocity, producing ω'z of opposite sign to ω'r. Mean azimuthal 

vorticity has two terms: (Ωθ/r)∂u'/∂θ, which corresponds to tilting of the mean azimuthal 

vorticity lines (circles concentric with the vortex core) into the radial direction; and 

(u'Ωθ)/r which is radial advection of Ωθ by the perturbation velocity. Of these terms, 

generation of ω'r by (Ωθ/r)∂u'/∂θ, closes the loop in vorticity generation necessary for 

instability. As sketched in figure 20(b), tilting of Ωθ by u' associated with ω'z generates 
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 (a) T=10.5 (b) T=10.9 (c) T=11.2 (d) T=11.6 (e) T=12 

 
Figure 18:  Meridional (z-x) plane contours of ωy (ωθ above the axis, -ωθ below the axis) before and 

during the regenerative growth in figure 16. Shaded regions denote negative ωy; level are 

plotted at |ωy|=[ωmin, ωmax, δω]=[0.1, 1, 0.1]. Ω=0.5 (red) indicates the core.  

 

ω'r of opposite sign. In summary, tilting of ω'r into ω'z produces ω'z which tilts Ωθ into 

amplifying ω'r, creating a cycle of vorticity intensification. Concurrent with this 

intensification of ω'r and ω'z is tilting of ω'r into ω'θ without loss, resulting in continual 

amplification of all three vorticity components.  

Examination of all three vorticity components (extrapolating ωz from the other 

two) within the vortex core (marked by 3-3'''' in figures 18(a-e) and 19(a-e)), show 

significant growth indicative of the effect of mean axial flow. Limitation of this growth 

occurs via viscous effects and the onset of core dynamics (Melander & Hussain 1994), 

which reduces ω'r due to tilting of Ωz, After growth, the intensified region (i.e., the 

contours marked by 3''' in figures 18(d) and 19(d)) merges with the core fluctuations and 

decays (compare the two distinct regions of ωy at 3'' in figure 18(c) to the single region at 
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(a) T=10.5 (b) T=10.9 (c) T=11.2 (d) T=11.6 (e) T=12 

 
Figure 19: Meridional (z-x) plane contours of ωx (ωr above the axis, -ωr below the axis) before and 

during regenerative growth in figure 16. Shaded regions denote negative ωx; two level ranges 

are plotted, one at |ωx|=[ωmin, ωmax, δω]=[0.02, 0.1, 0.02] and one at [0.1, 1.5, 0.1].  

 

3'''' in figure 18(e)). From analysis of the evolution of the filament’s structure and the 

profiles of turbulent kinetic energy, the growth corresponds not to the hairpin mechanism 

to the mean axial strain from inviscidly generated W, suggesting that vorticity generation 

due to axial flow dominates the hairpin mechanism when q is in the unstable regime. 

 

 
Figure 20:  Vorticity generation due to (a) axial flow and (b) the related mean azimuthal vorticity (Ωθ).  
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Chapter 7: Conclusion 

 

 Azimuthal vorticity filaments encircling a vortex column, generated by from a 

turbulent vorticity field by the mean strain rate of the vortex, undergo self-induced radial 

advection, resulting in the generation of axial flow within the column. Simulation results 

of a helical perturbation to an Oseen vortex confirms generation of axial flow and finds 

that at high Re, the vortex column becomes unstable via the q criterion and undergoes 

regenerative growth. Evolution of the vorticity field indicates that while the parent-

offspring hairpin vortex mechanism scenario of HPS does generate vorticity, during the 

observed period of regenerative growth, the parent & offspring vortices are decaying, 

hence vorticity generation due to axial flow likely dominates the hairpin mechanism. 

