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Abstract: 

 Seismic imaging is the primary technique for subsurface exploration. It requires 

placing a large number of sensors (geophones) in a grid pattern, triggering a seismic event, 

and recording the propagating waves. The location of hydrocarbons is inferred from these 

readings.  Traditional seismic surveying for hydrocarbons employs human laborers for 

sensor placement, lays miles of cabling, and then recovers the sensors. Often sites of 

resource or rescue interest may be difficult or hazardous to access. The major drawbacks 

of surveying with human deployment are the high costs and time, and risks to humans due 

to explosives and harsh climatic conditions.  Thus, there is a substantial need to automate 

the process of seismic sensor placement and retrievals using robots. We propose an 

autonomous, heterogeneous sensor deployment system using UAVs to plant immobile 

sensors and deploy mobile sensors. Detailed analysis and comparison with traditional 

surveying were conducted. Hardware experiments and simulations prove the effectiveness 

of automation regarding cost and time. The proposed system overcame the drawbacks and 

displayed higher efficiency. The deployed sensors essentially became a wireless sensor 

network (WSN). Thus traditional batteries cannot sustain a WSN. Energy is the major 

impediment to the sustainability of WSNs. Most energy is consumed by (i) wireless 

transmissions of sensed data and (ii) long-distance multi-hop transmissions from the source 

sensors to the sink. This research also presents an optimal path-planning algorithm for 

sustaining WSNs and validates the claim with simulations. The research in the future aims 

at exploring methods to exploit emerging wireless power transfer technology by using 

UAVs to service the WSNs. These UAVs cut data transmissions from long to short 

distances by collecting sensed information and replenishing WSN’s energy.  
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CHAPTER 1 – INTRODUCTION 

1.1 Seismic Survey 

Hydrocarbons (coal, oil, natural gas) supplied more that 66% of the total energy 

consumed according to an estimate by IEA (International Energy Agency) in 2014 [1]. The 

global exploration and production were recorded to be 700 billion USD in the year 2014. 

Avoiding hazards and maintaining safety during exploration is necessary because 

hydrocarbons are flammable. Remote locations often require seismic surveying, with 

concomitant problems of inaccessibility, harsh conditions, and transportation of bulky 

cables and sensors. These factors increase the cost. Traditional exploration involves 

planting geophones (sensors) into the soil and detecting seismic disturbances caused by 

vibrating trucks or dynamite detonations which act as a vibration source. As these 

vibrations propagate, they are reflected and refracted by different layers below the surface. 

Geophones sense these vibrations and store the data on board or send it to a data processing 

unit. The data obtained describes the amplitude of the seismic waves at the geophone 

locations. Instead of randomly searching for hydrocarbons, explorations are carried out 

using elaborate technical procedures, equipment, and skilled labor over a large area. 

Seismic survey increases the possibility of discovering hydrocarbon reserves in an optimal 

fashion, using the data obtained. Cables are used to connect the seismic recorder and the 

sensors, but cabling cost is proportional to area, and certain terrains are inaccessible, such 

as jungles or wetlands. The exploration process involves repeated manual deployment and 

redeployment of sensors. Applying current advancements in robotics and automation could 

reduce the cost, decrease time and increase precision in sensing seismic waves.  
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Fig. 1: Manual geophone placement. a.) Geophones are planted manually. b.) Cables for                                            

connection c.) The SeismicDrone system. d.) Geophone cross-section.                    

 

Fig. 1 displays the significant drawbacks of traditional seismic exploration. 

Traditional methods require cables to connect geophones to the seismic recorders and 

batteries and the geophone sensors are manually placed at specific locations on the field. 

The solution presented is a flying UAV for geophone placement and recovery. Drones or 

unmanned aerial vehicles (UAVs) are flying platforms with propulsion, positioning, and 

independent self-control. 

As drone technology improves and regulations are adopted, there are major 

opportunities for their use in scientific measurement, engineering studies, education and 

agriculture. In particular, measuring mechanical vibrations is a key component of many 

fields, including earthquake monitoring, geotechnical engineering, and seismic surveying. 

Seismic imaging is one of the major techniques for subsurface exploration and involves 

generating a vibration which propagates into the ground, echoes, and is then recorded using 
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motion sensors. Numerous sites of resource or rescue interest may be difficult or hazardous 

to access. Also, the abundance of survey sites requires a great deal of manual labor. Thus, 

there is a substantial need for unmanned sensors that can be deployed by air and potentially 

in large numbers. The primary goal of this research is to design, build, and demonstrate the 

use of motion sensing drones for seismic surveys, earthquake monitoring, and remote 

material testing. 

 

Fig. 2: The heterogeneous sensor system presented in this thesis, a wireless SeismicDarts 

and a SeismicSpider, both designed for deployment from a UAV. 

 

We propose a heterogeneous robotic system for obtaining seismic data, shown in 

Fig. 2. The system consists of two types of sensors, the SeismicDart and the SeismicSpider. 

The SeismicDart is a dart-shaped wireless sensor that is planted in the ground when 

dropped from a UAV. The SeismicSpider is a mobile hexapod with three legs replaced by 

geophones. This system is designed to automate sensor deployment, minimizing cost and 

time while maximizing accuracy, repeatability, and efficiency. The technology presented 
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may have broad applicability where quickly deploying sensor assets is essential, including 

geoscience, earthquake monitoring, defense, and wildlife monitoring. 

1.2 Data Transmission 

 

Fig. 3: Power usage in a wireless sensor node is dominated by transmission costs and 

listening costs. Figure modified from [2]. 

 

New wireless sensor technologies have enabled wireless sensor networks (WSNs) 

to proliferate in many different fields (e.g., battlefield surveillance, environmental sensing, 

biomedical observation [3], [4], [5], [6]). Although advances in processing and computing 

designs can endow sensors with a multitude of sensing modalities (temperature, pressure, 

light, magnetometer, infrared, etc.), advances in battery technology have been more 

modest. Energy constraints on battery-powered sensors limit the sustainability of WSNs. 

In WSNs, the majority of energy is consumed by (i) wireless transmission of perceived 

data [7], and (ii) long-distance multi-hop transmissions from source sensors to the sink. 

Radio transmission and listening dominate power usage, as shown in Fig. 3.  
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Harvesting environmental energy, such as solar, wind and vibration, is subject to 

their availability and is often uncontrollable. Incremental sensor deployment makes WSNs 

neither sustainable nor environmentally friendly since most disposable sensors’ batteries 

contain cadmium, lead, mercury, copper, zinc, manganese, lithium, or potassium [8]. These 

heavy metals “can leach into soil and water, polluting lakes and streams, making them unfit 

for drinking, swimming, fishing, and supporting wildlife, and even posing hazards to 

human health” [9]. Fortunately, recent breakthroughs in the area of wireless power transfer 

technologies (e.g. inductive coupling, magnetic resonant, and RF energy harvesting) [10] 

provide promising alternatives for deploying such WSNs. Magnetic resonant wireless 

power transfer [10] can wirelessly transfer electric power from the energy storage device 

to the receiving device efficiently within medium range (40% efficiency within 2 meters). 

It is also insensitive to the neighboring environment and does not require a line of sight 

between the charging and receiving devices. Researchers proposed that a mobile unmanned 

aerial vehicle (UAV) carrying a wireless charging device could visit and recharge each 

sensor to sustain a WSN [11],[12]. 

However, one UAV may not be able to visit every sensor if the WSN is deployed 

in harsh environments/terrains (e.g. dense forest, mountains, underwater), or if the WSN 

consists of a large number of sensors. Although these seminal studies replenished sensor 

energy, most of the energy was still wasted by long-distance wireless transmissions of 

perceived data, especially by relying sensors. Due to charging and travel time of the UAV, 

some bottleneck sensors may drain their residual energy while waiting for the UAV. Great 

unsolved challenges on control remain, including how to select the optimal path for the 

UAV to travel within WSNs and how to efficiently dispatch multiple UAVs to recharge 
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WSNs. Assigning sensors to UAVs using matching theory often assumes that energy costs 

due to power transmission significantly exceeds the UV’s transportation costs. This 

assumption might not fit for WSNs spread over large geographic areas, or terrain with 

obstacles, or where transportation costs are high, such as subsea or aerial UAVs. This 

research focuses on algorithms that make such WSNs sustainable by focusing on path 

planning, trajectory optimization and responding to dynamic network conditions, as shown 

in Fig. 4.  

 

Fig. 4: Evolution of traditional WSNs to servicing WSN with UAVs. We present path 

planning techniques that use UAVs to gather aggregated data and recharge 

sensors. 

 

Hardware components like the Raspberry Pi microcontroller and Adafruit Wi-Fi 

Feather boards have been used to facilitate data collection. The heterogeneous sensor teams 

would act as clients and upload data onto a server which is being carried by the UAV, thus 

reducing the energy consumed by induvial sensors. Experiments have been performed to 

validate the data transmission.   
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CHAPTER 2 – DESIGNING PATHS 

2.1 Related Work 

The path-planning problem for UVs has been investigated from several angles. To 

minimize path length, the authors in [13] survey the multiple-Traveling Salesman Problem, 

itself a generalization of the vehicle routing problem [14]. Servicing a WSN is closely 

related to coverage problems recent work includes methods for optimizing speed along 

given routes [15], and techniques to continually improve existing routes [16]. Much work 

has been focused on the data ferrying problem, from minimizing the latency between visits 

to nodes [17], to maximizing the total data rate from sensors to sink using UVs [18], to 

minimizing overall delay while sharing bandwidth [19], to having a set schedule and 

opportunistically deviating from it [20]. Finally, using unmanned aerial vehicles to 

recharge other robots or sensor nodes has focused on physical design, which includes direct 

contact, such as swapping batteries [21], [22] or direct recharge [23], wireless resonant 

coupling [24], [25], and electromagnetic radiation [26], and algorithmic improvements 

using graph theory [27], linear programming [15], and gradient descent optimization [16]. 

 

2.2 Overview 

The goal is to explore path-optimization techniques to design closed-loop paths that 

UVs can follow to sustain a WSN. Here sustain means a number of sensor runs out of 

power. Previous work often uses optimization/matching theory to assign one UV/multiple 

UVs to WSN nodes, and use a Hamiltonian cycle to visit each node. This is reasonable if 

recharging nodes is the largest component of a UV’s energy budget. 𝐸𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒  |𝑛𝑜𝑑𝑒𝑠|  ≫ 
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𝐸𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 × 𝑝𝑎𝑡ℎ_𝑙𝑒𝑛𝑔𝑡ℎ . If this assumption is violated, path-planning becomes the key 

concern. A simplified form of this decision is written as  

  

                                               𝐾𝑑𝑖𝑠𝑡 =
𝐸𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡×𝑝𝑎𝑡ℎ_𝑙𝑒𝑛𝑔𝑡ℎ

𝐸𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒  |𝑛𝑜𝑑𝑒𝑠| 
.                                       (1)    

 
Here 𝐾𝑑𝑖𝑠𝑡  represents the tipping point, the variable where the decision problem 

becomes fundamentally different. If 𝐾𝑑𝑖𝑠𝑡  is small, path-planning is inconsequential, and 

almost any solver is sufficient. When 𝐾𝑑𝑖𝑠𝑡  is large, path-planning becomes the key 

consideration. Our eventual goal is to design full trajectories that optimize the path of each 

UV, by servicing multiple nodes simultaneously. However, even just the path planning 

component is NP-hard [35]. To make progress, we focus on path optimization techniques. 

A UV has an associated recharging footprint and a data transfer footprint, which can often 

be modeled as disks of radius 𝑟𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒 and 𝑟𝑑𝑎𝑡𝑎 as illustrated in Fig. 5. If sensor nodes 

are clustered, a UV can service multiple clients simultaneously. We represent the fraction 

of sensors that are clustered as  

                 𝐾𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 =  
2

𝑁2−𝑁
∑ ∑ (||𝑝𝑖 −  𝑝𝑗 ||

2
 ≤  𝑟𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 )𝑁

𝑗=𝑖+1
𝑁
𝑖=1 .                        (2) 

Here, 𝑝𝑖  is the position of the 𝑖𝑡ℎ node, and there are N nodes. 𝐾𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡  is shown 

in Fig. 6 for a representative network. In general, energy-efficient recharging requires 

closer proximity than data transmission, so this implies there are two tipping points related 

to node density, 𝐾𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒 , and 𝐾𝑑𝑎𝑡𝑎 . Correspondingly, the WSN recharge problem has 

three regimes with differing solutions. Before the tipping points, nodes are sparse and not 

clustered. In this regime, optimal paths are straight lines from node to node, and the optimal 

solution is a variant of the traveling salesman problem. As sensors get closer together, the 

optimal path may be between one or more sensors. In Fig. 5, path A is designed to visit 
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each node, but path B is designed to recharge all nodes. Here, the optimal solution is often 

to weave between clusters of nodes. The third regime is when many nodes are close enough 

for transfer data, as shown in path C. The simulations in this paper take advantage of the 

non-zero 𝑟𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡  to allow the UVs to pass near sensors without requiring them to visit 

each node. 

 

Fig. 5: A UAV has an associated recharging and data-transfer footprint. This is modeled as 

disks of radius 𝑟𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒 and 𝑟𝑑𝑎𝑡𝑎. Path A visits each node, path B is designed to 

recharge and Path C is designed to transfer data from all nodes, and 𝑟𝑑𝑎𝑡𝑎 > 

𝑟𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒. 



10 
 

 

Fig. 6: As 𝑟𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡  grows, more sensors can be recharged simultaneously. The plot above 

shows 𝐾𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡  (𝑟𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 ), calculated by (2). The graph shows the wireless 

sensors (circles) and their footprints (transparent discs). 

 

2.3 Path Optimization Algorithm 

For each UV our solution designs a closed-loop path that intersects the origin. The 

base technique is a variant of Lloyd’s algorithm [29], [30]. Each path is represented by a 

finite number of waypoints, and these waypoints are both attracted to the centroid of all 

sensor nodes within their Voronoi cell and attracted to their neighboring waypoints. The 

following sections describe how this path is initialized (2.3.1), and then how the path is 

optimized by switching between a gradient descent optimization routine that finds local 

minima (2.3.2), and a genetic algorithm that rearranges the order of waypoints to improve 

the paths (2.3.3). Our MATLAB implementation is available at 

mathworks.com/matlabcentral/fileexchange/49863 [31]. 
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2.3.1 Initializing Path with Hilbert Curve 

It is important to have an initial path that fills the map. This ensures the UVs will 

visit every node. We adapt the space-filling Hilbert Curve, which creates a fractal path that 

fills up a unit area space and serves as an initial path for the first iteration [32]. The path is 

initialized using Hilbert’s space-filling curve that is modified by connecting the start and 

end point to the origin making a closed loop. With multiple UVs, the Hilbert curve is scaled 

by a scalar to ensure the waypoints are unique. 

2.3.2 Gradient Descent on a Path Composed of Waypoints 

The following algorithm is derived from [31], which focused on local optimization 

techniques that gradually improve the paths followed by robots during persistent tasks. 

This technique is amenable to WSN. 

Consider N UVs servicing a Wireless Sensor Network in a convex, bounded area 

𝑄 ⊆ 𝑅2. Waypoints are a set of points that define the path for each UV. The UV travels in 

a straight line in between two neighboring waypoints. Let 𝑝𝑖
𝑟  be the position of the 𝑖𝑡ℎ,  

𝑖 ∈ [1, … , 𝑛(𝑟)] waypoint of the 𝑟𝑡ℎ UV. Servicing includes recharging the nodes and 

collecting a part of the data that the nodes are about to transmit to the sink, thereby reducing 

the power expenditure in the sensor nodes. The algorithm forms a locally optimal path to 

visit the sensor nodes in the WSN. At each step, we compute the Voronoi partition 𝑉𝑖
𝑟 

defined by the waypoints, with one partition assigned to each waypoint. 