Inviscid generation of axial flow on the columnar vortex by turbulence inherently 

draws comparison to the viscous generation of axial flow in a viscously diffusing trailing 

vortex. Following Batchelor (1964), the pressure gradient due to a diffusing vortex 

column generates a velocity deficit in the axial flow (i.e., a decrease from the free-stream 

axial flow) which decreases as at t
-1

log(t) at late times (or large downstream distances). In 

comparison, eqn. (9) shows that Wtot increases as t
5/2

, while the simulation results indicate 

slower linear in time growth at late times. The surprising difference in late time 

behaviors, one decaying versus one growing, indicates the turbulence generate axial flow 

is more significant at late times. Furthermore, the inherent difference between a viscous 

and an inviscid mechanism means that the turbulence generated axial flow plays a greater 

role in high Re flows.   
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The analysis for azimuthally wrapped filaments can be extended to flows outside 

of vortex-turbulence interaction.  For instance, in mixing layers, transition to turbulence 

(and breaking of the spanwise symmetry) occurs as the vortex sheet rolls up into 

spanwise vortices and then undergoes a secondary instability where streamwise vortices 

develop (as “ribs” on the spanwise vortices).  These “ribs” are wrapped around the larger 

spanwise vortices similar to the azimuthally oriented vorticity filaments considered here, 

and would undergo similar self-induced radial advection in opposite directions. This 

would eventually lead to radial separation of the “ribs”, generating axial flow in the 

larger vortex and wrapping around each other, likely leading to transition of the flow to 

turbulence. 

 Additionally, the discussed generation of axial flow is due only to the inherent 

structure of the filament, and thus would be present in Batchelor vortices, i.e., vortices 

with initial axial flow. In such a case, the generated axial flow can either lead to 

instability via increasing W, or can stabilize the vortex by reducing W. In a spatially 

evolving Batchelor vortex, like those in a lab, the generated axial flow discussed here 

would develop as a function of the downstream position, leading to a possible stagnation 

point when the generated W matches the initially present W, i.e., vortex breakdown. 

Furthermore, the filaments generating the axial flow would likely dictate the flow 

structure post-breakdown, as late time filaments are nearly axisymmetric. The conditions 

and parameters for breakdown have been heavily discussed for the base flow (see 

Leibovich 1978, Schmucker & Gersten 1988, and others); however turbulent generation 

of axial flow can improve prediction of vortex breakdown and potentially enable better 

control of breakdown. 
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 Additionally, axial flow is known to generate perturbation growth (compare the 

transient growth magnitude for the Oseen vortex in PH06 to the growth for the Batchelor 

vortex in Heaton & Peake 2007), which means the turbulent generated axial flow also 

intensifies the perturbation. Physically, the radial gradient of the axial flow stretches the 

vorticity filaments, which counters viscous diffusion and continues the generation of W 

for longer periods. Interestingly, this presents a scenario where the filaments generate 

axial flow, which sustain the filament until either the filaments are destroyed by cross-

annihilation, which would occur when axial self-advection of the filaments leads to 

dipole formation, or the vortex column transitions to turbulence. 

There are three areas for future work on this topic beginning with confirming the 

observed trends for vortex-turbulence interaction dependent on the initial turbulence 

intensity. To properly assess measure these trends, higher Re simulations (up to Re=1 

million) are needed, likely through the use of LES. Second is the regenerative 

perturbation growth on the vortex column, which appears to result from the axial flow 

reaching the unstable range. Careful examination of the flow evolution and the dynamics 

are needed to separate (or merge) the influence of axial velocity and the hairpin 

mechanism of HPS. Third is analyzing vortex breakup into turbulence due to the natural 

generation of axial velocity, where the mean profiles are distinctly different from the 

Batchelor vortex because of the region of oppositely signed mean axial velocity, 

necessary by the constant zero meridional circulation. Additionally, the prospect of 

destabilizing axial flow generated by fine scale turbulence in large scale coherent 

structures has applications to numerous turbulent flows where large scale structures 



36 

 

appear before transition to turbulence such as mixing layers, jets, wakes and boundary 

layers.  
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