We require a function ∅(𝑞) that designates how many sensor nodes can be 

recharged from the position q. It tells the positions of the sensors and indicates the 

𝑟𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡  of each sensor. This information is necessary for minimizing the distance 

traveled by the UV and, when incorporated into the map, provides information for charging 
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multiple sensor nodes from a single location. For the simulation experiments, we use a 

binary ∅(𝑞). A simple function is used but ∅(𝑞) could also account for parameters 

including the maximum height at which the robot starts charging and the rate of charging 

to better mimic real-time performance. Here ∅(𝑞) calculates the distance between each 

sensor node and indicates if this distance is less than 𝑟𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 . The reward function is 

given by 

                   ∅(𝑞) =  ∑ [(𝑥𝑠 − 𝑞𝑥)2 + (𝑦𝑠 − 𝑞𝑦)2]𝑘
𝑠=1  <  𝑟𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡

2 .                    (3) 

 

Fig. 7: Equation (3) determines the range from which a UV can service a sensor node. If 

𝐾𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡  > 0, there are locations where multiple nodes can be serviced 

simultaneously. 
 

In Fig. 7 (𝑥𝑠, 𝑦𝑠) correspond to the xy location of sensor s and (𝑞𝑥, 𝑞𝑦)  correspond 

to the locations 𝑞 ⊆  𝑄. The cost function for each path is given by, 

       𝐻 = 
𝑊𝑠

2
∑ ∑ [∫ ||𝑞 − 𝑝𝑖

𝑟||2∅(𝑞)𝑑𝑞
0

𝑉𝑖
𝑟 ]𝑛(𝑟)

𝑖=1 +  
𝑊𝑛

2
∑ ∑ [||𝑝𝑖

𝑟 − 𝑝𝑖+1
𝑟 ||2]𝑛(𝑟)

𝑖=1
𝑁
𝑟=1

𝑁
𝑟=1 .       (4) 
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𝑊𝑠 , 𝑊𝑛 is positive scalar constants that are used to weight the sensing and neighbor 

distance, respectively, and depend on the experimental setup. The gradient descent 

algorithm minimizes the two-part cost function (4). The first part of the equation indicates 

a waypoint in a region far from sensor nodes is costly and the second part indicates having 

neighboring waypoints far away is also costly. A minimizing solution is a short path that 

mostly travels near WSNs. 

We compute the mass, mass-moment, and centroid of the 𝑉𝑖
𝑟 (Voronoi partition for 

𝑖𝑡ℎ waypoint of the 𝑟𝑡ℎ UV) as follows, 

                   𝑀𝑖
𝑟 =  ∫ ∅(𝑞)𝑑𝑞

0

𝑉𝑖
𝑟 ,   𝐿𝑖

𝑟 =  ∫ 𝑞. ∅(𝑞)𝑑𝑞
0

𝑉𝑖
𝑟 ,   𝐶𝑖

𝑟 =
𝐿𝑖

𝑟

𝑀𝑖
𝑟 .                       (5) 

The control law for each waypoint is the summation of forces that pulls the 

waypoint toward the centroid of the Voronoi partition (weighted by ∅(𝑞)), 

                                                       𝑢𝑖
𝑟 =  

𝐾𝑖
𝑟(𝑀𝑖

𝑟𝑒𝑖
𝑟+𝛼𝑖

𝑟)

𝛽𝑖
𝑟  .                                                     (6) 

Here, 𝐾𝑖
𝑟  is a positive definite matrix and is potentially-time varying. The first term 𝑒𝑖

𝑟 =

 𝐶𝑖
𝑟 − 𝑝𝑖

𝑟 , is the error. It calculates the difference between the waypoint position 𝑝𝑖
𝑟  and 

the centroid  𝐶𝑖
𝑟  of the current Voronoi region. This tries to move the waypoint towards the 

interesting region, reshaping the path of the robot. The second term 𝛼𝑖
𝑟 =  𝑊𝑛 (𝑝𝑖+1

𝑟 +

𝑝𝑖−1
𝑟 − 2𝑝𝑖

𝑟 ) pulls the neighboring waypoints together to obtain a short path. 𝛽𝑖
𝑟 = 𝑀𝑖

𝑟 +

2𝑊𝑛 normalizes the weight distribution between servicing sensors and staying close to 

neighboring waypoints. 

The control is then applied to this waypoint to update its position, 

                                                 𝑝𝑖
𝑟(𝑘) =  𝑝𝑖

𝑟(𝑘 − 1) + 𝑢𝑖
𝑟 .                                               (7) 
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The control algorithm is described in Alg. 1 and is called for each waypoint in turn. 

 

2.3.3 multiple-Traveling Salesman Problem (mTSP) 

The gradient descent algorithm (Alg. 1) can get stuck in local minima. To further 

improve the path we input the location of the waypoints obtained after running the gradient 

descent algorithm into a multiple-Traveling Salesman Problem (mTSP) search algorithm. 

Given a list of cities to visit, the classic traveling salesman problem (TSP) attempts to find 

an ordering of the cities that minimizes the total distance on a tour that visits all the cities 

once [33]. The solution is the shortest Hamilton cycle. By labeling our sensor nodes as 

cities, the solution to the traveling salesman problem gives the shortest length path. The 

mTSP solution straightens out loops in the path and can reduce the cost function. This often 

moves the solution out of the local minimum obtained after executing the gradient descent 

algorithm. 

This problem is NP-hard (Non-deterministic Polynomial), but many powerful 

heuristics are available, and software packages can provide answers for tens of thousands 

of nodes (e.g., the Concorde TSP Solver [34]). A solution with multiple salesmen is called 

a mTSP. The mTSP is still an NP-hard problem [35], so the solutions returned by the search 

algorithm given limited time may not be the global optimum. 
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A good heuristic can increase TSP solver performance. In our numerical  

simulations, priming an open-source genetic algorithm solver [36] by sorting the nodes by 

an angle from the sink and dividing the sorted list equally between the UVs decreased path 

costs by 20%. Fig. 8 shows results from our simulation with 100 nodes and 5 UVs. 

 

Fig. 8: Screenshots from mTSP solver aided by the heuristic. Left, nodes partitioned 

according to the angle from the sink. Right, the near-optimal solution from an 

mTSP solver aided by our heuristic. 

 

2.4 Results 

We developed a MATLAB simulation using the three algorithms described in 

Section 2.3. The code is available at [32]. The next two sub-sections describe the results 

with one UV and with multiple UVs. 

2.4.1 One UV 

A single UV system was simulated using MATLAB in Fig. 9. The waypoints are indicated 

by a set of linked ‘ο’ markers, the associated Voronoi diagram is in blue, the magenta lines 

represent the path the UV follows for servicing the sensor nodes, and the underlying density 

plot represents the interesting regions generated by the sensor nodes.  

The initial path at iteration 0 was set to be a space-filling Hilbert’s curve, to identify the 

location of the sensor nodes. If the UV follows this initial path it can learn the value 

function ∅(𝑞), and identify the interesting points for the whole map. A waypoint at [0, 0] 
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is stationary, this represents the sink where the UV recharges and unloads data collected 

while servicing the sensor nodes. For the first 100 iterations the gradient descent algorithm 

moves the path waypoints, using the Voronoi diagram to identify locations with high 

sensory information. The path achieved after 100 iterations, is usually a local optimum and 

iterating further does not decrease the cost function. This sub-optimal solution obtained 

often contains loops. To further optimize our path and escape this local optimum the path 

is inputted into an mTSP (multiple-Traveling Salesman Problem) solver for the next 100 

iterations, this straightens the loops by reconnecting the waypoints without changing the 

waypoint location 𝑝𝑖
𝑟 . After 200 iterations the cost function has decreased due to the 

straightening of the loops by the mTSP solver. These two algorithms are repeated to 

optimize the cost function depending on the time available for calculation or until the cost 

function asymptotically converges. The cost function is shown in Fig. 11(a). This cost 

function monotonically decreases. 

2.4.2 Multiple UVs 

A two UV system was simulated on MATLAB. As shown in Fig. 10. The waypoints are 

indicated by green ο markers, the associated Voronoi diagram is in blue, the white, cyan, 

magenta, and red lines represent the path the UVs follow for servicing the sensor nodes, 

and the underlying density plot represents the interesting regions generated by the sensor 

nodes. 

 UVs service different sets of nodes in the WSN. A multi-UV system is practical 

because a single UV might not be able to handle a large network. Similar to the one UV 

case, a space filling Hilbert’s curve is used to initialize the paths. Each path contains  a 

stationary waypoint at [0, 0], representing the sink where both UVs recharge and unload 
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data collected while servicing the sensor nodes. The sensor nodes were placed in random 

locations to verify the robustness of the algorithm. The algorithm proceeds in a similar 

fashion to the one UV case. The simulation results in Fig. 11(b) show the optimization of 

the path and the minimization of the cost function. 

 

 

Fig. 9: Simulation for one UV. 1.) Iteration 0: Hilbert’s Space Filling Curve. 2.) Iteration 

100: gradient descent algorithm (first). 3.) Iteration 200: mTSP solver (first). 4.) 

Iteration 300: gradient descent algorithm (second).  

 
 

 

Fig.10: Simulation for multiple UVs. 1.) Iteration 0: Hilbert’s Space Filling Curve. 2.) 

Iteration 100: gradient descent algorithm (first). 3.) Iteration 200: mTSP solver 

(first). 4.) Iteration 300: gradient descent algorithm (second).  

1.)                                    2.)                                     3.)                                     4.) 

1.)                                   2.)                                     3.)                                     4.) 
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Fig. 11: Cost function indicates a decreasing trend is approving the optimization algorithm. 
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CHAPTER 3 – DRONE MOUNTED GEOPHONES 

3.1 Overview and Related Work 

 

Fig. 12: Comparing state-of-the-art seismic survey sensors a.) Traditional cabled system. 

b.) Autonomous nodal systems. 

 

During seismic surveys, the source of seismic/vibrational waves is excited to 

generate waves that propagate under the earth’s surface. These waves are sensed by 

geophone sensors and are recorded for later analysis to detect the presence of 

hydrocarbons. Fig. 12 describes the current sensors available and Fig. 1c. shows the 

proposed solution, the seismic drone. These sensors are used to sense the vertical external 

displacement U caused by the vibrational waves that propagate with a velocity c in the 

positive and negative x-directions and is represented by the 1-D differential equation 

                                                           
𝜕2𝑈

𝜕2𝑡
= 𝑐2  

𝜕2𝑈

𝜕2𝑥
.                                                         (8) 

The velocity of a seismic wave approximately ranges from 2 - 8 km/s. Its general 

solution is given by 
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                                                   𝑈(𝑥, 𝑡) = 𝑓(𝑥 ± 𝑐𝑡).                                                      (9) 

The equations stated above are a generalized representation of a vibrational wave. For 

example, a vibrating string would satisfy the equation 

 

                                                      𝑐2  = 𝐹/𝜌.                                                     (10) 

 
In the above equation, c is the velocity of the wave, F is the vibration force and 𝜌 is density. 

This equation is a hyperbolic equation from the theory of linear partial differential 

equations and is challenging to solve because of sharp features that can reflect off 

boundaries. 

Seismic waves are detected by geophones, which detect accelerations of the earth 

in one dimension by enclosing a heavy magnet inside a coil of wire, movements of the 

magnet generate current in the coil, and are modeled as 

                                        𝑚 
𝜕2𝜀

𝜕2𝑡
+ 𝜇 

𝜕𝜀

𝜕𝑡
+ 𝑘𝜀 = 𝑚

𝜕2𝑈

𝜕2𝑥
− 𝐵𝑙𝑖.                                        (11) 

Here 𝜀 is the coil displacement, k is the spring constant, m is the moving mass of the coil, 

𝜇 is the friction coefficient, B is the magnetic flux density, l is the length of coil wire, i is 

the current. These equations can be found in many geophysics textbooks, for example, see 

[37]. 

 

3.1.1 Cabled Systems 

Traditional cabled systems are extensively used for seismic data acquisition in 

hydrocarbon exploration. A group of sensors (geophones) is connected to each other in 

series using long cables, and this setup is connected to a seismic recorder and battery. The 

seismic recorder consists of a micro-controller which synchronizes the data acquired with 

a GPS signal and store the data onboard. Four cell Lithium Polymer (LiPo, 14.8V, 10Ahrs) 



21 
 

batteries are used to power this system. This method of data acquisition requires many 

manual laborers and a substantial expenditure for transporting the cables. The major 

difficulties faced in using cabled systems for data acquisition are (1.) Conducting a seismic 

survey in rugged terrains (2.) The manual labor available might be unskilled or expensive 

depending on the location. 

3.1.2 Autonomous Nodal Systems 

Currently, autonomous nodal systems [38] are extensively used for conducting 

seismic data acquisition surveys in the USA. Unlike traditional cabled systems, 

autonomous nodal systems are not connected using cables. The sensor, seismic recorder, 

and battery are all combined into a single package called a node that can autonomously 

record data as shown in Fig. 12. Even in these systems the data is stored in the on-board 

memory and can only be acquired after the survey is completed. This is disadvantageous 

since errors cannot be detected and rectified while conducting the survey. Recently, 

wireless autonomous nodes have been developed. These systems can transmit data 

wirelessly as a radio frequency in real time [39]. These systems still require manual 

laborers for planting the autonomous nodes at specific locations and deploying the large 

antennas necessary for wireless communication. 

3.1.3 Seismic Drones 

The concept of using robots to place seismic sensors dates to the 1980s. Mobile 

robots have placed seismic sensors on the moon [40]. Postel et al. proposed mobile robots 

for geophone placement [41]. Plans are underway for a swarm of seismic sensors for Mars 

exploration [42]. This paper presents a seismic drone. It combines the quality of data 

acquisition present in a traditional exploration method with an autonomous unmanned air 
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vehicle (UAV) which has high maneuverability and the capability of performing the 

precision landing. The first prototype consisted of a single geophone, an Arduino Uno 

microcontroller, an amplifier, and battery. Unfortunately, this system was not stable, and 

if the plant of the geophone spike failed, the drone fell on its side. 

The second prototype has a seismic recorder, battery, and four geophones all 

embedded onto a platform that is attached to a UAV. This sensor platform with four 

geophones provided stability and acted as an extension of the drone’s landing gear, solving 

the issue of tipping over during landing. These prototypes are shown in Fig. 3. By inputting 

a specific GPS location, the UAV can accurately deploy the seismic data acquisition 

system. A geophone senses ground movement (velocity) and convert it into a voltage, 

which is recorded with a seismic recorder. The deviation of this measured voltage from the 

baseline is called the seismic response and is analyzed for identifying and classifying the 

type of hydrocarbon present. The geophones obtain data which is processed by the seismic 

recorder and stored in the onboard memory. The seismic recorder is a microcontroller 

designed for seismic exploration applications and has a 24-bit accuracy on the ADC 

conversion, and sampling rates as low as half a millisecond. This device helps us obtains 

data comparable to commercially available seismic sensors. The drone system could 

successfully automate the deployment and recovery. By using a robot to perform the above 

task, costs and errors are reduced. 

3.2 Experiments 

The sensor platform of the seismic drone contains four geophones as shown in Fig. 

13b. Similar to manual methods, the current seismic drone can only plant (submerge the 

spikes) in soft soil. On hard soil, the drone balances on 3 to 4 geophone spikes. Planting 
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the geophones ensure reliable coupling between the ground and sensor. To compensate for 

unsatisfactory coupling we use four geophones connected in series. The geophones are 

placed 20 - 30 cm apart, but due to the fast propagation of seismic waves, they can be 

considered as four collocated geophones. Hence, instead of one well-planted geophone at 

a particular location, we use four satisfactorily-planted geophones to obtain comparable 

results. In particular, the alignment platform ensures sensors are perpendicular to the 

ground. 

 

Fig. 13: a.) The first prototype consisted of a single 14Hz geophone with an Arduino Uno 

microcontroller and a 9V battery. b.) The second prototype consists of four 100Hz 

geophones, a Seismic Recorder (SR) and a LiPo battery (14.8V, 0.5Ah, 4 cells). 

 

We conducted three experiments to prove the seismic drone is feasible. The first 

experiment compared sensed seismic vibrational wave output from traditional geophones 

and the seismic drone. This comparison validated the capability of the proposed system to  

replace a conventional setup. The second experiment analyzed autonomous flying with and 
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without the sensor platform to explore the reliability of autonomous flight and the effects 

of the sensor platform on the command execution capabilities due to signal interference. 

The third experiment compared soil penetration and the angle of incidence in three 

different soil types. This is important to ensure quality data despite soil variations and 

shows that the platform can take off, even when the geophones are well planted in soil. 

Traditional geophone placement requires pushing the geophone spike into the earth to 

ensure ground sensor coupling. The quality of placement is determined by this coupling 

and the alignment of the spike with the gravity vector. Sensitivity decreases with the cosine 

of the angle from the spike to the gravity vector. 

3.2.1 Seismic Survey Comparison 

 

Fig. 14: Different geophone configurations are compared: a.) round platform b.) wooden 

platform c.) well-planted geophone d.) satisfactorily-planted geophone e.) drone 

system with sensor platform (Seismic Drone). 

 
The primary experiment presented in to compare the proposed Seismic Drone 

performance with a traditional cabled sensing system by performing a shot gather 

experiment. We compare the seismic drone with different variations to understand its 

performance. A shot gather involves a well-planted geophone: a completely planted 

geophone where the spike is completely beneath the surface, satisfactorily-planted 

geophone: the spike is partially into the ground, a geophone mounted on a round platform 

made of fiberglass, and finally a geophone mounted on a long rectangular wooden 

platform. Each is shown in Fig. 14. Because ideal geophones are always well planted into 
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the ground, the platform setups and satisfactorily planted geophones were compared to 

show how performance varies with geophones coupling to the ground. Seismic exploration 

must detect the oscillating seismic wave and sensing quality is a function of coupling. 

The seismic drone was flown to its respective survey location next to the well 

planted, satisfactorily planted, round platform and wooden platform geophones. A 

sledgehammer was used to strike a metal plate attached to the ground, thereby creating 

seismic waves for analysis. 

Results show that the amplitude peaks of the seismic drone are similar to the setups 

(well-planted, satisfactorily-planted, round-platform, wooden-platform) as shown in Fig. 

15. We observe poorly damped oscillations for the round platform and wooden platform 

since these are not fixed to the surface. Instead of only detecting the strike, the platform 

starts oscillating due to the strike and these oscillations eventually dampen out over time. 

The performance of the round platform, and wooden platform are poor in comparison to 

the well-planted geophone, which is the standard for this experiment. We observe mild 

oscillations in the drone setup compared to the fixed ones since these are planted into the 

ground. The max amplitude values are similar but do not appear simultaneously, indicating 

these setups were placed approximately half a meter apart, and hence a time shift occurred 

The seismic drone setup and the well-planted geophone display excellent similarities in 

their response. This validates that the seismic drone has coupled with the surface. 
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Fig. 15: Shot gather plots of the seismic wave generated by different geophone setups and 

the seismic drone. a.) Drone setup outperforms round and wooden platforms. b.) 

Compares the drone setup with well-planted and satisfactorily-planted. 

 
 

Seismic explorations use thousands of geophones to conduct a seismic survey. 

Thus, Experiment 2 compares the performance of a traditional cabled 24 geophone system 

connected to a 24 channel seismic recorder and battery with an autonomous seismic drone. 

The geophones were planted vertically into the ground, one meter apart from one another. 

A schematic of the traditional setup is shown in Fig. 16 and the same experiment was 

repeated for the seismic drone as also shown in Fig. 16. We used a vibrating truck setup to 

generate the seismic wave. The geophones are well planted; the drone was flown from 1-
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24 locations, and the readings were taken by generating seismic waves each time. The 

metal plate was struck 24 times, once for each location. 

 

Fig. 16: A schematic of a traditional 24 geophone system, used extensively for seismic data 

acquisition (top). A schematic of a proposed drone setup which could replace 

manual laborers during seismic surveys (bottom). 

 

Fig. 17 describes the important components of the field experiment performed. 

Results of the seismic survey field test comparison between a 24 channel traditional cabled 

geophone system and the seismic drone are shown in Fig. 18. Both plots were obtained 

using a Strata-Visor, a device that can obtain, store and plot the sensed data. It is 

extensively used with traditional geophone setups because the geophones can only sense 

vibrational waves and are dependent on other devices for storage and data processing. To 

allow a fair comparison, the autonomous setup that can store the sensed data present on the 

seismic drone was not used in this experiment. We observe excellent similarity, proving 
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the seismic drone system can compete with state-of-the-art technology in seismic 

exploration. 

 

Fig. 17: a.) A survey comparison was performed to obtain the shot gather plots of the 

traditional cabled system and seismic drone. b.) The vibrating truck. c.) Strata-

Visor. d.) The drone system and the cabled system are sensing vibrational waves. 
 

3.2.2 Accuracy Autonomous Landing with Geophone Setup 

Seismic exploration depends on the accurate placement of geophones over a large 

geographic area. This experiment tested the accuracy of an autonomous landing of the fully 

loaded seismic drone system compared to the autonomous landing of the drone system 

without the sensor base. The drone system used is a 3DR Solo. The seismic drone was 

commanded to land at the goal location marked with an ‘x’ using blue tape, with and 

without the sensor platform. The test was repeated ten times to test the accuracy of 

autonomous landing. The drone uses GPS for landing which is not highly accurate and 

hence lands at locations close to the goal location. The origin of the coordinate system was 
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Fig. 18: A shot gather plot comparison, the x-axis is the time in milliseconds, and the y-

axis is the geophone voltage. a.) Shot gather for a traditional cabled system. b.) 

Shot gather for the seismic drone system. 

 

marked with an ‘x’ using yellow tape. Measuring tapes were used to measure landing 

locations. The sensor base attached to the drone for seismic sensing has four geophones. A 

geophone uses a strong magnet attached to spring to measure vibrations. These magnets on 

the sensor base influence the internal compass of the drone system with their strong 

magnetic fields. This effect can be observed in the plots shown in Fig. 19. The 1st and 2nd 

standard deviation ellipses are much smaller for the drone system without the sensor base 

than the system with the sensor base. The GPS used by the drone has an accuracy of five 

meters and landing locations are approximately normally distributed. 95% of the landings 

were within 1 m for the drone system without the sensor base and around 2 m for the drone 
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system with sensor base. The current landing accuracy is sufficient for seismic exploration 

because a 2 m error in distance from the landing site corresponds to an increase or decrease 

in travel time for the seismic wave by ≈ 25 ms. 

Autonomous drone flying and landing is done using a mobile application called 

Tower. This app can be used to plan complex autonomous trajectories, and the drone can 

perform different tasks at different waypoint locations. 

 

Fig. 19: The plots describe autonomous landing with and without the sensor platform for 

ten landings. The mean, 1st std. Ellipse and 2nd std. Ellipse are shown for both 

cases. 
 

 

3.2.3 Penetration and Angle with the Horizontal 

This experiment tests the soil penetration capabilities of the seismic drone setup in 

different soil types. Good coupling with soil is important for obtaining quality data. Hence 
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the experiment explores the penetration capability of the setup in common soils. We 

performed the experiment in grass, sand, and dry clay. The penetration was maximum in 

sand followed by grass, but the drone could not drive the geophone spike into dry clay, as 

shown in Fig. 20. Failing to penetrate through dry clay is inevitable even with a manual 

plant. Geophones are highly sensitive and can collect data without penetrating through a 

surface if placed vertical to the surface. Since the design considers vertical placement of 

geophones, a seismic analysis could be achieved by landing on any flat hard surface like 

dry clay, a building terrace or a road. This system could replace humans who risk lives 

monitoring earthquakes or perform quality checks on a partially completed bridge. 

 

Fig. 20: Box and whisker plots comparing the variations in depth of planted geophones 

attached to the seismic drone. 
 
 



32 
 

The final experiment measured the angle of deviation of the geophone from the 

vertical. Ideally, geophones should be perpendicular to the ground. This is necessary to 

obtain quality data since the coil voltage is proportional to the cosine of this angle. A rule 

of thumb is to have less than 5 deg error for a geophone. It is also important to land on a 

flat surface with less than 10 deg deviation from vertical. The drone cannot take off if it is 

at an angle to the ground. These two constraints complement each other. We collected data 

of the roll and pitch Euler angles to calculate the deviation from the horizontal using the 

cross-product of rotation vectors Rx.Ry (Roll.Pitch), as shown in Fig. 21. 

 

Fig. 21: Box and whisker plots comparing the variations in angle of deviation from 

horizontal of the seismic drone 
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CHAPTER 4 – HETEROGENOUS ROBOTIC TEAMS 

4.1 Overview  

 This chapter presents a heterogeneous sensor system for automatic sensor 

deployment. The goal is to overcome the drawbacks of deploying seismic sensors 

manually. In previous work [43], we demonstrated a UAV equipped with four geophone 

sensors as landing gear. This UAV automated sensor deployment by flying to GPS 

waypoints to obtain seismic data. Magnet-coil geophones contain a permanent magnet on 

a spring inside a coil. The voltage across the coil is proportional to velocity. Beneath the 

coil, housing is a metal spike. Geophones are planted by pushing this metal spike into the 

group, which improves coupling with the ground to increase sensitivity. The magnet-coil 

must be aligned with the gravity vector. Misalignment reduces the signal proportional to 

the cosine of the error. 

The geophones in [43] were connected to the UAV, causing four problems: (1) one 

UAV was required for each additional sensor, (2) the force for planting the geophone was 

limited by the weight of the UAV, (3) the platform required a level landing site, (4) the 

magnets in the geophones distort compass readings, causing landing inaccuracy when 

autonomous. The proposed heterogeneous sensor system separates the sensing units from 

the UAV. This reduces the cost per sensor. Dropping the geophones enables increasing 

geophone penetration by increasing drop height and eliminates the necessity for a level 

landing site. The new design also increases the separation between geophones and the 

UAV. 
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Heterogeneous mobile robotic teams were used for mapping and tracking in 

{citehoward2006experiments}. Our system consists of a multi-agent system approach 

designed to quickly and efficiently perform a survey. 

 

Fig. 22: Components of the SeismicDart sensor: a Lawn 𝐽𝑎𝑟𝑡𝑇𝑀 fin, electron micro-

controller, 3D printed protective casing and a geophone. 

 

4.2 Seismic Darts 

4.2.1 Design 

The SeismicDart combines a geophone (GS-100) with the fins and body of a 

𝐿𝑎𝑤𝑛 𝐽𝑎𝑟𝑡𝑇𝑀, using a 3D-printed chamber that encloses a WiFi-enabled micro-controller 

(Electron 2G, particle.io) as shown in Fig. 22. The center of the chamber is slotted to fit a 

wooden plate holding an accelerometer that transmits data back to the user through the 

Photon. The centered accelerometer card allows placing the microcontroller and battery on 

opposite sides, centering the center of mass. Designs and instructions to build a 

SeismicDart are at [44]. 
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4.2.2 Experiments 

The following sections compare SeismicDart performance. 

4.2.2.1 Drop Tests in Different Soils 

This experiment varied the drop height and measured the penetration depth in four 

types of soil. Proper planting of a geophone requires good contact with the soil, in a vertical 

position. To determine the minimum height of deployment for this desired planting, each 

trial measured the penetration depth and angular deviation from the vertical. This 

experiment compared drop tests as a function of soil type.  

To determine how SeismicDarts perform in different soils, this experiment 

measured penetration into four soil types. Each trial was performed by holding the darts at 

the tip opposite to the spike in a vertical position and releasing them at varying heights into 

the buckets of soil and measuring their penetration depth, and angular deviation. To 

measure penetration depth, the buried darts were marked where the spike met the soil, the 

dart was then pulled from the soil, and the distance from the spike tip to the marking was 

measured with calipers. The angular deviation was recorded from the accelerometer inside 

the dart. The soil types were categorized by their compression strength, in kg/cm3, 

measured using a soil pocket penetrometer (CertifiedMTP). Measurements for 

compression strength vary with a small deviation in measurement location, so we repeated 

this measurement 10 times at 10 different locations in each soil type and took the average. 

These values for soil compression strength and a graph displaying heights vs. penetration 

depth are displayed in Fig. 23, and a graph of angular deviation is in Fig. 24. 
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Fig. 23: Drop height vs. penetration depth in four soil types. 

 

Fig. 24: Drop height vs. angle of deviation in four soil types. 
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4.2.2.2 Straight vs Twisted Fins 

To determine the difference in performance between SeismicDarts with straight 

fins and twisted fins, we ran a drop test with ten trials for both types of the dart at a constant 

height in one soil type. As shown in Fig. 26 each trial was initialized by holding the dart 

horizontally at the height of 9.8 meters, dropping it into the soil, and recording the 

penetration depth and angular deviation. Holding the darts horizontally emphasized the 

angle correcting the behavior of the fins. The penetration depth and angular penetration 

were measured and recorded as in the other drop test experiment in different soils. A graph 

showing the values recorded for penetration depth and angular deviation in Fig. 25 reveals 

that SeismicDarts with twisted fins had a less angular deviation, but also less penetration 

depth. 

 

Fig. 25: Straight vs. twisted fins comparing a.) penetration depth b.) angle of deviation.      

The experiment used a fixed drop height of 9.8 m. 

4.2.2.3 Shot Gather Comparison 

Seismic explorations use thousands of geophones to conduct a seismic survey. This 

experiment compared the performance of a traditional cabled 24 geophone system 

connected to a 24 channel seismic recorder and battery with readings from SeismicDarts. 

The geophones were planted vertically into the ground, three meters apart from one 

another. We used a vibrating truck setup to generate the seismic wave. Only four functional 



38 
 

SeismicDarts were built, so these four were dropped from the UAV, a seismic wave was 

generated and recorded, and the darts were redeployed. 

 

 
Fig.26: Outdoor Drop test is comparing straight vs. twisted fins performance. a.) dropping 

a SeismicDart b.) measuring drop height 

 

 Results of the seismic survey field test comparison between a 24 channel 

traditional cabled geophone system and the SeismicDarts are shown in Fig. 27. Both plots 

were obtained using a Strata-Visor, a device that can obtain, store and plot the sensed data. 

It is extensively used with traditional geophone setups because the geophones can only 

sense vibrational waves and are dependent on other devices for storage and data processing. 

To allow a fair comparison, the SeismicDart’s ability to store sensed data was not used in 

this experiment. With the exception of SeismicDart reading #19, which may be due to poor 

terminal connections, the SeismicDart data corresponds well to data from a traditional 

setup. 
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Fig. 27: Shot gather comparison of traditional geophones vs. autonomously dropped 

SeismicDart sensors. 

 

4.2.3 Deploying and Retrieving SmartDarts 

 SeismicDarts combined with UAVs could be exploited to obtain a seismic survey 

quickly. Surveys of large areas require many expensive sensors. Hence deploying and 

retrieving are key to automating the process. Reusing sensors would drastically reduce 

costs. Fig. 28 shows the SeismicDart being deployed and retrieved from a location. First, 

the sensors (SeismicDarts) are loaded onto to UAV. Next, a flight plan is created for the 

deployment process. Then flight plan transfers to the UAV a set of GPS waypoint locations 
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that include locations where the sensor has to be dropped. Finally, the UAV flies to these 

locations, drops the sensors at specific location and returns home. Currently, a maximum 

of four sensors could be dropped in a single flight. Retrieval is currently conducted by 

piloting the UAV manually. 

 

Fig. 28: Shot gather comparison of traditional geophones vs. autonomously dropped 

SeismicDart sensors. 

 

Fig. 29: The SeismicSpider is a six-legged mobile robot where three legs are replaced by 

geophones. It senses and records seismic data. 

 

4.3 SeismicSpider 

 Traditional geophones are mounted in an insulated, shock-resistive enclosure on a 

spike. The spikes, varying in length, are inserted into the ground to ensure a firm coupling 

with the environment. The design of our SeismicSpider prevents full depth insertion of the 
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three-inch spikes. To overcome the coupling issue we used three geophones per robot 

instead of one. Our immediate goals are to compare amplitude and phase response to that 

of a standard single geophone. 

4.3.1 Design 

The Seismic Spider is built from the Six Hexapod kit designed by EZ-Robots. Each 

of the six legs is powered by two 15 kg/cm lever servos as shown in Fig. 29. The peg legs 

were replaced by three GS-20DM 14 Hz geophones from Geospace Technologies. The 

remaining three were designed to match the geophone dimensions and reflect UH school 

spirit. Our initial plan to use three geophones requires the spider to raise the three inactive 

legs while acquiring data. This lack of support caused excessive strain on the three servo 

motors responsible for holding the spider upright introducing unwanted vibration into the  

system. We found positioning the geophone legs at 20deg to normal enhanced the stability 

and relieved the excessive stress on the servos. The three geophones were in series, so with 

each geophone leg angled inward, superposition replicates the signal from one vertical 

geophone. 

4.3.2 Shot Gather Comparison 

A line of twenty-four geophones, GS-20DM 14 Hz, were laid out at one-meter 

intervals with our inline source seven meters from the nearest geophone. Beginning from 

the farthest offset of 31 meters, we manually aligned the Spider with the corresponding 

geophone, generated a vibration with the vibration truck, or sledgehammer, then moved 

one meter ahead. 

Data from the shot gather comparison is shown in Fig. 30. We found a correlation 

with the standard geophones. We had to compensate for the loss of amplitude in the 
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traditional system since we were comparing it to the SeismicSpider which had three 

geophones, the response was 5 dB greater that the single geophone. The geophone wires 

proved insufficient to insulate against 60 Hz. Hence the raw data from the traditional setup 

as well as the SeismicSpider was passed through a (3-50) band-pass filter. Further, the 

SeismicSpider data was attenuated by -5dB to level the comparison. Due to the small 

amount of usable data we were not able to gain meaningful results for phase analysis. 

Fig. 30: Shot gather comparison of traditional geophones vs. hexapod sensor. 

4.3.3 Deploying and Retrieving Hexapod 

The Seismic UAV’s purpose is to deploy sensors at respective GPS waypoint 

locations. The SeismicSpider is a mobile robot but is substantially slower compared to the 
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UAV. Fig. 31 shows the SeismicSpider being deployed and retrieved from a location. The 

UAV carrying the SeismicSpider was manually piloted to a specific location. The 

deployment mechanism included a hook controlled by a servo attached to the UAV. The 

UAV was carefully lowered, and the SeismicSpider was placed onto the ground, then the 

servo was triggered to unhook the sensor. The SeismicSpider was remotely activated using 

a mobile application. The SeismicSpider was controlled to wriggle its three standard legs 

to plant its three geophone legs into the ground. The SeismicSpider has an onboard GPS 

that could be used to navigate to a specific waypoint. Currently, autonomous deployment 

of sensors is possible, but the retrieval is piloted. Combining the mobility of the Seismic 

Spider with the speed of the UAV allows sensing at locations that are inaccessible by air 

or impossible to penetrate by SmartDarts. 

 

Fig. 31: Shot gather comparison of traditional geophones vs. hexapod sensor. 

4.4 UAV and Deployment Unit 

4.4.1 Design  

The UAV is a custom-built, 177 cm wing-span hexacopter, controlled by the 

Pixhawk flight controller running ArduPilot Mega flight software. The UAV has a 3DR 

GPS module using the UBlox NEO-7 chipset. The deployment mechanism allows the UAV 

to carry four SeismicDarts in a circular array, and release them when it reaches the desired 

GPS location, one at a time, as shown in Fig. 32. The rear of the dart has a circular tip that 
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locks into the deployment mechanism and rests on a rectangular slot-path. A servomotor 

rotates the dart tips through the rectangular slot-path, allowing darts to release from a 

circular opening. 

 

 

Fig. 32: Deployment system for dropping SeismicDarts from the UAV. Pictured design 

holds four darts, but can be scaled according to the UAV’s carrying capacity. 

 

4.4.2 Experiments 

4.4.2.1 Autonomous Drop Demonstration and Accuracy  

 The current UAV can place the SeismicDart within ±1 m of the desired location. 

This range is within tolerances for seismic surveys because: (1) often features (rocks, water, 

etc.) exist that require this amount of error from theoretically assigned locations, (2) some 

survey designs include a random placement component to improve noise cancellation, (3) 
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this error minimally perturbs the data since seismic waves travel at 600 m/s near the 

surface, so a one-meter inaccuracy equates to ≈1.6 ms delay. 

The critical factor is to know within 10 cm accuracy the geophone location. Such 

accuracy can be obtained through Real Time Kinematic GPS systems. Knowledge of the 

exact location allows corrections for jitter in signal arrival times due to placement 

inaccuracy. 

For the accuracy test, six sets of darts, four darts in each set, were dropped on the 

same GPS waypoint. To cancel out the flight controller’s stable hover between each drop, 

the UAV traveled to a nearby GPS waypoint. This path is shown in Fig. 33a. The UAV 

returned to the launch platform to be reloaded, and data was recorded after each set. 

To record data, one dart was picked from the first set as the reference point (the 

lower left in Fig. 33b), Hence the first data point will be (0,0). A 1-m T-square was placed 

with the origin at the dart’s drop point to establish the axes. 

After the first set of data had been recorded, the darts were collected and reloaded 

on the UAV for the next deployment set. A rod was placed in the position of the first dart 

to keep reference as shown in Fig. 33c. The T-square was placed and mason twine was 

suspended to lengthen the reference axes. Future deployments were measured using the 

reference point and axes. Results are shown in Fig. 34. 

4.4.2.1 Height vs Penetration Depth 

FAA rules require that UAVs fly below 400 feet (122 m). Our highest drop tests 

were from 20 m and resulted in well-planted geophones on a grass field with density 3.3 

𝑘𝑔/𝑐𝑚3. Harder soils may require faster impact velocity, so this section examines possible 

impact velocities as a function of drop height. For ease of analysis, we will assume the 
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SeismicDart has a constant coefficient of drag 𝐶𝑑 and that the drag force is proportional to 

velocity squared and equal to 
1

2
𝑣 2𝜌𝐴𝐶𝑑, where 𝑣 is the velocity, 𝐴 the cross-sectional area 

and 𝜌 the density of air. The tests were performed near sea level, so 𝜌 ≈ 1.225kg/m3, and 

the dart body is 0.06 m in diameter so 𝐴 = 0.028 𝑚2. We will assume the dart 𝐶𝑑 is between 

that of a streamlined body 𝐶𝑑 = 0.04 and that of an arrow 𝐶𝑑 = 1.5 [45], and choose that of 

a sphere 𝐶𝑑 = 0.47.  

 

Fig. 33: a.) Flight plan of accuracy test b.) First set of the dart with reference axes c.) Third 

dart set 
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Fig. 34: Landing locations of 24 darts, each commanded to drop at the same GPS location.  

 

 The terminal velocity is 
 

                                                        𝜗𝜏 =  √
2𝑚𝑔

𝜌𝐴𝐶𝑑
 ≈ 59𝑚/𝑠.                                                        (12) 

The velocity at impact is a function of the drop height h given by 

                           𝜗𝑖𝑚𝑝𝑎𝑐𝑡  =  𝜗𝜏√1 − 𝑒
𝜌𝐴𝐶𝑑

𝑚
ℎ  ≈ 59√1 − 𝑒0.008ℎ𝑚/𝑠.                        (13) 

With 𝐶𝑑 = 0.47, our drop from 20m achieves only 38% the terminal velocity (19.0 

m/s), and for 𝐶𝑑 = 0.04 only 12% terminal velocity (19.7 m/s). This implies the SeismicDart 

is suitable even for much harder soils than tested this far. 

4.5 Comparison 

4.5.1 Ballistic Deployment 

To compare an alternate deployment mechanism we built the pneumatic cannon 

shown in Fig. 35. The pneumatic cannon is U-shaped, 2m in length, with a 4" diameter 
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pressure chamber and a 3" diameter firing barrel, connected by an electronic valve (Rain 

Bird JTV/ASF 100). The cannon is aimed by changing the desired firing angle 𝜃𝑓  and 

azimuth angle, and filling the pressure chamber to the desired pressure. The reachable 

workspace is an annular ring whose radius r is a function of the firing angle and initial 

velocity 𝜗. Neglecting air resistance, this range is found by integration 

                                                𝑟 = 
𝜗2

𝑔
sin(2𝜃𝑓).                                               (14) 

Initial velocity is limited by the maximum pressure and size of the pressure chamber. The 

cannon used SCH 40 PVC, which is limited to a maximum pressure of 450 psi. 

 We charged our system to 150 psi and achieved a range of ≈ 150m. This is 

considerably smaller than the UAVs range, which when loaded can complete a round trip 

of ≈ 1.5 km. A larger problem illustrated in Fig. 35, is that angle of incidence 𝜃𝑖  is equal 

to the firing angle 𝜃𝑓  . Maximum range is achieved with 𝜃𝑓  = 45deg, but this angle of 

incidence reduces the geophone sensitivity to cos(𝜃𝑓) ≈ 0.7. The placement accuracy of 

the cannon is lower than the UAV because a fired dart must fly over a longer distance than 

a dropped dart. Safety reasons also limit applications for a pneumatic launcher. 

 

Fig. 35: A pneumatic launcher for SeismicDarts. Ballistic dart deployment has limited 

usefulness because the incident angle is equal to the firing angle. 
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Fig. 36: Screenshots of simulations that were performed to estimate time take by different 

sensors surveying 100x100 m grid a.) Only SeismicSpiders b.) SeismicDarts and 

deployment system c.) Heterogeneous System d.) Human workers 

 

 
 

Fig. 37: Comparison of different modes of deployment highlight the efficiency of UAV 

deployment. 

 

 

4.5.2 Simulation Studies 

A scheduling system to compare time and costs for seismic surveys with varying 

numbers of UAVs, SeismicSpiders, SeismicDarts, and Human manual laborers was coded 

in MATLAB, available at [46]. Screenshots of the different cases are shown in Fig. 36. This 

tool allows us to examine engineering and logistic trade-offs quickly in the simulation. For 

example, Fig. 38 assumes a fixed number of darts and examines the finishing time with 5 

to 500 UAVs. The time required decays asymptotically, but 140 UAVs requires only twice 

the amount of time required for 500 UAVs, indicating that 140 UAVs are sufficient for the 

task. Substantial cost savings can be obtained by selecting the number of UAVs required 

to complete within a certain percentage greater than the optimal time. 
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The tool is useful for comparing the effectiveness of heterogeneous teams. Table 

Fig. 37 compares surveying a 1 km x 10 km strip of land with team (a) 5000 

SeismicSpiders, (b) 500 UAVs and 5000 SeismicDarts, (c) 500 humans and 5000 sensors 

(geophones). Team (b) completed six times faster than the team (c). The SeismicSpiders 

are much slower even compared to humans, but these sensors are useful during special 

cases. Since the SeismicSpiders are 100x slower than the UAVs and expensive compared 

to the SeismicDarts, their use could be limited to special occasions. 

 

Fig. 38: Survey time for a 1km x 10 km region for different numbers of UAVs. 

 
 

The Seismic UAV can deploy the SeismicSpider at a given waypoint. This attribute 

was not considered in the simulation but could be done to improve sensor deployment 

speed on SeismicSpiders. In Fig. 38 we vary the percentage of individual types of sensors 

but keep the total number of sensors a constant. The goal is to analyze ratios of different 

sensors to optimize cost and time. 10 SeismicDarts are provided for each UAV. 
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Increasing the percentage of UAVs lowers the deployment time. This is obvious 

since UAVs move at 20 m/s whereas SeismicSpiders move at 0.2 m/s. The difference in 

velocities makes UAV deployment time efficient. The SeimicSpiders are ideal for hard 

surface sensing or regions difficult for UAVs to access such as forests. 

 

Fig. 39: Survey time for different sensor ratios. The total number of sensors {5000, 3000} 

were kept constant. Ten darts were provided for each UAV. 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

This work presented an autonomous technique for geophone placement, recording, 

and retrieval. The system enables automating a job that currently requires large teams of 

manual laborers. Three components were introduced, SeismicDarts, a mobile 

SeismicSpider, and a deployment unit. Field and laboratory hardware experiments 

demonstrated the efficacy of the robotic team compared to traditional techniques. The 

SeismicDart’s output was comparable to well-planted geophones, suggesting the feasibility 

of the proposed system. For hard surfaces where the SeismicDart could not penetrate, an 

autonomous alternative was presented, the SeismicSpider. The SeismicSpider is mobile, 

can actively adjust its sensors to ensure ground contact and vertical placement, and can be 

deployed and retrieved by UAVs. The autonomous deployment was conducted using GPS, 

proving human involvement could be drastically minimized by adopting the proposed 

technique. Hardware experiments compared the autonomous system to manual planting 

and ballistic deployment. Simulation studies show time and cost savings over traditional 

manual techniques. 

An optimized path-planning algorithm was simulated for servicing a WSN. The 

path constructed is adaptive to the sensor node locations. The simulations above used a 

static WSN, but often sensor data transmission is dependent on transient phenomena. For 

example, a swarm of subsea sensors may track a school of fish, the progress of an oil slick, 

or seasonal drift of ocean currents. These are time-varying phenomena, and so the UAV 

servicing the sensors should be able to adapt. The same local optimization techniques 

presented in this work should be able to iteratively adapt the paths of UAVs. 
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Finally, future work should extend our simulation to handle non-stationary sensor 

nodes, improve the convergence rate, and use mTSP code to escape local minima. Future 

drone systems could be designed solely for seismic exploration purposes thereby increasing 

robustness, increasing flight and stationary periods, and could be weatherized. A new 

direction in this project would be to perform fast data transmissions between the different 

sensors (clients) and the UAVs (servers). The proposed algorithms and simulations could 

be implemented where the UAV would not only act as a deployment unit but will also 

hover above these sensors to collect data and (if possible) recharge their batteries. This 

research has innumerable application domains beyond seismic surveying. This added 

feature would help with faster analysis of the physical region. Another future direction 

would be to improve the GPS navigation system by adding visual servo control. This would 

enhance precision and also would aid in retrieving the sensors from the field. These features 

together will completely automate the process of seismic sensing, an important milestone 

in the geophysics community. 
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